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Use of cobA and cysGA
as Red Fluorescent Indicators

Charles A. Roessner

1. Introduction

This chapter is based on the observations (I-3) that Escherichia coli cells
bearing the plasmid pISA417, for the overexpression of the cobA gene from
the bacterium Propionibacterium freudenreichii, or the plasmid pEBI1, for the
overexpression of a truncated cysG (cysGA) gene of E. coli, exhibit bright red
fluorescence (Fig. 1) when cultured on Luria-Bertani (LB) growth medium
and illuminated with ultraviolet (UV) light. The genes both encode
uroporphyrinogen III (urogen III) methyltransferases (referred herein to as
CobA or CysG#) which catalyze the methylation of urogen III, an intermediate
in heme biosynthesis, using S-adenosyl-L-methionine as the methyl donor. Plas-
mid pISA417 was constructed by insertion of a DNA fragment bearing the
complete cobA gene into pUC19 (Fig. 2) and was originally used for the char-
acterization of urogen III methyltransferase (1). During this study, it was
noticed that E. coli colonies harboring pISA417 are brightly red fluorescent
when illuminated with UV light. However, E. coli cells harboring pISA417
bearing a DNA insert that deletes or knocks out the expression of cobA are not
fluorescent, thus providing the basis for its first use as a fluorescent indicator
in selecting recombinant plasmids (2).

The fluorescence is caused by the cytoplasmic accumulation of two polar
fluorescent compounds derived by the methylation of urogen III at C-2, C-7,
and C-12 (Fig. 3), to afford dihydrosirohydrochlorin (precorrin-2) and a fluo-
rescent trimethylpyrrocorphin (1,4). Precorrin-2 is oxidized to the fluorescent
sirohydrochlorin (factor II) either by oxygen, or enzymatically, by CysG and
NAD. In contrast to heme and siroheme, whose cellular concentrations are
tightly regulated in E. coli, the fluorescent compounds are synthesized and
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Fig. 1. A red fluorescent strain of E. coli. Strain CR417 (TB1 bearing pISA417)
was grown on an LB-AMP plate and photographed with UV illumination. (For optimal,
color representation please see accompanying CD-ROM.)
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Fig. 2. The structure of pISA417, showing the location of the unique restriction
sites derived from pUC19 and a 1.1-kb BamHI-EcoRI insert bearing the P.
freudenreichii cobA gene. The Clal and BstEII sites lie outside the cobA gene. The
sites within cobA were predicted from the sequence (Genbank accession no. U13043).
(Also on CD-ROM.)
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accumulate at relatively high levels, probably because of loss of feedback inhi-
bition of aminolevulinic acid (ALA) synthesis in cells overexpressing urogen
III methyltransferase (5) and stability of the products.

In E. coli and some other bacteria, such as Salmonella typhimurium and
Neisseria meningitidis, urogen III methyltransferase is part of siroheme syn-
thase (CysG), a multifunctional enzyme encoded by the cysG gene. CysG con-
tains not only urogen III methyltransferase activity (CysG*) in its C-terminal
region, but also NAD-dependent oxidase and ferrochelatase activities (CysGP)
in its N-terminal region, which convert precorrin-2 to siroheme (3,6). Thus,
overexpression of the complete cysG gene in E. coli leads to accumulation of
siroheme, which is not fluorescent.

This chapter describes two methodologies: the use of pISA417, carrying the
cobA gene as a red fluorescent indicator, for the selection of recombinant plas-
mids, and a protocol for the expression of the truncated cysGA gene. The pro-
cedure described for overexpression of cysGA in E. coli uses the polymerase
chain reaction (PCR) and vector selection, to provide strong transcriptional
and translational signals. Demonstrating its utility, this procedure has been
adapted to construct plasmids for expressing cobA from Pseudomonas
denitrificans and UMP1 from Arabidopsis thaliana (5,7) to give red fluores-
cent E. coli. Since the P. freudenreichii cobA gene is derived from a high G-C,
Gram-positive bacterium, it may not be suitable for expression in all organ-
isms, and alternative sources of the gene may be desirable. However, similar
technology has recently expanded the use of the P. freudenreichii cobA gene as
a regulated red fluorescent reporter not only in bacteria but also in yeast
(Schizosaccharomyces pombe) and cultured mammalian (Chinese hampster
ovary) cells (8). In the latter case, cobA was expressed either by itself to pro-
vide red fluorescent cells, or in conjunction with the green fluorescent protein,
to create cells that emitted both red and green fluorescence.

2. Materials

1. LB medium: 5 g/L yeast extract (Difco), 10 g/L tryptone (Difco), and 5 g/L NaCl.
2. LB agar: LB medium, add 15 g/L agar (Difco) before autoclaving. Add 50 pg/mL
ampicillin (Sigma, sodium salt), after autoclaving. Add 10-20 pg/mL
aminolevulinic acid (Sigma), after autoclaving, from a 10-mg/mL stock solution
of ALA sterilized by filtration (ALA is destroyed by autoclaving).

E. coli K12 strain TB1 (9) is used throughout this work (see Note 1).

pISA417 is supplied (see Note 2) in strain CR417 (TB1 bearing pISA417).
pCR252 bearing the E. coli cysG gene (10) is isolated from TB1(pCR252).
pUCI19 (11) is isolated from TB1(pUC19).

STET buffer: 8% sucrose, 50 mM Tris-HCI, pH 8.0, 50 mM EDTA, 0.5% Triton
X-100; autoclave, and store at room temperature.

Nownkw
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9.
10.
11.
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15.
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23.

Egg white lysozyme (Sigma, 10 mg/mL in water).
Isopropanol.
70% Ethanol, 100% ethanol.
TE buffer: 10 mM Tris-HCL, pH 8.0, 1.0 mM EDTA.
The insert DNA can be any DNA fragment of interest, whether a PCR product or a
restriction fragment. In the example given here, a 0.6 kb blunt end PCR product is used.
Restriction enzymes and buffers: BamHI, EcoRI, Smal, and their 10X buffers
(New England Biolabs).
T4 DNA ligase with 10X buffer (New England Biolabs).
Taq polymerase, 10X polymerase buffer (Mg free), and 25 mM MgCl, (Promega).
dNTPs for PCR (New England Biolabs). Dilute the four dNTPs (100 mM) to
10 mM with water, then a mixture is prepared by combining 50 UL of each
dNTP with 200 uL water (1.25 mM final concentration). Store ANTP solutions
at —20°C.
Phenol pH 8.0 (Ambion) is stored at —20°C. Prior to use, 8-hydroxyquinoline is
added to 0.1%.
Autoclaved 7.5 M ammonium acetate.
Chloroform.
Sterile 10% glycerol.
Electroporation cuvets (1.0-mm gap) and an electroporator, e.g., the E. coli Pulser
(Bio-Rad).
Recovery medium: 50 mL LB broth supplemented with 1.0 mL 20% glucose,
0.5 mL 1.0 M MgSO,, and 0.05 mL 1.0 M CaCl,.
For PCR, the following template and primers were used:
a. Template DNA. pCR252 containing the complete cysG gene (10; see Note 3).
b. PCR primers were synthesized on the 40-nmol scale. The BamHI, RBS, and
start codons are indicated:
5' primer
BamHI RBS Start codons 211-220
5'-CGCGCGGATCCAGGAAGGAATTTAAAATGGAAACGACCGAAC
AGTTAATCAACGAACCG-3'
3' primer
EcoRI stop anticodons 457-448
5'-CGCCGGAATTCTTAATGGTTGGAGAACCAGTTCAGTTTATCGCG-3'
A 0.1-nmol/uL stock solution of the primers is prepared by dissolving
40 nmol of the primer in 400 pL of TE buffer, and stored at —20°C. Just prior
to use, an aliquot of the stock is diluted to 0.01 nmol/uL with water.

3. Methods
3.1. Selection of Recombinant Plasmids, Using pISA417

The insertion of any DNA fragment into pISA417, as described here, using
any of the unique sites shown in Fig. 2 (see Note 4) will disrupt the cobA gene
and result in nonfluorescent colonies.



24

Roessner

3.1.1. Isolation of pISA417

1.

2.

10.

Strain CR417 is usually received as filter disks that have been saturated with an
overnight culture of the strain.

To recover the strain, place a filter disk on an LB-amp plate, streak for isolation,
and incubate 16-20 h at 37°C.

Briefly illuminate the plate with a long-wavelength (302 nm) UV transilluminator
(see Note 5), select a brightly fluorescent colony to inoculate into 50 mL LB-amp,
and incubate overnight at 37°C, in a shaking water bath.

Fill a 1.5-mL microcentrifuge tube with the culture, pellet the cells in a
microcentrifuge, and discard the supernatant. The cell pellet should be brightly
fluorescent.

Resuspend the cells in 200 uL. STET buffer (vortex vigorously), add 20 puL
lysozyme solution, mix, and place the tube in a boiling water bath for 40 s.

. Centrifuge at top speed in a microcentrifuge (=10,000g for all microcentrifuga-

tions) for 15 min and remove the viscous pellet with a flat toothpick.

Add an equal volume of isopropanol (usually 150-200 uL), mix, and centrifuge
for 10 min.

Remove the supernatant, add 0.5 mL 70% ethanol, vortex briefly, and centrifuge
for 5 min.

. Remove the supernatant, and dry the pellet under vacuum (Speed-Vac or

lyophilizer).
Dissolve the pellet in 50 uL TE buffer (vortex vigorously), and store at —20°C.
This procedure normally yields DNA concentrations of 100-200 ng/uL.

3.1.2. Restriction Enzyme Digestion

L.

For this example, pISA417 is digested with Smal in the following mixture, in a
0.5-mL microcentrifuge tube: 2 uL. pISA417 (200 ng), 10 uL insert DNA (10-200 ng),
4 uL 10X Smal buffer,1 pL Small (10-20 U), sufficient water (23 UL) to make the total
volume 40 uL.

Incubate the mixture 1 h at 25°C.

. Extract the restriction digest with phenol to inactivate the enzymes. Add an equal

volume of phenol to the digest and vortex for 1 min.

Centrifuge at top speed in a microcentrifuge and transfer the upper layer to a
clean 0.5-mL tube. This layer should be clear but will sometimes appear milky,
because of precipitation of phenol. The lower (phenol) layer will be yellow from
the hydroxyquinoline.

. To remove dissolved phenol from the DNA solution, add 40 uL. chloroform,

vortex briefly, centrifuge briefly, and remove the bottom (chloroform) layer with
a micropipet. Perform the chloroform extraction a second time.

. Precipitate the DNA by adding one-half vol 7.5 M ammonium acetate and 2 vol

100% ethanol. For example, if there is 30 uL. DNA solution remaining after
extraction with phenol and chloroform, add 15 pL. ammonium acetate and 90 pL.
ethanol.
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7.

Mix and place the tube at —80°C for at least 30 min, centrifuge 10 min at top
speed in a microcentrifuge, to pellet the DNA, and remove the supernatant.

. To wash the pellet (usually not visible) add 200 uL 70% ethanol, vortex briefly,

centrifuge 5 min, and completely remove the supernatant.
Dry the pellet for at least 1 h under vacuum to remove any remaining traces of the
volatile ammonium acetate.

3.1.3. Ligation and Ethanol Precipitation of DNA Fragments

1.

Dissolve the DNA pellet from Subheading 3.1.2. in 17 uL water, add 2 uL 10X
ligation buffer, 1 uL. T4 DNA ligase, and incubate 16-20 h at 16°C.

After ligation, ethanol precipitate the DNA as described in Subheading 3.1.2.
and dissolve the pellet in 10 uL water.

3.1.4. Transformation of Electrocompetent TB1 Cells
by Electroporation and Selection for Recombinant Plasmids

1.

10.

Produce electrocompetent cells by inoculating a colony of TB1 into 50 mL LB
and incubate overnight at 37°C in a shaking water bath.

Inoculate two fresh 50-mL portions of LB with 0.5 mL of the overnight culture
and grow the cells to an A4y, = 0.8 at 37°C. Chill the cultures on ice and pellet the
cells at 5000 rpm for 10 min in sterile 50-mL tubes in a Sorvall SS34 rotor or its
equivalent. All centrifugations are done at 4°C.

. Remove the medium and wash the cell pellets twice by gently resuspending them

in 20 mL ice cold 10% glycerol and centrifugation as above. After the second
wash, resuspend both pellets in a total of 1.0 mL 10% glycerol, and pellet the
cells in a 1.5-mL microcentrifuge tube.

. Resuspend the final pellet in 400 uL 10% glycerol, divide into 50-uL aliquots in

microcentrifuge tubes on ice, and store at -80°C.

. Thaw a tube of the electrocompetent TB1 cells on ice, and mix in 5 uL of the

DNA solution.
Transfer the mixture to an ice-cold electroporation cuvet (1.0-mm gap), and incu-
bate on ice for 5 min.

. Thoroughly dry the outside walls of the cuvet, and electroshock the cells, using a

setting of 1.8 kV on the electroporator.

. Immediately add 1.0 mL recovery medium, and incubate the cells for 1.0 h at

37°C, to allow the cells to recover from the shock and allow expression of the
ampicillin resistance gene.

Plate the cells by spreading on LB-amp plates (see Note 6) and incubate 16-20 h
at 37°C. Several different amounts (1, 10, 100 uL) of cells should be plated, to
ensure obtaining a plate that has isolated colonies. The smaller amounts should
be added to 100 uL sterile water, before spreading.

Examine the plates with long-wavelength (302 nm) UV light (remove the Petri
dish cover, and invert the plate over the light source), and select nonfluorescent
colonies (Fig. 4) for further analysis.
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Fig. 4. E. coli TB1 that has been transformed with a ligation mixture prepared as
described in Subheading 3.1. The photograph was taken with a Polaroid camera with
an orange filter routinely used for photographing ethidium bromide-stained DNA gels.
In black and white photographs, fluorescent colonies are bright white and
nonfluorescent colonies are pale gray (arrows). (Also on CD-ROM.)

11. The presence of the insert is determined by preparing plasmid DNA from
nonfluorescent cells, as described above, and analyzing for presence of the insert
on a 1% agarose gel.

3.2. Using Genes Encoding Urogen Ill Methyltransferase
as a Fluorescent Indicator: Overexpression of E. coli cysG* Gene

This methodology is based on the use of PCR to amplify all or part of a
gene, and, at the same time, provide optimal cloning, transcriptional, and/or
translational signals for efficient expression of the gene, either through design
of the PCR primers or selection of the vector into which the PCR product is
inserted. In the example given, the portion of cysG encoding urogen III
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Fig. 5. Homology comparison between CobA and CysG, to determine where urogen
IIT methyltransferase begins in CysG. There is 42.6% identity in a 237-amino acid
overlap beginning with amino acid 211 (glutamate) of CysG. (Also on CD-ROM.)

methyltransferase was determined by a homology comparison of CysG with
CobA from P. freudenreichii using the FASTA program (Genetics Computer
Group, Madison, WI) with the result shown in Fig. 5. As can be seen, the
region of overlap between CysG and CobA begins at Glu 211, and extends
almost to the end, so the 5' PCR primer was designed to remove the first 210
codons of cysG. The vector chosen for expression of the truncated gene was
pUC19, which provides the strong lac promoter, but no translational signals.
Therefore, a ribosome-binding site, the ATG start codon, and codons for amino
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acids 211-220, in addition to a BamHI restriction site (see Note 7), were incor-
porated into the 5' primer. The 3' primer was designed to provide the antic-
odons for the last 10 amino acids of CysG, a stop anticodon, and an EcoRI
restriction site. Insertion of the PCR product (cysGA) into pUC19 results in a
plasmid (pEB1), which, when transformed into TB1, affords red fluorescent
cells indistinguishable from CR417 (3).

3.2.1. PCR of Methyltransferase Fragment of cysGA

1. The following mixture is prepared in a 0.5-mL microcentrifuge tube for PCR
amplification of the methyltransferase fragment of the cysGA gene: 16 UL water,
5 uL 10X buffer, 8 uL. ANTP mix (1.25 mM), 5 uL 5' primer (0.01 nmol/uL),
5 uL 3" primer (0.01 nmol/uL), 5 uL. MgCl, (25 mM, see Note 8), 1 uL pCR252
(100 ng/uL), 1 U Taq polymerase, for a total volume of 50 uL.

2. Overlay the mixture with 50 uL mineral oil, and perform 30 cycles of a sequence
consisting of 94°C for 1 min, 55°C for 1 min, 72°C for 2 min.

3. Atthe end of the cycles, remove the mineral oil, and run 5 UL of the PCR mix on
a 1% agarose gel.

4. If the product has been synthesized, extract the reaction mix with phenol and
chloroform, and ethanol-precipitate the product as described in Subheading 3.1.3.

5. Dissolve the dried pellet in 50 UL TE buffer.

3.2.2. Restriction Enzyme Digestion, Ligation,
Transformation, and Plating

These procedures are carried out by following all of the steps described
above, except that the plasmid is pUC19, the insert is the PCR product, and
two restriction enzymes, BamHI and EcoRI (or others engineered into the insert
by PCR), are used. After plating and an overnight incubation at 37°C, one should
be able to observe fluorescent colonies that harbor the recombinant plasmid
and express the cysGA gene.

4. Notes

1. In the examples given here, the host strain used is TB1 but any strain of E. coli
that makes urogen III and S-adenosyl-L-methionine should work. If the strain
overexpresses the lac repressor (lacI?), induction with isopropyl-B-p-thioglac-
toside may be required.

2. CR417 is available from the author (c-roessner@tamu.edu), and has also been
submitted to the Belgian Coordinated Collections of Micro-organisms (http://
www.belspo.be/bccm/Imbp.htm).

3. Sources of template DNA for amplification of urogen III methyltransferase genes
from other organisms may include plasmids bearing the gene, prokaryotic genomic
DNA, or genomic libraries, or cDNA libraries from eukaryotic organisms.

4. The BamHI site, shown in Fig. 2 apparently was lost during the construction of
pISA417, therefore, pISA417 is not cut by BamHI.



cobA/cysG* Red Fluorescent Indicators 29

5. UV light causes thymidine dimer formation and can result in mutations and cell

death. Therefore, exposure of the plates to UV light should be kept to a minimum at
all times. Proper eye protection should be used to prevent UV damage to the retina.

. Addition of ALA (10-20 pg/mL) to the medium may enhance the fluorescence of

the colonies bearing nonrecombinant plasmids. However, it may also cause the
colonies harboring recombinant plasmids to exhibit faint background fluorescence.

. Care must be taken that the restriction sites chosen for cloning do not cut within

the gene being inserted into the vector.

The most critical variable in PCR reactions is the magnesium ion concentration,
which should be determined for each set of primers and template. Therefore, a
series of concentrations (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 mM) should
be tested. Often, a difference of only 0.05 mM will have a drastic effect.
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