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Erratum

Fig. 1 on page 381 in the printed version has unfortunately been replaced by something 
completely unrelated due to an error during the data conversion. 
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Fig. 1. Prediction-dimension diagrams for k = 2, 3, 4

Kolmogorov-Loveland stochastic sequences that are not random, i.e., sequences
that are unpredictable but on which a constructive gambling strategy can ac-
crue unbounded winnings. This result gave a clear qualitative separation between
unpredictability and randomness, and hence between prediction and gambling.
However, the precise quantitative relationship between these processes has not
been elucidated. Given the obvious significance of prediction and gambling for
computational learning [2,3,25] and information theory [7,8] this situation should
be remedied.

Recently, Lutz [13,14] has defined computational effectivizations of classical
Hausdorff dimension (“fractal dimension”) and used these to investigate ques-
tions in computational complexity and algorithmic information theory. These
effectivizations are based not on Hausdorff’s 1919 definition of dimension [9,6],
but rather on an equivalent formulation in terms of gambling strategies called
gales [13]. These gales (defined precisely in section 4 below) give a convenient way
of quantifying the discount rate against which a gambling strategy can succeed.
(Ryabko [16,17,18] and Staiger [23,24]) have conducted related investigations of
classical Hausdorff dimension in equivalent terms of the rate at which a gam-
bling strategy can succeed in the absence of discounting.) The feasible dimension
dimp(X) of a set X of sequences is then defined in terms of the maximum dis-
count rate against which a feasible gambling strategy can succeed.

In this paper we use feasible dimension as a model of feasible gambling, and
we compare dimp(X) quantitatively with the feasible predictability predp(X)
of X , which is the highest success ratio that a polynomial-time randomized
predictor (defined precisely in section 3 below) can achieve on all sequences
in X . Our main theorem, described after this paragraph, gives precise bounds
on the relationship between predp(X) and dimp(X). We also investigate the
deterministic feasible predictability dpredp(X), in which the predictor is required
to commit to a single outcome. We use the probabilistic method to prove that
dpredp(X) = predp(X) whenever X consists of a single sequence, and we show
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