Chapter 11

Domains of Holomorphy

1. The Continuity Theorem

General Hartogs Figures. The subject of this chapter is the contin-
uation of holomorphic functions. We consider domains in C", for n > 2. A
typical example is the Fuclidean Hartogs figure (P™,H), where P™ = P™(0, 1)
is the unit polydisk, and

H={zeP":|z|>qorl|z|<q forv=2,...n}

Here q1,...,gn are real numbers with 0 < ¢, < 1 for v = 1,...,n. Every
holomorphic function f on H has a holomorphic extension f on P™.

Definition. Let g = (g1,...,9,) : P® — C” be an injective holo-
morphic mapping, P := g(P") and H := g(H). Then (P, H) is called a
general Hartogs figure.

We use the symbolic picture that appears as Figure II.1

22,. .., 2n \/‘
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Figure II.1. General Hartogs figure

1.1 Continuity theorem. Let G C C" be domain, (]5, I;f) a general Har-

togs figure with HC G, f a holomorphic function on G. If GNP is connected,
then f can be continued uniquely to G U P.
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Proor: Let g:P"® — C" be an injective holomorphic mapping such that
P := g(P") and H := g(H). The function h := f o g is holomorphic in
H. Therefore, there exists exactly one holomorphic function h on P™ with
h|ly = h. Since g : P* — P is biholomorphic, the function fo := hog™! is

defined on P, and it is a holomorphic extension of f|z. We define

=~ | f(z) forzeG,
f(z) = { fo(z) forze P.

Since G N P is connected and f = fo on H , it follows from the identity
theorem that f is a well-defined holomorphic function on G U P. This is the
desired extension of f. n

Example

Let n > 2 and P’ CC P be polydiscs around the origin in C". Then every
holomorphic function f on P— P’ can be extended uniquely to a holomorphic
function on P.

For a proof we may assume that P = P™ is the unit polydisk, and P’ =
P™(0,r), with r = (ry,...,7,) and 0 < 7, < 1 for v = 1,...,n. It is clear
that G := P — P’ is a domain.

Given a point zg = (21”,...,2{) € G with |2{| > r,, we choose real num-

bers ¢1,...,qy, as follows: For v =1,...,n — 1, let ¢, be arbitrary numbers,
with r, < g, < 1. To obtain a suitable ¢,, we define an automorphism 7' of
the unit disk D by

(= 2

T EOC—1°
This automorphism maps z{” onto 0 and a small disk D C {( € C : 7, <

I¢| < 1} around z{” onto a disk K C D with 0 € K. Notice that 0 need not
be the center of K. We choose ¢, > 0 such that D, (0) C K.

T(C):

If we define H := {z € P" : |21| > q1 or |2,| < ¢, forv = 2,...,n}, then
(P™,H) is a Euclidean Hartogs figure. The mapping g : P — P™ defined by

gz, 2m) = (21, 21, T H(20))
is biholomorphic, and (ﬁ7 I:f) = (P™,g(H)) is a general Hartogs figure, with

HcC{zeP": |z|>r or|z|>r}CG.

Since PN G = G is connected, the continuity theorem may be applied. The
preceding example is a special case of the so-called Kugelsatz which we shall
prove in Chapter VI.
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Figure I1.2. A Hartogs figure for concentric polydiscs

Removable Singularities. Let G ¢ C" be a domain. If A C G is an
analytic set and f a holomorphic function on G — A that is locally bounded
along A, then by Riemann’s extension theorem f has a holomorphic extension
to G. If n > 2 and A is a complex linear subspace of codimension greater
than or equal to 2, then every function holomorphic on G — A has such an
extension.

1.2 Theorem. Let P™ =P"(0,1) be the unit polydisk in C", n > 2, k > 2,
and
E={z=(z1,...,2n) €C" : 241 =" =2, =0}

Then every holomorphic function f on P™ — E can be holomorphically ez-
tended to P™.

PrROOF: Set P’ := {2’ := (21,...,2n-k) : |2'| < 1}, and for 0 < r < 1
define P/ :={2" = (zn—g+1,...,2n) : |2""| <7}

Let P := P{" and fix an ¢ with 0 <& < 1. Then P*" N E C P’ x P/, and for
w € P’ the function fw(z") := f(w,2"”) is holomorphic on P” — P!. From
the example above we know that f, has a holomorphic extension fy to P”.

~

Now define f : P* — C by f(w,z") := fw(2z”). On P" — E, f is equal to f
and is therefore holomorphic.

For w € P’ take a small open neighborhood U = U(w) CC P'. Then K :=
U x OP! is compact. By the maximum principle we conclude that

| f(2,2") | = | fu(2")| < | farllopy < |1 fllx < oo, for (2/,2") € U x P! — E.

From Riemann’s extension theorem it follows that fAis holomorphic on P". m



46 II. Domains of Holomorphy

1.3 Corollary. Forn > 2, every isolated singularity of a holomorphic func-
tion of 21, ..., 2z, is removable.

Riemann’s extension theorem is false if we drop the condition “f bounded
along the analytic set.” For example, let G C C" be a domain, g : G — C a
holomorphic function, and let f : G—N(g) — C be defined by f(z) := 1/g(z).
Then f is holomorphic on G — N(g) but cannot be extended to any point of
N(g).

Things look quite different if there is a little hole in the hypersurface:

1.4 Proposition. Letn >2, Gy C C"! a domain, g : Gy — C a contin-
uous function, and T := {z = (z',2,) € Go x C : z, = g(Z')} the graph of
g in G := Go x C. In addition, let zg be a point of T' and U = U(zp) C G a
small neighborhood.

If f is a holomorphic function on (G—=T")UU, then f has a unique holomorphic
extension to G.

PROOF: The uniqueness of the extension follows from the identity theorem.
For the proof of existence (which is only a local problem) we may assume
that Go = {z’ € C"~! : |z/| < 1} and that there is a ¢ with 0 < ¢ < 1 such
that |g(z")] < q for 2’ € Go. It also may be assumed that U is connected.
Then it is clear that G’ := (G —T)UU C P™ = P"(0,1) is connected.

Since g : 2’ + (2z', g(2')) is continuous, U’ := g~!(U) is an open neighborhood
of zj, with (U’ x D)NT C U and therefore U’ xD C G'. Forv=1,...,n—1
let T,, be the automorphism of D defined by

e
T,(¢) = 001

Then h : P" — P™ with h(z1,...,2,) := (T1(22),...,Tn-1(2n), z1) is holo-
morphic, h(0) = (z(,0), and h({z € P™ : |z1] > ¢}) C {w € P™ : |w,| > q}.
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Figure I1.3. Extending a holomorphic function across a hypersurface
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We define ¢; := ¢, and for v = 2,...,n choose ¢, such that
B(D x Dy (0) x -+ - x Dy, (0)) € U x D.

Then (P™",H) with H := {z € P" : |z1| > g1 or |2, < q, forv =2,...,n}
is a Euclidean Hartogs figure, and (ﬁ, ﬁ) = (P™,h(H)) is a general Hartogs
figure, with H C G’ (see Figure IL3). Since PN G’ = G is connected, the
proposition follows from the continuity theorem. n

The Continuity Principle. Sometimes we wish to use a family of
analytic disks instead of a Hartogs figure.

Definition. A family of analytic disks is given by a continuous map
¢ : D x [0,1] — C™ such that ¢;(¢) := ¢((,t) is holomorphic in D,
for every t € [0,1]. The set Sy := (D) is called an analytic disk, and
bSt := (D) its boundary.

Observe that in general bS; is not the topological boundary of S;.

Definition. A domain G C C" is said to satisfy the continuity prin-
ciple if for any family {S;, t € [0,1]} of analytic disks in C" with
U0§t§1 bS; C G and Sy C G, it follows that U0§t§1 S; C G.

Example

Let P™ be the unit polydisk and {S;, ¢ € [0,1]} a family of analytic disks
in C" with (Jy<,<; bS; C P™ and Sy C P™. Because Sy and the union of all
boundaries bS; are compact sets, there is an € > 0 such that

J »SicP™(0,1-2) and Sy cP™(0,1-¢).
0<t<1
We assume that Jj,<, S¢ is not contained in P", and define
to :=inf{t € [0,1] : S; ¢ P"}.
It is clear that tg > 0, S, ¢ P™, and S; C P™ for 0 < t < to. Then S,
contains a point zg = (zim, ce zﬁl‘”) € JP". If the family of analytic disks is
given by the map ¢ : D x [0,1] — C", and w), denotes the uth coordinate
function, then f, (¢) := w, o ¢((,t) is continuous on D and holomorphic in

D. Choosing y such that |z(’| = 1, there is a (o € D with f,+,(Co) = 2}’ and
| fu,to(Co)| = 1. But by the maximum principle we have

| fu,t(Co)| < S$1DP|fu,t| <1—g, for t <t.

Since t — f, +(¢o) is continuous, a contradiction is reached, and therefore P™
satisfies the continuity principle.
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Hartogs Convexity.
Definition. A domain G' C C" is called Hartogs conver if the following
holds: If (P, H) is a general Hartogs figure with H C G, then P C G.

An immediate consequence of the definition is the following:

The biholomorphic image of a Hartogs convex domain is again Hartogs
convez.

1.5 Theorem. Let G C C™ be a domain that satisfies the continuity prin-
ciple. Then G is Hartogs convez.

PROOF: Let (ﬁ,ﬁ) be a general Hartogs figure with H C G. We assume
that it is the biholomorphic image (g(P™), g(H)) of a Euclidean Hartogs figure
(P™,H) with

H={z : |z1|>q or |z, <qufor p=2,...,n}.

In order to define analytic disks we choose some r with ¢ < r < 1 and
introduce the affine analytic disks

Dy :={z=(21,2") € P"=P' x P" : |z1| <7 and 2" = w}.

Since Dy, C P™ for every w € P”, we can define ¢y, : D x [0,1] — C" by
setting ow((,t) := g(r(,tw). Then a family {S;(w) : 0 <t < 1} of analytic
disks in P is given by

Si(w) = pw(D x {t}) = g(Diw)-

It follows that bS;(w) C G for every w € P” and every t € [0,1], and in
addition, So(w) = g(Dp) C G. The situation is illustrated in Figure I1.4.

St (W) bSt(W)

|21]

Figure I1.4. Analytic disks in a Hartogs figure
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Since G satisfies the continuity principle, we obtain that g(Dy) = S1(w) is

contained in G. This is valid for every w € P”. Therefore, P C G, and G is
Hartogs convex. n

1.6 Corollary. The unit polydisk P™ is Hartogs convex.

Domains of Holomorphy

Definition. Let G C C" be a domain, f holomorphic in G, and zg €
0G a point. The function f is called completely singular at zg if for
every connected neighborhood U = U(zp) C C" and every connected
component C' of UNG there is no holomorphic function g on U for which

gle = fle-

Example

Let G:=C—{x € R : © <0} and let f be a branch of the logarithm on
G. Then f is completely singular at z = 0 but not at any point x € R with
z < 0.

Definition. A domain G C C" is called a weak domain of holomorphy
if for every point z € G there is a function f € O(G) that is completely
singular at z.

The domain G is called a domain of holomorphy if there is a function
f € O(G) that is completely singular at every point z € 9G.

Examples

1. Since C™ has no boundary point, it trivially satisfies the requirements of
a domain of holomorphy.

2. It is easy to see that every domain G C C is a weak domain of holomor-
phy: If zo is a point in G, then f(z) :=1/(z — zp) is holomorphic in G
and completely singular at zg.

For G = D we can show even more! The function f(z) := > oo 2" is
holomorphic in the unit disk and becomes completely singular at any
boundary point. Therefore, D is a domain of holomorphy. At the end of
this chapter we will see that every domain in C is a domain of holomorphy.
3. If f: D — Cis a holomorphic function that becomes completely singular
at every boundary point, then the same is true for f : P* =D x.--xD —
C, defined by f(z1,...,2n) := f(21)+- -+ f(2n). In fact, if z¢ is a bound-
ary point of P™, then there exists an i such that the ith component z” is

a boundary point of D. If fcould be extended holomorphically across zg,
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then £;(¢) == f(2”,...,¢,...,29) would also have a holomorphic ex-
tension. But then f could not be completely singular at z”. Therefore,
the unit polydisk is a domain of holomorphy.

4. If (P™,H) is a Euclidean Hartogs figure, then H is not a domain of holo-
morphy.

1.7 Proposition. Let G C C" be a domain. If for every point zog € 0G
there is an open neighborhood U = U(zg) C C™ and a holomorphic function
f:GUU — C with f(zo) =0 and f(z) # 0 for z € G, then G is a weak
domain of holomorphy.

PrROOF: We show that 1/ f is completely singular at zg. For this assume that
there is a connected open neighborhood V' = V' (z(), a connected component
C C VNG, and a holomorphic function F on V with Flc = (1/f) ‘C.
The set V' := V — N(f) is still connected and contains C. By the identity
theorem the functions F' and 1/f must coincide in V’. Then F is clearly not
holomorphic at zg. This is a contradiction. n

1.8 Corollary. Fvery convex domain in C™ is a weak domain of holomor-
phy.

Proor: If zy € OG, then because of the convexity there is a real linear
form A on C™ with A\(z) < A(zg) for z € G. We can write A in the form

n n
Az) = Zayzy + ZEVEV, with @ := (a1,...,a,) #0.
v=1 v=1

So A = Reh(z), where h(z):=2->."_, a2, is holomorphic on C".

Since the function f(z) := h(z) — h(z) is holomorphic on C", f(z¢) = 0, and
f(z) # 0 on G, the proposition may be applied. n

We will show that every weak domain of holomorphy is Hartogs convex. As
a tool we need the following simple geometric lemma, which will be useful in
other situations as well.

1.9 Lemma (on boundary components). Let G C C" be a domain,
U C C"™ an open set withUNG # @ and (C" —U)NG # 2.

Then GNOC NOU # @ for any connected component C of U NG.

PrOOF: We choose points z; € C CUNG and z3 € (C™ — U) N G. There
is a continuous path v : [0,1] — G with v(0) = z; and (1) = z3. Let
to := sup{t € [0,1] : v(¢t) € C} and zg := 7(ty). Clearly, zg € IC NG,
but zyg & C. Since C is a connected component of U N G, zg cannot lie in
U N G and therefore even not in U. Since v(t) € U for t < ¢, it follows that
zg € OU. [
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1.10 Theorem. Let G C C" be a weak domain of holomorphy. Then G is
Hartogs conver.

PRrROOF: Assume that G is not Hartogs convex. Then there is a general
Hartogs figure (P, H) with H C G but PN G # P. We choose an arbitrary
zo in H and set C := Cpng(2o).! Since H lies in P N G and is connected, it
follows that H C C. Furthermore, C' & P.

Since PNG # @ and (C" — G) N P # @, by the lemma there is a point
z1 € 0C NIG N P (see Figure I1.5).

P G

Figure I1.5. G is not Hartogs convex

Let f be an arbitrary holomorphic function in G. Then f|¢ is also holomor-
phic, and by the continuity theorem it has a holomorphic extension F' on P.
Since P is an open connected neighborhood of z;, we obtain that f is not
completely singular at z;. This completes the proof by contradiction. n

It follows, for example, that every convex domain is Hartogs convex. As a
consequence, we see that every ball is Hartogs convex.

1.11 Theorem. FEvery domain of holomorphy is Hartogs convex.
The proof is trivial.

For the converse of this theorem one has to construct on any Hartogs convex
domain a global holomorphic function that becomes completely singular at
every boundary point, something that is rather difficult. It was done in 1910
by E.E. Levi in very special cases. The general case is called Levi’s problem.

In 1942 K. Oka gave a proof for n = 2. At the beginning of the 1950s Oka,
Bremermann, and Norguet solved Levi’s problem for arbitrary n. It was gen-

1 We denote by Cau(z) the connected component of M containing z.
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eralized for complex manifolds (H. Grauert, 1958) and complex spaces (R.
Narasimhan, 1962). Finally, in 1965 L. Hormander published a proof that
used Hilbert space methods and partial differential equations.

Exercises

1. Prove the following statements:

(a) Finite intersections of Hartogs convex domains are Hartogs convex.
(b) If G € G2 C G3 C --- is an ascending chain of Hartogs convex
domains, then the union of all G; is also Hartogs convex.

2. Let G C C" be a domain, 0 <r < R,and a € G a point. Let U = U(a) C
G be an open neighborhood and define Q := {w € C™ : r < |w| < R}.
Prove that every holomorphic function on (G x Q) U (U x P™(0, R)) has
a unique holomorphic extension to G x P™(0, R).

3. Let 0 < 7 < R be given. Use Hartogs figures to prove that every holo-
morphic function on Br(0) — B,.(0) has a unique holomorphic extension
to the whole ball Br(0).

4. For ¢ > 0, consider the domain

G. = {(z,w) € P%(0,1) : |z| < |w|* + ¢}

Prove that G, is Hartogs convex if and only if € = 0.

5. Let G C C" be a domain and f : G — Dg(0) C C a function, I' =
{(z,w) € G xDgr(0) : w = f(z)} its graph. Sow that if there is a
holomorphic function F in G x Dg(0) that is completely singular at every
point of T, then f is continuous. (With more effort one can show that f
is holomorphic.)

6. Show that the “Hartogs triangle” {(z,w) € C? : |w| < |2| < 1} is a weak
domain of holomorphy.

2. Plurisubharmonic Functions

Subharmonic Functions. Recall some facts from complex analysis of
one variable. A twice differentiable real-valued function i on a domain G C C
is called harmonic if h,z(z) = 0 on G. The real part of a holomorphic function
is always harmonic, and on an open disk every harmonic function is the real
part of some holomorphic function.

If D = D;(a) C Cis an open disk and 8 : R — R a continuous periodic
function with period 27, then there is a continuous function h : D — R that
is harmonic on D such that h(re'') = 3(t) for every t (Dirichlet’s principle).

An upper semicontinuous function ¢ : G — R U {—oc0} is said to satisfy the
weak mean value property if the following holds:

For every a € G there is an r > 0 with D,(a) CC G and
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2m
p(a) < %/ ola+get)dt for0< o<
0

Remarks

1. If ¢ : G = RU{—00} is an upper semicontinuous function, then the sets
U, :={z € G : ¢(z) < v} are open, and therefore ¢ is bounded from
above on every compact subset K C G. It follows that the integral in the
definition always exists.

2. Harmonic functions satisfy the weak mean value property (even the
stronger mean value property with “=" instead of “<”).

3. If f: G — C is a nowhere identically vanishing holomorphic function,
then log|f| satisfies the weak mean value property. In fact, the function
@ = log|f| is harmonic on G — N(f), because it can be written locally
as Re(log f), with a suitable branch of the logarithm. And at any point
zo € N(f) we have p(z9) = —o0, so the inequality of the weak mean
value property is satisfied.

2.1 Proposition. Let ¢ : G — R satisfy the weak mean value property. If
@ has a global maximum in G, then ¢ is constant.

PROOF: Let a € G be any point with ¢ := @p(a) > ¢(z) for z € G. We
choose an r > 0 such that

2
D,(a) CC G and ¢(a) < 2—/ o(a+ ey dt for 0 < o <7,
™ Jo

Assume that there is a b € D,.(a) with p(b) < ¢(a). We write b = a + ge't
and get

1 2m . 1 2m
p(a) < g/o pla+ oe™)dt < %/0 p(a) dt = p(a).

This is a contradiction, so ¢ must be constant on D,.(a). Now we define the
set M = {z € G : p(z) = c¢}. Obviously, M is closed in G and not empty,
and we just showed that M is open. So M = G, and ¢ is constant. [

Definition. Let G C C be a domain. A function s : G — R U {—o0}
is called subharmonic if the following hold:
1. s is upper semicontinuous on G.
2. If D cC Gis adisk, h: D — R continuous, h|p harmonic, and h > s
on 0D, then h > s on D.

2.2 Proposition. Let s, : G — RU {—oo} be a monotonically decreasing
sequence of subharmonic functions. Then s := lim, _ S, 1S subharmonic.
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Proor: The limit s = lim, 00 8, = inf{s,} is upper semicontinuous. Let
D CC G be adisk, h : D — R continuous and harmonic on D, with s < h
on JD. For fixed ¢ we consider the compact sets

K,:={2€9D : s,(z) > h(z) +¢}.

Then K,4; C K, and ﬂio:l K, = &. Therefore, there is a vy € N with
K, = @ for v > vy. This means that for v > vy, s, < h+ ¢ on 0D, and
therefore the same is true on D. Since the s, are decreasing, s < h+¢ on D.
This holds for every € > 0, and consequently s < h on D. n

2.3 Proposition. Let (sq4)aca be a family of subharmonic functions on
G. If s := sup s, ist upper semicontinuous and finite everywhere, then s is
subharmonic.

Proor: If s < h on D, where D CcC G and h : D — R is continuous
and harmonic on D, then s, < h on D for every a € A. Since the s, are
subharmonic, it follows that s, < h on D for every a@ € A. But then s < h
on D as well. [

Examples

1. Clearly, every harmonic function is subharmonic.

2. Let s : G — R be a continuous subharmonic function such that —s is also
subharmonic. Then s is harmonic. To show this, we look at an arbitrary
point @ € G and choose an r > 0 such that D := D,.(a) CC G. Then there
is a continuous function h : D — R with h|sp = s|sp that is harmonic
on D (Dirichlet’s principle). It follows that s < h on D. But because —h
is also harmonic, we have —s < —h on D as well. Together this gives
s=hon D.

3. Let f : G — C be a holomorphic function. Then s := log|f]| is subhar-
monic. In fact, if f(z) =0 on G, then we have s(z) = —oo, and there is
nothing to prove. Otherwise, s is harmonic on G — N(f), and we have
only to look at an isolated zero a of f. We choose D = D, (a) CC G and
a function h that is continuous on D and harmonic on D, with s < h
on 0D. We know that s, and therefore also s — h, has the weak mean
value property on D, and it is certainly not constant. So it must take its
maximum on the boundary dD. This means that s < h on D.

4. Let G C C be an arbitrary domain. The boundary distance g : G —
Ry U {400} is defined by

da(z) :==sup{r € R : D,(z) C G}.
Claim: s := —logd¢ is subharmonic on G.

Proor: If G = C, then s(z) = —oo and there is nothing to prove.
If G # C, then s is real-valued and continuous. For w € 0G we define
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Sw : G = R by setting s,,(z) := —log|z — w|. Then s(z) = sup{s,(2) :
w € JG}. By Proposition 2.3 the claim follows. [

The Maximum Principle

2.4 Theorem. Lets: G — RU{—oco} be a subharmonic function on a
domain G C C. If s takes its mazimum on G, then it must be constant.

PrROOF: Assume that ¢ := s(a) > s(z) for every z € G. As in the case of
functions that have the weak mean value property it suffices to show that s
is constant in a neighborhood of a. If this is not the case, there is a small disk
D =D,(a) CC G and b € 9D with s(a) > s(b). Since s is upper semicontin-
uous, there is a continuous function h on 9D with s < h < ¢ and h(b) < c.
Solving Dirichlet’s problem we can construct a harmonic continuation of h

on D. Now

h(a) = %

This is a contradiction. [

2m
/ h(a+re)dt < ¢ = s(a).
0

For later use we give the following criterion for a function to be subharmonic:

2.5 Theorem. Let G C C be a domain and s : G — RU {—o0} an upper
semicontinuous function. Suppose that for every disk D CC G and every
function f € O(D) with s < Re(f) on 8D it follows that s < Re(f) on D.
Then s is subharmonic.

PROOF: Let D =D,(a) CC G, h: D — R continuous and harmonic on D,
and s < h on dD. For simplicity we assume a = 0.

For v € N, a harmonic function h, on D, := D, /4,—1))(0) D D is given by

ho(2) = h((l - %)z)

Then (h,) converges on D uniformly, increasing monotonically to h. Further-
more, for every v there is a holomorphic function f, on D, with Re(f,) = h,.

Let € > 0 be given. Then there is a vy such that |h — h,| < £ on D for v > vy.
Therefore, s < h, +¢ = Re(f, +¢) on 8D for v > vy. By definition it follows
that s < h, +¢ on D. Since (h, ) is increasing, it follows that s < h + ¢ and
therefore s < h on D. =

Differentiable Subharmonic Functions

2.6 Lemma. Lets:G — R be a 62 function such that s,z > 0 on G. Then
s is subharmonic.
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PROOF: Let D =D, (a) CC G and let a continuous function h : D — R be
given such that A is harmonic on D and s < h on 0D. We define ¢ := s — h.

Assume that ¢ takes its maximum at some interior point zy of D. Then we
look at the Taylor expansion of ¢ at zp in a small neighborhood about z:

w(z0 + 2) = p(20) + 2Re Q(2) + ¢.z(20)2Z + R(2),

where Q(z) := ¢.(20)z + 3¢:2(20)2? is holomorphic and R(z)/|z|> — 0 for
z — 0. The function ¥(z) := 2ReQ(z) is harmonic, with ¢(0) = 0. Since
it cannot assume a maximum or a minimum, it must have zeros arbitrarily
close to but not equal to 0. On the other hand, ¢(zo + 2) — ¢(z9) < 0 and
v.z(20)2Z > 0 outside z = 0. This is a contradiction. Thus ¢ must assume
its maximum on the boundary of D, and s < h on D. n

2.7 Theorem. Lets:G — R be a €2 function. Then s is subharmonic if
and only if s,z >0 on G.

PrROOF: (a) Let s,z(z) > 0 for every z € G. Then we define s, on G by
setting s, = s + (1/v)zZz. Obviously, (s,).z = s.z + (1/v) > 0. Then s,
is subharmonic by the above lemma. Since (s,) converges, monotonically
decreasing, to s, it follows that s is subharmonic.

(b) Let s be subharmonic on G. We assume that s,z(a) < 0 for some a € G.
Then there is a connected open neighborhood U = U(a) C G such that
s,z < 0 on U. By the lemma it follows that —s is subharmonic on U. Then
s must be harmonic on U. So s.z(a) = 0, contrary to assumption. L]

Plurisubharmonic Functions. We return to the study of domains in
arbitrary dimensions. Let G C C™ be a domain and (a,w) a tangent vector
at a € G. We use the holomorphic mapping aaw : C — C” defined by
aa,w(C) =a+(w.

Definition. Let G C C™ be a domain. An upper semicontinuous func-
tion p : G = RU {—o0} is called plurisubharmonic on G if for every
tangent vector (a,w) in G the function

pa,w(C) =po aa,w(C) = p(a + CW)
is subharmonic on the connected component G/(a, w) of the set a; 1, (G) C

C containing 0.

Remarks

1. Plurisubharmonicity is a local property.
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If f € O(G), then log|f| is plurisubharmonic.

If p1, po are plurisubharmonic, then so is p; + ps.

If p is plurisubharmonic and ¢ > 0, then c - p is plurisubharmonic.

If (p,) is a monotonically decreasing sequence of plurisubharmonic func-
tions, then p := lim, _, . p, is also plurisubharmonic.

Let (pa)aca be a family of plurisubharmonic functions. If p := sup(py)
is upper semicontinuous and finite, then it is also plurisubharmonic.

If a plurisubharmonic function p takes its maximum at a point of the
domain G, then p is constant on G.

The Levi Form

Definition. Let U C C" be an open set, f € €?(U;R), and a € U.
The quadratic form? Lev(f): T, — R with

Lev(f)(a,w) = " f.,z, (@)uw,m,

is called the Levi form of f at a.

Obviously, Lev(f) is linear in f.

Examples

1.

2.
3.

In the case n = 1 we have Lev(s)(a,w) = s,z(a)ww. So s is subharmonic
if and only if Lev(s)(a,w) > 0 for every a € G and w € C.

Let f(z) :=|z||* = X1, z:Z;. Then Lev(f)(a,w) = ||w]||? for every a.
If f € €%(U;R) and g : R — R is twice continuously differentiable, then

Lev(oo f)(a,w) = ¢"(f(a)) - [(0f)a(w)” + &'(f(2)) - Lev(f)(a, w).
If F: U — V C C™ is a holomorphic map and g € ¢%(V;R), then

Lev(g o F)(a, w) = Lev(g) (F(a), F'(a) (w)).

. For f € €?(U;R) the Taylor expansion at a € U gives

f(z) = f(a) + 2Re(Qf(z — a)) + Lev(f)(a,z — a) + R(z — a),

where Qs (w) =>1_, f., (@w, +1 >, o[22, (@)wyw,, is a holomorphic
quadratic polynomial, and

lim Rz -a)

z-a ||z —al]?

=0.

2If H: T xT — Cis a Hermitian form on a complex vextor space, then the

associated quadratic form Q : V — R is given by Q(v) := H(v,v).
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2.8 Theorem. A function f € €*(U;R) is plurisubharmonic if and only if
Lev(f)(a,w) > 0 for every a € U and every w € T,.

PRrROOF: Let (a, w) be a tangent vector in G and « := aa w. Then foa(0) =
f(a) and
(foa)z(0) =Lev(foa)(0,1) =Lev(f)(a, w).

Now, f is plurisubharmonic if and only if f o« is subharmonic near 0 for any
@ = Qa,w. Equivalently, (f o a)z(0) > 0 for any such «. But this is true if
and only if Lev(f)(a,w) > 0 for any tangent vector (a,w) in G. "

2.9 Corollary. Let Gy C C" and Go C C™ be domains, F : G — Gso
a holomorphic map, and g € €*(G1;R) plurisubharmonic. Then g o F is
plurisubharmonic on G1.

ProOOF: This is trivial, because of the formula in Example 4 above. n

Exhaustion Functions. For every domain G C C the function — log d¢
is subharmonic. In higher dimensions it is in general not true that this func-
tion is plurisubharmonic for every domain G.

Definition. Let G C C" be a domain. A nonconstant continuous func-
tion f: G — R is called an ezhaustion function for G if for ¢ < supa(f)
all sublevel sets

G.(f)={z€ G : f(z) <c}

are relatively compact in G.

Example

For G = C", the function f(z) := ||z|? is an exhaustion function. For G # C",
we define the boundary distance dg by

dc(z) := dist(z,C" — G).

Then —d¢ is a bounded, and —log ds an unbounded, exhaustion function.
We only have to show that §g is continuous:

For every point z € G there is a point r(z) € C" — G such that
da(z) = dist(z,r(z)) < dist(z,w) for every w € C"* — G.

Then for two arbitrary points u,v € G we have
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dg(u) = flu—r(u)]

and in the same way d¢g(v)

lu—r(v)[| < fla=v]+da(v),

<
< Ju=v| + dg(u).

Therefore, |dg(u) — dg(v)| < [Jlu—v|.

Definition. A function f € ¢%(G;R) is called strictly plurisubhar-
monic if Lev(f)(a,w) > 0 for a € G, w € Ty, and w # 0.

For a proof of the following result we refer to [Ra86], Chapter II, Proposition
4.14.

2.10 Smoothing lemma. Let G C C" be a domain, f: G — R a continu-
ous plurisubharmonic exhaustion function, K C G compact, and € > 0. Then
there exists a €°° exhaustion function g : G — R such that:

1. g> f onG.
2. g 1is strictly plurisubharmonic.

3. |g(z) — f(z)| <e on K.

Exercises

1. Let G C C be a domain. Prove the following statements:

(a) If f: G — Cis a holomorphic function, then | f|* is subharmonic for
a > 0.

(b) If u is subharmonic on G, then «? is subharmonic for p € N.

(c) Let u # —oo be subharmonic on G. Then {z € G : u(z) = —oo}
does not contain any open subset.

2. Let G C C be a domain, s Z —oo a subharmonic function on G, P :=
{z € G : s(z) = —o0}. Show that if u is a continuous function on G and
subharmonic on G — A, then u is subharmonic on G.

3. Let U C C" be open, f : U — C* a holomorphic map, and A € M, (R) a
positive semidefinite matrix. Show that ¢(z) := f(z) - A - f(z)" is pluri-
subharmonic.

4. Let G = {(z,w) € C? : |w| < |2] < 1} be the Hartogs triangle. Prove that
there does not exist any bounded plurisubharmonic exhaustion function
on G.

5. Are the following functions plurisubharmonic (respectively strictly pluri-

subharmonic)?
pi(z) = log(1 + ||z||?), for z € C",
p2(z) = —log(l—|lz|*), for |z]| <1,
ps(z) =  ||z|?e” R for z e C™.

6. Consider a domain G C C" and a function f € ¢?(G). Prove that f is
strictly plurisubharmonic if and only if for every open set U CC G there
is an € > 0 such that f(z) — ||z||? is plurisubharmonic on U.
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3. Pseudoconvexity

Pseudoconvexity

Definition. A domain G C C" is called pseudoconvex if there is a
strictly plurisubharmonic ¥*° exhaustion function on G.

Remarks

1. By the smoothing lemma the following is clear: If —logdg is plurisub-
harmonic, then G is pseudoconvex.
2. Pseudoconvexity is invariant under biholomorphic transformations.

3.1 Theorem. If G C C" is a pseudoconver domain, then G satisfies the
continuity principle.

PrROOF: Let p: G — R be a strictly plurisubharmonic exhaustion function.
Suppose that there exists a family {S; : 0 < ¢ < 1} of analytic disks given
by a continuous mapping ¢ : D x [0,1] — C" such that Sy C G and bS; C G
for every ¢ € [0, 1], but not all S; are contained in G.

The functions p o ¢; : D — G are subharmonic for every ¢ with S; C G. It
follows by the maximum principle that p|S; < maxyg, p for all those ¢.

We define to := inf{t € [0,1] : S; ¢ G}. Then t, > 0, S;, C G, and Sy,
meets JG in at least one point zg. We can find an increasing sequence (t,)
converging to tp and a sequence of points z, € S;, converging to zg. So
p(2z,) = ¢o := supa(p), but there is a ¢ < ¢g such that plps, < ¢ for every
t € [0,1]. This is a contradiction. n

3.2 Corollary. If G is pseudoconvez, then G is Hartogs convexz.

The Boundary Distance

3.3 Theorem. If G C C™ is a Hartogs convex domain, then —logdg is
plurisubharmonic on G.

PrOOF: For z € G and u € C" with |ju|| = 1 we define
dgu(z) :=sup{t >0 :z+7uecd for|r| <t}

Then d¢(z) = inf{dcu(z) : |lul| = 1}, and it is sufficient to show that
—log d¢,yu is plurisubharmonic for fixed u.

(a) Unfortunately, d¢ . does not need to be continuous, but it is lower semi-
continuous:
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Let zg € G be an arbitrary point and ¢ < dg u(zo). Then the compact set
K :={z =129+ mu : || < ¢} is contained in G, and there is a § > 0 such
that {z : dist(K,z) <} C G.

For z € B;s(zg) and |7] < ¢ we have
I(z 4+ Ta) — (zo + Tu)|| = ||z — z0|| < J, and therefore dg u(z) > c.

(b) The function —logdg,u is upper semicontinuous, and we have to show
that

s(¢) == —log o u(zo + (b)
is subharmonic for fixed u,zg, b. First consider the case that u and b are

linearly dependent: b = Au, A # 0.
Let Go be the connected component of 0 in {¢ € C : zg + (b € G}. Then

0c.u(zo + Cb) sup{t >0 : zp +Cb+7u € G for || < t}
sup{t >0 : (+7/) € Gy for |7| < t}
|A| - sup{r >0 : (+ 0 € Gy for |o] <r}

‘)" ’ 6G0 (C)a

and this function is in fact subharmonic.

(c) Now assume that u and b are linearly independent. Since these vectors
are fixed, we can restrict ourselves to the following special situation:

n=2 zp=0, b=e, and u=es.

Then s(¢) = —logsup{t > 0 : ({,7) € G for |7| < t}. We use holomorphic
functions to show that s is subharmonic. Let R > r > 0 be real numbers such
that (¢,0) € G for |¢] < R, and let f : Dg(0) — C be a holomorphic function
such that s < h := Re f on 0D,.(0). We have to show that s < h on D,(0).

We have the following equivalences:

s(C) < h(¢) <= sup{t>0: ((,7) G for |r] <t} > e MO
= (¢c e ) eGforceD.

(d) Define a holomorphic map F by
F(z1,22) := (rzl,Z2e_f(rzl)).

Then F is well defined on a neighborhood of the unit polydisk P? = P?(0, 1).
It must be shown that F(P?) C G. We already know the following:

1. F(21,22) € G for |z1] =1 and |22| < 1, because s(t) < h(t) on 9D,.(0).
2. F(z,0) € G for |z1] < 1, because (¢,0) € G for |¢| <.
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These facts will be used to construct an appropriate Hartogs figure. First,
note that

0
JF(217Z2) = ( : eff(Tzl) ) 5 so det JF(Zl,ZQ) 7é 0.

By the inverse function theorem it follows that F is biholomorphic.

For 0 < 6§ < 1 we define hs : C2 — C? by hs(z1, 22) := (21,022) and apply hs
to the compact set

C:={(z1,22) €C?: (Jz1| <1, o =0) or (Jz1| =1, |22| < 1)} C P2.

Consequently,

Cs :=hs(C) = {(21,22) €C? : (J]z1] €1, 20 = 0) or (|z1] = 1, |22| < 9)}.
Then F(Cjs) C G, as we saw above, and therefore Cs C F~1(G).
For 0 < & < min(d, 1 — §) we define a neighborhood U; of Cs by U, :=
{(21,20) €C? : (|z1] < 1+4¢, 22| <€) or (1—¢ < |z1] < 1+4¢, 22| < d+6)}.
If we choose ¢ small enough, then U. C F~1(G).
Finally, we define H. := hy!(U. N P?) N P? (see Figure I1.6). Then
He = {(21,22) € P? : (21,02) € U. N P?}

_ {(21,22) €C?: (la] <1, |2 < %) or (1—¢< || <1, |2) < 1)}.

|22 |22]
1—c¢
| 2
| Sl r1!
| | |
| |
|
e/d+——————— | | Cs
H. R R J /:/
|21] : |21]

Figure IL.6. Construction of the Hartogs figure

Since (P?,H.) is a Euclidean Hartogs figure, (F o hs(P?),F o hs(H.)) is a
general Hartogs figure with Fohs(H.) C F(U.NP?) C G. Since G is Hartogs
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pseudoconvex, it follows that F o hs(P?) C G. This is valid for every § < 1.
But P? = )5, hs(P?). Therefore, F(P?) C G, which was to be shown. =

3.4 Theorem. The following properties of a domain G C C™ are equivalent:

G satisfies the continuity principle.
G is Hartogs pseudoconver.
—logd¢ is plurisubharmonic on G.
G is pseudoconver.

o e~

PROOF:

(1) =

(2) =
(3) =
(4) =

= (2) is Theorem 1.5,

(3) is Theorem 3.3,

(4) follows from the smoothing lemma,

(1) was proved in Theorem 3.1. "

Properties of Pseudoconvex Domains

3.5 Theorem. IfGy,Go C C" are pseudoconver domains, then G1 NGy is
pseudoconver.

PRrROOF: The statement is trivial if one uses Hartogs pseudoconvexity. =

3.6 Theorem. Let Gy C Gy C ... C C” be an ascending chain of pseudo-
convex domains. Then G := )2, G, is again pseudoconvez.

ProOOF: This follows immediately from the continuity principle. n

3.7 Theorem. A domain G C C" is pseudoconvex if and only if there is an
open covering (U,),er of G such that U, NG is pseudoconvex for every v € I.

PROOF:

“=—="7 is trivial. The other direction will be proved in two steps. At first, we
assume that G is bounded.

For any point zg € OG there is an open set U, such that zg € U, and GNU,
is pseudoconvex. If we choose a neighborhood W = W(zy) C U, so small
that dist(z, 9U,) > dist(z, zg) for every z € WNG, then d¢(z) = dgnu, (z) on
W NG@G. This shows that there is an open neighborhood U = U(9G) such that
—log d¢ is plurisubharmonic on U NG (we use the fact that OG is compact).
Now, G — U CC G. We define
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c:=sup{—logds(z) : z€ G—-U},

and
p(z) := max(—log 6 (z), ||z||* + ¢+ 1).

Then p is a plurisubharmonic exhaustion function, and by the smoothing
lemma, G is pseudoconvex.

If G is unbounded, we write it as an ascending union of the domains
G, := B,(0) N G. Each G, is bounded and satisfies the hypothesis, so is
pseudoconvex. Then G is also a pseudoconvex domain. [

Exercises

1. Suppose that G; C C™ and G2 C C™ are domains.
(a) Show that if G; and G2 are pseudoconvex, then G; x G2 is a pseu-
doconvex domain in C**t™
(b) Show that if there is a proper holomorphic map f : Gy — G2 and G2
is pseudoconvex, then Gy is also pseudoconvex.
2. Let G C C" be a domain and g : G — R a lower semicontinuous positive
function. Prove that

G = {(Zz',w) € G xC : |w| < o(z')}

is pseudoconvex if and only if — log ¢ is plurisubharmonic.
3. A domain G C C" is pseudoconvex if and only if for every compact set
K C G the set

~

Ky = {z € G : p(z) < supp for all plurisubharmonic functions p on G}
K

is relatively compact in G.

4. Levi Convex Boundaries

Boundary Functions

Definition. Let G C C" be a domain. The boundary of G is called
smooth at zg € OG if there is an open neighborhood U = U(zg) C C"
and a function ¢ € €°°(U;R) such that:

1. UNG={z€cU : o(z) <0}

2. (do)z #0forz e U.
The function g is called a local defining function (or boundary function).

Remark. Without loss of generality we may assume that g, # 0. Then
by the implicit function theorem there are neighborhoods
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U of (2, z?) = (24”,..., 25" 1, z”) € C" ' xR, U” of yi¥ €R,

»“n—1""%n

and a € function «y : U’ — U" such that {(z’, z,,yn) € U' xU" : o(z',x, +
iyn) = 0} = {(z', 20, v(z', 7)) : (2, 20) € U'}.

Making the neighborhood U := {(2’, x,, + iy,) : (2',z,) € U’ and y,, € U"}
small enough and correcting the sign if necessary, one can achieve that

unG = {(z/7$n + iyn) el :yn < 7(z17xn)}'

In particular, UNOG = {z € U : p(z) = 0} is a (2n — 1)-dimensional
differentiable submanifold of U.

4.1 Lemma. Let 0G be smooth at zg, and let o1, 02 be two local defining
functions on U = U(zg). Then there is a € function h on U such that:

1. h>0o0nU.
2. o1=h-p2 onU.
3. (do1)s = h(z) - (dg2)s forz € UNOG.

PROOF: Define h := p1/02 on U — OG. After a change of coordinates, we
have zg = 0 and g3 = y,,. Then ¢(t) := 01(2', x,, + it) is a smooth function
that vanishes at t = 0. Therefore,

01(z',zn) = g(yn) — 9(0)
= /O g(S)dS=yn~/Og(tyn)dt

= QQ(Z/7xn + Iyn) : h(zl7 ZTL)’

where .
hz',p + iyn) :/ %( "y + ityy,) dt
0 ayn
is smooth.
For z € OG we have (dg1), = h(z) - (dg2)z. Therefore, h(z) # 0, and even
greater than 0, since i(z) > 0 by continuity. L]

4.2 Theorem. Let G CC C" be a bounded domain with smooth boundary.
Then OG is a differentiable submanifold, and there exists a global defining
function.

ProOOF: We can find open sets V; CC U; C C™, ¢ =1,..., N, such that:

1. {V4,...,Vn} is an open covering of 9G.
2. For each 7 there exists a local defining function p; for G on U;.
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3. For each ¢ there is a smooth function ¢; : U; — R with ¢;]y, = 1,
Yilen—u;, =0, and ; > 0 in general.

Define ¢ := >, ¢; (so ¢ > 0 on dG) and 9; := ¢;/¢. Then >, ¢; =1 on
O0G. The system of the functions v; is called a partition of unity on 0G.

The function ¢ := Zf\il 1;0; is now a global defining function for G. We
leave it to the reader to check the details. n

The Levi Condition. For the remainder of this section let G cC C"
be a bounded domain with smooth boundary, and ¢ : U = U(OG) — R a
global defining function. Then at any zg € OG the real tangent space of the
boundary

T, (0G) = {v € Ty, : (dg)ay(v) = 0)

is a (2n — 1)-dimensional real subspace of T,,. The space
Hzy (0G) := T4, (0G) NiTy, (0G) = {v € Ty, : (90)z,(v) = 0}

is called the complex (or holomorphic) tangent space of the boundary at zo.
It is a (2n — 2)-dimensional real subspace of T,,, with a natural complex
structure, so an (n — 1)-dimensional complex subspace?.
Definition. The domain G is said to satisfy the Levi condition (respec-
tively the strict Levi condition) at zg € OG if Lev(p) is positive semidef-
inite (respectively positive definite) on Hy,,(0G). The domain G is called
Levi convex (respectively strictly Levi convex) if G satisfies the Levi con-
dition (respectively the strict Levi condition) at every point z € 9G.

Remark. The Levi conditions do not depend on the choice of the boundary
function, and they are invariant under biholomorphic transformations.

If o1 = h - g2, with h > 0, then for z € 0G,
Lev(o1)(z, w) = h(z) - Lev(02)(z, w) + 2 Re{(0h)4(W) - (002)s(W)}.

So on H,(0G) the Levi forms of p; and g9 differ only by a positive constant.

Affine Convexity. Recall some facts from real analysis:

A set M C R™ is convex if for every two points x,y € M, the closed line
segment from x to y is contained in M. In that case, for each point x¢ €
R™ — M there is a real hyperplane H C R" with xg € H and M N H = @.
This property was already used in Section 1.

3 H,(0G) is often denoted by T3 °(dG).
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If a€ R", U = U(a) is an open neighborhood and ¢ : U — R is at least €2,
then the quadratic form

Hess(¢) (2, W) i= 3 ¢y, (w10,

is known as the Hessian of ¢ at a.

4.3 Proposition. Let G CC R"™ be a domain with smooth boundary, and
o0 a global defining function with (do)x # 0 for x € 0G. Then G is convezx if
and only if Hess(o) is positive semidefinite on every tangent space Tx(0G).

PrOOF: Let G be convex, and x¢g € 0G an arbitrary point. Then T :=
Tx,(0G) is a real hyperplane with TNG = @. For w € T and a(t) := xg+tw
we have

(00 a)”(0) = Hess(o)(x0, W).

Since o(x0) = 0 and p o a(t) > 0, it follows that ¢ o o has a minimum at
t =0. Then (po a)”(0) > 0, and Hess(p) is positive semidefinite on T

Now let the criterion be fulfilled, assume that 0 € G, and define g. by
0-(x) = 0(x) + — x|

For small € and large N the set G, := {x : g.(x) < 0} is a domain. We have
G. C Go C G for ¢ < ¢, and (J,.(G: = G. Therefore, it is sufficient to
show that G, is convex.

The Hessian of g, is positive definite on Ty (9G) for every x € 9G. Thus this
also holds in a neighborhood U of 0G. If € is small enough, then 0G. C U.
We consider

S ={(x,y) € Ge xGe : tx+ (1 —t)y € G, for 0 <t < 1}.

Then S is an open subset of the connected set G. X G.. Suppose that S is not a
closed subset. Then there exist points xg, yo € G. and aty € (0, 1) with toxo+
(1 —tp)yo € OG.. So the function t — g. o a(t), with a(t) := txg + (1 — t)yo,
has a maximum at ¢g. Then (g.0a)”(t9) < 0 and Hess(o:)(a(to),x0—yo) < 0.
This is a contradiction. n

A domain G = {p < 0} is called strictly conver at xo € OG if Hess(p) is
positive definite at xq. This property is independent of ¢ and invariant under
affine transformations.

Now we return to Levi convexity.

4.4 Lemma. Let U C C" be open and ¢ € €*(U;R). Then

Lev(p)(z,w) = i (Hess(¢)(z, w) + Hess(¢)(z, iw)) .
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PrOOF: This is a simple calculation! n

4.5 Theorem. Let G CC C" be a domain with smooth boundary. Then the
following statements are equivalent:

1. G is strictly Levi convez.

2. There is an open neighborhood U = U(90G) and a strictly plurisubhar-
monic function ¢ € €*°(U;R) such that UNG = {z € U : p(z) < 0}
and (do), #0 forz e U.

3. For every z € OG there is an open neighborhood W = W(z) C C",
an open set V.C C™, and a biholomorphic map F : W — V such that
F(WNG) is convex and even strictly convex at every point of F(WNOG).

PROOF:

(1) = (2) : We choose a global defining function ¢ for G, and an open
neighborhood U = U(OG) such that g is defined on U with (dp), # 0 for
z € U. Let A > 0 be a real constant, and g4 := e*¢ — 1. Then g4 is also a
global defining function, and

Lev(oa)(z,w) = Aee(®) [Lev(g)(z,w) + A|(8@)z(w)|2} .
The set K := G x S?"~! is compact, and
Ky :={(z,w) € K : Lev(p)(z,w) <0}

is a closed subset. Since Lev(p) is positive definite on H,(9G), we have
(00)2(w) # 0 for (z,w) € Kg. Therefore,

M = ménLev(g)(z,w) > —00,
c = H}(in|(6g)z(w)|2 > 0.

We choose A so large that A-C + M > 0. Then
Lev(oa)(z,w) = A [Lev(o)(z, W) + A[(90)2(W)|*] > A+ (M + AC) > 0
for (z,w) € Ky, and
Lev(oa)(z,w) > A% - |(90)2(w)|* > 0
for (z,w) € K — K.

So Lev(ga)(z,w) > 0 for every z € 9G and every w € C" — {0}. By conti-
nuity, o4 is strictly plurisubharmonic in a neighborhood of 9G.

(2) = (3) : We consider a point zy € G and make some simple coordinate
transformations:
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By the translation z — w = z — zy we replace zg by the origin, and a
permutation of coordinates ensures that gy, (0) # 0.

The linear transformation
W= U= (00, (0)wr + -+ + gu, (0)wy, wa, ..., wy)
gives u; = w - Vp(0)?, and therefore

o(u) = 2Re(u-V(oow)(0)") + terms of degree > 2
2Re (u- Jw(0)"-Vo(0)*) + terms of degree > 2

= 2Re(w-Vp(0)") + terms of degree > 2

= 2Re(u1) + terms of degree > 2.
Finally, we write o(u) = 2Re(u; + Q(u)) + Lev(p)(0,u) + - - -, where Q is a
quadratic holomorphic polynomial, and make the biholomorphic transforma-
tion

u—v=(u +Qu),ug,..., u,).

It follows that
o(v) = 2Re(v1) + Lev(p)(0,v) + terms of order > 3.

By the uniqueness of the Taylor expansion
1
o(v) = Dp(0)(v) + iHess(g)(O,v) + terms of order > 3,

and therefore Hess(p)(0,v) = 2 - Lev(p)(0,v) > 0 for v # 0 (in the new
coordinates). Everything works in a neighborhood that may be chosen to be
convex.

(3) = (1) : This follows from Lemma 4.4:
Hess(0) > 0 on T,(0G) = Lev(p) > 0 on H,(0G).

The latter property is invariant under biholomorphic transformations. n

A Theorem of Levi. Let G cC C" be a domain with smooth boundary.
If G is strictly Levi convex, then it is easy to see that G is pseudoconvex.
We wish to demonstrate that even the weaker Levi convexity is equivalent
to pseudoconvexity. For that purpose we extend the boundary distance to a
function on C".

0c(2z) forz € G,

dg(z) = 0 for z € 0G,
—bcn_g(z) forz ¢ G.
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4.6 Lemma. —dg is a smooth defining function for G.

PROOF: We use real coordinates x = (x1,...,zx) with N = 2n. It is clear
that G = {x : —dg(x) < 0}.

Let xg € OG be an arbitrary point and p : U(xg) — R a local defining
function. We may assume that g,, (x9) # 0. Then by the implicit function
theorem there is a product neighborhood U’ x U"” of x¢ in U and a smooth
function h : U" — R such that

{(x',an) €U xU" : o(x,2n) = 0} ={(x, h(x')) : X" € U}

It follows that 0 = Vy o(xX', h(X')) + 045 (X', h(X")) - VA(X').

At the point (x/,h(x')) € OG the gradient Vo(x’, h(x’)) is normal to 0G
and directed outward from G. Every point y in a small neighborhood of the
boundary has a unique representation y = x + ¢ - Vo(x), where t = —dg(y)
and x is the point where the perpendicular from y to G meets the boundary.
Therefore, we define the smooth map F : U’ x R — R¥ by

y=F,t) =, h(x))+t Vo(x', h(x)).

Then there are smooth functions A and b such that

sy [ Evoitt AR Veo(x h(x)'
rlxf) = ( VAR +1 D) g (X H) > |

and therefore

— / / . Nt
det Jpp(x',0) = det( Ey_1 05, (x,h(x)) - Vh(x') >

Vh(x') Oz (X', (X))

B , p En_1 —Vh(x')?

= 0un (X', h(X')) - det ( o’ 1+ ||Vh(x')||2

= 0oy (X, (X)) (1 + [VA(X)]?) # 0.
It follows that there exists an € > 0 such that F maps U’ x (—¢,¢) diffeo-
morphically onto a neighborhood W = W (xg), and U’ x {0} onto 0G N W.
Moreover, since dg(x + t - Vo(x)) = —t for |t| < ¢ and e small enough, it

follows that dg = (—t) o F~! is a smooth function near G. If p’ is defined
by p’(x/,t) := (x/,0), then the projection

p=p oF ':x+1t Vp(x) x, forx € 9G,

is a smooth map, and dg is given by dg(y) = o - ||ly — p(y)||, where o = 1
for y € G and 0 = —1 elsewhere.

For y ¢ 0G we have
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N
(dc)y, (¥) e Z (9 = Pr(¥)) (O — (1), (¥))
k=1
el [yu -y -pr)|Pn. ™)yl
and therefore
Vdg(y) = Ty = 0;)( T [y =p(y) = Dp(y)(y — P(¥))]-

Since o(p(y)) = 0, it follows that Dp(y)(Ve(p(y))) = 0. But y — p(y) is a
multiple of Vo(p(y)). Together this gives

s, Y=P) _  Veo(p(y)
Iy —p(y)ll IVo(p(¥)II

If y tends to OG, we obtain that Vdg(y) # 0. "

Vdg(y) =

E.E. Levi showed that every domain of holomorphy with smooth boundary is
Levi convex, and locally the boundary of a strictly Levi convex domain G is
the “natural boundary” for some holomorphic function in G. Here we prove
the following result, which is sometimes called “Levi’s theorem”.

4.7 Theorem. A domain G with smooth boundary is pseudoconvex if and
only if it is Levi conver.

PROOF:

(1) Let G be pseudoconvex. The function —d¢ is a smooth boundary function
for G, and —logdg = —logdg is plurisubharmonic on G, because of the
pseudoconvexity. We calculate

Lev(—logdg)(z, w) = -Lev(—dg)(z, w) + 5 1(0(da))a(w)[>.

1
de(z) de(z)
This is nonnegative in G. If z € G, w € T, and (9(dg)).(w) = 0, it follows
that Lev(—dg)(z,w) > 0. This remains true for z — 9G, so —dg satisfies
the Levi condition.

(2) Let G be Levi convex, and suppose that G is not pseudoconvex. Then in
any neighborhood U of the boundary there exists a point zy where the Levi
form of —log ds has a negative eigenvalue. This means that there is a vector
wp such that

¢:7(0) = Lev(log d¢:) (2o, wo) > 0, for ¢(() := logdg(zo + (Wo).

Consider the Taylor expansion

p(0) +2Re(ipc(0)¢ + 506 (0)C) + 9O +
©(0) + Re(A¢ + BC?) + A[¢]? +

©(C)
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with complex constants A, B and a real constant A > 0.

We choose a point pg € 0G with d¢(z) = ||po — Zol|, and an arbitrary ¢ > 0.
Then an analytic disk ¢ : D.(0) — C™ can be defined by

¥(C) := 70 + (wo + exp(AC + BC?)(po — 20).

We have 1(0) = pg, and we wish to show that ¥(¢) € G, for 0 < |{| < ¢ and
e sufficiently small.

Since ¢(¢) > ¢(0) + Re(A¢ + B¢?) + (A\/2)|¢|? near ¢ = 0, it follows that
G (20 +Cwo) = exp(p(())
A
exp(p(0)) - | exp (A + BE?) | - exp(51cI?)

ARV

S¢:(2o) - | exp (A¢ + BC?) |
|exp (A¢ + B¢?) (po — z0)|

for ¢ small and # 0. This means that we can choose the € in such a way
that ¥(¢) € G, for 0 < |[¢| < e. The analytic disc is tangent to G from the
interior of G.

Now f(¢) = dg(¥(¢)) is a smooth function with a local minimum at ¢ = 0.
Therefore (0da)p, (¥'(0)) = (0f)o(1) =0, and

)
() =Re (fee(0)¢?) + f@ICI2 + terms of order > 3.
Since Re (f¢¢(0)e*) + fz > 0 for every ¢, it follows that

Lev(de)(po, ¥'(0)) = f¢(0) > 0

This is a contradiction to the Levi condition at pg, because —d¢ is a defining
function for G. n

Exercises

1. Prove Lemma 4.4.

2. Assume that G CC C? has a smooth boundary that is Levi convex outside
a point a that is not isolated in dG. Show that G is pseudoconvex.

3. Assume that G C C? is an arbitrary domain and that S C G is a smooth
real surface with the following property: In every point of S the tangent
to S is not a complex line. Prove that for every compact set K C G there
are arbitrarily small pseudoconvex neighborhoods of S N K.

4. Assume that G cC C? is a domain with smooth boundary. Then G
is strictly Levi convex at a point zg € 0G if and only if the following
condition is satisfied:

There is a neighborhood U = U(z), a holomorphic function ¢ : D — U
with ¢(0) = z¢ and ¢’'(0) # 0, and a local defining function ¢ on U such
that (00 ¢)(¢) >0 on D — {0} and (00 ¢)£(0) > 0.
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5. Let G CC C™ be a domain with smooth boundary. If G satisfies the strict
Levi condition at zy € dG, then prove that the following hold:
(a) There is no analytic disk ¢ : D — C™ with

©(0)=2zp and lim _daleld)) =0

=0 [le(¢) = »(0)[1?
(b) There are a neighborhood U = U(zg) and a holomorphic function f
in U with GN{z €U : f(z) =0} = {zo0}.
6. A bounded domain G C C" is called strongly pseudoconvex if there are
a neighborhood U = U(JG) and a strictly plurisubharmonic function
0 € €*(U) such that GNU = {z € U : o(z) < 0}. Notice that a strongly
pseudoconvex domain does not necessarily have a smooth boundary!

Prove the following results about a strongly pseudoconvex bounded do-

main G:

(a) G is pseudoconvex.

(b) If G has a smooth boundary, then G is strictly Levi convex.

(c) For every z € OG there is a neighborhood U = U(z) such that UNG
is a weak domain of holomorphy.

7. Let G C C™ be a pseudoconvex domain. Then prove that there is a family

of domains G, C G such that the following hold:

(a) G, CC G,y for every v.

(b) U2, Gy =G

(c) For every v there is a strictly plurisubharmonic function f, €
€ (G,+1) such that G, is a connected component of the set

{zeGys1: fu(2) <0}.

5. Holomorphic Convexity

Affine Convexity We will investigate relationships between pseudocon-
vexity and affine convexity. Let us begin with some observations about convex
domains in R¥.

Let . be the set of affine linear functions f : RY — R with
f(x):alml‘i""“v‘(lNl’N—Fb7 ai,...,an,b €R.

If M is a convex set and Xg a point not contained in M, then there exists
a function f € £ with f(x¢) = 0 and f|yr < 0. For any ¢ € R, the set
{x € RY : f(x) < c} is a convex half-space.

Definition. Let M C R be an arbitrary subset. Then the set
H(M):= {XG RN : f(x) <supf, forall f € .,i”}
M

is called the affine conver hull of M.



74 II. Domains of Holomorphy

5.1 Proposition. Let M, M, My C RN be arbitrary subsets. Then

M cC HM).

H(M) is closed and convez.

If My C My, then H(M;) C H(Ms).

If M is closed and convex, then H(M) = M.
If M is bounded, then H(M) is also bounded.

S Grds Lo =~

PRrROOF: (1) is trivial.

(2) If xo ¢ H(M), then there is an f € .Z with f(x¢) > sup,, f. By conti-
nuity, f(x) > sup,, f in a neighborhood of xq. Therefore, H(M) is closed.

If xg,yo are two points in H(M), then they are contained in every convex
half-space E = {x : f(x) < sup,, f}, and also the closed line segment from
Xo to yo is contained in each of these half-spaces. This shows that H(M) is
Convex.

(3) We have to show that H(H(M)) C H(M). If x € H(H(M)) is an arbi-
trary point and f an element of ., then f(x) < supy) f < supy f, by
the definition of H(M).

(4) is trivial.

(5) Let M be closed and convex. If xg ¢ M, then there is a point yg € M
such that dist(xq, M) = dist(xg, yo) (because M is closed). Let zy be a point
in the open line segment from xg to yo. Then zg ¢ M, and there is a function
f € Z with f(zo) = 0 and f|m < 0. Since t — f(txo + (1 — t)yo) is a
monotone function, it follows that f(xo) > 0 and therefore xo ¢ H(M).

(6) If M is bounded, there is an R > 0 such that M is contained in the closed
convex set Br(0). Thus H(M) C Bg(0). "

Remark. H(M) is the smallest closed convex set that contains M.

5.2 Theorem. A domain G C RV is convez if and only if K CC G implies
that H(K) CC G.

PRrROOF: Let G be a convex domain, and M CC G a subset. Then H(M) is
closed and contained in the bounded set H (M ). Therefore, H(M) is compact,
and it remains to show that H(M) C G. If there is a point xg € H(M) — G,
then there is a function f € £ with f(x¢) = 0 and f|g < 0. It follows that

supyr f < 0, and f(x¢) > sup,, f. This is a contradiction to xo € H(M).
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On the other hand, let the criterion be fulfilled. If xq, yg are two points of G,
then K := {x¢,yo} is a relatively compact subset of G. It follows that H (K)
is contained in G. Since H(K) is closed and convex, the closed line segment
from x¢ to yg is also contained in G. Therefore G is convex. n

Holomorphic Convexity. Now we replace affine linear functions by
holomorphic functions.

Definition. Let G C C™ be a domain and K C G a subset. The set

K=Kg:= {z € G : |f(z)| <sup|f], forall fe O(G)}
K

is called the holomorphically convezr hull of K in G.

5.3 Proposition. Let G C C” be a domain, and K, K1, Ky subsets of G.
Then

ProOOF: (1) is trivial.

(2) Let zo be a point of G — K. Then there exists a holomorphic function
f on G with |f(z0)| > supg|f|- By continuity, this inequality holds on an
entire neighborhood U = U(z¢) C G. So G — K is open.

(3) supg|f] < supg|f|.
(4) is trivial.

(5) If K is bounded, it is contained in a closed polydisk P?(0,r). The coordi-
nate functions z, are holomorphic in G. For z € K we have |z,| < supg|z,| <
r. Hence K is also bounded. L]

Definition. A domain G C C" is called holomorphically conver if
K CC G implies that K CC G.
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Example
In C every domain is holomorphically convex:

Let K CC G be an arbitrary subset. Then K is bounded, and it remains
to show that the closure of K is contained in G. If there is a point zy €
K- G, then zp lies in 0K N 0G. We consider the holomorphic function
f(z) :=1/(z — z0) in G. If (2,) is a sequence in K converging to zp, then
|f(z)| < supg|f| < supg|f| < oo. This is a contradiction. For n > 2, we
will show that there are domains that are not holomorphically convex. But
we have the following result.

5.4 Proposition. If G C C" is an affine convexr domain, then it is holo-
morphically convex.

PROOF: Let K be relatively compact in G. Then H(K) CC G. If zg is a
point of G — H(K), then there exists an affine linear function A € £ with
A(zo) > supg A. Replacing A by A — A(0) we may assume that A is a homo-
geneous linear function of the form

Az) =2Re(arz1 + -+ + anzn).

Then f(z) :=exp(2- (o121 + -+ + apzy)) is holomorphic in G, and |f(z)| =
exp(A(z)). Therefore, |f(zo)| > supk|f]|, and zg € G — K. This proves K CC
G. n

In general, holomorphic convexity is a much weaker property than affine
convexity.

The Cartan—Thullen Theorem. Let G ¢ C" be a domain, and
¢ > 0 a small real number. We define

Ge :={z€G : dg(z) > e}

Here are some properties of the set G.:

1. If z € G, then there is an € > 0 such that dg(z) > e.
Therefore, G = |J,., G-.

2. If g1 < g9, then G, D Go,.

3. G. is a closed subset of C". In fact, if zg € C* — G, then 0g(2z¢) < €
or zg € G. In the latter case, the ball B.(zg) is contained in C"* — G.. If
zo € G — G, and § := 6¢(zp), then B._5(zg) C C" — G.. So C" — G, is
open.

5.5 Lemma. Let G C C" be a domain, K C G a compact subset, and f a
holomorphic function in G. If K C G., then for any § with 0 < § < € there
exists a constant C > 0 such that the following inequality holds:
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al
sup|DO‘f( )| < slal -C.

ProOOF: For 0 < 6 < e, G = {z € G : dist(K,z) < §} is open and
relatively compact in G, and for any z € K the closed polydisk P"(z, ) is
contained in G’ C G. If T is the distinguished boundary of the polydisk and
|f| < C on G/, then the Cauchy inequalities yield

o ol
|D° f(2)] < sup|f| < il -C.

5.6 Theorem (Cartan—Thullen). If G is a weak domain of holomorphy,
then G is holomorphically convez.

Proor: Let K CC g We want to show that K CC G. Let ¢ :=
dist(K,C™ — G) > dist(K,C"™ — G) > 0. Clearly, K lies in G.

We assert that the holomorphically convex hull K lies even in G.. Suppose
this is not so. Then there is a zg € K — G.. Now let f be any holomorphic
function in G. In a neighborhood U = U(zg) C G, f has a Taylor expansion

1
z) = Zal,(z —z9)”, with a, = JD”f(zo).
v>0 ’

The function z — a,(z) := 4D"f(z) is holomorphic in G. Therefore,
la,(zo)| < supgla,(z)|. By the lemma for any § with 0 < 6 < ¢ there
exists a C' > 0 such that supg|a,(z)| < C/5|"‘, and then

v |21 Zlo)| |2 — 2] o
— < o — e[ — T
lay(z — z9)"| < C ( 5 5

On any polydisk P"(zg,d) the Taylor series is dominated by a geometric
series. Therefore, it converges on P = P™(zg, ¢) to a holomorphic function f
We have f = f near zg, and then on the connected component @ of zy in
P N G. Since P meets G and C™ — G, it follows from Lemma 1..9 that there
is a point z; € PN OQ NOG. Then f cannot be completely singular at z;.
This is a contradiction, because f is an arbitrary holomorphic function in G,
and G is a weak domain of holomorphy. n

Exercises

1. Let G; C G2 C C™ be domains. Assume that for every f € O(Gy) there
is a sequence of functions f, € O(G3) converging compactly on Gy to f.
Show that for every compact set K C G it follows that K a, NG = K. G-
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2. Let F: Gy — G4 be a proper holomorphic map between domains in C™,
respectively C". Show that if G5 is holomorphically convex, then so is
Gl.

3. Let G C C" be a domain and S C G be a closed analytic disk with
boundary bS. Show that S C (b/g)G.

4. Define the domain G C C? by G := P?(0,1) — P2(0,1/2). Construct the
holomorphically convex hull K¢ for K := {(z1,2) : 21 = 0 and |2;| =
3/4}. Is K¢ a relatively compact subset of G'?

5. Let F be a family of functions in the domain G. For a compact subset
K C G we define

Ky = {zeG 1 (2)] < sup| | for aufef}.

The domain G is called convex with respect to F, provided that K F is

relatively compact in G whenever K is. Prove:

(a) Every bounded domain is convex with respect to the family €°(G)
of all continuous functions.

(b) The unit ball B = B;(0) is convex with respect to the family of

holomorphic functions zl’f . zfl with v,u=1,...,n and k,l € Np.

6. Singular Functions

Normal Exhaustions. Let G € C" be a domain. If G is holomorphically
convex, we want to construct a holomorphic function in G that is completely
singular at every boundary point. For that we use “normal exhaustions.”

Definition. A normal exhaustion of G is a sequence (K, ) of compact
subsets of GG such that:

1. K, CC (K,41)°, for every v.

2. U, K, =G.

6.1 Theorem. Any domain G in C" admits a normal exhaustion. If G is
holomorphically convex, then there is a normal exhaustion (K,) with K, =
K, for every v.

PROOF: In the general case, K, := P"(0,v) N G1/, gives a normal exhaus-
tion. If G is holomorphically convex, IA(,, CC G for every v. We construct a
new exhaustion by induction.

Let Ki = IA{L Suppose that compact sets K7,..., K, _; have been con-
structed, with IA(J* = K;forj=1,...,u—1,and K; cC (K;,)°. Then
there exists a A(v) € N such that K;_; C (K)(,))°. Let K} := IA(A(,,).
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It is clear that (K}}) is a normal exhaustion with I?j =K. L]

Unbounded Holomorphic Functions. Again let G € C" be a

domain.

6.2 Theorem. Let (K,) be a normal exhaustion of G with I?,, = K,,
A(p) a strictly monotonic increasing sequence of natural numbers, and (z,,)
a sequence of points with z,, € Kyuy+1 — K-

Then there exists a holomorphic function f in G such that |f(z,)| is un-
bounded.

ProoF: The function f is constructed as the limit function of an infinite
series f = Z:o=1 fu- By induction we define holomorphic functions f, in G
such that:

L | fuliy,, <27# for p>1.
p—1

2. [fulzu)| > p+1+ Z|fj(zu)| for pn > 2.
j=1
Let fi := 0. Now for p > 2 suppose that fq,..., f,—1 have been constructed.
Since z,, € K41 — K and Ky, = Ky(y), there exists a function g
holomorphic in G such that |g(z,)| > ¢ := SUDK, ) |g|. By multiplication by
a suitable constant we can make

l9(zu)| > 1> ¢

If we set f, := g* with a sufficiently large k, then f, has the properties (1)
and (2).

We assert that > L fu converges compactly in G. To prove this, first note
that for K’ C G an arbitrary compact subset, there is a pg € N such that
K C Ky(u,)- By construction supy|f,| < 27 for p > po. Since the geo-
metric series ) u 27# dominates u fu in K, the series of the f, is normally
convergent on K. This shows that f =" M fu is holomorphic in G. Moreover,

[zl = [fulzu)| = Z|fu(zu)‘
VFEL
> p+1- Zlfu(zlt”
v>p
> p+1- 22”’ (since z, € K, for v > )
v>pu
> (since ZQ*” =1).
v>1

It follows that |f(z,)| — oo for pu — oco. "
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The following is an important consequence:

6.3 Theorem. A domain G is holomorphically convex if and only if for
any infinite set D that is discrete in G there exists a function f holomorphic
in G such that |f| is unbounded on D.

Proor: (1) Let G be holomorphically convex, D C G infinite and discrete.
Moreover, let (K,) be a normal exhaustion of G with IA(V = K,. Then K,ND
is finite (or empty) for every v € N. We construct a sequence of points z,, € D
by induction.

Let z; € D — K, be arbitrary, and A(1) € N minimal with the property that
z1 lies in Ky(1)41- Now suppose the points zi,...,z,1 and the numbers
A(1),..., A(r — 1) have been constructed such that

z, € Kxoy41 — Kx), forv=1,...,p—1.

Then we choose z, € D — Kj(,—1)41 and A(x) minimal with the property
that z,, lies in K(,,)41- By the theorem above there is a holomorphic function
f in G such that |f(z,)| — oo for p — co. Therefore, | f| is unbounded on D.

(2) Now suppose that the criterion is satisfied, and K CC G. Then K ca@,
and we have to show that K is compact. Let (z,) be any sequence of points
in K. Then

sup{|f(z,)| : v € N} <sup|f| < oo, for every f € O(G).
K

Therefore, {z, : v € N} cannot be discrete in G. Thus the sequence (z,)
has a cluster point zy in G. Since K is closed, zg belongs to K. So G is
holomorphically convex. [

Sequences. For a domain G C C" we wish to construct a sequence that
accumulates at every point of its boundary.

6.4 Theorem. Let (K,) be a normal exhaustion of G. Then there exists
a strictly monotonic increasing sequence M) of natural numbers and a se-
quence (z,) of points in G such that:

1.z, € Ky(uy+1 — Kx), for every pu.

2. If zg is a boundary point of G and U = U(zg) an open connected neigh-
borhood, then every connected component of U N G contains infinitely
many points of the sequence (z,,).

Proor: This is a purely topological result, since we make no assumption
about G. The proof is carried out in several steps.
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(1) Let B = {B, : v € N} be the countable system of balls with rational
center and rational radius meeting G. Every intersection B, NG has at most
countably many connected components. Thus we obtain a countable family

C ={C, : 3v € Nsuch that C), is a connected component of B, € B}.

(2) By induction, the sequences A(u) and (z,) are constructed. Let z; be
arbitrary in C7; — Kj. Then there is a unique number A(1) such that z; €
Kxy+1 — Kxq)-

Now suppose zi, ...,%,—1 have been constructed such that
Z; € Cj N (K/\(j)+1 —K)\(j)), forj=1,...,p—1.

We choose z, € C,, — Kx(u—1)+1 and A(u) as usual. That is possible, since
there is a point w € B,(,) N 9C, N OG if C, is a connected component of
B,y NG. Then C" — K (,—1)41 is an open neighborhood of w and contains
points of C,,.

(3) Now we show that property (2) of the theorem is satisfied. Let zo be a
point of G, U = U(zp) an open connected neighborhood, and @ a connected
component of U N G. We assume that only finitely many z, lie in @), say
Z1,...,%Zm. Then

U :=U—-{2z1,...,2m} and Q" :=Q—{z1,...,2m}

are open connected sets that contain no z,. Obviously, @Q* is a connected
component of GNU*.

There is a point wg in U* N 9Q* N OG, and a ball B, C U* with wg € B,.
Then B, NG C U* N G. Moreover, B, N G must contain a point w; € Q*.
The connected component C* of wy in B, NG is a subset of the connected
component of wy in U*NG. But C* is an element C,,, of C. By construction
it contains the point z,,. That is a contradiction. Infinitely many members
of the sequence belong to Q. n

6.5 Theorem. If G is holomorphically convez, then it is a domain of holo-
morphy.

ProoOF: Let (K,) be a normal exhaustion of G with IA(D = K, and choose
sequences A(u) € N and (z,,) in G such that z, € Ky)4+1 — Ky(,). We may
assume that for every point zy € G, every open connected neighborhood
U = U(zg), and every connected component @) of U N G there are infinitely
many z, in Q).

Now let f be holomorphic in G and unbounded on D := {z, : p € N}. It is
clear that f is completely singular at every point zy € 0G. [
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Remark. It is not necessary that a completely singular holomorphic func-
tion is unbounded. In 1978, D. Catlin showed in his dissertation that if
G CccC C" is a holomorphically convex domain with smooth boundary, then
there exists a function holomorphic in G' and smooth in a neighborhood of G
that is completely singular at every point of the boundary of G.

Exercises

1. A domain G CC C" is holomorphically convex if and only if for every
z € OG there is a neighborhood U(z) such that U N G is a domain of
holomorphy.

2. Let Gy C C" and G2 C C™ be domains of holomorphy. If f : G; — C™ is
a holomorphic mapping, then f~!(G2) N G is a domain of holomorphy.

3. Find a bounded holomorphic function on the unit disk D that is singular
at every boundary point.

7. Examples and Applications

Domains of Holomorphy

7.1 Proposition. FEvery domain in the complex plane C is a domain of
holomorphy.

PrROOF: We have already shown that every domain in C is holomorphically
convex. Therefore, such a domain is also a domain of holomorphy. L]

7.2 Theorem. The following statements about domains G € C" are equiv-
alent:

1. G is a weak domain of holomorphy.

2. G is holomorphically convex.

3. For every infinite discrete subset D C G there exists a holomorphic func-
tion f in G such that |f| is unbounded on D.

4. G is a domain of holomorphy.

The equivalences have all been proved in the preceding paragraphs. Fur-
thermore, we know that every domain of holomorphy is pseudoconvex. Still
missing here is the proof of the Levi problem: Every pseudoconvex domain
is holomorphically convex. We say more about this in Chapter V.

Every affine convex open subset of C" is a domain of holomorphy. The n-fold
Cartesian product of plane domains is a further example.

7.3 Proposition. If Gy,...,G, C C are arbitrary domains, then G :=
G1 X -+ X Gy is a domain of holomorphy.
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PRrROOF: Let D ={z, = (z{,...,2#) : p € N} be an infinite discrete subset
of G. Then there is an ¢ such that (z!') has no cluster point in G;, and there
is a holomorphic function f in G; with lim#_>oo| (=) | = 00. The function f

in G, defined by f(z1,...,2,) := f(2:), is holomorphic in G and unbounded
on D. [

Remark. The same proof shows that every Cartesian product of domains
of holomorphy is again a domain of holomorphy.

Complete Reinhardt Domains. Let G C C" be a complete Rein-
hardt domain (see Section I.1). We will give criteria for G to be a domain of
holomorphy. For that purpose we define a map log from the absolute value
space ¥ to R" by

log(r1,...,mn) := (logry,...,logry).

Definition. A Reinhardt domain G is called logarithmically convez if
log 7(G N (C*)™) is an affine convex domain in R™.

Remark. Forz = (z1,...,2,) € G wehavelog7(z) = (log|z1],...,log|zn|).
If z € (C*)™, then |z;| > 0 for each 4, and log 7(z) is in fact an element of R™.

7.4 Proposition. The domain of convergence of a power series S(z) =
Zuzo a,z" 1is logarithmically conver.

PRrROOF: Let G be the domain of convergence of S(z), and M :=log (G N
(C*)™) C R™. We consider two points x,y € M and points z, w € G N (C*)"
with log7(z) = x and log 7(w) = y. If A > 1 is small enough, Az and Aw still
belong to G N (C*)™. Since S(z) is convergent in Az, Aw, there is a constant
C > 0 such that

la,| - AV jzY| < ¢ and  a,|- AV |w¥| < C, for every v € NB.
Thus
la| - AlvL. |z”|" - \w”|1_t < C, forevery v and 0 <t < 1.
It follows from Abel’s lemma that S(z) is convergent in a neighborhood of
|1—t

Z; = (|21|t|w1 ...,|zn\t|wn\1_t).

This means that z, € G and tx+ (1 —t)y = log7(z;) € M, for 0 <t < 1.
Therefore, M is convex. [
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7.5 Proposition. Let G be a complete Reinhardt domain. If G is logarith-
mically convex, then it is holomorphically convex.

PROOF: Let K be a relatively compact subset of G. Since G is a complete
Reinhardt domain and K a compact subset of G, there are points z1, ...,z €
G N (C*)™ such that

k
KcG = U P"(0,q;,) C G, where q; := 7(2;).
i=1

We consider the set .# = {m(z) = z" : v € N} } of monomials, which is a
subset of O(G). For z € P"(0,q;) and m € .# we have

Im(z)| = |2"| < qi = m(aqi)l.
Let Z :={z1,...,2x}. Then for z € K it follows that

|m(z)| < sup|m| < sup|m| < sup|m|, for every m € 4.
K G’ z

Suppose that K is not relatively compact in G. Then K has a cluster point
zo in JG, and it follows that |m(zg)| < supy,|m|, for every m € 4.

Let h(z) := log7(z), for z € (C*)™. Since G is logarithmically convex, the
domain Gy := h(G N (C*)™) C R™ is affine convex. For the time being we
assume that zg € (C*)™. Then x¢ := h(zg) € 9Gy, and there is a real linear
function A(x) = a1z1 + - - - + anx, such that A(x) < A(x¢) for x € Gy.

Let x = log7(z) be a point of G, and u € R" with u; < z; for j =1,...,n.
Then €% < €% = |z;|, and therefore (since G is a complete Reinhardt do-
main) w = (e",...,e%*) € GN(C*)” and u € Gy. In particular,

A(x) —na; = A(x — nej) < A(xq), for every n € N.
Therefore, a; > 0 for j =1,...,n.

Now we choose rational numbers r; > a; and define X(x) =izt raT,.
If we choose the r; sufficiently close to a;, the inequality Mas) < A(xo)
holds for ¢ = 1,...,k, and it still holds after multiplying by the common
denominator of the r;. Therefore, we may assume that the r; are natural
numbers, and we can define a special monomial mg by mg(z) := 21" - - 2ln.
Then N B

Imo(z;)| = N9 < AX0) = |mg(z0)|, fori=1,... k.

So |mo(z0)| > sup,|mo|, and this is a contradiction.
If zo & (C*)", then after a permutation of the coordinates we may assume

that 2{” -+ 2" # 0 and 27, = -+ = 2z = 0. We can project on the space
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C! and work with monomials in the variables z1,. .., 2. Then the proof goes
through as above. n

Now we get the following result:

7.6 Theorem. Let G C C" be a complete Reinhardt domain. Then the
following statements are equivalent:

1. G is the domain of convergence of a power series.
2. G is logarithmically convex.

3. G is holomorphically convex.

4. G is a domain of holomorphy.

PrOOF: We have only to show that if G is a complete Reinhardt domain
and a domain of holomorphy, then it is the domain of convergence of a power
series. By hypothesis, there is a function f that is holomorphic in G and
completely singular at every boundary point. In Section 1.5 we proved that
for every holomorphic function in a proper Reinhardt domain there is a power
series S(z) that converges in G to f. By the identity theorem it does not
converge on any domain strictly larger than G. n

Analytic Polyhedra. Let G ¢ C" be a domain.

Definition. Let U C G, Vi,..., Vi C C open subsets, and fi,..., fx
holomorphic functions in G. The set

P:={zeU: fi(z)eV, fori=1,...,k}

is called an analytic polyhedron in G if P cC U.

If, in addition, V§ = --- =V}, = D, then one speaks of a special analytic
polyhedron in G.

Remark. An analytic polyhedron P need not be connected. The set U
in the definition ensures that each union of connected components of P is
also an analytic polyhedron if it has a positive distance from every other
connected component of P.

7.7 Theorem. FEvery connected analytic polyhedron P in G is a domain of
holomorphy.

ProOOF: We have only to show that P is a weak domain of holomorphy.
If zo € OP, then there is an i such that f;(zg) € OV;. Therefore, f(z) :=
(fi(z) — fi(zo))~! is holomorphic in P and completely singular at zo. n
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Example

Let ¢ < 1 be a positive real number, and
P:={z=(21,22) €C® : || <1, |22| <1 and |z - 20| < q}.

Then P (see Figure I1.7) is clearly an analytic polyhedron, but neither affine

|22]

q

1 \
P q

|21]

Figure I1.7. An analytic polyhedron

convex nor a Cartesian product of domains. So the analytic polyhedra enrich
our stock of examples of domains of holomorphy.

We will show that every domain of holomorphy is “almost” an analytic poly-
hedron.

7.8 Theorem. If G C C" is a domain of holomorphy, then there exists
a sequence (P,) of special analytic polyhedra in G with P, CC P,41 and
U, P =G.

ProOF: Let (K,) be a normal exhaustion of G with K, = K,. If z €
0K, is an arbitrary point, then z does not lie in K, C (K,41)°, and
therefore not in IA(V. Hence there exists a function f holomorphic in G for
which ¢ := supg [f| < |f(z)|. By multiplication by a suitable constant we
obtain ¢ < 1 < |f(z)|, and then there is an entire neighborhood U = U(z)
such that |f| > 1on U.

Since the boundary 0K, 41 is compact, we can find finitely many open neigh-
borhoods U, ; of z,,; € 0K, 41, j = 1,...,k,, and corresponding functions
fv.j holomorphic in G such that |f, ;| > 1 on U, ;, and 9K,1 € U5, U
We define

Py={z€ (Kyr)® : foj(@) < Lforj=1,... k)

Clearly, K, C P, C (K,+1)°. Furthermore, M := K,11 — (U,  U---UU,4,)
is a compact set with P, C M C (K,11)°. Consequently, P, CC K, 1. Thus
P, is a special analytic polyhedron in G. It follows trivially that the sequence
(P,) exhausts the domain G. "



8. Riemann Domains over C"

In the theory of Stein manifolds one proves the converse of this theorem.

Exercises

1. If R is a domain in the real number space R", then

Tr =R+ iR":={z€ C" : (Re(z1),...,Re(zn)) € R}
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is called the tube domain associated with R. Prove that the following

properties are equivalent:

(a) R is convex.

(b) Tg is (affine) convex.

(¢) Tg is holomorphically convex.
(d) Tg is pseudoconvex.

Hint: To show (d) = (a) choose x¢,yo € R. Then the function p(¢) :=
—In d7;, (x0 + ¢ (yo —Xo)) is subharmonic in D. Since o7, (x+iy) = Ir(x),
one concludes that ¢t — —Indg(xp + t(yo — Xo)) assumes its maximum

att=0ort=1.

2. Let G C C" be a domain. A domain G C C" is called the envelope of

holomorphy of G if every holomorphic function f in G has a holomorphic

extension to G. Prove:

(a) If R C R™ is a domain and H(R) its affine convex hull, then G

H(R) + iR™ is the envelope of holomorphy of the tube domain G =

R+ iR"™.

(b) If G € C™ is a Reinhardt domain and G the smallest logarithmi-
cally convex complete Reinhardt domain containing G, then G is the
envelope of holomorphy of G. Hint: Use the convex hull of log 7(G).

3. Construct the envelope of holomorphy of the domain

Gy :=P?(0,(1,9)) UP?*(0,(g,1)).

4. A domain G C C" is called a Runge domain if for every holomorphic
function f in G there is a sequence (p,) of polynomials converging com-

pactly in G to f.

Prove that the Cartesian product of n simply connected subdomains of

C is a Runge domain in C™.

5. A domain G C C" is called polynomially convex if it is convex with
respect to the family of all polynomials (cf. Exercise 5.5). Prove that
every polynomially convex domain is a holomorphically convex Runge

domain.

8. Riemann Domains over C"

Riemann Domains. It turns out that for general domains in C” the
envelope of holomorphy (cf. Exercise 7.2) cannot exist in C™. Therefore, we

have to consider domains covering C™.
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Definition. A (Riemann) domain over C" is a pair (G, ) with the
following properties:
1. G is a connected Hausdorff space.
2. w: G — C" is a local homeomorphism (that is, for each point € G
and its “base point” z := 7(z) € C™ there exist open neighborhoods
U=U(z) c Xand V = V(z) C C" such that 7 : U — V is a

homeomorphism).

4

Remarks

1. Let (G,7) be a Riemann domain. Then G is pathwise connected, and

the map 7 : G — C" is continuous and open. The latter means that the
images of open sets are again open.

. If (G, m,) are domains over C" for v =1,...,[, and x, € G, are points
over the same base point zg, then there are open neighborhoods U, =
U,(z,) C G, and a connected open neighborhood V = V(zg) C C" such
that 7 |y, : U, = V is a homeomorphism for v =1,... 1.

Examples

1. If G is a domain in C", then (G,idg) is a Riemann domain.
2. The Riemann surface of v/z (without the branch point) is the set

4

G:={(z,w) €C* xC : w? = z}.

If G is provided with the topology induced from C* x C, then it is a
Hausdorff space. The mapping ¢ : C* — G defined by ¢ ~ (¢%,() is
continuous and bijective. Therefore, G is connected. The mapping ¢ is
called a uniformization of G.

Now let 7 : G — C be defined by 7(z,w) := z. Clearly, 7 is continuous. If
(z0,wo) € G is an arbitrary point, then zy # 0, and we can find a simply
connected neighborhood V(zg) C C*. Then there exists a holomorphic
function f in V with f2(z) = z and f(29) = wo. We denote f(z) by 1/z.
The image W := f(V) is open, and the set 7~1(V) can be written as the
union of two disjoint open sets

Up ={(z,£f(2)) : zeV}=(Vx (£W))NG.

Let f(z) := (2, f(2)). Then f:V = G is continuous, and 7 o f(z) =z
The open set U := U is a neighborhood of (2, w), with f(V) = U and
fo m(z,w) = (z,w) on U; that is, 7|y : U — V is topological. Hence
(G, m) is a Riemann domain over C.

A general topological space X is said to be connected if it is not the union of

two disjoint nonempty open sets. A space X is called pathwise connected if each
two points of X can be joined by a continuous path in X. For open sets in C"
these two notions are equivalent.
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The space G can be visualized in the following manner: We cover C with
two additional copies of C, cut both these “sheets” along the positive
real axis, and paste them crosswise to one another (this is not possible
in R without self intersection, but in higher dimensions, it is). This is
illustrated in Figure IL.8.

Figure I1.8. The Riemann surface of v/z

8.1 Proposition (on the uniqueness of lifting). Let (G, 7) be a domain
over C" and Y a connected topological space. Let yo € Y be a point and
Y1, Y — G continuous mappings with ¥1(yo) = ¥2(yo) and wo Y =
moy. Then P = 1hs.

ProoOF: Let M := {y € Y : ¢1(y) = ¥2(y)}. By assumption, yg € M,
so M # @. Since G is a Hausdorff space, it follows immediately that M is
closed. Now let y € Y be chosen arbitrarily, and set x := 1 (y) = ¥2(y) and
z := m(x). There are open neighborhoods U = U(z) C G and V = V(z) C
C™ such that 7 : U — V is topological, and there is an open neigborhood
W =W (y) with ¢»(W) C U for A = 1,2. Then

Vilw = (rlv) " omohilw = (m|u) ! oo ha|w = Yalw,

and therefore W C M. Hence M is open, and since Y is connected, it follows
that M =Y. [

Definition. Let zy € C” be fixed. A (Riemann) domain over C™ with
distinguished point is a triple G = (G, m, xg) for which:

1. (G,7) is a domain over C™.

2. xg is a point of G with 7(xq) := zg.
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Definition. Let G; = (G;, 7, ;) be domains over C" with distin-

guished point. We say that Gy is contained in Gy (denoted by G1 < Gy )

if there is a continuous map ¢ : G; — G5 with the following properties:
1. my 0 =y (called “p preserves fibers”).

2. p(z1) = z2.

8.2 Proposition. If G; < Gs, then the fiber preserving map ¢ : G1 — Gso
with p(x1) = x2 is uniquely determined.

This follows immediately from the uniqueness of lifting.
8.3 Proposition. The relation “<” is a weak ordering; that is:

1. G <G.
2. G1 =Gy and Gy < G = G1 < Gs.

The proof is trivial.

Definition. Two domains Gy, Gs over C™ with fundamental point are
called isomorphic or equivalent (symbolically G; = G) if G1 < G2 and
Go < Gy.

8.4 Proposition. Two domains G; = (G, 7;,%;), j = 1,2, are isomorphic
if and only if there exists a topological®fiber preserving map ¢ : G1 — Go
with o(x1) = x2.

Proor: If we have fiber preserving mappings ¢; : G1 — G2 and @2 : G —
G1, with ¢1(z1) = z2 and pa(x2) = 21, it follows easily from the uniqueness
of fiber preserving maps that ¢3 0 1 = idg, and ¢ o @2 = idg,. The other
direction of the proof is trivial. [

Definition. A domain G = (G, 7, z¢) with 7(x¢) = 29 is called schlicht
if it is isomorphic to a domain Gy = (Go,idg,,zo) with Go C C™.

8.5 Proposition. LetG; = (Gj,idg,,z;), j = 1,2, be two schlicht domains
with G1,Go C C™. Then G < Gs if and only if G; C Gs.

Example

5 Recall that a “topological map” is a homeomorphism!
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Let G7 := {(z,w) € C? : w? = zand z # 0} and 7(2,w) := 2. Then
G1 = (Gy,m,(1,1)) is the Riemann surface of /z, with distinguished point
(1,1). The domain G, is contained in the schlicht domain G, = (C,idc, 1), by
©(z,w) := z. But the two domains are not isomorphic.

Union of Riemann Domains. We begin with the definition of the
union of two Riemann domains. Let G; = (G;,7;,x;), j = 1,2, be two Rie-
mann domains over C" with distinguished point, and zg := 71 (21) = 72 (z2).
We want to glue G1, G in such a way that z; and xo will also be glued.

To get a rough idea of the construction, assume that we already have a
Riemann domain G = (G, 7, zo) that is in some sense the union of G; and
Go. Then there should exist continuous fiber preserving maps ¢1 : G1 — G
with ¢1(21) = o, and @3 : G2 = G with a(z2) := zo. If a : [0,1] = Gy
and 3 :[0,1] — G2 are two continuous paths with a(0) = 1, 8(0) = 2 and
m oa =m0 3, then 1 := @1 o and 2 := @9 o B are continuous paths in G
with mo7y; = mo~y, and 71 (0) = 72(0) = xg. Due to the uniqueness of lifting,
it follows that «; = 2. This means that a(t) and 3(t) have to be glued for
every t € [0,1]. Unfortunately, this is an ambiguous rule. For example, we
could say that x € Gy and y € G5 have to be glued if 7 (z) = ma(y). Then
the desired property is fulfilled, but it may be that there are no paths « from
21 to z and [ from x5 to y with m o« = w9 0 3.

Therefore, we proceed in the following way: Start with the disjoint union

G, U G, and take the “finest” equivalence relation ~ on this set with the
following property:

1. 1 ~ T2.
2. If there are continuous paths a : [0,1] = G and §: [0,1] — G2 with
a(0) = z1, B(0) =z, and m o a = w3 0 3, then (1) ~ B(1).

One can equip G := (G1 U G3)/ ~ with the structure of a Riemann domain.
This will now be carried out in a more general context.

Let X be an arbitrary set. An equivalence relation on X is given by a partition
2 ={X, : v€ N} of X into subsets with:

L Uyen Xo = X.
2. X, NX, = forv# pu.

The sets X, are the equivalence classes.

Now let a family (£,),er of equivalence relations on X be given with 2, =

{X;, :v.eNJforvel Weset N:=]][,.; N, and

X, = (X, forvi=(u)er €N,
el
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Then 2" = {X, : v € N} is again an equivalence relation (simple exercise),
and it is finer than any Z,. This means that for every ¢ € I and every v € N,
there is a v, € N, with X, C X, .

We apply this to the disjoint union X = UAGL G, for a given family (Gy)acr
of Riemann domains Gy = (G, 7, zx) over C" with distinguished point. An
equivalence relation on X is said to have property (P) if the following hold:

1. )y ~x,, for \,p€ L.
2. If @:[0,1] = G and 3 : [0,1] — G, are continuous paths with «(0) ~
B(0) and 7y o @ = 7, 0 3, then a(1) ~ 5(1).

We consider the family of all equivalence relations on X with property (P).
It is not empty, as seen above in the case of two domains. Therefore we can
construct an equivalence relation (as above) that is finer than any equivalence
relation with property (P). We denote it by ~p . It is clear that 7y (z) = m,(y)
if x € Gy, y € Gy, and & ~p y. The relation ~p also has property (P), and
the elements of an equivalence class X, all lie over the same point z = z(X,).
We define G := X/~p and 7(X,) := z(X,). The equivalence class of all
will be denoted by .

8.6 Lemma. Lety e Gy and x € G, be given with m,(x) = ma(y) =: z. If
we choose open neighborhoods U = U(y) C Gy, V =V (z) C Gy, and an open
connected neighborhood W = W (z) such that my : U - W and wp, : V - W
are topological mappings, then for ¢ := (m,ly) L omy: U = V the following
hold:

1. ¢(y) = =
2. Ifx ~py, then o(y') ~p y' for everyy' € U.

PrOOF: The first statement is trivial. Now let a : [0,1] — W be a con-
tinuous path with «(0) = z and «(1) = mx(y') for some ¢y’ € U. Then
B = (malv)"' o and v := ¢ o 3 are continuous paths in U and V with
B(0) =y ~px=ey) =70)and 7y 0§ = 7w, 0pof =m,or~. Therefore,
y' = B(1) ~p (1) = o(y). -

8.7 Theorem. There is a topology on G such that
G :=(G,7,7)

is a Riemann domain over C" with distinguished point Z, and all maps @y :
Gy — G with
ox(x) := equivalence class of

are continuous and fiber preserving.
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PROOF: (1) Sets of the form @y (M) for M open in G together with G

constitute a base of a topology for G. To see this it remains to show that the
intersection of two such sets is again of this form.

Let M C G and N C G, be open subsets. Then

PA(M) N p(N) = (N Ny (oA (M))).

But ¢, ' (pa(M)) is open in G,. In fact, let 2 € ¢, (pa(M)) be given, and
y € M be chosen such that ¢x(y) = p,(x) (and therefore y ~p ). Let z :=
mA(y) = mo(x). Then there exist open neighborhoods U = U(y) and V = V(z)
and an open connected neighborhood W = W (z) such that my : U — W and
7, 1 V — W are topological mappings. Let ¢ := (m,|v) ' omy : U — V. By
the lemma, ¢(y) = x and ¢(y') ~p ¢/ for every y' € U.

So V' := p(MNU) is a neighborhood of z in G, and since ¢, (p(y’)) = x(¥)
for every y' € U, it follows that V' C ¢, ! (¢r(M)).

Consequently, every ¢, is a continuous map.

(2) Remark: Since every y € G is an equivalence class ¢ (z), we have

M = U ox(py (M) for any subset M C G.
AEL

(3) 7 : G — C™ is continuous: Let V' C C" be an arbitrary open set, and
M =7 Y(V). Then ¢, (M) = 7, }(V) is open in G, and therefore M =

User ox(py ' (M)) is open in G.

(4) G is a Hausdorff space: Let y1,y2 € G with 11 # Y2, and z1 := W(y1),
Zy 1= T(y2).

There are two cases. If z; # zo, then there are open neighborhoods Vi(z1)
and Va(z2) with Vi N Vo = @. Then 7=1(V;) and 7=1(V5) are disjoint open
neighborhoods of y; and y,. If z; = zs, then we choose elements z; € G},
x2 € G, with py(z1) = y1 and @,(r2) = Y2, and since x; and z3 are not
equivalent, the above lemma implies that there are disjoint neigborhoods of
y1 and yo.

(5) G is connected: Let y = @y (2) be an arbitrary point of G. Then there is
a continuous path « : [0,1] — G, that connects the distinguished point x)
to z. Then ¢y o o connects T to y.

(6) 7 is locally topological: Let y = ¢y (z) be a point of G, and z = 7(y) =
ma(z). Then there exist open neighborhoods U = U(x) C Gy and W =
W(z) C C™ such that 7y : U — W is a topological mapping. U := ¢, (U)
is an open neighborhood of y, with 7(U) = my(U) = W. In addition, |5 is
injective, since 7 o p) = ) and 7|y is injective.



94 II. Domains of Holomorphy

(7) Clearly, the maps @) : Gy — G are fiber preserving, and it was already
shown that they are continuous. n

Now G has the following properties:

1. G\ < é, for every A € L. B
2. If G* is a domain over C™ with Gy < G* for every A, then G < G*.

PRrROOF: (of the second statement)

If G* is given, then there exist fiber preserving mappings ¢3 : Gy — G*. We
introduce a new equivalence relation ~ on the disjoint union X of the G\ by

v~z = x Gy 1’ €G,and @) (x) = @, (2).

It follows from the uniqueness of lifting that ~ has the property (P). Now we
define a map ¢ : G — G* by

p(pa()) = P ().

Since ~p is the finest equivalence relation with property (P), ¢ is well defined.
Also it is clear that ¢ is continuous and fiber preserving. n

Therefore 5 is the smallest Riemann domain over C™ that contains all do-
mains G.

Definition. The domain é cgnstructed as above is called the union of
the domains Gy, and we write G = U/\eL [

Special cases:

1. From G; < G and Gy < G it follows that G; UGy < G.
From G; < G5 it follows that G; U Gy =2 G.
GugG=g.

GiUG, =2 G UG,

G1 U (G2 UG3) = (G1 UG2) UGs.

CU

Example
Let G1 = (G, 71, 21) be the Riemann surface of y/z with distinguished point
xz1 = (1,1) and Gy = (G2,id, z2) the schlicht domain
1
GQ:{ZG(C : 5<|z|<2}

with distinguished point xo = 1.
Then G UGy = (6’,%79?0), where G = (Gh U G2)/ ~p.

Let y € 77 *(G2) C G1. Then we can connect y to the point z; by a path
o in 71'1_1(G2), and 71 (y) to x5 by the path 7 o @ in Go. But 21 ~p x2, S0
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y ~p m1(y) as well. This shows that over each point of Ga there is exactly
one equivalence class.

Now let z € C — {0} be arbitrary. The line through z and 0 in C contains a
segment « : [0,1] — C* that connects z to a point z* € Gao. There are two
paths aj, s in Gy with m oy = m 0o ag = a. Since ay(1) ~p as(1), it
follows that a;(0) ~p az(0).

Then it follows that G; UGy = (C — {0},1d, 1).

Exercises

1. For t = (t1,...,t,) € ¥ define &y : C" — C" by
Di(z1,...,2,) 1= (eitlzl,...7eit”zn).

A Riemann domain G = (G, m, o) is called a Reinhardt domain over

C™ if w(xog) = 0 and for every t € ¥ — (C*)™ there is an isomorphism

wt : G — G with 7o ¢y = &y o 7. Prove:

(a) If G C C" is a proper Reinhardt domain, then G = (G,id,0) is a
Reinhardt domain over C”.

(b) Let G1,Ga C C? be defined by

1 1
= 2 — : = — < —
Gy P=(0,1) {(z,w) 2] 5 and |w| < 2},
1
— 2 . -
Gy = {(z,w) € P?(0,1) : |w| < 2}.
Gluing Gy and G» along {(2,w) : 1 < |2] < 1and |w| < 3} one

obtains a Riemann domain over C? that is a Reinhardt domain over
C2, but not schlicht. Show that this domain can be obtained as the
wnion of G, = (Gu.id, (4,4) ) and G = (Ga,id, (4, 1)).

2. Let J ={0,1,2,3,...} C Ny be a finite or infinite sequence of natural
numbers and P; = P"(z;,7;), i € J, a sequence of polydisks in C".
Assume that for every pair (i,5) € J x J an “incidence number” ¢;; €
{0,1} is given such that the following hold:

(a) Eij = €ji and Eii — 1.
(c) For every ¢ > 0 in J there is a j < i with &;; = 1.
(d) If PN Pj N P, # @ and €ij = 1, then g;, = Ejk-

Points z € P; and w € P; are called equivalent (z ~ w) if z = w and

ei; = 1. Prove that G := |J P,/ ~ carries in a natural way the structure
of a Riemann domain over C™.

Let m : G — C" be the canonical projection and suppose that there is a
point zg € (),c; Pi. Is there a point o € G such that (G, 7, z) can be
written as the union of the Riemann domains (P;,id, z¢)?
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9. The Envelope of Holomorphy

Holomorphy on Riemann Domains

Definition. Let (G,7) be a domain over C". A function f : G — C
is called holomorphic at a point x € G if there are open neighborhoods
U=U(z) C Gand V = V(r(z)) C C"” such that w|y : U — V is
topological and f o (r|y)~! : V — C is holomorphic. The function f is
called holomorphic on G if f is holomorphic at every point z € G.

Remark. A holomorphic function is always continuous. For schlicht do-
mains in C™ the new notion of holomorphy agrees with the old one.

Definition. Let G; = (G, 7;,2;), j = 1,2, be domains over C" with
distinguished point, and G; < G by virtue of a continuous mapping
¢ : G1 = Gs. For every function f on Ga we define f|q, := f o ¢.

9.1 Proposition. If f: Gy — C is holomorphic and Gy < Go, then f|g, is
holomorphic on Gy.

Proor: Trivial, since ¢ is a local homeomorphism with 75 0 ¢ = 7. [

Definition.

1. Let (G,7) be a domain over C"™ and z € G a point. If f is a holo-
morphic function defined near x, then the pair (f, ) is called a local
holomorphic function at x.

2. Let (G1,7m1), (G2, m2) be domains over C", and =1 € G1, 2 € Ga
points with 71 (x1) = m2(x2) =: z. Two local holomorphic functions
(f1,21), (f2,x2) are called equivalent if there exist open neighbor-
hoods Uy (z1) C G1, Uz(z2) C Ga, V(2), and topological mappings
m Uy =V, m: Uy = V owith fio(mo,) ™" = fao (malv,) "

3. The equivalence class of a local holomorphic function (f, x) is denoted
by fz.

Remark. If (f1)z, = (f2)s,, then clearly, fi(z1) = f2(z2). In particular,
if G1 = Ga, m; = mo, and x1 = 2, then it follows that f; and f5 coincide in
an open neighborhood of 1 = xs.
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9.2 Proposition. Let (G1,m1), (G2, m) be domains over C"*, ay : [0,1] —
G continuous paths with mioay = maoag. Additionally, let fy be holomorphic
on Gy, for A=1,2. If (f1)a,0) = (f2)as(0), then also (f1)a, 1) = (f2)as(1)-

Proor: Let M := {t € [0,1] : (fi)a;t) = (f2)asr)}- Then M # @, since
0 € M. It is easy to see that M is open and closed in [0, 1], because of the
identity theorem for holomorphic functions. So M = [0, 1]. ]

9.3 Proposition. Let G, = (G, 7j,x;), j = 1,2, be domains over C™ with
distinguished point, and G1 < Go. Then for every holomorphic function f on
G there is at most one holomorphic function F' on Go with Flg, = f, i.e.,
a possible holomorphic extension of [ is uniquely determined.

ProoOF: Let Fy, F5 be holomorphic extensions of f to Gy. We choose neigh-
borhoods Uy () C G such that the given fiber-preserving map ¢ : Gy — G
maps U; topologically onto Us. We have Fj o p|y, = f|u,, for j = 1,2, and
therefore F|y, = Falu,. It follows that (Fi)g, = (F2)s,. Since each point of
G5 can be joined to x4, the equality Fy = F5 follows. =

Envelopes of Holomorphy

Definition. Let G = (G, , o) be a domain over C™ with distinguished
point and .% a nonempty set of holomorphic functions on G.

Let (Ga)acr be the system of all domains over C™ with the following
properties:
1. G < G) for every A € L.
2. For every f € # and every A € L there is a holomorphic function
F)\ on G)\ with F)\|G = f
Then Hz(G) := Uy, G is called the .7 -hull of G.

If # = O(G) is the set of all holomorphic functions on G, then H(G) :=
Hoe)(G) is called the envelope of holomorphy of G. If # = {f} fo
some holomorphic function f on G, then Hf(G) := Hys(G) is called the
domain of existence of the function f.

9.4 Theorem. LetG = (G, m, xo) be a domain over C*, F a nonempty set
of holomorphic functions on G, and Hz(G) = (G, 7, %) the F-hull. Then
the following hold:

1. G < Hg:(g)
2. For each function f € F there exists eractly one holomorphic function
F on G with Flg = f.
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3. If Gy = (G1,m,x1) is a domain over C™ such that G < Gy and every func-
tion f € F can be holomorphically extended to Gy, then G < Hz(G).

PROOF: Hg(G) is the union of all Riemann domains Gy = (G, 7z, z) to
which each function f € # can be extended. We have fiber-preserving maps
QD)\:G—)G)\ and{EA:GA%G.

Let ~p be the finest equivalence relation on X := J,., Gx with property

(P).® Then G is the set of equivalence classes in X relative to ~p. We define
a new equivalence relation ~ on X by

r~1 <= x€G,) 1 €qG, m\(z) =my(z'), and for each f € F

and its holomorphic extensions Fi, F» on Gy, respectively G,
we have (F))g = (Fp)yr.

Then ~ has property (P):

(i)For any A we can find open neighborhoods U = U(zg), V = V(z)), and
W = W(n(x0)) such that all mappings in the following commutative dia-

gram are homeomorphisms:
P

N
w

Then for f € % and its holomorphic extension F) on G, we have that
Fyo(m|y)™ = Fxopyo (nly)™! = fo(r|ly)~! is independent of \.
Therefore, all distinguished points =) are equivalent.

(iiffa: [0,1] - Gy and 8 : [0,1] — G, are continuous paths with «(0) ~ 3(0
and m\ o @ = m, o 3, then (Fk)a(O) = (Fg)ﬁ(o)- It follows that (FA)Q(U
(Fy)p(1) as well, and therefore o (1) ~ 3(1).

Since G < Gy and Gy < H#(G), it follows that G < Hx(G). Furthermore, the
fiber preserving map @ := oy o v does not depend on .

=

Now let a function f € % be given. We construct a holomorphic extension
F on G as follows:

Ify e G is an arbitrary point, then there is a A € L and a point y) € G
such that y = @x(y»), and we define

F(y) :== Fx(y»)-

If y = $,(y,) as well, then yx ~p y,, and therefore y\ ~ y, as well. It follows
that F\(yx) = F,(y,), and F is well defined.

6 For the definition of property (P) see page 92.
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We have Fop = Fopyopy = F)\opyx = f on G. This shows that F' is
an extension of f, and from the equation F o ¢, = F) it follows that F is
holomorphic (since @y is locally topological).

The maximality of Hg(G) follows by construction. "

The #-hull Hg(G) is therefore the largest domain into which all functions
f € F can be holomorphically extended.

9.5 Identity theorem. Let G, = (G;,7;,x;), j = 1,2, be domains over
C™, and G = (é,%,i) the union of Gi and Ga. Let f; : Gj — C be holomor-
phic functions and G = (G, m, ) a domain with G < G; for j = 1,2 such that
file = fala. Then there is a holomorphic function f on G with ﬂgj = f;,
forj=1,2.

ProOF: Let f := fil¢ = falg, and F = {f}. Since G1 < Hz(G) and
Go < Hz(G), it follows that G; UGy < Hz(G).

Let J?be a holomorphic extension of f to G (where He(G) = (@7 T, ZE)), and
f= ﬂé Then

o~ o~

(Fle)e = fla = (flg)le = fla = £

Therefore, ﬂgj is a holomorphic extension of f to G;. Due to the uniqueness

of holomorphic extension, f|Gj = fjforj=1,2. [

Pseudoconvexity. Let P* ¢ C" be the unit polydisk, (P",H) a Eu-
clidean Hartogs figure, and ® : P* — C™ an injective holomorphic map-
ping. Then (®(P™), ®(H)) is a generalized Hartogs figure. P = (P™, ®,0) and
H = (H,®,0) are Riemann domains with H# < P. We regard the pair (P, H)
as a generalized Hartogs figure.

9.6 Proposition. Let (G,7) be a domain over C", (P,H) a generalized
Hartogs figure, and xo € G a point for which H < G := (G, 7, xg).

Then every holomorphic function f on G can be extended holomorphically to

GUP.

The proposition follows immediately from the identity theorem.

Definition. A domain (G, 7) over C" is called Hartogs convex if the
fact that (P, H) is a generalized Hartogs figure and xy € G a point with
H <G :=(G,7,x0) implies GUP = G.

A domain G = (G, 7, zg) over C™ is called a domain of holomorphy if there
exists a holomorphic function f on G such that its domain of existence
is equal to G.
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Remark. If G C C" is a schlicht domain, then the new definition agrees
with the old one.

9.7 Theorem.

1. If G = (G, m,x0) is a domain over C" and .F a nonempty set of holo-
morphic functions on G, then Hz(G) is Hartogs conve.
2. Bvery domain of holomorphy is Hartogs convex.

PrROOF: Let (P,H) be a generalized Hartogs figure with H < H4(G). Then
every function f € & has a holomorphic continuation to Hg(G) UP. There-
fore, H#(G) UP < Hz(G). On the other hand, we also have Hz(G) <
Hy(g)U'P So Hy(g)U'PgHg(g) n

A Riemann domain (G, 7) is called holomorphically convez if for every infinite
discrete subset D C G there exists a holomorphic function f on G that is
unbounded on D.

9.8 Theorem (Oka, 1953). If a Riemann domain (G, ) is Hartogs pseu-
doconvez, it is holomorphically convex (and therefore a domain of holomor-

phy).

This is the solution of Levi’s problem for Riemann domains over C". We
cannot give the proof here.

It seems possible to construct the holomorphic hull by adjoining Hartogs
figures (cf. H. Langmaak, [La60]). It is conceivable that such a construction
may be realized with the help of a computer, but until now (spring 2002) no
successful attempt is known. We assume that parallel computer methods are
necessary.

Boundary Points. In the literature other notions of pseudoconvexity
are used. We want to give a rough idea of these methods.

Definition. Let X be a topological space. A filter (basis) on X is a
nonempty set R of subsets of X with the following properties:
1. ¢ R.
2. The intersection of two elements of R contains again an element of
the set R.

Example

1. If zg is a point of X, then every fundamental system of neighborhoods
of g in X is a filter, called a neighborhood filter of xg.
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2. Let (x,) be a sequence of points of X. If we define Sy = {z, : n >
N}, then R := {Sy : N € N} is the so-called elementary filter of the
sequence (x,). A filter is therefore the generalization of a sequence.

Definition. A point xg € X is called a cluster point of the filter R if
xo € A, for every A € R. The point ¢ is called a limit of the filter R if
every element of a fundamental system of neighborhoods of xg contains
an element of R.

For sequences the new notions agree with the old ones.

If f: X — Y is a continuous map, then the image of any filter on X is a
filter on Y, the so-called direct image.

Definition. Let (G, 7) be a Riemann domain over C™. An accessible
boundary point of (G, ) is a filter R on G with the following properties:
1. R has no cluster point in G.
2. The direct image 7(R) has a limit zy € C™.
3. For every connected open neighborhood V = V(zg) C C™ there is
exactly one connected component of 7~*(V) that belongs to R.
4. For every element U € R there is a neighborhood V = V(z) such
that U is a connected component of 7=1(V).

Remark. For a Hausdorff space X the following hold:

1. A filter in X has at most one limit.
2. If a filter in X has the limit x, then x( is the only cluster point of this
filter.

(for a proof see Bourbaki, [Bou66], §8.1)
Therefore, the limit zy in the definition above is uniquely determined.

There is an equivalent description of accessible boundary points that avoids
the filter concept. For this consider sequences (z,) of points of G with the
following properties:

1. (x,) has no cluster point in G.

2. The sequence of the images 7(z,) has a limit zg € C".

3. For every connected open neighborhood V' = V(zy) C C" there is an
ng € N such that for n,m > ng the points x,, and x,, can be joined by a
continuous path « : [0,1] = G with 7w o «([0,1]) C V.

Two such sequences (), (y,,) are called equivalent if:

1. limy oo () = limy 00 7(yy) = 2o

2. For every connected open neighborhood V = V(z() there is an ng such
that for n,m > ng the points x, and y,, can be joined by a continuous
path «: [0,1] — G with mo «([0,1]) C V.
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An accessible boundary point is an equivalence class of such sequences.

Let OG be the set of all accessible boundary points of G. Even if G is schlicht,
this set may be different from the topological boundary dG. There may be
points in JG that are not accessible, and it may be happen that an accessible
boundary point is the limit of two inequivalent sequences.

We define G := GUIG. If 79 = [z,] is an accessible boundary point, we define
a neighborhood of ry in G as follows: Take a connected open set U C G
such that almost all z,, lie in U and w(U) is contained in a neighborhood
of zg := lim, o m(x,). Then add all boundary points r = [y,] such that
almost all y,, lie in U and hmn%oo 7(yyn) is a cluster point of w(U ) With this
neighborhood definition ¢ becomes a Hausdorff space, and # : G — C™ with

() itz e,
1i_>m m(z,) if z = [z,] € G,

is a continuous mapping.

Definition. A boundary point r € dG is called removable if there is
a connected open neighborhood U = U(r) C G such that (U, %) is a
schlicht Riemann domain over C" and G N U is locally contained in a
proper analytic subset of U.

A subset M C OG is called thin if for every ro € M there is an open
neighborhood U = U(ry) C G and a nowhere identically vanishing holo-
morphic function f on U NG such that for every r € M NU there exists
a sequence (z,) in U NG converging to r such that lim,, o, f(z,) = 0.

Example

Let G C C™ be a (schlicht) domain and A C G a nowhere dense analytic
subset. Then every point of A is a removable boundary point of G’ := G — A.

The points of the boundary of the hyperball B,.(0) C C™ are all not removable.

Let B be a ball in the affine hyperplane H = {(zq,...,2,) € C"*! : 25 = 1},
and G C C"*! — {0} the cone over B. Then every boundary point of G is
not removable, since locally the boundary has real dimension 2n + 1. The set
M := {0} is thin in the boundary, as is seen by choosing f(zo, ..., 2n) = 20.

Analytic Disks. Let (G, ) be a Riemann domain over C*. If o : D — G
is a continuous mapping, oy : D — C™ holomorphic, and (7o)’ (¢) # 0 for
¢ €D, then S := (D) is called an analytic disk in G. The set bS := ©(dD)
is called its boundary.
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Let I := [0,1] be the unit interval. A family (S;):er of analytic disks (D)
in G is called continuous if the mapping (z,t) — ¢(z) is continuous. It is
called distinguished if S; C G for 0 <t <1 and bS; C G for 0 <t < 1.

Definition.  The domain G is called pseudoconvez if for every distin-
guished continuous family (S;)es of analytic disks in G it follows that
S, C G.

The domain G is called pseudoconver at r € IG if there is a neighborhood
U=U(r)C G and an ¢ > 0 such that for every distinguished continuous
family (Si)ies of analytic disks in G with #(S;) C B.(#(r)) it follows
that S; NU C G for t € I.

As in C™ one can show that a Riemann domain is pseudoconvex if and only
if it is Hartogs pseudoconvex.

9.9 Theorem (Oka). A Riemann domain (G,7) is pseudoconvex if and
only if it is pseudoconvex at every point r € 0G.

9.10 Corollary. If (G,7) is a domain of holomorphy, then G is pseudo-
convex at every accessible boundary point.

The converse theorem is Oka’s solution of Levi’s problem.
Finally, we mention the following result:

9.11 Theorem. Let (G,) be a Riemann domain over C*, and M C OG
a thin set of nonremovable boundary points. If G is pseudoconver at every
point of 0G — M, then G is pseudoconvex.

PROOF: See [GrRe56], §3, Satz 4. n

Exercises

1. Prove that a Reinhardt domain G over C"™ must be schlicht if it is a
domain of holomorphy.

2. Prove that if (G, ) is a Reinhardt domain, then for every f € O(G)
there is a power series S(z) at the origin such that f(z) = S(w(x)) for
x € G.

3. Prove that the envelope of holomorphy of a Reinhardt domain is again a
Reinhardt domain.

4. Prove that the Riemann surface of the function f(z) = log(z) has just
one boundary point over 0 € C.

5. Find a schlicht Riemann domain in C? whose envelope of holomorphy is
not schlicht.

6. Construct a Riemann domain G = (G, 7, zg) over C? such that for all
z,y € 7Y (m(z0)) and every f € O(G) the equality f(z) = f(y) holds.
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