
1

CHAPTER 1

Introducing ADO.NET 

Hijacked by Bill Vaughn’s 

Inquisitor Peter Blackburn

Ahem! Perhaps I should mention that I needed to tie up Bill Vaughn in order to 
distill his world-class excellence on ADO.NET for the C# community. I am presently 
helping with Bill’s rehabilitation. ...Now repeat after me Bill “C# is the bees knees” ... 
“Hmmmmph! Hmmmmph!” Ah! well yes I can see that we need just a little more 

assistance; I do hope I’ll be able to remove the gag eventually…Wind the rack up a 
notch Anders would you please! ... 

This book is all about using ADO.NET with C# (pronounced C Sharp), .NET 
Framework,1 and to some extent about how Visual Studio .NET helps you build 
ADO.NET-based applications. The concepts and code discussed and illustrated 
here apply (in most cases) to .NET WinForms and ASP Web Services and other 
ADO.NET platforms. 

To make the transition to .NET easier for you and to clarify how I view this new 
technology, I start by helping you get familiar with .NET, its new terminology, and 
the new ways it allows you to access your data. There are many tutorials on .NET, 
most of which clearly describe the technology, albeit each from a unique and dis-
tinct point of view. In this book, my intended target audience is the experienced 
COM-based ADO developer. I focus strictly on my personal area of .NET expertise: 
data access and especially, data access with SQL Server. You might sense a bias in 
favor of Microsoft SQL Server (guilty) and the SqlClient namespace. Perhaps that’s 
because I’ve had more experience coding, designing, implementing, testing, and 
teaching SQL Server than any other DBMS system. Again, in most cases, the OleDb 
namespace implements the System.Data classes in much the same way. Sure, I point 
out areas where there seem to be differences between the provider implementations; 
but no, I won’t be getting into the Odbc .NET Data Provider. Because of Microsoft’s 
hesitancy to keep this provider up to date during the beta cycle, my technical 
editors and I were unable to include much more than a passing reference to this 

1. For an in-depth analysis of the .NET Framework check out Dan Appleman’s Moving to 
VB.NET: Strategies, Concepts and Code, (Apress) ISBN: 1893115-97-6.

120c01.fm  Page 1  Wednesday, January 16, 2002  5:17 PM



Chapter 1

2

provider. Check my Web site or the Apress Web site2 for an update sometime after 
this book hits the streets for differences and issues.

How We Got Here

A number of years ago, Microsoft found itself in yet another tough spot. Overnight 
(or so it seemed), the Internet had become far more popular than expected and 
Microsoft was caught without a viable development strategy for this new paradigm. 
Developers all over the world clamored for ways to get their existing code and skills 
to leverage Web technology. Even Microsoft’s own internal developers wanted 
better tools to create cutting-edge Web content and server-side executables. These 
same developers also found that component object model (COM) architectures 
didn’t work very well with or over the Internet—they were never designed to. Sun 
System’s virtual stranglehold on Java and the ensuing fight over this language 
made it imperative that Microsoft come up with another way to create fast, light, 

language-neutral, portable, and scalable server-side executables.
Microsoft’s initial solution to this challenge was to reconfigure their popular 

and well-known Visual Basic interpreter in an attempt to provide server-side (IIS) 
functionality to the tool-hungry developer community. To this end, VB Scripting 
Edition sprung to life, aimed at a subset of the four million Visual Basic developers 
trying to create logic-driven Web content for this new beast called “eCommerce.” 
As many of these developers discovered, an Active Server Page (ASP) created with 
Visual Basic Script (VBScript) was relatively clunky when compared to “real” 
Windows-based Visual Basic applications and components. The VBScript language 
was confined to the oft-maligned Variant datatypes, copious late-binding issues, 
and interminable recompiles. Despite these issues, a flood of Web sites were built 
around this technology—probably because they were (loosely) based on a form of 
a familiar language: Visual Basic. 

Ahem! For those developers who had grown up using C and then its object 
layer abstraction C++ (these are the scary awkward languages to the VB com-
munity–the ones with the curly braces {}, pointer things ->, and semicolons ;, and 
in the case of C++, OOP3), Microsoft offered Jscript—a version of ECMAScript, 
which from a syntactical viewpoint is closer to C++ and JavaScript than Visual 
Basic. There were some advantages to be gained by using JScript over VBScript in 
client-side code, one of which being that, in theory, many other browsers, other 
than just those Microsoft offered, supported JScript thereby potentially enabling 
the code to be browser neutral.

2. http://www.betav.com and http://www.apress.com.

3. OOP: Object-Oriented Programming—IPHO: Many of those who develop without it (as in 
totally unplanned and unstructured) tend to find that they have lots of places in their code at 
which they frequently have to exclaim “OOPs” or other expletives as their code falls over.

120c01.fm  Page 2  Wednesday, January 16, 2002  5:17 PM



Introducing ADO.NET

33

However, Microsoft sought some better way to satiate the needs of millions of 
Visual Basic developers and their ever-growing interest in the Web without com-
promising performance or functionality, perhaps providing them, maybe forcing 
them, to a new world of OOP without the need to learn JScript (or any other curly-
brace language)!

It wasn’t long before it became clear that Microsoft needed something new—
no less than a whole new paradigm, a landslide shift, a new reality with some old 
familiar concepts, some new concepts, and some borrowed or adapted concepts—in 
order to accomplish this goal. This was the birth of the .NET platform. 

Anders Hejlsberg, a Microsoft Distinguished Engineer,4 crafted a brand new 
programming language for this new world reality. This language is C#, which fits 
with .NET hand in glove, horse and carriage, love and marriage, so to speak. Okay, 
so I like C#, but it isn’t the only language that is now supported in .NET. Syntacti-
cally, C# is an OOP, curly-brace language, with semicolons, and thus a language 
with which C++ and Java developers will feel comfortable and “at home.” 

You see, Visual Basic just didn’t cut it when compared to the heavily object-

oriented Java applications with which it was competing. Before this, each new 
version of VB had inherited language and user interface (UI) supported functionality 
features from its predecessor. Yes, each new version usually left some unworkable 
functionality behind, but generally, these “forgotten” features were minor—most 
developers learned to live without them. When designing VB .NET, however, the 
Microsoft development team felt that too many of these “legacy” features hobbled 
Visual Basic’s potential by preventing, or at least complicating, easy implemen-
tation of more sophisticated features. Thus, the advent of VB .NET.

Unfortunately, as I see it, more than a few BASIC and Visual Basic developers 
really expect continued support for much of this “obsolete” functionality. Over the 
years, VB developers have learned (for better or worse) to depend on a forgiving 
language and an IDE that supports default properties, unstructured code, automatic 
instantiation, morphing datatypes, wizards, designers, drag-and-drop binding, 
and many more automatic or behind-the-scenes operations. More importantly, 
VB developers pioneered and depended on “edit and continue” development, 
which permitted developers to change their code after a breakpoint and continue 
testing with the new code. This was a radical departure from other development 
language interfaces and, for a decade, put Visual Basic in a class by itself. 

Microsoft expects “professional” Visual Basic developers (whoever they are) to 
wholeheartedly embrace Microsoft’s new languages—including the new “Visual 
Basic”—and (eventually) step away from Visual Basic as we know it today. Con-
sider that a Visual Basic “developer” can be as sophisticated as a front-line 
professional who writes and supports thousands of lines of DNA code or as challenged 

4. Not to be confused with “Microsoft Drudge Engineers” who do less theoretical thinking and 
more real work trying to implement what the “Distinguished” engineers dream up. 

120c01.fm  Page 3  Wednesday, January 16, 2002  5:17 PM



Chapter 1

4

as an elementary school student or part-time accountant creating a small appli-
cation against an Access database. Some of these developers will be skilled enough 
and motivated enough to adapt to a new language—some will not. Some have the 
formal training that permits them to easily step from language-to-language—
many (I would venture the majority) do not. Some professional developers, faced 
with this magnitude of change, will opt to find another language or another seem-
ingly simpler occupation, such as brain surgery.    

I think the new Visual Basic .NET language is just that: new. (Ahem! V sharp?) 
While it emulates the Visual Basic language in many respects, it’s really not the 
same. As many of you have heard, I wanted to call it something else—anything 
else—but my daughter, Fred, told me to keep my mouth shut to prevent her from 
further embarrassment. I complied, as I don’t want to give anyone at Microsoft 
apoplexy—again. 

What Do These Changes Mean?

The Microsoft .NET Framework’s system of language(s), tools, interfaces, and 
volumes of supporting code has been constructed from the ground up with an 
entirely new architecture. For those of you who remember IBM 3270 technology, 
you’ll find that the .NET Framework tracks many of the same wheel ruts laid into 
the road during the 1960s. IBM 3270 systems were central processor (mainframe)-
driven “smart” (or “dumb”) terminal designs. They relied on a user-interface ter-
minal which supported very sparse functionality. The terminal’s only function was 
to display characters at an x-y coordinate and return characters entered into 
“fields.” There were no mice or graphics to complicate things, but a dozen different 
keyboard layouts made life interesting. 

IMHO Microsoft continues to complicate the situation by insisting 
that VB .NET is really just another version of Visual Basic 6 and that 
ADO.NET is just another version of COM-based ADO. They clearly 
aren’t the same—not even close. 

IPHO Those “professional” Visual Basic developers might very well 
go just that tiny bit further and take the opportunity to learn and 
then use C# as their language of choice. For me, VB .NET is almost a 
case-insensitive version of C# without the braces and semicolons. 

120c01.fm  Page 4  Wednesday, January 16, 2002  5:17 PM



Introducing ADO.NET

55

While the industry’s current browser technology includes far more intelligence 
and flexibility at the client, the general design is very similar to the 3270 approach. 
.NET applications now expect code similar to a browser to render the forms and 
frames and capture user input, even when creating a Windows (WinForms) appli-
cation. This means .NET applications will behave and interact differently (at least 
to some extent) than “traditional” Windows applications.

What’s new for server-side executables is the concept of a Web Service. I discuss 
and illustrate Web Services in Chapter 10, “ADO.NET and XML.” This new paradigm 
finds its roots in Visual Basic 6.0’s so-called IIS Applications—better known as Web 
Classes. Web Services place executable code on your IIS server to be referenced as 
ASP pages or from other executables such as WinForm applications just as you 
would reference a COM component running in the middle tier. The big difference 
is that Web Services do not require COM or DCOM to expose their objects, 
methods, properties, or events—they are all exposed through SOAP.5 I explain 
what this means in Chapter 10.

For the C++ developer moving to C#, these .NET innovations mean that the 

huge Rapid Application Development (RAD) advantages that Visual Basic devel-
opers had over C++ developers are no more, no longer, gone, zip; there is now a 
level playing field. Previously C++ Windows Application developers had to do 
battle fighting with the Microsoft Foundation Classes (MFC), while their Visual 
Basic developer cousins needed only to tinker with the facile “Ruby” Windows 
Form Engine. They rarely bothered, cared, or needed to know what a Windows 
handle or a device context was, but were by far much more visibly productive. This 
leveling of playing field has been achieved in part by replacing Visual Basic’s 
“Ruby” forms engine and the accompanying run-time library (VBRUN.DLL) with a 
new run-time platform and forms engine, as well as a new user interface and 
development IDE. (If I can use the word “replaced” to mean that the new version 
does not implement the same functionality). Saying the Visual Basic run time has 
been replaced is like saying the diesel engine in a semi-tractor-trailer rig was 
replaced with a cross-galaxy transport mechanism. 

The Visual Basic 6.0 IDE, the Visual InterDev 6.0 IDE, and the Visual C++ 6.0 
IDE have been replaced with a new “combined” system that integrates all of the 
language front ends into one. From the looks of it, Microsoft used the Visual Studio 
6.0-era Visual InterDev shell as a base. These changes mean that Visual Basic .NET 
is not just the newest version of Visual Basic. While Visual Basic .NET is similar in 
some respects to Visual Basic 6.0, it’s really a lot more like C# (pronounced 
C “sharp”) or C++ (pronounced C “hard-to-learn”). For the professional, school-
trained veterans out there, VB .NET and C# are just other languages. For many 
though, they’re a big, scary step away from their comfort zone.

5. Simple Object Access Protocol. See http://www.w3.org/TR/SOAP/#_Toc478383486

120c01.fm  Page 5  Wednesday, January 16, 2002  5:17 PM



Chapter 1

6

ADO.NET—A New Beginning

This section of the book introduces something Microsoft calls ADO.NET. Don’t 
confuse this new .NET data access interface with what we have grown to know and 
understand as ADO—I think it’s really very different. Yes, ADO.NET and ADOc 
both open connections and fetch data, however, they do so in different ways using 
different objects and with different limitations. No, they aren’t the same—no 
matter what Microsoft names them. Yes, ADO.NET has a Connection object, 
Command object, and Parameter objects (actually implemented by the SqlClient, 
OleDb and Odbc .NET Data Providers), however, they don’t have the same prop-
erties, methods, or behaviors as their ADOc counterparts. IMHO, this name 
similarity does not help to reduce the confusion you’re likely to encounter when 
transitioning from ADOc to ADO.NET. 

Actually, the name ADO.NET was not Microsoft’s first choice (nor is it mine) 
for their new data access paradigm. Early in the development cycle (over three 
years ago6), their new data access object library was referred to as XDO (among 
other things). To me, this made7 a lot of sense because ADO.NET is based on XML 
persistence and transport—thus “XML Data Objects” seemed a good choice. 
Because developers advised Microsoft to avoid the creation of yet another TLA 
(three-letter acronym)-based data access interface, they were hesitant to use the 
XDO moniker. I suspect there were other reasons too—mostly concerning the loss 
of market product name recognition. So, XDO remains one of those words you aren’t 
supposed to mention in the local bar. Later in the development cycle, XDO evolved 
into ADO+ to match the new ASP+ technology then under construction. It was not 
until early in 2001 that the name settled on ADO.NET to fit in with the new naming 
scheme for the Windows XP (Whistler) and the newly dubbed .NET Framework. 

Microsoft also feels that ADO.NET is close enough to ADOc to permit lever-
aging the name and making developers feel that ADO.NET is just another version 
of ADOc. That’s where Microsoft and I differ in opinion. The documentation 
included with the .NET betas assures developers that ADO.NET is designed to 
“…leverage current ADO knowledge.” While the connection strings used to 

NOTE To avoid confusion, I’ve coined a new term to help you distinguish 
the two paradigms; henceforth “ADOc” refers to the existing COM-based 
ADO implementation and “ADO.NET” refers to the new .NET Framework 
implementation.

6. Circa AD 1999.

7. I was opposed to another TLA at the time—for some reason that now escapes me.

120c01.fm  Page 6  Wednesday, January 16, 2002  5:17 PM



Introducing ADO.NET

77

establish connections are similar (even these are not exactly the same as those 
used in ADOc), the object hierarchy, properties, methods, and base techniques to 
access data are all very different. Over the past year I often struggled with ADO.NET 
because I tried to approach solutions to my data access problems using ADOc 
concepts and techniques. It took quite some time to get over this habit (I joined a 
twelve-step program that worked wonders). Now my problem is that when someone 
asks me an ADOc question, I have to flush my RAM and reload all of the old concepts 
and approaches. I’m getting too old for this. 

No matter what you call it, I think you’ll also discover that even though ADO.NET 
is different from ADOc in many respects, it’s based on many (many) years of devel-
opment experience at Microsoft. It’s not really built from scratch. If you look under 
the hood you’ll find that ADO.NET is a product of many (but not all) of the lessons 
Microsoft has learned over the last decade in their designing, creating, testing, and 
supporting of DB-Library, DAO, RDO, ODBCDirect, and ADO, as well as ODBC and 
OLE DB. You’ll also find remnants of the FoxPro and Jet data engines, shards from the 
Crystal report writer, as well as code leveraged from the ADO Shape, ADOX, and 

ADOMD providers. Unfortunately, you’ll also find that ADO.NET’s genes have 
inherited some of the same issues caused by these technologies—it also suffers from a 
few “DNA” problems; I discuss these as I go. Most of these issues, however, are just 
growing pains. I expect there will be a lot of lights left on at night trying to work 
them out—unless the energy crisis has us working by candlelight by then.

That said, don’t assume that this “new” ADO.NET data access paradigm 
implements all of the functionality you’re used to seeing in ADOc. Based on what 
I’ve seen so far, there are lots of features—among them many important ones—left 
behind. I discuss these further in the following chapters. 

Comparing ADOc and ADO.NET

Data access developers who have waded into the (generally pretty good) MSDN .NET 
documentation might have come across a topic that compares ADOc with ADO.NET. 
IMHO, this topic leaves a lot to be desired; it slams ADOc pretty hard. Generally, it 
ignores or glosses over features such as support for the Shape provider (which exposes 
hierarchical data management), pooled connections and intelligent connection 
management, disconnected Recordsets, serialization, XML functionality, ADOMD, 
and ADOX. Yes, ADO.NET is a new and innovative data access paradigm, but so is 
ADOc. In its defense, the documentation does say there are still a number of situ-
ations where ADOc is the (only) solution. I suspect that the Microsoft .NET 
developers will make ADOc redundant over time—just not right away.

120c01.fm  Page 7  Wednesday, January 16, 2002  5:17 PM



Chapter 1

8

Later in this and subsequent chapters I visit the concept of porting ADOc code 
over to .NET applications. It’s a complex subject full of promise and some serious 
issues—a few with no apparent resolution. Stay tuned.

Another factor you need to consider is your investment in ADOc training and 
skills. Frankly, quite a bit of this will be left behind if you choose ADO.NET as your 
data access interface. Why? Because ADO.NET is that different. This issue will be 
clearer by the time you finish this book. 

Understanding ADO.NET Infrastructure

Microsoft characterizes ADO.NET as being designed for a “loosely coupled, highly 
distributed” application environment. I’m not sure that I wholly agree with this 
characterization. I’ll accept the “loosely coupled” part, as ADO.NET depends on 
XML—not proprietary binary Recordsets or user-defined structures—as its persis-
tence model and transport layer. No, ADO.NET does not store its in-memory 
DataTable objects as XML, but it does expose or transport them as XML on 
demand. As I see it, XML is one of ADO.NET’s greatest strengths, but also one of its 
weaknesses. XML gives ADO.NET (and the entire .NET Framework) significant 
flexibility, which Visual Basic 6.0 applications have to go a long way to implement 
in code—and C++ applications a little further still. However, XML is far more 
verbose and more costly to store and transmit than binary Recordsets; granted, 
with very small data sets, the difference isn’t that great. By passing XML instead of 

IMHO The job of a technical writer at Microsoft is considerably chal-
lenging. I worked on the Visual Basic user education team for about 
five years and, while some changes have been made, there are still 
many issues that make life tough on writers, editors, and developers 
alike—all over the world. One of the problems is that when working 
with a product as new as .NET, there are few “reliable” sources of 
information besides the product itself. Unfortunately, the product is a 
moving target—morphing and evolving from week to week, some-
times subtly, but just as often in radical ways as entire concepts are 
lopped off or jammed in at the last minute for one reason or another. 
This problem is especially frustrating when outsiders work with beta 
versions. To add to Microsoft’s problems, they have to “freeze” the doc-
umentation months (sometimes six or more) in advance, so it can be 
passed to the “localizers.” These folks take the documentation and 
translate it to French, German, Texan, and a number of other foreign 
languages. A lot can (and does) happen in the last six months before 
the product ships. If the product doesn’t ship—this has happened on 
more than one occasion—it is also difficult to keep the documen-
tation in sync. 

120c01.fm  Page 8  Wednesday, January 16, 2002  5:17 PM



Introducing ADO.NET

99

binary, ADO.NET can pass intelligent information—data and schema and extended 
properties, or any other attribute you desire—and pass it safely (and securely) 
through firewalls. The only requirement on the receiving end is an ability to parse 
XML—and that’s now built into the Windows OS.

Understanding ADO.NET’s Distributed Architecture

As far as the “highly-distributed” part of the preceding ADO.NET characterization, 
I think Microsoft means that your code for .NET applications is supposed to work 
in a stand-alone fashion without requiring a persistent connection to the server. 
While this is true, I expect the best applications for .NET will be on centralized Web 
servers where the “client” is launched, constructed, and fed through a browser 
pointing to a logic-driven Web page. I think that Microsoft intended to say that 
ADO.NET is designed primarily for Web architectures.

On the other hand, ADO.NET (in its current implementation) falls short of a 

universal data access solution—one of ADOc’s (and ODBC’s) major selling points. 
The ODBC provider (System.Data.Odbc) is not included in the .NET Framework 
but is to be made available through a Web update sometime after .NET is initially 
released. I don’t think one can really interpret this as a policy to back away from the 
universal data access paradigm—but it would not be hard to jump to that con-
clusion. I’m disappointed that ODBC is not part of the initial release. But better 
late than never.

In my opinion, the most important difference between ADO.NET and any 
other Microsoft data access interface to date is the fact that ADO.NET is multidi-
mensional from the ground up. That is, ADO.NET:

• Is prepared to handle—with equal acuity—either single or multiple related 
resultsets along with their relationships and constraints. 

• Does not try to conjure the intratable relationships—it expects you to 
define them in code. But it’s up to you to make sure these coded relation-
ships match those defined by your DBA in the database. It might be nice if 
Visual Studio .NET could read these definitions from the server, but then 
again, that would take another round trip. Be careful what you ask for…

• Permits you to (expects you to) define constraints in your application to 
ensure referential integrity. But again, it’s up to you to keep these in sync 
with the database constraints.

• Does not depend on its own devices for the construction of appropriate 
SQL statements to select or perform updates to the data—it expects you to 
provide these. You (or the IDE) can write ad hoc queries or stored proce-
dures to fetch and update the data.

120c01.fm  Page 9  Wednesday, January 16, 2002  5:17 PM



Chapter 1

10

In some ways, this hierarchical data approach makes the ADO.NET disconnected 
architecture far more flexible and powerful than ADOc—even when including use of 
the Shape provider in ADOc. In other ways, you might find it difficult to keep 
component-size relationships and constraints synchronized with their equivalents in 
the database.

A Brief Look at XML

No, I’m not going to launch into a tutorial on XML, just as I found it unnecessary to 
bury you in detail about the binary layout of the Recordset (not that I know any-
thing about it). I do, however, want to fill in some gaps in terminology so that you 
can impress your friends when you start discussing ADO.NET. 

XML is used behind the scenes throughout ADO.NET and you ordinarily won’t 
have to worry about how it’s constructed until ADO.NET, or an application passing 
XML to you, gets it wrong. Just remember that the ADO.NET DataSet object can be 

constructed directly from XML; this includes XML generated by any application that 
knows how to do it (correctly). The .NET architecture contains root services that let 
you manage XML documents using familiar programming constructs. 

As I said, when you transport your data from place to place (middle tier to 
client, Web Service to browser), ADO.NET passes the data as XML. However, XML 
does not describe the database schema by itself—at least not formally. ADO.NET 
and the .NET IDE know how to define and persist your data’s schema using 
another (relatively new) technology called Extensible Schema Definition (XSD). 
Accepted as a standard by the W3C8 standards organization, XSD describes XML 
data the same way database schemas describe the structure of database objects 
such as tables. XSD provides a way to not only understand the data contained 
within a document, but also to validate it. XSD definitions can include datatype, 
length, minlength, maxlength, enumeration, pattern, and whitespace.9 Until 
recently, XML schemas have been typically created in the form of Document Type 
Definitions (DTDs), but Visual Studio .NET introduces XSD, which has the advantage 
of using XML syntax to define a schema, meaning that the same parsers can 
process both data and schemas.

IIRC,10 XSD has been W3C final recommendation status for several months. 
Visual Studio .NET can generate XSD schemas automatically, based on an XML 
document. You can then use it to edit the schema graphically to add additional 
features such as constraints and datatypes. There are also .NET tools that can help 

8. See http://www.w3.org for more information.

9. I expect this list to change (expand, contract) as XSD is nailed down.

10. IIRC: If I recall correctly.

120c01.fm  Page 10  Wednesday, January 16, 2002  5:17 PM



Introducing ADO.NET

1111

construct XSD from a variety of forms including Recordsets, XML data structures, 
and others.

Later in the book (Chapter 10) I discuss how you can use the XML tools in .NET 
to manage your data.

ADO.NET—The Fundamentals

For those developers familiar with ADOc and the disconnected Recordset, 
ADO.NET’s approach to data access should be vaguely familiar. The way in which you 
establish an initial connection to the database is very similar to the technique you 
used in ADOc—at least on the surface. After that, the similarity pretty much ends.

There are several base objects in ADO.NET. These objects are outlined and 
briefly described several times in this chapter and discussed in depth in subse-
quent chapters. Each of the following objects are implemented from base classes 
in the System.Data namespace by each of the .NET Data Providers:

• The Connection object: This works very much like the ADOc Connection 
object. It’s not created in the same way nor is the ConnectionString property 
exactly the same, but it’s close.

• The Command object: This works very much like an ADOc Command object. 
It holds a SQL SELECT or action query and points to a specific Connection object. 
The Command object exposes a Parameters collection that works something 
like the ADOc Command object’s Parameters collection.

• The DataReader object: This is used to provide raw data I/O to and from the 
Connection object. It returns a bindable data stream for WebForm appli-
cations, and is invoked by the DataAdapter to execute a specific Command.

• The DataAdapter object: There is no exact equivalent to this in ADOc; the 
closest thing is the IDE-driven Visual Basic 6.0 Data Environment Designer. 
The DataAdapter manages a set of Command objects used to fetch, update, 
add, and delete rows through the Connection object.

• The DataTable object: Again, there is not an ADOc equivalent, but it’s similar i
n some respects to the Recordset. The DataTable object contains a Rows col-
lection to manage the data and a Columns collection to manage the 
schema. No, DataTables do not necessarily (and should not) be thought of 
as base tables in the database. 

120c01.fm  Page 11  Wednesday, January 16, 2002  5:17 PM



Chapter 1

12

• The DataSet object: This is a set of (possibly) related DataTable objects. This 
interface is bindable in WinForms or WebForms. The DataSet also contains 
Relations and Constraints collections used to define the interrelationships 
between its member DataTable objects. 

A Typical Implementation of the ADO.NET Classes

One approach (there are several) calls for your application to extract some (or all) 
of the rows from your database table(s) and create an ADO.NET DataTable. To 
accomplish this, you create a Connection object and a DataAdapter object with its 
SelectCommand set to an SQL query returning data from a single table (or from 
several tables using separate SELECT statements in a single Command).

The DataAdapter object’s Fill method opens the connection, runs the query 
through a DataReader (behind the scenes), constructs the DataTable objects, and 
closes the connection. If you use individual queries, this process is repeated for 
any related tables—each requiring a round trip, separate queries, and separate 
DataTable objects. However, if you’re clever, you can combine the SELECT oper-
ations into a single query. ADO.NET is smart enough to build each resultset of a 
multiple-resultset query as its own DataTable object. I show an example of this in 
Chapter 5, “Using the DataTable and DataSet.” 

After the DataTable objects are in place, your code can disconnect from the 
data source. Actually, this was already done for you; ADO.NET opens and closes 
the Connection object for you when you use the Fill method. Next, your code can 
define the primary key/foreign key (PK/FK) relationships and any constraints you 
want ADO.NET to manage for you. All work on the data takes place in client 
memory (which could be in a middle-tier component, ASP, or distributed client’s 
workstation). 

When working with related (hierarchical) data, you can write a SELECT query to 
extract all or a subset of the customer’s table rows into a DataTable object. You can 
also create queries and code to construct additional DataTable objects that contain 
rows in the related Orders and Items database tables. Code a single bindable 
DataSet object to manage all of these DataTable objects and the relationships 
between them. Behind the scenes, ADO.NET “joins” these DataTable objects in 
memory based on your coded relationships. This joining of DataTable objects 
permits ADO.NET to navigate, display, manage, and update the DataSet object, the 
DataTable objects, and ultimately, the database tables behind them when you use 
the Update method. After ADO.NET fetches the queried rows to construct the 
DataSet, ADO.NET (or your code) closes the connection and no longer depends on 
the database for any further information about the data or its schema. 

When called upon to update the database, ADO.NET reopens the connection 
and performs any needed UPDATE, INSERT, or DELETE operations defined in the 

120c01.fm  Page 12  Wednesday, January 16, 2002  5:17 PM



Introducing ADO.NET

1313

DataAdapter as separate Command objects. Your code handles any collisions or 
problems with reconciliation. 

The Visual Studio .NET IDE lets you use drag-and-drop and a number of 
wizards to construct much of the code to accomplish this. As I discuss in later 
chapters (see Chapter 4, “ADO.NET DataReader Strategies”) you might not choose 
to avail yourself of this code—it’s kinda clunky. As with ADOc’s Shape provider, 
ADO.NET can manage intertable relationships and construct a hierarchical data 
structure that you can navigate and update at will—assuming you added code to 
define the relationships and constraints. I show you how to do this in Chapter 5 
and in Chapter 8, “ADO.NET Constraint Strategies.”

Based on my work with ADO.NET so far, I have a number of concerns 
regarding the disconnected DataSet approach:

• The overhead involved in downloading high volumes of data and the amount 
of locks placed on the server-side data rows is problematic at best. The 
ADO.NET disconnected DataSet approach might work for smaller databases 
with few users, but you must be careful to reduce the number of rows returned 
from each query when dealing with high volumes of data. Sure, it’s fast when 
you test your stand-alone application, but does this approach scale? 

• Assumes that the base tables are exposed by the DBA; in many shops, this 
is not the case, for security and stability reasons. While you can (and 
should) construct DataSet objects from stored procedures, you also need to 
provide stored procedures to do the UPDATE, DELETE, and INSERT oper-
ations. It’s not clear if this approach will permit ADO.NET to expose the 
same functionality afforded to direct table queries—it does not appear to. 
I have found, however, that it is possible to perform updates against complex 
table hierarchies, but it requires more planning and work than the simplistic 
table-based queries often illustrated in the documentation.

• The Visual Studio .NET drag-and-drop and wizards used to facilitate 
ADO.NET operations generate (copious) source code. That’s the good 
news. The bad news is that this source code has to change when the data 
structures, relationships, or stored procedures used to manage the data 
change—and this does not happen automatically. This means that you want 
to make sure your schema is nailed down before you start generating a lot of 
source code against it. Once inserted, it’s often tough to remove this code in 
its entirety if you change your mind or the schema.

• The disconnected approach makes no attempt to maintain a connection 
to the data source. This means that you won’t be able to depend on per-
sisted server-side state. For example, server-side cursors, pessimistic locks, 
temporary tables, or other connection-persisted objects are not supported.

120c01.fm  Page 13  Wednesday, January 16, 2002  5:17 PM



Chapter 1

14

• When compared to ADOc, ADO.NET class implementation is fairly limited 
in respect to update strategies. As you’ll see in Chapter 3, “ADO.NET 
Command Strategies” and Chapter 7, “ADO.NET Update Strategies,” the 
options available to you are nowhere near those exposed by ADOc—especially 
in regard to Update Criteria.

ADO.NET .NET Data Providers

A fundamental difference between ADOc and ADO.NET is the latter’s use of .NET 
Data Providers. A .NET Data Provider implements the base System.Data classes to 
expose the objects, properties, methods, and events. Each provider is responsible 
for ADO.NET operations that require a working connection with the data source. 
The .NET Data Providers are your direct portals to existing OLE DB providers 
(System.Data.OleDb), ODBC drivers (System.Data.Odbc), or to Microsoft SQL 
Server (System.Data.SqlClient). ADO.NET (currently) ships with two .NET 
Data Providers:

• System.Data.OleDb—Used to access existing Jet 4.0 and Oracle OLE DB 
providers via COM interop, but notably not the ODBC (MSDASQL) provider—
the default provider in ADOc.11 

• System.Data.SqlClient—Used to access Microsoft (and just Microsoft) SQL 
Server versions 7.0 and later. 

As I said earlier the Microsoft..Data.Odbc provider is scheduled to be made 
available via Web download not long after .NET is released to the public. It is used 
to access most ODBC data sources. No, it’s not clear that all ODBC data sources will 
work with ADO.NET. Initial tests show, however, that this new Odbc .NET Data 
Provider is twenty percent faster than its COM interop brother the OleDb .NET 
Data Provider.

As I said, the ADO.NET OleDb provider uses COM interop to access most 
existing OLE DB providers—but this does not include the ODBC provider 
(MSDASQL). This also does not mean you can use any existing OLE DB providers 

11.  I expect that other .NET Data Providers will appear very soon after .NET ships.

NOTE The System.Data.SqlClient provider is designed to access 
Microsoft SQL Server 7.0 or later. If you have an earlier version of SQL 
Server, you should either upgrade (a great idea),or use the OleDb .NET 
Data Provider with the SQLOLEDB provider or simply stick with ADOc.

120c01.fm  Page 14  Wednesday, January 16, 2002  5:17 PM



Introducing ADO.NET

1515

with System.Data.OleDb. Only the SQLOLEDB (Microsoft SQL Server), MSDAORA 
(Oracle), and Microsoft Jet OLEDB.4.0 (Jet 4.0) providers are supported at RTM.12 
Notably missing from this list is MSDASQL—the once-default ODBC provider. In 
addition, none of the OLE DB 2.5 interfaces are supported, which means that OLE DB 
providers for Exchange and Internet Publishing are also not (yet) supported in .NET. 
But, remember that the .NET architecture lends itself to adding additional function-
ality; I would not be surprised if additional providers appeared before too long.

However, consider that these data access interfaces are very different from the 
OLE DB or ODBC providers with which you might be accustomed. ADO.NET and 
the .NET Data Providers implemented so far know nothing about keyset, dynamic, 
or static cursors, or pessimistic locking as supported in ADOc. Sure, the ADO.NET 
DataTable object looks something like a static cursor, but it does not share any of 
the same ADOc adOpenStatic properties or behaviors with which you’re familiar. 
They don’t leverage server-side state or cursors—regardless of the data source. 
ADO.NET has its own hierarchical JOIN engine so it doesn’t need the server to do 
anything except run simple (single-table) SELECT queries. Whether it makes sense 

to let ADO.NET do these JOIN operations for you is another question.
A .NET Data Provider is responsible for far more functionality than the low-

level ODBC or more sophisticated (and complex/bulky/slow/troublesome) OLE DB 
data providers in ADOc. A .NET Data Provider implements the System.Data objects I 
described earlier that are fundamental in the implementation of your ADO.NET 
application. For example:

• The Command object: SqlCommand, OleDbCommand, OdbcCommand

• The Connection object: SqlConnection, OleDbConnection, 
OdbcConnection

• The DataAdapter object: SqlDataAdapter, OleDbDataAdapter, 
OdbcDataAdapter

• The DataReader object: SqlDataReader, OleDbDataReader, 
OdbcDataReader

.NET Data Providers also directly support and implement code to generate 
Commands, control the connection pool, procedure parameters, and exceptions. 
It’s clear that .NET Data Providers bear far more responsibility than their ADOc 
predecessors did. I expect that this also means that the features exposed by one 
provider might not be supported in the same way or with the same issues (bugs) as 
another. Of course, this has always been the case with ADOc and its predecessors. 
Anyone who’s worked with ODBC and transitioned to OLE DB in ADOc can bore 

12. RTM: Release to manufacturing.

120c01.fm  Page 15  Wednesday, January 16, 2002  5:17 PM



Chapter 1

16

you with war stories about how “stuff” changed from one implementation to the 
next. I’m sure we’ll see some of the same in ADO.NET. 

I think the fact that the .NET Data Provider for SQL Server speaks Tabular Data 
Stream (TDS) is a very important innovation. Not only do I think this will help per-
formance (it will), but it also means Microsoft is not afraid of creating a Microsoft 
SQL Server-specific interface (no, it does not work with Sybase SQL Server). This 
opens the door for better, more intimate control of Microsoft SQL Server systems 
from your code without having to resort to SQLDMO. It also implies that native 
Oracle, Sybase, and other high-performance native .NET Data Providers are pos-
sible. Your guess is as good as mine as to when these will actually appear; for those 
players who want to stay in the game, I expect sooner rather than later. 

Leveraging Existing COM-based ADO Code

The .NET Framework is flexible enough to support more than just the three .NET 

Data Providers I’ve mentioned. This adaptability is especially important in light of 
ADO.NET’s architecture, which leaves out a number of data access paradigms that you 
might find essential to your design. But up to this point, all of you have invested many 
(many) hours/months/years of work on ADOc code imbedded in all types of appli-
cations, middle-tier components, and Web-based executables. The burning 
question most of you have is: “Can I leverage this investment in ADOc in my .NET 
executables?” The answer is not particularly clear. First, you’ll find that you can 
imbed ADOc code in a .NET executable—while it might not behave the same, .NET 
applications, components, and Web Services can execute most (but not all) COM-
based code. 

Fundamentally, there are two approaches to access existing ADOc objects 
from .NET executables. First, you can simply drop your ADOc code into your .NET 
code and register ADO 2.x in your solution. This gets .NET to generate a COM interop 
wrapper around MSADO21.DLL and include it in your solution. In this approach, 
you access the objects and their properties and methods directly. The problem is 
that each and every time you reference an ADOc object (or any COM object), 
property method, or event, the Common Language Runtime (CLR) has to make 

NOTE Visual Studio .NET includes an (excellent) conversion utility to 
take existing ADOc code and convert it. However, it does not convert it to 
ADO.NET code—it’s converted to COM interop-wrapped ADOc code 
designed to run in a .NET application. While this utility converts the 
code, it does not convert the architecture or query strategy. These might 
not be appropriate for your new .NET application.

120c01.fm  Page 16  Wednesday, January 16, 2002  5:17 PM



Introducing ADO.NET

1717

the reference to and from the COM interop layer. This will slow down the references to 
some degree and if the interop does not behave, it might impair functionality. We 
already know this is the case when it comes to executing stored procedures as 
methods of the ADODB.Connection object—it’s no longer supported. There are 
other issues as well, as I discuss in Chapter 2, “ADO.NET–Getting Connected.”

Another approach for accessing existing ADOc objects from .NET executables 
is to encapsulate your ADOc (or other COM object reference) code in its own 
wrapper. With this approach, you only access specific methods of the wrapper 
object, which execute blocks of ADOc code. Few if any properties are exposed. This 
approach resembles what you do to implement a middle-tier COM component. It 
also means that you spend far less time in the interop layer—once when you enter 
the wrapper DLL and once when you return. The problem here is that you often 
have to reengineer your ADOc code, resulting in some loss of flexibility in coding 
directly to the ADOc objects. 

When importing ADOc code you have to instantiate your objects differently. 
I walk through several ADOc examples in Chapter 2. There you’ll discover that some 

of the methods work differently—for example, you can’t use the GetRows method to 
return a Variant array, and your simple constants must now be fully qualified—but for 
the most part, ADOc codes about the same. However, as I said before, you might 
notice a drop in performance or somewhat different behavior due to COM interop. 

That said, while your existing ADOc logic has to be recoded (at least to some 
degree) to run in .NET, the basic functionality should work (about) the same. You 
should be able to use the same flow, the same error handlers, and the same methods, 
properties, and events as you did in Visual Basic 6.0—at least that’s the goal for the 
Microsoft .NET development team. If you need to access pessimistic cursors, 
server-side cursors, manage and maintain server-side state, or clone functionality 
implemented in Visual Basic 6.0 applications, you need to keep using ADOc to do 
so. None of these features are supported—at least not yet—in ADO.NET. 

Creating DataSets from ADOc Recordset Objects

The .NET developers knew that some of you would want to import ADOc Recordsets 
from existing COM components and create ADO.NET DataSets; fortunately, this is 
easy in ADO.NET. The DataSet Fill method directly recognizes ADOc Recordset 
and Record objects. This functionality enables .NET developers to use existing 
COM objects that return ADO objects without having to rewrite new objects using 
the .NET Framework. Both the OleDb and SqlClient .NET Data Providers support 
filling a DataSet from an ADO Recordset or Record object. I illustrate this with an 
example in Chapter 4.

120c01.fm  Page 17  Wednesday, January 16, 2002  5:17 PM



Chapter 1

18

How COM Interop Affects .NET Applications

As I said before, all “unmanaged” code executed by the CLR must be handled dif-
ferently from “managed” code.  Because of this stipulation between managed and 
unmanaged code, all of the ADOc and the ADO.NET OleDb .NET Data Provider data I/
O operations are processed through a COM interop “wrapper.” (The ADO.NET 
SqlClient .NET Data Provider does not use COM interop.) This extra layer on legacy 
COM components makes the .NET application think it’s communicating 
to a .NET component and the COM-based code thinks that it’s communicating 
to a COM-based host. Figure 1-1 illustrates this extra layer of protection wrapped 
around all COM components. 

I suspect we’ll see a few side effects caused by this additional translation layer 
that can’t help but hurt performance. COM interop is something like ordering a 
burger from a Spanish-speaking clerk at your local burger palace through a speak-
erphone. If you don’t speak Spanish, the result might have un poco más cebolla13 
than you planned on—but for me, that’s okay!

One of the major (that should be MAJOR) differences in the .NET Framework 
is that your .NET application assembly is built using a specific version of ADOc 
DLLs (msado15.dll) and all of the other COM DLLs and components its references. 
In fact, these DLLs can be (should be?) copied from their common location to the 

13. A little more onion.

Figure 1-1. COM components access .NET via COM interop layer.

120c01.fm  Page 18  Wednesday, January 16, 2002  5:17 PM



Introducing ADO.NET

1919

assembly’s disk directory. This means you could have the ADO run-time DLLs 
installed any number of times on your disk—n copies of the same ADO DLLs or n 
different versions of the ADO DLLs. 

When you start a .NET application, the DLLs used and referenced at design/test/
debug/compile time are referenced at run time. This means your application behaves 
(or misbehaves) the same way it did when you wrote and tested it. Imagine that. If the 
version of ADO (or any other dependent DLL) gets updated (or deprecated) later, or 
you deploy to a system with different DLLs, your existing applications still install and 
load the “right” (older, newer, or the same) version of ADO and your other DLLs. This 
means that “DLL hell” as we know it has become a specter of the past—at least when 
all of your applications are based on .NET. I expect DLL hell applications will still be 
haunting us for decades to come—rattling their chains in the back corridors of our 
systems and playing evil tricks on unsuspecting tourists.

I walk you through converting and accessing ADOc objects in the next chapter.

ADO.NET and Disconnected Data Structures

ADO.NET constructs and manages DataSet and DataTable objects without the 
benefit of server-side cursors or persisted state. These objects roughly parallel the 
disconnected Recordset approach used in ADOc. Remember, ADO.NET provides 
no support for pessimistic (or any other kind of) locking cursors—all changes to 
the database are done via optimistic updates. ADO.NET does not include the entire 
“connected” paradigm supported by every data access interface since DB-Library. 
Microsoft suggests that developers simply use existing ADOc code wrapped in a 
COM interop layer for these designs—or stick with Visual Basic 6.0 (Ahem! or 
Visual C++—especially for MTS/COM+ ADOc components that use object pooling).

Behind the scenes, ADO.NET’s architecture is (apparently) built around its 
own version of ADOc’s Shape provider. It expects the developer to download sep-
arate resultsets (Tables) one at a time (or at least in sets). This can be done by using 
separate round trips to the data source or through multiple-resultset queries. After 
the DataTable is constructed, you’re responsible for hard coding the parent/child 
relationships between these tables—that is, if you want ADO.NET to navigate, join, 
manage, display, and update hierarchical data and eventually post batches of 
updates to the backend server. All of this is done in RAM with no further need of 
the connection or the source database. I’m not sure what happens when the 
amount of available RAM and swap space is exhausted using this approach. There 
is some evidence to suggest that your system might try to order more from the 
Web. Just don’t be surprised to get a package in the mail addressed to your CPU. 
I expect that performance and functionality will also suffer to some degree—to say 
the least. This “in-memory database” approach means that you developers will 
have to be even more careful about designs and queries that extract too many rows 

120c01.fm  Page 19  Wednesday, January 16, 2002  5:17 PM



Chapter 1

20

from the data source. But this is not a new rule; the same has always applied to 
DAO, RDO, and ADOc as well, most especially in client/server circumstances. 

The System.Data Namespace

Before I start burrowing any deeper into the details of the .NET System.Data object 
hierarchy, I’ll define a term or two. For those of you who live and breath object-ori-
ented (OO) concepts, skip on down. For the rest of you, I try to make this as clear as 
I can despite being a person who’s been programming for three decades without 
using “true” OO. 

The .NET Framework is really a set of classes organized into related groups 
called namespaces. See “Introduction to the .NET Framework Class Library” in 
.NET Help for the long-winded definition. When you address the specific classes in 
a namespace you use dot (.) notation—just as you do in COM and did in pre-COM 
versions of Visual Basic. Thus, “System” is a namespace that has a number of sub-

ordinate namespaces associated with it. System.Data.OleDb defines a specific 
“type” within the System.Data namespace. Basically, everything up to the right-
most dot is a namespace—the final name is a type. The System.Data namespace 
contains the classes, properties, methods, and events (what .NET calls “members”) 
used to implement the ADO.NET architecture. When I refer to an “object,” 
it means an instantiation of a class. For example, when I declare a new 
OleDbConnection object, I do so by using the new constructor on the 
OleDbConnection class.

System.Data.OleDbConnection myConnection = new System.Data.OleDbConnection();

Clear? Don’t worry about it. I try to stay focused on the stuff you need to know 
and leave the OO purists to bore you with the behind-the-scenes details. See 
MSDN .NET14 for more detailed information on the System.Data namespace. 

The ADO.NET DataSet Object

The System.Data.DataSet object sits at the center of the ADO.NET architecture. While 
very different from an ADOc Recordset, it’s about as close as you’re going to get with 
ADO.NET. As with the ADOc Recordset, the DataSet is a bindable object supporting a 
wealth of properties, methods, and events. While an ADOc Recordset can be derived 
from a resultset returned from a query referencing several database tables, it’s really a 
“flat” structure. All of the hierarchal information that defines how one data table is 

14. http://www.msdn.microsoft.com/library/en-us/cpref/html/cpref_start.asp

120c01.fm  Page 20  Wednesday, January 16, 2002  5:17 PM



Introducing ADO.NET

2121

related to another is left in the database or in your head. Yes, you can use the ADOc 
Shape provider to extract data from several related tables and manage them in related 
ADOc-managed (Shape provider-managed) Recordsets. Anyone familiar with the 
Shape provider will feel comfortable with ADO.NET’s DataSet approach. I would char-
acterize the DataSet as a combination of: an ActiveX Data Source control,15 due to its 
ability to bind data with controls; a multidimensional Recordset, due to its ability to 
manage several resultsets (DataTable objects) at one time; and the Data Envi-
ronment Designer or Data Object wizard, in that the DataSet can manage several 
Command objects used to manage the SELECT and action queries.

In contrast to the ADO Recordset, the ADO.NET System.Data.DataSet object is 
an in-memory data store that can manage multiple resultsets, each exposed as 
separate DataTable objects. Each DataTable contains data from a single data 
source—a single data query. No, the DataTable objects do not have to contain 
entire database tables—as you know, that simply won’t work for larger databases 
(or for smaller ones either if you ever expect to upscale). I suggest you code your 
queries to contain a parameter-driven subset of rows that draw their data from 

one or more related tables. 
Each DataTable object contains: a DataColumnCollection (Columns)—a col-

lection of DataColumn objects—that reflects or determines the schema of each 
DataTable; and a DataRowCollection (Rows) that contains the row data. This is a 
radical departure from DAO, RDO, and ADOc where the data and schema infor-
mation are encapsulated in the same Recordset (or Resultset) object. Consider, 
however, that the data in the DataTable is managed in XML and the schema in 
XSD. I discuss and illustrate this layout in Chapter 2.

You can construct your own DataTable objects by query or by code—
defining each DataColumn object one-by-one and appending them to the 
DataColumnCollection, just as you appended Field objects to an unopened 
Recordset in ADOc. The DataType property determines or reflects the type of data 
held by the DataColumn. The ReadOnly and AllowNull properties help to ensure 
data integrity, just as the Expression property enables you to build columns based 
on computed expressions. The DataSet is designed to be data agnostic—not 
caring where or how (or if) the data is sourced or retrieved; it leaves all of the data 
I/O responsibilities up to the .NET Data Provider. 

In cases where your DataSet contains related resultsets, ADO.NET can manage 
these relationships for you—assuming you add code to define the relationships. 
For example, in the Biblio (or Pubs) database, the Authors table is related to the 
TitleAuthor and Titles tables. When you build a DataSet against resultsets based on 
these base (and many-to-many relationship) tables, and you construct the appro-
priate DataRelation objects; at that point you can navigate between authors and 

15. The ADO Data Control, the Jet Data Control, and your hard-coded data source controls fall 
into this category. 

120c01.fm  Page 21  Wednesday, January 16, 2002  5:17 PM



Chapter 1

22

the titles they have written—all under control of ADO.NET. 
I illustrate and explain this in detail in Chapters 4 and 8.

DataTable objects can manage resultsets drawn directly from base tables or 
subset queries executed against base tables. The PK/FK relationships between the 
DataTable objects are managed through the DataRelation object—stored in the 
DataRelationCollection (Relations) collection. (Is there an echo in here?) When 
you construct these relationships (and you must—ADO.NET won’t do it on its own; 
but, you can get the Visual Studio IDE to do it for you), UniqueConstraint and a 
ForeignKeyConstraint objects are both automatically created depending on the 
parameter settings for the constructor. The UniqueConstraint ensures that values 
contained in a DataColumn are unique. The ForeignKeyConstraint determines 
what action is taken when a PK value is changed or deleted. I touch on these 
details again in Chapter 8. No, ADO.NET and the .NET IDE do not provide any 
mechanisms to construct these PK/FK relationships for you, despite supporting 
functionality to graphically define these relationships.

The following diagram (Figure 1-2) provides a simplified view of how the 

DataSet object is populated from a SqlClient .NET Data Provider. It illustrates the 
role of the bindable DataSet object and the important role of the .NET Data Provider. 
In this case, the diagram shows use of the Microsoft SQL Server-specific SqlClient 
.NET Data Provider, which contains objects to connect to the data source 
(SqlConnection), query the data (SqlDataAdapter), and retrieve a data stream 
(DataReader). The DataSet object’s DataTable objects (Tables) is populated by a 
single call to the DataSet Fill method.

The DataAdapter also plays a key role here. It contains from one to four 
Command objects to (at least) fetch the data (SelectCommand) and (optionally) 
change it (UpdateCommand, InsertCommand, and DeleteCommand). Each of these 
Command objects are tied to specific Connection objects. When you execute the 
DataSet.Update method, the associated DataAdapter executes the appropriate 
DataAdapter Command objects for each added, changed, or deleted row in each of 
the DataTable objects. 

Once constructed, the DataSet need not remain connected to the data source 
because all data is persisted locally in memory—changes and all. I drill deeper into 
DataSet topics in Chapter 4.

120c01.fm  Page 22  Wednesday, January 16, 2002  5:17 PM



Introducing ADO.NET

2323

The DataSet object supports a DataTableCollection (Tables) collection of 
DataTable objects, which contain a DataRowCollection (Rows) collection of 
DataRow objects. Each DataRow object contains the DataColumnCollection 
(Columns) of DataColumn objects, which contain the data and all of the DDL 
properties. Remember that, like the ADOc Recordset, the DataTable object can be 
bound by assigning it to the DataSource property of data-aware (bindable) controls.

Figure 1-3 illustrates the look of the System.Data.DataSet in a hierarchical 
diagram. Note the difference in the .NET naming convention. In COM, we expect a 
collection of objects to be named using the plural form of the object. For example, a 
collection of Cat objects would be stored in the Cats collection. In .NET, most (but not 
all) collections are named using the singular object name followed by “Collection” 
as in DataTableCollection. I found this very confusing until I started to code. It did 
not take long to discover that ADO.NET uses different names for each of these col-
lections. These “real” names are shown in parentheses in the preceding paragraph 
and in Figure 1-3. I’m sure there’s a good OO reason for this—I just have no idea 
what it is.

I explore each of these objects in more detail in subsequent chapters.

Figure 1-2. ADO.NET Data Access using the DataSet object. 

120c01.fm  Page 23  Wednesday, January 16, 2002  5:17 PM



Chapter 1

24

So, what should you know about this new ADO.NET structure? The DataSet:

• Is a memory-resident structure constructed by the DataAdapter Fill method. 

• Contains zero or more DataTable objects.

• Is logically tied to a DataAdapter object used to fetch and perform action 
queries as needed.

• Contains Constraints and Relations collections to manage inter-DataTable 
relationships.

• Is data source agnostic, stateless, and can function independently from 
the data source. All data, schema, constraints, and relationships to other 
tables in the DataSet are contained therein. 

Figure 1-3. DataSet object hierarchy.

120c01.fm  Page 24  Wednesday, January 16, 2002  5:17 PM



Introducing ADO.NET

2525

• Is transported through XML documents via HTTP. This means a DataSet 
can be passed through firewalls and used by any application capable of 
dealing with XML. 

• Can be saved to XML or constructed from properly formatted XML.

• Can be created programmatically. DataTable by DataTable and DataColumn 
by DataColumn—along with DataRelation objects and Constraints. 

It’s clear that the DataSet was designed to transport “smart” data (and 
schema) between a Web host (possibly implemented as a Web Service) and a 
client. In this scenario, a client application queries the Web Service for specific 
information, such as the number of available rooms in hotels given a specific city. 
The Web Service queries the database using parameters passed from the client 
application and constructs a DataSet, which might contain a single or multiple 
DataTable objects. If more than one table is returned, the DataSet can also specify 

the relationships between the tables to permit the client to navigate the room 
selections from city to city. The client can display and modify the data—possibly 
selecting one or more rooms—and pass back the DataSet to the Web Service, 
which uses a DataAdapter to reconcile the changes with the existing database. 

Descending the System.Data Namespace Tree 

I think pictures and drawings often make a subject easier to understand—especially 
for subjects like object hierarchies. So, I’m going to begin this section with a series 
of diagrams that illustrate the layout of the System.Data namespace.

ADOc has a relatively easy-to-understand and easily diagramed object hier-
archy. ADO.NET’s System.Data namespace, however, is far more complex. As it 
currently stands, there are dozens upon dozens16 of classes and members in the 
.NET Framework. Few of the complexities of the OO interfaces have been hidden—at 
least not in the documentation. Fortunately, there is a fairly easy way to climb through 
the object trees and get a good visual understanding of the hierarchies—basically 
what goes where and with what: Use the object browser in Visual Studio .NET. You can 
launch it from the View | Other Windows submenu. Figure 1-4 illustrates how the 
object browser depicts the System.Data namespace (unexploded). Throughout this 
section of the book, I walk through these object trees one at a time. By the time I’m 
done, you should either be thoroughly familiar with the System.Data namespace or be 
thoroughly sick of it.

16. I tried to count all of the objects in System.Data but lost count … sorry.

120c01.fm  Page 25  Wednesday, January 16, 2002  5:17 PM



Chapter 1

26

System.Data Namespace Exploded

The exploded System.Data namespace has over forty members—the top dozen or 
so are shown in Figure 1-5. I hope that we won’t have to learn and remember how 
to use all of these objects, properties, methods, and events to become productive 
ADO.NET developers. Table 1-1 lists and describes the most important of these 
objects—the ones you’ll use most often (at least at first).     

Figure 1-4. The System.Data namespace.

Figure 1-5. System.Data objects.

120c01.fm  Page 26  Wednesday, January 16, 2002  5:17 PM



Introducing ADO.NET

2727

Table 1-1. Selected Members of the System.Data Namespace

Object Description

Constraint and 

ConstraintCollection 

(Constraints), 

ForeignKeyConstraint, 

UniqueConstraint

Represents referential integrity constraints. Used to 

specify unique keys or PK/FK constraints and what 

to do when they change. Used to prevent duplicate 

rows from being added to the current dataset. No 

equivalent in ADOc. Hard coded by your 

application.

DataColumn and 

DataColumnCollection 

(Columns)

Represents a single data column schema 

associated with a DataTable object and the 

collection used to manage the columns. Similar to 

the ADOc Field object and Fields collection—but 

without the Value property. Automatically 

generated from the resultset.

DataException (and various 

other exception objects)

Represents the various exceptions thrown when an 

ADO.NET error is triggered. Contains information 

about the error. Similar to the ADOc Error object. 

DataRelation and 

DataRelationCollection 

(Relations)

Represents table/column/table relations. Hard 

coded by your application. Specifies the tables and 

columns used to interrelate parent/child tables. No 

equivalent in ADOc. 

DataRow and 

DataRowCollection (Rows)

Represents the data in a table row. Generated 

automatically.

DataRowView Permits customized views of data rows based on 

changes applied during editing. Original, Proposed, 

and Current versions of a data row are exposed. 

DataSet Represents an in-memory data store consisting of 

DataTable, DataRelation, and Constraint objects.

DescriptionAttribute Permits definition of code-specified properties for 

properties, events, or extenders.

DataTable and 

DataTableCollection (Tables)

Represents in-memory rows and columns of data 

returned from a data source or generated in code.

DataView, DataViewManager, 

DataViewSetting, 

DataViewSettingCollection 

(DataViewSettings)

Permits viewing one or more subsets of a 

DataTable. Similar to ADOc Recordsets after the 

Filter property is applied. Several DataView objects 

can be created against the same DataTable.

120c01.fm  Page 27  Wednesday, January 16, 2002  5:17 PM



Chapter 1

28

Instantiating System.Data Objects

Your .NET application should be fairly specific about the libraries it expects to 
reference. In .NET, the ADO.NET .NET Data Providers (roughly equivalent to the 
ODBC and OLE DB providers accessed by ADOc) are built into the System.Data 
namespace so you don’t have to add an explicit reference to use them. An exception is 
the Odbc .NET Data Provider that must be installed and registered separately. If 
you aren’t using the Odbc provider when you create a new solution, the Solution 
Explorer references show that System.Data is part of the base namespace. The 
Solution Explorer is a handy way to see what namespaces are already referenced 
for your application’s assembly, as shown in Figure 1-6.

PropertyCollection (Properties) Permits definition and retrieval of code-defined 

properties.

(and several others) There are several other objects, event 

enumerations, and support objects exposed by the 

System.Data namespace.

Table 1-1. Selected Members of the System.Data Namespace (Continued)

Object Description

Figure 1-6. The Solution Explorer showing a newly created WinForm application.

120c01.fm  Page 28  Wednesday, January 16, 2002  5:17 PM



Introducing ADO.NET

2929

Depending on the ADO.NET data access provider you choose, you’ll want to 
use the using17 directive with either System.Data.OleDb or System.Data.SqlClient 
(or in unusual situations, both), or Microsoft..Data.Odbc to make sure your code 
correctly references these libraries. Actually, the CLR, which sits at the core of 
.NET, won’t permit name collisions, but adding a namespace to the using list 
makes coding easier by providing “shorthand” syntax for commonly used objects. 
Although not required for ADO.NET, the using directive signals the compiler to 
search the specified namespace referenced in your code to resolve any ambiguous 
object names. Basically, using helps the compiler resolve namespace references 
more easily. The using statement should be positioned first in your code—above all 
other declarations. For example, to add the OleDb .NET Data Provider namespace, 
place the following at the start of your code module:

using System.Data.OleDb;

Similarly for the SqlClient .NET Data Provider namespace, add the following 
to your code module:

using System.Data.SqlClient;

Because you used the using directive with the System.Data.SqlClient .NET 
Data Provider, you can code:

SqlConnection cn = new SqlConnection();

However, the downside to this approach is potential object collisions and 
failed compiles. Again, some pundits feel that it’s best to explicitly reference 
declared objects. You can also reference your ADO.NET objects explicitly if you 
don’t mind typing a lot (or if you are paid by the word). For example, you can create 
a new ADO.NET Connection object this way:

System.Data.SqlClient.SqlConnection cn = 

            new System.Data.SqlClient.SqlConnection();

However, I try not to use this approach in my examples or sample code. I provide 
more examples of object and variable declarations as I go—and there is a long way 
yet to travel.

17. For Visual Basic developers converting from Visual Basic .NET, the using directive is 
equivalent to the Imports directive in Visual Basic .NET. 

120c01.fm  Page 29  Wednesday, January 16, 2002  5:17 PM



Chapter 1

30

Introducing the ADO.NET DataAdapter

Think of the DataAdapter as a “bridge” object that links the data source (your 
database) and a Connection object with the ADO.NET-managed DataSet object 
through its SELECT and action query Commands. All of the .NET Data Providers 
implement their version (instance) of the System.Data.DataAdapter class; 
OleDbDataAdapter, OdbcDataAdapter, and SqlClientDataAdapter all inherit from 
the base System.Data class. Each .NET Data Provider exposes a SelectCommand 
property that contains a query that returns rows when the DataSet Fill method is 
executed. The SelectCommand is typically a SELECT query or the name of a stored 
procedure. Each Command object managed by the DataAdapter  references a 
Connection18 object to manage the database connection through the Command 
object’s Connection property. I discuss the Connection object in Chapter 2. 

The invocation of the DataSet Update method triggers the execution of the 
DataAdapter object’s UpdateCommand, InsertCommand, or DeleteCommand to 
post changes made to the DataSet object. I discuss updating in Chapter 7. The 
figure shown earlier (Figure 1-2) also illustrates the working relationship between 
the DataSet and the DataAdapter.

Constructing DataAdapter Command Queries

If the query set in the SelectCommand is simple enough (references a single table 
and not a stored procedure), you can (usually) ask ADO.NET to generate the appro-
priate action queries for the DataAdapter UpdateCommand, InsertCommand, and 
DeleteCommand using the CommandBuilder object. If this does not produce 
suitable SQL syntax, you can manually fill in the action queries using queries of 
your own design—even calling stored procedures to perform the operations. I discuss 
the construction of these commands in Chapter 3. 

Coding the DataAdapter

I expect you’d like to see some code that demonstrates how all of this is imple-
mented. Because I haven’t discussed the Connection object yet, this will be a little 
tough, but let’s assume for a minute that you know how to get connected in 
ADO.NET. Let me walk you through a small example.19 (Don’t worry about the code 
I don’t explain here—I discuss many of these points again in the next chapter.)

18. Actually, the name of the Connection object is SqlConnection, OleDbConnection, 
OdbcConnection, or <ProviderSpecific>Connection in the case of other vendors’ .NET Data 
Provider namespaces Connection object.

19. Located in the “\Examples\Chapter1\Data Adapter” folder on the CD.

120c01.fm  Page 30  Wednesday, January 16, 2002  5:17 PM



Introducing ADO.NET

3131

First, make sure that your application can see the SqlClient namespace. It’s 
already part of the .NET Framework, but not part of your application’s namespace.

using System.Data.SqlClient;

Next, within the address range of your Form’s20 class, define the objects and 
variables to be used.

public class Form1 : System.Windows.Forms.Form

{

    const string strConnect = "data source=.;database=biblio;uid=admin;pwd=pw";

    string strQuery   = 

        "Select Title, Price from Titles where Title like 'Hit%'";

    SqlConnection cn = new SqlConnection(strConnect);

    SqlDataAdapter da = new SqlDataAdapter();

    DataSet ds = new DataSet(); 

……

}

In the Form1_Load event handler, you set the DataAdapter object’s 
SelectCommand string to a SELECT query that returns a few rows from the Titles 
table. Actually, you shouldn’t have to open the connection explicitly, because, if the 
connection is not already open, the Fill method automatically opens it and then 
closes it again. If you use this auto-open technique, you need to be prepared for 
connection errors when you execute the Command. I’m using this approach 
because it’s more familiar to ADOc developers. I illustrate how to get the Fill 
method to manage connections in the next chapter and a simpler, more ADO.NET-
centric approach later in this chapter.

20. The default architecture in most examples (before I get to Chapter 10) is WinForms. The 
ADO.NET concepts I use apply universally in most cases.

NOTE In C#, objects and variables have private scope by default. I will 
have a little more to say on constructors later on—like where and how 
best to deal with them—but those familiar with VB .NET should just 
note here that strConnect is declared here as a const. This means that it 
is effectively a read-only field—a constant. Why? Well we use this string 
in the constructor argument for the new SqlConnection object. So what? 
Well in C#, non-static instance fields cannot be used to initialize other 
instance fields outside of a method, and this is quite different from 
VB .NET.

120c01.fm  Page 31  Wednesday, January 16, 2002  5:17 PM



Chapter 1

32

Notice the use of C#’s try and catch error handler.21 In the catch statement, you 
reference the System.Data.SqlClient.SqlException object simply as SqlException 
(remember, that you placed the using System.Data.SqlClient; statement in earlier 
so that you could make these “shorthand” references). SqlException exposes a 
Message and Error number (and more) that can be used to figure out what went 
wrong. The simplest way to provide all of the SqlException object information to a 
developer during debugging is to cast it to a string with a call to the ToString() 
method, sending this to the console output window via the Console.WriteLine() 
method. This is helpful when the intended recipient of an exception message is a 
developer, but not necessarily so useful for your program to spew it all out to a user 
while committing hari-kari. Your user doesn’t care much for which line in your 
code triggered the self-disembowelment—but more on exceptions in Chapter 9.

So here, if the cn.Open(); statement does not work, the next statement is never 
executed and the catch block will deal with the exception, depositing its remains 
to the console output window. 

private void Form1_Load(object sender, System.EventArgs e)

{

    try

    {

        cn.Open();

        da.SelectCommand = new SqlCommand(strQuery, cn);

    }

    catch(SqlException ex)

    {

        Console.WriteLine(ex.ToString());

    }

}

In the Button click-event, (did I say there are both DataGrid and Button controls 
on the form?) you use the DataAdapter Fill method to “run” the SelectCommand 
query in the specified DataAdapter. The results are fed to the DataSet object. By 
default, the Fill method names the DataSet “Table” (for some reason). I would 
have preferred “Data” or “DataSet” to discourage confusion with database tables. 
The Fill method is very (very) flexible as it can be invoked in a bevy of ways, as 
I describe in Chapter 4. The options I chose in this example name the resulting 
DataTable “TitlesandPrice.” In the next statement, I bind the DataSet to the 
DataGrid control. 

private void Button1_Click(object sender, System.EventArgs e)

{

21. Error handling is discussed in Chapter 9, “ADO.NET Error Management Strategies.”

120c01.fm  Page 32  Wednesday, January 16, 2002  5:17 PM



Introducing ADO.NET

3333

        da.Fill(ds, "Titles and Price"); // Defaults to "Table"

        DataGrid1.DataSource = ds.Tables["Titles and Price"];

} 

The result? Well, this code opens a connection, runs a query, and fills a grid 
with the resulting rows; but what’s missing? To start with: error handlers. This code 
does not deal with bad connections (except to print a debug message), bad 
queries, empty queries, or the fact that most applications will want to create 
parameter-based query instead of a hard-coded SELECT statement. However, 
baby steps come before running—especially in this neighborhood.

As I wrote this example, I was reminded of a few lessons:

• The using System.Data.SqlClient directive helps. Statement completion did 
not show the objects I was referencing nearly as quickly (if at all) until I 
added the using directive.

• The DataSet object is suitable for binding. That is, it can be assigned to the 
DataGrid or any bindable control for display. In my example, I bind the 
DataSet to a DataGrid control’s DataSource property.

• It helps to bind to a specific DataTable. If you bind to the DataSet, the data 
in the DataGrid isn’t immediately shown. This requires the user to drill down 
into a selected DataTable. It’s better to bind to a specific DataTable in the 
DataSet Tables collection.

• Use the form’s constructor method to initialize instance variables. It is not 
a good idea to initialize instance variables at class level declaration since 
they can’t be encapsulated in try/catch blocks to deal with any exceptions 
arising in the initialization.

TIP This is a practice I picked up years ago: Install crude error 
handlers from the very beginning. I encourage you to do the same. The 
crudest of course is a simple catch and casting of the exception object to 
a string that is sent to the console output window. This can save you an 
extra ten minutes as you try to figure out what went wrong. The default 
name for the “Filled” DataSet is “Table”. You want to override that in 
many cases. 

120c01.fm  Page 33  Wednesday, January 16, 2002  5:17 PM



Chapter 1

34

A Simpler Example

Okay, now that I have shown you an example based on how an ADOc developer 
might code, take a look at the same problem using the new ADO.NET approach. 
You should notice that there is no explicit call to open the connection—that is 
taken care of here silently by the Fill() method; I talk more about this later. Also, I 
am specifying properties for the class’ constructors to use when instantiating. 
Most .NET classes have one or several constructors used to set different combina-
tions of properties as the objects are being instantiated. After you understand 
these, you’ll really appreciate how they make your code easier to write.

private void btnRunQuery_Click(object sender, System.EventArgs e)

{

    try

    {

        SqlConnection cn = 

            new SqlConnection("data source=.;database=biblio;uid=admin;pwd=pw");

        SqlDataAdapter da = 

            new SqlDataAdapter(

            "Select Title, Price from Titles where Title like 'Hit%'", cn);

        DataSet ds = new DataSet();

        da.Fill(ds, "Titles and Price");

        DataGrid1.DataSource = ds.Tables["Titles and Price"];

    }

    catch (SqlException ex) 

    {

        Console.WriteLine(ex.ToString());

    }

}

ADO.NET’s Low-Level Data Stream

By this time you know that by default, ADOc Recordsets are created as RO/FO22 
firehose data structures. This low-level data stream permits data providers to 
return resultsets to the client as quickly as the LAN can carry them. While fast, the 
default firehose ADOc Recordset does not support record count, cursors, scrolling, 
updatability, caching, filters, sorting, or any costly overhead mechanism that 
could slow down the process of getting data back to the client. 

22. RO/FO: read-only/forward-only

120c01.fm  Page 34  Wednesday, January 16, 2002  5:17 PM



Introducing ADO.NET

3535

ADO.NET also supports this firehose functionality, but in a different way. After 
you establish a connection, you can stream data back to your application using the 
ADO.NET .NET Data Provider’s DataReader class (SqlDataReader, 
OdbcDataReader or OleDbDataReader) through the provider’s Command class 
(SqlCommand, OleDbCommand or OdbcCommand). 

Although the ADO.NET data stream is RO/FO, the fundamental data access 
technique is different from ADOc in a number of respects. Let’s walk through a 
simple example23 as an illustration. The following section of code declares 
Connection, DataAdapter, DataReader, and Command objects using the SqlClient 
.NET Data Provider. As you’ll see throughout this section, C# permits you to 
declare and initialize selected properties of the declared objects in a single line of 
code; although, as I said earlier, departing from VB .NET, C# does not permit you to 
initialize selected properties with other non-static instance fields outside of 
a method.

If you look carefully at this code snippet you’ll notice that SqlCommand cmd 
object is declared in the Form1 class outside of a method. By default this gives the 

cmd object private scope, ensuring that it is accessible to all methods within the 
class. I have, however, placed the constructor code 

cmd = new SqlCommand(strSQL, cn); 

for the cmd object within Form1’s constructor method Form1() after the call 
to InitializeComponent(); since this depends on other non-static instance fields 
strSQL and cn.24 

…

using System.Data.SqlClient; 

…

public class Form1 : System.Windows.Forms.Form

{

   …

    SqlConnection cn = 

        new SqlConnection("data source=.;database=biblio;uid=admin;pwd=pw");

    SqlDataAdapter da = new SqlDataAdapter();

    string strSQL = "Select Title, PubID from Titles where Title like ";

    SqlDataReader Dr;

    SqlCommand cmd;

   …

23. Located in the “\Examples\Chapter1\Data Stream” folder on the CD.

24. Well I suppose we could declare strSQL and cn as static but then that would force them to be 
common across all concurrent instances of Form1. 

120c01.fm  Page 35  Wednesday, January 16, 2002  5:17 PM



Chapter 1

36

public Form1()

{

   …

    InitializeComponent();

   …

    cmd = new SqlCommand(strSQL, cn);

}

   …

This next routine is fired when a button is clicked on the form. The ExecuteReader 
method is executed—instantiating a SqlClient.DataReader. When first opened, the 
DataReader does not expose a row of the resultset because its current row pointer 
is positioned before any rows (as in a Recordset when BOF = True). To activate the 
first and each subsequent row one at a time, you have to use the DataReader 
object’s Read method, which returns False when there are no (additional) rows 
available. Once read, you can’t scroll back to previously read rows—just as in the 

FO resultset in ADOc.
As each row is read, the code moves data from the columns exposed by the 

DataReader to a ListBox control. Note that you have to use the Add() method to 
add members to any collection—including ListBox and ComboBox control Items 
collections. You also have to be very careful about moving the data out of the 
DataReader columns; each column must be specifically cast as you go—converting 
each to a datatype suitable for the target. In order to code these conversions 
correctly, your code will have to know what datatypes are being returned by the 
resultset or use the GetValue method. .NET is pretty unforgiving when it comes to 
automatically morphing datatypes. 

TIP I use the ListBox BeginUpdate and EndUpdate methods to 
prevent needless painting while I’m filling it. 

120c01.fm  Page 36  Wednesday, January 16, 2002  5:17 PM



Introducing ADO.NET

3737

private void Button1_Click(object sender, System.EventArgs e)

{

    cn.Open(); //The connect string was defined when the object was created

    cmd.CommandText = strSQL + "'" + TextBox1.Text + "%'";

    Dr = cmd.ExecuteReader();

    ListBox1.Items.Clear();  // clear the listbox

    ListBox1.BeginUpdate();  // Prevent the listbox from painting

    

    while (Dr.Read()) // get the first (or next) row

    {

        ListBox1.Items.Add(Dr.GetString(0) + " - " + Dr.GetInt32(1).ToString());

    }

    

    ListBox1.EndUpdate();  // Let the listbox paint again

    

    Dr.Close();   // close the data reader.

}

120c01.fm  Page 37  Wednesday, January 16, 2002  5:17 PM



120c01.fm  Page 38  Wednesday, January 16, 2002  5:17 PM



http://www.springer.com/978-1-59059-012-6


