Chapter 1
Introduction

1.1 Overview
This chapter briefly describes:

¢ what this book is about

¢ what this book tries to do

¢ what this book tries not to do

¢ auseful feature of the book: the exercises.

1.2 What This Book Is About

This book is about three key topics of computer science, namely computable lan-
guages, abstract machines, and logic.

Computable languages are related to what are usually known as “formal lan-
guages”. I avoid using the latter phrase here because later on in the book I distin-
guish between formal languages and computable languages. In fact, computable
languages are a special type of formal languages that can be processed, in ways
considered in this book, by computers, or rather abstract machines that represent
computers.

Abstract machines are formal computing devices that we use to investigate prop-
erties of real computing devices. The term that is sometimes used to describe
abstract machines is automata, but that sounds too much like real machines, in
particular the type of machines we call robots.

The logic part of the book considers using different types of formal logic to
represent things and reason about them. The logics we consider all play a very
important role in computing. They are Boolean logic, propositional logic, and first
order predicate logic (FOPL).

This book assumes that you are a layperson, in terms of computer science. If you
are a computer science undergraduate, as you might be if you are reading this
book, you may by now have written many programs. So, in this introduction we will
draw on your experience of programming to illustrate some of the issues related to
formal languages that are introduced in this book.

The programs that you write are written in a formal language. They are
expressed in text which is presented as input to another program, a compiler
or perhaps an interpreter. To the compiler, your program text represents a code,



2 Introduction

which the compiler knows exactly how to handle, as the rules by which that code is
constructed are completely specified inside the compiler. The type of language in
which we write our programs (the programming language), has such a well-defined
syntax (rules for forming acceptable programs) that a machine can decide whether
or not the program you enter has the right even to be considered as a proper pro-
gram. This is only part of the task of a compiler, but it is the part in which we are
most interested.

For whoever wrote the compiler,and whoever uses it, it is very important that the
compiler does its job properly in terms of deciding that your program is syntactic-
ally valid. The compiler writer would also like to be sure that the compiler will
always reject syntactically invalid programs as well as accepting those that are syn-
tactically valid. Finally, the compiler writer would like to know that his or her com-
piler is not wasteful in terms of precious resources: if the compiler is more complex
than it needs to be, if it carries out many tasks that are actually unnecessary, and so
on. In this book we see that the solutions to such problems depend on the type of
language being considered.

Now, because your program is written in a formal language that is such that
another program can decide if your program is a program, the programming lan-
guage is a computable language. A computable language then, is a formal language
that is such that a computer can understand its syntax. Note that we have not dis-
cussed what your program will actually do, when it is run: the compiler does not
really understand that at all. The compiler is just as happy to compile a program
that does not do what you intended as it is to compile one that does (as you will
know, if you have ever done any programming).

The book is in three parts. Part 1: Languages and Machines is concerned with the
relationship between different types of formal languages and different types of the-
oretical machines (abstract machines) that can serve to process those languages, in
ways we consider later. So, the book is not really directly concerned with program-
ming languages. However, much of the material in the first part of the book is
highly relevant to programming languages, especially in terms of providing a use-
ful theoretical background for compiler writing, and even programming language
design. For that reason, some of the examples used in the book are from program-
ming languages (particularly Pascal in fact, but you need not be familiar with the
language to appreciate the examples).

In Part 1, we study four different types of formal languages, and see that each of
these types of formal language is associated with a particular type of abstract
machine. The four types of languages we consider were actually defined by the
American linguist Noam Chomsky, and the classification of formal languages he
defined has come to be called the Chomsky hierarchy. It is a hierarchy, since it
defines a general type of language (type 0), then a restricted version of that general
type (type 1), then a restricted version of that type (type 2), and then finally the
most restricted type of all (type 3).

The types of language considered are very simple to define, and even the most
complex of abstract machines is also quite simple. What is more, all of the types of
abstract machine we consider in this book can be represented in diagrammatic
form. The most complex abstract machine we look at is called the Turing machine
(TM), after Alan Turing, the mathematician who designed it. The TM is, in some
sense, the most powerful computational device possible, as you will see in Part 2 of
the book.

The chapters of Part 1 are shown in Figure 1.1.
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Figure 1.1. The chapters of Part 1: Languages and Machines

By the end of Part 1 of the book you should have an intuitive appreciation of
computable languages. Part 2: Machines and Computation investigates computa-
tion in a wider sense. We see that we can discuss the types of computation carried
out by real computers in terms of our abstract machines. We see that a machine,
called a finite state transducer, which appears to share some properties with real
computers, is not really a suitable general model of real computers. Part of the rea-
son for this is that this machine cannot do multiplication or division. We see that
the TM is capable of multiplication and division, and any other tasks that real com-
puters can do. We even see that the TM can run programs. What is more, since the
TM effectively has unlimited storage capacity, it turns out to be more powerful than
any real computer could ever be.

One interesting property of TMs is that we cannot make them any more power-
ful than they are by adding extra computational facilities. Nevertheless, TMs use
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only one data structure, a potentially infinite one-dimensional array of symbols,
called a tape, and only one type of instruction. A TM can simply read a symbol
from its tape, replace that symbol by another, and then move to the next symbol on
the right or left in the tape. We find that if a TM is designed so that it carries out
many processes simultaneously, or uses many additional tapes, it cannot perform
any more computational tasks than the basic serial one-tape version. In fact, it has
been established that no other formalisms we might create for representing com-
putation give us any more functional power than does a TM. This assertion is
known as Turing’s thesis.

We see that we can actually take any TM, code it and its data structure (tape) as
a sequence of zeros and ones, and then let another TM run the original TM as if it
were a program. This TM can carry out the computation described by any TM. We
thus call it the universal TM (UTM). However, it is simply a standard TM, which,
because of the coding scheme used, only needs to expect either a zero or a one
every time it examines a symbol on its tape. The UTM is an abstract counterpart of
the real computer.

The UTM has unlimited storage, so no real computer can exceed its power. We use
this fact as the basis of some extremely important results of computer science, one
of which is to see that the following problem cannot be solved, in the general case:

Given any program, and appropriate input values to that program, will that
program terminate when run on that input?

In terms of TMs, rather than programs, this problem is known as the halting prob-
lem. We see that the halting problem is unsolvable,! which has implications both for
the real world of computing, and for the nature of formal languages. We also see that
the halting problem can be used to convince us that there are formal languages that
cannot be processed by any TM, and thus by any program. This enables us to finally
define the relationship between computable languages and abstract machines.

At the end of Part 2, our discussion about abstract machines leads us on to a
topic of computer science, algorithm complexity, that is very relevant to program-
ming. In particular, we discuss techniques that enable us to predict the running
time of algorithms, and we see that dramatic savings in running time can be made
by certain cleverly defined algorithms.

Figure 1.2 shows the chapters of Part 2 of the book.

The final part of the book, Part 3: Computation and Logic considers formal
logical systems as tools for representation, reasoning and computation. We first
consider the system known as Boolean logic. This form of logic is important
because it forms the foundation of digital computer circuitry. We show how
Boolean logic can be used to solve problems, and we introduce the truth table as a
tool for checking the validity of logical statements.

In the same chapter, we consider propositional logic. This logic includes the basic
operators of Boolean logic, along with an additional operator that represents impli-
cation (“if x is true then so is y”). We consider logical rules of inference, which
enable us to solve problems by applying the rules to a propositional representation
of the problem. We discover that propositional logic is not sufficiently powerful to
represent certain things, which leads us on to what is known as FOPL.

FOPL occupies the final two chapters of the book. We see how FOPL can be used
to represent and reason about properties that apply to all objects in a domain, and
properties that apply to one or more objects in that domain. We consider what
is called classical FOPL reasoning, when we represent a domain as a set of FOPL
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Figure 1.2. The chapters of Part 2: Machines and Computation

statements and then use rules of inference to attempt to derive a statement we
believe to be true, and are thus trying to prove. In the final chapter we consider a
computational technique for reasoning in FOPL known as resolution. We also relate
the discussion of resolution to the real world of programming, by briefly consider-
ing the logic programming language PROLOG.

Throughout Part 3, we relate our discussions to issues from the first two parts of
the book. We discuss the linguistic nature of logic and the time and space require-
ments of logical reasoning. We end the book by discussing the relationship between
two key results of twentieth century mathematics (Godel’s theorem and Turing’s
thesis) and their implications for computer science.

Figure 1.3 shows the titles of the chapters of Part 3.

1.3 What This Book Tries to Do

This book attempts to present formal computer science in a way that you, the stu-
dent, can understand. This book does not assume that you are a mathematician.
It assumes that you are not particularly familiar with formal notation, set theory,
and so on. As far as possible, excessive formal notation is avoided. When formal
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notation or jargon is unavoidable, the formal definitions are usually accompanied
by short explanations, at least for the first few times they appear.

Overall, this book represents an understanding of formal languages, abstract
machines and logic which lies somewhere beyond that of a layperson, but is con-
siderably less than that of a mathematician. There is a certain core of material in
the subject that any student of computer science, or related disciplines, should be
aware of. Nevertheless, many students do not become aware of this important and
often useful material. Sometimes they are discouraged by the way it is presented.
Sometimes, books and lecturers try to cover too much material, and the funda-
mentals get lost along the way.

Above all, this book tries to highlight the connections between what might ini-
tially appear to be distinct topics within computer science.

1.4 What This Book Tries Not to Do

This book tries not to be too formal. References to a small number of formal books
are included in the section “Further Reading”, at the end of the book. In these
books you will find many theorems, usually proved conclusively by logical proof
techniques. The “proofs” appearing in this book are included usually to establish
something absolutely central, or that we need to assume for subsequent discussion.
Where possible, such “proofs” are presented in an intuitive way.

This is not to say that proofs are unimportant. I assume that, like me, you are the
type of person who has convinced themselves that something is right before you
really accept it. However, the proofs in this book are presented in a different way
from the way that proofs are usually presented. Many results are established
“beyond a reasonable doubt” by presenting particular examples and encouraging
the reader to appreciate ways in which the examples can be generalised. Of course,
this is not really sound logic, as it does not argue throughout in terms of the
general case. Some of the end of chapter exercises present an opportunity to prac-
tice or complete proofs. Such exercises often include hints, and/or sample answers.
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1.5 The Exercises

At the end of each of Chapters 2-15, you will find a small number of exercises to
test and develop your knowledge of the material covered in that chapter. Most of
the exercises are of the “pencil and paper” type, though some of them are medium
scale programming problems. Any exercise marked with a dagger (1) has a sample
solution in the “Solutions to Selected Exercises” section near the end of the book.
You do not need to attempt any of the exercises to fully understand the book.
However, although the book attempts to make the subject matter as informal as
possible, in one very important respect it is very much like maths: you need to prac-
tice applying the knowledge and skills you learn or you do not retain them.

Finally, some of the exercises give you an opportunity to investigate additional
material that is not covered in the chapters themselves.

1.6 Further Reading

A small section called “Further Reading” appears towards the end of the book. This
is not meant to be an exhaustive list of reading material. There are many other
books on formal computer science than are cited here. The further reading list
also refers to books concerned with other fields of computer science (for example,
computer networks) where certain of the formal techniques in this book have been
applied.

Brief notes accompany each title cited.

1.7 Some Advice

Most of the material in this book is very straightforward, though some requires a
little thought the first time it is encountered. Students of limited formal mathemat-
ical ability should find most of the subject matter of the book reasonably access-
ible. You should use the opportunity to practice provided by the exercises, if
possible. If you find a section really difficult, ignore it and go on to the next. You will
probably find that an appreciation of the overall result of a section will enable you
to follow the subsequent material. Sections you omit on first reading may become
more comprehensible when studied again later.

You should not allow yourself to be put off if you cannot see immediate applica-
tions of the subject matter. There have been many applications of grammar,
abstract machines and logic in computing and related disciplines, some of which
are referred to by books in the “Further Reading” section.

This book should be interesting and relevant to any intelligent reader who has an
interest in Computer science and approaches the subject matter with an open
mind. Such a reader may then see the subject of languages, machines and logic as
an explanation of the simple yet powerful and profound abstract computational
processes beneath the surface of the digital computer.

Notes

1. You have probably realised that the halting problem is solvable in certain cases.
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Chapter 2
Elements of Formal Languages

2.1 Overview

In this chapter, you learn about:

¢ the building blocks of formal languages: alphabets and strings

e grammars and languages

* away of classifying grammars and languages: the Chomsky hierarchy

¢ how formal languages relate to the definition of programming languages.

.. and you are introduced to:

* writing definitions of sets of strings
e producing sentences from grammars
¢ using the notation of formal languages.

2.2 Alphabets

An alphabet is a finite collection (or set) of symbols. The symbols in the alphabet
are entities which cannot be taken apart in any meaningful way, a property which
leads to them being sometimes referred to as atomic. The symbols of an alphabet
are simply the “characters”, from which we build our “words”. As already said, an
alphabet is finite. That means we could define a program that would print out its
elements (or members) one by one, and (this last part is very important) the
program would terminate sometime, having printed out each and every element.

For example, the small letters you use to form words of your own language (for
example, English) could be regarded as an alphabet, in the formal sense, if written
down as follows:

{a,b,c,d,e,....x,y,2}.

The digits of the (base 10) number system we use can also be presented as an
alphabet:

{0,1,2,3,4,5,6,7,8,9}.

11
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2.3 Strings

A string is a finite sequence of zero or more symbols taken from a formal alphabet.
We write down strings just as we write the words of this sentence, so the word
“strings” itself could be regarded as a string taken from the alphabet of letters,
above. Mathematicians sometimes say that a string taken from a given alphabet is
a string over that alphabet, but we will say that the string is taken from the alphabet.
Let us consider some more examples. The string abc is one of the many strings
which can be taken from the alphabet {g, b, ¢, d}. So is aabacab. Note that duplicate
symbols are allowed in strings (unlike in sets). If there are no symbols in a string
it is called the empty string, and we write it as & (the Greek letter epsilon), though
some write it as \ (the Greek letter lambda).

2.3.1 Functions that Apply to Strings

We now know enough about strings to describe some important functions that we
can use to manipulate strings or obtain information about them. Table 2.1 shows
the basic string operations (note that x and y stand for any strings).

You may have noticed that strings have certain features in common with arrays
in programming languages such as Pascal, in that we can index them. To index a
string, we use the notation x;, as opposed to something like x[i]. However, strings
actually have more in common with the list data structures of programming lan-
guages such as LISP or PROLOG, in that we can concatenate two strings together,
creating a new string. This is like the append function in LISP, with strings corres-
ponding to lists, and the empty string corresponding to the empty list. It is only
possible to perform such operations on arrays if the programming language allows

Table 2.1. The basic operations on strings

Operation Written as Meaning Examples and comments
Length |x] The number of |abcabeal = 7
symbols in la| =1
the string x le] =0
Concatenation xy The string formed let x = abca
by writing down lety =ca
the string x followed then:
immediately by the xy = abcaca
string y concatenating let x = <any string>
the empty string to then:
any string makes no xe =x
difference £X=x
Power x", where n is a whole The string formed by let x = abca
number =0 writing down n copies then:
of the string x x* = abcaabcaabca
x'=x
Note:
PL=¢
Index x;, where i is a whole The ith symbol in the let x = abca
number string x (i.e. treats the then:
string as if it were an X =a
array of symbols) X, =D
X3=¢

X4 =a
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arrays to be of dynamic size (which Pascal, for example, does not). However, many
versions of Pascal now provide a special dynamic “string” data type, on which
operations such as concatenation can be carried out.

2.3.2 Useful Notation for Describing Strings

As described above, a string is a sequence of symbols taken from some alphabet.
Later, we will need to say such things as:

suppose x stands for some string taken from the alphabet A.

This is a rather clumsy phrase to have to use. A more accurate, though even clum-
sier, way of saying it is to say:

x is an element of the set of all strings which can be formed using zero or more
symbols of the alphabet A.

There is a convenient and simple notational device to say this. We represent the
latter statement as follows:

x € A%,

which relates to the English version as shown in Figure 2.1.
On other occasions, we may wish to say something like:

x is an element of the set of all strings which can be formed using one or more
symbols of the alphabet A,

for which we write:
xE AT,

which relates to the associated verbal description as shown in Figure 2.2.
Suppose we have the alphabet {a, b, c}. Then {a, b, c}* is the set

{e,a,b,c,aa,ab,ac, ba, bb, bc, ca, cb, cc,aaa, aab, aac, aba, abb, abc, ...}.

Clearly, for any non-empty alphabet (i.e. an alphabet consisting of one or more
symbols), the set so defined will be infinite.

Earlier in the chapter, we discussed the notion of a program printing out the
elements of a finite set, one by one, terminating when all of the elements of the
set had been printed. If A is some alphabet, we could write a program to print out
all the strings in A*, one by one, such that each string only gets printed out once.
Obviously, such a program would never terminate (because A* is an infinite set),
but we could design the program so that any string in A* would appear within
a finite period of time. Table 2.2 shows a possible method for doing this (as an

x [is an element of][ the set of strings that can be formed using zero or more symbols from the alphabet 4 |

xe A*

Figure 2.1. How we specify an unknown, possibly empty, string
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x |is an element of | | the set of strings that can be formed using one or more symbols from the alphabet 4 |

xeA*t

Figure 2.2. How we specify an unknown, non-empty, string

exercise, you might like to develop the method into a program in your favourite
programming language). The method is suggested by the way the first few elements
of the set A*, for A = {a, b, c} were written down, above.

An infinite set for which we can print out any given element within a finite time
of starting the program is known as a countably infinite set. I suggest you think
carefully about the program in Table 2.2, as it may help you to appreciate just
what is meant by the terms “infinite” and “finite”. Clearly, the program specified in
Table 2.2 would never terminate. However, on each iteration of the loop, i would
have a finite value, and so any string printed out would be finite in length (a neces-
sary condition for a string). Moreover, any string in A* would appear after a finite
period of time.

Table 2.2. Systematically printing out all strings in A*

begin
<print some symbol to represent the empty string™>
ir=1
whilei >= 0do
<print each of the strings of length i>
ir=i+1
endwhile
end

2.4 Formal Languages

Now we know how to express the notion of all of the strings that can be formed
by using symbols from an alphabet, we are in a position to describe what is meant
by the term formal language. Essentially, a formal language is simply any set of
strings formed using the symbols from any alphabet. In set parlance, given some
alphabet A4,

a formal language is “any (proper or non-proper) subset of the set of all strings
which can be formed using zero or more symbols of the alphabet A”.

The formal expression of the above statement can be seen in Figure 2.3.

A proper subset of a set is not allowed to be the whole of a given set. For example,
the set {a, b, c} is a proper subset of the set {a, b, ¢, d}, but the set {a, b, ¢, d} is not.

A non-proper subset is a subset that is allowed to be the whole of a set.

So, the above definition says that, for a given alphabet, A, A* is a formal language,
and so is any subset of A*. Note that this also means that the empty set, written “{ }”
(sometimes it is written as &) is also a formal language, since it is a subset of A*
(the empty set is a subset of any set).
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the set of strings that can be formed using zero or more symbols
any |proper or non-proper subset of | [from the alphabet 4

xC A*

Figure 2.3. The definition of a formal language

A formal language, then, is any set of strings. To indicate that the strings are part
of a language, we usually call them sentences. In some books, sentences are called
words. However, while the strings we have seen so far are similar to English words,
in that they are unbroken sequences of alphabetic symbols (for example, abca),
later we will see strings that are statements in a programming language, such as

if i>1 then x = x+ 1.

It seems peculiar to call a statement such as this a “word”.

2.5 Methods for Defining Formal Languages

Our definition of a formal language as being a set of strings that are called sen-
tences is extremely simple. However, it does not allow us to say anything about the
form of sentences in a particular language. For example, in terms of our definition,
the Pascal programming language, by which we mean “the set of all syntactically
correct Pascal programs”, is a subset of the set of all strings which can be formed
using symbols found in the character set of a typical computer. This definition,
though true, is not particularly helpful if we want to write Pascal programs. It tells
us nothing about what makes one string a Pascal program, and another string not
a Pascal program, except in the trivial sense that we can immediately rule out any
strings containing symbols that are not in the character set of the computer. You
would be most displeased if, in attempting to learn to program in Pascal, you
opened the Pascal manual to find that it consisted entirely of one statement which
said: “Let C be the set of all characters available on the computer. Then the set of
compilable Pascal programs, P, is a subset of C*”.

One way of informing you what constitutes “proper” Pascal programs would be
to write all the proper ones out for you. However, this would also be unhelpful,
albeit in a different way, since such a manual would be infinite, and thus could
never be completed. Moreover, it would be a rather tedious process to find the par-
ticular program you required.

In this section we discover three approaches to defining a formal language.
Following this, every formal language we meet in this book will be defined accord-
ing to one or more of these approaches.

2.5.1 Set Definitions of Languages

Since a language is a set of strings, the obvious way to describe some language is
by providing a set definition. Set definitions of the formal languages in which we
are interested are of three different types, as now discussed.
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The first type of set definition we consider is only used for the smallest finite lan-
guages, and consists of writing the language out in its entirety. For example,

{e,abc, abbba, abca}

is a language consisting of exactly four strings.

The second method is used for infinite languages, but those in which there is
some obvious pattern in all of the strings that we can assume the reader will induce
when presented with sufficient instances of that pattern. In this case, we write out
sufficient sentences for the pattern to be made clear, then indicate that the pattern
should be allowed to continue indefinitely, by using three dots “...”. For example,

{ab, aabb, aaabbb, aaaabbbb, ...}

suggests the infinite language consisting of all strings which consist of one or
more as followed by one or more bs and in which the number of as equals the
number of bs.

The final method, used for many finite and infinite languages, is to use a set
definition to specify how to construct the sentences in the language, i.e. provide
a function to deliver the sentences as its output. In addition to the function itself,
we must provide a specification of how many strings should be constructed. Such
set definitions have the format shown in Figure 2.4.

For the “function to produce strings”, of Figure 2.4, we use combinations of
the string functions we considered earlier (index, power, and concatenation). A
language that was defined immediately above,

all strings which consist of one or more as followed by one or more bs and in
which the number of as equals the number of bs

can be defined using our latest method as:
{alb: i=1}.

The above definition is explained in Table 2.3.
From Table 2.3 we can see that {a'b": i = 1} means:

the set of all strings consisting of i copies of a followed by i copies of b such that
iis is allowed to take on the value of each and every whole number value greater
than or equal to 1.

function to produce strings range of arguments to function

{ Y o

this means “such that”
(sometimes written “I””)

Figure 2.4. Understanding a set definition of a formal language
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Table 2.3. What the set definition {a’b% i = 1} means

Notation String function Meaning

a N/A The string a

b N/A The string b

al Power The string formed by writing down i copies of the string a
b Power The string formed by writing down 7 copies of the string b
a'bt Concatenation The string formed by writing down i copies of a followed

by i copies of b
1i=1 N/A Such that i is allowed to take on the value of each and every

whole number value greater than or equal to 1 (we could
have written i > 0)

Changing the right-hand side of the set definition can change the language defined.
For example, {a’b: i = 0} defines:

the set of all strings consisting of i copies of a followed by i copies of b such that
iis is allowed to take on the value of each and every whole number value greater
than or equal to 0.

This latter set is our original set, along with the empty string (since a° = &,

b’ = &, and therefore a’b’ = se = &). In set parlance, {a'b": i = 0} is the union of
the set {a'b" i =1} with the set {&}, which can be written as:

{alb:i=0} = {a'b:i= 1} U {e}.

The immediately preceding example illustrates a further useful feature of sets.
We can often simplify the definition of a language by creating several sets and
using the union, intersection and set difference operators to combine them into
one. This sometimes removes the need for a complicated expression in the right-
hand side of our set definition. For example, the definition

{albicki=1,j=0, k=0, ifi=3 thenj=0 elsek =0},
is probably better represented as
{aid:i=3,j=0lU{ab:1<i<3,j=0}
which means

the set of strings consisting of three or more as followed by zero or more cs, or
consisting of one or two as followed by zero or more bs.

2.5.2 Decision Programs for Languages

We have seen how to define a language by using a formal set definition. Another
way of describing a language is to provide a program that tells us whether or not
any given string of symbols is one of its sentences. Such a program is called a deci-
sion program. If the program always tells us, for any string, whether or not the
string is a sentence, then the program in an implicit sense defines the language, in
that the language is the set containing each and every string that the program
would tell us is a sentence. That is why we use a special term, “sentence”, to describe
a string that belongs to a language. A string input to the program may or may not
be a sentence of the language; the program should tell us. For an alphabet 4, a
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Table 2.4. A decision program for a formal language

1: read(sym) {assume read just gives us the next symbol in the string being examined}
case sym of
eos: goto N {assume read returns special symbol “eos” if at end of string}
“a”: goto 2
“b”: gotoN
“c”: gotoN
endcase {case statement selects between alternatives as in Pascal}
2: read(sym)
case sym of
eos: gotoY {if we get here we have a string of one a which is ok}
“a’: goto3
“b”: goto6 {we can have a b after one a}
“c”: gotoN {any cs must follow three or more as - here we’ve only had one}
endcase
3: read(sym)
case sym of
eos: gotoY ({if we get here we've read a string of two as which is OK}
“a”: goto4
“b”: goto6 {we can have a b after two as}
“c”: goto N {any cs must follow three or more as - here we’ve only had two}
endcase
4: read(sym)
case sym of
eos: gotoY {if we get here we’ve read a string of three or more as which is OK}
“a”: goto4 {weloop here because we allow any number of as = 3}
“b”: goto N {b can only follow one or two as}
“c”: goto5 {csare OK after three or more as}
endcase
5: read(sym)
case sym of
eos: gotoY ({if we get here we've read =3 as followed by =1 ¢s which is OK}
“a”: goto N {as after cs are not allowed}
“b”: goto N {bs are only allowed after one or two as}
“c”: goto5 {weloop here because we allow any number of cs after =3 as}
endcase
6: read(sym)
case sym of
eos: gotoY {we get here if we’ve read 1 or 2 as followed by =1 bs - OK}
“a”: gotoN {no as allowed after bs}
“b”: goto6 {we loop here because we allow any number of bs after 1 or 2 as}
“c”: gotoN {no cs are allowed after bs}
endcase
Y: write(“yes”)
goto E
N: write(“no”)
goto E
E: {end of program}

language is any subset of A*. For any interesting language, then, there will be many
strings in A* that are not sentences.

Later in this book we will be more precise about the form these decision pro-
grams take, and what can actually be achieved with them. For now, however, we will
consider an example to show the basic idea.

If you have done any programming at all, you will have used a decision program
on numerous occasions. The decision program you have used is a component of
the compiler. If you write programs in a language such as Pascal, you submit your
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program text to a compiler, and the compiler tells you if the text is a syntactically
correct Pascal program. Of course, the compiler does a lot more than this, but a
very important part of its job is to tell us if the source text (string) is a syntactically
correct Pascal program, i.e. a sentence of the language called “Pascal”.

Consider again the language

faicd:i=3, j=0U{ab:1<i<3,j=0}
ie.

the set of strings consisting of three or more as followed by zero or more cs, or
consisting of one or two as followed by zero or more bs.

Table 2.4 shows a decision program for the language.

The program of Table 2.4 is purely for illustration. In the next chapter we consi-
der formal languages for which the above type of decision program can be created
automatically. For now, examine the program to convince yourself that it correctly
meets its specification, which can be stated as follows:

given any string in {a, b, c}*, tell us whether or not that string is a sentence of
the language

{aichi=3, j=0}U{ab:1<i<3, j=0}

2.5.3 Rules for Generating Languages

We have seen how to describe formal languages by providing set definitions, and
we have encountered the notion of a decision program for a language. The third
method, which is the basis for the remainder of this chapter, defines a language by
providing a set of rules to generate sentences of a language. We require that such
rules are able to generate every one of the sentences of a language, and no others.
Analogously, a set definition describes every one of the sentences, and no others, and
a decision program says “yes” to every one of the sentences, and to no others.

There are several ways of specifying rules to generate sentences of a language.
One popular form is the syntax diagram. Such diagrams are often used to show the
structure of programming languages, and thus inform you how to write syntac-
tically correct programs (syntax is considered in more detail in Chapter 3).

Figure 2.5 shows a syntax diagram for the top level syntax of the Pascal “pro-
gram” construct.

The diagram in Figure 2.5 tells us that the syntactic element called a “program”
consists of

the string “PROGRAM? (entities in rounded boxes and circles represent actual
strings that are required at a given point),

program

IDENTIFIER

PROGRAM

| IDENTIFIER

Figure 2.5. Syntax diagram for the Pascal construct “program”
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followed by something called

an “identifier” (entities in rectangles are those which need elaborating in some
way that is specified in a further definition),

followed by
an open bracket “(”,
followed by

a list of one or more “identifiers”, in which every one except the last is followed

« » «,»

by a comma, “,”, followed by a semicolon, “;”,
followed by

a close bracket,“)”,
followed by

something called a “block”,
followed by

a full stop,“.”.
In Figure 2.6 we see the syntax diagram for the entity “identifier”.

Figure 2.6 shows us that an “identifier” consists of a letter followed by zero or
more letters and/or digits.

The following fragment of Pascal:

program calc (input, output, infile26, outfile23);

associates with the syntax diagram for “program” as shown in Figure 2.7.

Of course, the diagrams in Figures 2.5 and 2.6, together with all of the other
diagrams defining the syntax of Pascal, cannot tell us how to write a program to
solve a given problem. That is a semantic consideration, relating to the meaning
of the program text, not only its form. The diagrams merely describe the syntactic
structure of constructs belonging to the Pascal language.

An alternative method of specifying the syntax of a programming language is to
use a notation called Backus-Naur form (BNF).! Table 2.5 presents a BNF version
of our syntax diagrams from above.

The meaning of the notation in Table 2.5 should be reasonably clear when you
see its correspondence with syntax diagrams, as shown in Figure 2.8.

Formalisms such as syntax diagrams and BNF are excellent ways of defining
the syntax of a language. If you were taught to use a programming language, you
may never have looked at a formal definition of its syntax. Analogously, you
probably did not learn your own “natural” language by studying a book describing
its grammar. However, many programming languages are similar to each other in

Table 2.5. BNF version of Figures 2.5 and 2.6

<program>> ::= <program heading> <block>

<program heading™> := program <identifier> (<identifier> {, <identifier>})
<identifier> ::= <letter> {<letter or digit>}

<letter or digit> ::= <letter> | <digit>
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: LETTER ﬁ

identifier

~ LETTER y

A

P A
- DIGIT

Figure 2.6. Syntax diagram for a Pascal “identifier”

program

——
] IDENTIFIER

4 >] IDENTIFIER |

programl |calc| |input| |output| |Z| | infile26| |Z| | outfile23 | |Z|

Figure 2.7. How a syntax diagram describes a Pascal statement

IDENTIFIER <identifier>

PROGRAM [PECT AT

IDENTIFIER

<identifier> {, <identifier>}

‘r; LETTER '

— <letter> | <digit>

DIGIT

Figure 2.8. How syntax diagrams and BNF correspond
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many respects, and learning a subsequent programming language is made easier if
the syntax is clearly defined. Syntax descriptions can also be useful for refreshing
your memory about the syntax of a programming language with which you are
familiar, particularly for types of statements you rarely use.

If you want to see how concisely a whole programming language can be
described in BNF, see the original definition of the Pascal language,? from where
the above Pascal syntax diagrams and BNF descriptions were obtained. The BNF
definitions for the whole Pascal language are presented in only five pages.

2.6 Formal Grammars

A grammar is a set of rules for generating strings. The grammars we will use in the
remainder of this book are known as phrase structure grammars (PSGs). Here, our
formal definitions will be illustrated by reference to the following grammar:

S— aS|bB
B — bB|bC|cC
C—cCle.
In order to use our grammar, we need to know something about the status of the

symbols that we have used. Table 2.6 provides an informal description of the
symbols that appear in grammars such as the one above.

2.6.1 Grammars, Derivations, and Languages

Table 2.7 presents an informal description, supported by examples using our gram-
mar above, of how we use a grammar to generate a sentence.

Table 2.6. The symbols that make up the PSG:
S— aS|bB
B—bB|bC|cC
C—cC|c

Symbols  Name and meaning

S,B,C Non-terminal symbols
[BNF: things in angled brackets, for example <identifier>]

S Special non-terminal, called a start, or sentence, symbol
[BNF: in our example above, <program>]

a,b,c Terminal symbols: only these symbols can appear in sentences
[BNF: the underlined terms (for example program) and punctuation symbols
(for example ;)]

- Production arrow
[BNE: the symbol “::="]
S Production rule, usually called simply a production (or sometimes we will just use the

word rule). Means “S produces aS”, or “S can be replaced by aS”. The string to the left of —
is called the left-hand side of the production, the string to the right of — is called the
right-hand side

[BNE: this rule would be written as <S> ::= a <§> ]

“Or”,s0 B— bB | bC| ¢C means “B produces bB or bC or ¢C”. Note that this means that
B — bB | bC| cCis really three production rules, i.e. B— bB, B — bC, and B — cC. So there
are seven production rules altogether in the example grammar above [BNF: exactly the same]




Elements of Formal Languages 23

Table 2.7. Using a PSG

Action taken Resulting string Production applied
Start with §, the start symbol S
If a substring of the resulting string matches as S—aSs

the left-hand side of one or more productions,
replace that substring by the right-hand
side of any one of those productions

Same as above aaS S—aS
Same as above aabB S— bB
Same as above aabcC B—cC
Same as above aabccC C—cC
Same as above aabcce C—c

If the result string consists entirely
of terminals, then stop

As you can see from Table 2.7, there is often a choice as to which rule to apply at
a given stage. For example, when the resulting string was aaS, we could have
applied the rule § — aS$ as many times as we wished (adding another a each time).
A similar observation can be made for the applicability of the C — ¢C rule when the
resulting string was aabcC, for example.

Here are some other strings we could create, by applying the rules in various ways:

abce, bbbbe, and a*b*c.

You may like to see if you can apply the rules yourself to create the above strings.
You must always begin with a rule that has S on its left-hand side (that is why S is
called the start symbol).

We write down the S symbol to start the process, and we merely repeat the
process described in Table 2.7 as

if a substring of the resulting string matches the left-hand side of one or more
productions, replace that substring by the right-hand side of any one of those
productions,

until the following becomes true:
if the result string consists entirely of terminals,
at which point we:
stop.
You may wonder why the process of matching the substring was not presented as:

if a non-terminal symbol in the resulting string matches the left-hand side of one
or more productions, replace that non-terminal symbol by the right-hand side of
any one of those productions.

This would clearly work for the example grammar given. However, as discussed
in the next section, grammars are not necessarily restricted to having single non-
terminals on the left-hand sides of their productions.

The process of creating strings using a grammar is called deriving them, so
when we show how we have used the grammar to derive a string (as was done in
Table 2.7), we are showing a derivation for (or of ) that string.
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Box 1 allows us to start
Aa the string with as many as

S
as we like (including
none). However, we can
only get out of box 1 by

generating a b, at which

S—>aS —  » S bB point the B forces us to
gotobox2...

...in box 2 we
can either
generate one b

alone (left B
path), or two or 2
more bs
(central path
then fork
left), or one or
more bs B — bB
followed by one
¢ (central
path then \
fork right), B — bC B — cC
or no bs and
justonec
(right path).
At the end of
any of the
above paths
we are
forced into
box 3... |
...in box 3 we
generate
either a
C 3 single ¢
(right path),
or two or more
cs (left path).
At the end of
> either path, a
C = cC C - c terminal
string is
obtained, so
the
derivation is
complete.

Figure 2.9. Working out all of the terminal strings that a grammar can generate

Let us now consider all of the “terminal strings” - strings consisting entirely of
terminal symbols, also known as sentences — we can use the example grammar to
derive. As this is a simple grammar, it is not too difficult to work out what they
are. Figure 2.9 shows the choice of rules possible for deriving terminal strings from
the example grammar.
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Table 2.8. The language generated by a grammar

Box in diagram of Informal description of Formal description of
Figure 2.9 derived strings derived strings
“Any non-zero number of as a'bB, i=0
i.e. productions followed by bB” or “just bB”
§—aS|S— bB which is the same as saying

“zero or more as followed by bB”
...is expanded in box 2... ...the Battheend...
“Any non-zero number of bs biC, j=1orbcC, j=0
i.e. productions followed by either bC or cC” or
B— bB|bC|cC “just bC” or “just cC”
...is expanded in box 3 ... ...the Cat theend...
“Any non-zero number of cs
i.e. productions followed by one ¢” or “just one ¢”
C—cClc which is the same as saying

“one or more cs” ck k=1

Any “legal” application of our production rules, starting with S, the start symbol,
alone, and resulting in a terminal string, would involve us in following a path
through the diagram in Figure 2.9, starting in box 1, passing through box 2, and
ending up in box 3. The boxes in Figure 2.9 are annotated with the strings produced
by taking given options in applying the rules. Table 2.8 summarises the strings
described in Figure 2.9.

We now define a set that contains all of the terminal strings (and only those
strings) that can be derived from the example grammar. The set will contain all
strings defined as follows:

A string taken from the set {a’b: i = 0} concatenated with a string taken from
the set {b’: j = 1} U {b/c: j = 0} concatenated with a string taken from the set
{ck k=1}.

The above can be written as:

{aibbick:i=0, j=1, k= 1} U {a'bbicck:i=0, j=0, k= 1}.

Observe that bb/, j = 1 is the same as b/, j = 2, and bb/, j = 0 is the same as b/,
j=1,and cc®, k =1 is the same as ¢, k = 2 so we could write:

{aibicki=0, j=2, k=1} U {abick:i=0, j=1, k= 2}.
This looks rather complicated, but essentially there is only one awkward case,

which is that if there is only one b then there must be two or more cs (any more
than one b and we can have 1 or more cs). So we could have written:

{albick:i=0, j=1, k=1, ifj=1 thenk =2 elsek = 1}.
Whichever way we write the set, one point should be made clear: the set is a set

of strings formed from symbols in the alphabet {a, b, c}, that is to say, the set is a
formal language.
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2.6.2 The Relationship Between Grammars and Languages

We are now ready to give an intuitive definition of the relationship between gram-
mars and languages:

The language generated by a grammar is the set of all terminal strings that can
be derived using the productions of that grammar, each derivation beginning
with the start symbol of that grammar.

Our example grammar, when written like this:

S—aS|bB
B— bB|bC|cC
C—ocClc

is not fully defined. A grammar is fully defined when we know which symbols are
terminals, which are non-terminals, and which of the non-terminals is the start
symbol. In this book, we will usually see only the productions of a grammar, and we
will assume the following:

* capitalised letters are non-terminal symbols
 non-capitalised letters are terminal symbols
o the capital letter S is the start symbol.

The above will always be the case unless explicitly stated otherwise.

2.7 Phrase Structure Grammars and the Chomsky Hierarchy

The production rules of the example grammar from the preceding section are
simple in format. For example, the left-hand sides of all the productions consist of
lone non-terminals. As we see later in the book, restricting the form of productions
allowed in a grammar in certain ways simplifies certain language processing tasks,
but it also reduces the sophistication of the languages that such grammars can gen-
erate. For now, we will define a scheme for classifying grammars according to the
“shape” of their productions which will form the basis of our subsequent discus-
sion of grammars and languages. The classification scheme is called the Chomsky
hierarchy, named after Noam Chomsky, an influential American linguist.

2.7.1 Formal Definition of PSGs

To prepare for specifying the Chomsky hierarchy, we first need to precisely define
the term PSG. Table 2.9 does this.

Formally, then, a PSG, G, is specified as (N, T, P, S). This is what mathematicians
call a “tuple” (of four elements).

The definition in Table 2.9 makes it clear that the empty string, , cannot appear
alone on the left-hand side of any of the productions of a PSG. Moreover, the defi-
nition tells us that ¢ is allowed on the right-hand side. Otherwise, any strings of ter-
minals and/or non-terminals can appear on either side of productions. However, in
most grammars we usually find that there are one or more non-terminals on
the left-hand side of each production.
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Table 2.9. The formal definition of a PSG

Any PSG, G, consists of the following:

N, a set of non-terminal symbols  An alphabet, containing no symbols that can appear in sentences

T, a set of terminal symbols Also an alphabet, containing only symbols that can appear in

sentences
P, a set of production rules of
the form
x— y,wherex € (N U )%,
andy € (NU T)*

This specification uses the notation for specifying
strings from an alphabet we looked at earlier

x is the left-hand side of a production, y the
right-hand side

The definition of y means: the right-hand side of each
production is a possibly empty string of terminals and/or
non-terminals

The only difference between the specification above and the one
for x (the left-hand side) is that the one for x uses “+” rather
than “*”

So the specification for x means: the left-hand side of each
production is a non-empty string of terminals and/or
non-terminals

S,a member of N, designated as
the start, or sentence symbol

The non-terminal symbol with which we always begin
a derivation

As we always start a derivation with a lone S (the start symbol), for a grammar to
derive anything it must have at least one production with S alone on its left-hand
side. This last piece of information is not specified in the definition above, as there
is nothing in the formal definition of PSGs that says they must generate anything.
To refer back to our earlier example grammar, its full formal description would be
as shown in Table 2.10.

Table 2.10. The (N, T, P, S) form of a grammar

Productions (N, T, P,S)
( {8B,C}, ---N
S —aS|bB {a, b, c}, T
B— bB|bC|cC {§ — aS,S — bB, B— bB, B— bC, ---P
C—>cC|c B—c¢C,C—cC,C—c},
S S

2.7.2 Derivations, Sentential Forms, Sentences, and “L(G)"

We have formalised the definition of a PSG. We now formalise our notion of deri-
vation, and introduce some useful terminology to support subsequent discussion.
To do this, we consider a new grammar:

S—aB|bA|e

A — aS | bAA

B — bS | aBB.
Using the conventions outlined earlier, we know that S is the start symbol, {S, A, B}

is the set of non-terminals (N), and {a, b} is the set of terminals (T). So we need not
provide the full (N, T, P, S) definition of the grammar.
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As in our earlier example, the left-hand sides of the above productions all consist
of single non-terminals. We see an example grammar that differs from this later in
the chapter.

Here is a string in (N U T)" that the above productions can be used to derive,
as you might like to verify for yourself:

abbbaSA.

This is not a terminal string, since it contains non-terminals (S and A). Therefore it
is not a sentence. The next step could be, say, to apply the production A — bAA,
which would give us

abbbaSbAA,

which is also not a sentence.

We now have two strings, abbbaSA and abbbaSbAA that are such that the former
can be used as a basis for the derivation of the latter by the application of one pro-
duction rule of the grammar. This is rather a mouthful, even if we replace “by the
application of one production rule of the grammar” by the phrase “in one step”, so
we introduce a symbol to represent this relationship. We write:

abbbaSA = abbbaSbAA.
To be absolutely correct, we should give our grammar a name, say G, and write
abbbaSA =€ abbbaSbAA

to denote which particular grammar is being used. Since it is usually clear in our
examples which grammar is being used, we will simply use =. We now use this
symbol to show how our example grammar derives the string abbbaSbAA:
S=aB
aB = ab$
abS = abbA
abbA = abbbAA
abbbAA = abbbaSA
abbbaSA = abbbaSbAA.

As itis tedious to write out each intermediate stage twice, apart from the first (S) and
the last (abbbaSbAA), we allow an abbreviated form of such a derivation as follows:

S = aB = abS = abbA = abbbAA = abbbaSA = abbbaSbAA.

We now use our new symbol as the basis of some additional useful notation, as
shown in Table 2.11.

A new term is now introduced, to simplify references to the intermediate stages in a
derivation. We call these intermediate stages sentential forms. Formally, given any
grammar, G, a sentential form is any string that can be derived in zero or more steps
from the start symbol, S. By “any string”, we mean exactly that; not only terminal
strings, but any string of terminals and/or non-terminals. Thus, a sentence is a senten-
tial form, but a sentential form is not necessarily a sentence. Given the simple grammar

S — aS|a,

some sentential forms are: S, aaaaaa$, and a'’. Only one of these sentential forms
(a') is a sentence, as it is the only one that consists entirely of terminal symbols.
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Table 2.11. Useful notation for discussing derivations, and some example true statements for grammar:

S—aB|bA|e
A —aS|bAA
B — bS|aBB
Notation Meaning Example true statements
xX=y The application of one production aB = ab$
rule results in the string x S=¢
becoming the string y abbbaSA = abbbaSbAA

Also expressed as

“x generates y in one step”, or
“x produces y in one step”, or
“y is derived from x in one step”

x=*y x generates y in zero or more steps, or just §=*S§
“x generates y”, or S =* abbbaSA
“x produces y”, or aB =* abbbaa
“y is derived from x”
x="y x generates y in one or more steps, or just S=" abbbaSA
“x generates y”, or abbbaSbAA =" abbbabaa

“x produces y”, or
“y is derived from x”

Formally, using our new notation,

if S =* x, then x is a sentential form;
if S =* x,and x is a terminal string, then x is a sentence.

We now formalise a definition given earlier, this being the statement that

the language generated by a grammar is the set of all terminal strings that can
be derived using the productions of that grammar, each derivation beginning
with the start symbol of that grammar.

Using various aspects of the notation introduced in this chapter, this becomes:
given a PSG, G, L(G) = {x:x € T* and S = * x}.

(Note that the definition assumes that we have specified the set of terminals and the
start symbol of the grammar, which as we said earlier is done implicitly in our
examples.)

So, if G is some PSG, L(G) means the language generated by G. As the set defini-
tion of L(G) clearly states, the set L(G) contains all of the terminal strings generated
by G, but only the strings that G generates. It is very important to realise that this is
what it means when we say the language generated by the grammar.

We now consider three examples, to reinforce these notions. The first is an example
grammar encountered above, now labelled G;:

S—aS|bB
B— bB|bC|cC
C—cClec.

We have already provided a set definition of L(G,); it was:

L(G)) ={abicki=0,j=1, k=1, ifj=1 thenk =2 elsek = 1}.
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Another grammar we have already encountered, which we now call G,, is:

S—aB|bA|e
A — aS|bAA
B> bS | aBB.

This is more complex than G;,in the sense that some of G,’s productions have more
than one non-terminal on their right-hand sides:

L(G,) = {x: x € {a, b}* and the number of as in x equals the number of bs}.

I leave it to you to establish that the above statement is true.
Note that L(G,) is not the same as a set that we came across earlier, i.e.

{a'b:i=1},

which we will call set A. In fact, set A is a proper subset of L(G,). G, can generate all
of the strings in A, but it generates many more besides (such as &, bbabbbaaaaab,
and so on). A grammar, G;, such that L(G3) = A is:

S— ab| aSb.

2.7.3 The Chomsky Hierarchy

This section describes a classification scheme for PSGs, and the corresponding
phrase structure languages (PSLs) that they generate, which is of the utmost
importance in determining certain of their computational features. PSGs can
be classified in a hierarchy, the location of a PSG in that hierarchy being an indica-
tor of certain characteristics required by a decision program for the corresponding
language. We saw above how one example language could be processed by an
extremely simple decision program. Much of this book is devoted to investigating
the computational nature of formal languages. We use as the basis of our investiga-
tion the classification scheme for PSGs and PSLs called the Chomsky hierarchy.

Classifying a grammar according to the Chomsky hierarchy is based solely on
the presence of certain patterns in the productions. Table 2.12 shows how to make
the classification. The types of grammar in the Chomsky hierarchy are named
types 0 to 3, with 0 as the most general type. Each type from 1 to 3 is defined
according to one or more restrictions on the definition of the type numerically
preceding it, which is why the scheme qualifies as a hierarchy.

If you are observant, you may have noticed an anomaly in Table 2.12. Context
sensitive grammars are not allowed to have the empty string on the right-hand side
of productions, whereas all of the other types are. This means that, for example, our
grammar G,, which can be classified as unrestricted and as context free (but not as
regular), cannot be classified as context sensitive. However, every grammar that can
be classified as regular can be classified as context free, and every grammar that
can be classified as context free can be classified as unrestricted.

When classifying a grammar according to the Chomsky hierarchy, you should
remember the following:

For a grammar to be classified as being of a certain type, each and every
production of that grammar must match the pattern specified for productions

of that type.
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Table 2.12. The Chomsky hierarchy

31

Patterns to which ALL
Typeno.  Type name productions must conform

Informal description and examples

0 Unrestricted x>y, xENUDT,
yE (NU T

1 Context sensitive x>y, xENUTT,
yEWNUD, x[ <yl

2 Context free X—>Yy, xEN,
yE (NUT)*

3 Regular WX, OrW—yz
wEN, x € Tu{e},
yET, zEN

The definition of PSGs we have
already seen. Anything allowed

on the left-hand side (except for &),
anything allowed on the right.

All of our example grammars
considered so far conform to this.

Example type 0 production:
aXYpq — aZpq

(all productions of Gy, G, and G5

conform - but see below).

As for type 0, but we are not allowed
to have ¢ on the left or the
right-hand-sides.

Note that the example production
given for type 0 is not a context
sensitive production, as the length
of the right-hand side is less than
the length of the left.

Example type 1 production:
aXYpq — aZwpq

(all productions of G; and G;

conform, but not all of those

of G,do).

Single non-terminal on left,

any mixture of terminals and/or
non-terminals on the right. Also, & is
allowed on the right.

Example type 2 production:

X — XapZQ
(all productions of Gy, G, and G;
conform).

Single non-terminal on left, and
either ¢ or a single terminal

or a single terminal followed
by a single non-terminal,

on the right.

Example type 3 productions:
P—pQ,
F—a
(all of the productions of G,
conform to this, but G, and G;
do not).

Which means that the following grammar:

S—aS|aA|AA
A—aAla

is classified as context free, since the production S — AA does not conform to the
pattern for regular productions, even though all of the other productions do.
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Table 2.13. The order in which to attempt the classification of
a grammar, G, in the Chomsky hierarchy

if G is regular then
return(“regular”)
else
if G is context free then
return(“context free”)
else
if G is context sensitive then
return(“context sensitive)
else
return(“unrestricted”)
endif
endif
endif

So, given the above rule that all productions must conform to the pattern, you
classify a grammar, G, according to the procedure in Table 2.13.

Table 2.13 tells us to begin by attempting to classify G according to the most
restricted type in the hierarchy. This means that, as indicated by Table 2.12, G, is a
regular grammar, and G, and G; are context free grammars (CFGs). Of course, we
know that as all regular grammars are CFGs, G, is also context free. Similarly, we
know that they can all be classified as unrestricted. But we make the classification
as specific as possible.

From the above, it can be seen that classifying a PSG is done simply by seeing if
its productions match a given pattern. As we already know, grammars generate lan-
guages. In terms of the Chomsky hierarchy, a language is of a given type if it is gen-
erated by a grammar of that type. So, for example,

{alb:i =1} (set A mentioned above)

is a context free language (CFL), since it is generated by Gs, which is classified as a
CFG. However, how can we be sure that there is not a regular grammar that could
generate A? We see later on that the more restricted the language (in the Chomsky
hierarchy), the simpler the decision program for the language. It is therefore useful
to be able to define the simplest possible type of grammar for a given language. In
the meantime, you might like to see if you can create a regular grammar to gener-
ate set A (clue: do not devote too much time to this!).

From a theoretical perspective, the immediately preceding discussion is very
important. If we can establish that there are languages that can be generated by
grammars at some level of the hierarchy and cannot be generated by more restricted
grammars, then we are sure that we do indeed have a genuine hierarchy. However,
there are also practical issues at stake, for as mentioned above, and discussed in more
detail in Chapters 4, 5 and 7, each type of grammar has associated with it a type of
decision program, in the form of an abstract machine. The more restricted a lan-
guage is, the simpler the type of decision program we need to write for that language.

In terms of the Chomsky hierarchy, our main interest is in CFLs, as it turns out
that the syntactic structure of most programming languages is represented by
CFGs. The grammars and languages we have looked at so far in this book have all
been context free (remember that any regular grammar or language is, by defini-
tion, also context free).
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2.8 AType 0 Grammar: Computation as Symbol Manipulation

We close this chapter by considering a grammar that is more complex than our pre-
vious examples. The grammar, which we label G,, has productions as follows (each
row of productions has been numbered, to help us to refer to them later):

S— AS| AB (2.1)
B—BB|C (2.2)

AB — HXNB (2.3)
NB — BN (2.4)
BM — MB (2.5)
NC — Mc (2.6)
Nc — Mcc (2.7)
XMBB — BXNB (2.8)
XBMc — Bc (2.9)
AH — HA (2.10)
Hoa (2.11)
B—b (2.12)

G, is a type 0, or unrestricted grammar. It would be context sensitive, but for the
production XBMc—Bc, which is the only production with a right-hand side
shorter than its left-hand side.

Table 2.14 represents the derivation of a particular sentence using this grammar.
It is presented step by step. Each sentential form, apart from the sentence itself, is
followed by the number of the row in G, from which the production used to achieve
the next step was taken. Table 2.14 should be read row by row, left to right.

The sentence derived is a’b>c®. Notice how, in Table 2.14, the grammar replaces
each A in the sentential form AABBBC by H, and each time it does this it places one

Table 2.14. A type 0 grammar is used to derive a sentence

Stage Row Stage Row Stage Row
N (1) AS (1) AAB (2)
AABB ) AABBB 2) AABBBC (3)
AHXNBBBC (4) AHXBNBBC (4) AHXBBNBC (4)
AHXBBBNC (6) AHXBBBMc¢ (5) AHXBBMBc (5)
AHXBMBBc (5) AHXMBBBc (8) AHBXNBBc (4)
AHBXBNBc (4) AHBXBBNc (7) AHBXBBMcc (5)
AHBXBMBcc (5) AHBXMBBcc (8) AHBBXNBcc (4)
AHBBXBNcc (7) AHBBXBMccc 9) AHBBBccc (10)
HABBBccc 3) HHXNBBBccc (4) HHXBNBBccc (4)
HHXBBNBccc (4) HHXBBBNccc (7) HHXBBBMcccc 5)
HHXBBMBcccc (5) HHXBMBBccce (5) HHXMBBBcccce (8)
HHBXNBBcccc (4) HHBXBNBcccc (4) HHBXBBNCcccc (7)
HHBXBBMcccce (5) HHBXBMBcccce (5) HHBXMBBcccce (8)
HHBBXNBcccce (4) HHBBXBNCcccce 7) HHBBXBMccccce )
HHBBBccccce (11) aHBBBccccee (11) aaBBBccccce (12)
aabBBccccce (12) aabbBccccce (12) aabbbccccce
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¢ at the rightmost end for each B. Note also how the grammar uses non-terminals
as “markers” of various types:

e His used to replace the As that have been accounted for
e X is used to indicate how far along the Bs we have reached

e Nis used to move right along the Bs, each time ending in a c being added to the
end of the sentential form

o M is used to move left back along the Bs.

You may also notice that at many points in the derivation several productions are
applicable. However, many of these productions lead eventually to “dead ends”, i.e.
sentential forms that cannot lead eventually to sentences.

The language generated by G, i.e. L(G,),is {a'b/c'*/: i, j = 1}. This is the set:

all strings of the form one or more as followed by one or more bs followed
by ¢s in which the number of cs is the number of as multiplied by the number
of bs.

You may wish to convince yourself that this is the case.

G, is rather a complicated grammar compared to our earlier examples. You may
be wondering if there is a simpler type of grammar, perhaps a CFG, that can do the
same job. In fact there is not. However, while the grammar is comparatively com-
plex, the method it embodies in the generation of the sentences is quite simple.
Essentially, like all grammars, it simply replaces one string by another at each stage
in the derivation.

An interesting way of thinking about G, is in terms of it performing a kind of
computation. Once a sentential form like A'B/C is reached, the productions then
ensure that i X j cs are appended to the end by essentially modelling the simple
algorithm in Table 2.15.

The question that arises is: what range of computational tasks can we carry out
using such purely syntactic transformations? We see from our example that the
type 0 grammar simply specifies string substitutions. If we take our strings of as
and bs as representing numbers, so that, say, at represents the number 6, we see that
G, is essentially a model of a process for multiplying together two arbitrary length
numbers.

Later in this book, we encounter an abstract machine, called a Turing machine
(TM), that specifies string operations, each operation involving the replacing of
only one symbol by another, and we see that the machine is actually as powerful as
the type 0 grammars. Indeed, the machine is capable of performing a wider range
of computational tasks than even the most powerful real computer.

However, we will not concern ourselves with these issues until later. In the
next chapter, we encounter more of the fundamental concepts of formal languages:
syntax, semantics, and ambiguity.

Table 2.15. The “multiplication” algorithm embodied in grammar G,

for each A do
for each B do
put a c at the end of the sentential form
endfor
endfor
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2.9 Exercises

For exercises marked t, solutions, partial solutions, or hints to get you started appear
in “Solutions to Selected Exercises” at the rear of the book.

2.1.

2.2%,

2.3,

2.4.

2.5%,

2.6.

Classify the following grammars according to the Chomsky hierarchy. In all
cases, briefly justify your answer:

@' s— aA
A— aS|aB
B— bC
C— bD
D— b| bB.

(b)t S— aS|aAbb
A— & | aAbb.

() S— XYZ|aB
B— PQ|'S
Z— as.

d S—e.

Construct set definitions of each of the languages generated by the four
grammars in Exercise 2.1.

Hint: the language generated by 2.1(c) is not the same as that generated by
2.1(d), as one of them contains no strings at all, whereas the other contains
exactly one string.

It was pointed out above that we usually insist that one or more non-
terminals must be included in the left-hand side of type 0 productions.
Write down a formal expression representing this constraint. Assume that
Nis the set of non-terminals, and T the set of terminals.

Construct reqgular grammars, G,, G, and G,, such that
(@) LaG) = {c j > 0,and jdoes not divide exactly by 3}.
(b) L(G,) ={a@Plcdl®i k=0, 0<j<1}

Note: as we are dealing only with whole numbers, the expression 0 <j < 1,
which is short for 0 < j and j < 1, is the same as writing: j = 0 orj = 1.

(@ LG ={a, b, c}*.

Use your answer to 2.4(c) as the basis for sketching out an intuitive justifica-
tion that A* is a regular language, for any alphabet, A.

Use the symbol = in showing the step by step derivation of the string ¢
using (@) G, and (b) G, from Exercise 2.4.
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2.7.

2.8.

2.9.

2.10%,
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Construct CFGs, Gyand G,, such that
(@) LG)={a*""db*hi=0,0=<j<1}
Note: if i =0, a*"! means “all odd numbers of as”.

(b)' L(G,) = all Boolean expressions in your favourite programming
language (Boolean expressions are discussed in Chapter 13).

Use the symbol = in showing the step-by-step derivation of 2°b° using
(a) G,from Exercise 2.7,

and the grammar

(b) G;from Chapter2,i.e.S— ab|aSh

Provide a regular grammar to generate the language {ab, abc, cd}.

Hint: make sure your grammar generates only the three given strings, and no
others.

Use your answer to Exercise 2.9 as the basis for sketching out an intuitive
justification that any finite language is regular.

Note: the converse, i.e. that every regular language is finite, is certainly not
true. Consider, for example, the languages specified in Exercise 2.4.

Notes

1. The formalism we describe here is actually Extended BNF (EBNF). The original BNF did not include
the repetition construct found in Table 2.5.
2. Jensen and Wirth (1975), see Further Reading section.
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