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Bayesian Assessment of
Hypotheses and Models

8.1 Introduction

The three preceding chapters gave an overview of how Bayesian probability
models are constructed. Once a prior distribution is elicited and the form
of the likelihood function is agreed upon, Bayesian analysis is conceptually
straightforward: nuisance parameters are eliminated via integration and
parameters of interest are inferred from their marginal posterior distribu-
tions. Further, yet-to-be-observed random variables can be predicted from
the corresponding predictive distributions. In all cases, probability is the
sole measure of uncertainty at each and everyone of the stages of Bayesian
learning.

Inferences are expected to be satisfactory if the entire probability model
(the prior, the likelihood, and all assumptions made) is a “good one”, in
some sense. In practice, however, agreement about the model to be used
is more the exception than the rule, unless there is some well-established
theory or mechanism underlying the problem. For example, a researcher
may be uncertain about which hypothesis or theory holds. Further, al-
most always, there are alternative choices about the distributional form
to be adopted or about the explanatory variables that should enter into
a regression equation, say. Hence, it is important to take into account un-
certainties about the model-building process. This is perfectly feasible in
Bayesian analysis and new concepts do not need to be introduced in this
respect. If there is a set of competing models in a certain class, each of the
models in the set can be viewed as a different state of a random variable.
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The prior distribution of this variable (the model) is updated using the
information contained in the data, to arrive at the posterior distribution of
the possible states of the model. Then inferences are drawn, either from the
most probable model, a posteriori, or from the entire posterior distribution
of the models, in a technique called Bayesian model averaging.

In this chapter, several concepts and techniques for the Bayesian eval-
uation of hypotheses and models are presented. Some of the approaches
described are well founded theoretically; others are of a more exploratory
nature. The next section defines the posterior probability of a model and
an intimately related concept: the Bayes factor. Subsequently, the issue of
“testing hypotheses” is presented from a Bayesian perspective. Approxi-
mations to the Bayes factor and extensions to the concept are suggested.
A third section presents some methods for calculating the Bayes factor,
including Monte Carlo procedures, since it is seldom the case that one can
arrive at the desired quantities by analytical methods. The fourth and fifth
sections present techniques for evaluating goodness of fit and the predictive
ability of a model. The final section provides an introduction to Bayesian
model averaging, with emphasis on highlighting its theoretical appeal from
the point of view of predicting future observations.

8.2 Bayes Factors

8.2.1 Definition

Suppose there are several competing theories, hypotheses, or models about
some aspect of a biological system. For example, consider different theories
explaining how a population evolves. These theories are mutually exclusive
and exhaustive (at least temporarily). The investigator assigns prior proba-
bility p (H;) , (i = 1,2, ..., K') to hypothesis, or theory 4, with >, p (H;) = 1.
There is no limit to K and nesting requirements are not involved. After
observing data y, the posterior probability of hypothesis ¢ is

p (Hily) = If(Hi)p(“Hi) , i=1,2,.. K, (8.1)

;P(HZ)P(Y\HZ)

where p(y|H;) is the probability of the data under hypothesis . If all
hypotheses are equally likely a priori, which is the maximum entropy or
reference prior in the discrete case (Bernardo, 1979), then

p(tily) = LY

;p(ﬂHi)
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The posterior odds ratio of hypothesis ¢ relative to hypothesis j takes the

form
p(Hily) _ p(Hi) p(y|H:) (8.2)
p(H;ly)  p(H;)p(y|Hj) '
It follows that the posterior odds ratio is the product of the prior odds
ratio and of the ratio between the marginal probabilities of observing the

data under each of the hypotheses. The Bayes factor is defined to be

p(Hily) . .
B — p (y|H;) _ p(Hly) _ posterior odds ratio (8.3)
Y p(ylHy) p(H;) prior odds ratio ’

p(H;

N

According to Kass and Raftery (1995) this terminology is apparently due
to Good (1958). A B;; > 1 means that H; is more plausible than H; in the
light of y. While the priors are not visible in the ratio p (y|H;) /p (y|H;),
this does not mean that B;; in general is not affected by prior specifications.
This point is discussed below.

It is instructive to contrast this approach with the one employed in stan-
dard statistical analysis. In classical hypothesis testing, a null hypothesis
Hy : 6 € 6y and an alternative hypothesis Hy : 8 € 61 are specified. The
choice between these hypotheses is driven by the distribution under Hgy of
a test statistic that is a function of the data (it could be the likelihood
ratio), T (y), and by the so-called p-value. This is defined as

Pr[T (y) at least as extreme as the value observed|d, Hy] . (8.4)

Then H, is accepted (or rejected, in which case H; is accepted) if the
p-value is large (small) enough, or one may just quote the p-value and
leave things there. Notice that (8.4) represents the probability of obtaining
results larger than the one actually obtained; that is, (8.4) is concerned
with events that might have occurred, but have not. Thus, the famous
quotation from Jeffreys (1961):

“What the use of p implies, therefore, is that a hypothesis
which may be true may be rejected because it has not predicted
observable results which have not occurred. ... On the face of
it the fact that such results have not occurred might more rea-
sonably be taken as evidence for the law, not against it.”

Often (and incorrectly), the p-value is interpreted as the probability that
Hy holds true. The interpretation in terms of probability of hypotheses,
p[Ho|T (y) =t (y)], which is the Bayesian formulation of the problem, is
conceptually more straightforward than the one associated with (8.4). De-
spite its conceptual clarity, the Bayesian approach is not free from prob-
lems. Perhaps not surprisingly, these arise especially in cases when prior
information is supposed to convey vague knowledge.
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8.2.2 Interpretation

The appeal of the Bayes factor as formulated in (8.3), is that it provides
a measure of whether the data have increased or decreased the odds of
H; relative to H;. This, however, does not mean that in general, the Bayes
factor is driven by the data only. It is only when both H; and H; are simple
hypotheses, that the prior influence vanishes and the Bayes factor takes the
form of a likelihood ratio. In general, however, the Bayes factor depends
on prior input, a point to which we will return.

Kass and Raftery (1995) give guidelines for interpreting the evidence
against some “null hypothesis”, Hy. For example, they suggest that a Bayes
factor larger than 100 should be construed as “decisive evidence” against
the null. Note that a Bayes factor under 1 means that there is evidence in
support of Hy. When working in a logarithmic scale, 2log B;;, for example,
the values are often easier to interpret by those who are familiar with
likelihood ratio tests. It should be made clear from the onset that the
Bayes factor cannot be viewed as a statistic having an asymptotic chi-
square distribution under the null hypothesis. Again, B;; is the quantity
by which prior odds ratios are increased (or decreased) to become posterior
odd ratios.

There are many differences between the Bayes factor and the usual like-
lihood ratio statistic. First, the intervening p (y|H;) is not the classical
likelihood, in general. Recall that the Bayesian marginal probability (or
density) of the data is arrived at by integrating the joint density of the
parameters and of the observations over all values that the parameters can
take in their allowable space. For example, if hypothesis or model H; has
parameters 6, then for continuous data and continuous valued parameter
vector

p(ylH;) = / p(y16,. Hy) p (6:|H,) d6,

The marginal density is, therefore, the expected value of all possible likeli-
hoods, where the expectation is taken with respect to the prior distribution
of the parameters. In likelihood inference, no such integration takes place
unless the “parameters” are random variables having a frequentist interpre-
tation. Since, in turn, these random variables have distributions indexed by
parameters, the classical likelihood always depends on some fixed, unknown
parameters. In the Bayesian approach, on the other hand, any dependence
of the marginal distribution of the data is with respect to any hyperparam-
eters the prior distribution may have, and with respect to the form of the
model. In fact, p (y|H;) is the prior predictive distribution and gives the
density or probability of the data calculated before observation, uncondi-
tionally with respect to parameter values.
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A second important difference is that the Bayes factor is not explicitly
related to any critical value defining a rejection region of a certain size.
For example, the usual p-values in classical hypothesis testing cannot be
interpreted as the probabilities that either the null or the alternative hy-
potheses are “true”. The p-value arises from the distribution of the test
statistic (under the null hypothesis) in conceptual replications of the ex-
periment. In contrast, the Bayes factor and the prior odds contribute di-
rectly to forming the posterior probabilities of the hypotheses. In order to
illustrate, suppose that two models are equally probable, a priori. Then a
Bayes factor By; = 19, would indicate that the null hypothesis or model is
19 times more probable than its alternative, and that the posterior proba-
bility that the null model is true is 0.95. On the other hand, in a likelihood
ratio test, a value of the test statistic generating a p-value of 0.95 as de-
fined by (8.4) cannot be construed as evidence that the null hypothesis has
a 95% chance of being true.

8.2.3 The Bayes Factor and Hypothesis Testing
Decision-Theoretic View

In Bayesian analysis, “hypothesis testing” is viewed primarily as a decision
problem (e.g., Zellner, 1971). Suppose there are two hypotheses or models:
Hy (null) and Hy (alternative). If one chooses Hy when H; is “true”, then
a loss Lqg is incurred. Similarly, when H; is adopted when the null holds,
the loss is Lg;. Otherwise, there are no losses.

The posterior expectation of the decision “accept the null hypothesis” is

E (loss|accept Ho,y) = 0xp(Holy)+ Liop (Hily)
= Liop(Hily).

Likewise, the expected posterior loss of the decision “accept the alternative”
is

E (loss|reject Ho,y) = 0x p(Hily)+ Loip (Holy)
= Loip(Holy)-
Naturally, if the expected posterior loss of accepting Hy is larger than that
of rejecting it, one would decide to reject the null hypothesis. Then the
decision rule is
if E (loss|reject Hy,y) < E (loss|accept Hp,y ) — reject Hy.

The preceding is equivalent to

Loy p (Holy) < Liop (Hily),
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or, in terms of (8.3),

By = p(y|H1) _ Loip(Hop)
p (y|Ho) LlOP(Hl).

This indicates that the null hypothesis is to be rejected if the Bayes factor
(ratio of marginal likelihoods under the two hypotheses or models) for the
alternative, relative to the null, exceeds the ratio of the prior expected
losses. Note that Lo; p (Hp) is the expected prior loss of rejecting the null
when this is true; L1op (H1) is the expected prior loss that results when H,
is true and one accepts Hy. Then the ratio of prior to posterior expected
losses

(8.6)

Loy p(Ho)
Liop(Hy)

plays the role of the “critical” value in classical hypothesis testing. If one
views the Bayes factor as the “test statistic”, the critical value is higher
when one expects to loose more from rejecting the null than from accepting
it. In other words, the larger the prior expected loss from rejecting the null
(when this hypothesis is true) relative to the prior expected loss of accepting
it (when H; holds), the larger the weight of the evidence should be in favor
of the alternative, as measured by the Bayes factor.

If the losses are such that Loy = Lo, it follows from (8.6) that the
decision rule is simply

This implies that if the two models or hypotheses are equiprobable a priori,
then the alternative should be chosen over the null whenever the Bayes
factor exceeds 1. Similarly, a “critical value” of 10 should be adopted if it
is believed a priori that the null hypothesis is 10 times more likely than
the alternative. In all cases, it must be noted that the “accept” or “reject”
framework depends nontrivially on the form of the loss function, and that
adopting Lg; = L1g may not be realistic in many cases.

The definition in the form of (8.6) highlights the importance, in Bayesian
testing, of defining non-zero a priori probabilities. This is so even though
the Bayes factor can be calculated without specifying p (Ho) and p (Hy).
If Hy or Hy are a priori impossible, the observations will not modify this
information.

Bayesian Comparisons

Contrasting Two Simple Hypotheses

The definition of the Bayes factor in (8.3) as a ratio of marginal densities
does not make explicit the influence of the prior distributions. With one
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exception, Bayes factors are affected by prior specifications. The excep-
tion occurs when the comparison involves two simple hypotheses. In this
case, under Hy, a particular value 8 is assigned to the parameter vector,
whereas under H;p, another value @ = 0, is posited. There is no uncer-
tainty about the value of the parameter under any of the two competing
hypotheses. Then one can express the discrete prior probability of hypoth-
esis i as p (H;) = Pr (0 = 0,), and the conditional p.d.f. for y given H; as
p(y|H;) = p(y|@ = 0;). The Bayes factor for the alternative against the
null is then
posterior odds  p(y|@ = 64)

By = - . )
10 prior odds p(y|0 = 6o) (87)

In this particular situation, the Bayes factor is the odds for Hj relative
to Hy given by the data only. Expression (8.7) is a ratio of standard like-
lihoods, where the values of the parameters are completely specified. In
general, however, Bjy depends on prior input. When a hypothesis is not
simple, in order to arrive at the form equivalent to (8.7), one must compute
the expectation of the likelihood of 8; with respect to the prior distribu-
tion. For continuously distributed values of the vector 6; and prior density
p(0;|H;), one writes

p(y|H;) = / p(y16,. Hy) p (6:|H,) d6,

In contrast to the classical likelihood ratio frequentist test, the Bayes
factor does not impose nesting restrictions concerning the form of the
likelihood functions, as illustrated in the following example adapted from
Bernardo and Smith (1994).

Example 8.1 Two fully specified models: Poisson versus negative bino-
mial process

Two completely specified models are proposed for counts. A sample of size
n with values y1,ys, ..., yn is drawn independently from some population.
Model P states that the distribution of the observations is Poisson with
parameter 0 p. Then the likelihood under this model is

P10 = 0p) = H[ el e e
exp (nfp) [ !

i=1

=1

Model N proposes a negative binomial distribution with parameter 6p.
The corresponding likelihood is

p(ylf=06n)= H [On (1 —60n)"] = 0% (1—6n)" . (8.9)
=1
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The Bayes factor for Model N relative to Model P is then

_ ny n
BNP:<190N> On
P [ n

1>
exp (nfp) [] yi!:|

=1

and its logarithm can be expressed as

1-6
log Byp =n {ylog < QPN) + log (QN)}

+nbp + Zlog (yh).

i=1

Simple Versus Composite Hypotheses

A second type of comparison is one where one of the models (Model 0 =
M) postulates a given value of the parameter, whereas the other model
(Model 1 = M) allows the unknown parameter to take freely any of its
values in the allowable parameter space. This is called a simple versus
composite test (Bernardo and Smith, 1994), and the Bayes factor in this
case takes the form

B = p(y|My)  [p(y|0,My)p(68]My)d6
10 — - ]

p (y|Mo) p(y|0 = 6o, My)

where p (0|M;) is the density of the prior distribution of the parameter
vector under the assumptions of Model 1.

There is an interesting relationship between the posterior probability
that @ = 0y and the Bayes factor (Berger, 1985). Denote the prior proba-
bility of models 0 and 1 as p (M) and p (M), respectively, with p (M) +
p (M) = 1. The term p (Mp) can also be interpreted as the prior probability
that @ = 8y. Then, the posterior probability that 8 = 0 is

Moy) p (y]60 = 0o, Mo)

Pr (0 = Boly) = p( )

The constant term in the denominator is given by

p(y) =p(yl@ = 6o, M) Pr (6 = 60| Mo) p (Mo)

4 / p(v16,M1) p (6]My) p (M) d6

— p(Mo) p(y|6 = 8, M) + p (My) / p (y16.M3) p (6]My) 6.,
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Genotypes
AB/ab  Abj/ab aB/ab  ab/ab
Phenotype AB Ab aB ab
Frequency % (1 —r) ir ir 1(1-r)
Observed a b c d

TABLE 8.1. Genotypic distribution in offspring from a backcross design.

with the equality arising in the last line because Pr (0 = 04|M;y) = 1. Sub-
stituting above yields

p (M) -

p (Mo)

Pr (0 = O,ly) = {1 + Blo}

It is important to mention that in evaluating a point null hypothesis
0 = 6y, say, 8y must be assigned a positive probability a priori. The point
null hypothesis cannot be tested invoking a continuous prior distribution,
since any such prior will give 8y prior (and therefore posterior) probability
of zero.

In contrast to the traditional likelihood ratio, the test of a parameter
value on the boundary of the parameter space using the Bayes factor does
not in principle create difficulties. This being so because asymptotic distri-
butions and series expansions do not come into play. Such a test is illus-
trated in the example below.

Example 8.2 A point null hypothesis: assessing linkage between two loci

The problem consists of inferring the probability of recombination r be-
tween two autosomal loci A and B, each with two alleles. The parameter r
is defined in the closed interval [0, %], with the upper value corresponding
to the situation where there is no linkage. We wish to derive the poste-
rior distribution of the recombination fraction between the two loci, and to
contrast the two models that follow. The null model (Mp) postulates that
segregation is independent (that is, r = %), whereas the alternative model
(M) claims that the loci are linked (that is, r < 3).

Let the alleles at the corresponding loci be A, a, B, and b, where A
and B are dominant alleles. Suppose that a line consisting of coupling
heterozygote individuals AB/ab is crossed to homozygotes ab/ab. Hence
four offspring classes can be observed: AB/ab, Ab/ab, aB/ab, and ab/ab.
Let n = a + b+ c+ d be the total number of offspring observed. The four
possible genotypes resulting from this cross, their phenotypes, the expected
frequencies and the observed numbers are shown in Table 8.1. The expected
relative frequencies follow from the fact that if the probability of observing a
recombinant is 7, the individual can be either Ab/ab or aB/ab, with the two
classes being equally likely. A similar reasoning applies to the observation
of a non-recombinant type.
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Suppose that the species under consideration has 22 pairs of autosomal
chromosomes. In the absence of prior information about loci A and B, it
may be reasonable to assume that the probability that these are located
on the same chromosome (and therefore, linked, so that r < 1) is 2. This

is so because the probability that 2 randomly picked alleles are in a given

chromosome is (%

occur. Hence, a priori, p(M;) = 5 and p (M) =
viewed as mutually exclusive and exhaustive.

Next, we must arrive at some reasonable prior distribution for r under
M. Here, a development by Smith (1959) is followed. First, note that the
recombination fraction takes the value r = % with prior probability %
Further, assume a uniform distribution for r otherwise (provided one can
view the values 0 < r < % as “equally likely”). Then the density of this
uniform distribution, p (r|Mp) must be such that

1 1
P — | = My)du = —.
r(r< 2> /p(u| 1) du 55
0

Solving for the desired uniform density gives

)2, and there are 22 chromosomes in which this can

%; the two models are

[N

1
M) =—.
p(riMy) = 1
Therefore the prior is the uniform process p (r|M;) = & for 0 < r < 1,

and the point mass 2} at r = 3. That is, Pr (r = ) = p(M,) = Z. Note
that given My, Pr (r = %|M0) =1.

Given the data y = (a,b,c,d)" in Table 8.1, the conditional distribution
of the observations under linkage has the multinomial form

pon) = e [Laen] (3) () [oa-n]
x (;)nu_r)“dr“?

Under no linkage

1 S A S AN
P <Y|r - 2’M°) = albleld! (4> O‘ <4) '

Therefore the posterior odds ratio is given by

p(Mily) _ p(My) fyf p(r|M) p(ylr, My) dr
p(Moly)  p(Mo)  p(ylr=3,Mo)

1A (3" e (1= ) dy

2 ()" ’
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where

B _JE p(r|My) p (ylr, My) dr
10 — 1
p (Y|T =3 MO)

The posterior probability of linkage is

p(My)p(y|M)

)

where

1/2
p(y|My) = / p(ylr, My) p (r| M) dr,
0

whereas the posterior probability of no linkage is

p(Moly) =1—p(Mly).
The marginal density of the data is equal to
1
p(y) =pMo)p|¥lr =5 Mo

1

+p (My) /02 p(r|My) p (y|r, M) dr.

409

(8.10)

The integrals in these expressions can easily be evaluated numerically. W

Example 8.3 Lindley’s paradox

This problem was brought to light initially by Lindley (1957). The data
sampling involves n independent draws from N (u7 02) , with 02 known and
w1 to be inferred. Model 0 corresponds to the simple or sharp hypothesis
that u = py. Model 1 takes 02 as known and p as unknown, with its
prior distribution being N (ul, O’%) ; the hyperparameters are assumed to
be known. This corresponds to a classical setting in which Model 0 is the
null hypothesis ;1 = p, and Model 1 is the alternative that the parameter

can take any value other than p = p.
The marginal density of the data under Model 0 is

po (ylko, %) = (\/2;7> exp l—QiZZ(y —uo)Q]

_ (ﬁ%) exp l—;fz (v —yﬂ exp [~ 5 G- )] (811)
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The marginal density under Model 1 can be written as

p1 (Ylpy, 03,0 )=/p(y|u702)p(ulup0?)du
i _ 1

( ) exp[ 20 Qi_zl(yi_y)zl \/2mo?
2] "

R e

The Bayes factor for Model 0 relative to Model 1 is given by the ratio
between (8.11) and (8.12)

(8.12)

exp [ (7 ]
%feXp{—f[ (b —7) +%]}du'

(8.13)

Now the two quadratic forms on y in the integrand can be combined in the
usual manner, leading to

Z(u—y)%(“;w: (”+12) T

2
g g7

Jrn n+1 _11(7 )2
o2 \o? o} U%y )

—1 _
(1 ng
“‘(ﬂ*ﬁ) (ﬂ*ﬁ)'

Carrying out the integration, the Bayes factor becomes, after some algebra,

Above

n o — 2

exp [—rgz (¥ — 1o) }
-t n n 1 -1 1 (= 2 .
) e[ () R0 ]

Now examine what happens when the prior information becomes more and
more diffuse, that is, eventually o? is so large that 1/0? is near 0. The
Bayes factor is, approximately,

(8.14)

o302 n

By = exp [*@ (7 — M0)2] .

For any fixed value of 7, the Bayes factor goes to oo when 0% — oo, which
implies that p (Model 0y) — 1. This means that no matter what the value
of 7 is, the null hypothesis would tend to be favored, even for values of
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‘@ — o) /\/02/71‘ that are large enough to cause rejection of the null at

any, arbitrary, “significance” level in classical testing. This result, known
as “Lindley’s paradox”, illustrates that a comparison of models in which
one of the hypothesis is “sharp” (simple), strongly depends on the form
of the prior distribution. In particular, when the distribution is improper,
the Bayes factor leads to acceptance of the null. O’Hagan (1994) concludes
that improper priors cannot be used when comparing models. However,
the problem is not avoided entirely by adopting vague uniform priors over
some large but finite range. This will be discussed later. |

Comparing Two Composite Hypotheses

Third, the comparison may be a “composite versus composite”, that is, one
where the two models allow their respective parameters to take any values
in the corresponding spaces. Here the Bayes factor is

_p(yM1) _ [p(y|0,,M:)p1 (0:1]My) d6
p(yIMo) [ p(y184, Mo) po (60| Mo) d6°

In general, all constants appearing in p (y|6,,M;) must be included when
computing Big.

(8.15)

10

Example 8.4 Marginal distributions and the Bayes factor in Poisson
and negative binomial models

The setting is as in Example 8.1, but the parameter values are allowed to
take any values in their spaces. Following Bernardo and Smith (1994), take
as prior distribution for the Poisson parameter

6‘p ~ Ga (ap,bp) 5

and for the parameter of the negative binomial model adopt as prior the
Beta distribution
91\/ ~ Be (CLN, bN) .

The a’s and b’s are known hyperparameters. The marginal distribution of
the data under the Poisson model, using (8.8) as likelihood function (sup-
pressing the dependence on hyperparameters in the notation), is obtained
as

anﬂex —nb per o
plyip) = [ CEER NI, Tty (bp) dt
l:[lyi!

= Ln/e$§+apfl exp [— (TL-I-bP) Qp] dfp. (816)
T (ap) 1:‘[1 yll

The integrand is the kernel of the density of the
0p ~ Ga(ny+ap,n+bp)
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distribution. Hence, the marginal of interest is
[ (ap +ny) by

I (ap) (n+bp)* " I yi!
1=1

p(ylP) = (8.17)

Similarly, using (8.9), the marginal distribution of the data under the neg-
ative binomial model takes the form

plyi) = [ (1= oy ? o)
I (CLN + bN)

= T [T (1= )N T ey
Fatny J 577000 v

The integrand is the kernel of a beta density, so the integral can be evalu-
ated analytically, yielding

0N~ (1 — 05" dly

I (any +by) T (an +n)T (by + ng)
I'(an)T (by) T (ay +n+ by +ny)

p(y[N) = (8.18)
The Bayes factor in favor of the N model relative to the P model is given by
the ratio between (8.18) and (8.17). Note that the two marginal densities
and the Bayes factor depend only on the data and on the hyperparameters,
contrary to the ratio of likelihoods. This is because all unknown parame-
ters are integrated out in the process of finding the marginals. It cannot be
overemphasized that all integration constants must be kept when calculat-
ing the Bayes factors. In classical likelihood ratio tests, on the other hand,
only those parts of the density functions that depend on the parameters
are kept. |

8.2.4 Influence of the Prior Distribution

From its definition, and from Example 8.4, it should be apparent that the
Bayes factor depends on the prior distributions adopted for the competing
models. The exception is when two simple hypotheses are at play. For the
Poisson versus Negative Binomial setting discussed above, Bernardo and
Smith (1994) give numerical examples illustrating that minor changes in
the values of the hyperparameters produce changes in the direction of the
Bayes factors. This dependence is illustrated with a few examples in what
follows. Before we do so, note that one can write

/p(.YIMi)dy = //p(Y|0i,Mi)p(ei‘Mi)dOidy
= [s@0)| [ pivie, a)ay] ao
= /p(ei\Mi)dGi,
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where the last equality follows because [p(y|6;,M;)dy =1. The message
here is that when p(6;|M;) is improper, so is p (y|M;). In this case, the
Bayes factor is not well defined. This is discussed further in Subsection
8.2.5 below.

Example 8.5 Influence of the bounds of a uniform prior

Let the sampling model be y;|p ~ N (u,1) and let the prior distribution
adopted for p under Model 1 be uniform over [—L, L] . Model 2 postulates
the same sampling model but the bounds are [—aL,al], where « is a
known, positive, real number. Suppose n independent samples are drawn,
so that the marginal density of the data under Model 2 is

p(yle, L) = 7L (\/12?>ne><p l—; i (yi — 1) m%d/i
- () o[4S [ wlGo-v7]

The integrand is in a normal form and can be evaluated readily, yielding

piviant) =gy (=) ew [; > - y)z’]

The Bayes factor for Model 2 relative to Model 1 is

oyl ) ° <“Lf‘”> ~® (—aL—y)

PO T () e ()]

This clearly shows that the Bayes factor is sensitive with respect to the
value of a. This is relevant in conjunction with the problem outlined in
Example 8.3: the difficulties caused by improper priors in model selection
via the Bayes factors are not solved satisfactorily by adopting, for example,
bounded uniform priors. The Bayes factor depends very strongly on the
width of the interval used. |

By

Example 8.6 The Bayes factor for a simple linear model
Consider the linear model
y=B+e,
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where the variance of the residual distribution, o2, is known, so it can
be set equal to 1 without loss of generality. Model 1 posits as prior dis-
tribution 8 ~N (0,I0%), whereas for Model 2 the prior distribution is
B ~N (0,Ic3). Since the sampling model and the priors are both normal, it
follows that the marginal distributions of the data are normal as well. The
means and variances of these distributions are arrived at directly by taking
expectations of the sampling model with respect to the appropriate prior.
One gets y|o2,0% ~ N (0,1 (0% +0?)) and y|o?,03 ~ N (0,1 (03 +0?))
for Models 1 and 2, respectively. The Bayes factor for Model 1 relative to
Model 2 is

By, = — -
1 Y
oxD | — Y
1131 an(ozin) P 2(a§+1)}
n Yy
B <ag+1)zeXp z(ag+1)]
. .
Ul + 1 'y
exp [2(0%44)

Taking logarithms and multiplying by 2, to arrive at the same scale as the
likelihood ratio statistic, yields

02—1—1) 02 — o2
2log (B1s) = nlo 2 +vy' [ L 2 }
g(Bi2) g(a%Jrl YV 2+ 1) (02 +1)

The first term will contribute toward favoring Model 1 whenever o3 is larger
than o7, whereas the opposite occurs in the second term. |

8.2.5 Nested Models

As seen in Chapter 3, a nested model is one that can be viewed as a special
case of a more general, larger model, and is typically obtained by fixing or
“zeroing in” some parameters in the latter. Following O’Hagan (1994), let
the bigger model have parameters (6, ¢) and denote it Model 1 whereas in
the nested model fix ¢ = ¢, with this value being usually 0. This is Model
0.

Let the prior probability of the larger model (often called the “alterna-
tive” one) be 71, and let the prior density of its parameters be py (0, ).
The prior probability of the nested model is 719 = 1 — w1, which can be
interpreted as the prior probability that ¢ = ¢,. This is somewhat per-
plexing at first sight, since the probability that a continuous parameter
takes a given value is 0. However, the fact that consideration is given to
the nested model as a plausible model implies that one is assigning some
probability to the special situation that ¢ = ¢, holds. In the nested model,
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the prior density of the “free parameters” is pg (8) = p (0]¢ = ¢,) , that is,
the density of the conditional distribution of the theta parameter, given
that ¢ = ¢,. Now, for the larger model, write

p1(0,9) = p1 (0|0) p1(9),

where p; (0]¢) is the density of the conditional distribution of 6, given ¢. In
practice, it is reasonable to assume that the conditional density of 8, given
¢, is continuous at ¢ = ¢, (O’Hagan, 1994).

In order to obtain the marginal density of the data under Model 0 one
must integrate the joint density of the observations, and of the free param-
eters (given ¢ = ¢,) with respect to the latter, to obtain

p(y[Model 0) = / p(¥10.6 = d0) p (816 = 6) dB
p(ylé = o). (8.19)

For the larger model

piyodel ) = [ [r 10000 016)d0] 1 )0

/ p(¥16)p1 (8)do = By [p(yl#)] . (8:20)

The expectation above is an average of the sampling model marginal densi-
ties (after integrating out €) taken over all values of ¢ (other than ¢,) and
with plausibility as conveyed by the prior density p; (¢) under the larger
model. The posterior probability of the null model is then

p (y|Model 0) 7
(y|Model 0) mp + p (y|Model 1) (1 — mg)
) P (¥16 = d0) 7o
p(yle = do) mo+ [ p(y1¢) p1(¢) de (1 —mo)’

and p (Model 1]y) = 1 — p (Model 0]y) .

Consider now the case where there is a single parameter, so that Model
0 poses ¢ = ¢, and Model 1 corresponds to the “alternative” hypothesis
¢ # ¢y (the problem then consists of one of evaluating the “sharp” null
hypothesis ¢ = ¢;). Then (8.21) holds as well, with the only difference
being that the marginal distributions of the data are calculated directly as

p(Model 0]y) = ’

(8.21)

p (y|Model 0) = p (y[¢ = ¢y) ,

and

p(y|Model 1) = / P (¥16) pr (9) do. (8.22)
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It is instructive to study the consequences of using a vague prior distri-
bution on the Bayes factor. Following O’Hagan (1994), suppose that ¢ is a
scalar parameter on (—o0,00). Vague prior knowledge is expressed as the
limit of a uniform distribution

p1(9)=(2¢)", for —c<o<e,

by letting ¢ — oo, in which case, p; (¢) — 0. Then (8.22) is

[r610101 @) o= [ " p(yl6) do

Often, p (y|¢) will tend to zero as ¢ tends to infinity, such that the limit
of the integral above is finite. Then as ¢ — oo, (8.22) tends to zero and
the Bayes factor By, tends to infinity. Thus, using a prior with very large
spread on ¢ in an attempt to describe vague prior knowledge, forces the
Bayes factor to favor Model 0.

Example 8.7 Normal model: known versus unknown variance

The setting will be the usual N (u, 02) for each of n independent observa-
tions. In the larger model, both the mean and variance are taken as un-
known. In the nested model, the variance is assumed to be known, such that
0% = 03. Asin O’Hagan (1994), it will be assumed that the conditional prior
distribution of the mean is the normal process p|u,,wo? ~ N (g, wo?),
where w is a known scalar. This implies that the variance of the prior dis-
tribution is proportional to that of the sampling model. Further, it will be
assumed that the prior distribution of o2 is a scaled inverted chi-square
distribution with parameters v and S2.

Under the null or nested model (known variance), the prior distribution
is then p|py, wod ~ N (py, wod) , and the marginal distribution of the data,
following (8.19) and making use of (8.12), is

p (y[Model 0) = /p(yluaaﬁ)p (plpay, wog) dp

_ <21T0> exp [;%Z@iyf]
) } exp [—(M_Ml)] dy.

2
2wog

T ] o o
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Combining the two quadratics in u gives

1\ 1 & ) 1
Model 0) = | ——= | exp |——% i —Y) | ——
p(yl ) ( 2Mg> p [ 507 ;(y 7) ] N

-1
n n n 1 1 @ )2
exp | ——= — — (Y —
P 20% O’% wa% wag LA
1 n 1 2
— =+ —= — d
1 - L L

where i has the same form as in Example 8.3. After the integration is
carried out, one gets

1\ 1 & ) 1
Model 0) = [ —— | exp |—— i — 1) — —
p(yl ) ( ng> D [ 207 ;:1 (yi —7) ] Pro?
1n (n 1\t ) 1\t
=4+ = — (7 — Qo2 -
exp l 203 (0(2) + wo%) wod @ —m) ] \/ T <n+ w)

= ! 1 _g _ 2_ 2
() o[- b o

where
n

B o 1N7'1 o )
Qy —;(% 7) +n<n+ w> p” (T—11)".

In order to obtain the marginal density of the data under Model 1, use
is made of (8.20) and of (8.23), although noting that o2 is now a free pa-

rameter. Then, recalling that the prior distribution of o2 is scaled inverted
chi-square

(27)" % (%)* /(02)_(%)“}) (_ys2+Qy> o

202

(2m)" % ("fgz)%lﬂ("?) (u52+Qy)_(T), (8.24)

(nw+1)% r(%) 2

In order to arrive at the last result, use is made of the gamma integrals
(see Chapter 1). The Bayes factor in favor of Model 1 relative to Model 0
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is given by the ratio between (8.24) and (8.23) yielding

2

(5) r(252) <1/S2 + Qy)‘(”y) |

8.2.6 Approximations to the Bayes Factor

There is extensive literature describing various approximate criteria for
Bayesian model selection. Some have been motivated by the desire for sup-
pressing the dependence of the final results on the prior. Ease of computa-
tion has also been an important consideration, especially in the pre-MCMC
era. Some of these methods are still a useful part of the toolkit for com-
paring models. This section introduces widely used approximations to the
Bayes factor based on asymptotic arguments. The latter are based on reg-
ularity conditions which fail when the parameter lies on a boundary of its
parameter space (Pauler et al., 1999), a restriction not encountered with
the Bayes factor.
The marginal density of the data under Model i, say, is

p(ylM;) = /p(Y|9i7Mi)P(9i|Mi)d9i> (8.25)

where 6; is the p; x 1 vector of parameters under this model. In what
follows, it will be assumed that the dimension of the parameter vector
does not increase with the number of observations or that, if this occurs,
it does so in a manner that, for n being the number of observations, p;/n
goes to 0 as n — oo. This is important for asymptotic theory to hold. In
the context of quantitative genetic applications, there are models in which
the number of parameters, e.g., the additive genetic effects, increases as the
number of observations increases. For such models the approximations hold
provided that these effects are first integrated out, in which case p (y|0;, M;)
would be an integrated likelihood. For example, suppose a Gaussian linear
model has f location parameters, n additive genetic effects (one for each
individual), and two variance components. Then analytical integration of
the additive effects (over their prior distribution) would need to be effected
before proceeding. On the other hand, if the model is one of repeated
measures taken on subjects or clusters (such as a family of half-sibs), it is
reasonable to defend the assumption that p;/n goes to 0 asymptotically.

Using the Posterior Mode

As in Chapter 7, expand the logarithm of the integrand in (8.25) around
the posterior mode, 6;, using a second-order Taylor series expansion, to
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obtain (recall that the gradient vanishes at the maximum value)
log [p (y16:, M;) p (0| M;)]
~ log [p <Y|§i,Mi> p (5i|Mi)} - % (01‘ - gi)/ (Hgi) (Gi - 51) , (8.26)

where Hy is the corresponding negative Hessian matrix. Then, using this
in (8.25),

p(y|M;) = /exp{log[p(yl0i7Mi)p(0ilMi)]}d0i
~ exp {log [p (y|5i, Mi) p (@-\Mi)] }
< [oxn |5 (0:-8:) (115 ) (61~ 8:) | ab.

The integral is in a Gaussian form (this approach to integration is called
Laplace’s method for integrals), so it can be evaluated readily. Hence

1
Pq 2
2
b

p(y|M;) =~ p (y|5i, Mz) D (§Z|Mz) (2m)

H:!
0;

(8.27)

where Hg_l is the variance—covariance matrix of the Gaussian approxima-
tion to the posterior distribution. Further

log [ (y[M:)] ~ log [p (185, M) | +1og [p (8:[04:) |

n ! (15
+5 log (27) + 5 log ( HEL ) . (8.28)

Twice the logarithm of the Bayes factor for Model ¢ relative to Model 7,
to express the “evidence brought up by the data” in support of Model 4
relative to j in the same scale as likelihood ratio tests, is then

D (}’|5z‘, Mz) p (51|M1)
2log (Byj) = 2log | ———% | +2log ——%-
p (Y|9j’ Mj) p (Olej)
B!
+ (pi — pj)log (2m) + log ’H_ll (8.29)
0;

Note that the criterion depends on the log-likelihood ratios (evaluated at
the posterior modes), on the log-prior ratios (also evaluated at the modes),
on the difference between the dimensions of the two competing models, and
on a Hessian adjustment.
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Using the Maximum Likelihood Estimator

A variant to approximation (8.26) is when the expansion of the logarithm
of the product of the prior density and of the conditional distribution of
the observations (given the parameters) is about the maximum likelihood
estimator @-, instead of the mode of the posterior distribution (Tierney and
Kadane, 1989; O’Hagan, 1994; Kass and Raftery, 1995). Here one obtains
in (8.27),

, 1
Pq 2
2
b

p(y|M;) ~p <y|5i7 Mi) P (@\Mi) (2m)

H!
0;

(8.30)

where Hp is the observed information matrix evaluated at the maximum
likelihood estimator. In particular, if the observations are i.i.d. one has

Hy = nH, 5, where H, 5 is the observed information matrix calculated

from a single observation. Then

H L

1,6;

Ply[M) ~p (y‘ai”M’)p (§i|Mz‘) (2m) 7 (n)" 7

(8.31)

The approximation to twice the logarithm of the Bayes factor becomes

p <y|5z,Mz> D (b\z|Mz>
2log (B;j) = 2log | ———%| +2log —=
p <Y|9j,Mj) p (9j|MJ>
‘ -1
— (pi — pj)log 24 log 221 (8.32)
2m L
1,6,

It is important to note that even though the asymptotic approximation to
the posterior distribution (using the maximum likelihood estimator) does
not depend on the prior, the resulting approximation to the Bayes factor
does depend on the ratio of priors evaluated at the corresponding maximum
likelihood estimators. If the term on the logarithm of the prior densities
is excluded, the resulting expression is called the Bayesian information
criterion (or BIC) (Schwarz, 1978; Kass and Raftery, 1995; Leonard and
Hsu, 1999).

Suppose that the prior conveys some sort of “minimal” information rep-

resented by the distribution 6;|M; ~ N (@Z,H;%> . This is a unit infor-
mation prior centered at the maximum likelihood estimator and having a
precision (inverse of the covariance matrix) equivalent to that brought up



8.2 Bayes Factors 421

by a sample of size n = 1. Using this in (8.31):

Nl

p(yIM) ~ p (y10:, 1) (2m) "% [F L

1,6
X exp [—; (/é - §>/ (H1,§1,§) (5 -6 ] (271')% (n)_% ‘Hl_% :
= p (161, M;) ()% . (8.33)
Hence
p (ylgmMi)
2log (Byj) =~ 2log | ———%| — (pi — pj)logn. (8.34)
p (y\oijj)

This is Schwarz (1978) BIC in its most commonly presented form (Kass
and Raftery, 1995; O’Hagan, 1994). Some authors (Leonard and Hsu, 1999;
Congdon, 2001) use the term BIC to refer just to the approximated marginal
densities, e.g., the logarithm of (8.33). At any rate, note that (8.34) is twice
the maximized log-likelihood ratio, plus an adjustment that penalizes the
model with more parameters. If n = 1, there is no penalty. However, the
term (p; — pj) becomes more important as a sample size increases. When
pi > Dj, (8.34) is smaller than twice the log-likelihood ratio, so the adjust-
ment favors parsimony. In contrast, classical testing based on the traditional
likelihood ratio tends to favor the more complex models. Contrary to the
traditional likelihood ratio, BIC is well defined for nonnested models.

Denoting S the right hand side of (8.34) divided by 2, as sample size
n — 00, this quantity satisfies:

S — 10g Bij -0
IOg Bij ’

so it is consistent in this sense (Kass and Raftery, 1995). Recent extensions

of BIC can be found in Kass (1995).

A related criterion is AIC (or the Akaike’s information criterion) (Akaike,
1973), where the penalty is 2 (p; — p;) . The argument underlying the AIC is
that if two models favor the data equally well, then the more parsimonious
one should be favored. The BIC produces an even more drastic penalty,
which increases with sample size, as noted.

The differences between the likelihood ratio criterion, the BIC, and the
AIC are discussed by O’Hagan (1994) in the context of a nested model. The
larger model has parameters (6, ¢) and dimension ps, whereas the “smaller
or null” model has a parameter vector 8 with p; elements and p; — p;
fixed components ¢ = ¢,. For a large sample size, the log-likelihood ratio
may favor the larger model, yet the penalty, (p2 — p1) logn, may be severe
enough so that the Bayes factor may end up favoring the null model.
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It is instructive to examine the behavior of the approximation to the
Bayes factor under repeated sampling from the appropriate model. Con-
sider the BIC as given in (8.32), and take its expected value under the
null model, with only the likelihood ratio viewed as a random variable.
Recalling that the expected value of twice the log-likelihood ratio statistic
under the null hypothesis is equal to the difference in dimension between
the competing models, or (ps — p1), one gets

p (§2|M2 n
E[2log (B21)] = 2log ——% — (p2 — p1) [log — — 1] + constant.
p (01|M1> 2

Hence, as n — oo, the expected value of the log of the Bayes factor in favor
of the larger model goes to —oo. This implies that the posterior probability
of the larger model goes to 0 when the null model is true, regardless of the

prior odds ratios as conveyed by p (§2|M2) /p (51 | M 1) . Conversely, when

the larger model is true, the expected value of twice the log-likelihood ratio
statistic is approximately equal to n@ (¢, ¢,) ,where Q (-) is a quadratic
form (O’Hagan, 1994). This is a consequence of the asymptotically normal
distribution of the maximum likelihood estimator (see Chapters 3 and 4).
Then, under the larger model,

p (alez) n

E [2log (Biy)] ~ nQ (¢, ) +2log ———24 — (ps — py) log —= +constant.
M 27
p (6100))

As n — oo, the logarithm of the Bayes factor in favor of the larger model
goes to 0o, since n grows faster than logn. Consequently, the posterior
probability of the larger model goes to 1, no matter what the prior odds
are. Strictly from a classical point of view, and no matter how large n is,
the null model will be rejected with probability equal to the significance
level even when the model is true. Hence, more stringent significance levels
should be adopted in classical hypothesis testing when sample sizes are
large. Classical theory does not give a procedure for modifying the type-
1 error as a function of sample size, and the probability of this error is
prescribed arbitrarily. As noted by O’Hagan (1994), the Bayesian approach
gives an automatic procedure in which in a single formula, such as (8.32),
the evidence from the data, the prior odds, the model dimensionality, and
the sample size are combined automatically.

8.2.7 Partial and Intrinsic Bayes Factors

The Bayes factor is only defined up to arbitrary constants when prior dis-
tributions are improper (i.e., Berger and Pericchi, 1996), as was illustrated
at the end of Subsection 8.2.5. Further, when the priors are proper, the



8.2 Bayes Factors 423

Bayes factor depends on the form of the chosen prior distribution, as seen
in connection with (8.32). This dependence does not decrease as sample
size increases, contrary to the case of estimation of parameters from poste-
rior distributions. In estimation problems and under regularity conditions,
one can obtain an asymptotic approximation centered at the maximum
likelihood estimator that does not involve the prior.

Berger and Pericchi (1996) suggested what are called intrinsic Bayes
factors, in an attempt to circumvent the dependence on the prior, and to
allow for the use of improper prior distributions, such as those based on
Jeffreys’ rule. Here, a brief overview of one of the several proposed types
of Bayes factors (the arithmetic intrinsic Bayes factor) is presented.

Let the data vector of order n be partitioned as

Yy = [yz1)> yz2)7"',yzL)}/7

where y(;), (I = 1,2, ..., L) denotes what is called the minimal training sam-
ple. This is the minimal number of observations needed for the posterior
distribution to be proper. For example, if the minimal size of the training
sample is m, there would be C}, different possible training samples. The
posterior distribution based on the minimal training sample has density
P (9i|y(l), Mi) . Further, put

Y= [YZl)v y(,l)}/,

where y(_;) is the data vector with y(;) removed. Then the predictive den-
sity of y(—;) under model 7, conditionally on the data of the training sample

Y@y, is

p(ynlyw, M) = /p(Y(—l)WiaY(l)»Mi)p(0i|Y(l)vMi) db;.

The Bayes factor for model j relative to model 4, conditionally on y;, or
partial Bayes factor (O’Hagan, 1994) is

p(yeolyw: M;)
p(y-vlya, M)

Bji (yu)) = (8.35)

Clearly, the partial Bayes factor depends on the choice of the training sam-
ple y (. To eliminate this dependence, Berger and Pericchi (1996) propose
averaging Bj; (y(l)) over all C' = K training samples. This yields the
arithmetic intrinsic Bayes factor, defined formally as

K
1 » (y—plyw, M;)
Bil=% : 8.36
Tk ; P (ynlya, M) (8.36)
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This expression can be computed for any pair of models, irrespective of
whether these are nested or not. Although the procedure is appealing, some
difficulties arise. First, for most realistic hierarchical models it is not pos-
sible to determine in advance what the minimum sample size should be in
order for the posterior to be proper. Second, and especially in animal breed-
ing, the data sets are very large so, at best, just a few minimal training
samples could be processed in practice.

There have been several other attempts to circumvent the need to us-
ing proper priors and to restrict the dependence on the prior. These are
reviewed in O’Hagan (1994).

8.3 Estimating the Marginal Likelihood
from Monte Carlo Samples

Except in highly stylized models, the integration indicated in (8.25) is not
feasible by analytical means. An alternative is to use Monte Carlo methods.
Here we shall consider the method of importance sampling, which will
be encountered again in Chapters 12 and 15, where more details on the
technique are given. Suppose samples of 6;, the parameter vector under
Model i, can be obtained from some known distribution that is relatively
easy to sample from. This distribution, having the same support as the prior
or posterior, is called the importance sampling distribution, and its density
will be denoted as g (0;). Then since [p(6;|M;)dO; = 1, the marginal
density of the data under Model i is expressible as

[ p(y10:, M;) p(6;|M;)d6;
fp(9i|Mi) do;
[0 (y0:,M;) 280 g (8,) db;

= 9(6:) . (8.37)
J g (6,) d6;

p (y|M;)

Various Monte Carlo sampling schemes can be derived from (8.37), depend-
ing on the importance sampling function adopted. Suppose m samples can
be obtained from the distribution with density g (6;); let the samples be
GPL (j=1,2,...,m). Then note that the denominator of (8.37) can be
written as
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where p (0? ] |MZ) is the prior density under Model ¢ evaluated at sampled

value j. Likewise, the numerator can be written as

p (05| M;)

/ p(ylo. 0 T

4(6:)d6;
| m , p (6|

where p <y|0£j ], MZ) is the density of the sampling model evaluated at the
jth sample obtained from the importance distribution. Hence for large m,
and putting w,l[j] =p (0£ﬂ|Mi) /g (0?]) , a consistent estimator of (8.37)
is given by the ratio

m

£ ullp (y1601, 1)

~ =1
P(y|M;) =*

, (8.38)

which is a weighted average of the density of the sampling distribution
evaluated at the corresponding sampled values of the parameter vector
under the appropriate model.

Sampling from the Prior

If the importance distribution is the prior, each of the weights wl[j Vare equal

to 1, and the Monte Carlo estimator (8.38) of the marginal density at the
observed value of y becomes

Py = — S p (vl ar). (5.39)

j=1

where the GEJ I are draws from the prior distribution. The procedure is very
simple because the joint prior distribution of the parameters is often simple
to sample from. However, the estimator is imprecise because, typically, the
0? } drawn from the prior are conferred little likelihood by the data. There
will be just a few draws that will have appreciable likelihood and these will
“dominate” the average (Kass and Raftery, 1995). Numerical studies can
be found in McCulloch and Rossi (1991).
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Sampling from the Posterior

If the importance distribution is the posterior, then

. — _P(8i|M)
p(6ily, M;)

p (0:]M;) ~ pylM;)

 BB10LMOPOIL) o (y[6;, M;)|
Py IM;) p(y]6i, M;)

Using this in (8.38):

m
p(y|M;)
j§1 p(v16l n.)

—1

= | . (8.40)

This estimator, the harmonic mean of the likelihood values, was derived
by Newton and Raftery (1994), but arguing directly from Bayes theorem.
Observe that a rearrangement of the theorem leads to

p(0:[M;)  p(Oily, M)

p(yIMi)  p(yl0;, M)
Then, integrating both sides with respect to 6;, yields

1 1
_ &Md&:/————fm,Md%
p(y|M,->/p( 1) P (10,207 Oly: M)

Since the prior must be proper for the marginal density of the data to be
defined, the integral on the left is equal to 1 leading directly to

p(y[M;) = (8.41)

Eo,1y.m, [P~ (y16,, M;)]

The Monte Carlo estimator of the reciprocal of the posterior expectation
of the reciprocal of the likelihood values is precisely (8.40). An advantage
of the harmonic mean estimator is that one does not need to know the
form of the posterior distribution. The Markov chain Monte Carlo meth-
ods presented in the next part of the book enable one to draw samples
from complex, unknown, distributions. The disadvantage, however, is its
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numerical instability. The form of (8.40) reveals that values of 8; with very
small likelihood can have a strong impact on the estimator. An alternative
is to form some robust estimator of the harmonic mean (Congdon, 2001)
such as a trimmed average. Kass and Raftery (1995) state that, in spite of
the lack of stability, the estimator is accurate enough for interpretation on
a logarithmic scale.

Caution must be exercised in the actual computation of (8.40), to avoid
numerical over- or under-flows. A possible strategy could be as follows. Let

vo= ;gp‘l (.YIHU],Mi)

where Sim =p! (y|6’m,Mi>7 and store log SZU] in a file for each sampled

value. Then, since
exp (z) =exp(r —c+c¢) =exp(z —c)expe,

one can write v in the form
1 m
_ (5]
v=— Z; exp <log S — c) expc,
j:

where c is the largest value of log Sl[j I, Taking logarithms yields

1 & ;
logv =log | — E exp <logSz[J] — c) +c.
m
=1

Hence
log [p (y|M;)] = —logv.

Chib’s Method

Most often, the marginal posterior distributions cannot be identified. How-
ever, there are many models where the conditional posterior distributions
can be arrived at from inspection of the joint posterior densities. Advan-
tage of this is taken in a Markov chain-based method called the Gibbs
sampler, which will be introduced in Chapter 11. Chib (1995) outlined a
procedure for estimating the marginal density of the data under a given
model when the fully conditional posterior distributions can be identified.
These distributions are defined in Section 11.5.1 of Chapter 11. We will
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suppress the dependency on the model in the notation, fO/T simplicity. Sup-
pose the parameter vector is partitioned as 8 = [0'1, 0'2} . The logarithm
of the marginal density of the data can be expressed as

logp (y) =log[p(y|0,,62)] + log [p (61, 6:)] — log [p (61, 0:]y)]
= log [p (y|6,,62)] +log [p (61,602)] —log [p (62(61,y)] —log[p (61]y)].
Suppose now that samples of 81,685 have been drawn from the posterior
distribution using the Gibbs sampler. Inspection of a large number of sam-

ples permits us to calculate, e.g., the posterior mean, mode, or median for
each of the elements of the parameter vector, such that one can form, say,

~ ~1 ~177
the vector of posterior medians 8 = [01, 02} . An estimate of the marginal

density of the data can be obtained as
logp (y) = log [p (YI51,52)} + log [p (51,52)] — log [p (52\517}’)}
—log [p (bﬂy)} . (8.42)
If the conditional density log [p (602]601,y)] is known, the third term can

be evaluated readily. The difficulty resides in the fact that the marginal
posterior density may not be known. However, recall that

p(01ly) = Eez\y [p(01]62,y)].
e p (51\}’) = EGg\y [P (51|92,Y>} »

and an estimate of the marginal posterior density can be obtained as
5 LS~ (310
p( 1y m;:lp 1165",y

where 0[2]‘ ], (j =1,2,...,m) are samples from the marginal posterior distri-
bution of 85 obtained with the Gibbs sampler. Then, using this in (8.42),
the estimated marginal density of the data is arrived at as

log P (y) = log [p (Y|61a 52)} +log [p (51, 52)] — log [p (52\51,3')}
—log %ip (51\0[2j}7y> . (8.43)
j=1

The procedure is then repeated for each of the models in order to calculate
the Bayes factor. However, the fully conditional posterior distribution of
one parameter given the other must be identifiable in each of the models.
The method can be extended from two to several parameter blocks (Chib,
1995; Han and Carlin, 2001). Additional refinements of the procedure are
in Chib and Jeliazkov (2001).
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8.4 Goodness of Fit and Model Complexity

In general, as a model becomes increasingly more complex, i.e., by increas-
ing the number of parameters, its fit gets better. For example, it is well
known that if one fits n regression coefficients to a data set consisting of n
points, the fit is perfect. As seen earlier, the AIC and BIC introduce penal-
ties against more highly parameterized models. A different approach was
suggested by Spiegelhalter et al. (2002), and it is based on calculating the
expected posterior deviance, i.e., a measure of fit (Dempster, 1974, 1997).

Consider a model with parameter vector 8 = [ - 0/2]1. For example, in
a mixed linear model 61, may be a vector of “fixed” effects such as breed
or sex of animal and variance parameters, while 85 may be a vector of ran-
dom effects or missing data. Hence, in some sense, the dimension of 8; can
be viewed as fixed, as the dimension of the data vector increases, whereas
the order of 85 may perhaps increase as the dimension of the data vector
increases. Clearly, because AIC and BIC are based on asymptotic results,
neither can be used in models where the parameters outnumber the ob-
servations (Gelfand and Dey, 1994) unless some parameters are integrated
out.

There is also the additional problem of interpreting exactly what is the
number of parameters, especially in complex hierarchical models. For ex-
ample, consider a setting with two breeds, individuals within breeds and
several observations per individual. Observations within individuals are
typically correlated, and their contribution to the total number of parame-
ters is difficult to specify. One could imagine that their “effective contribu-
tion” would depend on the degree of correlation; the larger the correlation,
the smaller their “effective contribution”. The concept of effective number
of parameters becomes even more elusive, if individuals are correlated as
well due family structure.

Partly to address this problem, Spiegelhalter et al. (2002) suggest an
alternative procedure for model comparison that they term deviance infor-
mation criterion (DIC). For a particular model, it is defined as

DIC=2D-D(6). (8.44)

As we shall see below, the DIC' is the result of adding two expressions. The
first one represents the fit of the model, summarized by D. The second
one is a measure of the complexity of the model or effective number of
parameters, summarized by D — D (). In (8.44),

D=2 / logp (y16)] p (8ly) d6

= Egjy [~2logp (y|0)]
= Eg|y [D (0)], (8.45)
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where D (0) = —2logp (y|0) is called the deviance (a function of the un-
known parameter), D is its expected value taken over the posterior distribu-
tion of @ , and D (@) is the deviance evaluated at the posterior mean of the
parameter vector 6. Note that when the deviance is evaluated at the max-
imum likelihood estimator, one obtains the numerator (or denominator)
of the usual likelihood ratio statistic. Thus, one averages out the deviance
criterion over values whose plausibilities are dictated by the posterior distri-
bution. The expected deviance is interpreted as a posterior summary of the
fit of the model. In general, D will need to be computed using Monte Carlo
procedures for sampling from the posterior distribution: samples from the
posterior are obtained, and then one averages the log-likelihoods evaluated
at each of the draws.
As a measure of model complexity (degree of parameterization), Spiegelhalter

et al. (2002) suggest using the “effective number of parameters”

pp=D—D(0). (8.46)

In order to motivate this concept, expand the deviance around the posterior
mean 6@, to obtain

D(8) ~ 2logp (y[6) 2 {W] _-9)
v [0 logp (y]0) 7
—(6-9) [8989,} (6-6). (8.47)

Taking the expectation of (8.47), with respect to the posterior distribution
of the parameter vector, gives the expected deviance

& logp (y16)
_ 0

—D(@) +tr { {_W] Ve (9|y>}

=D (0) +tr{[1(8)]y_gVar(6ly)}, (8.48)

where I (0) is the observed information matrix and Var (0]y) is the variance—
covariance matrix of the posterior distribution. The trace adjustment in
(8.48) is called the “effective number of parameters” and is denoted pp.
Recall from Chapter 7, that an asymptotic approximation to the posterior
distribution is given by a normal process having a covariance matrix that
is equal to the inverse of the sum of the observed information matrix (eval-
uated at some mode), plus the negative Hessian of the log-prior density
(evaluated at some mode); the latter will be denoted as P (6),_g when
evaluated at the posterior mean. Hence, approximately,

po = tr {[1(0)]o_5 Var (6]y)}
~tr{[1(0)]o_5 (1(0)]o_5+ P (0)g—5) '} (3.49)

D~ —2logp (y|6) + tr [
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Thus, the effective number of parameters can be interpreted as the infor-
mation about @ contained in the likelihood relative to the total information
in both the likelihood and the prior. Some additional algebra yields

po = tr{([L(0)]g_g + P (0)g_5 — P (0)y_35)
% ([L(6)]o—5+ P (0)o—5) '}

—p—tr [P (0)y_z (1(6))y_5 + P (0)925)*1} . (8.50)

This representation leads to the interpretation that the effective number of
parameters is equal to the number of parameters in 8, minus an adjustment
measuring the amount of information in the prior relative to the total
information contained in the asymptotic approximation to the posterior.
The asymptotic justification of DIC presented here holds in cases where the
number of observations grows with respect to the number of parameters in
6.

Spiegelhalter et al. (2002) suggest combining pp with D into the deviance
information criterion (DIC) which can also be written as

DIC = ﬁ+pD
— D (8) + 2pp, (8.51)

with the last expression resulting from (8.46). The value of DIC for a par-
ticular model does not convey meaning but rather the difference in DIC
across models. Models having a smaller DIC should be favored, as this
indicates a better fit and a lower degree of model complexity.

While the DIC is appealing and very easy to calculate using MCMC,
a number of issues need to be resolved before it becomes fully accepted
as a model comparison tool. For example, in complex multilevel models,
different degrees of marginalization are possible, and these lead to different
values of DIC for the same model. There is also the problem of determining
the Monte Carlo variance of the DIC, which at the moment can only be
estimated replicating the MCMC runs. The authors emphasize that they
consider DIC to be a preliminary device for screening alternative models.

Example 8.8 Deviance information criterion in the mized linear model
Consider a hierarchical model with structure

y =W60 +e,

where y|60,R ~N (W6,R). This model has been discussed several times,
especially in Chapter 6. In animal breeding 8 = [,6', u’] "is typically a vector
of “fixed” and “random” effects, and the corresponding known incidence
matrix is then W = [X,, Z]. Suppose that the dimension of 8 (pg) does not
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increase with the number of observations, and that the vector u (having
order p,) contains the effects of clusters, e.g., half-sib families. Hence, one
can conceptually let the number of observations per cluster go to infin-
ity (or, equivalently, think that the number of observations increases more
rapidly than the number of clusters). Under these conditions, one can em-
ploy the asymptotic approximations discussed earlier. The second level of
the hierarchy poses

2
9 N K Vgoz; O
0|p’ﬁau’uvvﬁ7aﬁ7Gu N <|: m :| ’ |: 0 G'u, .

u

The dispersion parameters R, V g, 0%, G, and the location vectors pg and
u,, are assumed known. As mentioned in Chapter 1, Example 1.18, and
shown in Chapter 6, the posterior distribution of @ is normal, with mean

vector
vl -1
} _ [ XR-1X +Y5 X'R-'Z 1

o

Z'R'X ZR'Z+G?

S
Il
=iy

XlRfl + V/:I
X Y+ 5z Hp
ZRy + Gi'p,

)

and variance—covariance matrix

oo | XROX4 VST XR'Z o
= B
Z'R'X ZR'Z+ Gt

The deviance is

D) = -—2logp(yl6,R)
= Nlog(2n) +log|R|+ (y — W) R~ (y — W0).

Then,
D (6) = Nlog (27) + log|R| + (y — VVE)/R_1 (y — W0),
and the expected deviance becomes
D = Nlog (27) + log|R| + (y — W8) ' R™! (y — W8)
+tr (RTTWCT'W')
Employing (8.46), the effective number of parameters is
pp = D—D(®)
= tr (CT'W'R'W).
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For example, let R = Io? and G, = Io2, which results in a variance com-
ponent model. Further, let U%, — 00, to make prior information about 3
vague. Here

X'X X'Z
C—l _ 2 0_2
Z'X Z’Z—i—g—;I e
CBB  CBu 5
= |: Cuﬁ Cuu :|Jea
and
-1
X’'X X'Z X'X X'7Z
—1wr'p—lwr
CWR W= [ ZX 7+ %1 [ ZX 77 }
1 CB8  QBu 0 0
— _ 2
PB+Pu |: Cuﬁ Cuu ] 0 Z§ Ipn .
Hence
pp = tr(CT'W'R'W)

CBB CBu 0 0
= tr (IP/s+pu) —tT{|: CuB  Quu ] [ 0 LﬁI

B o2 0 Ch
- pﬁ +pu - Uiitr 0 Cuu
0—3 uu
= pp+pu— —5tr[C"].
Uu

Note that the prior information about the u vector results in that the
effective number of parameters is smaller than the dimension of .
|

8.5 Goodness of Fit and Predictive
Ability of a Model

The posterior probability of a model and the Bayes factors can be viewed
as global measures of model relative plausibility. However, one often needs
to go further than that. For example, a model can be the most plausible
within a set of competing models and, yet, either be unable to predict the
data at hand well or to give reasonable predictions of future observations.
Here we will provide just a sketch of some of the procedures that can be
used for gauging the quality of fit and predictive performance of a model.
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8.5.1 Analysis of Residuals

A comprehensive account of techniques for examination of residuals is given
by Barnett and Lewis (1995). In order to illustrate some of the basic ideas,
consider, for example, a linear regression analysis. One of the most widely
used techniques for assessing fit is to carry out a residual analysis (e.g.,
Draper and Smith, 1981). In the context of classical regression, one calcu-
lates the predicted value of an observation, 7, and forms the Studentized
fitted residual N
y—7
=
where 83 is typically the unbiased estimator of the residual variance. If the
absolute value of the Studentized residual exceeds a certain critical value of
the ¢ or normal distributions, then the observation is viewed as suspicious
and regarded as a potential outlier. This may be construed as an indication
that the model does not fit well.
The Bayesian counterpart of this classical regression analysis consists of
examining the posterior distribution of the unobserved standardized quan-
tity

2 )
€

r; =

o

where the row vector x; contains known explanatory variables linking the
unknown regression vector 3 to y;. Using the standard normality assump-
tions with independent and identically distributed errors, the distribution
of r; under the sampling model is 7; ~ N (0, 1), provided o2 is known. If 3
has the prior distribution 8|a, Vg ~ N (a, V), where the hyperparame-
ters are also known, one obtains as prior (or predictive) distribution of the

residual above, given o2,

Vo2 1 a2

The unconditional (with respect to o2) prior distribution of the standard-
ized residual will depend on the prior adopted for 2. Then one could carry
out an analysis of the residuals prior to proceeding with Bayesian learning
about the parameters. More commonly, however, the residual analysis will
be undertaken based on the joint posterior distribution of B and o2. As
seen in Chapter 6, given o2, the posterior distribution of 3 is the normal
process

 — X xIVgx;
moz,ag,ngN(y2 L 10 l).

e

= (XX N (XY o
:6:<0_2 "l‘Vﬂ) ((7'2 +Vﬁa .
e

e

- (XX N\
/3|0‘>VB»US7YNN[@ <0.2+V51> ‘|7

where
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Further, given o2, the posterior distribution of the Studentized residual will
have the form

, A\l
yi—XQB x;(—’§§‘+vﬁl) X;

2
0'(2i o

ri|a,Vg,Ug,y ~ N

The unconditional (with respect to o) posterior distribution will depend
on the form of the marginal posterior distribution of the residual variance,
and its density is obtained as

p(ria, Vg, o2, y) = /p(mla,Vﬁ,aiy)p(Uily) do?,

where p (0§|y) is the marginal posterior density of the residual variance.
Unless standard conjugate priors are adopted, the marginal posterior dis-
tribution of the Studentized residual cannot be arrived at in closed form.
In such a situation, one can adopt the sampling techniques described in the
third part of the book and obtain draws from the posterior distribution of
the standardized residual. This is done simply by drawing from the pos-
terior distribution of the model parameters. Then, for observation i, one
forms samples

b _ vi —x;8Y

Ty j=1,2

_ ) .] ) AR ]
1/Ug[J]

where ﬁ[j Iand O’i[j V are samples from the joint posterior distribution of the
regression vector and of the residual variance. Thus, one obtains an entire
distribution for each Studentized residual, which can be used to decide
whether or not the observation is in reasonable agreement with what the
model predicts. If the value 0 appears at high density in the posterior
distribution, this can be construed as an indication that the observation is
in conformity with the model.

This simple idea extends naturally to other models in which residuals
are well defined. For example, for binary (0,1) responses analyzed with a
probit model, Albert and Chib (1993, 1995) define the Bayesian residual
r; = y; — @ (x;3), which is real valued on the interval [y; — 1,vy;]. If samples
are taken from the posterior distribution of 3, one can form corresponding
draws from the posterior distribution of each residual. Since ® (x}3) takes
values between 0 and 1, an observation y; = 0 will be outlying if the pos-
terior distribution of 7; is concentrated towards the endpoint —1, and an
observation y; = 1 is suspect if the posterior of r; is concentrated towards
the value 1. A value of 0 appearing at high density in the posterior dis-
tribution of the residuals can be interpreted as an indication of reasonable
fit. Albert and Chib (1995) propose an alternative residual defined at the
level of a latent variable called the liability (see Chapter 14 for a definition
of this concept). The reader is referred to their paper for details.
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8.5.2  Predictive Ability and Predictive Cross-Validation

Predictive ability and goodness of fit are distinct features of a model. A
certain model may explain and predict adequately the observations used
for model building. However, it may yield poor predictions of future obser-
vations or of data points that are outside the range represented in the data
employed for model building. A number of techniques is available for gaug-
ing the predictive ability of a Bayesian model. Even though some attention
is paid to foundational issues, the approaches here are often eclectic and
explorative. They constitute an important set of tools for understanding
the predictive ability of a model.

Cross-validation methods involve constructing the posterior distribution
of the parameters but leaving some observations out. Then the predictive
distributions of the observations that have been removed are derived to
examine whether or not the actual data points fall in regions of reasonably
high density. Partition the data as y' = [Yout,¥ out, Where you; is the
observation to be removed, and y_qyy is the vector of the remaining obser-
vations. The density of the posterior predictive distribution can be written
as

D Woue|Y—ous M) = / D (ot |0, Y—onts M) p (Oly —oues M) d6,  (8.52)

where p (0]y _out, M) is the density of the posterior distribution built from
Y_out and model M. In hierarchical modeling, one typically writes the
sampling distribution of the data such that conditional independence can
be exploited. Thus, given the parameters, yout is independent of y_ ¢, and
one can write (suppressing the notation denoting model M)

P (out|Y—out) = / D Yout0) p (O]y—out) dO. (8.53)

Since, in general, the form of the posterior density is unknown or analyti-
cally intractable, the predictive density will be calculated via Monte Carlo
methods (Gelfand et al., 1992; Gelfand, 1996). For example, if m draws
from the posterior distribution can be made via MCMC procedures, the
form of (8.53) suggests the estimator

N 1 m )
p(youtb’—out) = E ;p <y0ut‘0m) )
]:

where 09! is a draw from [0]Y —out] - The mean and variance of the predic-
tive distribution can also be computed by Monte Carlo procedures. Since
the expected value of the sampling model can almost always be deduced
readily, e.g., in regression E (you|60) = x.,:3, the mean of the predictive
distribution can be estimated as

m

E (yout|y—out) = E ZE (youtle[j]) . (854)
j=1
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Similarly, a Monte Carlo estimate of the variance of the predictive distri-
bution can be obtained as

Var (yout|Y—out) = E[G\Y—ouc] [V(l?” (yout|0)] + Var [E (yout‘a)] . (855)
This can be illustrated with a regression model, although in this situation

there is an analytical solution under the standard assumptions. For exam-
ple, if the regression model postulates yout|8,02 ~ N (),,,8,02), then

B 13N
Eloly o) [Var (yous|0)] = — S o2,
7j=1

and

@[eb’—ouc] [E (yout‘a)] = @ [Igut/g}
1 & 1 2 1 4
=2 (i) = | Dl
Jj=1 j=1

Subsequently, the following composite statistic can be used to evaluate the
overall predictive ability of the model (Congdon, 2001):

2

2

n out — E ou —ou
D2 — Yo (Yout |y —out) (8.56)
out=1 Var (yout |y70ut)

Models having a smaller value of D? would be viewed as having a better pre-
dictive ability. Clearly, if n is very large, the computations may be taxing,
since n posterior and predictive distributions need to be computed. Other
statistics are described in Gelfand et al. (1992) and in Gelfand (1996).

A related idea has been advocated by Gelman et al. (1996). Rather than
working with the leave-one-out method in (8.53), they propose generating
data y from the posterior predictive distribution with density

p(Fly.M) = / p(710.00) p (Bly. M) 6. (8.57)

One then wishes to study whether the simulated value y agrees with the
observed data y. Systematic differences between the simulations and the
observed data indicate potential failure of model M. Various criteria or test
quantities can be used to carry out the comparisons. Examples of these are
given in Gelfand (1996). The choice of test quantities should be driven by
the aspect of the model whose fit is in question and/or by the purpose with
which the model will be used. The method of composition (introduced in
Chapter 1), can be used to obtain draws from (8.57), and can be described
as follows:
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1. Draw 0 from the posterior distribution p (|y, M). Ways of achieving
this are discussed later in this book.

2. Draw y from the sampling distribution p (y|0,M). One has now a
single realization from the joint distribution p (y, 8| M).

3. Repeat steps 1 and 2 many times.

The set of y's drawn using this algorithm constitutes samples from (8.57).
Letting h (y) be a particular test quantity, for example, the average of the
top 10 observations, one can then study whether h (y) falls in a region of
high posterior probability in the distribution [ (¥) |y,M]. This can be re-
peated for all the models under investigation. Gelman et al. (1996) propose
the calculation of Bayesian p-values, pp, for given test quantities h (y, ).
The notation emphasizes that, in contrast with classical p-values, the test
quantity can depend on both data and parameters. Then,

b = >hY7 )|Y]

- / / 6) > h(y,0)p(¥16) p (Bly) d0dy,  (3.59)

gives the probability that the simulated data y is more extreme than the
observed data y, averaged over the distribution [@|y]. A possible test quan-
tity could be

and

These are then used for computing (8.58). A cross-validation approach can
also be implemented using this idea. An application of these techniques in
animal breeding is in Sorensen et al. (2000).

Another way of assessing global predictive ability of a set of models was
proposed by Geisser and Eddy (1979) and by Geisser (1993) via the con-
ditional predictive ordinate (CPO). The logarithm of the CPO for Model
118

lOg [CPOModel z] = Z lOg [p (yout|yfout7 Model Z)] .

out=1
Gelfand and Dey (1994) describe techniques for calculating the CPO that
avoid carrying out the n implementations of the sampling procedure de-

scribed above. Chapter 12, especially Section 12.4, discusses Monte Carlo
implementation of these quantities in more detail.
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8.6 Bayesian Model Averaging

8.6.1 (General

Consider a survival analysis of sheep or of dairy cows. The information
available may consist of covariates such as herd or flock, sire, year-season
of birth, molecular markers, and last known survival status, since censoring
is pervasive. The objective of the analysis may be to assess the effects of
explanatory variables, or to predict the survival time of the future progeny
of some of the sires. Hence, one searches for some reasonable survival model
(e.g., Gross and Clark, 1975; Collet, 1994) and finds that a proportional
hazards model M; fits well and that it gives sensible parameter estimates.
Then one proceeds to make predictions. However, another proportional
hazards model My also fits well, but it gives different estimates and pre-
dictions. Which model should be used at the end?

Now imagine a standard regression analysis in which 15 predictor vari-
ables are available, and suppose that some “best” model must be sought.
Even if second-order and cross-product terms are ignored, there would be
21 different models. For example, suppose that the variables are Y, X7, X».
Then, using the standard notation, there are the following four possible
models

model 1 : Y =0,+e,

model 2 : Y =0,+0,X1+e,

model 3 : Y =3,+ 3,X2 +e,

model 4 : Y =08,+ 3, X1+ 3,X2+e.

These models may differ little in relative plausibility. Again, which model
ought to be used for predictions?

A third example is that of choosing between genetic models to infer
parameters, and to predict the genetic merit of future progeny. One spec-
ification may be the classical infinitesimal model. A second specification
may be a model with a finite number of loci. If so, how many? A third
model may pose polygenic variation, plus the effects of some marked QTL.

The preceding three examples illustrate that the problem of model choice
is pervasive. Typically, models are chosen in some ad-hoc manner, and
inferences are based on the model eventually chosen, as if there were no
uncertainty about it. In Bayesian analysis, however, it is possible to view
the model as an item subject to uncertainty. Then the “model random
variable” is treated as a nuisance, and the posterior distribution of the
“model random variable” is used to obtain inferences that automatically
take into account the relative plausibility of the models under consideration.
This is called Bayesian model averaging, or BMA for short. We will outline
the basic ideas, and refer the reader to Madigan and Raftery (1994), Raftery
et al. (1997), and Hoeting et al. (1999) for additional details. These authors
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argue as follows: since part of the evidence must be used in the process
of model selection, ignoring the uncertainty about the model leads to an
overstatement of precision in the analysis. In turn, this can lead to declaring
“false positives”, and the analysis lacks robustness unless, by chance, one
stumbles into the “right” model. It will be shown at the end of this section
that BMA can be used to enhance the predictive ability of an analysis.

8.6.2 Definitions

Let
A = parameter or future data point,
y = data,
M = {Mi,Ms,...,Mg} set of models,
p(M;) = prior probability of model 4,
p(M;ly) = posterior probability of model i.

The “usual” Bayesian approach gives, as posterior distribution (or density)
of A,

p(Aly, by = PYIE AP IAAE)

p(y[M;)
and the notation indicates clearly that inferences are conditional on M;, as
if the model were known to be true for sure. In BMA, on the other hand,
the idea is to average out over the posterior distribution of the models,
leading to

p(Aly) =p(A and Mily) +--- +p(A and Mkly)

K K
=Y p(Aand Mily) =Y p(Aly, M) p(Mily). (8.59)

i=1 i=1
The preceding expression reveals that, in BMA, the model is treated as a
nuisance parameter. Hence, the nuisance is eliminated in the usual manner,
by integration or by summing. Then the inferences about a parameter can
be viewed as a weighted average of the inferences that would be drawn if
each of the models were true, using the posterior probability of the model
as a mixing distribution.

In BMA, the posterior expectation and variance are calculated in the

usual manner. For example, let the posterior mean of A under model & be

E (A|My,y) = /A p (A My, y)dA = Ay

Then, unconditionally with respect to the model, one obtains

K
E(Aly) = By [E (AMyg,y)] = Y App (Myly). (8.60)
k=1
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Similarly, one can use the variance decomposition
Var (Aly) = Eny [Var (AIM,y)] + Varay [E (A[M,y)],
leading to
K

K
Var (Aly) = 3" Var (AlMey) p (Mily) + 3 (B5) p(Mily)
k=1 k=1

K 2
— lz &p(Muy)] : (8.61)
k=1

The idea is straightforward, and it makes eminent sense, at least from
a Bayesian perspective. The difficulty resides in that there can be many
models, as in a regression equation, where there may be at least 2P (for p
being the number of covariates) models, and even more when interactions
are included. Hoeting et al. (1999) discusses some of the methods that
have been used for reducing the number of terms to be included in the
sums appearing in (8.60) and (8.61).

8.6.3 Predictive Ability of BMA

Suppose one partitions the data as

’
Yy = [yguildvy%’red] )

where ypguilq is the data used for model building, and yp.eq includes the
data points to be predicted, as in predictive cross-validation. Good (1952)
introduced the predictive logscore (PLS) which, for Model k, is

PLSy=— Y logp(y|Ms,yBuia)
YEYPred
- > IOg/p(y|9kaMkaYBuild)p(0k|MkaYBuild)dgka (8.62)

YEYPred

where 6}, is the parameter vector under Model k. It it desirable to have a
model with as small a PLS as possible. Under BMA

K
PLSpya=— Y log [Zp(y|Mk7YBuild)p(MkYBuild) . (8.63)
YEYPred k=1

Suppose that the model and the data to be predicted are unknown, which
is the usual situation. Now consider the difference
K

> 0 (yIMg, yBuia) p (My|yBuita)
PLSpya— PLSy =— > log ™=

YEYPred

P (Y| Mk, YBuila)
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Next, take expectations of this difference with respect to the predictive
distribution under BMA (that is, averaging over all possible models). This
distribution has density

K
P (ypred|YBuina) = Y P (¥Pred|Mr, YBuita) P (M |yBuiia)]-
k=1
Thus,
Eyprealypua (PLSBMA — PLSy)
K

> 0 (yIMg, yBuita) p (Mi|yBuina)

=— Z E |log =2

YEYPred

P (Y| My, yBuila)

The expected value in the right hand side, taken over the distribution
[YPred|yBuild], is the Kullback—Leibler discrepancy between the predictive
distributions of datum y under BMA and under Model k. Since the dis-
crepancy is at least 0, it follows that the right-hand side is at most null.
Hence

E

YPred|YBuild (

PLSBMA)SEy PLSk);

Pred|YBuild (

as in Madigan and Raftery (1994). This implies that under model uncer-
tainty, the predictive performance of BMA (at least in the PLS sense) is
expected to be better than that obtained under a single model, even if the
latter is the most probable one. Raftery et al. (1997) and Hoeting et al.
(1999) present several study cases supporting this theoretical result.

Typically, BMA leads to posterior distributions that are more spread
than those under a single model. This illustrates that inferences based on a
single model may give an unrealistic statement of precision; this may lead
to false positive results.

The reader is now equipped with the foundations on which Bayesian
inference rests. As stated before and especially for complex models, it is
seldom the case that exact methods of inference can be used. Fortunately,
methods for sampling from posterior distributions are available, and these
are discussed in Part III of this book.
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