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C H A P T E R 1 3

Local and Homogenized
Equations

Homogenization theory is concerned with finding the appropriate homogenized (or
averaged, or macroscopic) governing partial differential equations describing phys-
ical processes occurring in heterogeneous materials when the length scale of the
heterogeneities tends to zero. In such instances it is desired that the effects of the
microstructure reside wholly in the macroscopic or effective properties via certain
weighted averages of the microstructure. In its simplest form, the method is based
on the consideration of two length scales: the macroscopic scale L, characterizing the
extent of the system, and the microscopic scale -, associated with the heterogeneities.
Moreover, it is supposed that some external field is applied that varies on a character-
istic length scale W. If - is comparable in magnitude to W or L, then one must employ
a microscopic description, i.e., one cannot homogenize the equations.

The limit of interest for purposes of homogenization is

L ≥ W " -.

Therefore, there is a small parameter

ε � -

L

associated with rapid fluctuations in the microstructure or local property. Accordingly,
the field quantities (e.g., temperature field, electric field, stress field, concentration field,
velocity field) depend on two variables: a global or slow variable x and a local or fast
variable

y � x/ε.

The slowly varying parts of the fields are imposed by the source, the boundary condi-
tions, or the initial conditions, while the rapidly varying parts are imposed by the local
property or microstructure. These variations are schematically shown in Figure 13.1.
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Figure 13.1 A schematic depiction of the slow and rapid parts of the field.

Under these conditions, a complete analysis of the problem involves three steps:

1. One first sets out to find the form of the homogenized or averaged equations, valid
on length scales O(W), by, for example, performing an asymptotic expansion of the
field quantities in terms of the global and local variables. The averaged relations are
typically continuum differential equations. This asymptotic analysis is often guided
by phenomenology. For example, in the case of electrical (heat) conduction in a
heterogeneous material, it is expected that an averaged governing equation applies
with an effective conductivity obtainable from an averaged Ohm’s (Fourier’s) law.
Similarly, one seeks an averaged Hooke’s law to describe the effective elastic moduli.
For flow in porous media, one would like to understand the conditions under which
Darcy’s law can be derived.

2. Next, one must determine the effective properties that arise in the averaged equa-
tions as a function of the microstructure. The quantitative characterization of the
microstructure of random media is an enormous subject of research and is dealt
with in Part I of this book. The effective properties should mathematically exist
as the system volume tends to infinity, independent of the macroscopic boundary
conditions.

3. Finally, one must solve the homogenized equations under appropriate boundary or
initial conditions.

The remaining chapters in Part II of this book are concerned with methodologies to
link the effective properties of a heterogeneous material to its microstructure and the
resulting predictions of such structure/property relations.

13.1 Preliminaries

As described in Section 2.1, each realization ω of the two-phase random medium is
a domain of space V ∈ �d. This domain has volume V and is partitioned into two
disjoint random sets or phases: phase 1, a domain V1(ω) with volume fraction φ1, and
phase 2, a domain V2(ω) with volume fraction φ2. The interface between the two phases
is denoted by ∂V(ω). Figure 13.2 depicts a schematic of a realization of a two-phase
random medium. Ultimately, we are interested in ergodic two-phase random media
(Section 2.2.2) and therefore will take the limit V → �d. Phase i can be a solid, fluid,
or void phase characterized by some general constant tensor property Ki. Thus, the
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Figure 13.2 A schematic of a realization ω of a two-phase random medium.

associated local property K(x;ω) at position x in the heterogeneous material can be
written in terms of the phase indicator function I(i)(x;ω) [cf. (2.1)] as

K(x;ω) � K1I(1)(x;ω)+ K2I(2)(x;ω). (13.1)

This book focuses primarily on four different physical processes: conduction, elas-
ticity, diffusion and reaction among traps, and flow in porousmedia, togetherwith their
associated effective properties. The corresponding steady-state effective properties of
interest are:

• Effective conductivity tensor, σe

• Effective stiffness tensor, Ce

• Mean survival time, τ

• Fluid permeability tensor, k

It will be shown in this chapter that these effective properties of the random heteroge-
neous material (under certain assumptions about the microstructure) are determined
by ensemble averages of local fields that satisfy the appropriate conservation equations,
i.e., governing partial differential equations.

The claim from Chapter 1 is that any of these effective properties, which we denote
generally by Ke, is defined by a linear constitutive relation between an average of a
generalized local flux F and an average of a generalized local (or applied) intensity G,
i.e.,

F ∝ Ke · G. (13.2)

Referring to Table 1.1, the effective conductivity tensor σe, effective stiffness tensor Ce,
mean survival time τ, and fluid permeability tensor k fall within the problem classes A,
B, C, and D, respectively. The other problems within the classes are either mathemati-
cally analogous or related problems, as will be explained below. Although class A and B
problems are of different tensorial order, they share many common features and hence
can be attacked using similar techniques. This point is exploited in Chapter 23, where
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we obtain cross-property relations involving the effective conductivity on the one hand
and effective elastic moduli on the other.

Similarly, despite the fact that the class C trapping problem is a scalar one and the
class D flow problem can be either a vector or second-order tensor one, they also share
common features, which will be discussed later in this chapter and in Chapter 23 on
cross-property relations. It is important to observe that the class A and B problems are
considerably different from class C and D problems. Indeed, whereas both the effective
conductivity and effective stiffness tensor are scale-invariant properties, both the sur-
vival time and fluid permeability are scale-dependent properties.Moreover, unlike class
A and B problems, class C and D problems are not characterized by local properties; in
other words, there is no such thing as a local survival time or a local fluid permeability.
This classification scheme is made more mathematically precise in Section 13.6.

In the last two sections we will examine the equations governing certain time-
dependent trapping and flow problems. In particular, we will define macroscopic
relaxation times and discuss their relationship to the steady-state mean survival time τ

and steady-state fluid permeability k.

13.2 Conduction Problem

In this section we begin by stating the local relations for the fields for the conduction
problem (Jackson 1990). To motivate the discussion on homogenization, we then de-
scribe a model one-dimensional periodic medium. The derivation of the homogenized
relations in any space dimension d turns out to be somewhat simpler for periodicmedia
than for randommedia. Accordingly, since the forms of the resulting averaged relations
turn out to be identical in both cases, we derive them first in the periodic setting. This
is followed by a discussion of the homogenized relations in the random setting.

13.2.1 Local Relations

Consider the steady-state transport or displacement of a conservable quantity associ-
ated with any of the class A problems that are summarized in Table 1.1. To fix ideas,
we will speak in the language of electrical or thermal conduction, keeping in mind
that the results of this section apply as well to the determination of the effective di-
electric constant, magnetic permeability, and diffusion coefficient (see Chapter 1 and
Section 13.2.5). Each realizationω of the randomheterogeneousmaterial that occupies
the space V is composed of two phases (phases 1 and 2) having constant conductiv-
ity tensors σ1 and σ2. In the ensuing discussion, we will temporarily drop ω from the
notation.

Local Differential Equations

Let J (x) denote the local electric (thermal) current or flux at position x, and let E(x)
denote the local field intensity. Under steady-state conditions with no source terms,
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conservation of energy requires that J be solenoidal:

∇ · J (x) � 0 in V, (13.3)

for each realization of the ensemble. The intensity field E is taken to be irrotational,
i.e.,

∇ × E(x) � 0 in V, (13.4)

which implies the existence of a potential field T, i.e.,

E � −∇T. (13.5)

Thus, E and T represent the electric field (negative of the temperature gradient) and
electric potential (temperature) in the electrical (thermal) problem, respectively. We
also specify the potential T on the boundary of V. However, we are always ultimately
interested in ergodic media and thus in the infinite-volume limit, i.e., V → �d. Not
surprisingly, we will see that the effective conductivity tensor for this large class of het-
erogeneousmaterials exists in this limit and is independent of the boundary conditions
on the surface of V (Papanicolaou and Varadan 1979, Golden and Papanicolaou 1983).
This result turns out to be true for all of the other effective properties.

Local Constitutive Relation

In order to close the system of (13.3) and (13.4), we will connect J to E by assuming
a linear constitutive relation, i.e.,

J (x) � σ(x) · E(x) in V, (13.6)

where, according to (13.1), the local conductivity tensor can be expressed as

σ(x) � σ1I(1)(x)+ σ2I(2)(x), (13.7)

and I(i)(x) is the indicator function for phase i given by (2.1). The flux-intensity relation
can be expressed in the inverted form

E(x) � ρ(x) · J (x) in V, (13.8)

where ρ is the second-order resistivity tensor. The conductivity and resistivity tensors
are related via

ρ · σ � I, (13.9)

where I is the second-order identity tensor, with components, in a rectangular Cartesian
coordinate system, given by the Kronecker delta

δij �
{
1, i � j,
0, otherwise.

(13.10)

It is important to observe that (13.3), which applies anywhere in the heterogeneous
material, implies that the normal component of the flux Jn is continuous across the
interface ∂V. Similarly, the curl-free condition (13.4) implies that the potential T or,
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equivalently, the tangential component of the field Et is continuous across the inter-
face ∂V. To summarize, the governing equations imply the ideal (or perfect) interface
conditions

Jn and T continuous across ∂V. (13.11)

From a computational viewpoint, the problem can be reformulated as solving (13.3)–
(13.6) in each phase subject to the interface conditions (13.11) and boundary conditions
on the macroscopic sample surface. In general, the tangential component of the flux
Jt and the normal component of the field En will jump across the interface. Imperfect
interfaces (where the potential T jumps across the interface, due to some interfacial
resistance, and/or Jn jumps across the interface) were mentioned in Chapter 1.

It is useful to remark on the tensorial nature of the conductivityσ, which in standard
indicial notation is denoted by σij. That σij is a second-order tensor can be demonstrated
by showing that its d2 components in d dimensions, referred to a coordinate system,
transform to d2 components in another “primed” coordinate system according to the
transformation rule for second-order tensors, i.e.,

σ ′
ij � likljl σkl. (13.12)

Here lij are the direction cosines, i.e., the cosine of the angle between the xi-axis of
the original coordinate system and the x′j-axis of the new coordinate system. Repeated
indices in (13.12) imply summation over all possible values of such indices, i.e.,

σ ′
ij �

d∑
k�1

d∑
l�1

likljl σkl.

If the material admits an energy density function w such that the flux (in component
form) can be expressed as

Ji � ∂w

∂Ei

, (13.13)

then it immediately follows from the linear law (13.6) thatw, up to an additive constant,
is given by

w � 1
2

EiJi � 1
2

EiσijEj ≥ 0, (13.14)

and thus the conductivity tensor must be symmetric, i.e.,

σij � σji. (13.15)

From relations (13.9) and (13.15), we see that the resistivity tensor ρ must also be
symmetric. The symmetry condition (13.15) reduces the number of independent com-
ponents from d2 to d(d+1)/2. The argument above leading to (13.15) holds for all of the
effective properties in class A (Table 1.1). However, in the case of conduction (electri-
cal or thermal) or diffusion processes, the symmetry of the associated effective tensor
(transport property) arises directly from Onsager’s reciprocity theorem for irreversible
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(i.e., dissipative) processes, in which fluxes are linearly related to intensities (Onsager
1931a, Onsager 1931b). This symmetry condition then leads to the energy density func-
tion w as given, which physically is the power dissipation per unit volume of material.
Both the effective dielectric constant and magnetic permeability tensors characterize
reversible processes (polarization or magnetization), and therefore the reciprocity the-
orem does not apply. For such equilibrium properties, w represents the energy stored
per unit volume of material.

Observe that the nonnegativity of the energy density as expressed by (13.14) places
restrictions on the components of σ and implies that the conductivity tensor σ (or
resistivity tensor ρ) is positive definite. Recall that a symmetric second-order tensor B
(Bij) is positive semidefinite, if for any vector a (ai) in �d,

aiBijaj ≥ 0. (13.16)

If only the inequality of (13.16) applies for any nonzero vector a �� 0, then B is said
to be positive definite. Since the equality of (13.14) holds only for E � 0, σ is positive
definite, and therefore is also positive semidefinite. (Any positive definite tensor B is
also positive semidefinite, since either a �� 0 or a � 0.) Note that for σ and ρ to be
positive definite, it is necessary and sufficient for all of their d real eigenvalues to be
positive.

13.2.2 Conduction Symmetry

Conduction symmetry is expressed by the property that the components σij (σ
−1
ij ) remain

invariant under certain transformations of the coordinates. Basic coordinate changes
are (a) reflection in a plane, (b) rotation about an axis, and (c) rotation about an axis
combined with reflection in a plane that is normal to the axis. If σij (σ

−1
ij ) is invariant to

reflection in a plane, then that plane is called a plane of symmetry. If σij (σ
−1
ij ) is invariant

to rotation about an axis, then the axis is one of rotational symmetry.
We restrict ourselves initially to three dimensions. In light of the symmetry relation

(13.15), the conductivity tensor has only six independent constants:


σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33


 . (13.17)

We now consider a number of different cases where the tensor σij remains invariant
to certain transformations according to the rule (13.12). These symmetries result in a
reduction in the number of independent components.

(i) Monoclinic Symmetry

For symmetry with respect to one plane, say the x1-x2 plane, it can be shown [using
relation (13.12)] that σij has 4 independent components:
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


σ11 σ12 0

σ12 σ22 0

0 0 σ33


 . (13.18)

This is referred to as monoclinic symmetry.

(ii) Orthotropic Symmetry

For symmetry with respect to three orthogonal planes, it can be shown [using
relation (13.12)] that σij has 3 independent components:


σ11 0 0

0 σ22 0

0 0 σ33


 . (13.19)

This is referred to as orthotropic symmetry.

(iii) Transversely Isotropic Symmetry

For symmetry with respect to a 90◦ rotation about one axis, say the x3-axis, it can
be shown [using relation (13.12)] that σij has 2 independent components:


σ11 0 0

0 σ11 0

0 0 σ33


 . (13.20)

This is referred to as transversely isotropic symmetry. Note that crystals with a 6-fold
rotational symmetry axis (hexagonal), a 4-fold rotational symmetry axis (tetragonal),
or a 3-fold rotational symmetry axis (trigonal) are all transversely isotropic with respect
to the conductivity (Nye 1957). (However, neither a tetragonal nor a trigonal crystal has
elastic transverse isotropy; see Section 13.3.2.) A crystal has n-fold rotational symmetry
if the crystal appears unchanged when it is rotated about an axis through 2π/n radians,
where n is a positive integer.

(iv) Isotropic Symmetry

When the conductivity is independent of the orientation of the coordinate system,
it can be shown [using relation (13.12)] that σij has only one independent component:


σ 0 0

0 σ 0

0 0 σ


 . (13.21)

This is referred to as isotropic symmetry. Note that the conductivity tensor of a cubic
crystal (i.e., one that has four 3-fold rotation axes) is isotropic.

If the material is isotropic in d dimensions, then the conductivity tensor is specified
by the scalar σ, i.e,

σ � σI, (13.22)

where
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Figure 13.3 One-dimensional periodic composite. The white and shaded regions have
conductivities σ1 and σ2, respectively.

σ � 1
d
Tr σ � 1

d
σ : I (13.23)

and Tr a ≡ a : I � aii indicates the trace of a second-order tensor a.

13.2.3 Model One-Dimensional Problem

It is instructive to consider a simple one-dimensional periodic composite model (de-
picted in Figure 13.3) as a prelude to the homogenization of arbitrary periodic media
in any dimension. The following example is an adaptation of one given by Persson,
Persson, Svanstedt and Wyller (1989). Let the composite consist of a periodic arrange-
ment of two phases with volume fractions φ1 and φ2 in the interval [0,1]. Phase 1 lies in
regions B1, B3, . . . , Bn−1, and phase 2 lies in regions B2, B4, . . . , Bn, where n is even. The
fineness of the microstructure can be adjusted by varying the number of periodic unit
(i.e., repeating) cellsm � n/2. Let us subject the end x � 0 to a unit flux and the opposite
end x � 1 to a potential (temperature) T � 0. Therefore, the potential (temperature)
profile in the bar is governed by

− d

dx

[
σ(x)

dT

dx

]
� 0

subject to the boundary conditions

−σ1
dT

dx

∣∣∣∣∣
x�0

� 1, T(1) � 0.

According to the discussion of Section 13.2.1, this problem can be reformulated as

d2T

dx2
� 0, in Bi, i � 1, . . . , n,

σ+(x)
dT+(x)

dx
� σ−(x)

dT−(x)
dx

T+(x) � T−(x)

}
on all interfaces,

with the aforementioned boundary conditions, and where the superscripts + and − on
a function denote its limits from the right and left, respectively. The potential T(x) can
be written as
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Figure 13.4 The functions T (x ), υ(x ), and p(x ) and derivatives dT/dx and dυ/dx for n � 4 (left
panel) and n � 10 (right panel) when σ1 ≥ σ2 and φ1 � φ2 � 0.5.

T(x) � υ(x)+ p(x),

where p(x) is a periodic function and υ(x) is a linear function obeying the boundary
value problem

d2υ

dx2
� 0 for all x,

−σe

dυ

dx

∣∣∣∣∣
x�0

� 1, υ(1) � 0,

and the effective conductivity σe is given by the harmonic mean of the phase conduc-
tivities, i.e.,

σe � 〈σ−1〉−1 �
(

φ1

σ1
+ φ2

σ2

)−1

. (13.24)

Remarks:
1. It will be shown in Chapter 16 that the harmonic average expression (13.24) is also

the correct result for arbitrary random one-dimensional media.
2. It is expected that p(x) converges to zero and, hence, that T(x) converges uni-

formly to υ(x) as n → ∞. Note that while the derivative dT/dx does not converge
to dυ/dx, the derivatives converge in the weak sense; i.e., the average of dT/dx

over the domain converges to dυ/dx as n → ∞. Figure 13.4 shows the afore-
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Figure 13.5 Two-dimensional periodic medium with square cells in a domain�with boundary
∂�. The volume of the domain is L2. The unit cell Y has a side of length εL, where ε � 1/3, with
a boundary ∂Y .

mentioned quantities plotted for the cases n � 4 and n � 10 with σ1 ≥ σ2 and
φ1 � φ2 � 0.5.

13.2.4 Homogenization of Periodic Problem in �d

Consider now the homogenization problem for a periodic medium contained in some
region � in �d with a piecewise smooth boundary ∂� (see Figure 13.5). The treatment
given here is based on the works of Bensoussan et al. (1978) and Sanchez-Palencia
(1980).

Consider an arbitrary periodic conductivity tensor σ(x) and introduce ε ≥ 0 as a
parameter for varying the period by defining σε(x) � σ(y), where y is the fast variable

y � x

ε
. (13.25)

We define a Y -periodic function F(y) to be one that is periodic in y over some unit cell
Y . Thus, σ(y) is a Y-periodic function. To indicate that the local temperature depends
on ε, we write Tε(x) � T(x, y), where x on the right side signifies the slow variable. Also,
we allow for a source term f (x), which just depends on the slow variable. Thus, the
governing equations are

− ∂

∂xi

[
σε

ij(x)
∂T

∂xj

ε]
� f (x) in �, (13.26)

Tε � c1 on /1, − σε
ij

∂T

∂xj

ε

ni � c2 on /2, (13.27)

where /1 is a portion of the boundary ∂�, /2 is the complementary surface, ni is the
unit outward normal, and c1 and c2 are constants. Thus, relations (13.27) represent the
general situation of mixed boundary conditions, i.e., a Dirichlet condition on /1 and a
Neumann condition on /2.
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It is natural to perform a two-scale asymptotic expansion of the solution Tε(x) in
terms of the global and local variables, i.e.,

Tε(x) � T0(x)+ εT1(x, y)+ ε2 T2(x, y)+ · · · . (13.28)

We remark that for any function X(x) � D(x, y), the chain rule yields

∇X � ∇xD + 1
ε
∇yD. (13.29)

Substitution of the asymptotic expansion into the differential equation (13.26) yields

−
[

∂

∂xi

+ 1
ε

∂

∂yi

] [
σij(y)

( ∂

∂xj

+ 1
ε

∂

∂yj

)
(T0 + εT1 + ε2T2 + · · ·)

]
� [ε−2A0 + ε−1A1 + A2][T0 + εT1 + ε2T2 + · · ·] � f, (13.30)

where the differential operators A0, A1, and A2 are given by

A0 � − ∂

∂yi

[
σij(y)

∂

∂yj

]
, A1 � − ∂

∂yi

[
σij(y)

∂

∂xj

]
− σij(y)

∂2

∂xi∂yj

,

A2 � −σij(y)
∂2

∂xixj

.

Equating powers of ε leads to the following three lowest-order equations:

A0T0 � 0, (13.31)

A0T1 + A1T0 � 0, (13.32)

A0T2 + A1T1 + A2T0 � f. (13.33)

Before stating a very useful theorem, wemust first introduce a definition. The spatial
average of a Y -periodic function F(y) over the unit cell Y , denoted by 〈F(y)〉, is defined
by

〈F〉 ≡ 1
|Y |

∫
Y

F(y)dy, (13.34)

where |Y | is the d-dimensional volume (measure) of Y . The quantity F(y) may represent
a tensor of arbitrary order.

Theorem 13.1
Let F(y) be a Y -periodic function that is square integrable. For the boundary value

problem

A0D(y) � F(y) in Y, (13.35)

where D(y) is Y -periodic, the following hold:

(i) There exists a solution D if and only if 〈F(y)〉 � 0.
(ii) If a solution exists, it is unique up to an additive constant.
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The proof of this theorem may be found in Bensoussan et al. (1978).
The function T0(x) automatically satisfies A0T0 � 0. Equation (13.32) can be

expressed as

A0T1 � ∂σij

∂yi

∂T0

∂xj

,

where x is just a parameter here. Now consider the “cell problem”

A0χj � ∂σij

∂yi

in Y, (13.36)

where the function χj(y) is Y -periodic. Gauss’s divergence theorem gives∫
Y

∂σij

∂yi

dy �
∫

∂Y

σijnidS � 0, (13.37)

where ∂Y is the boundary of the unit cell. Periodicity of σ renders the surface integral
to be zero. Thus, by invoking Theorem 13.1, we get the solution of equation (13.32) as

T1(x, y) � χj(y)
∂T0

∂xj

+ u(x), (13.38)

where χj(y) is a solution of (13.36), unique up to a function u(x) that depends on x only.
By using the same theorem once more, we find that (13.33) has a Y -periodic solution
T2 if and only if

〈f − A1T1 − A2T0〉 � 0,

or, equivalently,

1
Y

∫
Y

[
f − ∂(σikχj)

∂yk

∂2T0

∂xixj

+ ∂σij

∂yi

∂u

∂xj

− σik

∂χj

∂yk

∂2T0

∂xi∂xj

+ σij

∂2T0

∂xi∂xj

]
dy � 0.

The functions σij and χj are Y-periodic, and the functions T0 and u are independent of
y. Therefore, the second and third terms in the integral immediately above vanish by
Gauss’s divergence theorem, and the integral simplifies to

− (σe)ij
∂2T0

∂xi∂xj

� f, (13.39)

where

(σe)ij � 〈σij〉 +
〈
σik

∂χj

∂yk

〉
. (13.40)

The relations (13.39) and (13.40) are the key results: They show that the hetero-
geneous periodic medium will behave like a homogeneous medium, governed by the
steady-state conduction equation (13.39), with a constant conductivity tensor σe in the
limit ε → 0. This is tantamount to the specification of an averaged Ohm’s (Fourier’s)
law, i.e.,
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〈J (x)〉 � σe · 〈E(x)〉, (13.41)

where σe is given precisely by (13.40). This relation is easily obtained by taking the
gradient of expansion (13.28), computing the local fields E and J using definitions
(13.5) and (13.6), respectively, averaging the local fields, and utilizing the fact that
the periodicity of χ renders 〈∇χ〉 � 0. In the limit that ε → 0, one finally gets the
averaged relation (13.41). [The precise manner in which the local fields converge to
the homogenized fields in the limit ε → 0 has been investigated by Bensoussan et al.
(1978) and Sanchez-Palencia (1980).] The above analysis could also be applied to the
situation in which the local conductivity σ(x, y) depends on the slow and fast variables
x, y, leading to an effective conductivity σe that varies on macroscopic length scales.

13.2.5 Homogenization of Random Problem in �d

The analogue of periodicity in the random setting is statistical homogeneity and er-
godicity. Each realization ω of the random medium of space V ∈ �d is partitioned
into two random sets, or phases, as described in Section 13.1 (see Figure 13.2). Let
σε(x) � σ(y;ω) be the symmetric conductivity tensor, where y � x/ε is the fast variable
associated with the microstructure. The conductivity σ(y;ω) is a statistically homoge-
neous function (in the strict sense defined in Section 2.2.2) that is positive definite and
bounded. The temperature distribution Tε(x) � T(x, y;ω) satisfies

− ∂

∂xi

[
σε

ij(x)
∂Tε

∂xj

]
� f (x) in V (13.42)

for each realization of the ensemble, and we assume that Tε � 0 is specified on the
boundary of V. Ultimately, we consider the limit that the volume V → ∞ such that
the volume fraction remains fixed, and then we invoke the ergodic hypothesis, i.e., we
study ergodic media.

The problem now is to analyze the behavior of Tε(x) as ε → 0. Papanicolaou
and Varadan (1979) have shown that when σε

ij is statistically homogeneous and er-
godic, there exists an effective conductivity tensor (σe)ij, independent of the boundary
conditions in the infinite-volume limit (Papanicolaou and Varadan 1979, Golden and
Papanicolaou 1983), such that if T0(x) is the solution of the deterministic heat equation

− (σe)ij
∂2T0

∂xi∂xj

� f (x), (13.43)

then ∫
V

〈|Tε(x)− T0(x)|2
〉
dx → 0, as ε → 0. (13.44)

Thus, an ergodic heterogeneousmediumwill behave like a homogeneous deterministic
medium with conductivity tensor (σe)ij when ε becomes very small. The result (13.43)
is identical in form to result (13.39) for the periodic medium.
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To prove the above statement, one again assumes a two-scale asymptotic expansion
of Tε(x;ω) of the type

Tε(x;ω) � T0(x)+ εT1(x, y;ω)+ ε2T2(x, y;ω)+ · · · , (13.45)

which is substituted into the governing equation (13.42). Since the procedure is similar
to the one used for periodicmedia, the details are not given here, except to say that in the
end we find that the effective conductivity is defined by an averaged Ohm’s (Fourier’s)
law

〈J (x)〉 � σe · 〈E(x)〉, (13.46)

where

(σe)ij � 〈σij〉 +
〈
σik

∂χj

∂yk

〉
, (13.47)

the function χj(y;ω) solves

− ∂

∂yi

[
σik(y;ω)

∂

∂yk

χj(y;ω)

]
� ∂

∂yi

σij(y;ω) in �d, (13.48)

and angular brackets denote an ensemble average. Note that the definition (13.46) is
consistent with the one given in Table 1.1.

Remarks:
1. There are some important differences between the random and periodic settings.

In the random setting, (13.48) always has a solution χ that is not statistically ho-
mogeneous but its gradient ∇χ is statistically homogeneous and 〈χ〉 � 0. This is to
be contrasted with the periodic setting, where χ itself is a periodic solution. Fur-
thermore, the ensemble average of the right side of (13.48) is zero by ergodicity (as
detailed in many of the proofs in Chapter 14), whereas the volume average of the
right side of (13.36) in the periodic case is zero by periodicity.

2. The homogenized result (13.46) for the ergodic random setting becomes identical
in form to the corresponding periodic result (13.41) in the limit ε → 0 when angular
brackets are interpreted as ensemble averages.

3. Macroscopic variation of the effective conductivity tensor could be allowed for,
i.e., σe(x) may be assumed to depend on the position x, provided that the length
scales associated with such variations of O(W) are large enough to assume statistical
homogeneity at x (local statistical homogeneity).

4. It is shown in Section 14.1.2 that σe is symmetric and positive definite if the local
conductivity tensor σ is symmetric and positive definite.

5. In the case of conduction, macroscopically isotropic composites are those whose
effective conductivity tensor σe is specified by the scalar σe, i.e.,

σe � σeI.



320 13: Local and Homogenized Equations

6. For composites consisting of isotropic phases, the following general statements can
be made:

• Statistically isotropic composites are always macroscopically isotropic compos-
ites [e.g., statistically isotropic arrays of inclusions in amatrix (see Figure 12.6)].

• However, statistical anisotropy, as measured by correlation functions (Sec-
tion 2.2.2), does not necessarily imply a macroscopically anisotropic composite
with an effective tensor σe. For instance, composites with cubic symmetry are
statistically anisotropic but are macroscopically isotropic (e.g., cubic lattices of
spheres in a matrix).

• Macroscopically anisotropic composites are necessarily statistically anisotropic
[e.g., statistically anisotropic arrays of oriented cylinders or ellipsoids in a ma-
trix (see Figure 7.1) or stratified media (see Figure 16.3)].

Note that macroscopically anisotropic composites are not necessarily statistically
anisotropic if some of the phases are anisotropic. For instance, systems of statis-
tically isotropic arrays of spherical but anisotropic grains oriented in the same
direction in an isotropic matrix are macroscopically anisotropic.

7. The effective relation (13.46) also applies to composites with an arbitrary number
of phases that meet the standard two-scale assumption.

8. The effective conductivity tensor σe of a macroscopically anisotropic composite
composed of M isotropic phases is a homogeneous function of degree one in its M

scalar phase conductivities σ1, . . . , σM. For two isotropic phases, this means that
σe(σ1, σ2) obeys the relation

σe(ασ1, ασ2) � α σe(σ1, σ2) for all α. (13.49)

If we set the constant α equal to 1/σ1, then we get

σe(σ1, σ2)
σ1

� σe(1, σ2/σ1).

Thus, the homogeneity property (13.49) enables us to reduce the independent vari-
ables from two to one (σ2/σ1) without any loss of generality. The homogeneity
property is trivially proven using the effective relation (13.46) and the observation
that ∇ · J ′ � 0 when J ′ � αJ and ∇ · J � 0.

9. A given formula for the effective conductivity as a function of the phase conductivi-
ties,σe(σ1,σ2), immediately gives equivalent formulas for the other class A problems
by a simple replacement of the conductivities with the constants of interest. For ex-
ample, letting ε denote the dielectric constant tensor, we can obtain an expression
for the effective dielectric constant εe by the replacement σe → εe, σ1 → ε1, and
σ2 → ε2. Similarly, for diffusion past fixed impermeable obstacles (phase 2), the
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effective diffusion coefficient De is found by the replacement σe → De, σ1 → D1,
and σ2 → 0.

13.2.6 Frequency-Dependent Conductivity

For time-varying electric fields, such as in electromagnetic radiation, the phase con-
ductivities and the effective conductivityσe are frequency-dependent and complex (real
and imaginary parts). The optical properties of a material are often described in terms
of the dielectric constant, which is also frequency-dependent and complex. The analysis
is simplified if the wavelength is much larger than the heterogeneity length scale, since
then Maxwell’s equations of electromagnetic wave propagation reduce to the afore-
mentioned steady-state conduction equations but with complex fields and complex
properties. The reader is referred to Bergman (1978,1982) and Milton (1980, 1981a,
1981b) and references therein for pertinent literature on the subject of composites
with complex properties.

13.3 Elastic Problem

In this section we discuss the local relations for the elasticity problem and elastic
symmetry (Sokolnikoff 1956). The homogenized relations follow in the same way as in
the previous section. We also discuss other problems that fall within class B.

13.3.1 Local Relations

For each realization ω of the random medium occupying the space V ∈ �d, we assume
that phases 1 and 2 have constant stiffness tensors C1 and C2, respectively. It is desired
to obtain the relevant equations governing the local elastostatic fields. In what follows,
we temporarily drop ω from the notation.

Local Differential Equations

Let τ (x) and ε(x) denote respectively the symmetric local stress and strain tensors
at position x. Under steady state without sources, conservation of momentum requires
the stress tensor τ (x) to satisfy the equilibrium equations

∇ · τ � 0 in V (13.50)

for each realization of the ensemble. The strain field ε(x) satisfies the compatibility
relations

∇ × [∇ × ε]T � 0 in V, (13.51)

which implies the existence of a displacement field u. (Here the superscript T denotes
the transpose operation.) In other words, the strain can be written as a symmetrized
gradient of displacements
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ε(x) � 1
2

[∇u(x)+ ∇u(x)T] . (13.52)

We also specify the displacement u on the boundary of V.

Local Constitutive Relation

In order to obtain the strain field ε or displacement field u from the relations (13.50)
and (13.51), we will connect τ to ε by assuming a linear constitutive relation, i.e.,

τ (x) � C(x) : ε(x) in V, (13.53)

where

C(x) � C1I(1)(x)+ C2I(2)(x) (13.54)

is the local stiffness tensor and I(i)(x) is the indicator function for phase i, given by
(2.1). Relation (13.53) is the generalization of Hooke’s law. Here the symbol : denotes
the contraction with respect to two indices. For example,

a : b � aijbji, B : a � Bijklalk, (13.55)

where a and b are second-order tensors and B is a fourth-order tensor. The stress–strain
relations can be expressed in inverted form

ε(x) � S(x) : τ (x), (13.56)

where Sijkl is the compliance tensor. The stiffness and compliance tensors are related
by

S : C � I, (13.57)

where in component form

Iijkl � 1
2
[δik δjl + δil δjk] (13.58)

is the fourth-order identity tensor. Note that the notation used to designate the full
fourth-order identity tensor I is the same as that for the second-order identity tensor
with components given by the Kronecker delta δij (13.10). Unless otherwise noted, it
will be apparent by the context whether the second- or fourth-order identity tensor is
being used.

Note that (13.50), which applies anywhere in the heterogeneous material, implies
that the traction vector t � τ · n is continuous across the interface ∂V. Similarly, the
compatibility condition (13.51) implies that the displacement u is continuous across
the interface ∂V. To summarize, the governing equations imply the ideal (or perfect)
interface conditions

t and u continuous across ∂V. (13.59)

Computationally, the problem can be reformulated as solving (13.50)–(13.53) in each
phase subject to the interface conditions (13.59) andboundary conditions on themacro-
scopic sample surface. Imperfect interfaces (where the displacement u jumps across
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the interface, due to debonding, and/or t jumps across the interface) were noted in
Chapter 1.

That Cijkl (Sijkl) is a fourth-order tensor can be demonstrated by showing that its d4

components in d dimensions, referred to a coordinate system, transform to d4 compo-
nents in another “primed” coordinate system according to the transformation rule for
fourth-order tensors, i.e.,

C′
ijkl � limljnlkpllq Cmnpq. (13.60)

Here lij are the aforementioned direction cosines.
Now, since the stress tensor is symmetric (i.e., τij � τji), we must have

Cijkl � Cjikl. (13.61)

Also, since the strain tensor εij is symmetric, then

Cijkl � Cijlk. (13.62)

These two conditions enable one to reduce the 81 independent components of Cijkl to
36 for three-dimensional elasticity. In d dimensions, the d4 independent components
are reduced to [d(d + 1)/2]2 components.

When the stress can be expressed as a derivative of the strain energy density function
u with respect to strain such that

τij � ∂u

∂εij

, (13.63)

then it immediately follows from the linear Hooke’s law (13.53) that u, up to an additive
constant, is given by

u � 1
2

τijεij � 1
2

εklCijklεij ≥ 0, (13.64)

and hence the stiffness tensor must additionally have the symmetry

Cijkl � Cklij. (13.65)

(The scalar quantity u should not be confused with the vector displacement u.) In
d dimensions, condition (13.65) further reduces the number of independent elastic
constants to d(d+1)(d2+d+2)/8. For d � 3, this means that the number of independent
elastic constants is reduced to 21. From relations (13.57) and (13.61)–(13.65), we see
that the compliance tensor Sijkl must possess the same symmetries as the stiffness
tensor Cijkl.

Note that the nonnegativity of the strain energy density function u [cf. (13.64)]
places restrictions on the components of C and implies that the stiffness tensor C (or
compliance tensor S) is positive definite. Recall that a symmetric fourth-order tensor A
(Aijkl) is positive semidefinite, if for any second-order tensor b (bij) in �d,

bijAijklbkl ≥ 0. (13.66)
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If only the inequality of (13.66) applies for any nonzero tensor b �� 0, then A is said
to be positive definite. Since the equality of (13.64) holds only for ε � 0, C is positive
definite, and therefore is also positive semidefinite. (Any positive definite tensor A is
also positive semidefinite, since either b �� 0 or b � 0.) Note that for C and S to be
positive definite, it is necessary and sufficient that their d(d + 1)/2 real eigenvalues be
positive.

In summary, the number of independent elastic constants for the general anisotropic
linearly elastic material is reduced to 21 for three-dimensional elasticity. Moreover,
if certain elastic symmetries exist in the material, this number will be reduced even
further, as discussed below.

13.3.2 Elastic Symmetry

Elastic symmetry is expressed by the property that the coefficients Cijkl(Sijkl) remain
invariant under certain transformations of the coordinates. As in the previous section,
basic coordinate changes are (a) reflection in a plane, (b) rotation about an axis, and
(c) rotation about an axis combined with reflection in a plane that is normal to the axis.

Consider a linearly elastic homogeneous material. We restrict ourselves initially to
three dimensions. In light of the symmetry relations (13.61), (13.62), and (13.65), the
generalized Hooke’s law (13.53) really represents only six independent equations with
21 elastic constants. This is conveniently represented as a matrix equation expressing
a six-element column vector of stresses in terms of a six-element column vector of
strains. We write 



τ1

τ2

τ3

τ4

τ5

τ6



�




C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66







ε1

ε2

ε3

ε4

ε5

ε6




, (13.67)

where the elements of the two column vectors τi and εi are

τ1 � τ11 , τ2 � τ22 , τ3 � τ33 , τ4 � τ23 , τ5 � τ13 , τ6 � τ12,

ε1 � ε11 , ε2 � ε22 , ε3 � ε33 , ε4 � 2ε23 , ε5 � 2ε13 , ε6 � 2ε12.

The matrix equation (13.67) can be written more compactly as

τi � Cijεj, (13.68)

where Cij is the 6 × 6 symmetric matrix whose elements are given in (13.67). The
mapping between the tensor Cijkl and the matrix Cpq is accomplished by replacing the
subscripts ij (or kl) by p (or q) using the following rules:

11 ↔ 1 , 22 ↔ 2 , 33 ↔ 3 , 23 or 32 ↔ 4 , 13 or 31 ↔ 5 , 12 or 21 ↔ 6.
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The relation (13.68) may be inverted to give

εi � Sijτj, (13.69)

where the 6×6 symmetric matrix Sij is just the inverse of the matrix Cij given in (13.68).
The transformation between the tensor Sijkl and thematrix Spq is similar to that between
Cijkl and Cpq except for the following conditions: Spq � Sijkl if 1 ≤ p, q ≤ 3; Spq � 2Sijkl if
1 ≤ p ≤ 3 and 4 ≤ q ≤ 6 or if 4 ≤ p ≤ 6 and 1 ≤ q ≤ 3; Spq � 4Sijkl if 4 ≤ p, q ≤ 6. It is
noteworthy that the matrices Cij and Sij do not transform as tensors.

In what follows we consider a number of different cases where the tensor Cijkl (Sijkl)
remains invariant to certain transformations according to the rule (13.60). We then
represent the elastic symmetry class as a 6× 6 stiffness or compliance matrix.

(i) Monoclinic Symmetry

For symmetry with respect to one plane, say the x1-x2 plane, it can be shown that
Cij has 13 independent components:

C �




C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66




. (13.70)

This is referred to as monoclinic symmetry. As in the general anisotropic case, here a
pure shear strain can give rise to a normal stress.

(ii) Orthotropic Symmetry

For symmetry with respect to three orthogonal planes, it can be shown that Cij has
9 independent components:

C �




C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66




. (13.71)

This is referred to as orthotropic symmetry.

(iii) Transverse Square Symmetry

For symmetry with respect to a 90◦ rotation about one axis, say the x1-axis, it can
be shown that Cij has 6 independent components:
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C �




C11 C12 C12 0 0 0

C12 C22 C23 0 0 0

C12 C23 C22 0 0 0

0 0 0 C44 0 0

0 0 0 0 C66 0

0 0 0 0 0 C66




. (13.72)

This is referred to as transverse square symmetry. A tetragonal crystal has such
symmetry.

(iv) Transversely Isotropic Symmetry

For symmetry of rotation with respect to one axis, say the x1-axis, it is easily shown
that Cij has 5 independent components:

C �




C11 C12 C12 0 0 0

C12 C22 C23 0 0 0

C12 C23 C22 0 0 0

0 0 0
1
2
(C22 − C23) 0 0

0 0 0 0 C66 0

0 0 0 0 0 C66




. (13.73)

This is referred to as transversely isotropic symmetry. A crystal with a 6-fold rotational
symmetry axis (hexagonal) is transversely isotropic with respect to the stiffness (Nye
1957). Although a crystal with a 3-fold rotational symmetry axis (trigonal) is not trans-
versely isotropic (Nye 1957), there are only two independent elastic moduli in the
transverse plane. Hence, two-dimensional crystals with a 3-fold rotational symmetry
axis are elastically isotropic.

It is useful to explicitly write the stress–strain relations here, since the case of trans-
verse isotropy is treated in some detail in subsequent portions of the book. Given Cij

above, it follows that

τ11 � C11ε11 + C12ε22 + C12ε33,

τ22 � C12ε11 + C22ε22 + C23ε33,

τ33 � C12ε11 + C23ε22 + C22ε33, (13.74)

τ23 � (C22 − C23)ε23,

τ13 � 2C66ε13,

τ12 � 2C66ε12.

It is convenient to relate the five constants C11, C12, C22, C23, and C66 to more easily
measurable engineering elastic moduli, such as Young’s modulus, Poisson’s ratios, and
the shear modulus. First consider applying a uniform strain ε in both the x2-direction
and x3-direction such that axial extension in the x1-direction is prohibited, i.e.,



13.3: Elastic Problem 327

ε11 � 0, ε22 � ε33 � ε.

Letting

τ22 � τ33 � τ,

we find from (13.75) that

τ � 2k23ε,

where

k23 � 1
2
(C22 + C33) (13.75)

is the plane strain or transverse bulk modulus.
Now consider a simple state of uniaxial stress, i.e.,

τ11 �� 0, τ22 � τ33 � τ12 � τ23 � τ13 � 0.

For such a state, (13.75) reveals that

τ11 � E11ε11,

where

E11 � C11 − 2C2
12

C22 + C33
(13.76)

is the longitudinal Young’s modulus. The Poisson ratios that characterize the typical
lateral contraction (expansion) that accompanies uniaxial tension (compression) in the
x1-direction are defined by the relations

ν12 � −ε22

ε11
, ν13 � −ε33

ε11
.

Generally, νij is Poisson’s ratio, where the first index i indicates the direction of the
imposed stress or strain and the second index j indicates the response direction. For
the aforementioned uniaxial stress state, we have from (13.75) that

ν12 � ν13 � C12

C22 + C33
. (13.77)

The directly measurable shear moduli are defined in the usual way, i.e.,

G12 � G13 � C66, (13.78)

G23 � 1
2
(C22 − C33). (13.79)

Using the relations above, we can express the five coefficients of (13.73) in terms of the
directly measurable moduli:

C11 � E11 + 4ν212k23, C12 � 2k23ν12,

C22 � k23 + G23, C23 � k23 − G23, C66 � G12.
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Other engineering moduli could have been measured. For example, for a state of
uniaxial stress in the x2-direction, one would measure E22, ν21 (�� ν12), and ν23, and for
uniaxial stress in the x3-direction, one would measure E33, ν31 (�� ν13), and ν32. Now,
since some of thesemoduli are equal by symmetry, we will henceforth use the following
notation:

EL ≡ E11, νL ≡ ν12 � ν13, GL ≡ G12 � G13, (13.80)

ET ≡ E22 � E33, νT ≡ ν23 � ν32, GT ≡ G23, kT ≡ k23. (13.81)

Here EL, νL, and GL are the longitudinal Young modulus, Poisson ratio, and shear
modulus, respectively, whereas ET , νT , GT , and kT are the transverse Young modulus,
Poisson ratio, shear modulus, and bulk modulus, respectively.

Since there are only five independent moduli, there are interrelations among the
properties. For example, two of them are

GT � ET

2(1+ νT)
(13.82)

and

4
ET

� 1
kT

+ 1
GT

+ 4(νL)2

EL
. (13.83)

The previous two relations can be combined to give the following relation for the
transverse Poisson ratio νT :

νT � kT − GT − 4kTGT(νL)2/EL

kT + GT + 4kTGT(νL)2/EL
. (13.84)

Other property interrelations have been given by Christensen (1979).
The nonnegativity of the strain energy density function u [cf. (13.64)], implies that

the moduli kT , GT , and EL are all positive. Using these nonnegativity conditions and
(13.84), it is easily shown that

− 1 ≤ νT ≤ 1. (13.85)

Note that the transverse Poisson ratio can be negative, with −1 being the lower limit.
A negative Poisson’s ratio implies that a uniaxial tensile (compressive) load applied
in any direction in the transverse plane will lead to an expansion (contraction) of the
material in the direction orthogonal to the applied load. The lower limit of −1 is found
by taking the limit GT/kT → ∞ and EL/GT → ∞. The upper limit of 1 is obtained by
taking the limit that kT/GT → ∞ and EL/kT → ∞. By contrast, for a three-dimensional
isotropic material, Poisson’s ratio must lie in the interval [−1,0.5], as shown below. It
is interesting to note that in the limit EL/(νL)2 → ∞, (13.83) and (13.84) respectively
reduce to

4/ET � 1/kT + 1/GT, νT � (kT − GT)/(kT + GT),

which are the same as the two-dimensional isotropic elasticity results, given by (13.103)
and (13.104) with d � 2.
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We can express the aforementioned results for transverse isotropy in terms of the
6× 6 compliance matrix Sij as follows:

S �




1
EL

− νL

EL
− νL

EL
0 0 0

− νL

EL

1
ET

− νT

ET
0 0 0

− νL

EL
− νT

ET

1
ET

0 0 0

0 0 0
1

GT
0 0

0 0 0 0
1

GL
0

0 0 0 0 0
1

GL




. (13.86)

(v) Cubic Symmetry

For symmetry with respect to 90◦ rotations about two perpendicular axes, say the
x1-axis and x2-axis, it can be shown that Cij has 3 independent components:

C �




C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44




. (13.87)

This is referred to as cubic symmetry.

(vi) Isotropic Symmetry

When the elasticmoduli are independent of the orientation of the coordinate system,
there are two independent elastic moduli:

C �




C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0
1
2
(C11 − C12) 0 0

0 0 0 0
1
2
(C11 − C12) 0

0 0 0 0 0
1
2
(C11 − C12)




. (13.88)

This is referred to as isotropic symmetry. The elastic constants C12 and (C11 − C12) are
identified as the Lamé constant λ and shear modulus G, i.e.,
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C12 � λ,
1
2
(C11 − C12) � G, C11 � λ + 2G.

In indicial notation, the stress–strain relations for a d-dimensional material are
written as

τij � λεkk δij + 2Gεij, i, j � 1, . . . , d. (13.89)

The strain–stress relation can be written as

εij � − ν

E
τkk δij + 1+ ν

E
τij, i, j � 1, . . . , d, (13.90)

where E is Young’s modulus (uniaxial stress in any direction divided by the strain in
the same direction) and ν is Poisson’s ratio (negative of the strain in the direction of a
uniaxial stress divided by the associated transverse strain).

Alternatively, the stress–strain relations can be represented in terms of the deviatoric
and dilatational (hydrostatic) components of the stress and strain. Let sij and eij be the
deviatoric components of stress and strain, defined in any space dimension d as

sij � τij − 1
d

δij τkk, (13.91)

eij � εij − 1
d

δijεkk. (13.92)

Thus, we have from (13.89) that

sij � 2Geij, (deviatoric relation),

τkk � dKεkk, (dilatational relation), (13.93)

where K is the bulk modulus governing volumetric or dilatational changes, which can
be expressed in terms of λ and G as

K � λ + 2
d

G. (13.94)

The nonnegativity of the strain energy density function u [cf. (13.64)] implies that the
moduli K, G, and E are all positive.

For subsequent discussion it will be convenient to obtain the appropriate form of
the fourth-order tensors Cijkl and Sijkl for the isotropic case. It is seen from the stress–
strain relation (13.89) that the stiffness tensor can be written in terms of the projection
tensors "h and "s as follows:

C � dK"h + 2G"s, (13.95)

where, in component form,

(Wh)ijkl � 1
d

δijδkl, (13.96)

(Ws)ijkl � 1
2
[δikδjl + δilδjk]− 1

d
δijδkl. (13.97)
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The tensor"h projects onto fields that are everywhere isotropic, i.e., hydrostatic fields,
whereas the tensor "s projects onto fields that are everywhere trace-free, i.e., shear
fields. We note the following useful identities:

(Wh)ijklIijkl � 1, (Ws)ijklIijkl � (d − 1)(d + 2)
2

,

(Wh)ijkl + (Ws)ijkl � Iijkl, (Wh)ijmn(Wh)mnkl � (Wh)ijkl, (13.98)

(Ws)ijmn(Ws)mnkl � (Ws)ijkl, (Wh)ijmn(Ws)mnkl � 0.

Similarly, the strain–stress relations (13.90) give the compliance tensor S as

S � 1+ ν(1− d)
E

"h + 1+ ν

E
"s. (13.99)

Taking the inverse of relation (13.95) and using the identities (13.98) yields

S � 1
dK

"h + 1
2G

"s. (13.100)

Comparison of expressions (13.99) and (13.100) gives the interrelations

G � E

2(1+ ν)
, (13.101)

K � E

d[1+ ν(1− d)]
. (13.102)

Interrelation (13.101), unlike (13.102), is independent of the space dimension.
Combination of these two equations yields the useful interrelations

d2

E
� 1

K
+ d(d − 1)

2G
, (13.103)

ν � dK − 2G

d(d − 1)K + 2G
. (13.104)

Using expression (13.104) and the positivity of K and G, it can be shown that
Poisson’s ratio ν is bounded according to

− 1 ≤ ν ≤ 1
(d − 1)

. (13.105)

The upper limit of ν � 1/(d − 1) is obtained from (13.104) by taking the limit that
K/G → ∞, i.e., the incompressible limit. In three dimensions, when ν ≈ 1/2, as in
rubbery solids and liquids, the bulk modulus greatly exceeds the shear modulus. The
lower limit of ν � −1 is found by taking the limit G/K → ∞. For materials with
ν ≈ −1, the shearmodulus far exceeds the bulkmodulus. Elastically isotropicmaterials
having a negative Poisson’s ratio, called auxetic materials, are extremely rare in nature.
However, as discussed in Section 13.3.4, composite materials with negative Poisson’s
ratio have been devised and fabricated.

Note that one must specify either plane-strain or plane-stress elasticity when it is
desired to connect the moduli for isotropic two-dimensional (planar) elasticity to the
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moduli for isotropic three-dimensional elasticity. Plane-strain elasticity is physically
relevant in considering a fiber-reinforced material. On the other hand, plane-stress
elasticity is physically relevant in considering two-phase composites in the form of thin
sheets. The planar shear modulus G (either in plane-strain or plane-stress elasticity) is
equal to the three-dimensional shear modulus G. However, the bulk-moduli relations
are not as simple. We will follow the convention of denoting the planar bulk modulus
by k and the three-dimensional bulk modulus by K. The plane-strain bulk modulus k

is related to K by the expression

k � K + G/3. (13.106)

By contrast, the plane-stress bulk modulus k obeys the relation

k � 9KG

3K + 4G
. (13.107)

These and other interrelations among the planar and three-dimensional moduli are
derived in Appendix B.

13.3.3 Homogenization of Random Problem in �d

The homogenization of the elastic problem for periodic media has been given by
Sanchez-Palencia (1980). Since the derivation of the homogenized results for random
elastic media follows closely the one for periodic elastic media, which in turn is com-
pletely analogous to the derivation that we gave previously for the conductivity problem
in Section 13.2, we will only sketch the procedure here.

We recall that each realization ω of the random medium occupies the space V ∈ �d,
which is partitioned into two random sets or phases, as described in the beginning
of this chapter (see Figure 13.2). The stiffness tensor is a rapidly oscillating random
function of position, which we write as Cε(x) � C(y;ω), where y � x/ε is the fast variable
associated with the fineness of themicrostructure. As before, it is a statistically homoge-
neous function that is positive definite and bounded. The displacement uε(x) � u(x, y;ω)
satisfies the equilibrium equation for each realization of the ensemble, i.e.,

− ∂

∂xj

[
Cε

ijkl
(x)εε

kl
(x)

]
� fi(x) in V, (13.108)

where εε(x) � ε(x, y) is the symmetrized gradient of uε, which we assume is specified
on the boundary of V, and f (x) is a body force per unit volume.

When themedium is statistically homogeneous and ergodic, there exists an effective
stiffness tensor (Ce)ijkl, independent of the boundary conditions in the infinite-volume

limit such that if u
(0)
i (x) is the solution of the deterministic equilibrium elasticity

equation

− (Ce)ijkl

∂

∂xj

ε
(0)
kl
(x) � fi(x), (13.109)

where
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ε
(0)
ij � 1

2

[
∂u

(0)
j

∂xi

+ ∂u
(0)
i

∂xj

]
, (13.110)

then ∫
V
〈|uε(x)− u(0)(x)|2〉dx → 0, as ε → 0. (13.111)

To prove this statement, one begins by assuming the two-scale expansion

uε
i (x) � u

(0)
i (x)+ εu

(1)
i (x, y;ω)+ ε2u

(2)
i (x, y;ω)+ · · · (13.112)

of uε
i (x) and substitute it into (13.108). Proceeding as in the previous section on the

effective conductivity, one can show that the effective stiffness tensor is defined by an
averaged Hooke’s law

〈τ (x)〉 � Ce : 〈ε(x)〉, (13.113)

where

(Ce)ijkl � 〈Cijkl〉 +
〈
Cijmn

1
2

(
∂χkmn

∂yl

+ ∂χlmn

∂yk

)〉
(13.114)

and χkmn is the third-order tensor that solves

− ∂

∂yi

[
Cijkl(y;ω)

1
2

(
∂χkmn

∂yl

+ ∂χlmn

∂yk

)]
� ∂

∂yi

Cijmn(y;ω) in �d. (13.115)

The definition (13.113) is consistent with the one given in Table 1.1.

Remarks:
1. As in the conductivity problem, macroscopic variation of the effective stiffness ten-

sor could be allowed for; i.e., Ce(x) may be assumed to depend on the position x,
provided that the length scales associated with such variations of O(W) are large
enough to assume statistical homogeneity at x (local statistical homogeneity).

2. It is shown in Section 14.2.2 that Ce is symmetric and positive definite if the local
conductivity tensor C is symmetric and positive definite.

3. In the case of elasticity, macroscopically isotropic composites are those whose
effective stiffness tensor is specified by

Ce � dKe"h + 2Ge"s, (13.116)

where "h and "s are the hydrostatic and shear projection tensors given by (13.96)
and (13.97), respectively. Similarly, the effective compliance tensor is given by

Se � 1
dKe

"h + 1
2Ge

"s. (13.117)

4. For composites consisting of isotropic phases, the following general statements can
be made:
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• Statistically isotropic composites are always macroscopically isotropic compos-
ites [e.g., statistically isotropic arrays of inclusions in amatrix (see Figure 12.6)].

• However, statistical anisotropy (as depicted in Figures 7.1 and 16.3, for example)
necessarily implies a macroscopically anisotropic composite with an effective
tensor Ce. This is in contrast to the conduction problem, where statistical
anisotropy does not ensure macroscopic anisotropy.

Macroscopically anisotropic elastic composites are not necessarily statistically
anisotropic if some of the phases are anisotropic. For instance, systems of statis-
tically isotropic arrays of spherical but anisotropic grains oriented in the same
direction in an isotropic matrix are macroscopically anisotropic.

5. The effective relation (13.113) applies also to composites with an arbitrary number
of phases that meet the standard two-scale assumption.

6. The effective stiffness tensor Ce of a macroscopically anisotropic composite com-
posed of M isotropic phases is a homogeneous function of degree one in its 2M

scalar phase moduli K1, G1, . . . , KM, GM. For two isotropic phases, this means that
Ce(K1, G1, K2, G2) obeys the relation

Ce(αK1, αG1, αK2, αG2) � α Ce(K1, G1, K2, G2), for all α. (13.118)

If we set the constant α equal to 1/K1, then we get

Ce(K1, G1, K2, G2)
K1

� Ce(1, G1/K1, K2/K1, G2/K1).

Thus, the homogeneity property (13.118) enables us to reduce the independent vari-
ables from four to three without any loss of generality. The homogeneity property is
trivially proven using the effective relation (13.113) and the observation that∇·τ ′ � 0
when τ ′ � ατ and ∇ · τ � 0.

13.3.4 Heterogeneous Materials

It is shown in Section 14.2.2 that if the local stiffness C is both symmetric and positive
definite, then the effective stiffness tensor Ce is also symmetric and positive definite.
Thus, all of the statements made above concerning the positivity properties and sym-
metries of the stiffness tensor of homogeneous materials apply as well to Ce. Therefore,
there is no need to repeat this entire description for the effective stiffness tensor Ce.
However, for future discussion, we describe briefly the effective moduli for transversely
isotropic and for isotropic two-phase materials. In particular, we note that in the trans-
versely isotropic case only three moduli (rather than five as in the homogeneous case)
are independent.

Transversely Isotropic Composite

Consider a transversely isotropic composite as schematically indicated in Figure
13.6. Generally, such a fiber-reinforcedmaterial has phase boundaries that are cylindri-
cal surfaces of arbitrary shape with generators parallel to one axis. Using the procedure
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x1

x2

x3

Figure 13.6 A schematic of a fiber-reinforced composite.

given above for homogeneous transversely isotropic materials, it is easily shown that
the average strain–stress relations are given by

〈ε11〉 � 1
EL

e

〈τ11〉 − νL
e

EL
e

〈τ22〉 − νL
e

EL
e

〈τ33〉, (13.119)

〈ε22〉 � − νL
e

EL
e

〈τ11〉 + 1
ET

e

〈τ22〉 − νT
e

ET
e

〈τ33〉, (13.120)

〈ε33〉 � − νL
e

EL
e

〈τ11〉 − νT
e

ET
e

〈τ22〉 + 1
ET

e

〈τ33〉, (13.121)

〈ε12〉 � 1
2GL

e

〈τ12〉 , 〈ε13〉 � 1
2GL

e

〈τ13〉 , 〈ε23〉 � 1
2GT

e

〈τ23〉, (13.122)

where ET
e , GT

e , and νT
e are the effective transverse Young modulus, shear modulus, and

Poisson ratio, respectively, and EL
e , GL

e , and νL
e are the effective longitudinal Young

modulus, shear modulus, and Poisson ratio, respectively.
There are only five independent effective constants, and thus there are interrelations

among the effective moduli. For example, two of them are

GT
e � ET

e

2(1+ νT
e )

, (13.123)

4
ET

e

� 1
kT

e

+ 1
GT

e

+ 4(νL
e )

2

EL
e

, (13.124)
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where kT
e is the transverse bulk modulus without axial extension (i.e., 〈ε11〉 � 0). Com-

bining these two relations and taking appropriate limits [as in (13.84)] shows that the
effective transverse Poisson ratio lies in the range−1 ≤ νT

e ≤ 1. A transversely isotropic
porousmaterialwith negative Poisson’s ratios in certain directionswas designedusing a
topology optimization technique and subsequently fabricated using stereolithography
(Sigmund, Torquato and Aksay 1998).

Hill (1964) has shown that for the special case of transversely isotropic composites
possessing two phases, there are actually only three independent effective properties.
For example, if we are given the transverse properties GT

e , kT
e and axial property GL

e ,
then we can obtain EL

e and νL
e through the following relations, which involve only the

effective property kT
e :

EL
e � 〈E〉 + 4(ν2 − ν1)2(

1

kT
2

− 1

kT
1

)2

(〈
1
kT

〉
− 1

kT
e

)
, (13.125)

νL
e � 〈ν〉 − (ν2 − ν1)(

1

kT
2

− 1

kT
1

)
(〈

1
kT

〉
− 1

kT
e

)
, (13.126)

where kT
i � Ki + Gi/3 is the transverse bulk modulus for phase i.

Isotropic Composite

From the discussion above for homogeneous isotropic materials, it is clear that the
averaged stress–strain and strain–stress relations in any space dimension d are given
respectively by

〈τij〉 � Ke〈εkk〉δij + 2Ge

[
〈εij〉 − 〈εkk〉

δij

d

]
, i, j � 1, . . . , d, (13.127)

〈εij〉 � − νe

Ee

〈τkk〉δij + 1+ νe

Ee

〈τij〉, i, j � 1, . . . , d, (13.128)

where

Ke � λe + 2
d

Ge (13.129)

is the effective bulk modulus, λe is the effective Lamé constant, Ge is the effective
shear modulus, Ee is the effective Young modulus, and νe is the effective Poisson ratio.
Of course, these effective Hooke’s laws could also have been obtained using (13.113),
(13.116), and (13.117). Interrelations between the effective moduli can be obtained in
exactly the same way as for a homogeneous isotropic material. For example, we have

Ge � Ee

2(1+ νe)
, Ke � Ee

d[1+ νe(1− d)]
,

d2

Ee

� 1
Ke

+ d(d − 1)
2Ge

. (13.130)

The analogue of (13.104) for an isotropic composite is the expression
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νe � dKe − 2Ge

d(d − 1)Ke + 2Ge

(13.131)

for the effective Poisson ratio. Using similar arguments as before, we see that νe is
bounded by

− 1 ≤ νe ≤ 1
(d − 1)

. (13.132)

Elastically isotropic auxetic composites (i.e., νe < 0) have been devised and/or fab-
ricated. Hierarchical laminates (Chapter 16) can exhibit extremal Poisson’s ratio
approaching−1 (Milton 1992). Auxetic foamswith reentrant (i.e., nonconvex) cell struc-
tures have been fabricated (Lakes 1987). In two dimensions, analogous auxetic cellular
materials have been designed and fabricated (Sigmund 1994, Larsen, Sigmund and
Bouwstra 1997, Xu, Arias, Brittain, Zhao, Gryzbowski, Torquato andWhitesides 1999).
One may also achieve a Poisson ratio of −1 by a two-dimensional chiral honeycomb
structure (Prall and Lakes 1997).

13.3.5 Relationship Between Elasticity and Viscous Fluid Theory

There is a well-known connection between linear elasticity and slow viscous flow of a
fluid that is worth noting here. Consider time-dependent phenomena and let us write
the equations of motion for a homogeneousmaterial in terms of the displacement u, i.e.,

(λ + G) ∇(∇ · u)+ G >u+ f � ρ
∂2u

∂t2
,

where ρ is themass density and t is time. Now, in the case of an incompressiblematerial,
we have the solenoidal condition

∇ · u � 0,

but incompressibility also means that K → ∞ or λ → ∞. Thus, the first term in
the momentum equation is indeterminate and can be written in terms of the reactive
hydrostatic pressure p, giving

− ∇p + G >u+ f � ρ
∂2u

∂t2
. (13.133)

Let us now compare the expression above to the Navier–Stokes equations of motion
for an incompressible Newtonian viscous fluid, i.e.,

−∇p + µ >υ+ f � ρ

(
∂υ

∂t
+ υ · ∇υ

)
,

where υ is the velocity vector, f is a body force per unit volume, p is the pressure, and µ

is the dynamic viscosity. Conservation of mass for an incompressible fluid is expressed
by the condition

∇ · υ � 0.
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Figure 13.7 Suspension of rigid particles in an incompressible fluid between a plate that har-
monically oscillates with frequency ω and a fixed plate. In the limit ω→ ∞, the determination
of the effective viscosity µe becomes equivalent to finding the steady-state effective shear
modulus Ge of rigid particles (with the same configuration) in an incompressible matrix.

For slow viscous flow (Reynolds number going to zero), the nonlinear inertial term
υ · ∇υ can be shown to be very small compared to the rest of the terms, and thus we
obtain the creeping flow equations

− ∇p + µ >υ+ f � ρ
∂υ

∂t
. (13.134)

Thus, under steady-state conditions, the creeping flow equations (13.134) are identical
to the governing elasticity equations (13.133) for incompressible materials when u and
G are identified with υ and µ, respectively. The time-dependent equations (13.134) will
be employed in Section 13.8.

13.3.6 Viscosity of a Suspension

Under certain conditions, obtaining the effective viscosity µe of a suspension of
perfectly rigid particles (µ2 → ∞) in an incompressible fluid with viscosity µ1 (un-
der creeping flow conditions) is equivalent to finding the steady-state effective shear
modulus Ge of a composite composed of the same perfectly rigid particles in an
incompressible matrix with shear modulus G1, i.e.,

µe

µ1
� Ge

G1
. (13.135)

Relation (13.135) is exact when hydrodynamic interactions between the particles can
be neglected (i.e., at infinitely dilute conditions φ2 → 0), regardless of the configura-
tion of the particles. At nondilute conditions, (13.135) is also exact, provided that the
configurations of the particles in the flow and elasticity problems are identical. This
situation is realized for arbitrary particle concentrations when the fluid is subjected
to an applied oscillating shear rate with frequency ω in the infinite-frequency limit
(ω → ∞), as depicted in Figure 13.7. However, for finite frequencies in the flow prob-
lem at nondilute conditions, the configuration of the particles changes with time and
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is not known in advance (Russel et al. 1989), and thus relation (13.135) generally does
not hold.

13.3.7 Viscoelasticity

Many compositematerials, particularly those possessing a polymeric phase,will exhibit
a time and rate dependence that is not captured by elasticity theory. In these materi-
als deformations grow (creep), stresses relax, and mechanical vibrations are damped.
These effects are magnified at elevated temperatures. Such materials are said to be
viscoelastic, since they display aspects of both viscous and elastic types of behavior.
Under quasi-static conditions (when inertial effects are negligibly small), there is a
well-known exact connection between the elastic and viscoelastic problems called the
elastic–viscoelastic correspondence principle (Hashin 1965a, Christensen 1979). If the
time-domain viscoelastic equations are Laplace transformed, then this principle states
that the static elastic problem can be converted to the transformed solutions of the vis-
coelastic problem by simply replacing the static stiffness tensor Ce with sĈe(s), where
s is the transform variable and Ĉe(s) is the Laplace transform of the time-dependent
stiffness C(t). The determination of the quasi-static tensor C(t) is found via a transform
inversion.

Under steady-state harmonic conditions at sufficiently low values of the frequencyω,
the correspondence principle is even simpler. The complex viscoelastic stiffness C∗(ω)
can be found from formulas for the static effective stiffness Ce by replacing the real
elastic moduli with their complex counterparts. For composite materials, the quasi-
static condition is satisfied if the heterogeneity length scale is much smaller than the
wavelength. Viscoelasticity will not be covered in any detail in this book. The reader is
referred to Hashin (1965a) and Christensen (1979) and references therein for pertinent
literature on this subject.

13.4 Steady-State Trapping Problem

Consider the problem of diffusion and reaction among partially absorbing “traps” in
each realization ω of the random medium defined in Section 13.1. Let V1(ω) be the
region in which diffusion occurs (i.e., trap-free, or pore, region) and let V2(ω) be the
trap region. The concentration field of the reactants c(x, y;ω) at position x exterior to
the traps at time t is generally governed by the mass conservation equation

∂c

∂t
� D>c − κBc + G in V1(ω) (13.136)

with the boundary condition at the pore–trap interface given by

D ∂c

∂n
+ κc � 0 on ∂V(ω) (13.137)
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Figure 13.8 A schematic of the “trapping” problem with a static trap phase. Diffusion occurs
in the trap-free (or pore) region. A diffusing particle (indicated by the erratic trajectory) is
absorbed at the pore–trap interface with a probability related to the surface rate constant κ.

and some specified initial condition and boundary conditions. Here D is the diffusion
coefficient of the reactant, κB is a positive bulk rate constant, κ is a positive surface rate
constant, G is a generation rate per unit trap-free volume, and n is the unit outward
normal from the pore space. Without loss of generality, one can set the bulk rate con-
stant κB equal to zero: The solution c(x, t) of (13.136) with κB �� 0 multiplied by exp(κBt)
gives the corresponding solution with κB � 0. However, for the steady-state problems
mentioned below, the solution c(x;ω) for κB � 0 is not simply related to the solution
c(x;ω) for κB �� 0 (Talbot and Willis 1984).

It is useful to introduce the dimensionless surface rate constant

κ∗ � κ-

D , (13.138)

where - is a characteristic pore length scale, and distinguish between two extreme
regimes:

κ∗ " 1 (diffusion-controlled),

κ∗ � 1 (reaction-controlled).
(13.139)

In the diffusion-controlled regime, the diffusing species takes a long time to diffuse to
the pore–trap interface relative to the characteristic time associated with the surface
reaction; i.e., the process is governed by diffusion. For infinite surface reaction (κ � ∞),
the traps are perfect absorbers, and thus the interface condition is of the Dirichlet kind,
with c � 0. On the other hand, in the reaction-controlled regime, the characteristic time
associated with surface reaction is large compared with the diffusion time to the pore–
trap interface. For vanishing surface reaction (κ � 0), the traps are perfect reflectors,
and hence the interface condition is of the Neumann kind, with ∂c/∂n � 0.

We will study relation (13.136) with condition (13.137) for two different situations:
(i) the steady-state solution with κB � 0 and (ii) the time-dependent solution with κB �
G � 0. The quantities of central interest for these problems are respectively (i) the
mean survival time τ of a Brownian particle and (ii) the relaxation times Tn, which
are inversely proportional to the eigenvalues. The times τ and T1 are intimately linked
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to characteristic length scales of the pore region. Whereas the mean survival time τ

is determined by the “average pore size,” the principal (largest) relaxation time T1 is
governed by diffusion occurring in the largest cavities (pores) in the system. The steady-
state trapping will be discussed in the present section. The time-dependent problem
will be considered in Section 13.7.

13.4.1 Local Relations

Consider the steady-state problem of diffusion and reaction among perfectly absorbing
traps (κ � ∞). The rate of production of the reactants per unit volume G is exactly
compensated by the rate of removal by the traps.

Local Differential Equation

The conservation of mass equation (13.136) under steady-state conditions and with-
out bulk reaction reduces to the following Poisson equation for the concentration field
c(x;ω):

D>c � −G in V1(ω), (13.140)

c � 0 on ∂V(ω). (13.141)

Henceforth, we will assume a zero-flux condition at the boundary of V (macroscopic
sample surface). However, as we have emphasized throughout this chapter, the effective
property (trapping constant in this case) is independent of the macroscopic boundary
conditions for ergodic media.

13.4.2 Homogenization of Random Problem in �d

What is the appropriate macroscopic constitutive relation for the steady-state trapping
problem? In the chemical physics literature (Prager 1963a, Calef and Deutch 1983), it
is assumed that the trapping constant γ (a quantity that will be shown to be inversely
proportional to τ) obeys the first-order rate equation

G � γDC, (13.142)

where C represents an average concentration field. To derive this constitutive relation
rigorously from homogenization theory, we follow the treatment of Rubinstein and
Torquato (1988) for the case of perfectly absorbing traps (κ � ∞).

In general, it is assumed that there exists a small parameter ε � -/L associated with
rapid fluctuations in the structure of V1(ω) and that the concentration field c depends
on two scales: a slow scale x and a fast scale y � x/ε. Thus, cε(x) � c(x, y;ω) satisfies

D>cε(x) � −G(x) in V1(ω), (13.143)

cε(x) � 0 on ∂V(ω). (13.144)

In order to derive the macroscopic behavior, we assume that cε admits a two-scale
expansion of the form
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cε(x) � ε2c0(x, y;ω)+ ε3c1(x, y;ω)+ · · · , (13.145)

in contrast to the previous two problems [cf. (13.45) and (13.112)]. Note that the first
nontrivial term in this expansion for cε is O(ε2), in contrast to the expansion (13.45)
for Tε. Physically, this expansion arises because an O(1) production rate gives a con-
centration of O(ε2). Substitution of this expansion into relation (13.143) and use of the
identities

∇ � ∇x + 1
ε
∇y, > ≡ ∇2 � >x + 2

ε
∇x · ∇y + 1

ε2
>y (13.146)

yields

D
(
1
ε2

>y + 2
ε
∇x · ∇y + >x

)(
ε2c0 + ε3c1 + · · ·

)
� −G(x).

Therefore, the leading-order equation is given by

D>yc0(x, y;ω) � −G(x) in V1(ω),

c0(x, y;ω) � 0 on ∂V(ω).
Hence, we can write

c0 � D−1G(x)u(y;ω), (13.147)

where the scaled auxiliary concentration field u solves

>y u(y;ω) � −1 in V1(ω), (13.148)

u(y;ω) � 0 on ∂V(ω), (13.149)

and we extend u in the trap region V2(ω) to be zero. Assuming that the medium is
locally (i.e., on the fast scale) statistically homogeneous and ergodic, the ensemble
average of any function g(x, y;ω) is simply a function of x only. Averaging (13.147) gives
the constitutive relation

G(x) � γDC(x), (13.150)

where

C(x) � 〈c0(x, y;ω)〉
and the constant γ, called the trapping constant, is given by

γ−1 � 〈u(y;ω)〉 � 〈uI(1)〉. (13.151)

We see that relation (13.150) agrees with (13.142) but additionally allows for slow
spatial variations in C and G.

Remarks:
1. The trapping problem is fundamentally different than the previous two problems.

Here there is no local constitutive relation. Moreover, the trapping constant γ has



13.4: Steady-State Trapping Problem 343

Figure 13.9 A schematic illustrating the scale-dependence of both the trapping constant γ (for
perfectly absorbing traps) and fluid permeability tensor k. If the linear dimensions of the porous
medium are doubled, then the new trapping constant is four times smaller than the original
one, whereas the components of the new fluid permeability tensor are four times larger than
the original components.

dimensions (length)−2 and therefore, unlike the effective conductivity or elasticmod-
uli, is a scale-dependent property. Thus, if we apply an affine transformation to the
system in each of the space coordinates (i.e., rescale each coordinate by some con-
stant factor α), then the trapping constant γ ′ of the new system is related to the
trapping constant γ of the original system via γ ′ � γ/α2 (see Figure 13.9). As dis-
cussed in the next section, the fluid permeability tensor k is also a scale-dependent
property.

2. What is the physical interpretation of the trapping constant γ? Dimensional analysis
of (13.150) reveals that γ has dimensions of (length)−2, since D has dimensions of
(length)2 per unit time, C has dimensions of inverse volume, and G has dimensions
of inverse volume per unit time. Consider a constant production rate G. Now let the
total number of diffusing (Brownian) particles created outside of traps per unit time
be N and the total number of particles exterior to traps at a given time be N0. Then
the average trapping rate kR (per particle) is given by

kR � N

N0
.

The inverse of this quantity, called the mean survival time τ of a Brownian particle,
is thus given by

τ � k−1
R � N0

N
.

It is clear that

N � GV1, N0 � CV,

where V1 is the volume of phase 1 and V is the total volume. Use of the relations
immediately above and definition (13.151) allows us to write
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τ � 1
γφ1D � 〈u〉

φ1D . (13.152)

Thus, the trapping constant γ is proportional to the trapping rate kR or inversely
proportional to the mean survival time τ. Roughly speaking, the quantity γ−1 pro-
vides a measure of the average pore size. In subsequent discussions we will refer to
both the trapping constant γ and themean survival time τ. We note that substitution
of (13.152) into (13.150) yields the corresponding constitutive relation defining τ,
i.e.,

C(x) � τφ1G(x). (13.153)

We see that this definition is consistent with the one given in Table 1.1.
3. Since γ does not vanish when the trap-free region becomes disconnected, the trap-

ping constant does not exhibit percolation or critical behavior. This is in contrast
to the effective conductivity, effective stiffness, and fluid permeability, which are
affected by phase connectedness and hence do exhibit percolation behavior.

4. Unlike the effective conductivity, effective stiffness, or fluid permeability, the trap-
ping constant γ remains a scalar quantity even if the microstructure is statistically
anisotropic [e.g., arrays of oriented cylinders or ellipsoids (see Figure 7.1)].

5. It is important to note that in the case of finite surface reaction (κ < ∞), i.e., when
u solves

>y u(y;ω) � −1 in V1(ω), (13.154)

D ∂u

∂n
+ κu � 0 on ∂V(ω), (13.155)

the averaged relation (13.151) still defines the trapping constant.

13.5 Steady-State Fluid Permeability Problem

It is well established that the slow flow of an incompressible viscous fluid through
porous media is often described by Darcy’s law (Scheidegger 1974):

U � − k

µ
∇p0, (13.156)

where U is the average fluid velocity, ∇p0 is the applied pressure gradient, µ is the
dynamic viscosity, and k is the fluid permeability. Figure 13.10 depicts a porousmedium
and the relevant flow parameters. The permeability k has dimensions of (length)2 and,
roughly speaking, may be regarded as an effective pore channel area of the dynamically
connected part of the pore space.

We refer to the portion of the connected pore space that carries an appreciable part
of the flow (say, above some designated flow rate) as the “dynamically connected” part
of the pore space. However, there will be regions of connected pore space that carry
no appreciable flow, and such regions contribute negligibly to the fluid permeability.
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Figure 13.10 A schematic of a porous medium indicating the applied pressure drop (p2−p1)/L
and average velocity U that determine the permeability k in Darcy’s law.

Figure 13.11 Gray-scale image of fluid speeds in a Stokes-flow simulation of a two-dimensional
flow past a bed of two different-sized disks as computed by N. Martys at the National Institute
of Standards and Technology. Black and white pore regions indicate highest fluid speeds and
no flow, respectively. Similar images can be found in Martys and Garboczi (1992).

Therefore, permeability estimates for general porous media based on purely simple
pore statistics, such as porosity and specific surface, are inherently fundamentally un-
sound. Figure 13.11 beautifully illustrates the idea that only a subset of the pore space
contributes to the fluid permeability.

13.5.1 Local Relations

For each realization ω of the random porous medium, let V1(ω) be the region through
which the fluid flows (i.e., pore, or void, region) and let V2(ω) be the solid region.

Local Differential Equations

The fluid motion satisfies the Stokes equations
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µ>υ � ∇p in V1(ω), (13.157)

∇ · υ � 0 in V1(ω), (13.158)

υ � 0 on ∂V(ω), (13.159)

where υ and p are the local velocity and pressure fields, respectively. The first relation
is the steady-state momentum equation in the limit of vanishing Reynolds number, the
second relation states that the fluid is incompressible, and the last relation is the no-
slip condition on the pore–solid interface. Henceforth, we will assume a zero-traction
condition on the boundary of V (macroscopic sample boundary), but since we are
interested ultimately in ergodic media, the permeability will not depend on the details
of the boundary conditions.

13.5.2 Homogenization of Random Problem in �d

Darcy’s law has been derived using themethod of homogenization by Sanchez-Palencia
(1980) for periodic media and by Rubinstein and Torquato (1989) for random media.
Let us consider the random setting in which themedium is taken generally to bemacro-
scopically anisotropic. The porousmedium,which occuipes spaceV(ω) ∈ �d, is assumed
to have a microscopic length scale - (e.g., the scale over which I(1) varies) that is small
compared to a typical macroscopic length scale L. Again, there is a small parameter
ε � -/L, and we assume that the velocity υ and pressure p depend on two scales: a slow
scale x and a fast scale y � x/ε. Therefore, υε(x) � υ(x, y;ω) and pε(x) � p(x, y;ω) satisfy

µ>υε(x) � ∇pε(x) in V1(ω), (13.160)

∇ · υε(x) � 0 in V1(ω), (13.161)

υε(x) � 0 on ∂V(ω). (13.162)

To derive the macroscopic equations, we assume a two-scale expansion

υε(x) � ε2υ0(x, y;ω) + ε3υ1(x, y;ω) + · · · ,

pε(x) � p0(x)+ ε p1(x, y;ω)+ · · · .

Note that the first nontrivial term in the expansion for the velocity is O(ε2), in con-
trast to the expansion for the pressure. Physically, this expansion arises because an
O(1) pressure gives a velocity of O(ε2). Substitution of these relations into the Stokes
equations (13.160)–(13.162) gives the leading-order equations as

µ>yυ0(x, y;ω) � ∇y p1(x, y;ω)+ ∇x p0(x) in V1(ω), (13.163)

∇y · υ0(x, y;ω) � 0 in V1(ω), (13.164)

∇x · υ0(x, y;ω)+ ∇y · υ1(x, y;ω) � 0 in V1(ω), (13.165)

υ0(x, y;ω) � 0 on ∂V(ω). (13.166)

Here we have used the identities of (13.146). We assume that themedium is locally (i.e.,
on the fast scale) statistically homogeneous and ergodic, and hence ensemble averaging
(13.165) yields
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∇x · U(x)+ 〈∇y · υ1(x, y;ω)〉 � 0, (13.167)

where

U(x) � 〈υ0(x, y;ω)〉. (13.168)

By integrating by parts and using Gauss’s divergence theorem (see Chapter 14 for
details), it can be shown that

〈∇y · υ1(x, y;ω)〉 � 0, (13.169)

and hence

∇x · U(x) � 0. (13.170)

Relation (13.170) is just the macroscopic incompressibility condition.
In order to analyze (13.163) and (13.164), we introduce the following statistically

homogeneous random functions: a second-order tensor “velocity” field w(y;ω) and a
vector “pressure” field π(y;ω). These quantities are solutions of

>yw � ∇yπ − I in V1(ω), (13.171)

∇y · w � 0 in V1(ω), (13.172)

w � 0 on ∂V(ω), (13.173)

where I is the second-order unit tensor. In these equations the scaled tensor velocity
field wij is the jth component of the velocity due to a unit pressure gradient in the ith
direction, and πj is the jth component of the associated scaled pressure. Note that wij

is generally not symmetric. We extend w and π in the solid region V2 to be zero. It is
easily seen that υ0 and p1 can be written as

υ0(x, y;ω) � − 1
µ
∇ p0(x) · w(y;ω), (13.174)

p1(x, y;ω) � ∇p0(x) · π(y;ω). (13.175)

Averaging (13.174) gives

U(x) � − 1
µ

〈w(y;ω)〉 · ∇p0(x).

The second-order permeability tensor k is then defined by

k � 〈w(y;ω)〉. (13.176)

In summary, the macroscopic equations that govern the slow viscous flow through
an anisotropic porous medium are given by

U(x) � − k

µ
· ∇p0(x), (13.177)

∇ · U(x) � 0, (13.178)

where k is given by (13.176). Observe that this definition is consistent with the one
given in Table 1.1.
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Remarks:
1. The fluid permeability shares some similarities with the trapping constant (or mean

survival time) but is fundamentally different from either the effective conductivity
or effective elastic moduli. As in the trapping problem, there is no local constitutive
relation in the flow problem. Furthermore, both the fluid permeability and trapping
constant are scale-dependent properties, in contrast to both the effective conduc-
tivity and elastic moduli, which are scale-invariant properties. Thus, if we apply
an affine transformation to the system in each of the space coordinates, i.e., rescale
each coordinate by some constant factor α, then the permeability of the new system,
k′, is related to that of the original system, k, via k′ � α2k (see Figure 13.9).

2. The permeability tensor k is given in terms of the random boundary value prob-
lem (13.171)–(13.173) and is shown to be symmetric and positive definite in
Section 14.4.1.

3. If the medium is macroscopically isotropic, then k � kI, where k � 〈w : I〉/d is a
scalar. In such instances, the auxiliary tensor equations (13.171)–(13.173) become
vector equations; i.e., the scalar permeability is redefined as

k � 〈w · e〉, (13.179)

where the scaled vector velocity w solves

>w � ∇π − e in V1(ω), (13.180)

∇ · w � 0 in V1(ω), (13.181)

w � 0, on ∂V(ω). (13.182)

In these equations, π is the scaled scalar pressure field, e is a unit vector, and the
subscript y has been dropped.

4. Whereas statistically isotropic porous media are always macroscopically isotropic,
statistical anisotropy does not necessarily imply a macroscopically anisotropic
porous medium with an effective fluid permeability tensor k. For instance, porous
media with cubic symmetry are statistically anisotropic but are macroscopically
isotropic (e.g., cubic lattices of spheres). Macroscopically anisotropic porous media
are necessarily statistically anisotropic [e.g., statistically anisotropic beds of oriented
cylinders or ellipsoids (see Figure 7.1) or stratified media (see Figure 16.3)].

13.5.3 Relationship to Sedimentation Rate

The problem of the sedimentation ofmacroscopic particles in a viscous liquid is related
to that of flow in a porous medium composed of a fixed bed of particles. In the former,
one is interested in finding the mobility, which is the constant of proportionality in the
relation between the average sedimentation velocity (relative to zero-flux axes) and the
force acting on a particle (assuming identical particles); see Table 1.1. One can see that
this sedimentation constitutive law bears a strong resemblance to Darcy’s law, since
the pressure gradient is related to the average force acting on a particle (see Sections
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18.4 and 19.4). However, the mobility and permeability are generally not related in a
simple manner; the physics of the particle interactions are quite different in the two
problems. In the sedimentation problem the particles are free to move, and there is
backflow, whereas in the porous-medium problem the particles are fixed, resulting in
screened interactions.We note that if the relative particle positions are kept fixed during
sedimentation, the sedimentation velocity is trivially related to the permeability for the
same particle configuration in the infinite-volume limit. This idealized situation was
studied for the case of spheres fixed on the sites of cubic lattices (Sangani and Acrivos
1982, Zick and Homsy 1982). The reader is referred to Brady and Durlofsky (1988) and
references therein for further discussion on the sedimentation problem.

13.6 Classification of Steady-State Problems

The aforementioned steady-state problems have been designated as falling within
classes A, B, C, or D in Section 13.1 and Table 1.1. This classification scheme is some-
what vague, and therefore in this sectionwemake itmoremathematically precise. First,
we will reserve the symbol α to designate processes that are characterized by a local
constitutive relation (e.g., A and B problems) and the symbol β to designate processes
that are not characterized by a local constitutive relation (e.g., C and D problems).

Our classification scheme is based on the fact that all problems are described by
an averaged constitutive relation of a particular tensorial order involving a local gen-
eralized flux field that satisfies a conservation equation of a certain tensorial order.
In the case of conduction, we see that the averaged constitutive relation (13.46) trans-
forms the vector 〈E〉 (a first-order tensor) into the vector 〈J 〉 (another first-order tensor).
The associated conservation equation for the local flux (13.3) is a scalar equation (a
zeroth-order tensor). Thus, the conduction problem and all mathematically equivalent
problems are said to fall within class α(1,1;0), where the first two arguments indicate
a transformation from a first-order tensor to a first-order tensor, and the last argument
indicates the order of the conservation equation. In general, class α(m, n;p) describes
transformations from an mth-order tensor to an nth-order tensor with a local flux field
that satisfies a pth-order tensor conservation equation. The effective property must
therefore be a tensor of order (m+n). Thus, classes A and B are more precisely defined
according to the following prescription:

A ≡ α(1,1;0), (13.183)

B ≡ α(2,2;1). (13.184)

The second statement follows immediately from the averaged Hooke’s law (13.113)
and the conservation (equilibrium) equation (13.50). We could make the classifica-
tion scheme even more elaborate (e.g., one can account for equations governing the
generalized intensity field, interface conditions, etc.) but do not do so for the sake of
simplicity.

Following the same prescription, we see that classes C and D are defined as follows:
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C ≡ β(0,0;0), (13.185)

D ≡ β(1,1;1). (13.186)

The first statement follows from the constitutive relation (13.153) and the diffusion
equation (13.140). The second statement follows from Darcy’s law (13.156) and the
momentum relation in the Stokes equations (13.157).

The above classification scheme can be extended to include coupled phenomena,
such as thermoelectricity, thermoelasticity, piezoelectricity, and magnetoelasticity.

13.7 Time-Dependent Trapping Problem

The relaxation times associated with the decay of physical quantities such as the con-
centrationfield or nuclearmagnetizationdensity are related closely to the characteristic
length scales of the pore of the fluid region. In what follows we describe the basic
equations and note certain connections to the steady-state trapping problem.

13.7.1 Basic Equations

Let c(x, t) denote the physical quantity of interest (e.g., concentration, magnetization
density) at local position x and time t, obeying the time-dependent diffusion equation

∂c

∂t
� D)c + coδ(t) in V1(ω), (13.187)

D ∂c

∂n
+ κc � 0 on ∂V(ω), (13.188)

in a finite but large pore region V1. Here co is the initial constant concentration field
and δ(t) is the Dirac delta function. In all of the ensuing discussion we will assume a
zero-flux condition on the boundary of V.

The solution of (13.187) and (13.188) can be expressed as an expansion in
orthonormal functions {ψn}:

c(x, t)
co

�
∞∑

n�1

ane−t/Tnψn(x), (13.189)

where

)ψn � −λnψn in V1(ω), (13.190)

D ∂ψn

∂n
+ κψn � 0 on ∂V(ω). (13.191)

The diffusion relaxation times Tn are related to the eigenvalues λn by

Tn � 1
Dλn

. (13.192)

At long times, the smallest eigenvalue λ1, or principal (largest) relaxation time T1,
dominates. The initial condition and the normal mode expansion (13.189) give
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∞∑
n�1

anψn(x) � 1. (13.193)

The eigenfunctions {ψn} are orthonormal, so that

1
V1

∫
V1

ψm(x)ψn(x)dx � δmn, (13.194)

and therefore the eigenfunction coefficients are given by

an � 1
V1

∫
V1

ψn(x)dx. (13.195)

Recall that

V1 � φ1V (13.196)

is the total pore volume. Because the set {ψn} is complete, we also have
∞∑

n�1

a2
n � 1. (13.197)

The survival probability S(t) in terms of c(x, t) is defined by the relation

S(t) � 1
V1

∫
V1

c(x, t)
co

dx. (13.198)

This quantity gives the fraction of Brownian particles that survive until time t; clearly,
S(0) � 1. Substitution of (13.189) into (13.198) gives

S(t) �
∞∑

n�1

a2
n e−t/Tn . (13.199)

The survival probability is depicted in Figure 13.12 for partially absorbing traps (κ > 0).
It is a monotonically decreasing function of time; physically, a Brownian particle is
more likely to get trapped as time progresses.

Remarks:
1. Interestingly, the problems described above have a direct connection to nuclear

magnetic resonance (NMR)measurements in fluid-saturated porousmedia (Brown-
stein and Tarr 1979, Banavar and Schwartz 1987, Wilkinson, Johnson and Schwartz
1991). The characteristic times involved in the decay of nuclear magnetization are
related to the pore size because of enhanced relaxation at the pore–solid interface.
Therefore, NMR is a powerful noninvasive technique to study the microstructure
and physical properties of fluid-saturated porous media. The equations governing
the decay of the magnetization density m(x, t) (along a particular direction) are
precisely (13.187) and (13.188) with c(x, t) and co replaced by m(x, t) and mo, respec-
tively. The dimensionless volume-integrated magnetization M(t)/Mo (Mo � moV1) is
simply what we have referred to as the survival probability S(t) given by (13.198),
i.e.,
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Figure 13.12 A schematic of the survival probability S(t ) versus time t for κ > 0.

S(t) � M(t)
Mo

. (13.200)

The net magnetization M(t) is usually the quantity of principal interest in an NMR
experiment. The survival probability has been computed for transport exterior to
periodic arrays of spherical traps (Torquato and Kim 1992).

2. Ultimately, we will pass to the limit V1, V → ∞. In this limit, ergodicity enables us
to equate ensemble and volume averages of some stochastic function f (x) so that

〈f 〉 � lim
V→∞

1
V

∫
f (x)dx. (13.201)

The volume integrals (13.194), (13.195), and (13.198) become, respectively,

1
φ1

〈ψmψn〉 � δmn, (13.202)

an � 1
φ1

〈ψn〉, (13.203)

and

S(t) � 1
φ1

〈
c(x, t)

co

〉
. (13.204)

Moreover, the spectrum n(T) of the Laplace operator is no longer discrete but contin-
uous, and so sums are replaced by integrals. For example, the series representation
(13.199) of the survival probability S(t) is replaced by

S(t) �
∫ ∞

0
n(T)e−t/TdT.
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3. The long-time behavior of the survival probability S(t) is intimately connected to
fluctuations in the pore size. The largest, or principal, relaxation time T1 (inversely
proportional to the smallest eigenvalue λ1) is determined by the largest pores in the
system. Therefore, when fluctuations in the pore size exist that are on the order
of the system size, T1 will diverge to infinity in the infinite-volume limit, and the
associated spectrum will be continuous. The corresponding density of states near
λ1 � 0 is known as the “Lifshitz spectrum” in the theory of disordered systems
(Lifshitz, Gredeskul and Pastur 1988). The associated survival probability becomes
a stretched exponential, i.e., has the form exp[−a td/(d+2)] in d dimensions as t → ∞
(Donsker and Varadhan 1975, Lifshitz et al. 1988).

13.7.2 Relationship Between Survival and Relaxation Times

Torquato and Avellaneda (1991) have shown that the mean survival time τ is bounded
from above and below in terms of the principal relaxation T1. Indeed, τ is related to the
entire spectrum of the relaxation times (i.e., eigenvalues) or, equivalently, to the area
under the survival probability curve S(t). Thus, τ is a simple but robust parameter that
describes the decay process. These statements are given in the form of two theorems
and a corollary.

Theorem 13.2 For random porous media of arbitrary microstructure at porosity φ1, the
following relation holds:

τ �
∞∑

n�1

a2
nTn, (13.205)

where the an are the averages of the eigenfunctions ψn given by (13.203).

This theorem was proved by Torquato and Avellaneda (1991) by taking the Laplace
transforms of (13.187) and (13.188) in time and recognizing that the transform of c

evaluated at s � 0 (where s is the Laplace-transform variable) is trivially related to
the steady-state concentration field u that solves (13.154) and (13.155). This proof is
very similar to the one used to prove the analogous Theorem 23.6 involving the fluid
permeability.

Corollary 13.1 The mean survival time is also expressible as an integral over the survival
probability as follows:

τ �
∫ ∞

0
S(t)dt. (13.206)

This is easily proved by integrating relation (13.199) over all times and using
Theorem 13.2.

Theorem 13.3 For random porous media of arbitrary microstructure at porosity φ1, the
mean survival time τ is bounded from above and below in terms of the principal relaxation
time T1 as follows:
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a2
1T1 ≤ τ ≤ T1. (13.207)

This theorem follows from elementary properties of the eigenvalues (Torquato and
Avellaneda 1991) and Theorem 13.2.

Remarks:
1. The aforementioned corollary and upper bound are valid whether the spectrum is

discrete or continuous, and hence they hold for ergodic media.
2. The relaxation times are easy to evaluate for diffusion occurring inside certain sim-

ple domains. For example, in the case of transport interior to three-dimensional
spherical pores of radius a (Torquato and Avellaneda 1991), the principal relaxation
time T1 obeys the following exact asymptotic expressions:

T1 ∼ a

3κ
+ a2

15D + 17a3κ

525D2
,

κa

D � 1, (13.208)

T1 ∼ a2

π2D + 2a

π2κ
,

κa

D " 1. (13.209)

Comparing these results to the exact result τ � a2/(15D)+a/(3κ) for the survival time,
as obtained from (16.83) with d � 3, reveals that the upper bound of Theorem 13.3
is very sharp for this simple pore geometry in both the diffusion-controlled and
reaction-controlled regimes. This result suggests that the bound may be sharp for
more general porousmedia, provided that they possess a narrow range of pore sizes.

3. Interestingly, Sapoval, Russ, Korb and Petit (1996) have computed the diffusion
relaxation times for transport inside certain fractal pores.

13.8 Time-Dependent Flow Problem

In time-dependent flow, the key macroscopic properties are the so-called viscous re-
laxation times, which reflect information about the pore topology. Below we describe
the basic equations and show an interesting connection to the steady-state conduction
problem (Avellaneda and Torquato 1991).

13.8.1 Basic Equations

Consider the unsteady Stokes equations for the fluid velocity vector field υ(x, t) at
position x and time t in V1:

∂υ

∂t
� −∇

(
p

ρ

)
+ ν>υ+ υ0eδ(t) in V1(ω), (13.210)

∇· υ � 0 in V1(ω), (13.211)

υ � 0 on ∂V(ω). (13.212)
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Here p(x, t) is the pressure, ρ is the constant fluid density, ν is the kinematic viscosity,
υ0 is a constant speed, e is an arbitrary unit vector in the direction of the applied field,
and δ(t) is the Dirac delta function. It will be implicit in all of the ensuing discussion
that we assume a zero-traction condition at the boundary of V.

The solution of (13.210)–(13.212) can be expressed as a sum of normal modes as
follows:

υ(x, t)
υ0

�
∞∑

n�1

bne−t/�n)n(x), (13.213)

where the vector eigenfunctions )n satisfy

>)n + ∇Qn � −εn)n in V1(ω), (13.214)

∇· )n � 0 in V1(ω), (13.215)

)n � 0 on ∂V(ω). (13.216)

Here the �n � 1/(νεn) are viscous relaxation times, and so the nth eigenvalue εn has
dimensions of (length)−2. The functionsQn in (13.214) are the corresponding pressures.
The eigenfunctions )n are orthonormal, so that

1
V1

∫
V1

)m(x)·)n(x)dx � δmn, (13.217)

and the eigenfunction expansion coefficients are given by

bn � 1
V1

∫
V1

e·)n(x)dx. (13.218)

Here V1 � φ1V denotes the total pore volume.
Note that the set of orthonormal eigenfunctions )n is complete in the closed sub-

space of square integrable divergence-free fields having zero normal component on
∂V (Temam 1979). According to the classical Hodge decomposition (Temam 1979), we
can express the constant unit vector e as the sum of a solenoidal field, with vanish-
ing normal component on the pore–solid interface, and the gradient of a potential, as
follows:

e � E + ∇ϕ. (13.219)

Here E is a dimensionless field satisfying

∇ · E � 0 in V1(ω), (13.220)

E · n � 0 on ∂V1(ω), (13.221)

where n is the unit outward normal from the pore region. Relation (13.219) implies
that

∇ × E � 0 in V1(ω). (13.222)

We observe that the field E then solves the corresponding electric conduction problem
for a porous medium filled with a conducting fluid of conductivity σ1 and having an
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insulating solid phase. Hence, E can be physically interpreted as a scaled electric field,
i.e., the actual electric field divided by the magnitude of the ensemble-averaged electric
field. The field E is related to the scaled effective conductivity of the porous medium
σe/σ1 by the energy representation formula (see Theorem 14.1)

σe/σ1 � F−1 � 〈E · E〉. (13.223)

Here F ≡ σ1/σe is the dimensionless inverse effective conductivity, referred to as the
formation factor, and angular brackets denote an ensemble average. For statistically
homogeneous media, ergodicity enables us to equate ensemble averages with volume
averages, and therefore the average of an arbitrary stochastic function f (x) is defined
by (13.201). Substitution of (13.219) into (13.218) yields, after integration by parts,

bn � 1
V1

∫
V1

E(x)·)n(x)dx

� 1
φ1

〈E ·)n〉. (13.224)

Therefore, the coefficients bn coincide with the coefficients of the normal mode expan-
sion of the dimensionless field E in the orthonormal set of solenoidal eigenfunctions
{)n}. Since the )n are complete in the aforementioned subspace, we have

∞∑
n�1

bn)n � E (13.225)

and
∞∑

n�1

b2
n � 1

φ1
〈E ·E〉 � 1

φ1

σe

σ1
� 1

Fφ1
. (13.226)

The product Fφ1 is referred to as the tortuosity. The completion formula (13.226) will
prove very useful in deriving cross-property relations between fluid permeability and
effective diffusion parameters.

To summarize, we have shown the remarkable result that the response of the Stokes
fluid to a unit applied pressure gradient e is identical to the response obtained if e is
replaced by E, the dimensionless electric field. The reason for this is that in steady state,
the gradient of the potential, ∇ϕ, in the Hodge decomposition of e corresponds to a
pressure fluctuation that does not affect the velocity field.

13.8.2 Relationship Between Permeability and Relaxation Times

Just as the steady-state mean survival time can be related to the diffusion relaxation
times Tn, the steady-state permeability k can be related to the viscous relaxation times
�n. However, unlike the former case, the latter connection also involves a different ef-
fective property of the porous medium, namely, the effective conductivity. Accordingly,
this cross-property relation will be derived in Chapter 23.
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