
1. Introduction

Living creatures are divided into species. Over time (which may be com-
paratively short or very long) species change, i.e. they evolve. There are
several essential components to natural evolution. Individuals (e.g. animals
or plants) within a species population are different. As a result, some live
longer and are more likely to have children that survive to adulthood than
others (natural selection). These animals (or plants etc.) are said to be fitter
(cf. “survival of the fittest”). Sometimes the variation has a genetic compo-
nent, i.e. the children may inherit it from their parents. Consequently after a
number of generations the proportion of individuals within the species with
this favourable inheritable characteristic tends to increase. That is, over time
the species as a whole changes or evolves.

Each animal or plant grows from an egg or seed to a full grown adult. Its
development is controlled in part by its genes. These are the genetic blueprints
which specify this development process and so the final form of the individual.
Of course other factors (often simply called “the environment”) or just plain
luck have a large impact on the animal or plant. The relative importance
of genes, which each of us inherits from our parents, and “the environment”
remains deeply controversial.

Even today in many species each adult produces children whose genes
come only from that adult. For example bulbs not only have seeds (sex) but
also form daughter bulbs which grow directly from the parent’s root. They
are initially physically part of the same plant but may eventually split from
it. Except for random copying errors (mutations) the new plant is genetically
identical to the original.

Many of the species we are used to seeing use sex to produce children.
Sex means the genes in each child are a combination of genes from its two
(or more) parents. The process whereby the genes of both parents are selected,
manipulated and joined to produce a new set of genes for the child is called
crossover. (The term recombination is also occasionally used).

Why Nature invented sex is by no means clear [Ridley, 1993] but notice
that it has several important properties. First children are genetically differ-
ent from both their parents. Second, if individuals in the population contain
different sets of genes associated with high-fitness, a child of two high fit-
ness parents may inherit both sets of genes. Thus sex provides a mechanism

2 1. Introduction

whereby new beneficial combinations of existing genes can occur in a single
individual plant or animal. Since this individual may itself have children, the
new combination of genes can in principle spread through the population.

The process of copying genes is noisy. While Nature has evolved mecha-
nisms to limit copy errors they do occur. These are known as mutations. If
errors occur when copying genes in cells which are used to create children,
then the mutations will be passed to the children. It is believed that most
mutations are harmful but sometimes changes occur that increase the fitness
of the individual. By passing these to the children the improvement may over
successive generations spread through the population as a whole.

Notice that although there are no explicitly given commands or even
goals, natural evolution has over time produced a great many novel and
sophisticated solutions to everyday (in fact life or death) problems. The idea
that blind evolution can do this has proved very seductive.

Computer scientists and engineers have been exploiting the idea of nat-
ural evolution within their computers (artificial evolution) for many years.
Initially the theoretical foundations of automatic problem solving using evo-
lutionary computation were quite weak, but in recent years the theory has
advanced considerably. This book concentrates on the theoretical foundations
of one such technique, genetic programming (GP) [Koza, 1992, Banzhaf et
al., 1998a], which uses artificial evolution within the computer to automat-
ically create programs. However genetic programming is a generalisation of
older artificial evolutionary techniques called genetic algorithms (GAs) and
so many of our theoretical results actually also cover results for GAs as spe-
cial cases. Therefore these advances in GP theory can also be applied to GAs.
This is part of a trend towards the advancement and coming together of the
theory behind the various strands of evolutionary computing.

We will defer more details of genetic programming until Section 1.2, and
Section 1.3 will give an outline of the rest of this book, but first we will
consider evolution (either in Nature or in the computer) as a search process.

1.1 Problem Solving as Search

Genetic programming has been applied successfully to a large number of dif-
ficult problems such as automatic design [Koza et al., 1999], pattern recog-
nition [Tackett, 1993], data mining [Wong and Leung, 2000], robotic con-
trol [Banzhaf et al., 1997], synthesis of artificial neural architectures (neural
networks) [Gruau, 1994a, Gruau, 1994b], bioinformatics [Handley, 1995], gen-
erating models to fit data [Whigham and Crapper, 1999], music [Spector and
Alpern, 1994] and picture generation [Gritz and Hahn, 1997]. (See also Ap-
pendix A).

Throughout this book we will treat evolution as a search process [Poli and
Logan, 1996]. That is, we will consider all possible animals, plants, computer
programs, etc. as our search space, and view evolution as trying a few of these

1.1 Problem Solving as Search 3

possibilities, deciding how “fit” they are and then using this information to
decide which others to try next. Evolution keeps on doing this until it finds
an individual which solves the problem. I.e. has a high enough “fitness”. In
practice search spaces are huge or even infinite and evolution (even Natural
evolution with a whole planet’s resources) cannot try all possibilities.

Any automatic program generation technique can be viewed as searching
for any program amongst all possible programs which solve our problem.
Naturally there are an enormous number of possible programs. (Given certain
restrictions we can calculate how many there are; see page 114). As well
as being huge, program search spaces are generally not particularly benign.
They are usually assumed to be neither continuous nor differentiable, and
so classical numerical optimisation techniques are incapable of solving our
problems. Instead heuristic search techniques, principally stochastic search
techniques, like GP, have been used. In this and the following chapters we
shall cast a little light on the search space that GP inhabits and how GP
moves in it.

Often genetic algorithm and GP search is like that shown in Figure 1.1.
The dark-gray area represents the search space. Each dot (circular, square or
triangular) is an individual. Different symbols are used to represent individ-
uals of different generations in a population made of five individuals: circles
represent the initial population (Gen 0), squares represent generation 1 and
triangles represent generation 2. The initial population is scattered randomly
throughout the search space. Some of its members (such as the circle at
the top left of the figure) are better than others and so they are selected
to have children (produced using crossover) more often. Other individuals
are selected less frequently or not at all (such as the circle at the bottom
of the figure). The creation of the generation 1 program at the left of Fig-
ure 1.1 (grey square) is caused by the mixing of the genes (by crossover)
of the two initial programs at the left of Figure 1.1. This crossover event is
represented by the arrows leaving the two parent programs and pointing to
their child program. Very often crossover will produce offspring that share
some of the characteristics of the parents and can be somehow considered as
being “halfway” between the parents in our idealised example. As a result of
selecting fitter individuals and of crossover producing children between their
parents, the new generation will be confined to a smaller region of the search
space. For example, the individuals at generation 1 (squares) are all within
the light-gray area, while the individuals at generation 2 (triangles) will be
confined to the white area.

One important question that the theory of evolutionary algorithms wants
to answer is: “How can we characterise, study and predict this search?” Ac-
cording to the different approaches used to try to answer this question we
can identify a number of major strands in the theoretical foundations of evo-
lutionary algorithms.

4 1. Introduction

Gen 0

Gen 1

Gen 2

Fig. 1.1. Typical behaviour of evolutionary algorithms involving selection and
crossover

1.1.1 Microscopic Dynamical System Models

These approaches are typified by Markov chain analysis which models the
fine details of the individuals within the artificial population and how the
genetic operations probabilistically change them over time [Nix and Vose,
1992, Davis and Principe, 1993, Rudolph, 1994, Rudolph, 1997c, Rudolph,
1997a, Rudolph, 1997b, Vose, 1999, Kellel et al., 2001]. In these models the
whole population is represented as a point in a multidimensional space, and
we study the trajectory of this point to determine attractors, orbits, etc. The
idea is illustrated in Figure 1.2. Typically these are exact models but with
a huge number of parameters. Such models have been studied extensively
in the genetic algorithm literature, but it is only very recently that Markov
chain models for GP have been proposed [Poli et al., 2001], and so, they are
not discussed in this book.

1.1.2 Fitness Landscapes

In its simplest form a fitness landscape can be seen as a plot where each
point in the horizontal direction represents all the genes in an individual
(known as its genotype) corresponding to that point. The fitness of that
individual is plotted as the height. If the genotypes can be visualised in two
dimensions, the plot can be seen as a three-dimensional map, which may
contain hills and valleys. Large regions of low fitness can be considered as
swamps, while large regions of similar high fitness may be thought of as
plateaus. Search techniques can be likened to explorers who seek the highest
point. This summit corresponds to the highest-fitness genotype and so to the
optimal solution (cf. Figure 1.3).

1.1 Problem Solving as Search 5

Fig. 1.2. Dynamical system model of genetic algorithms. The grey area represents
the set of all possible states the population can be in. For a simple GA there
are
(
2N +M−1

2N −1

)
states (N , number of binary genes; M , size of population). The

population starts in one state (represented by the lower left dot) and each generation
moves (cf. white arrows) to the next.

Ridge

Local peak

Swamp

Peak

1
2

3
4

5
6

7
8 1

2
3

4
5

6
7

8

0

0.5

1

1.5

2

Fig. 1.3. Example of a fitness landscape

Greedy search techniques which only consider the local neighbourhood
can be likened to short-sighted explorers, who just climb up the slope they
are currently on. This is often a good strategy which leads to the top of the
local hill, which is a local optimum. However the problem landscape may be
structured so that this is not the global optimum. The local landscape may
be flat (so there is no local gradient to guide the explorer) or it may lead the
explorer via an unnecessarily long path to the local peak.

6 1. Introduction

We can think of GAs as operating via a population of explorers scattered
across such a landscape. Those that have found relatively high fitness points
are rewarded by being allowed to have children. Traditionally mutation is
seen as producing small changes to the genotype and so exploring a point
near the parent, while crossover explores points between two parents and so
may be far from either.

Notice that the fitness landscape incorporates the concept of neighbours,
i.e. points that can be reached in one step from where we are now. Changing
the neighbourhood changes the fitness landscape. This can have profound
implications for how easy a problem is. Provided that all fitness values are
different, it is theoretically possible to reorder any landscape so a local hill
climber will quickly reach the global summit from any starting point. However
in general it is not practical to find such a transformation due to the vast size
of practical search spaces and consequently even larger number of different
transformations.

Chapter 2 describes fitness landscapes in more detail. Chapter 9 maps the
fitness landscape of the Santa Fe ant trail problem, while Section 8.3.1 shows
the parity problem’s fitness landscape is particularly awful.

1.1.3 Component Analysis

Component analysis concentrates on how genes or combinations of genes
spread. Such combinations can be thought of as replicating themselves in
their own right. These replicants are components of the higher level replicants
represented by individual animals (or plants etc.) which reproduce and have
children (who are also animals, plants etc.). [Dawkins, 1976] calls this idea
the “selfish gene”.

The component analysis approach focuses on the propagation of subcom-
ponents of individuals. In genetic algorithms the individuals are represented
in the computer by strings of bits. Component analysis considers what hap-
pens inside the strings and looks at single bits or groups of bits. For example,
suppose the population contains just two bit strings: 0000 and 1111. Fig-
ure 1.4 shows the effects of crossing over the individuals 0000 and 1111 at
their middle point to produce individuals 0011 and 1100. The component
approach looks not at the effect on the individuals but at the effect on bit
patterns. For example, before crossover the population contains three in-
stances of the bit pattern 00, as shown in the upper part of Figure 1.4. (The
bit string 0000 contains the bit pattern 00 in three different ways, i.e. using
bits 1 and 2, 2 and 3 or 3 and 4). After crossover the population contains two
instances of bit pattern 00. The deletion of one instance is represented by the
cross in the lower part of Figure 1.4. The same crossover operation creates
some other components. For example, the bit patterns 10 and 01. These are
represented by the white dots in the lower part of Figure 1.4.

In genetic programming subcomponents could be single primitives, entire
expressions, or even groups of expressions. For example, in GP we can con-

1.1 Problem Solving as Search 7

1100

0011

11 11

00 00

Crossover

Before

After

0

1 00
01

10

11110
111

0

1 00
01

10

11110
111

Fig. 1.4. Some of the effects of a crossover on the components of the bit strings 1111
and 0000 (left). The dots represent cases of the corresponding bit string components.
After crossover (lower right) the white dots indicate instances of matching strings
which did not exist before (i.e. schema creation). The crossed out dots indicate
strings which no longer match (i.e. schema disruption) and black dots those that
are unchanged.

sider how many copies of particular program components there are in total in
the population and how this evolves. For example Chapter 10 considers how
many “+” functions there are in the population within certain levels of the
programs and analyses if they increase or decrease and even if they become
extinct. [Langdon, 1998c, Chapter 8] gives a similar analysis for a different
problem.

Chapter 3 describes various component analysis approaches in more de-
tail.

1.1.4 Schema Theories

An alternative approach to understanding how genetic algorithms and genetic
programming search, is based on the idea of dividing the search space into
subspaces (called schemata1). The schemata group together all the points in
the search space that have certain macroscopic quantities in common. For
example all the programs which start with an IF statement could be grouped
together in one schema.

Traditionally in genetic algorithms each gene is represented by a single
bit. The complete set of genes is represented by a string of such bits. So,
1 The word “schemata” is the plural for “schema”.

8 1. Introduction

H

Fig. 1.5. The search space is divided into subspaces (schemata), shown as large
squares. The populations are the same as in Figure 1.1 but instead of keeping track
of every individual in the population we consider only how much of the population
is in each schema.

as another example, we can group together every string with a particular
pattern of genes in one schema. For example our schema could be everyone
who has the allele 0 in locus 4 and the allele 1 in loci 5 and 6, i.e. all the
strings with pattern 011 three bits from the left end. These form a subset of
the whole search space (actually one-eighth of it).

Using such subsets it is possible to study how and why the individuals
in the population move from one subspace to another (schema theorems).
This idea is depicted in Figure 1.5. In the figure schemata are represented
as squares. If we focus our attention on schema H, a reasonable way of con-
sidering the search might be to look at the number of individuals within H
at generation t, m(H, t). This number varies over time. In the initial gener-
ation m(H, 0) is 0. In the first generation m(H, 1) is 2, while m(H, 2) = 3,
etc. A schema theorem would model mathematically how and why m(H, t)
varies from one generation to the next. Chapters 3–6 will discuss the schema
theories at length.

The concept of schema is very general and can be used to characterise
the search space itself as well as the motion of the population in the search
space. For example, as we will show in Chapter 7, one can divide the search
space into sets (schemata) of programs with the same number of instructions,
programs with the same behaviour or having the same fitness.

1.1.5 No Free Lunch Theorems

The no free lunch theorems (often abbreviated to NFL) are a series of re-
sults that prove that no search algorithm is superior to any other algorithm

1.2 What is Genetic Programming? 9

on average across all possible problems. A consequence of this is that if an
algorithm, say genetic programming, performs better than random search on
a class of problems, that same algorithm will perform worse than random
search on a different class of problems [Wolpert and Macready, 1997]. From
this one might draw the erroneous conclusion that there is no point in trying
to find “better” algorithms. However, since typically we are not interested in
all possible problems, this is not the case. A search algorithm can do better
than random search provided that the search bias explicitly or implicitly em-
bedded in such an algorithm matches the regularities present in the class of
problems of interest.

To date no specialised result for GP has been presented, and this topic is
not discussed further in the book.

1.2 What is Genetic Programming?

Figure 1.6 shows the essential iterative nature of evolutionary algorithms. In
evolution in the computer, like in Nature, there is a population of individuals.
The fortunate or fitter ones survive and produce children. These join the
population and older individuals die and are removed from it. As in Nature,
there are two ways this can happen. The whole population may be replaced
by its children (the generational model). For example, in annual plants or
animal species where only the eggs survive the winter, the whole population
is renewed once a year. Alternatively new children are produced more or less
continuously (the steady state model). In the computer, the population is
usually of fixed size and each new child replaces an existing member of the
population. The individual that dies may be: chosen from the relatively unfit
individuals (e.g. the worst) in the population, chosen at random or selected
from the child’s parents.

In artificial evolution most of the computer resources are devoted to de-
ciding which individuals will have children. This usually requires assigning a
fitness value to every new individual. In genetic programming the individuals
in the population are computer programs. Their fitness is usually calculated
by running them one or more times with a variety of inputs (known as the test
set) and seeing how close the program’s output(s) are to some desired output
specified by the user. Other means of assigning fitness such as coevolution
are also used (e.g. [Juille and Pollack, 1996]).

In genetic programming the individual programs are usually written as
syntax trees (see Figures 1.6–1.11) or as corresponding expressions in pre-
fix notation. New programs are produced either by mutation or crossover.
There are now many mutation and crossover operators: [Langdon, 1998c,
pages 34–36] describes many of the mutation and crossover operators used
in GP. Mutation operators make a random change to (a copy of) the parent
program. For example, point mutation replaces a node within the tree by an-
other chosen at random which has the same arity (i.e. number of arguments).

10 1. Introduction

Population
 of
 Programs

Test

Programs

x

-

x+

x

xx

x
*

*

-

x+

x *

x x

Create new Programs

Select Parents

in Proportion to

their Fitness

Fig. 1.6. Genetic programming cycle. The GP cycle is like every evolutionary
process. New individuals (in GP’s case, new programs) are created. They are tested.
The fitter ones in the population succeed in creating children of their own. Unfit
ones die and are removed from the population.

Thus a leaf (which occurs at the end of a branch, and has arity 0) is replaced
by another leaf chosen at random and a binary function (e.g. +) is replaced
by another binary function (e.g. ×).

Crossover works by removing code from (a copy of) one parent and insert-
ing it into (a copy of) the other. In [Koza, 1992] subtree crossover removes
one branch from one tree and inserts it into another. This simple process
ensures that the new program is syntactically valid (see Figure 1.7).

1.2.1 Tree-based Genetic Programming

As a very simple example of genetic programming, suppose we wish a genetic
program to calculate y = x2. Our population of programs might contain
a program that calculates y = 2x − x (see Figure 1.8) and another that
calculates y = x

x
x−x3

− x (Figure 1.9). Both are selected from the population

1.2 What is Genetic Programming? 11

x x

+

x x

*

*

x

*

x x

x

Parents

Child

-

*

x x

+

+

x

*

+

+

xxx

Fig. 1.7. Genetic programming subtree crossover: x2 + (x+ (x − x)) crossed with
2x2 to produce 2x2 + x. The right hand subtree (× x x) is copied from the right
hand parent and inserted into a copy of the left hand parent, replacing the subtree
(− x x) to yield the child program (+ (× x x) (+x (× x x))).

because they produce answers similar to y = x2 (Figure 1.11), i.e. they are
of high fitness. When a selected branch (shown shaded) is moved from the
father program and inserted into the mother (displacing the existing branch,
also shown shaded) a new program is produced which may have even higher
fitness. In this case the resulting program (Figure 1.10) actually calculates
y = x2 and so this program is the output of our GP. The C code for this
example is available via anonymous ftp from ftp://ftp.cs.bham.ac.uk/
pub/authors/W.B.Langdon/gp-code/simple

1.2.2 Modular and Multiple Tree Genetic Programming

Many variations on Koza’s tree based genetic programming have been pro-
posed. Of these perhaps Koza’s own Automatically Defined Functions
(ADFs) [Koza, 1994] are the most widely used. With ADFs the program
is split into a main program tree and one or more separate trees which take
arguments and can be called by the main program or each other. Evolution
is free to decide how, if at all, the main program will use the ADFs as well
as what they do. In more recent work even the number of ADFs and their
parameters can be left to GP to decide [Koza et al., 1999].

12 1. Introduction

-

x+

xx

Fig. 1.8. Mum, fitness .64286, 2x − x

*

x x

/

x

x

x *

x

x

-

/

-

Fig. 1.9. Dad, fitness .70588, x
x

x−x3
− x

-

x+

x *

x x

Fig. 1.10. Correct program, fitness 1.0, x+ x2 − x

Angeline’s genetic library [Angeline, 1994] and Rosca’s Adaptive Repre-
sentation with Learning (ARL) [Rosca and Ballard, 1996] are other exten-
sions to GP. In these, evolved code fragments are automatically extracted
from successful program trees and are frozen and held in a library. They are
then available to the evolving code via library calls to new primitives in the
program tree. Sometimes code can be extracted from the library and returned
to the program tree where it can continue to evolve.

Another approach, popular with multi-agent systems, is to have multiple
trees, each of which has a defined purpose [Langdon, 1998c]. This can be
combined with the ADF approach. So each individual may contain code for a
number of agents or purposes. These may call other trees as functions (i.e. as
ADFs). The ADFs may be specific to each purpose or shared by the agents
or purposes.

Several authors have taken the tree program concept further. Broadly in-
stead of the tree being the program it becomes a program to create another

1.2 What is Genetic Programming? 13

-1 -0.5 0.5 1

-1.5

-1

-0.5

0.5

1

1.5

Fig. 1.11. x2 (solid), test points (dots), values returned by mum (2x − x, dashed
line) and dad (x

x
x−x3

− x, small-dashed line)

program. In [Gruau, 1994b]’s cellular encoding technique the evolved trees
become programs to describe artificial neural networks or electrical networks
[Koza and Bennett III, 1999] etc. Some draw inspiration from the develop-
ment of embryos to further separate the phenotype from the genotype. For
example [Jacob, 1996]’s GP uses Lindenmayer systems (L-Systems) as inter-
mediates for evolving artificial flowers, while [Whigham and Crapper, 1999]
treat the tree as defining a path through a formal grammar. The approach
taken in [O’Neill and Ryan, 1999] is similar, but uses an initially linear pro-
gram to navigate the grammar yielding a computer program written in the
user-specified language.

1.2.3 Linear Genetic Programming

Except for Section 8.1 we shall not say much about linear GP systems. Briefly
there are several linear GP systems. They all share the characteristic that the
tree representation is replaced by a linear chromosome. This has some sim-

14 1. Introduction

ilarities with conventional genetic algorithms. However, unlike conventional
GAs, typically the chromosome length is also allowed to evolve and so the
population will generally contain individual programs of different sizes. Typ-
ically each chromosome is a list of program instructions which are executed
in sequence starting at one end. Linear GP systems can be divided into three
groups: stack based, register based and machine code.

In stack-based GP [Perkis, 1994] each program instruction takes its argu-
ments from a stack, performs its calculation and then pushes the result back
onto the stack. For example when executing a + instruction, the top two
items are both popped from the stack, added together and then the result
is pushed back onto the stack. Typically the program’s inputs are pushed
onto the stack before it is executed and its results are popped from the stack
afterwards. To guard against random programs misbehaving, checks may be
made for both stack overflow and underflow. The programs may be allowed
to continue execution if either happens, e.g. by supplying a default value on
underflow and discarding data on overflow [Perkis, 1994].

Register-based and machine-code GP [Nordin, 1997] are essentially sim-
ilar. In both cases data is available in a small number of registers. Each
instruction reads its data from one or more registers and writes its output
to a register. The program inputs are written to registers (which the evolved
code may be prevented from over writing) before the program is executed and
its answer is given by the final contents of one or more registers. In machine-
code GP the instructions are real hardware machine instructions and the
program is executed directly. In contrast register-based (and all other GP)
programs are interpreted, i.e. executed indirectly or compiled before execu-
tion. Consequently machine code GP is typically at least ten or twenty times
faster than traditional implementations.

1.2.4 Graphical Genetic Programming

While we do not deal explicitly with the theory of other types of GP, the
reader may wish to note that programs can be represented in forms other
than linear or tree-like. So the chromosomes of GP individuals can also be of
these forms and genetic operators can be defined on them. For example PDGP
(Parallel Distributed Genetic Programming) represents programs as graphs,
see Figure 1.12. PDGP defines a number of graph mutation operators and
crossover operations between graphs. The graph edges are directed and are
interpreted as data-flow connections between processing nodes. While PDGP
defines a fixed layout for the nodes, both the connections between them and
the operations they perform are evolved. In a number of benchmark problems
PDGP has been shown to produce better performance than conventional tree
GP [Poli, 1997, Poli, 1999a].

Another example of graph programs is Teller’s PADO (Parallel Archi-
tecture Discovery and Orchestration) [Teller and Veloso, 1996, Teller, 1998].
PADO is primarily designed for solving the problem of recognising objects

1.3 Outline of the Book 15

Output Node

Terminal

Function

Fig. 1.12. Grid-based representation of graphs representing programs in PDGP
(for simplicity inactive nodes and links are not shown).

in computer vision or signal analysis. Again there are a number of mutation
operators and crossover operators and the graph edges are directed but they
are control-flow connections between processing nodes. While PDGP defines
a fixed layout for the nodes, PADO has a looser structure in which the num-
ber and location of processing nodes as well as the connections between them
and the operations they perform are evolved.

1.3 Outline of the Book

Chapter 2 introduces the notion of fitness landscape and discusses its useful-
ness in explaining the dynamics of evolutionary search algorithms.

Chapter 3 describes ways of analysing evolution by looking at the prop-
agation of components within the programs rather than the individual pro-
grams themselves. This can be likened to [Dawkins, 1976]’s “Selfish Gene”
theory of evolution. Early genetic programming schema theorems, such as
those due to Koza, Altenberg, O’Reilly and Whigham, fall into this category,
which makes them different from the traditional genetic algorithm schema
theory [Holland, 1975].

Schema theorems make predictions for the average behaviour of the pop-
ulation at the next generation. Chapter 4 looks at GP schema theorems
(such as those due to Poli and Rosca) which provide lower bounds on schema
proportions. Like Holland’s schema theorem, these do not include the fact
that genetic operators can create new instances of schemata as well as delet-
ing (disrupting) them. Therefore we have referred to them as “pessimistic”
schema theories. However Chapter 5 describes “exact” schema theories which
do make allowance for schema creation. Chapter 6 concludes the presentation
of the GP schema theorems by bringing together their implications.

Chapter 7 takes a different view point, by considering the GP search space
and how it varies with the size and shape of programs. Some widely applicable
results are presented. The formal proofs are deferred to Chapter 8.

We finish in Chapters 9, 10 and 11 with a detailed analysis of two bench-
mark GP problems and by considering bloat within GP. The analysis uses the

16 1. Introduction

component analysis tools of Chapter 3, the schema theorems of Chapters 4–6
and the search space analysis of Chapter 7.

Appendix A gives some pointers to other sources of information on genetic
programming, especially those available via the Internet, and is followed by
the bibliography, a list of special symbols and a glossary of terms.

Finally, while each chapter finishes with a summary of the results con-
tained within it, Chapter 12 gives our overall conclusions and indications
of how the theoretical foundations of genetic programming may continue to
develop.

http://www.springer.com/978-3-540-42451-2

