45
PC Interfacing by Example

John Fulcher

School of Information Technology and Computer Science, University of Wollongong, Northfields
Ave, Wollongong NSW 2522, Australia

Jjohn@uow.edu.au

Keywords: control technology, experimental, problem solving, programming, user
interface

Abstract A laboratory environment for the teaching of microcomputer interfacing and
real time computing is described. An Integrated Development Environment
(IDE) running on the host PC facilitates the writing of software for a target
68HC12 microcontroller, which connects to host via the latter’s serial port.
Students are encouraged to learn by doing, including learning from their
mistakes — hence necessitating good debugging facilities within the IDE. This
approach is in keeping with that of situated learning (Lave and Wenger 1991).
To put it another way, knowledge as such is not aught, but rather imparted
through a process of apprenticeship. In this context, the role of the educator is
primarily to provide a nurturing environment in which students are able to get
their hands dirty and attempt to interface to real-world peripheral devices.
Lecturing staff are used as consultants or last resort trouble-shooters, with
students encouraged to perform the bulk of their own software development
and debugging. Experience has shown that students respond admirably to such
an approach, commonly experiencing the subject as “it’s a lot of work, but
very enjoyable — I learnt a lot”.

1. INTRODUCTION

We have a tradition at the University of Wollongong of designing our
undergraduate subjects to be very much laboratory-based. This is
particularly the case with the Microcomputer Interfacing and Real-Time
Computing subject which students can elect to undertake during their third

466 John Fulcher

and final year of their Bachelor of Computer Science study. We believe
students learn by doing, especially by getting their hands dirty and learning
from their own mistakes (Fulcher 1990). Furthermore, they best learn
underlying principles by having to apply these to real-world problems
(Fulcher 1991).

Another emphasis — in both subjects — is the exposure of students to what
lies under the hood of the computer. In other words, they gain an
appreciation of what is contained within this black box called a computer.

Introductory subjects in computer architecture, computer systems and/or
assembly language programming tend to use simulators (e.g. Gray 1987,
Patterson and Hennessy 1994). By contrast, we have recently shifted the
focus of our introductory computer systems subject to that of PCs in general,
and the Pentium processor in particular (Duntemann 2000) — one reason for
this, by the way, is that this is the first time the author has encountered PC
assembly language programming covered not only from a DOS perspective,
but also for Linux.

The shareware assembler NASM forms the common link between DOS
and Linux in the PC environment (an entire NASM-IDE in the case of the
former). The inbuilt (16-bit) debug is used in the DOS environment,
whereas the (32-bit) gcc debug tool — gdb — is used under Linux (which
causes a slight trauma in students migrating from the Intel-style syntax of
debug to the AT&T syntax used in the gcc tool suite!). Furthermore,
reliance on BIOS software routines under DOS shifts to standard C library
function calls under Linux.

The PC emphasis of the earlier Introduction to Computer Systems subject
is expanded upon in the third-year Microcomputer Interfacing and Real-
Time Computing subject. In the latter, students are given ample opportunity
to control real-world devices (not just simulations thereof). Feedback from
students is invariably positive — they typically cite this subject as one of the
best they undertake during their entire 3 years Bachelor of Computer Science
degree studies.

Enrolment numbers are typically between 30 and 40, compared with 120
to 150 in the first-year Introduction to Computer Systems subject.

2. LABORATORY SETUP

Previous incarnations of the Microcomputer Interfacing Laboratory were
based around the 8-bit Motorola MC6800 (via Heathkit ET3400 trainers —
Fulcher 1989a), and the 16/32-bit MC68000 (via firstly Motorola’s
Educational Computer Board, thence the Applix 1616 — Fulcher 1989b,

PC Interfacing by Example 467

Fulcher 1990, Fulcher 1991). In each case, the basic microcomputer trainer
interfaced to individual experiment pods via in-house expansion circuitry.

In choosing individual (plug-in) experiment pods, we were conscious of
making the laboratory assignment work both interesting and accessible to the
students. Typical experiments include:

LCD/Dot Matrix displays

timer/music

serial communications

bar code reader

x-y drill positioner

slot car controller

model train scheduler, and

turtle robot controller.

In each case, heavy emphasis is placed on students writing their own
(rudimentary) software drivers for the hardware controllers provided. To
quote from the preface of an earlier accompanying textbook (Fulcher
1989a): “Interfacing peripheral devices to a microcomputer involves three
important factors. Firstly, we need to know the basic operating principles of
the peripheral device we’re attempting to interface to the computer.
Secondly, we need to know the characteristics of the particular peripheral
support chip we’re using for this task. Thirdly, we need to write the control
software.”

The immediate feedback provided to students by having LEDs flash
on/(off), interrupts being generated, and the actual movement of real world
devices greatly assists students in their learning experience.

A few years ago we decided to migrate our existing (MC68000-based)
experiment pods to a PC platform. One motivation behind this decision was
to impart skills to students which they would be able to take beyond the
classroom laboratory setting and into the real world following completion of
their formal studies.

In order to ease the transition to a PC environment, we developed an in-
house ISA expansion card, which allowed direct connection to our pre-
existing (MC68000) range of experiment pods. The following year saw these
older experiment pods replaced by a single development platform based
around a Motorola MC68HC12 microcomputer.

RNANPWLDN -~

3. LABORATORY ASSIGNMENTS

The first PC-based laboratory assignments were undertaken on the PC
itself, using the Open Source DJGPP C/C++ Compiler (in fact a complete
Integrated Development Environment — http://www.delorie.com/djgpp).

468 John Fulcher

Open Source software was chosen rather than commercial, in order to kept
costs low (e.g. Microsoft Visual C++— Buchanan 1996).

Extensive use is made of interrupts — both hardware (from external
peripherals) and software. The latter focuses on BIOS library function calls,
with which students become familiar during the (first-year) Introduction to
Computer Systems subject. It is only in the later-year subject however that
the separation of functions contained within the Aighly integrated PC support
chips becomes clear. Indeed, a complete system can be constructed using
just three (highly integrated) peripheral support chips:

1. 182439 System Controller (DRAM, SRAM/cache, ECC),
2. 182371 PCI/ISA Xcelerator (IDE, PCI-ISA bridge, Priority Interrupt

Controller, timers, plug-and-play, mice, USB root hub), and
3. 182091 Advanced Interface to Peripherals (2 serial, 1 parallel, FDD).

In the later-year subject, interfacing is approached from a functional
perspective, but again with a focus on interrupt-driven IO and buffering.

The mode of operation of the laboratory equipment was subsequently
changed from code development on the target machine (i.e. the PC itself), to
a PC host/68HC12 target configuration. A locally developed 68HC12
Monitor-in-RAM provides students with rudimentary functionality, although
not as comprehensive as that contained within the PC BIOS:

D<from, nbytes> - Display memory

F<from, nbytes, data> - Fill memory

T<from, nbytes> - Test memory

Gladdr] - Go from address (i.e. start executing from)
L - Load record (i.e. *.S19 executable file)

H - Help (i.e. list of available commands)

‘ msb LEDs Ish
0000000

LCD Panel analo #7 switches #0
i 00 000000

reset ®

Figure 1. MC68HC12 Target Microcontroller Front Panel

The 68HC12-based microcontroller is shown in Figure 1. It cost around
$600 per unit to produce, and incorporates the following peripherals (with
associated 68HC12 ports — see Figure 2):

1. 8switches Data Register=Port-D 0x05 Data Direction Reg-

D=0x07

PC Interfacing by Example 469

2. 8 LEDs Port-J 0x28 DDRIJ 0x29
3. (2-line*8-digit) LCD Panel Data: Port-H 0x24 DDRH 0x25
Control: Port-T 0XAE DDRT
0xAF
4. 5 timer channels (3-7) Port-T 0XxAE DDRT 0xAF
5. Serial Interfaces (2 asynchronous SC0(1) + 1 synchronous SP0)
SCO(1): 0xC0-C7(0xC8-CF) SP0: 0xD0-D5

6. 8-channel (8-bit) Analog-to-Digital Converter Port-AD 0x70-7E

7. USB interface (under development)

The HC12 interfaces to the PC via the latter’s RS232 serial port (an

upgrade to USB is currently underway).

The 68HC12 microcontroller cross development platform takes the form
of the ImageCraft C-compiler — ICC12. As with the DIGPP C/C++
Compiler, the Integrated Development Environment adopts the usual
Borland style (i.e. integrated editor, compiler, linker and debugger, all
accessible from the same Graphical User Interface).

68HC12 CPU | FP Switch
- | PADO-7

|
-q : Control PTO0-3
- > o
HD44780LCD
e S E

Port-D _> Switches
Port-) __> LEDs

PC COM1 Ports-A,B,C,E,F,G (not used)

SCIO
sci % Serial

USB Port meefpp| USBN9603

68HC12 Microcontroller

Figure 2. Motorola 68HC12 Microcontroller

Typical assignment tasks include the following:
1. Simple IO (switch input; LCD output):
— activation of least significant (software debounced) switch(#0) =» print
name on LCD

2 Springer
http://www.springer.com/978-1-4020-7132-4

Metworking the Learner
Computers in Education

Watson, D.M.; Andersen, |, (Eds.)
2002, XN, 991 p., Hardcover
ISBN: 278-1-4020-7132-4

	
	
	
	
	

