36

The Weierstrass Approximation
Theorem

Recall that the fundamental idea underlying the construction of the real
numbers is approximation by the simpler rational numbers. Firstly, num-
bers are often determined as the unknown roots of some equation and when
we cannot solve the equation explicitly, as is most often the case, then we
must compute approximate solutions. But even if we write down a real
number symbolically, like /2, for example, we cannot specify its numerical
value completely in general. In this case, we approximate the real number
to any desired accuracy using rational numbers with finite decimal expan-
sions.

The situation for functions is completely analogous. In general, functions
that are specified as the solutions of differential equations cannot be written
down explicitly in terms of known functions. Instead, we must look for good
approximations. Moreover, most of the functions that we can write down,
i.e., those involving exp, log, sin, and so on, are “complicated” in the sense
that they take on real values that cannot be written down explicitly. To
use these functions in practical computations, we must resort to using good
approximations of their values. Put it this way; when we press the e” key
on a calculator, we do not get e”, rather we get a good approximation.

This raises one of the fundamental problems of analysis, which is figuring
out how to approximate a given function using simpler functions. In this
chapter, we begin the study of this problem by proving a fundamental result
which says that any continuous function can be approximated arbitrarily
well by polynomials. This is an important result because polynomials are
relatively simple. In particular, a polynomial is specified completely by a
finite set of coefficients. In other words, the relatively simple polynomi-
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als play the same role with respect to continuous functions that rational
numbers play with real numbers.
The result is due to Weierstrass and it states:

Theorem 36.1 Weierstrass Approximation Theorem Assume that
f is continuous on a closed bounded interval I. Given any € > 0, there is a
polynomial P, with sufficiently high degree n such that

|f(z) — Py(x)] <€ fora<az<b. (36.1)

There are many different proofs of this result, but in keeping with our
constructivist tendencies, we present a constructive proof based on Bern-
stein' polynomials. The motivation for this approach rests in probability
theory. We do not have space in this book to develop probability theory,
but we describe the connection in an intuitive way. Later in Chapter 37 and
Chapter 38, we investigate other polynomial approximations of functions
that arise from different considerations.

Before beginning, we note that it suffices to prove Theorem 36.1 for the
interval [0, 1]. The reason is that the arbitrary interval a < y < b is mapped
to0 <z <1lbyxz=(a—y)/(a—0b)and vice versaby y = (b—a)r+a.If g
is continuous on [a, b], then f(z) = g((b — a)x + a) is continuous on [0, 1].
If the polynomial P, of degree n approximates f to within € on [0, 1], then
the polynomial P,(y) = P,((a —y)/(a — b)) of degree n approximates g(y)
to within € on [a, b].

36.1 The Binomial Expansion

One ingredient needed to construct the polynomial approximations is an
important formula called the binomial expansion. For natural numbers 0 <

m < n, we define the binomial coefficient (;), or n choose m, by

ny\ n!
m)  ml(n—m)!
EXAMPLE 36.1.

4 41 6 6! 3 3!
<2> 2121 (1) s (0) 310!

We can interpret n choose m as the number of distinct subsets with m
elements that can be chosen from a set of n objects, or the number of
combinations of n objects taken m at a time.

IThe Russian mathematician Sergi Natanovich Bernstein (1880-1968) studied in
France before returning to Russia to work. He proved significant results in approxi-
mation theory and probability.
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EXAMPLE 36.2. We compute the probability P of getting an ace of
diamonds in a poker hand of 5 cards chosen at random from a standard
deck of 52 cards. Recall the formula

P(event ) = probability of an event

number of outcomes in the event

~ total number of possible outcomes

that holds if all outcomes are equally likely. The total number of 5 card

poker hands is (552). Obtaining a “good” hand amounts to choosing any

4 cards from the remaining 51 cards after getting an ace of diamonds.
So there are (541) good hands. This means

po (i) _susun_ 5
T () T aum s 2

It is straightforward (Problem 36.3) to show the following identities,

)=o) (=0 G)=() -1 we

An important application of the binomial coefficient is the following the-
orem.

Theorem 36.2 Binomial Expansion For any natural number n,

(a+b)" = zn: <:1> ambnm, (36.3)

m=0

EXAMPLE 36.3.

(a+b)* =a* +2ab+b*
(a+b)% = a® + 3a%b + 3ab® 4+ V?
(a+0b)* = a* + 4a®b + 6a%b* + 4ab® + b*

The proof is by induction. For n =1,

(a+b)!=a+b= ((l))a+ G)b

We assume the formula is true for n — 1, so that

n—1 = n—1 mpn—1—m
(a+b) = E a™b ,
m
m=0

and prove it holds for n.
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We multiply out
(a+b)" = (a+b)(a+Db)"?
n—1 n 1 n—1 n 1
— - m+1bn—1—m - mpyn—m .
m=0 ( m >a ! mZZO ( m >a

Now changing variables in the sum,

m=0 m=1
while
n—1 n 1 n—1 n 1
( ) mpn—m _ aObn + Z ( >ambnm
m
m=0 m=1
Hence,

n—1
-1 -1
(a+b)" =ab" + Z ((:1 B 1> + (nm )) a™y" ™ 4 a"b’. (36.4)
m=1

It is a good exercise (Problem 36.5) to show that

)= ()= () o

Using this in (36.4) proves the result.
We use the binomial expansion to drive two other useful formulas. We
differentiate both sides of

(z+b)" = Xn: (;) Zmpnm (36.6)

to get

n(x+b)" ! = Z m(i) g,

m=0

Setting © = a and multiplying through by a/n,

ala+b)"! = zn: m (")amb”m. (36.7)

n \m
m=0

Differentiating (36.6) twice (Problem 36.6) gives

(1 - 711) a*(a+b)""2 = zn: <Zf - Z;) <:1) a™b"™. (36.8)

m=0
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36.2 The Law of Large Numbers

The approximating polynomials used to prove Theorem 36.1 are constructed
by taking linear combinations of more elementary polynomials called bino-
mial polynomials. In this section, we explore the properties of the binomial
polynomials and their connection to probability.

We set a = x and b =1 — 2 in the binomial expansion (36.3) to get

m

l=(z+(1—-2)" = zn: <”>xm(1 — )", (36.9)

m=0

We define the m + 1 binomial polynomials of degree n as the terms in
the expansion, so

n
n,m = ™1 - n—m7 :Oa]-v"'a .

EXAMPLE 36.4.

profa) = ()01 - o = (1 - 2
p21(z) = (i)xl(l — ) =2z(1 —2)

p22() = <§>$2(1 —2)? =22

If 0 < 2 < 1 is the probability of an event E, then p, ., (z) is the
probability that F occurs exactly m times in n independent trials.

ExXAMPLE 36.5. In particular, consider tossing an coin with probability
x that a head (H) occurs and, correspondingly, probability 1 — z that
a tail (T) occurs. The coin is “unfair” if x # 1/2. The probability of
the occurrence of a particular sequence of n tosses containing m heads,
e.g.,

HITHHTHTHTTHHHTHTHTTT ---T,

m heads in n tosses

is ™ (1 — )™~ ™ by the multiplication rule for probabilities. There are
(™) sequences of n tosses with exactly m heads. By the addition rule
for probabilities, p, () is the probability of getting exactly m heads
in n tosses.

The binomial polynomials have several useful properties, some of which
follow directly from the connection to probability. For example, we interpret

> pamlx) =1 (36.10)
m=0
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as saying that event E with probability x occurs either exactly 0, 1, ---, or
n times in n independent trials with probability 1. Since py, ,(x) > 0 for
0 <z <1, (36.10) implies that 0 < py, ,,(x) < 1 for 0 < x < 1, as it must
since it is a probability.

A couple more useful properties: (36.7) implies

n
> mpnm(x) = na (36.11)
m=0
and (36.8) implies
Z M2 pp,m(z) = (N — n)2® + na. (36.12)

m=0

An important use of the binomial polynomials is an application to the
Law of Large Numbers. Suppose we have an event E that has probability
x of occurring, such as the unfair coin from Example 36.5. But suppose
we don’t know the probability. How might we determine x? If we conduct
a single trial, e.g., flip the coin once, we might see event £ or might not.
One trial does not give much information for determining z. However, if
we conduct a large number n > 1 of trials, then intuition suggests that F
should occur approximately nz times out of n trials, at least “most of the
time.”

ExXAMPLE 36.6. The connection between the probability of occurrence
in one trial and the frequency of occurrence in many trials is not com-
pletely straightforward to determine. Consider coin tossing again. If we
flip a fair coin 100,000 times, we expect to see around 50,000 heads
most of the time. Of course, we could be very unlucky and get all tails.
But the probability of this occurring is

100000
1 ~ 1030103
2

On the other hand, it is also unlikely that we will see heads in exactly
half of the tosses. In fact, one can show that the probability of getting
heads exactly half of the time is approximately 1/y/7n for n large, and
therefore also goes to zero as n increases.

A Law of Large Numbers encapsulates in some way the intuitive con-
nection between the probability of an event occurring in one trial and the
frequency that the event occurs in a large number of trials. A mathematical
expression of this intuition is a little tricky to state, however, as we saw
in Example 36.6. We prove the following version that is originally due to
Jacob Bernoulli.
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Theorem 36.3 Law of Large Numbers Assume that event E occurs
with probability x and let m denote the number of times E occurs in n
trials. Let € > 0 and 6 > 0 be given. The probability that m/n differs from
x by less than § is greater than 1 — ¢, i.e.,

’P(‘%—x‘ <5) >1—¢ (36.13)

for all n sufficiently large.

Note that we can choose € > 0 and § > 0 arbitrarily small at the cost of
making n possibly very large, hence the name of the theorem. Also note that
while this result says that it is likely that event E will occur approximately
xn times in n trials, it does not say that event E will occur exactly xn
times in n trials nor does it say that event E must occur approrimately xn
times in n trials. Thus, this result does not contradict the computations in
Example 36.6.
Phrased in terms of the binomial polynomials, we want to show that
given €, § > 0,
> pam(@)>1-—c¢ (36.14)
0<m<n
|——ac|<6
for n sufficiently large.
Consider the complementary sum

Z pnm =1~ Z pn,m(x),

0<m<n 0<m<n
[>s m_g]<s

which we estimate simply as

1 2 1

0<m<n 0<m<n
|25 m g5
where
Sy = Z (m — nx)?pp.m(z)
m=0
n n (36.15)
= Z m2pn,m(x) —2nx Z mpn,m + n -T2 Z DPn, m
m=0 m=0
Using (36.10), (36.11), and (36.12), we find S,, simplifies (Problem 36.9)
to S, = nm( —x).Since x(1—z) < 1/4for 0 < x <1, S,, < n/4. Therefore,
1
Z pn,m(ﬂf) < o2 (3616)
0<m<n

——w‘>6



516 36. The Weierstrass Approximation Theorem

and )
Z pn,m(x) >1- e
0<m<n
= x’<5

n

In particular, for fixed €, § > 0, we can insure that (4nd%)~! < € by choosing
n > 1/(46%).

36.3 The Modulus of Continuity

In order to prove a strong version of Theorem 36.1, we introduce a useful
generalization of Lipschitz continuity.

First note that by Theorem 32.11, the continuous function f on [a,b] in
Theorem 36.1 is actually uniformly continuous on [a, b]. That is given € > 0
there is a 6 > 0 such that | f(z) — f(y)| < e for all z,y in [a, b] with |z —y| <
5.2 Now a Lipschitz continuous function f with constant L is uniformly
continuous because |f(z) — f(y)] < L|z — y| < € for all z,y with |z —
y| < 6 = ¢/L. On the other hand, uniformly continuous functions are not
necessarily Lipschitz continuous. They do, however, satisfy a generalization
of the condition that defines Lipschitz continuity called the modulus of
continuity.

The generalization is based on the observation that if f is uniformly
continuous on a closed, bounded interval I = [a, b], then for any § > 0, the
set of numbers

{If(x) — f(y)| with 2,y in I, |z —y| < I} (36.17)

is bounded. Otherwise, f could not be uniformly continuous (Problem 36.10).
But, Theorem 32.15 then implies that the set of numbers (36.17) has a least
upper bound. Turning this around, we define the modulus of continuity
w(f,0) of a general function f on a general interval I by

w(f,0) = sup {|f(z) = fW)I}.

z,y in I
lr—y|<é

Note that w(f,d) = oo if the set (36.17) is not bounded. We can guarantee
that w(f,d) is finite if f is uniformly continuous and I is a closed interval,
but if f is not uniformly continuous and/or I is open or unbounded, then
w(f,0) might be infinite.

EXAMPLE 36.7. We know z? is uniformly continuous on [0,1]. Now

consider the difference |2% — y?| = |z — y||x + y|, where |z — y| < 4.

2Uniformity refers to the fact that § can be chosen independently of = and y.
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The values of |z — y| increases monotonically from 0 to §, while the
corresponding largest values of |z + y| decrease monotonically from 2
to 2 — d. The largest value of their product occurs when |z — y| = § so
that w(a?,§) = 26 — 62

EXAMPLE 36.8. w(z~1,4) on (0, 1) is infinite.

EXAMPLE 36.9. w(sin(z~1),8) = 2 on (0, 1) since for any § > 0 we can
find x and y within § of 0, and hence within § of each other, such that
sin(z7!) =1 and sin(y~!) = —1.

Note that the functions in Example 36.8 and Example 36.9 are not uni-
formly continuous on the indicated intervals. In fact, if f is uniformly con-
tinuous on [a, b], then w(f,d) — 0 as § — 0 (Problem 36.14).

If f is Lipschitz continuous on [a, b] with constant L, then w(f,d) < Lé.
In this sense, the modulus of continuity is a generalization of the idea of
Lipschitz continuity.

36.4 The Bernstein Polynomials

To construct the approximating polynomial, we partition [0, 1] by a uniform
mesh with n + 1 nodes

The Bernstein polynomial of degree n for f on [0,1] is

B,(f,x) = Bp(z) = Z F(@m)Pn,m (). (36.18)

m=0

Note that the degree of B, is at most n.

The reason that the Bernstein polynomials become increasingly accurate
approximations as the degree n increases is rather intuitive. The formula
for B,,(z) decomposes into two sums,

Bn(z) = Z f(xm)pn,m(x) + Z f(xm)pn,m(x)

T T |z —x| large

The first sum converges to f(z) as n becomes large, since we can find
nodes x,, = m/n arbitrarily close to = by taking n large.> The second sum
converges to zero by the Law of Large Numbers. This is exactly what we
prove below.

Before stating a convergence result, we consider a couple of examples.

3Recall that any real number can be approximated arbitrarily well by rational num-
bers.
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EXAMPLE 36.10. The Bernstein polynomial B, for z? on [0,1] with
n > 2 is given by

By (36.12), this means
B, (z) = (1 — i) 2+ %x =22+ %x(l — ).
We see that B, (2%, x) # 22 and in fact the error
|z? — B, (z)| = %x(l —x)
decreases like 1/n as n increases.
EXAMPLE 36.11. We compute Bj, Bs, and Bs for f(z) =€® on [0, 1],
Bi(z) =e’(1—2)+e'z=(1—2z)+ex
Bo(z) = (1 — 2)% +2e'22(1 — x) + ex?
Bs(z) = (1 — z)® + 3e'22(1 — x)2 + 3¢¥/32%(1 — z) + ex®.

We plot these functions in Fig. 36.1.

— exp(x)

0.0 0.2 0.4 0.6 0.8 1.0
X

FIGURE 36.1. The first three Bernstein polynomials for e”.

We prove:

Theorem 36.4 Bernstein Approximation Theorem Let f be a con-
tinuous function on [0,1] and n > 1 a natural number. Then

[F@) = Balf )| < Julf,n™). (36.19)
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If f is Lipschitz continuous with constant L, then
9
|f(z) — Bu(f,2)| < ZLn*l/? (36.20)

Theorem 36.1 follows immediately since for ¢ > 0, we simply choose n
sufficiently large so that

1f(2) — Bu(f,2)| < %M fn12) < e,

Using (36.10), we write the error as a sum involving the differences be-
tween f(x) and the values of f at the nodes:

n

f(ac) - Bn(x) = Z f(x)pn,m(x) - Z f(l'm)pn,m(x)
m=0 m=0

— Z (f(x) — f(fm))pn,m(x)

m=0

We expect that the differences f(x) — f(z,,) should be small when x is
close to x,, by the continuity of f. To take advantage of this, for § > 0, we
split the sum into two parts

+ Y (f@) = f(@m)pam(). (36.21)
0<m<n
‘z:mmjz‘s

The first sum is small by the continuity of f, since

S (@) = f@a))Pam@)| < D0 (@) = f(@m)|pnm (@)

0<m<n 0<m<n
|[z—2m|<o |z —2m| <0
n
< w(fv 5) E pn,m(x)
0<m<n
|x—zp, | <O

<w(f,6) Z Pn,m () = w(f,9).
m=0

We can get a crude bound on the second sum in (36.21) easily. Since
f is continuous on [0, 1] there is a constant C' such that |f(z)| < C for
0 < x < 1. Therefore,

S @) () <20 Y punl) < o

0<m<n 0<m<n
|z—20, | >0 |T—2m|>6
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by (36.16). So we can make the second sum as small as desired by taking
n large.

To get a sharper estimate on the second sum in (36.21), we use a trick
similar to that used to prove Theorem 19.1. We let M be the largest integer
less than or equal to |z — x,,,|/d and choose M uniformly spaced points
Y1,Y2, - ,yn in the interval spanned by x and x,, so that each of the
resulting M + 1 intervals have length |z — x,,|/(M + 1) < 4.

Now, we can write

f(@) = flzm) = (f(@) = flyr) + (Fr) = fly2)) + -+
+ (f(ymr) = f(zm))-

Therefore,
B | — 2]
@) = Sl < 1 + (r.0) < (14 5720 w(1.0)

We use this to estimate the second sum in (36.21),

Z (f(.%‘) - f(xm))pn,m(x)

I X @ty X lo sl

0<m<n 0<m<n
|z—2m >4 |z—20m >4

Using the fact that |z — z,,|/d = M > 1,

Z (f(:l?) - f(xm))pn,m(:r)

0<m<n
|T—2m | >8

> bt g X @)

0<m<n 0<m<n
|x_$m|>‘S |x_xm|25
n

(
w(f,5><2pnm Vg X @ o) (o))

m=0
91 s
)

So
Z (f(‘r) - f(mm))pn,m(‘r)

0o<m<n
|[x—Tm|>6

by (36.11) and (36.12

< w(f,9) (1+ 47352>.
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Putting the estimates on the sums back into (36.21),

£ () = Bu(@)| < w(f.9) (z N 4nlé> .

Setting 6 = n~'/2 proves the theorem.

36.5 Accuracy and Convergence

We can interpret Theorem 36.4 as saying that the Bernstein polynomials
{Bn(f,x)} converge uniformly to f(z) on [0, 1] as n — oo. In other words,
the errors of the Bernstein polynomials B, for a given function f on [0, 1]
tend to zero as n increases. This is a strong property; unfortunately, the
price is that the convergence is very slow in general.

ExaMPLE 36.12. To demonstrate how slowly the Bernstein polyno-
mials can converge, we plot the Bernstein polynomial of degree 4 for
sin(7z) on [0,1] in Fig. 36.2.

1.0
0.8 |
0.6 | e L
/// AN
04l /7 . AN
o/ — sin(x) \\
/
02| / - By A\
4 )
/ A
0.0 ‘ ‘ : : ‘
0.0 02 0.4 0.6 0.8 1.0

FIGURE 36.2. A plot of the Bernstein polynomial By(zx) for sin(mz).

If the error bound in (36.19) is accurate, i.e.,
|f(z) — Bp(x)| = %w(f, n~Y2) ~ Cn~? for some constant C,

then we have to increase n by a factor of 100 in order to see an improvement
of 10 (one additional digit of accuracy) in the error. This follows because
from the computation

f(@) = Buy (@) om0

~

[f (@) = Bu, ()] py 12
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we need no = 100n7.

The error can decrease more quickly in some cases. Above, we saw that
the error for 22 decreases like 1/n. But even this is relatively slow compared
to some other polynomial approximations and for this reason the Bernstein
polynomials are not often encountered in practice.

36.6 Unanswered Questions

We have shown that continuous functions can be approximated by poly-
nomials. But we have not really explained why polynomials are well-suited
for approximating functions. In other words, what are the properties of
polynomials that make them good approximations? Are there other sets of
functions that have similar approximation properties? Atkinson [2], Isaac-
son and Keller [15], and Rudin [19] have interesting material on these topics.
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Chapter 36 Problems
8
36.1. Evaluate <3>

36.2. Explain the claim that <ZL) gives the number of ways that n objects can
be arranged in groups of m.

36.3. Prove (36.2).

36.4. Expand (a + b)°.

36.5. Prove (36.5).

36.6. Prove (36.8).

36.7. Verify (36.12).

36.8. Determine a formula for the probability of getting exactly n/2 heads when
tossing a fair coin n times, where n is even. Make a plot of the formula for a n
in the range of 1 to 100 and test the claim that it approaches y/7n for n large.

36.9. Prove that S, defined in (36.15) is equal to S, = nz(1 — z).

Problems 36.10-36.15 have to do with the modulus of continuity. Sev-
eral of the proofs in this book could be generalized by using the modulus of
continuity instead of Lipschitz continuity.

36.10. Prove that if f is uniformly continuous on [a,b], then for any § > 0 the
set of numbers (36.17) is bounded.

36.11. Evaluate
(a) w(z?,6) on [0,2] (b) w(1/z,d) on [1,2] (b) w(log(x),d) on [1,2].
36.12. Verify Example 36.8.

36.13. Verify Example 36.9.

36.14. Prove that if f is uniformly continuous on [a,b], then w(f,d) — 0 as
0 —0.

36.15. Prove that if f has a continuous derivative on [a,b], then w(f,d) <
maxXiq,b) |f/‘6

Computing Bernstein polynomial approximations can be tedious. You
might want to use MAPLE © | for ezample, to do Problems 36.16-36.21.

36.16. Compute formulas for p3,m, m =0,1,2,3.
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36.17. Verify the computations in Example 36.11.

36.18. Compute the Bernstein polynomials for = on [0, 1].

36.19. Compute and plot the Bernstein polynomials for exp(z) on [1, 3] of degree
1, 2, and 3.

36.20. (a) Compute a summation formula for the Bernstein polynomial for z*
on [0, 1] for degree > 3. (b) Find an explicit formula for the Bernstein polynomial
from (a) that does not involve summation. (¢) Write down a formula for the error.

36.21. Compute and plot the Bernstein polynomials for sin(wx) on [0, 1] of degree
1, 2, 3, and 4.

We have shown that the Bernstein polynomials approximate a differen-
tiable function, which is continuous of course, uniformly well. In Prob-
lem 36.22, we ask you to show that the derivative of the function is also
approximated by the derivatives of the function’s Bernstein polynomials.

36.22. If f(z) has a continuous first derivative in [0, 1], prove that the derivatives
of the Bernstein polynomials {P,(f,z)} converge uniformly to f’(z) on [0, 1].

Hint: First, verify the formulas
p%ym =n(Pn—1,m—1 —Pn—1,m) form=1,--- m—1
Pn = MPn-1,n-1, Pno = —NPn-1,0-
Then find a summation formula for the error f'(z) — P, (x) and rearrange the
sum in terms of pp,—1,m for m=0,1,--- ,n — 1.

36.23. If f is continuous on [0, 1] and if
1
/ f(x)z"dxz =0 forn=0,1,2,--,
0

, then prove that f(x) =0 for 0 < & < 1. Hint: This says that the integral of the
product of f and any polynomial is zero. Use Theorem 36.1 to first prove that

/01 f2(z)de = 0.

We say that the real numbers R are separable because any real num-
ber can be approrimated to arbitrary accuracy by a rational number. The
analogous property holds for the space of continuous functions on a closed,
bounded interval, which is the content of the theorem we ask you to prove
in Problem 36.24.

36.24. Prove the following extension of the Weierstrass Approximation Theorem:

Theorem 36.5 Assume that [ is continuous on a closed bounded interval I.
Given any € > 0, there is a polynomial P, with rational coefficients with finite
decimal expansions and of sufficiently high degree n such that

|f(z) — Po(z)| < € fora<az<b.

Hint: Use Theorem 36.1 to first get an approximate polynomial and then analyze
the effect of replacing its coefficients by rational approximations.
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