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Extended Abstract

In classical subdivision schemes, some initial \diserete data set v° is refined
iteratively, following a prescribed linear rule which is summarized by

vV =8l == 80

where v? are the numerical data at resolution 2~7 and S the subdivision op-
erator. One is usually interested in the convergence properties of this process
to some limit function f = §°°v°. In the simplest setting the data v’ belongs
to the uniform grid 277Z and convergence means that sup; |f(2~7k) — v] Al
goes to zero as j tends to 4+00. The analysis of convergence can be performed
by various methods, including Fourier analysis by Laurent polynomials [4],
when the scheme is uniform.

An important motivation for the study of subdivision algorithms is their
relation to multiresolution analysis and wavelets bases (see e.g. [2] or [6]).
In particular, the contribution of a single wavelet coefficient in the repre-
sentation of a discrete signal is precisely obtained by applying a subdivision
scheme from the scale of the coefficient up to the signal discretization scale.
Therefore, understanding the convergence of subdivision algorithms is fun-
damental in the context of applications of wavelets to data compression or
signal denoising, in which certain coefficients are quantized or discarded.

We consider the situation where this rule is nonlinear in the sense that the
refinement operator depends itself on the data to be refined. We are therefore
facing a rule of the type

v = S(vj_l)vj“l = =800,

We are especially interested in a class of data dependent operators which
has been introduced by Ami Harten in the context of the numerical simula-
tion of conservation laws, and applied in [7] to the derivation of generalized
multiscale representations. The nonlinear refinement rule involves a data de-
pendent stencil selection which aims at making the refinement process more
accurate in the presence pf isolated singularities such as shocks. Consider the
simple 1D case where v} is interpreted as the cell-averages of a function v
on the interval Ijx = 277k, k + 1], i.e. al(v) = 27 fl v(t)dt. Note that the
function v is not unique. We are interested in a reﬁnement rule such that if
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v}, = aJ,(v) for a function v in some class of interest, then vi“ approximates

as best as possible the averages a;’;“ (v) at the next finer scale. This allows
us to make a comparison between several types of refinement rule:

¢ Linear refinement by polynomial reconstruction: for some fixed M, con-
sider for each k the unique polynomial py of degree 2M which agrees with
the cell averages data on the stencil {k M, -,k + M}, in the sense
that aj, +,(pk) =wv,, forl=-M, - M. One then defines the refined

average on the half intervals by vJ}' = o} (p;) and vii = aitt (ow).
This linear refinement process is associated to a multiresolution decompo-
sition into biorthogonal wavelets and its convergence is well established.
The polynomial p; provides accuracy O(2-(3M+17) on I, ; if the func-
tion v is sufficiently smooth - at least C?M+1 _ on the stencil interval
29[k — M,k + M + 1]. Therefore the presence of an isolated jump dis-
continuity of v at some point z € I; ; deteriorates the accuracy down to
O(l) on the 2M + 1 intervals Ij,k—M, cee ,Ij,k+M-

e Nonlinear refinement by essentially non oscillatory (ENO) stencil se-
lection: in order to improve the situation in the neighbourhood of a
jump point x € I, the idea is to systematically replace p; by a poly-
nomial Py = p; selected within {px_as,- - ,pr4m} as the least oscil-
latory. This is typically done by minimizing a cost function such as
C() = X pmiemy140 103, — ] 1|, which measures the oscillation within
the stencil of p;. With such a process, we expect to restore the accuracy
on all the intervals which do not contain z, since the selection mechanism
will tend to avoid the interval I .

¢ Nonlinear refinement by using stencil selection and subcell resolution
(ENO-SR): from the above remark, one can detect the intervals which
might contain jump singularities by the fact that the selection mecha-
nism tends to avoid them. In order to improve further the accuracy in
such intervals I; ;, one can replace J; by a piecewise polynomial function
qr(t) which agrees with px_1(t) and pr41(t), respectively for ¢t < = and
¢t > z. Since however the position of z is unknown, we use the following
strategy to estimate it: we set qx(t) = Pr—1(t)Xe<y + Prt1(t) X¢>y and set
y in such a Way that the average of g agrees with the numerical data i.e.

aj,(qx) =

More details on these methods can be found in [1], [3] and [8]. The analysis of
the subdivision process based on ENO and ENO-SR data dependent refine-
ment rules is more complicated than for standard linear rules. In particular,
Fourier analysis cannot be used. Nevertheless some basic principle remains, in
particular the possibility of deriving a (data dependent) subdivision scheme
for the finite differences, and analyzing convergence and smoothness of the
limit functions through the contractivity properties of this auxiliary scheme,
as detailed in [3].

It is no surprise that the above refinement rules have recently been applied
to image compression. In this context, it is hoped that a better adapted
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Fig. 1. Piecewise smooth image 512 x 512 pixels (a) and coarse scale averages (b)

(2) (b)

Fig. 2. Reconstruction by linear subdivision (a) and by tensor product ENO-SR
subdivision (b).
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Fig. 8. Reconstruction by EA subdivision.

treatment of the singularities corresponding to edges improves the sparsity
of the multiscale representations of images, and in turn the rate/distortion
performance of compression algorithms based on such representations. He we
use a particularly simple piecewise smooth image in order to illustrate the
benefit of using nonlinear rules for the treatment of edge singularities.

We display in Figure 1 (a) the original 512 x 512 image. We start from
its averages on 16 x 16 blocks, represented on Figure 1 (b), and apply to
this coarse resolution image various subdivision schemes in order to refine it.
Figure 2 (a) displays the result of the linear subdivision scheme based on
a tensor product generalization of the quadratic polynomial reconstruction,
i.e. the case M = 2. As expected, accuracy is lost near the edge singularities.
Figure 2 (b) shows the results of the ENO-SR strategy applied in a tensor
product fashion as introduced in [1], which leads to a good treatment only for
vertical and horizontal edges. In order to obtain a good treatment of edges.
in any direction, it is necessary to give up tensor products and introduce
an intrinsically bidimensional approach. As in the 1D case, the strategy is
divided in two steps: based on the stencil selection one first detects the pixels
I;x x I;, which might contain an edge, then the parameters (p,q,7) of the
line edge {pz + qy = r} are estimated from the numerical data, as explained
in [5] or [8]. We refer to this approach as edge-adapted (EA) refinement. As
illustrated by Figure 3, it yields much better results for the approximation of
piecewise smooth functions. Its application to real i 1mage compression is the
object of active current research, see [8].
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