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C H A P T E R 2

Microstructural Descriptors

We have seen that random heterogeneous materials exhibit a remarkably broad spec-
trum of rich and complexmicrostructures. Our focus in Part I of this book is to develop
a machinery to characterize statistically this broad class of microstructures, i.e., to de-
velop a statistical, or stochastic, geometry of heterogeneous materials. How or where
does one begin to address this challenging task? The answer, of course, depends on
what is the goal of the statistical characterization. Our goal is ultimately the prediction
of the macroscopic or effective physical properties of the random heterogeneous ma-
terial, and thus this determines our starting point. The diverse effective properties that
we are concerned with in this book naturally and necessarily lead to a wide variety of
microstructural descriptors, generically referred to as microstructural correlation func-
tions. As we noted in Chapter 1, such descriptors have applicability in other seemingly
disparate fields, such as cosmology (Peebles 1993, Saslaw 2000) and ecology (Pielou
1977, Diggle 1983, Durrett and Levin 1994).

In this chapter we will define and discuss the following microstructural correlation
functions, which are fundamental to determining the effective properties of random
heterogeneous materials:

• n-point probability functions
• surface correlation functions
• lineal-path function
• chord-length density function
• pore-size functions
• percolation and cluster functions
• nearest-neighbor functions
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• point/q-particle correlation functions
• surface-particle function

Whereas the first six types of quantities describe randommedia of arbitrarymicrostruc-
ture, the last three apply specifically to randomparticle dispersions. Chapter 4 describes
a general formalism to represent and obtain all of these quantities from a canonical cor-
relation function. Chapters 5–8, 10, and 12 deal with the evaluation of these functions
for specific models and materials.

2.1 Preliminaries

The use of the term random heterogeneous material or simply random medium rests on
the assumption that any sample of the medium is a realization of a specific random or
stochastic process (or random field). An ensemble is a collection of all the possible real-
izations of a randommediumgenerated by a specific stochastic process.We let (�, F , P)
be some fixed probability space, where � is a sample space (set of “outcomes”), F is a
σ-algebra of subsets of � (set of “events”) , and P is a probability measure (a function
that assigns probabilities to “events”) (Durrett 1996). Let each point ω ∈ � correspond
to a realization of the random medium that occupies some subset V of d-dimensional
Euclidean space, i.e., V ∈ �d. The medium is in general statistically characterized by
a random variable ξ(x, t;ω), called the structure function, that depends on all values of
the position vector x ∈ V and on the time t. The time dependence allows for evolving
microstructures (e.g., shear flow in a suspension or growthprocesses in randommedia).

In this book we will assume that the microstructures are static or can be ap-
proximated as static, and therefore the structure function ξ(x;ω) will be taken to be
independent of time. For a fixed ω, the structure function may be a continuously vary-
ing function of position (e.g., porosity of geologic media or orientation of crystals in a
polycrystal), or it may take on discrete values (e.g., fiber composites or colloids). Our
primary focus will be on two-phase random media, i.e., cases in which ξ(x;ω) takes on
two different values. However, generalizations to multiphase media with an arbitrary
number of discrete phases follow in the obvious way. Some of the results given in this
book will apply to multiphase media as well.

Each realization ω of the two-phase random medium occupies the region of space
V ∈ �d of volume V that is partitioned into two disjoint random sets or phases: phase 1,
a region V1(ω) of volume fraction φ1, and phase 2, a region V2(ω) of volume fraction
φ2. Since the random sets V1(ω) and V2(ω) are the complements of one another, then
V1(ω) ∪ V2(ω) � V and V1(ω) ∩ V2(ω) � Ø. Let ∂V(ω) denote the surface or interface
between V1(ω) and V2(ω). Figure 2.1 shows a portion of a realization of a two-phase
random medium. For a given realization ω, the structure function ξ(x;ω) is just the
indicator function I(i)(x;ω) for phase i, given for x ∈ V by

I(i)(x;ω) �
{
1, if x ∈ Vi(ω),
0, otherwise,

(2.1)
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Figure 2.1 A portion of a realization ω of a two-phase random medium, where phase 1 is the
white region V1, phase 2 is the gray region V2, and ∂V is the interface between the two regions.

for i � 1,2 with

I(1)(x;ω)+ I(2)(x;ω) � 1. (2.2)

The random variable I(i)(x;ω) is also called the characteristic function in the heteroge-
neous media community, but we will not use this term, since it is usually reserved to
mean the Fourier transform of the probability density function in probability theory
and stochastic processes. The indicator function M(x;ω) for the interface is defined as

M(x;ω) � |∇I(1)(x;ω)| � |∇I(2)(x;ω)| (2.3)

and therefore is a generalized function (e.g., a function involving Dirac delta functions)
that is nonzero when x is on the interface. Depending on the physical context, phase i

can be a solid, fluid, or void characterized by some general tensor property. Unless
otherwise stated, we will drop ω from the notation and write I(i)(x) for I(i)(x;ω) and
M(x) for M(x;ω).

In what follows we will consider the probabilistic descriptions of these and other
random variables. It is assumed that the reader is familiar with the basic notion of
a probability distribution of a random variable. The books by Cinlar (1975), Priestley
(1981), Vanmarcke (1983), Cressie (1993), and Durrett (1996) cover, in varying depths,
fundamental concepts in probability theory and stochastic processes.

2.2 n-Point Probability Functions

2.2.1 Definitions

For fixed x, the indicator function I(i)(x) has only two possible values; i.e., for some
realizations ω it will be 0 and some other ω it will be 1. Thus, the random variable I(i)(x)
does not possess a probability density function (if Dirac delta functions are excluded).
The probabilistic description of I(i)(x) is given simply by the probability that I(i)(x) is
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1, which we write as

P
{
I(i)(x) � 1

}
.

Given this probability, it follows that

P
{
I(i)(x) � 0

}
� 1− P

{
I(i)(x) � 1

}
.

Adiscrete randomvariableX can equivalently be specified by its cumulative distribution
function F(x), defined by

F(x) ≡ P {X ≤ x} ,

which has the properties that it is a nondecreasing, right-continuous function of x with
F(−∞) � 0 and F(+∞) � 1. However, this latter description for the simple binary
random variable I(i)(x) is somewhat awkward notationally and will be avoided.

We should note that the expectation (or average) of any function f [I(i)(x)] can be
expressed as

〈
f [I(i)(x)]

〉
� P

{
I(i)(x) � 1

}
f (1)+ P

{
I(i)(x) � 0

}
f (0),

where angular brackets denote an ensemble average, i.e., an average over all realizations
ω of the ensemble. In particular, when f [I(i)(x)] � I(i)(x), this expectation relation yields

S
(i)
1 (x) ≡

〈
I(i)(x)

〉
� P

{
I(i)(x) � 1

}
. (2.4)

Thus, in light of the 0,1 nature of the indicator function I(i)(x), its expectation is exactly
the same as the probability P {I(i)(x) � 1

}
. Accordingly, following Torquato and Stell

(1982), we refer to S
(i)
1 (x) as the one-point probability function for phase i, since it gives

the probability of finding phase i at the position x. It is sometimes also referred to as
the one-point correlation function for the phase indicator function.

Knowing a realization Vi(ω) is the same as knowing I(i)(x;ω) for all x in V. Therefore,
we may regard the random set Vi(ω) as the collection of all random variables I(i)(x)
for x ∈ V. Hence, the probability law of Vi(ω) is described by the finite-dimensional
distributions of the random process {I(i)(x) : x ∈ V}. In other words, the probabilistic
description of Vi(ω) is given by the joint distribution of I(i)(x1)I(i)(x2) · · · I(i)(xn) as n ≥ 1
varies over the integers and x1, x2, . . . , xn vary over V. Of course, since the I(i)(x) are
either 0 or 1, this amounts to specifying the probabilities

P
{
I(i)(x1) � j1, I(i)(x2) � j2, . . . , I(i)(xn) � jn

}
, (2.5)

where each jk is either 0 or 1.
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The expectation of the product I(i)(x1)I(i)(x2) · · · I(i)(xn) is a particularly important
average. Following the same line of reasoning leading to (2.4), we get

S(i)
n (x1, x2, . . . , xn) ≡

〈
I(i)(x1)I(i)(x2) · · · I(i)(xn)

〉
� P

{
I(i)(x1) � 1, I(i)(x2) � 1, . . . , I(i)(xn) � 1

}
� Probability that n points at positions x1, x2, . . . , xn (2.6)

are found in phase i.

Following Torquato and Stell (1982), we will refer to S
(i)
n as the n-point probability func-

tion for phase i. Although it is correct to refer to it as an n-point correlation function,
we prefer the former term, since it emphasizes its special nature as a probability func-
tion. Geometrical probability interpretations of the S

(i)
n are given in Section 2.2.3; see

also Figure 1.6 for such interpretations of lower-order S
(i)
n . As we will see, the problem

of finding the two-point function S
(i)
2 bears a close relationship to the classical Buffon

needle game of geometrical probability (Kendall and Moran 1962).
The special nature of the indicator function makes it possible to specify the gen-

eral joint distributions of (2.5) by giving the set of n-point probability functions
S
(i)
1 , S

(i)
2 , . . . , S

(i)
n for phase i defined by (2.6). This can be seen by noting that

P
{
I(i)(x1) � j1, I(i)(x2) � j2, . . . , I(i)(xn) � jn

}
�
〈∏

k∈K

I(i)(xk)
∏
l∈L

[1− I(i)(xl)]
〉
, (2.7)

where K � {k ≤ n; jk � 1} and L � {l ≤ n; jl � 0}, and thus the expectation of the
product in (2.7) is computable in terms of the set of n-point probability functions
S
(i)
1 , S

(i)
2 , . . . , S

(i)
n for phase i.

In particular, one can express the probability S
(2)
n of finding n points in phase 2 in

terms of the set of phase 1 probabilities S
(1)
1 , S

(1)
2 ,. . ., S

(1)
n . This is easily shown, since

S(2)
n (x1, x2, . . . , xn) �

〈 n∏
j�1

[1− I(1)(xj)]
〉

� 1−
n∑

j�1

S
(1)
1 (xj)+

n∑
j<k

S
(1)
2 (xj, xk)

−
n∑

j<k<l

S
(1)
3 (xj, xk, xl)+ · · · + (−1)nS(1)

n (x1, x2, . . . , xn). (2.8)

Note that the sth sum in (2.8) contains n!/[(n− s)!s!] terms and carries the factor (−1)s.
Indeed, the probability of finding any subset n1 of the n points in phase 2 and the
remaining n2 � n − n1 in phase 1 can be expressed purely in terms of the set of phase
1 probabilities S

(1)
1 , S

(1)
2 ,. . ., S

(1)
n (or the set of phase 2 probabilities) (Torquato and Stell

1982). For example, the probability S
(12)
2 of two “dissimilar ends” (i.e., the probability
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that a point at x1 is in phase 1 and a point at x2 is in phase 2) is given by

S
(12)
2 (x1, x2) �

〈
I(1)(x1)[1− I(1)(x2)]

〉
� S

(1)
1 (x1)− S

(1)
2 (x1, x2). (2.9)

The n-point probability functions were introduced in the context of determining
the effective transport properties of random media by Brown (1955). These statistical
descriptors arise in rigorous expressions for the effective transport and mechanical
properties of random heterogeneous media, including the following:

• effective conductivity, dielectric constant, magnetic permeability, and diffusion co-
efficient (Brown 1955, Prager 1963b, Beran 1968, Torquato 1980, Milton 1981a,
Phan-Thien and Milton 1982, Torquato 1985a)

• effective elasticmoduli (Beran 1968,McCoy 1970,Dederichs andZeller 1973,Kroner
1977, Willis 1981, Milton 1982, Milton and Phan-Thien 1982, Torquato 1997)

• trapping constant or, equivalently, mean survival time (Prager 1963a, Torquato and
Rubinstein 1989)

• fluid permeability (Prager 1961, Weissberg and Prager 1970, Berryman and Milton
1985, Rubinstein and Torquato 1989)

Some general properties of the n-point probability functions have been studied by
Frisch and Stillinger (1963) and Torquato and Stell (1982, 1983a). Moreover, lower-
order S

(i)
n were calculated for various sphere models (Torquato and Stell 1983b,

Torquato and Stell 1984, Torquato and Stell 1985a). In Chapters 4–8, we discuss the
determination of lower-order S

(i)
n for various particle, cell, and random-field mod-

els. Chapter 12 describes how to extract such correlation functions from computer
simulations and images of real materials.

In what follows we describe some basic properties of the n-point probability
functions.

2.2.2 Symmetries and Ergodicity

If the n-point probability function S
(i)
n depends generally on the absolute positions

x1, x2, . . . , xn, then we say that the medium is statistically inhomogeneous. Indeed, even
the one-point function S

(i)
1 can depend on the local position x1 and then can be in-

terpreted as a position-dependent volume fraction of phase i. Figure 2.2 depicts two
examples of statistically inhomogeneous media.

The medium is strictly spatially stationary or strictly statistically homogeneous if
the joint probability distributions describing the stochastic process are translationally
invariant, i.e., invariant under a translation (shift) of the space origin. Thus, the random
set Vi(ω) generated from the stochastic process {I(i)(x) : x ∈ V} is strictly statistically
homogeneous, provided that for some constant vector y in �d

P
{
I(i)(x1) � j1, I(i)(x2) � j2, . . . , I(i)(xn) � jn

}
� P

{
I(i)(x1 + y) � j1, I(i)(x2 + y) � j2, . . . , I(i)(xn + y) � jn

}
,
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Figure 2.2 Two examples of statistically inhomogeneous media. Left panel: Density of the
gray phase decreases in the upward direction. Right panel: Density of the gray phase decreases
radially from the center.

for all n ≥ 1, and x1, x2, . . . , xn in �d, and j1, j2, . . . , jn in {0,1}. (We emphasize that for
this statement to have any meaning for y in �d, V must equal �d, i.e., the volume V

must be infinite.) Equivalently, since such probabilities can be expressed in terms of the
n-point probability functions for phase i (see Section 2.1), Vi(ω) is strictly statistically
homogeneous if and only if

S(i)
n (x1, x2, . . . , xn) � S(i)

n (x1 + y, x2 + y, . . . , xn + y)

� S(i)
n (x12, . . . , x1n), (2.10)

for all n ≥ 1, and x1, x2, . . . , xn in �d, and y in �d, where xjk � xk − xj. We see that for
statistically homogeneous media, the n-point probability function depends not on the
absolute positions but on their relative displacements. Thus, there is no preferred origin
in the system, which in relation (2.10) we have chosen to be the point x1. In particular,
the one-point probability function is a constant everywhere, namely, the volume fraction
φi of phase i, i.e.,

S
(i)
1 � φi. (2.11)

The medium is said to be statistically homogeneous but anisotropic if S
(i)
n depends on

both the orientations and magnitudes of the vectors x12, x13,. . ., x1n (see Figure 2.3).
When the system is statistically homogeneous, it is meaningful to define volume

averages. Roughly speaking, the property of statistical homogeneity states that all re-
gions of space are similar as far as statistical properties of the stochastic process are
concerned. This suggests an ergodic hypothesis; i.e., the result of averaging over all real-
izations of the ensemble is equivalent to averaging over the volume for one realization
in the infinite-volume limit. Thus, complete probabilistic information can be obtained
from a single realization of the infinite medium. The ergodic hypothesis enables us to
replace ensemble averaging with volume averaging in the limit that the volume tends
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Figure 2.3 Two examples of portions of statistically homogeneous media with black and white
phases. Left panel: The layered medium is statistically anisotropic. Right panel: The medium
is statistically isotropic.

to infinity, i.e.,

S(i)
n (x12, . . . , x1n) � lim

V→∞
1
V

∫
V

I(i)(y)I(i)(y+ x12) · · · I(i)(y+ x1n)dy. (2.12)

We will refer to such systems as ergodic media.
The medium is said to be strictly statistically isotropic if the joint probability distri-

butions describing the stochastic process are rotationally invariant, i.e., invariant under
rigid-body rotation of the spatial coordinates. For such media, this implies that S

(i)
n de-

pends only on the distances xjk � |xjk|, 1 ≤ j < k ≤ n (see Figure 2.3). For example,
the two-point function (also known as the autocorrelation function) and three-point
function have the form

S
(i)
2 (x1, x2) � S

(i)
2 (x12), (2.13)

S
(i)
3 (x1, x2, x3) � S

(i)
3 (x12, x13, x23). (2.14)

Relation (2.14) for S
(i)
3 remains invariant under all permutations of its arguments x12,

x13, and x23. Both S
(i)
2 and S

(i)
3 can be obtained from any planar cut through a three-

dimensional medium when it is isotropic (see Figure 2.4). In practice, this means
that the two- and three-point functions can be extracted from cross-sections or two-
dimensional images of the isotropic sample (see Figure 1.6), provided that the planar
representation is sufficiently large. Moreover, the autocorrelation function S

(i)
2 can also

be found from a linear cut through an isotropic medium (see Figure 2.4).
In general, the n-point probability functions for n ≥ 2 cannot be expressed in terms

of lower-order q-point functions, q < n. However, in the special case of a medium
possessing “phase-inversion” symmetry at φ1 � φ2 � 1/2, it is possible to determine the
odd-order probability functions S

(i)
2m+1 from S

(i)
2m, S

(i)
2m−1, . . . , S

(i)
1 . We say that a random

medium possesses phase-inversion symmetry if the morphology of phase 1 at volume
fraction φ1 is statistically identical to that of phase 2 in the system where the volume
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Figure 2.4 Planar and linear cuts through three-dimensional isotropic media. In the infinite-
system limit, S (i )

2 and S (i )
3 can be obtained from a planar cut and S (i )

2 can be extracted from a
linear cut.

Phase−inversion symmetric

Phase−inversion asymmetric

Figure 2.5 Examples of systems possessing phase-inversion symmetry (top) and phase-
inversion asymmetry (bottom). In the leftmost and rightmost systems, the volume fractions of
phase 1 are φ1 and 1 − φ1, respectively.

fraction of phase 1 is 1− φ1 (see Figure 2.5) and hence

S(1)
n (xn;φ1, φ2) � S(2)

n (xn;φ2, φ1), (2.15)

where xn ≡ {x1, x2, . . . , xn}. The notion of phase-inversion symmetry introduced here
quantitatively generalizes the notion of a “symmetric” two-phase material at φ1 � φ2 �
1/2 [discussed by Beran (1968)] to arbitrary volume fractions. Examples of systems
with phase-inversion symmetry are symmetric-cell materials described in Chapter 8
(see Figures 8.5 and 8.6). To a good approximation, interpenetrating cermets, such as
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the one depicted in Figure 1.2, can be made to have phase-inversion symmetry. At the
point φ1 � φ2 � 1/2, a medium possessing phase-inversion symmetry has the special
property that the n-point probability functions for each phase are identical, or in other
words, the geometry of one phase is statistically indistinguishable from the other. Thus,
from (2.8),

2S
(2)
2m+1 � 1−

∑
S
(1)
1 +

∑
S
(1)
2 −

∑
S
(1)
3 + · · · + (−1)2m

∑
S
(1)
2m . (2.16)

Therefore, for a medium with phase-inversion symmetry at φ1 � φ2 � 1/2, the odd-
order probability functions S

(i)
2m+1 can be expressed in terms of all the lower-order

probability functions. For example, for such a symmetric medium with m � 1, we
deduce from (2.16) that

S
(i)
3 (x1, x2, x3) � 1

2

[
S
(i)
2 (x1, x2)+ S

(i)
2 (x1, x3)+ S

(i)
2 (x2, x3)− 1

2

]
. (2.17)

However, the even-order functions S
(i)
2m cannot be expressed in terms of the lower-order

functions, since the last term in (2.8) is always positive.
It is noteworthy that most randommedia do not possess phase-inversion symmetry.

A common example of a system with such phase-inversion asymmetry is a dispersion
of particles (see Figure 2.5 and Chapters 3–7).

2.2.3 Geometrical Probability Interpretation

The geometrical-probabilistic significance of the n-point probability function is easily
seen for anymicrostructure. Let F

(i)
n be a polyhedronwith n vertices located at positions

x1, x2, . . . , xn. Then for statistically inhomogeneous media, S
(i)
n is the probability that all

n vertices of F
(i)
n with fixed positions x1, x2, . . . , xn lie in Vi. For statistically homogeneous

but anisotropic media, S
(i)
n is the probability that all n vertices of F

(i)
n lie in Vi when the

polyhedron is randomly placed in the volume at fixed orientation i.e., over all transla-
tions of the polyhedron. For statistically isotropic media, S

(i)
n can be interpreted as the

probability that all n vertices of F
(i)
n lie in Vi when the polyhedron is randomly placed

in the volume, i.e., over all translations and solid-body rotations of the polyhedron.
In light of the above, one can view the determination of S

(i)
n as a generalization of the

Buffon needle game (Kendall andMoran 1962), in which one tosses a needle of length x

onto a grid of equidistant parallel lines separated by a distance L ≥ x. The probability p

that the needle crosses the lines is inversely proportional to π; specifically, p � 2x/(πL).
One can see that p is closely related to the probability of two dissimilar ends given by
(2.9) and thus to the two-point function S

(i)
2 .

For statistically homogeneous media composed of identical spheres of radius R

(phase 2) distributed throughout another material (phase 1), we may infer yet another
geometrical-probabilistic interpretation of these functions (Torquato and Stell 1982).
The function S

(1)
n (x1, x2, . . . , xn) may be interpreted to be the probability that a region

�(n), the union volume of n spheres of radius R centered at x1, x2, . . . , xn, contains no
sphere centers. (Chapters 5 and 6 discuss the evaluation of the n-point probability
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functions for such models.) A similar interpretation may be inferred for particles of
arbitrary shape with a size distribution.

2.2.4 Asymptotic Properties and Bounds

We determine asymptotic properties of and bounds on S
(i)
n that apply to any statistically

inhomogeneous two-phase random medium.
When any subset of q + 1 points coincide, so that xi1 � xi2 � · · · � xiq+1 , we have

S(i)
n (xn) � S

(i)
n−q(x1, . . . , xi1 , xi2 , . . . , xiq+1 , . . . , xn)

�
〈
I(i)(x1) · · · I(i)(xi1 )I(i)(xi2 ) · · · I(i)(xiq+1 ) · · · I(i)(xn)

〉
, (2.18)

where a bar above a quantity indicates its absence.
Let us now consider partitioning the set {x1, x2, . . . , xn} into L subsets {x1}, {x2, x3},

{x4, x5, x6}, . . . . Let all of the relative distances between the m elements of these subsets
remain bounded, and let F

j
m be the polyhedron with m vertices located at the positions

associated with the jth subset. We denote the centroid of F
j
m by Rj. Let Rjk be the relative

distance between the centroids of F
j
m and Fk

m, where j and k are all possible values such
that 1 ≤ j < k ≤ L. A system is said to possess no long-range order if the events Rjk → ∞
for all i and j are statistically independent, i.e., the n-point function factorizes into L

products as follows:

lim
all Rjk→∞

S(i)
n (x1, x2, . . . , xn)

�
〈
I(i)(x1)

〉 〈
I(i)(x2)I(i)(x3)

〉 〈
I(i)(x4)I(i)(x5)I(i)(x6)

〉
· · ·

� S
(i)
1 (x1)S

(i)
2 (x2, x3)S

(i)
3 (x4, x5, x6) · · · . (2.19)

The above partition, however, is just one of the possible ways to partition the set
{x1, x2, . . . , xn}. In general, for any partition into sets {γ}, each with m(γ) elements, we
have in the absence of long-range order that

lim
all Rαβ→∞

S(i)
n (x1, x2, . . . , xn) �

∏
{γ}

S
(i)
m(γ)(x1, x2, . . . , xm(γ)), (2.20)

where Rαβ is the distance between the centroids of sets α and β. An example of a system
with long-range order, and thus one that does not obey the asymptotic result (2.20), is
an infinitely large crystalline (periodic) array of identical spheres.

For concreteness, we apply the aforementioned general asymptotic results for the
cases n � 2 and n � 3 for statistically homogeneous media without long-range order.
We have for n � 2

lim
x12→0

S
(i)
2 (x12) � φi, lim

x12→∞ S
(i)
2 (x12) � φ2

i , (2.21)

and for n � 3, under permutations of the distances x12, x13, and x23,

lim
x12→0, x13→0

S
(i)
3 (x12, x13) � φi, lim

x23→0
S
(i)
3 (x12, x13) � S

(i)
2 (x12), (2.22)
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lim
x13→∞
x12 fixed

S
(i)
3 (x12, x13) � φiS

(i)
2 (x12), lim

all xij→∞
S
(i)
3 (x12, x13) � φ3

i . (2.23)

Since 0 ≤ I(i)(x) ≤ 1 for all x in V, we have the elementary bounds

0 ≤ S(i)
n (xn) ≤ S

(i)
n−1(x

n−1), for all xn and n ≥ 2, (2.24)

0 ≤ S
(i)
1 (x1) ≤ 1, for all x1. (2.25)

The one-point functionS
(i)
1 (x1) (equal to the volume fraction φi for homogeneousmedia)

is an upper bound on S
(i)
n (xn) for all xn and n.

A word on notation is in order here. When possible, we will suppress the superscript
in S

(i)
n indicating phase i and simply denote the function by

Sn(x1, x2, . . . , xn).

In such instances, the phase to which it refers will be specified.

2.2.5 Two-Point Probability Function

As noted earlier, the two-point or autocorrelation functionS2(r) ≡ S
(1)
2 (r) for statistically

homogeneous media can be obtained by randomly tossing line segments of length
r ≡ |r| with a specified orientation and counting the fraction of times the end points
fall in phase 1 (see Figure 2.6). The function S2(r) provides a measure of how the end
points of a vector r in phase 1 are correlated. For isotropic media, S2(r) attains its
maximum value of φ1 at r � 0 and eventually decays (usually exponentially fast) to its
asymptotic value of φ2

1.
The form of S2(r) provides information about certain gross features of the mi-

crostructure, as discussed in detail in Chapter 5–7 and 12. For example, two different
autocorrelation functions for isotropic particle systems and their associated mi-
crostructures are shown in Figure 2.7. In the first case of nonoverlapping disks
(Section 5.2.1), S2(r) exhibits oscillations for small r (short-range order) with peri-
odicity roughly equal to the particle diameter D. This is reflective of spatial correlations
between the particles due to exclusion-volume (hard-core) effects. In the second case of
overlapping disks (Section 5.1.1), S2(r) exhibits no short-range order but rather mono-
tonically decays to its asymptotic value at exactly r � D. This indicates that particles of
characteristic size D are spatially uncorrelated. However, the form of S2 here belies the
fact that there are a statistically significant number of clusters in the system that are
appreciably larger than D (see Figure 2.7). Quantities that are better able to capture
cluster and percolation information are discussed in Section 2.7 and Chapters 9 and
10.

We see that one must be careful in interpreting length scales associated with S2. To
further remark on this point, it is convenient to define, for statistically homogeneous
media, the autocovariance of phase 1

χ(r) ≡
〈
[I(1)(x)− φ1][I(1)(x+ r)− φ1]

〉
� S2(r)− φ2

1, (2.26)
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L(z)
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r

Fsv(r)

Fss(r)

δ

P(δ)

S2(r)

Figure 2.6 A schematic depicting events that contribute to lower-order functions for random
media of arbitrary microstructure. Shown are the two-point probability function S2 ≡ S (1)

2 for
phase 1 (white region) defined by (2.6) with n � 2, surface–void and surface–surface functions
Fsυ and Fss defined by (2.61) and (2.62), lineal-path function L ≡ L(1) defined by (2.66), and the
pore-size density function P defined by (2.77).
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Figure 2.7 The two-point probability function S2(r ) for phase 1 for two different systems at
φ1 � φ2 � 1/2: a correlated system of nonoverlapping disks (top) and an uncorrelated system
of overlapping disks (bottom). Here D is a disk diameter.
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where I(1)(x)−φ1 is a random variable with zeromean, and I(1) is the indicator function
(2.1) for phase 1. The autocovariance χ(r) has the limiting values χ(0) � φ1φ2 and
χ(∞) � 0, the latter applying in the absence of long-range order. Moreover, the function
χ(r) must be positive semidefinite (nonnegative) in the sense that for any finite number
of spatial locations r1, r2, . . . , rm in �d and arbitrary real numbers a1, a2, . . . , am,

m∑
i�1

m∑
j�1

aiajχ(ri − rj) ≥ 0. (2.27)

A variety of length scales associated with S2 can be defined. One length scale, which
we refer to as -S, is rooted in rigorous considerations:

-S �
{∫ ∞

0
rχ(r)dr

}1/2

�
{∫ ∞

0
r
[
S2(r)− φ2

2

]
dr

}1/2

. (2.28)

This length scale arises in rigorous bounds on the fluid permeability (Prager 1961)
and trapping constant (Rubinstein and Torquato 1988) of three-dimensional isotropic
random porous media. Since application of (2.8) for any statistically homogeneous
medium leads to the result that the autocovariance of phase 1 is equal that of phase 2,
i.e.,

χ(r) � S
(1)
2 (r)− φ2

1 � S
(2)
2 (r)− φ2

2, (2.29)

it is clear that measures based on the two-point function for the phases are not capable
of distinguishing length scales of phase 1 from length scales of phase 2. For example,
for isotropic media, the length scale defined by (2.28) for phase 1 is identical to the
corresponding one for phase 2.

Debye and Bueche (1949) showed that the two-point probability function S2(r) of
an isotropic porous solid can also be obtained via scattering of radiation. Here phases
1 and 2 are the void and solid phases, respectively. The normalized scattered intensity
i(k) at a wave number k for a three-dimensional isotropic porous medium of volume
V is proportional to the Fourier transform of the autocovariance χ(r), i.e.,

i(k) � 4πVn2
o

∫ ∞

0
χ(r)r2

sin(kr)
kr

dr, (2.30)

where no is themean density of electrons. To get the real-space two-point function S2(r)
from the scattered intensity i(k), one need only perform the inverse Fourier transform:

χ(r) � S2(r)− φ2
1 �

1
2π2Vn2

o

∫ ∞

0
i(k)k2 sin(kr)

kr
dk. (2.31)

The accuracy of (2.31) depends on whether the “experimentally bandlimited” scatter-
ing curve i(k) approximates sufficiently closely the entire function i(k). The spectral
properties of χ will be explored further below.

It has been shown (Guinier and Fournet 1955, Debye, Anderson and Brumberger
1957) that the expansion of the two-point probability function S2(r) through terms
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linear in r for any three-dimensional isotropic medium is given by

S2(r) � φ1 − s

4
r + O(r2), (2.32)

where s is the specific surface, defined to be the interface area per unit volume. This for-
mula is valid for any three-dimensional, isotropic two-phase heterogeneous medium,
porous or not. The coefficient of the linear term r in (2.32) can be shown (Guinier
and Fournet 1955, Debye et al. 1957) to be proportional to the leading term in the
asymptotic expansion of the scattering curve i(k) for k → ∞, i.e.,

i(k) ∼ 2πn2
osV

k4
, k → ∞. (2.33)

Thus, given that this asymptotic region can be reached with the value of the wavelength
employed, this formula provides a measurement technique to determine the specific
surface s of isotropic porous media. Berryman (1987) has shown that formula (2.32)
applies to anisotropic media as well after angular averaging.

We see that the derivative of S2(r) at the origin is proportional to the specific surface
s for three-dimensional isotropic media. Indeed, for d-dimensional isotropic media, we
can extend the arguments of Debye et al. (1957) to obtain for finite s that

dS
(i)
2

dr

∣∣∣∣∣
r�0

� −ωd−1

ωd d
s, (2.34)

where S
(i)
2 , more generally, is the two-point probability function for phase i and

ωd � πd/2

/(1+ d/2)
(2.35)

is the d-dimensional volume of a sphere of unit radius, with ω0 ≡ 1. For the first three
space dimensions, we have that

dS
(i)
2

dr

∣∣∣∣∣
r�0

�



−s/2 , d � 1,

−s/π , d � 2,

−s/4 , d � 3.

(2.36)

Kirste and Porod (1962) examined the next term in the asymptotic expansion of the
scattering curve i(k) (proportional to k−6). This was done for a special isotropicmedium
whose surface separating the void phase from the solid phase could be developed locally
in a canonical power series in the local derivatives of the principal radii of curvature
R1, R2 of the surface (Frisch and Stillinger 1963). The two-point probability function
is then given by

S2(r) � φ1 − s

4
r

{
1− r2

[ 1
12S

∫
K1K2 dA + 1

32S

∫
(K1 − K2)2 dA

]}
+ · · · , (2.37)

where the integrals are taken over the interface, S is the mean interface area, K1 �
1/(2R1), K2 � 1/(2R2), and r < 1/max(K1, K2). The first integral in relation (2.37) is
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related to the topological genus p of the surface by the Gauss–Bonnet integral formula

4
∫

K1K2dA � 4π(1− p).

Notice that there is no quadratic term r2 in (2.37). Relation (2.37) is valid only for
surfaces containing no edges, corners, multiple points, or generally any singular points
at which the radii of convergence of the aforementioned canonical expansion of the
surface shrink to zero.

Therefore, (2.37) necessarily breaks down for isotropic dispersions of convex impen-
etrable particles that form interparticle contacts. Indeed, Frisch and Stillinger (1963)
showed that for random systems of identical three-dimensional impenetrable spheres
of diameter D, S2(r) is given by

S2(r) � φ1 − s

4
r + Zφ1

4

( r

D

)2
+ O(r3), (2.38)

where Z is the mean coordination number defined to be the average number of contacts
a given sphere has with its neighbors.

Realizability and Spectral Representation
What are the existence conditions for a valid (i.e., physically realizable) autocorrelation
or autocovariance function? In the study of time series (one-dimensional random pro-
cesses) (Priestley 1981) and the theory of turbulence (Batchelor 1959), it is well known
that there are certain nonnegativity conditions involving the spectral representation of
the autocovariance χ(r) that must be obeyed. Here we investigate such results for sta-
tistically homogeneous two-phase random media in any space dimension d (Torquato
1999). Importantly, we show that these nonnegativity conditions are necessary but not
sufficient conditions that a valid autocovariance χ(r) of a statistically homogeneous
two-phase random medium must meet. We also show that if the random medium is
also statistically isotropic, there are d different nonnegativity conditions that one can
exploit (Torquato 1999).

Consider an arbitrary stochastically continuous homogeneous process {Y (x) : x ∈
�d} with mean µ � 〈Y 〉 and autocovariance function

χ(r) � 〈[Y (x)− µ][Y (x+ r)− µ]〉. (2.39)

It follows that

χ(0) � 〈Y 2〉 − µ2 (2.40)

and from Schwarz’s inequality that

|χ(r)| ≤ 〈Y 2〉 − µ2. (2.41)

We now state the generalization of the Wiener–Khinchtine theorem (Priestley 1981)
developed for processes in time to this multidimensional spatial stochastic process
(Cressie 1993).
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Theorem 2.1 A necessary and sufficient condition for the existence of an autocovariance
function χ(r) of a general stochastically continuous homogeneous process {Y (x) : x ∈ �d}
is that it has the spectral (Fourier–Stieltjes) representation

χ(r) � 1

(2π)d

∫
eik · rdZ(k), (2.42)

where Z(k) is a nonnegative bounded measure. If χ(r) is absolutely integrable, i.e.,∫
�d

|χ(r)| dr < ∞, (2.43)

then dZ(k) can be written as χ̃(k)dk and thus (2.42) becomes the standard Fourier
representation

χ(r) � 1

(2π)d

∫
χ̃(k)eik · rdk, (2.44)

where the spectral function χ̃(k) is positive semidefinite, i.e.,

χ̃(k) �
∫

χ(r)e−ik · r dr ≥ 0, for all k. (2.45)

Remarks:
1. This theoremmay be proved by exploiting a general theorem due to Bochner (1936)

that any continuous function f (r) is positive semidefinite in the sense of (2.27) if and
only if it has a Fourier–Stieltjes representationwith a nonnegative boundedmeasure.
The continuity of χ(r) follows directly from the requirement that the process Y (x) is
stochastically continuous. Thus, Theorem 2.1 may be regarded to be a special case
of Bochner’s theorem.

2. The quantity Z/χ(0) is often called the spectral distribution function. If dZ(k) � χ̃(k)dk
where χ̃(k) ≥ 0, then g̃(k) ≡ χ̃(k)/χ(0) is referred to as the spectral density, since it
has the properties of a probability density function, i.e.,

∫
g̃(k)dk � 1 and g̃(k) ≥ 0.

Although the existence condition of Theorem 2.1 is known in the context of random
media (Torquato 1999), it is not commonly known that not all autocovariances can be
generated by stochastic processes {I(i)(x) : x ∈ �d} that take only two values, zero or
one (Section 2.1). In other words, the class B of autocovariances that comes from the
binary stochastic process {I(i)(x) : x ∈ �d} is a subclass of the total class that comes from
the general process {Y (x) : x ∈ �d} and meets the existence condition of Theorem 2.1.
Therefore, the condition of Theorem 2.1 is only necessary but not sufficient for B. An
example of a function χ(r) that meets the requirement of Theorem 2.1 but may not
belong to B has been analyzed by Torquato (1999) and is discussed in Section 12.6 [cf.
(12.19)].

The task of determining the necessary and sufficient conditions that B must pos-
sess is very complex. In the context of stochastic processes in time (one-dimensional
processes), it has been shown that autocovariances in B must not only meet the con-
dition of Theorem 2.1 but another condition on “corner-positive” matrices (McMillan
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1955, Shepp 1967). Since little is known about corner-positive matrices, this theorem
is very difficult to apply in practice. Thus, a meaningful characterization of B remains
an open and interesting problem, especially in the context of d-dimensional two-phase
random media.

We will not attempt to address the complete characterization of B here but instead
will summarize some simple necessary conditions, in addition to Theorem 2.1, that
characterize B (Torquato 1999). We have seen that since S

(i)
2 (0) � 〈[I(i)]2〉 � 〈I(i)〉 � φi,

the autocovariance at the origin is given by

χ(0) � φ1φ2, for all χ(r) ∈ B, (2.46)

which should be compared to formula (2.40) for general stochastic processes. Applica-
tion of the inequalities (2.24) to the two-point function S

(i)
2 (r) for homogeneous media

yield the bounds 0 ≤ S
(i)
2 (r) ≤ φi, which are a direct consequence of the binary (i.e.,

zero-one) nature of the process. Combination of these bounds with relations (2.26) and
(2.29) give the corresponding bounds that all autocovariances in B must obey:

−min(φ2
1, φ2

2) ≤ χ(r) ≤ φ1φ2, for all χ(r) ∈ B. (2.47)

Unlike general stochastic processes for which (2.41) applies, here we have both upper
and lower bounds on χ(r), the lower bound deriving from the pointwise nonnegativity
of S

(i)
2 (r). Of course, in the absence of long-range order, χ(∞) � 0, but this condition

is not special to binary processes. Another consequence of the binary nature of the
process in the case of isotropic media is that the specific surface s is strictly positive
when both phases are present and so (2.34) yields that

dS
(i)
2

dr

∣∣∣∣∣
r�0

� dχ

dr

∣∣∣∣∣
r�0

< 0, for all 0 < φi < 1 and χ(r) ∈ B. (2.48)

In other words, the slope of χ(r) at r � 0 is strictly negative for nontrivial volume
fractions in the range 0 < φi < 1. Thus, an autocovariance χ(r) of an isotropic two-
phase random medium can neither have a zero nor a positive slope at r � 0 when
0 < φi < 1 (Yeong and Torquato 1998a). Note that when the Fourier transform χ̃(k)
exists, condition (2.45) implies only that the slope of χ(r) at r � 0 is nonpositive (i.e.,
negative semidefinite). We recall from an earlier part of this section that S2 and thus
χ(r) will generally possess not only a linear term r but a quadratic term r2 for sufficiently
small r [cf. (2.38)], although the quadratic term will be zero for a certain subclass of
B [cf. (2.37)].

Although the nonnegativity condition of Theorem 2.1 or, equivalently, condition
(2.27) is not sufficient to ensure that χ(r) belongs to B, either condition still provides a
stringent test that all physically realizable χ(r) must meet. Experience shows that the
nonnegativity condition coupled with the “binary” conditions (2.46)–(2.48) provide a
practical (if not exact) means to test the validity of proposed autocovariances for a wide
class of two-phase randommedia; see Yeong and Torquato (1998a), Cule and Torquato
(1999), Torquato (1999), and Section 12.6.
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Practically speaking, it is difficult to apply the nonnegativity condition (2.27) in order
to test the validity of a proposed χ(r). For a wide class of statistically homogeneous
two-phase media, χ(r) tends to zero fast enough for the Fourier transform χ̂(k) to exist
[cf. (2.43)]. In such instances, it is much easier to apply the nonnegativity condition
(2.45) to test the validity of a proposed χ(r). In what follows, we will assume that the
spectral function χ̂(k) exists andproceed to show that there are d different nonnegativity
conditions that one can exploit if the random medium is also statistically isotropic
(Torquato 1999).

The Fourier transform of some absolutely integrable function f (r) in d dimensions
is given by

f̃ (k) �
∫

f (r)e−ik · rdr, (2.49)

and the associated inverse operation is defined by

f (r) � 1

(2π)d

∫
f̃ (k)eik · rdk, (2.50)

where k is the wave vector. When the function depends only on the magnitude r � |r|,
then we have the following simpler expressions for d � 1, 2, and 3:

f̃ (k) � 2
∫ ∞

0
f (r) cos krdr, f (r) � 1

π

∫ ∞

0
f̃ (k) cos krdk, d � 1, (2.51)

f̃ (k) � 2π

∫ ∞

0
f (r)rJ0(kr)dr, f (r) � 1

2π

∫ ∞

0
f̃ (k)kJ0(kr)dk, d � 2, (2.52)

f̃ (k) � 4π

k

∫ ∞

0
f (r)r sin krdr, f (r) � 1

2π2r

∫ ∞

0
f̃ (k)k sin krdk, d � 3, (2.53)

where k � |k| and J0(x) is the zeroth-order Bessel function of the first kind.
The nonnegativity condition (2.45) holds for anywave vector k. In particular, it holds

for k � 0, i.e., the real-space volume integral of χ(r) must be positive semidefinite or∫
[S2(r)− φ2

1]dr ≥ 0. (2.54)

The integral condition (2.54) holds for statistically homogeneous but anisotropic me-
dia. This nonnegativity condition could also have been obtained immediately from the
work of Lu and Torquato (1990a) on the coarseness, or standard deviation of the lo-
cal volume fraction. In particular, it can be obtained from the asymptotic expression
(11.20) for large window sizes and the fact that the coarseness is positive semidefinite
(see Chapter 11).

If the medium is also statistically isotropic, then the two-point correlation function
depends only on the magnitude r ≡ |r|, and (2.54) simplifies as∫ ∞

0
[S2(r)− φ2

1]r
d−1dr ≥ 0. (2.55)
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Herewe have used the fact that dr � �(d)rd−1dr in a d-dimensional spherical coordinate
system, where

�(d) � 2πd/2

/(d/2)
(2.56)

is the positive d-dimensional solid angle and /(x) is the gamma function. If we let

Mn �
∫ ∞

0
[S2(r)− φ2

1]r
n dr (2.57)

denote the nth moment of the function S2(r) − φ2
1, then (2.55) states that the moment

Md−1 is positive semidefinite for isotropic two-phase random media in d dimensions.
Thus far, we have shown that there is one nonnegativity condition for a d-

dimensional homogeneous medium, namely, condition (2.45). However, the symmetry
possessed by isotropic media enables one to obtain d different nonnegativity condi-
tions. In particular, Torquato (1999) demonstrated that for an isotropic autocorrelation
function S2(r) in d dimensions, the one-, two-, . . . , and d-dimensional Fourier trans-
forms of χ(r) are all positive semidefinite. Let χ̃(k;m) denote them-dimensional Fourier
transform of χ(r). Then, for all values of the wave number k (i.e., k ≥ 0), we have that

χ̃(k;m) ≥ 0, m � 1,2, . . . , d. (2.58)

This is easily proved by recalling that for d-dimensional isotropic media, S2(r) can be
extracted from a cut of the d-dimensional medium with an m-dimensional subspace
(m � 1,2, . . . , d − 1). The m-dimensional subspace represents a lower-dimensional
random medium but with the same S2 as in d dimensions. Thus, the nonnegativity
condition (2.45) applies to this lower-dimensional random medium, yielding (2.58).

It follows immediately from (2.55) and (2.58) that

Mn ≥ 0, n � 0,1, . . . , d − 1. (2.59)

Thus, for three-dimensional isotropic media, the zeroth, first, and second moments
of S2(r) − φ2

1 must be positive semidefinite. For two-dimensional isotropic media, the
zeroth and first moments must be positive semidefinite, whereas for one-dimensional
media, only the zerothmoment need be positive semidefinite. The real-space conditions
(2.54) and (2.59) are special cases of themore general and restrictive integral conditions
(2.45) and (2.58), respectively.

Algorithms have been developed recently to construct realizations of two-phase ran-
dom media with specified microstructural correlation functions (see Chapter 12). One
can use the integral nonnegativity conditions (2.45) and (2.58) as well as the “binary”
conditions (2.46)– (2.48) to test whether hypothetical autocorrelation or autocovari-
ance function meet necessary realizability conditions. The zero-wave number integral
conditions (2.54) and (2.59) may first be checked, since they are easier to compute than
the full Fourier transform; if they are negative, then there is no need to compute the
Fourier transform. We note that nonnegativity conditions on certain integrals involv-
ing the three- and two-point probability functions have also been obtained (Torquato
1980, Milton 1981b, Milton and McPhedran 1982, Torquato 1999, Markov 1999).
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2.3 Surface Correlation Functions

Surface correlation functions contain information about the random interface ∂V and
are of basic importance in the trapping and flow problems. In this context, we will let
phase 1 denote the fluid or “void” phase, and phase 2 the “solid” phase. The simplest
surface correlation function is the specific surface s(x) (interface area per unit volume)
at point x, which is a one-point correlation function for statistically inhomogeneous
media, i.e.,

s(x) � 〈M(x)〉, (2.60)

whereM(x) is the interface indicator function given by (2.3). Note that the nonnegative
specific surface cannot be interpreted as a probability, since the chance that a point at
x lands on the interface is zero. For homogeneous media, it is a constant everywhere,
which we will denote simply by s.

Two-point surface correlation functions for statistically inhomogeneous media are
defined by

Fsυ(x1, x2) � 〈M(x1)I(x2)〉, (2.61)

Fss(x1, x2) � 〈M(x1)M(x2)〉, (2.62)

where I(x) ≡ I(1)(x) is the indicator function for the void phase. These functions are
called the surface–void and surface–surface correlation functions, respectively, and
they arise in rigorous bounds on the trapping constant (Doi 1976, Rubinstein and
Torquato 1988) and fluid permeability (Doi 1976, Rubinstein and Torquato 1989). For
homogeneousmedia they depend only on the displacement r � x2−x1, and for isotropic
media they depend only on the distance r � |r|. The functions Fsυ and Fss can be ob-
tained from any plane cut through a medium that is isotropic. Figure 2.6 shows events
that contribute to these functions. When the two points are far from one another in
systems without long-range order, Fsυ(x1, x2) → s(x1)S1(x2) and Fss(x1, x2) → s(x1)s(x2).
In the case of homogeneous media (of special interest to us in subsequent chapters),
these asymptotic results for |r| → ∞ reduce to

Fsυ(r) → 〈M〉〈I〉 � sφ1, Fss(r) → 〈M〉2 � s2, (2.63)

where φ1 � 〈I〉 is the porosity, or the volume fraction of the void phase.
The generalization to an n-point surface correlation function in which a subset of

m of the n points is associated with the interface and the remaining n − m points are
associated with the void space is obvious:

Fss···sυυ···υ(xm; xn−m) �
〈[ m∏

i�1

M(xi)
][ n∏

j�m+1

I(xj)
]〉

, (2.64)

where xn−m ≡ xm+1, xm+2, . . . , xn. As we have emphasized, surface correlation functions
are not probability functions. However, by associating with the two-phase interface a
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finite thickness, a probabilistic interpretation can be given in the limit that the thick-
ness tends to zero; see Sections 4.1, 4.2.1, and 12.4.3. Observe that since the indicator
functions in expression (2.64) are nonnegative, the surface correlation function is also
nonnegative, i.e.,

Fss...sυυ...υ(xm; xn−m) ≥ 0, for all xn in V. (2.65)

Such correlation functions and their generalizations have been studied for particle
systems (Torquato 1986a), as discussed in Chapter 4. In Chapters 4–6 and 12we discuss
the determination of Fsυ and Fss for particle models.

2.4 Lineal-Path Function

Another interesting and useful statistical measure is what we call the lineal-path func-
tion L(i) (Lu and Torquato 1992a). For statistically isotropic media, it is defined as
follows:

L(i)(z) � Probability that a line segment of length z lies wholly in
phase i when randomly thrown into the sample.

(2.66)

In stochastic geometry, the quantity φi[1 − L(i)(z)] is sometimes referred to as the lin-
ear contact distribution function (Stoyan et al. 1995). Figure 2.6 shows an event that
contributes to the lineal-path function. We see that L(i)(z) contains a coarse level of
connectedness information about phase i, albeit only along a lineal path of length z in
phase i. The lineal-path function is a lower-order microstructural function, since it is a
lower-order case of the canonical n-point correlation function discussed in Section 4.4.

The lineal-path function is a monotonically decreasing function of z, since the space
available in phase i to a line segment of length z decreases with increasing z. At the
extreme values of L(i)(z), we have that

L(i)(0) � φi, L(i)(∞) � 0,

where φi is the volume fraction of phase i. The “tail” of L(i)(z) (i.e., large z behavior)
provides information about the largest lineal paths in phase i. If we define L(12)(z) to
be the probability that a line segment of length z intersects any parts of the two-phase
interface when randomly thrown into the sample, then it is clear that

L(1)(z)+ L(2)(z)+ L(12)(z) � 1.

For three-dimensional media, we observe that L(i)(z) is equivalent to the area frac-
tion of phase i measured from the projected image of a three-dimensional slice of
thickness z onto a plane, as depicted in Figure 2.8. It is a problem of long-standing
interest in stereology to find the projected area fraction or, equivalently, the lineal-path
function L(i)(z), for three-dimensional particle systems. Its evaluation for nontrivial mi-
crostructures remains a challenging theoretical problem because of, in the language of
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z

z

phase i

Figure 2.8 In two dimensions, the lineal-path function is the fraction of phase i obtained from
a projection of a slab of thickness z onto a line.

Figure 2.9 Chords are the line segments between the intersections of an infinitely long line
with the two-phase interface.

Underwood (1970), “overlap” effects due to projection of the three-dimensional image
and “truncation” effects due to slicing the system (see Figure 2.8).

For statistically homogeneous but anisotropic media, L(i)(z) will depend not only
on the magnitude of vector z but on its orientation. For statistically inhomogeneous
media, L(i)(x1, x2) will depend on the absolute positions x1 and x2 of the end points of
the vector z � x2 − x1.

2.5 Chord-Length Density Function

A quantity related to the lineal-path function L(i)(z) is the chord-length probability
density function p(i)(z) (Matheron 1975, Torquato and Lu 1993). (The latter has been
also called the chord-length “distribution” function.) Chords are all of the line seg-
ments between intersections of an infinitely long line with the two-phase interface (see
Figure 2.9). The density function p(i)(z) is defined for statistically isotropic media as
follows:

p(i)(z) � Probability of finding a chord of length between z and z+dz

in phase i.
(2.67)
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Since it is a probability density function (having dimensions of inverse length), p(i)(z) ≥
0 for all z, and it normalizes to unity, i.e.,∫ ∞

0
p(i)(z)dz � 1. (2.68)

Knowledge of the chord-length density function is of basic importance in transport
problems involving “discrete free paths” and thus has application in Knudsen diffusion
and radiative transport in porous media (Ho and Strieder 1979, Tokunaga 1985, Tas-
sopoulos andRosner 1992). The function p(i)(z) has also beenmeasured for sedimentary
rocks (Thompson, Katz and Krohn 1987) for the purpose of studying fluid flow through
such porous media. The chord-length density function p(i)(z) is also a quantity of great
interest in stereology (Underwood 1970). For example, the mean chord (or intercept)
length is the first moment of p(i)(z).

We now show that p(i)(z) is related to the lineal-path function L(i)(z) using a simple
probability argument (Torquato and Lu 1993). First, we observe that the lineal-path
function L(i)(z) can be obtained by counting the relative number of times that a line
segment of length z is wholly in phase i when thrown randomly onto an infinite line in
the system. Denote by A the midpoint of the line segment. The probability that point A

is in phase i is simply φi, the volume fraction of phase i. Second, given that the point A is
in phase i (it is then on a chord), what is the probability that point A is on a chord with
length between y and y + dy? Since the length fraction of a chord with length between
y and y + dy is

yp(i)(y)dy∫ ∞

0
yp(i)(y)dy

,

then the probability that the point A is on a chord with length between y and y + dy is
this length fraction multiplied by φi, i.e.,

φiyp(i)(y)dy∫ ∞

0
yp(i)(y)dy

.

Third, just because point A of a line segment of length z (distinct from the length y) is in
phase i does not mean that the whole line segment is in phase i. The probability that a
line segment of length z is on a chord of length y under the condition that the point A

is on that chord is

(y − z)�(y − z)
y

,

where �(x) is the Heaviside step function defined to be

�(x) �
{
0, if x < 0,

1, if x ≥ 0.
(2.69)
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Now L(i)(z), the probability that the line segment of length z is entirely in phase i, can be
obtained by combining the results given immediately above. Integrating the probability
that the line segment is on chords with length between y and y+ dy over all possible y,
we obtain

L(i)(z) � φi

∫∞
0 (y − z)p(i)(y)�(y − z)dy∫∞

0 yp(i)(y)dy
. (2.70)

Differentiating (2.70) yields

dL(i)(z)
dz

� − φi

-C

∫ ∞

z

p(i)(y)dy, (2.71)

where -
(i)
C is the mean chord length for phase i given by

-
(i)
C �

∫ ∞

0
zp(i)(z)dz. (2.72)

The first derivative of the lineal-path function is related to the cumulative distribution
functionG(z) associatedwith p(z), i.e.,G(z) � P{z ≤ Z} � −(-C/φi)dL(i)/dz (whereZ is the
associated continuous random variable). Differentiation of (2.71) and rearrangement
of terms gives

p(i)(z) � -C

φi

d2L(i)(z)
dz2

. (2.73)

Formula (2.73) establishes the connection between the chord-length probability density
function p(i)(z) and the lineal-path function L(i)(z). The determination of both of these
quantities for particle systems as well as digitized samples of real media is dealt with
in Chapters 5, 6, and 12.

It is important to note that the above relations are valid for statistically isotropic
systems of arbitrary microstructure. For such media it is simple to show that the mean
chord length -

(i)
C is related to the slope of the two-point probability function S

(i)
2 at the

origin via the expression

-
(i)
C � φi

−dS
(i)
2

dr

∣∣∣∣∣
r�0

� ωd φi d

ωd−1

1
s

, (2.74)

where we have used (2.34). For the first three space dimensions, we have

-
(i)
C �




2φi

s
, d � 1,

πφi

s
, d � 2,

4φi

s
, d � 3.

(2.75)

The results (2.75) are well known in stereology (Underwood 1970).
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For a three-dimensional isotropic medium we can use (2.75) to relate the specific
surface in three dimensions s(d � 3) to the interface perimeter per unit area s(d � 2)
(measured from a planar cut through the medium) and the number of interface points
per unit length s(d � 1) (measured from a linear cut through the medium). Since -

(i)
C

and φi remain invariant when determined from (d − 1)-dimensional cuts through a
d-dimensional isotropic medium, then from (2.75) we immediately obtain

s(d � 3) � 4
π

s(d � 2) � 2 s(d � 1). (2.76)

These results are also well known in stereology, albeit using the notation SV ≡ s(d � 3),
LA ≡ s(d � 2) and PL ≡ s(d � 1) (Underwood 1970).

2.6 Pore-Size Functions

The pore-size probability density function P(δ) (also referred to as pore-size “distribu-
tion” function) first arose to characterize the void or “pore” space in porous media
(Prager 1963a). Actually, P(δ) can be used to probe either phase 1 or phase 2 of general
randommedia consisting of two material phases. For simplicity, we will define P(δ) for
phase 1, keeping in mind that it is equally well defined for phase 2. The function P(δ)
for isotropic media is defined as follows:

P(δ)dδ � Probability that a randomly chosen point in V1(ω) lies at a
distance between δ and δ + dδ from the nearest point on the
pore-solid interface.

(2.77)

Since it is a probability density function (having dimensions of inverse length), P(δ) ≥ 0
for all δ and it normalizes to unity, i.e.,∫ ∞

0
P(δ)dδ � 1. (2.78)

At the extreme values of P(δ), we have that

P(0) � s

φ1
, P(∞) � 0, (2.79)

where s/φ1 is the interfacial area per unit pore volume. The associated complementary
cumulative distribution functionF(δ) � P{> ≥ δ} (where> is the associated continuous
random variable)

F(δ) �
∫ ∞

δ

P(r)dr (2.80)

is a nonincreasing function of δ such that

F(0) � 1, F(∞) � 0. (2.81)

Thus, F(δ) is the fraction of pore space that has a pore radius larger than δ.
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Figure 2.6 shows an event that contributes to the pore-size density function. In
stochastic geometry, the quantity 1 − F(δ) is sometimes referred to as the spherical
contact distribution function (Stoyan et al. 1995).

The moments of P(δ), defined as

〈δn〉 �
∫ ∞

0
δnP(δ)dδ, (2.82)

provide useful characteristic length scales of the randommedium. Integrating by parts
and using (2.80) gives the alternative representation of the moments in terms of the
cumulative distribution function:

〈δn〉 � n

∫ ∞

0
δn−1F(δ)dδ. (2.83)

Lower-order moments of P(δ) arise in bounds on the mean survival and principal
relaxation times (Prager 1963a, Torquato and Avellaneda 1991).

For a three-dimensional system, P(δ) is related to the probability of inserting a
sphere of radius δ into the system. Thus, it contains a coarse level of three-dimensional
connectedness information about phase 1. The pore-size function, therefore, cannot
be extracted from a two-dimensional cross-section of the material; it is an intrinsi-
cally three-dimensional descriptor. It is noteworthy that themathematically well-defined
function P(δ) is not the usual pore-size “distribution” function obtained experimentally
from mercury porosimetry (Scheidegger 1974, Dullien 1979).

The quantities P(δ) and F(δ) are actually trivially related to the “void” nearest-
neighbor probability density function HV (r) and “void” exclusion probability EV (r),
respectively, studied by Torquato, Lu and Rubinstein (1990) for systems of spherical
inclusions and defined in Section 2.8. For example, consider any system of interacting
identical spheres of radius R. Then using the definitions (2.88) and (2.90) for HV (r) and
EV (r), it is clear that δ � r − R, and so

P(δ) � HV (δ + R)
φ1

, δ ≥ 0, (2.84)

F(δ) � EV (δ + R)
φ1

, δ ≥ 0. (2.85)

Similarly, for spheres with a polydispersivity in size, P and F are related to the “void”
nearest-surface functions hV and eV (described in Section 2.8) via the relations

P(δ) � hV (δ)
φ1

, δ ≥ 0, (2.86)

F(δ) � eV (δ)
φ1

, δ ≥ 0. (2.87)

We note that the pore-size functions are lower-ordermicrostructural functions, since
the void nearest-neighbor and nearest-surface functions are as well (see Section 2.8).
In Chapters 4–6 and 12 we discuss the determination of the pore-size functions for
particle models, as well as digitized media.
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2.7 Percolation and Cluster Functions

The formation of very large “clusters” of a phase in a heterogeneous material (on the
order of the system size) can have a dramatic influence on its macroscopic properties.
A cluster of phase i is defined as the part of phase i that can be reached from a point in
phase i without passing through phase j �� i. A critical point, known as the percolation
threshold, is reached when a sample-spanning cluster first appears. Unfortunately, any
of the lower-ordermicrostructural functions described thus far do not adequately reflect
information about nontrivial cluster formation in the system. Torquato, Beasley and
Chiew (1988) have introduced and represented the so-called two-point cluster function
C
(i)
2 (x1, x2), defined to be the probability of finding two points at x1 and x2 in the same

cluster of phase i . Thus, C
(i)
2 is the analogue of S

(i)
2 , but unlike its predecessor, it con-

tains nontrivial topological “connectedness” information. The measurement of C
(i)
2 for

a three-dimensional material sample cannot be made from a two-dimensional cross-
section of the material, since it is an intrinsically three-dimensional microstructural
function.

Further mathematical details about C
(i)
2 and other existing percolation-sensitive

quantities have been deferred until Chapters 9 and 10. Chapter 12 describes, among
other considerations, the evaluation of C

(i)
2 from computer simulations.

2.8 Nearest-Neighbor Functions

All of the aforementioned statistical descriptors are defined for random media of arbi-
trary microstructure. In the special case of randommedia composed of particles (phase
2) distributed randomly throughout another material (phase 1), there is a variety of
natural morphological descriptors. We describe some of them below for statistically
isotropic media composed of identical spherical particles of diameter D (or radius
R � D/2) at number density ρ distributed throughout another phase. (The reader is
referred to Chapter 3 for a treatment of the statistical mechanics of particle systems.)
We begin by defining nearest-neighbor functions.

In considering amany-body system of interacting particles, a key fundamental ques-
tion to ask is the following:What is the effect of the nearest neighbor on some reference
particle in the system? The answer to this query requires knowledge of the probability
associatedwith finding the nearest neighbor at somegiven distance froma referencepar-
ticle, i.e., the “particle” nearest-neighbor probability density function HP. (This has been
also called the nearest-neighbor “distribution” function.) Knowing HP is of importance
in a host of problems in the physical and biological sciences, including transport pro-
cesses in heterogeneous materials (Keller, Rubenfeld and Molyneux 1967, Rubinstein
and Torquato 1988, Rubinstein and Torquato 1989), stellar dynamics (Chandrasekhar
1943), spatial patterns in biological systems (McNally and Cox 1989), and the molecu-
lar physics of liquids and amorphous solids (Reiss, Frisch and Lebowitz 1959, Bernal
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Figure 2.10 A schematic showing events that contribute to lower-order functions for random
arrays of spheres (phase 2). Shown is the “particle” nearest-neighbor probability density HP
defined by (2.89), point/particle function G2 ≡ G (1)

2 defined by (2.120), and the surface-particle
function Fsp defined by (2.122).

1964, Finney 1970, Zallen 1983, Torquato et al. 1990). Hertz (1909) was the first to
consider its evaluation for a system of spatially uncorrelated “point” particles, i.e., par-
ticles whose centers are Poisson distributed (see Section 3.1.2). The calculation of HP

for nonoverlapping particles is nontrivial.
A different nearest-neighbor function, HV , arises in the scaled-particle theory of liq-

uids (Reiss et al. 1959,Hefland,Reiss, Frisch andLebowitz 1960). This quantity (defined
more precisely below) essentially characterizes the probability of finding a nearest-
neighbor particle center at a given distance from an arbitrary point in the system.
Since HV is nontrivial when the point is located in the space exterior to the particles,
we refer to it as the “void” nearest-neighbor probability density function.

There are other quantities closely related to HV and HP that we also consider.
These are the so-called exclusion probabilities EV and EP and the conditional pair
distributions GV and GP as defined below.

The nearest-neighbor functions HV (r) and HP(r) are defined as follows:

HV (r)dr � Probability that at an arbitrary point in the system the center
of the nearest particle lies at a distance between r and r+dr.

(2.88)

HP(r)dr � Probability that at an arbitrary particle center in the system
the center of the nearest particle lies at a distance between
r and r + dr.

(2.89)

Note that since bothHV (r) andHP(r) are probability density functions, they are nonneg-
ative for all r, normalize to unity, andhave dimensions of inverse length.Observe further
that for statistically inhomogeneous media, HV (r) and HP(r) will depend also upon the
position of the arbitrary point and the location of the central particle, respectively.
Figure 2.10 shows an event that contributes to HP(r).
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Figure 2.11 Schematic representations of the regions�V (r ) and�P (r ). Left panel:�V (r ) is the
spherical region of radius r . The sphere of radius r −D/2 can be interpreted as a “test” particle
of the same radius. Right panel: �P (r ) is a sphere of radius r surrounding some reference
particle.

It is useful to introduce the associated dimensionless “exclusion” probabilities EV (r)
and EP(r) defined as follows:

EV (r) � Probability of finding a region �V (r) (which is a d-
dimensional spherical cavity of radius r centered at some
arbitrary point) empty of particle centers.

� Expected fraction of space available to a “test” sphere of
radius r − D/2 inserted into the system. (2.90)

EP(r) � Probability of finding a region �P(r) (which is a d-
dimensional spherical cavity of radius r centered at some (2.91)

arbitrary particle center) empty of other particle centers.

Figure 2.11 gives a schematic representation of the regions �V (r) and �P(r). The first
and second lines of (2.90) are equivalent, since the region excluded to a particle center of
radius D by a “test” particle of radius r−D/2 is a sphere of radius r (see also Chapter 4).
Thus, the test particle serves to probe the space available to it. For this reason, the
density function HV (r) can also be interpreted to be the expected surface area per unit
volume of the interface between available and unavailable spaces.

It follows that the exclusion probabilities are complementary cumulative distribution
functions associated with the density functions and thus are related to the latter via

EV (r) � 1−
∫ r

0
HV (x)dx (2.92)

and

EP(r) � 1−
∫ r

0
HP(x)dx. (2.93)

Thus, both of these functions aremonotonically decreasing functions of r. The integrals
of (2.92) and (2.93) respectively represent the probabilities of finding at least one parti-
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cle center in regions�V (r) and�P(r). Differentiating the exclusion-probability relations
with respect to r gives

HV (r) � −∂EV

∂r
(2.94)

and

HP(r) � −∂EP

∂r
. (2.95)

Note that generalizations of these quantities describing events in which exactly n par-
ticle centers are contained within the regions �V (r) and �P(r) have been studied by
Vezzetti (1975), Ziff (1977), and Truskett, Torquato and Debenedetti (1998) and by
Truskett et al. (1998), respectively.

It is helpful to write the probability density functions as a product of two different
functions. Specifically, for d-dimensional particles, let

HV (r) � ρs1(r)GV (r)EV (r) (2.96)

and

HP(r) � ρs1(r)GP(r)EP(r), (2.97)

where

s1(r) � 2πd/2rd−1

/(d/2)
(2.98)

is the surface area of a single d-dimensional sphere of radius r. For example, for d � 1,
2, and 3, s1(r) equals 2, 2πr, and 4πr2, respectively.

Given definitions (2.88)–(2.92), the conditional pair “distribution” functions GV and
GP must have the following interpretations:

ρs1(r)GV (r)dr � Given that region �V (r) (spherical cavity of radius r)
is empty of particle centers, the probability of finding
particle centers in the spherical shell of volume s1(r)dr

encompassing the cavity.

� Average number of particles at a radial distance between
r and r+dr from the center of�V (r), given that this region
is empty of particle centers.

(2.99)

ρs1(r)GP(r)dr � Given that region �P(r) (sphere of radius r encompass-
ing any particle centered at some arbitrary position) is
empty of particle centers, the probability of finding other
particle centers in the spherical shell of volume s1(r)dr

surrounding the central particle.

� Average number of particles at a radial distance between
r and r+dr from the center of �P(r), given that this region
is empty of particle centers.

(2.100)



54 2: Microstructural Descriptors

The exclusion probabilities are related to the pair distribution functions via the
expressions

EV (r) � exp
[
−
∫ r

0
ρs1(y)GV (y)dy

]
, (2.101)

EP(r) � exp
[
−
∫ r

0
ρs1(y)GP(y)dy

]
, (2.102)

which are obtained by use of (2.94)–(2.97). Combination of (2.94), (2.95), (2.101), and
(2.102) yields

HV (r) � ρs1(r)GV (r) exp
[
−
∫ r

0
ρs1(y)GV (y)dy

]
(2.103)

and

HP(r) � ρs1(r)GP(r) exp
[
−
∫ r

0
ρs1(y)GP(y)dy

]
. (2.104)

We see that once any one of the tripletHV, EV, GV (HP, EP, GP) is known, any of the other
the nearest-neighbor functions can be ascertained via the interrelations (2.92)–(2.97)
and (2.101)–(2.104). The nearest-neighbor functions are lower-order microstructural
functions, since they are lower-order cases of the canonical n-point correlation function
discussed in Section 4.4

We note that there are exact conditions that the void quantities must obey when r

equals the sphere radius R for any system of identical spheres. By definitions (2.88)
and (2.90), we have that

HV (R) � s, EV (R) � φ1, (2.105)

where s and φ1 are the specific surface and volume fraction of phase 1, respectively.
This expression combined with (2.96) yields

GV (R) � s

ρs1(R)φ1
. (2.106)

These relations are true even if the spheres overlap to varying degrees. Most of the void
quantities at their extreme values are known exactly:

EV (0) � HV (0) � GV (0) � 0, EV (∞) � HV (∞) � 0.

Some of the particle quantities at their extreme values are known exactly:

EP(0) � 1, EP(∞) � HP(∞) � 0.

The behavior of the functions HP and GP at r � 0 and of GV and GP at r � ∞ are
microstructure-dependent (see Chapters 5 and 6).

Consider the spatial moments of HV and HP. The moments of HV are trivially re-
lated to moments of the pore-size function P(δ) for the special case of spheres (see
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Section 2.6). The nth moment of HP(r) is defined as

mn �
∫ ∞

0
rnHP(r)dr. (2.107)

The lower limit of zero in the integral allows for particles that can get arbitrarily close
to one another, such as in a Poisson distribution of spheres. A particularly important
moment is the first moment -P ≡ m1, which is just the mean nearest-neighbor distance
between particles. In the special case of ensembles of statistically isotropic impenetrable
spheres of diameter D, the mean nearest-neighbor distance is given as

-P �
∫ ∞

D

rHP(r)dr, (2.108)

which is equivalent to

-P � D +
∫ ∞

D

EP(r)dr

� D +
∫ ∞

D

exp
[
−
∫ r

0
ρs1(y)GP(y)dy

]
dr. (2.109)

Since, as we will see in Chapter 5, EP ≥ 0 for impenetrable spheres, it follows that
-P ≥ D.

Finally, we would like to describe related nearest-neighbor functions. The nearest-
neighbor functions discussed thus far have involved finding nearest centers of particles
at given locations. One can instead define nearest-neighbor functions in the same way
as before but in terms of finding nearest surfaces of particles (Lu and Torquato 1992b).
Let us denote the surface counterparts by hV , eV , and gV in the case of the void quan-
tities and by hP, eP, and gP in the case of the particle quantities. For spheres that are
monodispersed in size (i.e., identical), the “surface” quantities contain the same infor-
mation as the “center” quantities. Indeed, for identical spheres of radius R, we have
that

hV (r) � HV (r + R), eV (r) � EV (r + R). (2.110)

However, for spheres with a polydispersivity in size, the surface quantities are more
meaningful, since the sphere with the nearest surface may not be the sphere with the
nearest center.

As already remarked, the surface quantities are defined similarly to the center
quantities except that the former are concerned with nearest surfaces. For example,
following Lu and Torquato (1992b), the probability densities for polydisperse sphere
systems are defined as follows:

hV (r)dr � Probability that the nearest particle surface lies at a dis-
tance between r and r +dr from an arbitrary point in the
system.

(2.111)
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hP(r)dr � Probability that the nearest particle surface lies at a dis-
tance between r and r+dr from the center of an arbitrary
particle of radius R.

(2.112)

It is important to emphasize that the radius R of the reference particle in the particle
nearest-surface quantity hP must be specified.

The corresponding exclusion probabilities are, as before, complementary cumulative
distribution functions associated with hV and hP, i.e.,

eV (r) � 1−
∫ r

−∞
hV (x) dx (2.113)

and

eP(r) � 1−
∫ r

−∞
hP(x) dx. (2.114)

In each case the lower integration limit is −∞ to allow for polydispersivity with sizes
ranging to the infinitely large. Accordingly, r will generally lie in the interval (−∞,∞)
because the reference point may sometimes lie in the particle phase itself. This rather
bizarre notion can be readily understood by appealing to Section 4.2, which describes
the space available to “test” particles when added to a system of spheres of radius R.
Allowing a test particle to have a negative radius r (down to −R) enables it to penetrate
into the particle phase. It follows from (2.113) and (2.114) that

hV (r) � −∂eV

∂r
, hP(r) � −∂eP

∂r
. (2.115)

The conditional pair functions gV and gP are defined through the following relations:

hV (r) � gV (r)eV (r), hP(r) � gP(r)eP(r). (2.116)

Notice that surface quantities gV and gP are defined differently from GV and GP in that
the former absorb the surface area terms not contained in the latter. Moreover, for
any polydisperse system of spheres, the void quantities evaluated at the origin are, by
definition, given as

hV (0) � s, eV (0) � φ1, gV (0) � s/φ1. (2.117)

The quantity s/φ1 is the interface area per unit volume of phase 1.
One can compute spatial moments of either hV or hP. The moments of hV are triv-

ially related to moments of the pore-size density function for systems of spheres (see
Section 2.6). The natural generalization of the first moment of HP given by (2.108)
for monodisperse systems is the following definition for polydisperse systems for a
reference particle of radius R:

λP �
∫ ∞

0
rhP(r)dr − R. (2.118)
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For the special case of impenetrable spheres, this definition, after integration by parts,
is equivalent to

λP �
∫ ∞

R

eP(r)dr. (2.119)

We refer to λP as the mean surface–surface distance.
The determination of the nearest-neighbor functions for monodisperse and polydis-

perse sphere systems is taken up in Chapters 4–6.

2.9 Point/q-Particle Correlation Functions

Consider statistically inhomogeneous media composed of N identical spherical par-
ticles of radius R (phase 2) distributed throughout another phase (phase 1). Let
rq ≡ {r1, . . . , rq} denote the positions of q sphere centers and let drq ≡ dr1dr2 · · ·drq. The
point/q-particle correlation (or “distribution”) function G

(i)
n (x; rq) is defined as follows

(Torquato 1986b):

G(i)
n (x; rq)drq � Probability of finding a point in phase i at x and the center

of a sphere in volume element dr1 about r1, the center of
another sphere in volume element dr2 about r2, . . ., and
the center of another sphere in volume element drq about
rq, where n � 1+ q.

(2.120)

The correlation function G
(i)
n (x; rq) is a hybrid quantity: It is a probability function with

respect to the position x and a joint probability density function (up to a trivial factor)
with respect to the positions rq of the q particles. In light of this nature, it obeys the
normalization condition ∫

G(i)
n (x; rq)drq � N!

(N − q)!
S
(i)
1 (x), (2.121)

where S
(i)
1 (x) is the one-point probability function for phase i defined in Section 2.2.1.

Note that G
(i)
n (x; rq) divided by the right side of (2.121) is indeed a probability density

function, since it is nonnegative and normalizes to unity. Originally, G
(i)
n was denoted

as G
(i)
q by Torquato (1986b).

For statistically homogeneous media, G
(i)
n depends only on the relative displace-

ments y1, . . . , yq, where yk � x−rk. For isotropic media, it depends only on the distances
between all of the n points. Figure 2.10 shows an event that contributes to the two-point
quantity G2(y), where y � |x − r1|. The point/q-particle correlation function arises in
bounds on the effective conductivity (Torquato 1986b), effective elastic moduli (Quin-
tanilla and Torquato 1995), trapping constant (Rubinstein and Torquato 1988), and
fluid permeability (Rubinstein and Torquato 1989).

Torquato (1986b) showed that the point/q-particle correlation function can be ex-
pressed as a special ensemble average of the indicator function I(i)(x) for phase i given
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by (2.1) [see also (4.46) and (4.74)]. Using this expression, it is easy to demonstrate that

G(1)
n (x; rq)+ G(2)

n (x; rq) � ρq(rq),

where ρq(rq) is the q-particle probability density function associated with finding q

spheres with configuration rq, described more fully in Chapter 3. We see that since
G

(i)
1 � S

(i)
1 , then we define ρ0 ≡ 1. It is clear that

G(1)
n (x; rq) � 0 if |x− rk| < R, k � 1, . . . , n,

since the point x cannot be in any sphere for the G
(1)
n . The last two expressions then

give

G(2)
n (x; rq) � ρq(rq) if |x− rk| < R, k � 1, . . . , n.

The asymptotic properties of the G
(i)
n (x; rq) have been given by Torquato (1986b).

Chapters 4–6 discuss the determination of the point/q-particle correlation function
for monodisperse and polydisperse sphere systems.

2.10 Surface/Particle Correlation Function

The surface/particle correlation function Fsp(x; r1) for statistically inhomogeneous
systems of N identical spheres is defined as follows:

Fsp(x; r1) � Correlation function associated with a point being on the
interface at x and the probability of finding the center of
a sphere in volume element dr1 about r1.

(2.122)

This function obeys the normalization condition∫
Fsp(x; r1)dr1 � Ns(x), (2.123)

where s(x) is the local specific surface defined by (2.60). The n-point generalization of
this function is discussed in Chapter 4.

For homogeneous media, Fsp depends only on the displacement y � x − r1. For
isotropic media, it depends only on the distance y � |y|. Figure 2.10 shows an event
that contributes to Fsp(y). The surface/particle function Fsp arises in rigorous bounds
on the fluid permeability of random beds of spheres (Torquato and Beasley 1987).
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