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5 Casson Invariant and Gauge Theory

In this chapter, we give an account of SU (2)—-gauge theory in dimension three.
We discuss C. Taubes’ gauge-theoretical definition of the Casson invariant
as (roughly) the Euler number of the gradient field of the Chern—Simons
function. The Chern—Simons function plays a central role in modern under-
standing of homology 3-spheres, so we discuss it in some detail. An infinite
dimensional analogue of Morse theory applied to the Chern-Simons function
produces the instanton Floer homology which will be discussed in the next
chapter. This gauge-theoretical approach to the Casson invariant leads to
several extensions in a direction different from that of Walker and Lescop.
One of the extensions we discuss is the SU(3) Casson invariant of H. Boden
and C. Herald. Another one is the Casson-type invariant for knots in integral
homology spheres introduced by X.-S. Lin and C. Herald, and finally, the
equivariant Casson invariant of integral homology spheres with a finite cyclic
group action by O. Collin and the author.

5.1 Gauge Theory in Dimension 3

Let M be a closed oriented 3—manifold and E — M a principal SU(2)-bundle
over M. By topological reasons, F is necessarily trivial, and we will fix a
trivialization E = M x SU(2). The (affine) space of SU(2)-connections on E
will be denoted by A. The above trivialization identifies A with 2% (M, su(2)),
the linear space of differential 1-forms with matrix su(2)—coefficients.

A connection A € A allows to lift any curve v : [0,1] — M to a horizontal
curve ¥ : [0,1] — E which is uniquely determined by a lift (0) of v(0). If
~v(0) = (1) then 4(0) and (1) differ by an element of SU(2), which is called
the holonomy of A along vy and is denoted by hol(y). Holonomy defines a
map from the monoid of based loops in M to SU(2).

The group of automorphisms of E is isomorphic to G = Map(M, SU(2))
and is called a gauge group. Its elements are called gauge transformations.
They act on A by the rule g* A = g 'dg+g ' Ag, where g € G and A € A. The
action of G on A is not free. The stabilizer of a connection A € A equals the
stabilizer of its holonomy group in SU(2). A connection is called irreducible
if its stabilizer is {1}, and it is called reducible otherwise. More specifically,
connections with stabilizer U(1) are called abelian, and those with stabilizer
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SU(2) are called central. The latter include the product connection #, which
is also called the trivial connection.

We let B = A/G and denote by B* the subset of B consisting of G—orbits
of irreducible connections. Completed in appropriate Sobolev norms, B* is a
smooth infinite dimensional Banach manifold. The group G is not connected.
In fact, mo G = [M, SU(2)] = Z, the latter isomorphism given by the degree of
g: M — SU(2). The homotopy exact sequence now implies that 71 8* = Z

Associated with each connection A € A is its curvature, Fy = dA +
A A A, which is an su(2)-valued differential 2—form on M (the wedge here
stands for the matrix product on su(2)-coefficients and the wedge product
on differential forms). A connection A is called flat if F4 = 0. The holonomy
map for a flat connection A defines a homomorphism A : my M — SU(2).
This correspondence establishes a well-known identification

Hom(m M, SU(2))/SO(3) = { Flat SU(2) connections on M }/G.

Irreducible representations on the left correspond to irreducible flat connec-
tions on the right, so that the representation space R*(M) can be viewed
as a subset of B*. Abelian (resp. central) connections correspond to abelian
(resp. central) representations, see Section 3.2.1.

A choice of Riemann metric on M provides us with an L?*-inner product
on the spaces 2P(M) of differential p—forms for each p > 0. Together with
the positive-definite pairing (a,b) — —tr(ab) on su(2) it gives an L?-inner
product (, ) on £2P(M,su(2)). Given orientation on M, this defines the Hodge
star operator * : QP (M, su(2)) — 237P(M, su(2)) by the rule

—/ tr(a A xb) = (a,b).
M

The tangent space to A at a point A € A is of course 2'(M,su(2)), and the
normal space to the G—orbit of A may be identified with the kernel of the
differential operator

d5y = —xdax : QY (M,su(2)) — 2°(M,su(2))

which is formally adjoint to the operator d4. Here, dau = du + [A,u] (=
du + Au — uA) is the covariant derivative of v with respect to A.

The operator d4 extends by the Leibniz rule to all spaces 2P(M,su(2)).
If A is flat, we obtain an elliptic complex

2°(M, su(2)) L5 01 (M, 5u(2)) L2 22(M,su(2)) 24 Q3(M, su(2))

whose cohomology H*(M,ad A) is the cohomology of M with coefficients in
the twisted flat bundle E x gy (2) su(2). In particular, H°(M,ad A) can be
identified with the Lie algebra of the stabilizer of A, and H*(M,ad A) with
the group cohomology of 71 M with coefficients in representation (3.5).
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5.2 Chern-Simons Function

Let M be a closed oriented 3-dimensional manifold. For any connection a €
A, we define the Chern-Simons function of a by the formula

1

cs(a) = o)

/ tr(aAda+2a/\a/\a). (5.1)
M 3
The Stokes’ Theorem implies that, for any smooth compact oriented 4-mani-
fold X with 0X = M and an SU(2)—connection A on X which restricts to «
over M,

cs(a) = o
According to Chern-Weyl theory, the latter integral over a closed manifold
represents a second Chern number and, in particular, is an integer. This
implies that cs(g*a) = es(a) + deg(g), where g € G so that Chern-Simons
function is well-defined as a map cs : B — R/Z.

Another equivalent definition of the Chern-Simons function is as follows.
Given a connection a over M, we can take a path [0,1] - A from the
trivial connection to a in the trivial SU(2)-bundle. This path determines a
connection A in the trivial SU(2)-bundle over [0,1] x M, and we let

1

B w [0,1]x M

tr(Fa A Fa). (5.2)
X

cs(a) tr(Fa A Fa). (5.3)

The set of values of ¢s on its critical points is an invariant of a 3—manifold
called the Chern—Simons invariant Methods for computing this invariant and
examples of computations can be found in Auckly [18], Fintushel-Stern [83]
and Kirk-Klassen [165]. In all known cases, the values of cs on its critical
points are rational numbers. Whether the same is true in general is an open
problem.

Ezample 5.1. The Chern—Simons invariant for a lens space L(p, ¢) is given by
—n?r/pforn =0,...,[p/2] where r is any integer satisfying qr = —1 mod p,
see [165]. Note that the Chern—Simons invariant distinguishes homotopy in-
equivalent lens spaces, compare with Section 1.2.1, but it cannot distinguish
homotopy equivalent non-homeomorphic lens spaces.

Ezxample 5.2. The Chern-Simons invariants for Seifert fibered homology sphe-
res Y(ay,...,ay) are calculated in [83] and [165]. Suppose that X(ay,...,ay)
has Seifert invariants b, (ai,b1),...,(an,b,) with b even, see Section 1.1.4.
Moreover, if one of the a; is even, assume it is a; and arrange the Seifert
invariants so that the b; with i # 1 are even. If o : m; X (ay, ..., an) = SU(2)

is a representation with rotation numbers (¢1,...,£,), see Section 3.5.2, then
62 n gl

cs(a) = ————mod Z where e=aj - ay - —. 5.4

(a) day ---a, ! n Zai (54)
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Ezample 5.3. The results of Examples 5.1 and 5.2 are instances of the fol-
lowing more general theorem, see [165]. Let k& C M be a knot in a closed
oriented 3—manifold M with exterior K, and let curves m and ¢ form a basis
in m (OK) = Z*. Given two representations ag,a; : m M — SU(2), suppose
that there is a path a; : m K — SU(2),0 <t < 1, from ap to a; (both
restricted to m K). Let (u(t), A\(t)) be a path in R? such that

at(m) — e?m’u(t)’ Oét(g) — e?m’A(t)-

Then )
cs(ay) — es(ag) = —2/0 At)p'(t)dt € R/Z. (5.5)

This means that if we know the image of the path a; : m K — SU(2),
0 <t < 1, in the pillowcase, see Section 3.3.1, then we can compute the
difference cs(ay ) —cs(ap). Thus the difference is determined by the pillowcase
image of R(K). Application of this result to surgeries on the unknot gives
results of Example 5.1, and its application to the surgeries on a regular fiber
in a Seifert fibered homology sphere gives results of Example 5.2.

This method does not work in the situations when the representation
variety R(K) is not connected. This happens for instance for the figure-eight
knot, see Figure 3.3. This difficulty can sometimes be overcome by passing to
the complex character variety Hom(m; K, SL(2,C))/SL(2,C). In particular,
the Chern-Simons invariants of surgeries on the figure-eight knot can be
computed by this method, see [165].

An affirmative answer to the following question would make this theory
more useful. Given a closed manifold M and representations ag, a; : m M —
SU(2), does there exist a knot (or link) & C M so that the restrictions of ag
and a; onto the exterior K of k lie on a path component of R(K)?

Ezample 5.4. The formula (5.5) was used to compute the Chern-Simons in-
variants for torus bundles over a circle in [165] and for higher genus surface
bundles in [15]. The formula ((5.5) was generalized to include general decom-
positions of 3-manifolds along tori in [166] and [170].

Ezample 5.5. Two representations, ay : mM — SU(2) and ay : ;N —
SU(2) are called flat cobordant if there exists an oriented cobordism W be-
tween M and N and a representation o : mW — SU(2) restricting to aps
and ay over M and N, respectively. It follows immediately from (5.2) that
cs(apr) = cs(an). Using this observation and the formula (5.5) David Auckly
[18] developed a method which allows to compute the Chern—Simons invari-
ants for all graph manifolds and for some hyperbolic manifolds.

Remark 5.6. The definition of cs(A4) € R/Z for SU(2)-connections A can be
easily adapted to define cs(A') € R/4Z for SO(3)—connections A’. The two
Chern-Simons functions are related by the formula 4-cs(A) = cs(ad4) where
ad4 is the induced SO(3)—connection in the adjoint bundle. If A is a flat
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connection viewed as an SU(2) representation then the representation corre-
sponding to ady4 is obtained by composing A with the adjoint representation
ad : SU(2) — SO(3).

The Chern-Simons function was first defined as a secondary characteristic
class in [54]. Tt was shown later in [12], [13] and [14] that the p,-invariants,
which are defined as real numbers, are congruent to cs(«) modulo Z. Thus,
cs(a) can be viewed as the non-integral part of p,, see Remark 6.17.

5.3 The Casson Invariant from Gauge Theory

A gauge-theoretical definition of the Casson invariant was given by Taubes
[292]. His construction was motivated by an analogy with finite dimensional
Morse theory, namely, the derivation of the Euler characteristic from critical
points of a Morse function. Another description of the Casson invariant mo-
tivated by Seiberg—Witten gauge theory was recently suggested by Ozsvath
and Szabd [254].

5.3.1 Morse Theory and Euler Characteristic

Let h : X — R be a smooth function on a closed smooth manifold X. The
Hessian of h at a point p € X is the bilinear form on the tangent space 7}, X
given in local coordinates by the matrix

0%h

If p is a critical point of h, we define its Morse index p(p) as the number
of negative eigenvalues of Hessp(h) counted with multiplicities. We call h :
X — R a Morse function if its Hessian is non-degenerate at all of its critical
points. The condition of being Morse ensures that the critical points of h are
isolated and hence there are only finitely many of them. Then, according to
the Poincaré—Hopf theorem,

e(X) =3 (-1,

where e(X) is the Euler characteristic of X and the summation on the right
extends over all critical points of h.

5.3.2 Critical Points of cs and Spectral Flow

Let X' be an integral homology sphere endowed with a Riemannian metric
and let cs : B* — R/Z be the Chern—Simons function (5.1). The L>-gradient
of cs can be easily computed as
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1
T *FA, (57)

(Ves)(4) = -

which can be viewed as a vector field on the (infinite dimensional) manifold
B*. The critical points of cs are (the gauge equivalence classes of) irreducible
flat connections, which we identified earlier with the points in R*(X).

The Hessian of cs at a connection A is the first order differential operator

1
(—m> xdy : kerdy — kerd?, (5.8)

which is essentially self-adjoint. Let us postpone discussion on the non-
degeneracy of this operator until next section and see instead how it can
be used to define indices of the critical points of ¢s. The problem is of course
that the spectrum of (5.8) is unbounded in both directions, hence we cannot
define the index of a critical point as the number of negative (or positive)
eigenvalues, as we did it in the finite—dimensional Morse theory. One way
around this problem is to compare the Hessians at two critical points by see-
ing how many eigenvalues change sign along a path connecting them. This
will give a relative index, and the problem then will be to pick an overall
normalization.

The natural choice of a flat connection with which to compare all other
flat connections is the trivial connection #. Unfortunately, § does not belong
to B*. Because of this, it is useful to replace the operator (5.8) by a Fredholm
operator which gives the same relative index between irreducible flat connec-
tions but which also makes sense at reducibles. We define such an operator
by

Ka= (d(l _*Z*ﬁ> L (%@ ') (M, su(2)) — (2°® Q') (M, su(2)). (5.9)

For any connection A, the operator K 4 is an elliptic operator on M. Its
L2—completion is a self-adjoint Fredholm operator. It has pure point real
spectrum without accumulation points, which is unbounded in both direc-
tions.

Let Ay and A; be flat connections and consider a continuously differ-
entiable path of operators K 4 with A(0) = Ag and A(1) = A;. The one-
parameter family of spectra of operators K 4 ;) can be viewed as a collection of
spectral curves in the plane connecting the spectrum of K 4, to the spectrum
of K4, see Figure 5.1. These curves are continuously differentiable functions
of t, at least near zero. Consider the straight line connecting the points (0, —J)
and (1,6) where § > 0 is chosen smaller than the absolute value of any non—
zero eigenvalue of K4, and K 4,. The number of eigenvalues, counted with
multiplicities, which cross from negative to positive side of this line minus
the number which cross from positive to negative is well-defined and finite
along a generic path. This number is called the spectral flow of the family
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along the path. Note that we choose a 6 > 0 to help us deal with flat con-
nections A whose associated operator K 4 has non-trivial kernel; away from
such connections we could choose § = 0.

spectrum spectral

flow = -3

Fig. 5.1.

The spectral flow only depends on the homotopy class rel {0,1} of the
path ¢t — A(t). Therefore, it defines a locally constant function on the space of
continuous paths between Ay and A;. We denote this function by sf (A4g, A41).
Choosing different Ag or A; within their gauge equivalence classes changes
sf (Ao, A1) to sf (Ao, A1)+ 8k for some integer k, see Corollary 6.3. Therefore,
sf (Ap, A1) mod 8 is well defined on gauge equivalence classes of Ag and A;.

Applications of the spectral flow in this chapter will only use its modulo
2 reduction. The full strength of the modulo 8 spectral flow will be explored
in Chapter 6, together with various spectral flow formulas.

5.3.3 Non—degenerate Case

Let X' be an integral homology sphere such that R*(Y) is non-degenerate,
that is, H!(m; X,ad a) = 0 for every representation a € R*(X), see Lemma
3.16.

Lemma 5.7. For every o : m X — SU(2), the kernel of the operator K, is
isomorphic to H*(m X,ada) © H'(m ¥, ada).

Proof. Since K, is a self-adjoint operator and « is flat, we have ker K, =

ker K2 where
& d 0
2 _ a Yo
Ka_( 0 d;da+dad’;>'

Therefore, the kernel of K, is represented by harmonic 0— and 1-forms with
coefficients in the flat bundle ad,. Such forms are in one-to-one correspon-
dence with vectors in H°(m ¥,ada) & H'(m ¥,ada), by Hodge theorem.
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The cohomology groups H°(m X, ad ) vanish for irreducible represen-
tations «, therefore, R*(X) is non-degenerate if and only if all irreducible
flat connections are non-degenerate as critical points of the Chern—Simons
function.

Suppose that R*(Y) is non-degenerate, then it is finite. For any a €
R*(X) define its Floer index by the formula

p(a) = sf (8,a) mod 8, (5.10)

compare with Section 6.2.2. Taubes showed in [292] that the quantity

% Z (1)@ (5.11)

aER*(X)

is independent of the metric on X and equals (up to an overall sign) the Cas-
son invariant of X', compare with Theorem 5.9. Thus in the non-degenerate
case, both (3.9) and (5.11) count the same points in the space R*(X), and
the essence of Taubes’ theorem is that the two counts are consistent, one
coming from intersection theory and the other from gauge theory. A formula
similar to (5.11) will hold for all integral homology spheres X after we take
care in the next section of (possible) degeneracies in R*(X).

5.3.4 Perturbations

Let ¥ be an integral homology 3-sphere and let ; : St x D? — X, i =
1,...,n, be a collection of embeddings of solid tori in X with disjoint images.
We will think of the +; as loops in X and refer to {~; } as a link. Let n(z)
be a smooth rotationally symmetric bump function on the unit disc D? with
the support away from the boundary of D? and with integral one. Define an
admissible perturbation function h : B — R by the formula

n
A =3 [ hattrhola(u(S" x {eh) -n@) dz, (5.12)
=1 7D
where h;, i = 1,...,n, are smooth functions (one averages over the tubular

neighborhood by analytical reasons). The function h is gauge invariant be-
cause a gauge transformation only changes holonomy by conjugation. Given
an admissible perturbation function h, the perturbed flat moduli space

Riu(Z) = {A| * Fa — d4x* (Vh)(4) = 0}/,

where Vh is the L?—gradient, of h, is the critical point set of cs +h : B — R/Z.
Extend the definition (5.9) to obtain the operator

_(0 d
Kan= <d,4 —xdg + 472 Hessy h) (5.13)
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where Hess 4 h is the Hessian of h at A. A critical point A of the perturbed
Chern-Simons function cs +h is non-degenerate if and only if ker K4 p = 0.
We call Ry (X) non-degenerate if all of its points are non-degenerate. The
following result is proved in [137] and [292], see also [30].

Theorem 5.8. For any admissible perturbation function h, the space Ry (X)
is compact. Moreover, there exists a link {~; } with sufficiently many compo-
nents such that, for a generic choice of the functions { h; }, the critical point
set Ry (X) is non-degenerate and contains the trivial connection.

Proof. Uhlenbeck’s compactness theorem [299] can be adapted to prove the
compactness of Rp(X), see [138]. Recall that the compactness of the non-
perturbed space R(Y) is immediate from the fact that R(X) is a real algebraic
variety, see Section 3.2.1. To prove the second part of the proposition, one
needs to find an abundant collection of admissible perturbation functions such
that, in any direction tangent to R(X'), there is a function whose derivative
is non-zero. Given such a collection, an argument with the implicit function
theorem completes the proof.

Let h be a generic admissible perturbation function as in Theorem 5.8 so
that Rp,(Y) is non-degenerate and hence finite. Denote by R} (X) the subset
of Rp(X) consisting of the orbits of irreducible perturbed flat connections.
Given A € R} (X), define its Floer index pu(A) as the spectral flow mod 8 of
the family of operators K 4, where A(t) is a path of connections from 6 to

A.
Theorem 5.9. (Taubes [292]) The quantity

1 Z (=1)HA) (5.14)

AER;(X)

is independent of h and the metric on X and equals up to an overall sign the
Casson invariant of X.

Remark 5.10. This is a rather technical result and we refer the reader to
Taubes’ paper [292] for the proof. We only mention that the requirement that
X be an integral homology sphere simplifies things a lot in that it prevents
the existence of non-trivial reducible flat connections before and after a small
perturbation. This allows one to use the standard cobordism argument to
show that the quantity (5.14) is independent of the choice of perturbation h,
since the parametrized moduli space

U Riw®) x{t} (5.15)
te[o,1]

gives a cobordism between R;(O)(E) and RZ(l)(Z)‘ If the assumption that
H(X,Z) =0 is dropped, there might exist non-trivial reducible flat connec-
tions which will prevent (5.15) from being compact. In the case of rational
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homology spheres, this problem is addressed in preprint [187]. This leads to
a gauge theoretical interpretation of the Walker invariant.

5.3.5 Morse—type Perturbations

In practice, it is common that a degenerate representation variety R*(X')
turns out to be non-degenerate in the following weaker sense : at every point
A in R*(X), the kernel of the Hessian is equal to T4R*(X) and the Hes-
sian is non-degenerate in the direction of the normal bundle of R*(X¥) in
B*. In particular, R*(Y) is smooth. If this is the case we say that R*(X) is
non-degenerate in the Morse—Bott sense. Fach connected component of the
manifold R*(X) admits a Morse function, and these functions combined to-
gether can be used instead of the admissible perturbations (5.12) to perturb
R*(X) into a finite collection of non-degenerate points. Of course, one needs
to show that the invariants resulting from the two different sets of perturba-
tions are the same. This is widely believed to be true although we are not
aware of any proof of this fact that has ever appeared in the literature, at
least in such a generality. The following is based on Christopher Herald’s
notes he kindly supplied us with.

Theorem 5.11. Suppose that R*(X) is non-degenerate in the Morse—Boit
sense. Then there exists an admissible perturbation function h : B* — R such
that its restriction to each connected component Ry of R*(X) is a Morse
function fr : Ry — R. Moreover, for any sufficiently small ¢ > 0 there is
an open neighborhood Uy, of Ry, disjoint from other components of R*(X)
such that all the critical points of cs +e - h in Uy are non-degenerate and can
naturally be identified with the critical points of fy.

This theorem is proved in [29]. Its downside is that we do not have control
of the Morse functions fj, and they may turn out to be unnecessarily com-
plicated. Before we go on, we need to slightly enlarge the class of admissible
perturbation functions. Define g; : B* — R by the formula

54 = [ hulerhola (8" x {ah) -n(a) &,

and view an m—tuple (g1,...,9m) as a function from B* to R™. We extend
the class of perturbations by allowing to compose (g1, .. ., gm) with arbitrary
smooth functions 3 : R™ — R, not just linear functions ¥ (t1,...,tm) =
t1 + ...+t as in (5.12). This extended class of admissible perturbations
leads to the same invariants.

Theorem 5.12. Let R*(X) be non-degenerate in the Morse—Bott sense, and
let R1,..., Ry, be its connected components. For any choice of Morse func-
tions fr, : R — R, there is an admissible perturbation function h such that
the restriction of h onto Ry is equal to fi, for each k=1,... n.
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Proof. We start with an abundant collection of admissible perturbation func-
tions as in the proof of Theorem 5.8. We enlarge this collection if necessary
so that there are admissible perturbation functions g, ..., g, which sepa-
rate points in the flat moduli space R(X). The proof that this is possible
is essentially due to Taubes [292], and we only recast it briefly. Abundance
guarantees that finitely many admissible perturbation functions are needed
to separate points (4, A') € R(X) x R(X) in an open neighborhood W of
the diagonal. For any pair (A, A’) not on the diagonal, there is a curve 7 in
X such that the trace of the holonomy along ~ separates points in an open
neighborhood of (A4, A’). Compactness of R(X) x R(X) \ W allows us to
choose a finite collection of additional curves to assure the point separation
property.

The point separation property for g1, . .., gn is not nearly as strong as say-
ing that any smooth function on the Ry can be obtained as a linear combina-
tion of g1, ..., gm. This is the reason why we enlarged the class of admissible
perturbations to include functions (g, . . ., gm ) for any smooth ¢ : R™ — R.
The theorem now follows by composing the function (g1,...,gm) : A - R™
with the fi and suitable bump functions on R™.

5.3.6 Casson Invariant and Seiberg—Witten Equations

Let X be an oriented integral homology sphere equipped with a Riemannian
metric g and consider the bundle CI(T'X)®C of complexified Clifford algebras
over Y. There exists a unique SU(2) vector bundle Wy over X acted upon by
Cl(TY) ® C such that the action of the volume form of X' is the identity on
Wo. Let W = Wy® L where L is a trivial complex line bundle over X', then W
is a U(2)-bundle. The Levi-Civita connection on T'X lifts to a connection on
Wo, and for any choice of a U(1)-connection on L we have the corresponding
Dirac operator 94 : I'(W) — I'(W) on the sections of W.

Let A = C x I'(W) where C is the space of smooth U(1)-connections
in L. The gauge group G = Map(X,S?) acts on A by the rule g* (A,9) =
(A+2gtdg, g 11). This action is free on the subset A* away from the points
(4,0). In proper Sobolev completions, B* = A4*/G is an infinite dimensional
Banach manifold. Define the Chern—Simons—Dirac function csp : B* — R
by the formula

csD<A,w>=/E AAFA+/2<w,6A¢>Redv,

compare with (5.1). The set of critical points of ¢sp is identified with the mod-
uli space M of solutions of Seiberg—Witten equations, see [177] and [228]. Af-
ter a generic perturbation, the moduli space M is finite and non—degenerate
and its points are canonically oriented. A count of these points results in an
invariant xsw (X, g) = #M, which is independent of all arbitrary choices
made in its definition but one: it depends on the Riemannian metric g. How-
ever, according to [53], the quantity
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. 1 .
a(X) =xsw(X,g) - 1nd5+g sign W

is a topological invariant of X', where W is any compact spin 4—manifold with
OW = X and 0 is the Dirac operator on W satisfying the boundary conditions
of [12]. The invariant a(X') can also be expressed in terms of xysw (X, g) and
certain n—invariants of X', see for example [198].

Theorem 5.13. For any integral homology sphere X, the quantity (X)) is
equal up to an overall sign to the Casson invariant A\(X).

This result was conjectured to be true by Kronheimer and Mrowka. It
was first proved modulo 2 in [53] then checked by an explicit calculation
for all Brieskorn homology spheres ¥ (p,q,r) in [248]. A complete proof of
this conjecture can be found in [198] where it is shown that the invariant «
satisfies the Casson’s surgery formula and hence coincides with A up to an
overall sign by Theorem 3.1. The proof in [198] crucially relies on the paper
of Meng and Taubes [213]. Another approach to proving Theorem 5.13 can
be found in a series of preprints [205].

The above invariant arising from the Seiberg—Witten gauge theory bears
close resemblance to the invariant defined by Ozsvath and Szabd [254] using
Heegaard splittings and theta divisors on Riemann surfaces. Their invari-
ant is defined for all rational homology spheres and, if properly normalized,
coincides with the Walker invariant (and the Casson invariant for integral
homology spheres).

5.4 Casson—type Invariants of Knots

By Casson—type invariants of knots we mean the invariants introduced by X.-
S. Lin [199] and C. Herald [137]. They are obtained by (creatively) counting
irreducible SU(2) representations of the knot group which have a fixed trace
along the knot meridian. It turns out that these invariants can be expressed
in terms of the (regular) Casson invariant and certain equivariant knot signa-
tures. Ramifications of these ideas lead to the equivariant Casson invariant,
see Section 5.5, and the Floer homology of knots, see Section 6.7.5.

5.4.1 Representation Varieties of Knot Groups

Let £ C X be a knot in an oriented integral homology 3—sphere X' and let
K be its exterior. Then K is a compact oriented 3—manifold with boundary
0K = T?, a 2-dimensional torus. The inclusion 0K — K induces a map of
representation varieties r : R(K) — R(T?), where R(T?) is the pillowcase
variety, see Section 3.3.1. In a generic situation, the variety R(K) and its
image in R(T?) are described by the following theorem of Herald [138].
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Theorem 5.14. For a generic admissible perturbation h, the perturbed char-
acter variety Rp(K) consists of two central orbits, a smooth open arc of
abelian orbits with one non-compact end limiting to each central orbit, and a
smooth 1-dimensional manifold of irreducible orbits with finitely many ends,
each limiting to a different point on the abelian arc. Suppose that the abelian
arc is parametrized by ¢, 0 < ¢ < 7. If a point on the abelian arc with co-
ordinate ¢ is the limiting points of an irreducible orbit then €*? is a root of
the Alexander polynomial Ag(t).

The map r : Ry(K) — R(T?) is an immersion taking the 1-dimensional
strata of Ry (K) into the smooth part of R(T?).

The points on the abelian arc which are the limiting points of irreducible
components are called bifurcation points.

Proof. To put the variety R(K) into general position one can use essentially
the same admissible perturbations as in Section 5.3.4. We only need to make
sure that the image of the 7; : S' x D? — K is disjoint from K. This way all
perturbed flat connections restrict to flat connections over 0K and we still
have the the restriction map r : Ry (K) — R(T?) from the perturbed flat
moduli space Ry, (K) to the pillowcase. The complete proof is rather technical
and we refer the reader to [138] for all the details.

On the other hand, the statement about the roots of the Alexander poly-
nomial is relatively easy to see, compare with [6]. Assume for the sake of
simplicity that % is a knot in S® and that no perturbations are needed. Every
reducible representation « : w1 (K) — SU(2) factors through U(1) — SU(2).
Therefore, Zariski tangent space H!(K,ada) at a can be identified with
Hl(K,u(1)) @ HL(K,C) according to the splitting su(2) = u(1) & C, with
U(1) acting on C with weight 2. Here, H. stands for the first cohomology
with coefficients in the corresponding reduction of a. An easy calculation
shows that H.(K,u(1)) = R for all abelian a. At a bifurcation point the
dimension of the Zariski tangent space jumps from one to at least two, which
is due to the non-vanishing of H.(K,C) at such a point.

Let us compute H} (K, C). The knot exterior K is a K (, 1)-space for 7 =
m K. The group 7 has Wirtinger presentation with generators aq, ..., a, and
relations r1,...,7,. Let Z[r] be its group ring then the Z[r]—chain complex
of its universal cover in degrees 0, 1, and 2 is of the form

Zlr] —— Z[r]" «2— Zla]" —— -

where A = (0a;/0rj). Every representation « : m K — U(1) factors through
H,(K,Z) = Z,which is generated by a meridian m of the knot k. Let a(m) =
e'® then the induced representation H(K,7Z) — C* sends m to e>'®. The
cohomology H(K,C) is the cohomology of the complex

Clt,t1] —— Clt, et EB) gt e
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where A(t,t~1) is the classical Alexander matrix, and the formal variable ¢
should be replaced by €2**. The Alexander polynomial is the greatest common
divisor of the minors of A(t,t7!) of order n — 1. Since H2(K,C) = 0, the
non-vanishing of H (K, C) at a bifurcation point ¢ implies that A (e%*?) = 0.

Remark 5.15. Conversely, one may expect that every point ¢ on the abelian
arc with Ag(e?*?) = 0 will be a bifurcation point. This was shown to be
the case by Frohman and Klassen in [101] under the assumption that the
point corresponds to a simple root of the Alexander polynomial. This result
continues to hold under the much weaker hypothesis that the Tristram—Levine
signature function of the knot has a jump at the point, see [136] and [141].
This implies, in particular, that under either assumption, the space R*(K)
is non-empty.

Ezample 5.16. The Alexander polynomial of a trefoil knot is ¢t + ¢~ — 1. It
has two roots on the unit circle, exp(mi/3) and exp(5mi/3). These correspond
to two bifurcation points ¢ = 7/6 and ¢ = 57/6 on the arc of abelian
representations, see Figure 3.2. The Alexander polynomial of the figure-eight
knot equals 3—t—¢ ', so it does not have roots on the unit circle. Respectively,
there are no bifurcation points in its representation variety, see Figure 3.3.

5.4.2 The Invariants

Let m be the meridian of a knot ¥ C X and fix an a € [0,7]. Let S,
consist of representations o € R(T?) such that tra(m) = 2cosy. For a
generic perturbation h, the intersection r(Rp(K)) NS, is transversal and
hence consists of finitely many points. By counting these points with proper
signs as defined in [137], one obtains an integer #(r(R4(K)) N'S,). The
following theorem is due to Herald [137].

Theorem 5.17. For every 0 < ¢ < m such that Ag(e*¥) # 0, the integer
#(r(Ru(K))NS,) is independent of generic admissible perturbation h and
defines an integral valued invariant h,(X, k) of the knot k C X. Moreover,

1 .
ho (2, k) = 4X(D) + 5 sign By (e*%),

where By(t) = (1 —t)S + (1 —t1)S* and S is a Seifert matriz of k C X,
compare with (2.7).

Proof. One starts by checking that ho(X, k) = 4\(X). As ¢ increases from 0
to m, the integer h, only changes when ¢ passes through a bifurcation point
on the arc of reducibles. By studying the local picture at a bifurcation points,
one shows that h,(X, k) changes by the same rule as half the signature of
the matrix By (e?%).
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The invariant h, defined in Theorem 5.17 is called the Herald—Lin invari-
ant. Originally, a special case of Theorem 5.17 appeared in [199]. That paper
used topological methods and only covered the case of ¢ = 7/2 and ¥ = S3.
The invariant introduced in [199] is sometimes referred to as the Casson-Lin
invariant. Heusener and Kroll [141] and Austin (unpublished) have found a
topological proof of Theorem 5.17 in the case of ¥’ = S and arbitrary ¢.

5.5 Equivariant Casson Invariant

Let X be an integral homology 3—sphere with a finite cyclic group action
making it into a branched cover of another integral homology sphere with
branch set a knot k. Equivariant Casson invariants of X are defined in [57]
by counting SU(2)-representations of m X equivariant with respect to the
induced action. These invariants can be identified with certain equivariant
knot signatures of k. Application of this theory to various natural cyclic
group actions on the links of singularities leads to geometric proofs of the
Fintushel-Stern and Neumann-Wahl formulas and their extensions, and gives
a closed form formula for the Floer homology of Brieskorn homology spheres.
The definition of equivariant Casson invariants in [57] is gauge theoretical.
Cappell, Lee and Miller in an unpublished manuscript utilized an intersection
theory to define an equivariant Casson invariant for integral homology spheres
acted upon by a cyclic group of odd prime order.

5.5.1 Equivariant Gauge Theory

Let X' be an integral homology 3-sphere and 7 : ¥ — X an orientation
preserving diffeomorphism of order n. It induces a map 7* : R*(X) —
R*(X) on irreducible SU (2)-representations of m; X with the fixed point set
R7T(X) = Fix(7*). For any conjugacy class [a] € R7(X) there exists a matrix
u, € SU(2) such that 7*a = uyau; . The irreducibility of a implies that u,
is defined uniquely up to sign. Since ugqg-1 = guag~!, there is a well-defined
correspondence [a] — |truy|. Observe that u” belongs to the stabilizer of «,
so that u?? = £1 and hence | tr u,| = 2 cos(mm/n), for some uniquely defined
integer m such that 0 < m < [n/2]. Thus, we have a splitting

[n/2]
R7(2) = || Ru(2),

where R,,,(X) consists of the conjugacy classes of irreducible representations
a:mX — SU(2) such that o*a = uau™! for some u € SU(2) with |tru| =
2cos(mm/n), m=0,...,[n/2].

Let E be a trivialized SU(2)-bundle over X. Any endomorphism of E
which lifts 7 : ¥' = X induces an action on connections on E by pull-back.
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As any two such lifts of 7 differ by a gauge transformation, the induced action
T B*(X) — B*(Y) is well-defined. Let B™(X) C B*(X) be the fixed point
set of 7*. It can be broken into a disjoint union as follows.

For any connection o with [a] € B7(X) there exists a lift v, of 7 such that
via = a. As the bundle E is trivialized, v, can be given in the basefiber
coordinates by the formula v, (z, &) = (7(x), pa()€) where p, : ¥ — SU(2)
is a gauge transformation. Observe that p] belongs to the stabilizer of «
and therefore p? = £1 by the irreducibility of a. The solution set of the
equation p™ = +1 in SU(2) is a collection of conjugacy classes described by
the equations |tr p| = 2 cos(mm/n) with m =0, ..., [n/2]. The space B (X)
splits into disjoint components according to which conjugacy class the image
of p, belongs,

[n/2]
BT (L) = || Bu(2).
m=0

In particular, Ry, (X) is contained in B,,(X), a refinement of the usual holon-
omy correspondence between flat connections over X' and representations of
the fundamental group of X'. We will regard R, (X) as the critical point set
of the Chern-Simons function cs restricted to By, (X). The Zariski tangent
space of R,,(X) at a point « can be identified with the equivariant group
cohomology

HY(m¥,ada) = Fix{7*: H'(m ¥,ada) - H'(m ¥,ada) }.

The representation space R, (X) is called non-degenerate if the cohomology
groups H!(m X, ad a) vanish for all @ € R, (X).

5.5.2 Definition of the Invariants

Let X be an integral homology 3—sphere with an orientation preserving diffeo-
morphism 7 : ¥ — X of order n. The diffeomorphism 7 induces a Z /n—action
on Y whose quotient is always homeomorphic to a rational homology sphere,
which we denote by X'. From this point on we will assume that X’ is an
integral homology sphere, which is equivalent to saying that 7 has a fixed
point on Y. This condition ensures that X' has a distinguished branch set, a
knot k, corresponding to the non—-empty fixed point set of 7.

Refining the construction of the Floer index outlined in Section 5.3.2, we
associate with any non-degenerate representation o € R™(X) an equivariant
Floer index as follows. Let us fix a Riemannian metric on X which is invariant
with respect to 7, and a lift v : E — E of 7 such that v*a = a. Choose a
path a(t), t € R, of connections such that a(t) = # near —oo, a(t) = a near
+00, and v*a(t) = a(t) for all ¢ (the latter can be achieved by averaging).
Consider the path of self-adjoint Fredholm operators

K (2° @ 0, (Z,5u(2) = (2° @ 2Y),(X,su(2))
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obtained by restricting the operators (5.9) onto the differential forms invari-
ant with respect to the induced action of v. The Floer index u" () is then
defined to be the spectral flow of K;(t) reduced mod 4.

Note that u”(a) = p(a) mod 2 whenever n is odd, see [59]. In general,
this is not true if n is even, see Example 5.24.

If R7(X) is non-degenerate, the equivariant Casson invariant is defined
by the formula

N(Z)=1/2 Y (—nrT. (5.16)

aERT(X)

In addition, refined equivariant Casson invariants are defined as

N(2)=r/2 > (1)H@), (5.17)

QER,(X)

where k =1/2if m/n # 1/2 and k = 1 if m/n = 1/2. The extra factor of & is
explained by the fact that the correspondence a + tru, is only well-defined
up to a sign. Because of that, the count of representations with fixed | tr u,|
is roughly twice the count of those with fixed tr u,, unless tru, = 0.

If R7(X) fails to be non-degenerate, an approach similar to that of Section
5.3.4 and Section 5.4.1 provides a family of generic admissible perturbation
functions h : B7(X) — R which yield a non-degenerate equivariant repre-
sentation space, see [57] for details. The equivariant Casson invariant is then
defined by counting points in this space.

5.5.3 Equivariant Casson and Knot Signatures

The equivariant Casson invariants of a homology sphere with a cyclic group
action are expressed in [57] in terms of equivariant knot signatures of the
branch set of the action. The equivariant knot signatures sign™/"(k) are
defined as in (2.7).

Theorem 5.18. Let X' be an integral homology 3—sphere and 7 : X — X an
orientation preserving diffeomorphism of order n. Suppose that the quotient
of X by the induced 7 /n—action is homeomorphic to an integral homology
sphere X' with branch set a knot k C X'. Then, for any m =0,...,[n/2],

1
N (Z) = A(S) + g - sign™ " (),

and therefore, for the (global) equivariant Casson invariant,

n—1
1
T . - toam/n
N(Z)=n-A2")+ A kgo sign™/" (k).
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Proof. A non-degenerate equivariant representation « : m X — SU(2) such
that 7*a = wau™! can be pushed down to the quotient X/7 = X', away
from the branch set k, to give a representation o' : w1y (X' \ k) — SU(2) with
a'(m) conjugate to u (where m is the meridian of k). According to Theorem
5.17, a certain count of representations o’ with a fixed trace of the meridians
essentially gives the sum of an equivariant signature of £ and the Casson
invariant of X’. Therefore, to prove the theorem, one compares the count of
representations « given by (5.16) with that of Theorem 5.17. This is done
with the help of the orbifold gauge theory developed in [59], see also Section
6.7.5. In the degenerate case, special attention should be paid to matching
perturbations in the two theories. For a complete proof, see [57].

5.5.4 Applications

Let k be a knot in an integral homology 3—sphere Y, which is the boundary
of a smooth oriented 4-manifold M with H;(M,Z) = 0. Let X,, be the n—
fold cyclic branched cover of X with branch set the knot k. Given a Seifert
surface F' of the knot k, let M, be the n—fold cyclic branched cover of M
whose branch set is the surface F' with its interior pushed slightly into M.
Then M, is a smooth 4—dimensional manifold with boundary X¥,, and with a
natural Z /n—action. Fix a generator 7 : M,, — M,, of Z /n.

Although the manifold M,, might depend on the choice of F', this will not
be the case for its signature. More precisely, the vector space Hy(M,,,C) can
be split as Hy(M,,,C) = Ho ® H1 D ... Hpn—1, where H,, is the eigenspace
of the operator 7, : Hy(M,,C) — Hs(M,,C) with eigenvalue e>7#™/"_ The
signature of the intersection form of M,, restricted to H,, is denoted by
sign™(M,,) and is called the mth equivariant signature of M,,. Obviously,

n—1
sign(M,,) = Z sign™ (M),
m=0

and it is a classical result of Viro (see Theorem 4.4 and Section 4.8 in [301])
that sign™(M,,) = sign(M) + sign™/" (k). This fact together with Theorem
5.18 proves the following result.

Corollary 5.19. Suppose that the 3—manifold X, = OM,, constructed above
from a knot k C X = OM is an integral homology sphere. Then

1
AT(Zp) —n-AX) = 3 (sign(My) —n -sign(M)).
Similarly, for the refined equivariant Casson invariants (5.17)

AL (En) — MX) = < (sign™(M,,) — sign(M)) .

| =
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Ezxample 5.20. Let p,q,r > 2 be pairwise relatively prime integers then the
link X(p,q,r) of singularity (1.1) is an integral homology sphere. The map
7(z,y,2) = (x,y,e™"2) is an orientation-preserving diffeomorphism of or-
der r, which makes X(p, q,r) into an r—fold cyclic branched cover of S* with
branch set a (p, ¢)—torus knot. According to Corollary 5.19,

1 .
AT(E(p,q,T)) = g SlgnM(paq)T)>

where M (p, q,r) is the Milnor fiber (for a proper choice of the branching sur-
face). Theorem 5.23 below implies that in fact A7 (X(p,q,7)) = AM(X(p, ¢, 1)),
so that we arrive at the Fintushel-Stern formula, see Theorem 3.29. The sec-
ond part of Corollary 5.19 refines this formula in that it relates the equivariant
signatures of M (p, ¢,r) to the invariants A7 (X (p,q,r)).

Ezxample 5.21. Let aq,...,a, be pairwise relatively prime integers, and let
Y(ay,...,ay) be the link of singularity (1.2). Then X(a4,...,a,) is an inte-
gral homology sphere which can be represented as an a,—fold branched cover
of integral homology sphere Y'(ay, ..., a,_1) via the action 7(z1, ..., 2n—1, Zn)
= (21, Zn—1, e2mi/an zn). The branch set of this covering is a regular fiber
of the Seifert fibration of ¥'(ay,...,a,—1). According to Theorem 5.23 below,
invariants A™ and A coincide in this case, and an induction by n then proves
that

1,
A X(ay,...,ap)) = 3 sign M (ay, ..., a,),
where M (ay,...,a,) is the Milnor fiber, compare with Theorem 3.32.

Ezample 5.22. Let X be an integral homology sphere obtained as the link of
singularity at zero of f(z,y)+2" = 0, see Example 1.19. The map 7(z,y, z) =
(z,y,e*™/"2) is an orientation preserving diffeomorphism of X of order n,
which makes X into a cyclic branched cover of S* with branch set a graph
knot, compare with Example 1.23. The invariants A\™(Y) and A(X) again
coincide, see Theorem 5.23, therefore, A(X) equals one eighth of the Milnor
fiber signature.

The last three examples provide geometric proofs of the Neumann-Wahl
conjecture, see Section 3.5.3, for several families of algebraic links. The con-
jecture was originally verified for all these families in [83] and [243] by purely
combinatorial methods. The crucial fact used in the above examples is of
course the equality A = A”. This equality is a consequence of the following
theorem proved in [57] (for the definition of graph knot see Section 1.1.8).

Theorem 5.23. Let k C X be a graph knot in an integral homology sphere
and let X, be the n—fold cyclic branched cover of X with branch set the knot
k. If ¥, is an integral homology sphere then A\™(X,,) = A(X,,).

The following examples demonstrate that Theorem 5.23 is specific to
graph knots and that in general the equivariant Casson invariant need not
be equal to the Casson invariant.
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Ezample 5.24. Let X(p,q,r) be a Brieskorn homology sphere (1.1) and con-
sider the complex conjugation involution 7(x,y,z) = (Z,¥, Z). The quotient
of X (p,q,r) by this Z/2-action is S*, with branch set a Montesinos knot of
type (p,q,r), see Example 1.22. The induced action of 7 on the representa-
tion space R*(X(p,q,r)) is identity. More precisely, for every representation
a:m(X(p,q,r)) = SU(2), there exists u € SU(2) such that tru = 0 and
7 a = uau~!. According to [272], the Floer indices are related by the for-
mula u(a) = 2u” (@) + 1 mod 4. Therefore, the equivariant Casson invariant
AT(X(p,q,r)) is obtained by counting all the representations in R*(X(p, q,r))
but with signs different from those giving A(X(p, ¢, 7)). This observation was
used in [272] to give a closed form formula for the Floer homology of ¥ (p, ¢,7),
see also Section 6.4.2. These results were extended to all Seifert fibered ho-
mology spheres ¥(aq,...,a,) in [278].

Ezample 5.25. Every plumbed integral homology sphere X admits a pre-
ferred involution 7 : X — X generalizing the complex conjugation involution
on links of singularities, see Example 1.26. Let A™(X') be the corresponding
equivariant Casson invariant then A7(X) = p(X), the f-invariant of Neu-
mann and Siebenmann, see Section 7.2.3.

Ezample 5.26. Let k be a knot in S and denote by D,k its untwisted White-
head double with e—clasp, see Figure 3.6. Let X' be the n-fold cyclic branched
cover of S? with branch set D.k. Then ¥ is an integral homology sphere and
A7 (X) = 0 for any knot k because all the equivariant signatures of D .k are
equal to zero. On the other hand, A\(X) = ne - A](1) according to Theorem
3.23. Therefore, in general, A\(X) # A7 (X).

Example 5.27. Let X be an integral homology sphere represented as an n—fold
cyclic branched cover of S? with branch set a knot k. If n = 2, the difference
between the Casson and equivariant Casson invariants can be measured in
terms of the Jones polynomial of k, see Theorem 3.21 (where (1/8) - signk =
A7 (X5)). For arbitrary n, this difference can be expressed in terms of residues
of certain rational functions related to the Kontsevich integral of &, see [122].

5.6 The SU(3) Casson Invariant

This section describes the SU(3) Casson invariant defined by H. Boden and
C. Herald in [30]. Their definition extends the gauge theoretical approach
to the Casson invariant outlined in Section 5.3. Unlike the regular Casson
invariant, the invariant of Boden and Herald takes real values. Recently, two
integer valued versions of the SU(3) Casson invariant were announced, one
by Cappell, Lee and Miller [46] and the other by Boden, Herald and Kirk
[31]. An approach to defining SU(n) Casson invariants for all n was proposed
in [49].
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5.6.1 Some SU (3)—Gauge Theory

Let X be an oriented integral homology 3-sphere and let A be the space
of SU(3)—connections on a trivialized bundle X' x SU(3). By fixing a trivial
connection 6, we identify A with the linear space £2* (X, su(3)) of su(3)-valued
differential 1-forms on X. The gauge group G = Map(X, SU(3)) consisting
of the automorphisms of the bundle X' x SU(3) acts on A by the rule g*A =
g tdg + g7t Ag, where g € G and A € A, compare with Section 5.1. This
action is not free, and according to the size of the stabilizer, there is a natural
stratification of A and also of the quotient space B = A/G. An SU(3)-
connection A is called irreducible if its stabilizer consists of constant maps
into Z /3, the center of SU(3). Irreducible connections form the top stratum
A* and its quotient B* = 4*/G has the structure of a Banach manifold (in
proper Sobolev completions). Below the top stratum, there are strata whose
stabilizers are respectively U(1), S(U(1) x U (1) x U(1)), S(U(1) x U(2)), and
SU(3).

Let us consider the space R(X) of the gauge equivalence classes of flat
SU(3) connections. As usual, it can be identified with the SU(3) character
variety

R(X) = Hom(m (X),SU(3))/ SU(3)

consisting of SU(3) representations of 7 (X) modulo conjugation. The only
strata relevant to R(X') are those with stabilizers Z /3, U(1), and SU(3). The
reason is that, for the integral homology sphere X', there exist no non-trivial
representations 1 (X) — U(1). According to the three types of stabilizers,
Z/3,U(1), and SU(3), the space R(X) splits into a disjoint union R(X) =
R*(Z)UR*(EZ)U{6}.

5.6.2 Definition of the Invariant

As in the SU(2) case, the space R(X) can be viewed as the critical point set
of the Chern—Simons function cs : B — R/Z, see Section 5.3.2. The Chern—
Simons function may have to be perturbed, which is done with the help of
admissible perturbation functions h : B — R. These functions are modeled
after admissible perturbation functions (5.12); their precise definition can be
found in [29] and [30]. Let

Riu(Z)={A| xFy —4n* (Vh)(A) =0}/G

be the perturbed flat moduli space. Boden and Herald [30] show that there
exists an € > 0 such that, for all admissible perturbation functions h with
[|h|| < e, the space Ry (X) splits as

Riu(X) = Rp(X) URR(Z)U {8},

where R} (Y) and R{(X) are compact 0-dimensional manifolds consisting
of gauge orbits that satisfy certain cohomological non-degeneracy condition,
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see [29] or [30]. Moreover, for any perturbed flat connection A there exists a
unique component A of flat connections which is within e—distance of A.

Given an SU(3)—connection A, define a self-adjoint elliptic operator K 4
as in (5.9) with only difference that now it will act on the space 2°(X, su(3)) @
2 (X, 5u(3)). Let A be a flat connection, and choose a path A; € A with
Ag = 6 and A; = A. Define sf (6, A) to be the spectral flow of the path
K 4,, see Section 5.3.2. If [A] € R%(X) then we can choose the path so that
each A; has stabilizer U(1) for all 0 < ¢ < 1. Adjusting by a path of gauge
transformations, we can assume that, for all 0 <t <1,

Ap € Aswe)xu(1))

the space of connections on X' x S(U(2) x U(1)). Let h = s(u(2) x u(1)) be
the Lie algebra of S(U(2) x U(1)) viewed as a Lie subalgebra of su(3). Then
su(3) = h @ C?, and the spectral flow decomposes as

SE (8, A) = sf (6, A) + sf c=(6, A).

All the above can be perturbed if necessary by using an admissible pertur-
bation function h. The operator K4 will then be replaced by the operator
K4 p, see (5.13), and the above spectral flows will be the spectral flows of
families of the K 4 5. For a sufficiently small admissible perturbation h define

w9 = 3 (e
[AlER; ()

and

Br(D) = 3 (CUTON (s c2(6,4) — 4 es(d) + 2),
A]ERE(E)

where A is the unique component of flat connections within ||h||~distance of
A, see above. The following theorem is proved in [29].

Theorem 5.28. For a generic sufficiently small admissible perturbation h,
the quantity Apu(X) = Ny (X) — 1/2- N5, (X) is an invariant of integral
homology 3—sphere X.

The invariant Apg(X) is called the SU(3) Casson invariant of X. The
number Mg (X) may look like the natural generalization of the Casson in-
variant, compare with (5.11). Unfortunately, it depends on the choice of per-
turbation A, which is due to the fact that reducible connections can perturb
into irreducible ones. A similar situation occurs in Walker’s generalization of
the Casson invariant, see Example 4.4.

Whenever an irreducible flat connection sinks into or emerges from re-
ducible connections, an integer jump occurs in the spectral flow sf 2 (6, A).
Thus the discrepancy in Mg, (X) is compensated by the second term,
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AL (X). It should be noted that only the difference sf ¢2(¢, A) — 4 cs(A)
is well defined on the gauge orbit; each term individually depends on the
choice of representative for [A]. Adding in the constant part of the second
term only adds a multiple of SU(2) Casson invariant. It is needed to assure
certain properties of the resulting invariant.

5.6.3 Properties and Computations

The SU(3) Casson invariant Agg defined in Theorem 5.28 takes real values.
The conjectured rationality of the Chern—Simons function cs on flat connec-
tions, see Section 5.2, would imply that Apg is rational. The invariant Agg
is insensitive to the change of orientation,

Apa(—X) = Apu(X).
It satisfies the following connected sum formula, see [29],
Apa(Z1#X2) = Apa(Z1) + A (X) + 4 A(Z1) A(X2),

where A is the original Casson invariant. Although Apg is not additive under
the connected sum operation, the difference Agy — 2% is. If Apy(X) # 0
then 71 (X) admits a non-trivial representation into SU(3) or SU(2).

The invariant Agg is rather difficult to compute because one lacks alge-
braic tools such as the surgery formula, which are so useful in computing the
SU(2) Casson invariant. The following calculations can be found in [32].

Ezample 5.29. Let Yy (p,q) be the integral homology sphere obtained by
(1/k)-surgery on the right handed (p,g)-torus knot so that X_r(p,q) =
X(p,q,pqk + 1) and Ty (p,q) = —X(p,q,pgk — 1) for k > 0. Then

84k3 — 138k% + 19k
Apu(Zk(2,3)) = 606k — 1) ;

3 2
Ao (S6(2.5)) = 3100k10(12§20_kl)+ 24116’
26264k> — 16156k> + 970k
14(14k — 1) ’
124200k% — 59004%2 + 2758k
18(18% — 1)

/\BH(Ek(2; 7)) =

A (Xk(2,9)) =

Note that the SU(3) Casson invariants of the manifolds obtained by (1/k)—
surgery and (—1/k)—surgery on the same torus knot have different absolute
values while their SU(2) Casson invariants only differ in sign.
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