é 120c01.fm Page 1 Wednesday, January 16, 2002 5:17 PM

*

CHAPTER 1

Introducing ADO.NET

Hijacked by Bill Vaughn’s
Inquisitor Peter Blackburn

Ahem! Perhaps I should mention that I needed to tie up Bill Vaughn in order to
distill his world-class excellence on ADO.NET for the C# community. I am presently
helping with Bill’s rehabilitation. ...Now repeat after me Bill “C# is the bees knees” ...
“‘Hmmmmph! Hmmmmph!” Ah! well yes I can see that we need just a little more
assistance; I do hope I'll be able to remove the gag eventually...Wind the rack up a
notch Anders would you please! ...

This book is all about using ADO.NET with C# (pronounced C Sharp), .NET
Framework,! and to some extent about how Visual Studio .NET helps you build
ADO.NET-based applications. The concepts and code discussed and illustrated
here apply (in most cases) to .NET WinForms and ASP Web Services and other
ADO.NET platforms.

To make the transition to .NET easier for you and to clarify how I view this new
technology, I start by helping you get familiar with .NET, its new terminology, and
the new ways it allows you to access your data. There are many tutorials on .NET,
most of which clearly describe the technology, albeit each from a unique and dis-
tinct point of view. In this book, my intended target audience is the experienced
COM-based ADO developer. I focus strictly on my personal area of .NET expertise:
data access and especially, data access with SQL Server. You might sense a bias in
favor of Microsoft SQL Server (guilty) and the SqlClient namespace. Perhaps that’s
because I've had more experience coding, designing, implementing, testing, and
teaching SQL Server than any other DBMS system. Again, in most cases, the OleDb
namespace implements the System.Data classes in much the same way. Sure, I point
out areas where there seem to be differences between the provider implementations;
but no, I won't be getting into the Odbc .NET Data Provider. Because of Microsoft’s
hesitancy to keep this provider up to date during the beta cycle, my technical
editors and I were unable to include much more than a passing reference to this

1. For an in-depth analysis of the .NET Framework check out Dan Appleman’s Moving to
VB.NET: Strategies, Concepts and Code, (Apress) ISBN: 1893115-97-6.

4~ 4

é 120c01.fm Page 2 Wednesday, January 16, 2002 5:17 PM

Chapter 1

provider. Check my Web site or the Apress Web site? for an update sometime after
this book hits the streets for differences and issues.

How We Got Here

A number of years ago, Microsoft found itself in yet another tough spot. Overnight
(or so it seemed), the Internet had become far more popular than expected and
Microsoft was caught without a viable development strategy for this new paradigm.
Developers all over the world clamored for ways to get their existing code and skills
to leverage Web technology. Even Microsoft’s own internal developers wanted
better tools to create cutting-edge Web content and server-side executables. These
same developers also found that component object model (COM) architectures
didn’t work very well with or over the Internet—they were never designed to. Sun
System’s virtual stranglehold on Java and the ensuing fight over this language
made it imperative that Microsoft come up with another way to create fast, light,
language-neutral, portable, and scalable server-side executables.

Microsoft’s initial solution to this challenge was to reconfigure their popular
and well-known Visual Basic interpreter in an attempt to provide server-side (IIS)
functionality to the tool-hungry developer community. To this end, VB Scripting
Edition sprung to life, aimed at a subset of the four million Visual Basic developers
trying to create logic-driven Web content for this new beast called “eCommerce.”
As many of these developers discovered, an Active Server Page (ASP) created with
Visual Basic Script (VBScript) was relatively clunky when compared to “real”
Windows-based Visual Basic applications and components. The VBScript language
was confined to the oft-maligned Variant datatypes, copious late-binding issues,
and interminable recompiles. Despite these issues, a flood of Web sites were built
around this technology—probably because they were (loosely) based on a form of
a familiar language: Visual Basic.

Ahem! For those developers who had grown up using C and then its object
layer abstraction C++ (these are the scary awkward languages to the VB com-
munity-the ones with the curly braces {}, pointer things ->, and semicolons ;, and
in the case of C++, O0OP3), Microsoft offered Jscript—a version of ECMAScript,
which from a syntactical viewpoint is closer to C++ and JavaScript than Visual
Basic. There were some advantages to be gained by using JScript over VBScript in
client-side code, one of which being that, in theory, many other browsers, other
than just those Microsoft offered, supported JScript thereby potentially enabling
the code to be browser neutral.

http://www.betav.com and http://www.apress.com.

OOP: Object-Oriented Programming—IPHO: Many of those who develop without it (as in
totally unplanned and unstructured) tend to find that they have lots of places in their code at
which they frequently have to exclaim “OOPs” or other expletives as their code falls over.

%

é 120c01.fm Page 3 Wednesday, January 16, 2002 5:17 PM éﬁ

Introducing ADO.NET

However, Microsoft sought some better way to satiate the needs of millions of
Visual Basic developers and their ever-growing interest in the Web without com-
promising performance or functionality, perhaps providing them, maybe forcing
them, to a new world of OOP without the need to learn JScript (or any other curly-
brace language)!

It wasn'’t long before it became clear that Microsoft needed something new—
no less than a whole new paradigm, a landslide shift, a new reality with some old
familiar concepts, some new concepts, and some borrowed or adapted concepts—in
order to accomplish this goal. This was the birth of the .NET platform.

Anders Hejlsberg, a Microsoft Distinguished Engineer,* crafted a brand new
programming language for this new world reality. This language is C#, which fits
with .NET hand in glove, horse and carriage, love and marriage, so to speak. Okay,
so I like C#, but it isn’t the only language that is now supported in .NET. Syntacti-
cally, C# is an OOB, curly-brace language, with semicolons, and thus a language
with which C++ and Java developers will feel comfortable and “at home.”

You see, Visual Basic just didn’t cut it when compared to the heavily object-
oriented Java applications with which it was competing. Before this, each new
version of VB had inherited language and user interface (UI) supported functionality
features from its predecessor. Yes, each new version usually left some unworkable
functionality behind, but generally, these “forgotten” features were minor—most
developers learned to live without them. When designing VB .NET, however, the
Microsoft development team felt that too many of these “legacy” features hobbled
Visual Basic’s potential by preventing, or at least complicating, easy implemen-
tation of more sophisticated features. Thus, the advent of VB .NET.

Unfortunately, as I see it, more than a few BASIC and Visual Basic developers
really expect continued support for much of this “obsolete” functionality. Over the
years, VB developers have learned (for better or worse) to depend on a forgiving
language and an IDE that supports default properties, unstructured code, automatic
instantiation, morphing datatypes, wizards, designers, drag-and-drop binding,
and many more automatic or behind-the-scenes operations. More importantly,
VB developers pioneered and depended on “edit and continue” development,
which permitted developers to change their code after a breakpoint and continue
testing with the new code. This was a radical departure from other development
language interfaces and, for a decade, put Visual Basic in a class by itself.

Microsoft expects “professional” Visual Basic developers (whoever they are) to
wholeheartedly embrace Microsoft’s new languages—including the new “Visual
Basic’—and (eventually) step away from Visual Basic as we know it today. Con-
sider that a Visual Basic “developer” can be as sophisticated as a front-line
professional who writes and supports thousands of lines of DNA code or as challenged

4. Not to be confused with “Microsoft Drudge Engineers” who do less theoretical thinking and
more real work trying to implement what the “Distinguished” engineers dream up.

- aibd

% 120c01.fm Page 4 Wednesday, January 16, 2002 5:17 PM

*

Chapter 1

as an elementary school student or part-time accountant creating a small appli-
cation against an Access database. Some of these developers will be skilled enough
and motivated enough to adapt to a new language—some will not. Some have the
formal training that permits them to easily step from language-to-language—
many (I would venture the majority) do not. Some professional developers, faced
with this magnitude of change, will opt to find another language or another seem-
ingly simpler occupation, such as brain surgery.

IMHO Microsoft continues to complicate the situation by insisting

/) that VB .NET is really just another version of Visual Basic 6 and that
P L/) ADO.NET is just another version of COM-based ADO. They clearly

aren’t the same—not even close.

IPHO Those “professional” Visual Basic developers might very well
go just that tiny bit further and take the opportunity to learn and
then use C# as their language of choice. For me, VB .NET is almost a
case-insensitive version of C# without the braces and semicolons.

I think the new Visual Basic .NET language is just that: new. (Ahem!V sharp?)
While it emulates the Visual Basic language in many respects, it’s really not the
same. As many of you have heard, I wanted to call it something else—anything
else—but my daughter, Fred, told me to keep my mouth shut to prevent her from
further embarrassment. I complied, as I don’t want to give anyone at Microsoft

apoplexy—again.

What Do These Changes Mean?

The Microsoft .NET Framework’s system of language(s), tools, interfaces, and
volumes of supporting code has been constructed from the ground up with an
entirely new architecture. For those of you who remember IBM 3270 technology,
you’ll find that the .NET Framework tracks many of the same wheel ruts laid into
the road during the 1960s. IBM 3270 systems were central processor (mainframe)-
driven “smart” (or “dumb”) terminal designs. They relied on a user-interface ter-
minal which supported very sparse functionality. The terminal’s only function was
to display characters at an x-y coordinate and return characters entered into
“fields.” There were no mice or graphics to complicate things, but a dozen different
keyboard layouts made life interesting.

%

ﬁ

%ﬁ%

é 120c01.fm Page 5 Wednesday, January 16, 2002 5:17 PM

*

—

Introducing ADO.NET

While the industry’s current browser technology includes far more intelligence
and flexibility at the client, the general design is very similar to the 3270 approach.
.NET applications now expect code similar to a browser to render the forms and
frames and capture user input, even when creating a Windows (WinForms) appli-
cation. This means .NET applications will behave and interact differently (at least
to some extent) than “traditional” Windows applications.

What'’s new for server-side executables is the concept of a Web Service. I discuss
and illustrate Web Services in Chapter 10, “ADO.NET and XML.” This new paradigm
finds its roots in Visual Basic 6.0’s so-called IIS Applications—better known as Web
Classes. Web Services place executable code on your IIS server to be referenced as
ASP pages or from other executables such as WinForm applications just as you
would reference a COM component running in the middle tier. The big difference
is that Web Services do not require COM or DCOM to expose their objects,
methods, properties, or events—they are all exposed through SOAP? I explain
what this means in Chapter 10.

For the C++ developer moving to C#, these .NET innovations mean that the
huge Rapid Application Development (RAD) advantages that Visual Basic devel-
opers had over C++ developers are no more, no longer, gone, zip; there is now a
level playing field. Previously C++ Windows Application developers had to do
battle fighting with the Microsoft Foundation Classes (MFC), while their Visual
Basic developer cousins needed only to tinker with the facile “Ruby” Windows
Form Engine. They rarely bothered, cared, or needed to know what a Windows
handle or a device context was, but were by far much more visibly productive. This
leveling of playing field has been achieved in part by replacing Visual Basic’s
“Ruby” forms engine and the accompanying run-time library (VBRUN.DLL) with a
new run-time platform and forms engine, as well as a new user interface and
development IDE. (If I can use the word “replaced” to mean that the new version
does not implement the same functionality). Saying the Visual Basic run time has
been replaced is like saying the diesel engine in a semi-tractor-trailer rig was
replaced with a cross-galaxy transport mechanism.

The Visual Basic 6.0 IDE, the Visual InterDev 6.0 IDE, and the Visual C++ 6.0
IDE have been replaced with a new “combined” system that integrates all of the
language front ends into one. From the looks of it, Microsoft used the Visual Studio
6.0-era Visual InterDev shell as a base. These changes mean that Visual Basic .NET
is not just the newest version of Visual Basic. While Visual Basic .NET is similar in
some respects to Visual Basic 6.0, it’s really a lot more like C# (pronounced
C “sharp”) or C++ (pronounced C “hard-to-learn”). For the professional, school-
trained veterans out there, VB .NET and C# are just other languages. For many
though, they’re a big, scary step away from their comfort zone.

5. Simple Object Access Protocol. See http://www.w3.0rg/TR/SOAP/# Toc478383486

%

ﬁ

*

%ﬁ%

% 120c01.fm Page 6 Wednesday, January 16, 2002 5:17 PM

*

Chapter 1

ADO.NET-A New Beginning

This section of the book introduces something Microsoft calls ADO.NET. Don'’t
confuse this new .NET data access interface with what we have grown to know and
understand as ADO—I think it’s really very different. Yes, ADO.NET and ADOc
both open connections and fetch data, however, they do so in different ways using
different objects and with different limitations. No, they aren’t the same—no
matter what Microsoft names them. Yes, ADO.NET has a Connection object,
Command object, and Parameter objects (actually implemented by the SqlClient,
OleDb and Odbc .NET Data Providers), however, they don’'t have the same prop-
erties, methods, or behaviors as their ADOc counterparts. IMHO, this name
similarity does not help to reduce the confusion you're likely to encounter when
transitioning from ADOc to ADO.NET.

the two paradigms; henceforth “ADOc” refers to the existing COM-based
ADQO implementation and “ADO.NET” refers to the new .NET Framework
implementation.

g NOTE 7o avoid confusion, I've coined a new term to help you distinguish

Actually, the name ADO.NET was not Microsoft’s first choice (nor is it mine)
for their new data access paradigm. Early in the development cycle (over three
years ago®), their new data access object library was referred to as XDO (among
other things). To me, this made” a lot of sense because ADO.NET is based on XML
persistence and transport—thus “XML Data Objects” seemed a good choice.
Because developers advised Microsoft to avoid the creation of yet another TLA
(three-letter acronym)-based data access interface, they were hesitant to use the
XDO moniker. I suspect there were other reasons too—mostly concerning the loss
of market product name recognition. So, XDO remains one of those words you aren't
supposed to mention in the local bar. Later in the development cycle, XDO evolved
into ADO+ to match the new ASP+ technology then under construction. It was not
until early in 2001 that the name settled on ADO.NET to fit in with the new naming
scheme for the Windows XP (Whistler) and the newly dubbed .NET Framework.

Microsoft also feels that ADO.NET is close enough to ADOc to permit lever-
aging the name and making developers feel that ADO.NET is just another version
of ADOc. That’s where Microsoft and I differ in opinion. The documentation
included with the .NET betas assures developers that ADO.NET is designed to
“...leverage current ADO knowledge.” While the connection strings used to

6. Circa AD 1999.

7. Twas opposed to another TLA at the time—for some reason that now escapes me.

%

.

ﬁ

é 120c01.fm Page 7 Wednesday, January 16, 2002 5:17 PM

*

—

Introducing ADO.NET

establish connections are similar (even these are not exactly the same as those
used in ADOc), the object hierarchy, properties, methods, and base techniques to
access data are all very different. Over the past year I often struggled with ADO.NET
because I tried to approach solutions to my data access problems using ADOc
concepts and techniques. It took quite some time to get over this habit (I joined a
twelve-step program that worked wonders). Now my problem is that when someone
asks me an ADOc question, I have to flush my RAM and reload all of the old concepts
and approaches. I'm getting too old for this.

No matter what you call it, I think you'll also discover that even though ADO.NET
is different from ADOc in many respects, it's based on many (many) years of devel-
opment experience at Microsoft. It’s not really built from scratch. If you look under
the hood you’ll find that ADO.NET is a product of many (but not all) of the lessons
Microsoft has learned over the last decade in their designing, creating, testing, and
supporting of DB-Library, DAO, RDO, ODBCDirect, and ADO, as well as ODBC and
OLE DB. You'll also find remnants of the FoxPro and Jet data engines, shards from the
Crystal report writer, as well as code leveraged from the ADO Shape, ADOX, and
ADOMD providers. Unfortunately, you'll also find that ADO.NET’s genes have
inherited some of the same issues caused by these technologies—it also suffers from a
few “DNA” problems; I discuss these as I go. Most of these issues, however, are just
growing pains. I expect there will be a lot of lights left on at night trying to work
them out—unless the energy crisis has us working by candlelight by then.

That said, don’t assume that this “new” ADO.NET data access paradigm
implements all of the functionality you're used to seeing in ADOc. Based on what
I've seen so far, there are lots of features—among them many important ones—left
behind. I discuss these further in the following chapters.

Comparing ADOc and ADO.NET

Data access developers who have waded into the (generally pretty good) MSDN .NET
documentation might have come across a topic that compares ADOc with ADO.NET.
IMHO, this topic leaves a lot to be desired; it slams ADOc pretty hard. Generally, it
ignores or glosses over features such as support for the Shape provider (which exposes
hierarchical data management), pooled connections and intelligent connection
management, disconnected Recordsets, serialization, XML functionality, ADOMD,
and ADOX. Yes, ADO.NET is a new and innovative data access paradigm, but so is
ADOc. In its defense, the documentation does say there are still a number of situ-
ations where ADOc is the (only) solution. I suspect that the Microsoft .NET
developers will make ADOc redundant over time—just not right away.

%

ﬁ

*

%ﬁ%

% 120c01.fm Page 8 Wednesday, January 16, 2002 5:17 PM

*

Chapter 1

Later in this and subsequent chapters I visit the concept of porting ADOc code
over to .NET applications. It'’s a complex subject full of promise and some serious
issues—a few with no apparent resolution. Stay tuned.

A IMHO The job of a technical writer at Microsoft is considerably chal-
/) lenging. I worked on the Visual Basic user education team for about
é} five years and, while some changes have been made, there are still
= many issues that make life tough on writers, editors, and developers
alike—all over the world. One of the problems is that when working
with a product as new as .NET, there are few “reliable” sources of
information besides the product itself. Unfortunately, the product is a
moving target—morphing and evolving from week to week, some-
times subtly, but just as often in radical ways as entire concepts are
lopped off or jammed in at the last minute for one reason or another.
This problem is especially frustrating when outsiders work with beta
versions. To add to Microsoft's problems, they have to “freeze” the doc-
umentation months (sometimes six or more) in advance, so it can be
passed to the “localizers.” These folks take the documentation and
translate it to French, German, Texan, and a number of other foreign
languages. A lot can (and does) happen in the last six months before
the product ships. If the product doesn’t ship—this has happened on
more than one occasion—it is also difficult to keep the documen-
tation in sync.

Another factor you need to consider is your investment in ADOc training and
skills. Frankly, quite a bit of this will be left behind if you choose ADO.NET as your
data access interface. Why? Because ADO.NET is that different. This issue will be
clearer by the time you finish this book.

Understanding ADO.NET Infrastructure

Microsoft characterizes ADO.NET as being designed for a “loosely coupled, highly
distributed” application environment. I'm not sure that I wholly agree with this
characterization. I'll accept the “loosely coupled” part, as ADO.NET depends on
XML—not proprietary binary Recordsets or user-defined structures—as its persis-
tence model and transport layer. No, ADO.NET does not store its in-memory
DataTable objects as XML, but it does expose or transport them as XML on
demand. As I see it, XML is one of ADO.NET’s greatest strengths, but also one of its
weaknesses. XML gives ADO.NET (and the entire .NET Framework) significant
flexibility, which Visual Basic 6.0 applications have to go a long way to implement
in code—and C++ applications a little further still. However, XML is far more
verbose and more costly to store and transmit than binary Recordsets; granted,
with very small data sets, the difference isn’t that great. By passing XML instead of

%

ﬁ

.

é 120c01.fm Page 9 Wednesday, January 16, 2002 5:17 PM

*

.

—

Introducing ADO.NET

binary, ADO.NET can pass intelligent information—data and schema and extended
properties, or any other attribute you desire—and pass it safely (and securely)
through firewalls. The only requirement on the receiving end is an ability to parse
XML—and that’s now built into the Windows OS.

Understanding ADO.NET’s Distributed Architecture

As far as the “highly-distributed” part of the preceding ADO.NET characterization,
I think Microsoft means that your code for .NET applications is supposed to work
in a stand-alone fashion without requiring a persistent connection to the server.
While this is true, I expect the best applications for .NET will be on centralized Web
servers where the “client” is launched, constructed, and fed through a browser
pointing to a logic-driven Web page. I think that Microsoft intended to say that
ADO.NET is designed primarily for Web architectures.

On the other hand, ADO.NET (in its current implementation) falls short of a
universal data access solution—one of ADOc’s (and ODBC’s) major selling points.
The ODBC provider (System.Data.Odbc) is not included in the .NET Framework
but is to be made available through a Web update sometime after .NET is initially
released. I don’t think one can really interpret this as a policy to back away from the
universal data access paradigm—but it would not be hard to jump to that con-
clusion. I'm disappointed that ODBC is not part of the initial release. But better
late than never.

In my opinion, the most important difference between ADO.NET and any
other Microsoft data access interface to date is the fact that ADO.NET is multidi-
mensional from the ground up. That is, ADO.NET:

¢ Isprepared to handle—with equal acuity—either single or multiple related
resultsets along with their relationships and constraints.

* Does not try to conjure the intratable relationships—it expects you to
define them in code. But it’s up to you to make sure these coded relation-
ships match those defined by your DBA in the database. It might be nice if
Visual Studio .NET could read these definitions from the server, but then
again, that would take another round trip. Be careful what you ask for...

* Permits you to (expects you to) define constraints in your application to
ensure referential integrity. But again, it’s up to you to keep these in sync
with the database constraints.

e Does not depend on its own devices for the construction of appropriate
SQL statements to select or perform updates to the data—it expects you to
provide these. You (or the IDE) can write ad hoc queries or stored proce-
dures to fetch and update the data.

%

ﬁ

*

*ﬁ%

é 120c01.fm Page 10 Wednesday, January 16, 2002 5:17 PM

*

Chapter 1

In some ways, this hierarchical data approach makes the ADO.NET disconnected
architecture far more flexible and powerful than ADOc—even when including use of
the Shape provider in ADOc. In other ways, you might find it difficult to keep
component-size relationships and constraints synchronized with their equivalents in
the database.

A Brief Look at XML

No, I'm not going to launch into a tutorial on XML, just as I found it unnecessary to
bury you in detail about the binary layout of the Recordset (not that I know any-
thing about it). I do, however, want to fill in some gaps in terminology so that you
can impress your friends when you start discussing ADO.NET.

XML is used behind the scenes throughout ADO.NET and you ordinarily won't
have to worry about how it’s constructed until ADO.NET, or an application passing
XML to you, gets it wrong. Just remember that the ADO.NET DataSet object can be
constructed directly from XML; this includes XML generated by any application that
knows how to do it (correctly). The .NET architecture contains root services that let
you manage XML documents using familiar programming constructs.

As1said, when you transport your data from place to place (middle tier to
client, Web Service to browser), ADO.NET passes the data as XML. However, XML
does not describe the database schema by itself—at least not formally. ADO.NET
and the .NET IDE know how to define and persist your data’s schema using
another (relatively new) technology called Extensible Schema Definition (XSD).
Accepted as a standard by the W3C8 standards organization, XSD describes XML
data the same way database schemas describe the structure of database objects
such as tables. XSD provides a way to not only understand the data contained
within a document, but also to validate it. XSD definitions can include datatype,
length, minlength, maxlength, enumeration, pattern, and whitespace.? Until
recently, XML schemas have been typically created in the form of Document Type
Definitions (DTDs), but Visual Studio .NET introduces XSD, which has the advantage
of using XML syntax to define a schema, meaning that the same parsers can
process both data and schemas.

IIRC,'% XSD has been W3C final recommendation status for several months.
Visual Studio .NET can generate XSD schemas automatically, based on an XML
document. You can then use it to edit the schema graphically to add additional
features such as constraints and datatypes. There are also .NET tools that can help

8. Seehttp://www.w3.org for more information.
9. Texpect this list to change (expand, contract) as XSD is nailed down.
10. IIRC: If I recall correctly.

%

ﬁ

*

%ﬁ%

é 120c01.fm Page 11 Wednesday, January 16, 2002 5:17 PM 4@
Introducing ADO.NET

construct XSD from a variety of forms including Recordsets, XML data structures,
and others.

Later in the book (Chapter 10) I discuss how you can use the XML tools in .NET
to manage your data.

ADO.NET-The Fundamentals

For those developers familiar with ADOc and the disconnected Recordset,
ADO.NET’s approach to data access should be vaguely familiar. The way in which you
establish an initial connection to the database is very similar to the technique you
used in ADOc—at least on the surface. After that, the similarity pretty much ends.

There are several base objects in ADO.NET. These objects are outlined and
briefly described several times in this chapter and discussed in depth in subse-
quent chapters. Each of the following objects are implemented from base classes
in the System.Data namespace by each of the .NET Data Providers:

* The Connection object: This works very much like the ADOc Connection
object. It's not created in the same way nor is the ConnectionString property
exactly the same, but it’s close.

¢ The Command object: This works very much like an ADOc Command object.
Itholds a SQL SELECT or action query and points to a specific Connection object.
The Command object exposes a Parameters collection that works something
like the ADOc Command object’s Parameters collection.

* The DataReader object: This is used to provide raw data I/O to and from the
Connection object. It returns a bindable data stream for WebForm appli-
cations, and is invoked by the DataAdapter to execute a specific Command.

* The DataAdapter object: There is no exact equivalent to this in ADOc; the
closest thing is the IDE-driven Visual Basic 6.0 Data Environment Designer.
The DataAdapter manages a set of Command objects used to fetch, update,
add, and delete rows through the Connection object.

* The DataTable object: Again, there is not an ADOc equivalent, but it's similar i
n some respects to the Recordset. The DataTable object contains a Rows col-
lection to manage the data and a Columns collection to manage the
schema. No, DataTables do not necessarily (and should not) be thought of
as base tables in the database.

11

%ﬁ%

é 120c01.fm Page 12 Wednesday, January 16, 2002 5:17 PM

*

Chapter 1

e The DataSet object: This is a set of (possibly) related DataTable objects. This
interface is bindable in WinForms or WebForms. The DataSet also contains
Relations and Constraints collections used to define the interrelationships
between its member DataTable objects.

A Typical Implementation of the ADO.NET Classes

One approach (there are several) calls for your application to extract some (or all)
of the rows from your database table(s) and create an ADO.NET DataTable. To
accomplish this, you create a Connection object and a DataAdapter object with its
SelectCommand set to an SQL query returning data from a single table (or from
several tables using separate SELECT statements in a single Command).

The DataAdapter object’s Fill method opens the connection, runs the query
through a DataReader (behind the scenes), constructs the DataTable objects, and
closes the connection. If you use individual queries, this process is repeated for
any related tables—each requiring a round trip, separate queries, and separate
DataTable objects. However, if you're clever, you can combine the SELECT oper-
ations into a single query. ADO.NET is smart enough to build each resultset of a
multiple-resultset query as its own DataTable object. I show an example of this in
Chapter 5, “Using the DataTable and DataSet.”

After the DataTable objects are in place, your code can disconnect from the
data source. Actually, this was already done for you; ADO.NET opens and closes
the Connection object for you when you use the Fill method. Next, your code can
define the primary key/foreign key (PK/FK) relationships and any constraints you
want ADO.NET to manage for you. All work on the data takes place in client
memory (which could be in a middle-tier component, ASP, or distributed client’s
workstation).

When working with related (hierarchical) data, you can write a SELECT query to
extract all or a subset of the customer’s table rows into a DataTable object. You can
also create queries and code to construct additional DataTable objects that contain
rows in the related Orders and Items database tables. Code a single bindable
DataSet object to manage all of these DataTable objects and the relationships
between them. Behind the scenes, ADO.NET “joins” these DataTable objects in
memory based on your coded relationships. This joining of DataTable objects
permits ADO.NET to navigate, display, manage, and update the DataSet object, the
DataTable objects, and ultimately, the database tables behind them when you use
the Update method. After ADO.NET fetches the queried rows to construct the
DataSet, ADO.NET (or your code) closes the connection and no longer depends on
the database for any further information about the data or its schema.

When called upon to update the database, ADO.NET reopens the connection
and performs any needed UPDATE, INSERT, or DELETE operations defined in the

%

ﬁ

%ﬁ%

é 120c01.fm Page 13 Wednesday, January 16, 2002 5:17 PM

—

Introducing ADO.NET

DataAdapter as separate Command objects. Your code handles any collisions or
problems with reconciliation.

The Visual Studio .NET IDE lets you use drag-and-drop and a number of
wizards to construct much of the code to accomplish this. As I discuss in later
chapters (see Chapter 4, “ADO.NET DataReader Strategies”) you might not choose
to avail yourself of this code—it’s kinda clunky. As with ADOc’s Shape provider,
ADO.NET can manage intertable relationships and construct a hierarchical data
structure that you can navigate and update at will—assuming you added code to
define the relationships and constraints. I show you how to do this in Chapter 5
and in Chapter 8, “ADO.NET Constraint Strategies.”

Based on my work with ADO.NET so far, [have a number of concerns

regarding the disconnected DataSet approach:

The overhead involved in downloading high volumes of data and the amount
of locks placed on the server-side data rows is problematic at best. The
ADO.NET disconnected DataSet approach might work for smaller databases
with few users, but you must be careful to reduce the number of rows returned
from each query when dealing with high volumes of data. Sure, it’s fast when
you test your stand-alone application, but does this approach scale?

Assumes that the base tables are exposed by the DBA; in many shops, this
is not the case, for security and stability reasons. While you can (and
should) construct DataSet objects from stored procedures, you also need to
provide stored procedures to do the UPDATE, DELETE, and INSERT oper-
ations. It’s not clear if this approach will permit ADO.NET to expose the
same functionality afforded to direct table queries—it does not appear to.
I'have found, however, that it is possible to perform updates against complex
table hierarchies, but it requires more planning and work than the simplistic
table-based queries often illustrated in the documentation.

The Visual Studio .NET drag-and-drop and wizards used to facilitate
ADO.NET operations generate (copious) source code. That’s the good
news. The bad news is that this source code has to change when the data
structures, relationships, or stored procedures used to manage the data
change—and this does not happen automatically. This means that you want
to make sure your schema is nailed down before you start generating a lot of
source code against it. Once inserted, it’s often tough to remove this code in
its entirety if you change your mind or the schema.

The disconnected approach makes no attempt to maintain a connection
to the data source. This means that you won'’t be able to depend on per-
sisted server-side state. For example, server-side cursors, pessimistic locks,
temporary tables, or other connection-persisted objects are not supported.

%

13

% 120c01.fm Page 14 Wednesday, January 16, 2002 5:17 PM

*

Chapter 1

¢ When compared to ADOc, ADO.NET class implementation is fairly limited
in respect to update strategies. As you'll see in Chapter 3, “ADO.NET
Command Strategies” and Chapter 7, “ADO.NET Update Strategies,” the
options available to you are nowhere near those exposed by ADOc—especially
in regard to Update Criteria.

ADO.NET .NET Data Providers

A fundamental difference between ADOc and ADO.NET is the latter’s use of .NET
Data Providers. A .NET Data Provider implements the base System.Data classes to
expose the objects, properties, methods, and events. Each provider is responsible
for ADO.NET operations that require a working connection with the data source.
The .NET Data Providers are your direct portals to existing OLE DB providers
(System.Data.OleDb), ODBC drivers (System.Data.Odbc), or to Microsoft SQL
Server (System.Data.SqlClient). ADO.NET (currently) ships with two .NET

Data Providers:

* System.Data.OleDb—Used to access existing Jet 4.0 and Oracle OLE DB
providers via COM interop, but notably not the ODBC (MSDASQL) provider—
the default provider in ADOc.!!

* System.Data.SqlClient—Used to access Microsoft (and just Microsoft) SQL
Server versions 7.0 and later.

Microsoft SQL Server 7.0 or later. If you have an earlier version of SQL
Server, you should either upgrade (a great idea),or use the OleDb .NET
Data Provider with the SQLOLEDB provider or simply stick with ADOc.

g NOTE The System.Data.SqlClient provider is designed to access

As 1 said earlier the Microsoft..Data.Odbc provider is scheduled to be made
available via Web download not long after .NET is released to the public. It is used
to access most ODBC data sources. No, it’s not clear that all ODBC data sources will
work with ADO.NET. Initial tests show, however, that this new Odbc .NET Data
Provider is twenty percent faster than its COM interop brother the OleDb .NET
Data Provider.

As I said, the ADO.NET OleDb provider uses COM interop to access most
existing OLE DB providers—but this does not include the ODBC provider
(MSDASQL). This also does not mean you can use any existing OLE DB providers

11. Texpect that other .NET Data Providers will appear very soon after .NET ships.

%

ﬁ

%ﬁ%

é 120c01.fm Page 15 Wednesday, January 16, 2002 5:17 PM 4@
Introducing ADO.NET

with System.Data.OleDb. Only the SQLOLEDB (Microsoft SQL Server), MSDAORA
(Oracle), and Microsoft Jet OLEDB.4.0 (Jet 4.0) providers are supported at RTM.'?
Notably missing from this list is MSDASQL—the once-default ODBC provider. In
addition, none of the OLE DB 2.5 interfaces are supported, which means that OLE DB
providers for Exchange and Internet Publishing are also not (yet) supported in .NET.
But, remember that the .NET architecture lends itself to adding additional function-
ality; would not be surprised if additional providers appeared before too long.

However, consider that these data access interfaces are very different from the
OLE DB or ODBC providers with which you might be accustomed. ADO.NET and
the .NET Data Providers implemented so far know nothing about keyset, dynamic,
or static cursors, or pessimistic locking as supported in ADOc. Sure, the ADO.NET
DataTable object looks something like a static cursor, but it does not share any of
the same ADOc adOpenStatic properties or behaviors with which you’re familiar.
They don't leverage server-side state or cursors—regardless of the data source.
ADO.NET has its own hierarchical JOIN engine so it doesn’t need the server to do
anything except run simple (single-table) SELECT queries. Whether it makes sense
to let ADO.NET do these JOIN operations for you is another question.

A NET Data Provider is responsible for far more functionality than the low-
level ODBC or more sophisticated (and complex/bulky/slow/troublesome) OLE DB
data providers in ADOc. A .NET Data Provider implements the System.Data objects I
described earlier that are fundamental in the implementation of your ADO.NET
application. For example:

¢ The Command object: SqlCommand, OleDbCommand, OdbcCommand

* The Connection object: SqlConnection, OleDbConnection,
OdbcConnection

* The DataAdapter object: SqlDataAdapter, OleDbDataAdapter,
OdbcDataAdapter

e The DataReader object: SqlDataReader, OleDbDataReader,
OdbcDataReader

.NET Data Providers also directly support and implement code to generate
Commands, control the connection pool, procedure parameters, and exceptions.
It’s clear that .NET Data Providers bear far more responsibility than their ADOc
predecessors did. I expect that this also means that the features exposed by one
provider might not be supported in the same way or with the same issues (bugs) as
another. Of course, this has always been the case with ADOc and its predecessors.
Anyone who'’s worked with ODBC and transitioned to OLE DB in ADOc can bore

12. RTM: Release to manufacturing.

15

4~ 4

%ﬁ%

% 120c01.fm Page 16 Wednesday, January 16, 2002 5:17 PM

*

Chapter 1

you with war stories about how “stuff” changed from one implementation to the
next. I'm sure we'll see some of the same in ADO.NET.

I think the fact that the .NET Data Provider for SQL Server speaks Tabular Data
Stream (TDS) is a very important innovation. Not only do I think this will help per-
formance (it will), but it also means Microsoft is not afraid of creating a Microsoft
SQL Server-specific interface (no, it does not work with Sybase SQL Server). This
opens the door for better, more intimate control of Microsoft SQL Server systems
from your code without having to resort to SQLDMO. It also implies that native
Oracle, Sybase, and other high-performance native .NET Data Providers are pos-
sible. Your guess is as good as mine as to when these will actually appear; for those
players who want to stay in the game, I expect sooner rather than later.

Leveraging Existing COM-based ADO Code

The .NET Framework is flexible enough to support more than just the three .NET
Data Providers I've mentioned. This adaptability is especially important in light of
ADO.NET’s architecture, which leaves out a number of data access paradigms that you
might find essential to your design. But up to this point, all of you have invested many
(many) hours/months/years of work on ADOc code imbedded in all types of appli-
cations, middle-tier components, and Web-based executables. The burning
question most of you have is: “Can I leverage this investment in ADOc in my .NET
executables?” The answer is not particularly clear. First, you'll find that you can
imbed ADOc code in a .NET executable—while it might not behave the same, .NET
applications, components, and Web Services can execute most (but not all) COM-
based code.

take existing ADOc code and convert it. However, it does not convert it to
> \\ ADO.NET code—it’s converted to COM interop-wrapped ADOc code
. designed to run in a .NET application. While this utility converts the
code, it does not convert the architecture or query strategy. These might
not be appropriate for your new .NET application.

g NOTE Visual Studio .NET includes an (excellent) conversion utility to
~ /A

Fundamentally, there are two approaches to access existing ADOc objects
from .NET executables. First, you can simply drop your ADOc code into your .NET
code and register ADO 2.x in your solution. This gets .NET to generate a COM interop
wrapper around MSADO21.DLL and include it in your solution. In this approach,
you access the objects and their properties and methods directly. The problem is
that each and every time you reference an ADOc object (or any COM object),
property method, or event, the Common Language Runtime (CLR) has to make

%

.

ﬁ

é 120c01.fm Page 17 Wednesday, January 16, 2002 5:17 PM

*

—

Introducing ADO.NET

the reference to and from the COM interop layer. This will slow down the references to
some degree and if the interop does not behave, it might impair functionality. We
already know this is the case when it comes to executing stored procedures as
methods of the ADODB.Connection object—it’s no longer supported. There are
other issues as well, as I discuss in Chapter 2, “ADO.NET-Getting Connected.”

Another approach for accessing existing ADOc objects from .NET executables
is to encapsulate your ADOc (or other COM object reference) code in its own
wrapper. With this approach, you only access specific methods of the wrapper
object, which execute blocks of ADOc code. Few if any properties are exposed. This
approach resembles what you do to implement a middle-tier COM component. It
also means that you spend far less time in the interop layer—once when you enter
the wrapper DLL and once when you return. The problem here is that you often
have to reengineer your ADOc code, resulting in some loss of flexibility in coding
directly to the ADOc objects.

When importing ADOc code you have to instantiate your objects differently.
I'walk through several ADOc examples in Chapter 2. There you'll discover that some
of the methods work differently—for example, you can't use the GetRows method to
return a Variant array, and your simple constants must now be fully qualified—but for
the most part, ADOc codes about the same. However, as I said before, you might
notice a drop in performance or somewhat different behavior due to COM interop.

That said, while your existing ADOc logic has to be recoded (at least to some
degree) to run in .NET, the basic functionality should work (about) the same. You
should be able to use the same flow, the same error handlers, and the same methods,
properties, and events as you did in Visual Basic 6.0—at least that’s the goal for the
Microsoft .NET development team. If you need to access pessimistic cursors,
server-side cursors, manage and maintain server-side state, or clone functionality
implemented in Visual Basic 6.0 applications, you need to keep using ADOc to do
so. None of these features are supported—at least not yet—in ADO.NET.

Creating DataSets from ADOc Recordset Objects

The .NET developers knew that some of you would want to import ADOc Recordsets
from existing COM components and create ADO.NET DataSets; fortunately, this is
easy in ADO.NET. The DataSet Fill method directly recognizes ADOc Recordset
and Record objects. This functionality enables .NET developers to use existing
COM objects that return ADO objects without having to rewrite new objects using
the .NET Framework. Both the OleDb and SqlClient .NET Data Providers support
filling a DataSet from an ADO Recordset or Record object. I illustrate this with an
example in Chapter 4.

%

17

ﬁ

*

%ﬁ%

% 120c01.fm Page 18 Wednesday, January 16, 2002 5:17 PM

*

Chapter 1

How COM Interop Affects .NET Applications

As 1 said before, all “unmanaged” code executed by the CLR must be handled dif-
ferently from “managed” code. Because of this stipulation between managed and
unmanaged code, all of the ADOc and the ADO.NET OleDb .NET Data Provider datal/
O operations are processed through a COM interop “wrapper.” (The ADO.NET
SqlClient .NET Data Provider does not use COM interop.) This extra layer on legacy
COM components makes the .NET application think it's communicating

to a .NET component and the COM-based code thinks that it's communicating

to a COM-based host. Figure 1-1 illustrates this extra layer of protection wrapped
around all COM components.

COM Component

&b &

COM Interop

.NET Framework

All COM object, property, method, and event
references pass through the COM interop layer.

Figure 1-1. COM components access .NET via COM interop layer.

I'suspect we'll see a few side effects caused by this additional translation layer
that can’t help but hurt performance. COM interop is something like ordering a
burger from a Spanish-speaking clerk at your local burger palace through a speak-
erphone. If you don’t speak Spanish, the result might have un poco mds cebolla'®
than you planned on—but for me, that’s okay!

One of the major (that should be MAJOR) differences in the .NET Framework
is that your .NET application assembly is built using a specific version of ADOc
DLLs (msado15.dll) and all of the other COM DLLs and components its references.
In fact, these DLLs can be (should be?) copied from their common location to the

13. Alittle more onion.

%

ﬁ

.

é 120c01.fm Page 19 Wednesday, January 16, 2002 5:17 PM

*

—

Introducing ADO.NET

assembly’s disk directory. This means you could have the ADO run-time DLLs
installed any number of times on your disk—n copies of the same ADO DLLs or n
different versions of the ADO DLLs.

When you start a .NET application, the DLLs used and referenced at design/test/
debug/compile time are referenced at run time. This means your application behaves
(or misbehaves) the same way it did when you wrote and tested it. Imagine that. If the
version of ADO (or any other dependent DLL) gets updated (or deprecated) later, or
you deploy to a system with different DLLs, your existing applications still install and
load the “right” (older, newer, or the same) version of ADO and your other DLLs. This
means that “DLL hell” as we know it has become a specter of the past—at least when
all of your applications are based on .NET. I expect DLL hell applications will still be
haunting us for decades to come—rattling their chains in the back corridors of our
systems and playing evil tricks on unsuspecting tourists.

I'walk you through converting and accessing ADOc objects in the next chapter.

ADO.NET and Disconnected Data Structures

ADO.NET constructs and manages DataSet and DataTable objects without the
benefit of server-side cursors or persisted state. These objects roughly parallel the
disconnected Recordset approach used in ADOc. Remember, ADO.NET provides
no support for pessimistic (or any other kind of) locking cursors—all changes to
the database are done via optimistic updates. ADO.NET does not include the entire
“connected” paradigm supported by every data access interface since DB-Library.
Microsoft suggests that developers simply use existing ADOc code wrapped in a
COM interop layer for these designs—or stick with Visual Basic 6.0 (Akem! or
Visual C++—especially for MTS/COM+ ADOc components that use object pooling).
Behind the scenes, ADO.NET’s architecture is (apparently) built around its
own version of ADOc’s Shape provider. It expects the developer to download sep-
arate resultsets (Tables) one at a time (or atleast in sets). This can be done by using
separate round trips to the data source or through multiple-resultset queries. After
the DataTable is constructed, you're responsible for hard coding the parent/child
relationships between these tables—that is, if you want ADO.NET to navigate, join,
manage, display, and update hierarchical data and eventually post batches of
updates to the backend server. All of this is done in RAM with no further need of
the connection or the source database. I'm not sure what happens when the
amount of available RAM and swap space is exhausted using this approach. There
is some evidence to suggest that your system might try to order more from the
Web. Just don’t be surprised to get a package in the mail addressed to your CPU.
I expect that performance and functionality will also suffer to some degree—to say
the least. This “in-memory database” approach means that you developers will
have to be even more careful about designs and queries that extract too many rows

%

19

ﬁ

*

%ﬁ%

é 120c01.fm Page 20 Wednesday, January 16, 2002 5:17 PM

*

Chapter 1

from the data source. But this is not a new rule; the same has always applied to
DAO, RDO, and ADOc as well, most especially in client/server circumstances.

The System.Data Namespace

Before I start burrowing any deeper into the details of the .NET System.Data object
hierarchy, I'll define a term or two. For those of you who live and breath object-ori-
ented (OO) concepts, skip on down. For the rest of you, I try to make this as clear as
I can despite being a person who'’s been programming for three decades without
using “true” OO.

The .NET Framework is really a set of classes organized into related groups
called namespaces. See “Introduction to the .NET Framework Class Library” in
.NET Help for the long-winded definition. When you address the specific classes in
a namespace you use dot (.) notation—just as you do in COM and did in pre-COM
versions of Visual Basic. Thus, “System” is a namespace that has a number of sub-
ordinate namespaces associated with it. System.Data.OleDb defines a specific
“type” within the System.Data namespace. Basically, everything up to the right-
most dot is a namespace—the final name is a type. The System.Data namespace
contains the classes, properties, methods, and events (what .NET calls “members”)
used to implement the ADO.NET architecture. When I refer to an “object,”
it means an instantiation of a class. For example, when I declare a new
OleDbConnection object, I do so by using the new constructor on the
OleDbConnection class.

System.Data.0leDbConnection myConnection = new System.Data.0leDbConnection();

Clear? Don’t worry about it. I try to stay focused on the stuff you need to know
and leave the OO purists to bore you with the behind-the-scenes details. See
MSDN .NET for more detailed information on the System.Data namespace.

The ADO.NET DataSet Object

The System.Data.DataSet object sits at the center of the ADO.NET architecture. While
very different from an ADOc Recordset, it's about as close as you're going to get with
ADO.NET. As with the ADOc Recordset, the DataSet is a bindable object supporting a
wealth of properties, methods, and events. While an ADOc Recordset can be derived
from a resultset returned from a query referencing several database tables, it’s really a
“flat” structure. All of the hierarchal information that defines how one data table is

14. http://www.msdn.microsoft.com/library/en-us/cpref/html/cpref start.asp

%

.

ﬁ

é 120c01.fm Page 21 Wednesday, January 16, 2002 5:17 PM

—

Introducing ADO.NET

related to another is left in the database or in your head. Yes, you can use the ADOc
Shape provider to extract data from several related tables and manage them in related
ADOc-managed (Shape provider-managed) Recordsets. Anyone familiar with the
Shape provider will feel comfortable with ADO.NET’s DataSet approach. I would char-
acterize the DataSet as a combination of: an ActiveX Data Source control,'® due to its
ability to bind data with controls; a multidimensional Recordset, due to its ability to
manage several resultsets (DataTable objects) at one time; and the Data Envi-
ronment Designer or Data Object wizard, in that the DataSet can manage several
Command objects used to manage the SELECT and action queries.

In contrast to the ADO Recordset, the ADO.NET System.Data.DataSet object is
an in-memory data store that can manage multiple resultsets, each exposed as
separate DataTable objects. Each DataTable contains data from a single data
source—a single data query. No, the DataTable objects do not have to contain
entire database tables—as you know, that simply won’t work for larger databases
(or for smaller ones either if you ever expect to upscale). I suggest you code your
queries to contain a parameter-driven subset of rows that draw their data from
one or more related tables.

Each DataTable object contains: a DataColumnCollection (Columns)—a col-
lection of DataColumn objects—that reflects or determines the schema of each
DataTable; and a DataRowCollection (Rows) that contains the row data. This is a
radical departure from DAO, RDO, and ADOc where the data and schema infor-
mation are encapsulated in the same Recordset (or Resultset) object. Consider,
however, that the data in the DataTable is managed in XML and the schema in
XSD. I discuss and illustrate this layout in Chapter 2.

You can construct your own DataTable objects by query or by code—
defining each DataColumn object one-by-one and appending them to the
DataColumnCollection, just as you appended Field objects to an unopened
Recordset in ADOc. The DataType property determines or reflects the type of data
held by the DataColumn. The ReadOnly and AllowNull properties help to ensure
data integrity, just as the Expression property enables you to build columns based
on computed expressions. The DataSet is designed to be data agnostic—not
caring where or how (or if) the data is sourced or retrieved; it leaves all of the data
1/0 responsibilities up to the .NET Data Provider.

In cases where your DataSet contains related resultsets, ADO.NET can manage
these relationships for you—assuming you add code to define the relationships.
For example, in the Biblio (or Pubs) database, the Authors table is related to the
TitleAuthor and Titles tables. When you build a DataSet against resultsets based on
these base (and many-to-many relationship) tables, and you construct the appro-
priate DataRelation objects; at that point you can navigate between authors and

15. The ADO Data Control, the Jet Data Control, and your hard-coded data source controls fall
into this category.

%

21

é 120c01.fm Page 22 Wednesday, January 16, 2002 5:17 PM

*

Chapter 1

the titles they have written—all under control of ADO.NET.
I illustrate and explain this in detail in Chapters 4 and 8.

DataTable objects can manage resultsets drawn directly from base tables or
subset queries executed against base tables. The PK/FK relationships between the
DataTable objects are managed through the DataRelation object—stored in the
DataRelationCollection (Relations) collection. (Is there an echo in here?) When
you construct these relationships (and you must—ADO.NET won’t do it on its own;
but, you can get the Visual Studio IDE to do it for you), UniqueConstraint and a
ForeignKeyConstraint objects are both automatically created depending on the
parameter settings for the constructor. The UniqueConstraint ensures that values
contained in a DataColumn are unique. The ForeignKeyConstraint determines
what action is taken when a PK value is changed or deleted. I touch on these
details again in Chapter 8. No, ADO.NET and the .NET IDE do not provide any
mechanisms to construct these PK/FK relationships for you, despite supporting
functionality to graphically define these relationships.

The following diagram (Figure 1-2) provides a simplified view of how the
DataSet object is populated from a SqlClient .NET Data Provider. It illustrates the
role of the bindable DataSet object and the important role of the .NET Data Provider.
In this case, the diagram shows use of the Microsoft SQL Server-specific SqlClient
.NET Data Provider, which contains objects to connect to the data source
(SqlConnection), query the data (SqlDataAdapter), and retrieve a data stream
(DataReader). The DataSet object’s DataTable objects (Tables) is populated by a
single call to the DataSet Fill method.

The DataAdapter also plays a key role here. It contains from one to four
Command objects to (at least) fetch the data (SelectCommand) and (optionally)
change it (UpdateCommand, InsertCommand, and DeleteCommand). Each of these
Command objects are tied to specific Connection objects. When you execute the
DataSet.Update method, the associated DataAdapter executes the appropriate
DataAdapter Command objects for each added, changed, or deleted row in each of
the DataTable objects.

Once constructed, the DataSet need not remain connected to the data source
because all data is persisted locally in memory—changes and all. I drill deeper into
DataSet topics in Chapter 4.

.

ﬁ

% 120c01.fm Page 23 Wednesday, January 16, 2002 5:17 PM

Introducing ADO.NET

Author “ear_bom

> Jacobs,Russel 1343
Metzger, PhilpW. 1950
Boddie, John 1947
Sydow. DanParks 1960
Lioyd, John 1960
Thiel JamesR. 1960
Ingham, Kenneth 1960
welin, Paul

Kamin, Sam o
-
s R = SqlDataAdapter | _
| .SelectCommand :§
DataTable Object XML -UpdateCommand]
) .InsertCommand | £
DataSet Object .DeleteCommand | S
| =
[Va]
DataReader
.Fill .Update
Method Method SqlClient Sql Server
.NET Data Provider Data Source

Figure 1-2. ADO.NET Data Access using the DataSet object.

The DataSet object supports a DataTableCollection (Tables) collection of
DataTable objects, which contain a DataRowCollection (Rows) collection of
DataRow objects. Each DataRow object contains the DataColumnCollection
(Columns) of DataColumn objects, which contain the data and all of the DDL
properties. Remember that, like the ADOc Recordset, the DataTable object can be
bound by assigning it to the DataSource property of data-aware (bindable) controls.

Figure 1-3 illustrates the look of the System.Data.DataSet in a hierarchical
diagram. Note the difference in the NET naming convention. In COM, we expecta
collection of objects to be named using the plural form of the object. For example, a
collection of Cat objects would be stored in the Cats collection. In .NET, most (but not
all) collections are named using the singular object name followed by “Collection”
as in DataTableCollection. I found this very confusing until I started to code. It did
not take long to discover that ADO.NET uses different names for each of these col-
lections. These “real” names are shown in parentheses in the preceding paragraph
and in Figure 1-3. I'm sure there’s a good OO reason for this—I just have no idea
what it is.

I explore each of these objects in more detail in subsequent chapters.

23

% 120c01.fm Page 24 Wednesday, January 16, 2002 5:17 PM

Chapter 1

System.Data.DataSet |

—| DataTableCollection—Tables |

L__I

| DataTable Object |

—| DataColumnCollection—Columns |

L—{ DataColumn Object |

—| DataRowCollection—Rows |

\—{ DataRow Object |

—| ConstraintCollection—Constraints |

L—{ Constraint Object |

—| DataRelationCollection—Relations |

| DataRelation Object |

—| ExtendedProperties |
I

| User-defined Property

Figure 1-3. DataSet object hierarchy.

So, what should you know about this new ADO.NET structure? The DataSet:
* Is amemory-resident structure constructed by the DataAdapter Fill method.
¢ Contains zero or more DataTable objects.

¢ Islogically tied to a DataAdapter object used to fetch and perform action
queries as needed.

* Contains Constraints and Relations collections to manage inter-DataTable
relationships.

¢ Is data source agnostic, stateless, and can function independently from
the data source. All data, schema, constraints, and relationships to other

tables in the DataSet are contained therein.

24

4~ ~¢8

é 120c01.fm Page 25 Wednesday, January 16, 2002 5:17 PM

*

—

Introducing ADO.NET

e Is transported through XML documents via HTTP. This means a DataSet
can be passed through firewalls and used by any application capable of
dealing with XML.

e Can be saved to XML or constructed from properly formatted XML.

 Can be created programmatically. DataTable by DataTable and DataColumn
by DataColumn—along with DataRelation objects and Constraints.

It’s clear that the DataSet was designed to transport “smart” data (and
schema) between a Web host (possibly implemented as a Web Service) and a
client. In this scenario, a client application queries the Web Service for specific
information, such as the number of available rooms in hotels given a specific city.
The Web Service queries the database using parameters passed from the client
application and constructs a DataSet, which might contain a single or multiple
DataTable objects. If more than one table is returned, the DataSet can also specify
the relationships between the tables to permit the client to navigate the room
selections from city to city. The client can display and modify the data—possibly
selecting one or more rooms—and pass back the DataSet to the Web Service,
which uses a DataAdapter to reconcile the changes with the existing database.

Descending the System.Data Namespace Tree

I think pictures and drawings often make a subject easier to understand—especially
for subjects like object hierarchies. So, I'm going to begin this section with a series
of diagrams that illustrate the layout of the System.Data namespace.

ADOc has a relatively easy-to-understand and easily diagramed object hier-
archy. ADO.NET’s System.Data namespace, however, is far more complex. As it
currently stands, there are dozens upon dozens'® of classes and members in the
.NET Framework. Few of the complexities of the OO interfaces have been hidden—at
least not in the documentation. Fortunately, there is a fairly easy way to climb through
the object trees and get a good visual understanding of the hierarchies—basically
what goes where and with what: Use the object browser in Visual Studio .NET. You can
launch it from the View | Other Windows submenu. Figure 1-4 illustrates how the
object browser depicts the System.Data namespace (unexploded). Throughout this
section of the book, I walk through these object trees one at a time. By the time I'm
done, you should either be thoroughly familiar with the System.Data namespace or be
thoroughly sick of it.

16. Itried to count all of the objects in System.Data but lost count ... sorry.

%

25

ﬁ

*

%ﬁ%

2

i@ 120c01.fm Page 26 Wednesday, January 16, 2002 5:17 PM

Chapter 1

26

)+ System.Data
o O
#- {} System.Data.Common
#)- {} System.Data.OleDb
#)- {} System.Data.SqlClient
@ {} System.Data.SqlTypes
- {} System.Xml

S—

Figure 1-4. The System.Data namespace.

System.Data Namespace Exploded

The exploded System.Data namespace has over forty members—the top dozen or
so are shown in Figure 1-5. I hope that we won't have to learn and remember how
to use all of these objects, properties, methods, and events to become productive
ADO.NET developers. Table 1-1 lists and describes the most important of these
objects—the ones you'll use most often (at least at first).

- {} System.Data

9¢ Constraint

¢ ConstraintCollection

@¢ ConstraintException

¢ DataColumn

0-;: DataColumnChangeEventArgs
@¢ DataColumnCollection

@¢ DataException

@¢ DataRelation

@¢ DataRelationCollection

@¢ DataRow

@¢ DataRowBuilder

0:: DataRowChangeEventArgs
@¢ DataRowCollection

¢ DataRowView

@¢ Dataset

@¢ DataSysDescriptionAttribute
@¢ DataTable

@¢ DataTableCollection

92 Dataview

LR IRt IR I It IRt Rt Rt IRt IRt IRt Rt Rt SRRt JRRC JERE JRRE SRRt

Figure 1-5. System.Data objects.

%

ﬁ

®

% 120c01.fm Page 27 Wednesday, January 16, 2002 5:17 PM é

Introducing ADO.NET

Table 1-1. Selected Members of the System.Data Namespace

Object Description

Constraint and Represents referential integrity constraints. Used to

ConstraintCollection specify unique keys or PK/FK constraints and what

(Constraints), to do when they change. Used to prevent duplicate

ForeignKeyConstraint, rows from being added to the current dataset. No

UniqueConstraint equivalent in ADOc. Hard coded by your
application.

DataColumn and Represents a single data column schema

DataColumnCollection associated with a DataTable object and the

(Columns) collection used to manage the columns. Similar to
the ADOc Field object and Fields collection—but
without the Value property. Automatically
generated from the resultset.

DataException (and various Represents the various exceptions thrown when an

other exception objects) ADO.NET error is triggered. Contains information
about the error. Similar to the ADOc Error object.

DataRelation and Represents table/column/table relations. Hard

DataRelationCollection coded by your application. Specifies the tables and

(Relations) columns used to interrelate parent/child tables. No
equivalent in ADOc.

DataRow and Represents the data in a table row. Generated

DataRowCollection (Rows) automatically.

DataRowView Permits customized views of data rows based on
changes applied during editing. Original, Proposed,
and Current versions of a data row are exposed.

DataSet Represents an in-memory data store consisting of
DataTable, DataRelation, and Constraint objects.

DescriptionAttribute Permits definition of code-specified properties for
properties, events, or extenders.

DataTable and Represents in-memory rows and columns of data

DataTableCollection (Tables) returned from a data source or generated in code.

DataView, DataViewManager, Permits viewing one or more subsets of a

DataViewSetting, DataTable. Similar to ADOc Recordsets after the

DataViewSettingCollection Filter property is applied. Several DataView objects

(DataViewSettings) can be created against the same DataTable.

27

- aibd

% 120c01.fm Page 28 Wednesday, January 16,2002 5:17 PM

Chapter 1

Table 1-1. Selected Members of the System.Data Namespace (Continued)

Object Description

PropertyCollection (Properties) Permits definition and retrieval of code-defined
properties.

(and several others) There are several other objects, event
enumerations, and support objects exposed by the
System.Data namespace.

Instantiating System.Data Objects

Your .NET application should be fairly specific about the libraries it expects to
reference. In .NET, the ADO.NET .NET Data Providers (roughly equivalent to the
ODBC and OLE DB providers accessed by ADOc) are built into the System.Data
namespace so you don't have to add an explicit reference to use them. An exception is
the Odbc .NET Data Provider that must be installed and registered separately. If
you aren’t using the Odbc provider when you create a new solution, the Solution
Explorer references show that System.Data is part of the base namespace. The
Solution Explorer is a handy way to see what namespaces are already referenced
for your application’s assembly, as shown in Figure 1-6.

Solution Explorer - WindowsAp x|
=NEENN)
loh Solution ‘WindowsApplication2' (1 project)
- WindowsApplication2
- &= References
+{J) System
+) System.Data
2 System.Drawing
+(1 System.Windows.Forms
+J) System, XML
%) AssemblyInfo.vb
5] Form1.vb

@5 @31 [Qs (@0 |

Figure 1-6. The Solution Explorer showing a newly created WinForm application.

.

4~ 4

% 120c01.fm Page 29 Wednesday, January 16, 2002 5:17 PM é

Introducing ADO.NET

Depending on the ADO.NET data access provider you choose, you'll want to
use the using!” directive with either System.Data.OleDb or System.Data.SqlClient
(or in unusual situations, both), or Microsoft..Data.Odbc to make sure your code
correctly references these libraries. Actually, the CLR, which sits at the core of
.NET, won't permit name collisions, but adding a namespace to the using list
makes coding easier by providing “shorthand” syntax for commonly used objects.
Although not required for ADO.NET, the using directive signals the compiler to
search the specified namespace referenced in your code to resolve any ambiguous
object names. Basically, using helps the compiler resolve namespace references
more easily. The using statement should be positioned first in your code—above all
other declarations. For example, to add the OleDb .NET Data Provider namespace,
place the following at the start of your code module:

using System.Data.OleDb;

Similarly for the SqlClient .NET Data Provider namespace, add the following
to your code module:

using System.Data.SqlClient;

Because you used the using directive with the System.Data.SqlClient .NET
Data Provider, you can code:

SqlConnection cn = new SqlConnection();

However, the downside to this approach is potential object collisions and
failed compiles. Again, some pundits feel that it’s best to explicitly reference
declared objects. You can also reference your ADO.NET objects explicitly if you
don't mind typing alot (or if you are paid by the word). For example, you can create
anew ADO.NET Connection object this way:

System.Data.SqlClient.SqlConnection cn =
new System.Data.SqlClient.SqlConnection();

However, I try not to use this approach in my examples or sample code. I provide
more examples of object and variable declarations as I go—and there is a long way
yet to travel.

17. For Visual Basic developers converting from Visual Basic .NET, the using directive is
equivalent to the Imports directive in Visual Basic .NET.

29

- aibd

é 120c01.fm Page 30 Wednesday, January 16, 2002 5:17 PM

*

Chapter 1

Introducing the ADO.NET DataAdapter

Think of the DataAdapter as a “bridge” object that links the data source (your
database) and a Connection object with the ADO.NET-managed DataSet object
through its SELECT and action query Commands. All of the .NET Data Providers
implement their version (instance) of the System.Data.DataAdapter class;
OleDbDataAdapter, OdbcDataAdapter, and SqlClientDataAdapter all inherit from
the base System.Data class. Each .NET Data Provider exposes a SelectCommand
property that contains a query that returns rows when the DataSet Fill method is
executed. The SelectCommand is typically a SELECT query or the name of a stored
procedure. Each Command object managed by the DataAdapter references a
Connection'® object to manage the database connection through the Command
object’s Connection property. I discuss the Connection object in Chapter 2.

The invocation of the DataSet Update method triggers the execution of the
DataAdapter object’s UpdateCommand, InsertCommand, or DeleteCommand to
post changes made to the DataSet object. I discuss updating in Chapter 7. The
figure shown earlier (Figure 1-2) also illustrates the working relationship between
the DataSet and the DataAdapter.

Constructing DataAdapter Command Queries

If the query set in the SelectCommand is simple enough (references a single table
and not a stored procedure), you can (usually) ask ADO.NET to generate the appro-
priate action queries for the DataAdapter UpdateCommand, InsertCommand, and
DeleteCommand using the CommandBuilder object. If this does not produce
suitable SQL syntax, you can manually fill in the action queries using queries of
your own design—even calling stored procedures to perform the operations. I discuss
the construction of these commands in Chapter 3.

Coding the DataAdapter

I expect you'd like to see some code that demonstrates how all of this is imple-
mented. Because I haven't discussed the Connection object yet, this will be a little
tough, but let’s assume for a minute that you know how to get connected in
ADO.NET. Let me walk you through a small example.'® (Don't worry about the code

I don't explain here—I discuss many of these points again in the next chapter.)

18. Actually, the name of the Connection object is SqlConnection, OleDbConnection,
OdbcConnection, or <ProviderSpecific>Connection in the case of other vendors’ .NET Data
Provider namespaces Connection object.

19. Located in the “\Examples\Chapterl\Data Adapter” folder on the CD.

%

.

ﬁ

% 120c01.fm Page 31 Wednesday, January 16, 2002 5:17 PM é

Introducing ADO.NET

First, make sure that your application can see the SqlClient namespace. It’s
already part of the NET Framework, but not part of your application’s namespace.

using System.Data.SqlClient;

Next, within the address range of your Form’s?’

variables to be used.

class, define the objects and

have a little more to say on constructors later on—like where and how
best to deal with them—nbut those familiar with VB .NET should just
note here that strConnect is declared here as a const. This means that it
is effectively a read-only field—a constant. Why? Well we use this string
in the constructor argument for the new SqlConnection object. So what?
Well in C#, non-static instance fields cannot be used to initialize other
instance fields outside of a method, and this is quite different from

VB .NET.

g NOTE In C#, objects and variables have private scope by default. I will

o

public class Forml : System.Windows.Forms.Form
{
const string strConnect = "data source=.;database=biblio;uid=admin;pwd=pw";
string strQuery =
"Select Title, Price from Titles where Title like 'Hit%'";
SqlConnection cn = new SglConnection(strConnect);
SqlDataAdapter da = new SqlDataAdapter();
DataSet ds = new DataSet();

In the Form1_Load event handler, you set the DataAdapter object’s
SelectCommand string to a SELECT query that returns a few rows from the Titles
table. Actually, you shouldn’t have to open the connection explicitly, because, if the
connection is not already open, the Fill method automatically opens it and then
closes it again. If you use this auto-open technique, you need to be prepared for
connection errors when you execute the Command. I'm using this approach
because it's more familiar to ADOc developers. I illustrate how to get the Fill
method to manage connections in the next chapter and a simpler, more ADO.NET-
centric approach later in this chapter.

20. The default architecture in most examples (before I get to Chapter 10) is WinForms. The
ADO.NET concepts I use apply universally in most cases.

31

4~ ~¢8

% 120c01.fm Page 32 Wednesday, January 16, 2002 5:17 PM

Chapter 1

32

Notice the use of C#'s try and catch error handler.?! In the catch statement, you
reference the System.Data.SqlClient.SqlException object simply as SqlException
(remember, that you placed the using System.Data.SqlClient; statement in earlier
so that you could make these “shorthand” references). SqlException exposes a
Message and Error number (and more) that can be used to figure out what went
wrong. The simplest way to provide all of the SqlException object information to a
developer during debugging is to cast it to a string with a call to the ToString()
method, sending this to the console output window via the Console.Writeline()
method. This is helpful when the intended recipient of an exception message is a
developer, but not necessarily so useful for your program to spew it all out to a user
while committing hari-kari. Your user doesn't care much for which line in your
code triggered the self-disembowelment—but more on exceptions in Chapter 9.

So here, if the cn.Open(); statement does not work, the next statement is never
executed and the catch block will deal with the exception, depositing its remains
to the console output window.

private void Formi_Load(object sender, System.EventArgs e)

{
try
{
cn.Open();
da.SelectCommand = new SqlCommand(strQuery, cn);
}
catch(SqlException ex)
{
Console.WriteLine(ex.ToString());
}
}

In the Button click-event, (did I say there are both DataGrid and Button controls
on the form?) you use the DataAdapter Fill method to “run” the SelectCommand
query in the specified DataAdapter. The results are fed to the DataSet object. By
default, the Fill method names the DataSet “Table” (for some reason). I would
have preferred “Data” or “DataSet” to discourage confusion with database tables.
The Fill method is very (very) flexible as it can be invoked in a bevy of ways, as
I describe in Chapter 4. The options I chose in this example name the resulting
DataTable “TitlesandPrice.” In the next statement, I bind the DataSet to the
DataGrid control.

private void Buttoni Click(object sender, System.EventArgs e)

{

21. Error handling is discussed in Chapter 9, “ADO.NET Error Management Strategies.”

%

% 120c01.fm Page 33 Wednesday, January 16, 2002 5:17 PM

—

Introducing ADO.NET

da.Fill(ds, "Titles and Price"); // Defaults to "Table"
DataGridi.DataSource = ds.Tables["Titles and Price"];

The result? Well, this code opens a connection, runs a query, and fills a grid
with the resulting rows; but what’s missing? To start with: error handlers. This code
does not deal with bad connections (except to print a debug message), bad
queries, empty queries, or the fact that most applications will want to create
parameter-based query instead of a hard-coded SELECT statement. However,
baby steps come before running—especially in this neighborhood.

As I wrote this example, I was reminded of a few lessons:

e Theusing System.Data.SqlClient directive helps. Statement completion did
not show the objects I was referencing nearly as quickly (if at all) until I
added the using directive.

¢ The DataSet object is suitable for binding. That is, it can be assigned to the
DataGrid or any bindable control for display. In my example, I bind the
DataSet to a DataGrid control’s DataSource property.

e It helps to bind to a specific DataTable. If you bind to the DataSet, the data
in the DataGrid isn’'timmediately shown. This requires the user to drill down
into a selected DataTable. It’s better to bind to a specific DataTable in the
DataSet Tables collection.

* Use the form’s constructor method to initialize instance variables. It is not
a good idea to initialize instance variables at class level declaration since
they can’t be encapsulated in try/catch blocks to deal with any exceptions
arising in the initialization.

TIP Thisis a practice I picked up years ago: Install crude error
Q handlers from the very beginning. I encourage you to do the same. The
crudest of course is a simple catch and casting of the exception object to
S a string that is sent to the console output window. This can save you an
extra ten minutes as you try to figure out what went wrong. The default
name for the “Filled” DataSet is “Table”. You want to override that in
many cases.

33

% 120c01.fm Page 34 Wednesday, January 16, 2002 5:17 PM

Chapter 1

34

A Simpler Example

Okay, now that I have shown you an example based on how an ADOc developer
might code, take a look at the same problem using the new ADO.NET approach.
You should notice that there is no explicit call to open the connection—that is
taken care of here silently by the Fill() method; I talk more about this later. Also, I
am specifying properties for the class’ constructors to use when instantiating.
Most .NET classes have one or several constructors used to set different combina-
tions of properties as the objects are being instantiated. After you understand
these, you'll really appreciate how they make your code easier to write.

private void btnRunQuery Click(object sender, System.EventArgs e)
{
try
{
SglConnection cn =
new SqlConnection("data source=.;database=biblio;uid=admin;pwd=pw");
SqlDataAdapter da =
new SqlDataAdapter(
"Select Title, Price from Titles where Title like 'Hit%'", cn);
DataSet ds = new DataSet();
da.Fill(ds, "Titles and Price");
DataGridi.DataSource = ds.Tables["Titles and Price"];

}
catch (SqlException ex)
{
Console.WriteLine(ex.ToString());
}

ADO.NET’s Low-Level Data Stream

By this time you know that by default, ADOc Recordsets are created as RO/FO??
firehose data structures. This low-level data stream permits data providers to
return resultsets to the client as quickly as the LAN can carry them. While fast, the
default firehose ADOc Recordset does not support record count, cursors, scrolling,
updatability, caching, filters, sorting, or any costly overhead mechanism that
could slow down the process of getting data back to the client.

22. RO/FO: read-only/forward-only

%

% 120c01.fm Page 35 Wednesday, January 16, 2002 5:17 PM é

Introducing ADO.NET

ADO.NET also supports this firehose functionality, but in a different way. After
you establish a connection, you can stream data back to your application using the
ADO.NET .NET Data Provider’s DataReader class (SqlDataReader,
OdbcDataReader or OleDbDataReader) through the provider’s Command class
(SqlCommand, OleDbCommand or OdbcCommand).

Although the ADO.NET data stream is RO/FO, the fundamental data access
technique is different from ADOc in a number of respects. Let’s walk through a
simple example?? as an illustration. The following section of code declares
Connection, DataAdapter, DataReader, and Command objects using the SqlClient
.NET Data Provider. As you'll see throughout this section, C# permits you to
declare and initialize selected properties of the declared objects in a single line of
code; although, as I said earlier, departing from VB .NET, C# does not permit you to
initialize selected properties with other non-static instance fields outside of
a method.

If you look carefully at this code snippet you'll notice that SqlCommand cmd
object is declared in the Form1 class outside of a method. By default this gives the
cmd object private scope, ensuring that it is accessible to all methods within the
class. I have, however, placed the constructor code

cmd = new SqlCommand(strSQL, cn);

for the cmd object within Form1’s constructor method Form1() after the call
to InitializeComponent(); since this depends on other non-static instance fields
strsQL and cn.?

using System.Data.SqlClient;

public class Forml : System.Windows.Forms.Form

{

SqlConnection cn =

new SqlConnection("data source=.;database=biblio;uid=admin;pwd=pw");
SqlDataAdapter da = new SqlDataAdapter();
string strSQL = "Select Title, PubID from Titles where Title like ";
SqlDataReader Dr;
SqlCommand cmd;

23. Located in the “\Examples\Chapterl\Data Stream” folder on the CD.

24. Well I suppose we could declare strSQL and cn as static but then that would force them to be
common across all concurrent instances of Form1.

35

- aibd

% 120c01.fm Page 36 Wednesday, January 16, 2002 5:17 PM

Chapter 1

36

public Formi()
{

InitializeComponent();

cmd = new SqlCommand(strSQL, cn);

This nextroutine is fired when a button is clicked on the form. The ExecuteReader
method is executed—instantiating a SqlClient.DataReader. When first opened, the
DataReader does not expose a row of the resultset because its current row pointer
is positioned before any rows (as in a Recordset when BOF = True). To activate the
first and each subsequent row one at a time, you have to use the DataReader
object’s Read method, which returns False when there are no (additional) rows
available. Once read, you can’t scroll back to previously read rows—just as in the
FO resultset in ADOc.

As each row is read, the code moves data from the columns exposed by the
DataReader to a ListBox control. Note that you have to use the Add() method to
add members to any collection—including ListBox and ComboBox control Items
collections. You also have to be very careful about moving the data out of the
DataReader columns; each column must be specifically cast as you go—converting
each to a datatype suitable for the target. In order to code these conversions
correctly, your code will have to know what datatypes are being returned by the
resultset or use the GetValue method. .NET is pretty unforgiving when it comes to
automatically morphing datatypes.

TIP [use the ListBox BeginUpdate and EndUpdate methods to
') prevent needless painting while I'm filling it.

5

% 120c01.fm Page 37 Wednesday, January 16, 2002 5:17 PM é

Introducing ADO.NET

private void Buttoni Click(object sender, System.EventArgs e)

{
cn.Open(); //The connect string was defined when the object was created
cmd.CommandText = strSQL + "'" + TextBox1.Text + "%'";
Dr = cmd.ExecuteReader();
ListBox1.Items.Clear(); // clear the listbox
ListBox1.BeginUpdate(); // Prevent the listbox from painting

while (Dr.Read()) // get the first (or next) row

{
ListBox1.Items.Add(Dr.GetString(0) + " - " + Dr.GetInt32(1).ToString());

ListBox1.EndUpdate(); // Let the listbox paint again

Dr.Close(); // close the data reader.

37

e

120c01.fm Page 38 Wednesday, January 16, 2002 5:17 PM

2 Springer
http://www.springer.com/978-1-59059-012-6

ADO.MET Examples and Best Practices for C#
Frogrammers

Blackburn, P.D.; Vaughn, W.

2002, XX, 384 p. With online filesfupdate., Softcover
ISEM: 978-1-59059-012-5

A product of Apress

