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Just as univariate polynomials, multivariate polynomials correspond uniquely
to symmetric multiaffine polynomials. With symmetric polynomials, it is a
simple task to derive algorithms which evaluate, degree elevate, reparametrize,
or subdivide a triangular surface in Bézier representation. The generaliza-
tion of the techniques described for univariate polynomials in Chapter 3 is
straightforward.

11.1 Symmetric polynomials
Every polynomial surface b(x) of total degree < m can be associated with
a unique n-affine symmetric polynomial b[x; ... x,] over R? having the

following three properties.

e b[x; ... x,] agrees with b(x) on its diagonal, i.e.,

e b[x; ... X,| is symmetric in its variables, i.e., for any permutation
(y1 .- ¥,) of (X1 ... %Xy), we obtain

bly; ...y, =b[x1 ... x,] .

e b[x; ... x,] is affine in each variable, i.e.,
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bllax+ (1 —a)y)Xz2 ... X,] =ab[xxa ... x,] + (1 —a)blyxa ... X,] .
The symmetric polynomial b[x; ... x,] is also referred to as the polar form
[Casteljau ’85] or blossom [Ramshaw ’87] of b(x) .

To show that such symmetric polynomials exist for all polynomials, it suffices
to consider basis polynomials and to derive explicit representations of their
symmetric forms. Any linear combination

b(x) = 3 ¢ Ci(x)

of nth degree polynomials Cj(x) with polar forms Ci[x; ... x,], where § =
(i,4,k) > o and [f| = n, has the symmetric polynomial

b[xy ... X;] :ZC‘D’CE[Xl ce Xl

which clearly satisfies the three properties above.

Note that the diagonal b[x ... x| can be of lower degree than n, although
b[x; ... x,] depends on n variables.

In case the Cj are the weighted monomials A% (x,y) = (7)x'y?, we obtain
the elementary symmetric polynomials

Aj[x1 o Xp] = Z To toxgy, s,

a<l--<pB
<<

where X, = (Za, Ya) and o, ..., 5,7,...,0 are i + j distinct integers between
1 and n. Obviously, the three characterizing properties of the polar form are
satisfied.

In case the Cj are the Bernstein polynomials By (u) = (:L) uf, we obtain

i j k
Bi'lup ... up] = Z Ug * UG Uy =+ V5 We =+ Wy

a<---<B

y< <8

e<-<p
where uq, Vo, W, are the coordinates of u, and (a,...,5,7,...,0,&,...,9) is
a permutation of (1,...,n). Again, one can easily check the three properties
above.
Remark 1: The symmetric polynomials B{’[u; ... u,] satisfy the recursion
Bi'uy - U] = us B Mug - un] For B s - up] Fwn B s - wg]

1—eq 1—e2 1—e3
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Remark 2: The barycentric coordinate vector u and the affine coordinate
vector x are related by two transformations, given by

X = X([U) = [a0a13~2]U and u= [u(x) =p+vx .

Since these transformations are affine, one can transform a polar form a[x; . ..
Xpn], given by affine coordinates, to the corresponding polar form b[u; ... u,] =
aJAu; ... Au,] and vice versa, i.e., a[X;...X,] = blu(x1) ... u(x,)].

11.2 The main theorem

The uniqueness of the symmetric polynomials and their relationship to the
Bézier representation is given by the following extension of the main theo-
rem.

For every polynomial surface b(x) of degree < n, there exists only
one symmetric n-variate multiaffine polynomial bx; ... x,] with
diagonal blx ... x| = b(x), and the points

b =blp.i.pq.i.qr.k 1]

are the Bézier points of b(x) over pqr.

Proof: Consider the points

bi=blp.i.pq.l.qr.k.rx,.l.x], i+j+k+l=n.

Since by = b[x; ... X,] is symmetric and multiaffine, it can be computed
from the points bﬁQ by the recursion formula

(1) b; = by, +uibi,, +wibil,,

where wu;,v;,w; are the barycentric coordinates of x; with respect to pq,
see Figure 11.1, where the points b[x;x2x3] are labelled by their arguments
X1XoXx3. Thus, different symmetric multiaffine maps must differ at some
argument [p.'.pq.Z.qr.F. r].

If all x; equal x, then the recursion formula above reduces to de Casteljau’s
algorithm for the computation of b(x). Consequently, since the Bézier rep-
resentation is unique, the points b? are the Bézier points of b(x) over pqr
and, furthermore, there can be only one symmetric n-affine polynomial with
the diagonal b(x). <
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Figure 11.1: The generalized de Casteljau algorithm.

11.3 Subdivision and reparametrization

Recursion formula (1), which is illustrated in Figure 11.1, reveals another
important property of de Casteljau’s algorithm. The computation of b(x)
generates also the Bézier points

bp.i.pq.f.qx.%. x|, blp.?.px.i.xr .k 1],

and
bx.i.xq./.qr .5 1]

of b over pagx, pxr, and xqr, respectively. Figure 11.2 shows an example for
n=3.

The Bézier nets of b(x) over pgx, pxr, and xqr form one connected net. It
is folded if x lies outside pqr. The computation of this composed net will be
referred to as the subdivision of the Bézier net over pqr in x.

One can compute the Bézier net of a polynomial surface b over a second tri-
angle xyz by repeated subdivision from the net over pq, see [Prautzsch ’84a,
Boehm et al. ’84]. First one subdivides the net over pq in x, then one sub-
divides the net over xqr in y, and, finally, one subdivides the net over xyr
in z, see Figure 11.3.

A permutation of pq and xyz results in a different construction. If pos-
sible, one should subdivide at interior points in order to avoid non-convex
combinations.
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Figure 11.2: Subdividing a Bézier net.

Figure 11.3: Reparametrization by repeated subdivision.

Figure 11.4 shows a situation, where it is impossible to avoid non-convex
combinations with the above construction, no matter how one permutes pq
and xyz.

Remark 3: The construction requires one to compute 3 - ("3%) = O(n?)
affine combinations.

Remark 4: Every single Bézier point b[x .?. xy .7. yz .k. z] of b over
xyz can also be computed by the generalized de Casteljau algorithm, see
Figure 11.1. The affine combinations computed by this algorithm are convex
if x,y and z all lie in the triangle pq.

Remark 5: To compute the Bézier net over xyz by ("}?) applications of
the generalized de Casteljau algorithm, one needs to compute (”;2) . ("‘3"3) =

O(n?) affine combinations.



160 11. Bézier techniques for triangular patches

p z q

Figure 11.4: Special reference triangles.

11.4 Convergence under subdivision

The Bézier net of b(x) over a triangle pq is a good approximation of the
patch b if the triangle is sufficiently small. To make this statement precise,
let pq be any triangle in some fixed bounded region and let h be its diameter.
Furthermore, let

A

1=p—+q-+r—

n n n
represent the point with barycentric coordinates §/n. Then,
there is a constant M not depending on pq such that

max ||b(i) — by|| < MA* .

For a proof, let D be the differential of b{xi...i] = --- = b[i...ix] at
x = i. Expanding the symmetric polynomial b[x; ... x,] around [i ... i], we
obtain

b; = bli...i+iD[p—i]+jD[q—i] +kD[r —i] + O(h?)

= b(i) +O0(h?) ,

which concludes the proof. <

An application of this approximation property is discussed in the following
section.

11.5 Surface generation

As a consequence of section 11.4, repeated subdivision of a Bézier net pro-
duces arbitrarily good approximations of the underlying surface. We discuss
three subdivision strategies.

(1) Subdividing triangles at their centers, as illustrated in Figure 11.5, leaves
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the maximum diameter of the reference triangles unchanged. Hence, the
Bézier nets over these triangulations do not converge to the surface.

AV

Figure 11.5: Subdivision at centers.

(2) Subdividing every triangle uniformly, as illustrated in Figures 11.6 and 11.7,
generates a sequence of Bézier nets which converges to the surface.

N AX BRRBE

Figure 11.6: Uniform subdivision.

Figure 11.7: Repeated bisection.

(3) The uniform subdivision scheme shown in Figure 11.6 is either expensive
to compute or uses non-convex combinations, see 11.3. Thus, for the purpose
of surface generations, it is best to use the strategy illustrated in Figure 11.7.
This refinement is inexpensive to compute, and one needs to evaluate only
convex combinations.

Comparisons with other surface generation methods reveal that subdivision
according to Figure 11.7 provides the fastest method known [Peters '94].



162 11. Bézier techniques for triangular patches

11.6 The symmetric polynomial
of the derivative

The directional derivative Dyb(u) of a polynomial surface with respect to a
direction v = [vg v; 'Ug]t, |v| = vg + v1 + v2 = 0, can also be written in terms
of the symmetric polynomial bu; ... w,].

From 10.5, or simply by differentiating the symmetric polynomial, it follows
that

Dyb(u) = n(veblepu ... u] +v1bleju ... u] + vablequ ... u])
= nblvu...u .
Obviously, nb[vus ... u,] represents the (n — 1)-affine symmetric polynomial
of Dyb(u).
The w; represent points while v represents a vector with respect to the ref-
erence triangle. Further, b[v s ... u,] represents a vector which is affine in
Ug,...,U, and linear in v.

Repeating this process, we obtain the symmetric polynomial of any mixed di-
rectional derivative c(u) = D, ... D, b(u) with respect to r vectors vy, ..., v,,

C[[UT+1 N EUn] == mb[Wl e Ve Upy1 on [Un] .

11.7 Simple C" joints

Subdivision provides a convenient tool to describe certain differentiability
conditions of two polynomial surfaces b(x) and c(x) given by their Bézier
points by and ¢; over pq and sqr, respectively, see Figure 11.8.

From 10.5, it follows that the derivatives up to order r over the line qr
determine, and are determined, by the Bézier points b; and ¢; fori = 0,...,r.
This leads to Farin’s version of Stérk’s theorem, see [Farin '86, p. 98] and
[Sabin 77, p. 85].

The derivatives of b and ¢ up to order r agree over qr if and only
if the first r + 1 rows of Bézier points of b and c over sqr agree,
ie.,bls.i.sq.l.qr.kF.r]=¢;, i=0,...,7.

Over pgr and sqr, the polynomial b[x .7. xq .%. qr »77~! r] has the Bézier
points b; and c;, respectively, where ¢ < r, j < land k > n—1r —1. The
¢; can be computed from the b; using de Casteljau’s algorithm, see 11.3 and
Figure 11.8 and 11.9.

Using the main theorem 11.2, this can be rephrased in the following way.
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The derivatives of b and ¢ up to order r agree over qr if and only

if for alll =0,...,n —r the two polynomials
blx .7. xq .. qr *777i r] and c[x .7. xq .}. qr "7 r] are
equal.

b3z = €30

Figure 11.8: Sabin’s simple C* joint.

bgo3 =Cgo3

W N

L

p q

Figure 11.9: Farin’s simple C? joint.

Remark 6: The shaded quadrilaterals in Figure 11.8 and 11.9 are differ-
ent affine images of the quadrilateral pgrs. Consequently, any k triangular
patches bi(x), i=1,...,m, enclosing a common vertex have simple C" joints
at this vertex if and only if their parameter triangles form an m-gon that is
an affine image of the m-gon formed by the respective corner triangles of the

associated Bézier nets.
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Remark 7: Since two polynomials are equal if and only if their polar forms
are equal, b(x) and c(x) have identical derivatives up to order r over the line
qr if and only if their polar forms satisfy the equation

bx;...x,p.J.pq.¥.q=clx;...x,p.7.pq.% q

for arbitrary variables x1,...,x, and for all j and k with r + j + k = n.
This condition is used in [Lai '91] to characterize multivariate C" splines
over arbitrary triangulations.

11.8 Degree elevation

A polynomial surface of degree n also has a Bézier representation of any
degree m higher than n. As in the case of curves, a conversion to a higher
degree representation is called degree elevation.

Given an nth degree Bézier representation,
b(x)=> bB'(u) , x=[parju,

of some polynomial surface b(u) over a triangle pqr, we show how to obtain
its Bézier representation of degree n + 1. In analogy to the derivation for
curves in 3.11, we use the symmetric polynomial b[x; ... x,] of b(x). The
polynomial

R .
c[xo...xn]:n+12b[x(]...xl c Xp]
1=0

is multiaffine, symmetric and agrees with b(x) on its diagonal. Hence, due
to the main theorem in 11.2, it follows that the points

b; =clp . pq Ji. qr J2. 1]

are the Bézier points of b(x) over pqr in its representation for degree n + 1.
Consequently,

Jo o . )
b; = n+1b[p39..1pqﬁ.1.qr.ﬂ?. r]
J1 . " .
b[p J°. J1T J2,
+ o gblp Fpaliiiqr ]
+ b[p /°.pq i qri27lr] .
n+1

Figure 11.10 illustrates the associated construction for n = 2.
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bgp2 = coos
o

bagy = c300 b = oz

Figure 11.10: Degree elevation by one.

165

11.9 Convergence under degree elevation

Repeating the degree elevation process, we obtain any higher degree repre-

sentation

b(x):Zdu(Bﬂ’("(tu) , m>mn .

The new Bézier points dy can be expressed in terms of the points b;. With

r =m —n, we write

b(x) = > bBf -1

[i|=n

as
b(x) = Y bB- > B
lij=n lgl=r
= > | D] b | B
[k|=m \|t|=n
where N
o BB ()
= " pm T - .
K (%)

Thus, we obtain Zhou’s formula

di = ) bifu ,

HED

see [Farin ’86, de Boor ’87]. Let § = (i1i2i3) and k = (k1k2ks3)

. Then, G, can
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be written as

n ﬁ k1—i1+1 ko ko—io+1 ks ks—iz+1
8 /\m m—i1+1 ) \m—i; m—ig—is+1 )\ m—i;—io m—n+1 )’

from which we conclude that

e () Gas) Goats) (heats)
i m o m-n m m-n m m-n
s (M) (R _m\" (R _n )" (ks n\"
fe=\3 m m m m m m

Thus, we find

and

P = By' (k/m) + O(1/m)
and, therefore,

di =) bB'(k/m) + O(1/m) .

Consequently, the mth degree Bézier nets of b(x) converge to b(x) linearly
in 1/m, see [Farin ’79, Trump & Prautzsch "96].

11.10 Conversion to tensor product
Bézier representation

Let b(x) be a bivariate polynomial with polar form b[x;...x,], and let
Xst = X(s,t) be any biaffine map that maps the unit square [0,1]? onto a
convex quadrilateral, see Figure 11.11. Then the reparametrized polynomial

c(s,t) = b(x(s,t))

is a tensor product polynomial of degree (n,n) in (s,t). Its tensor product
polar form is given by

1
Clsi oo sty o] = — D blx(s1,71) . X(5n,70)]

where the sum extends over all permutations (7,...,7,) of (¢1,...,t,). To
verify this, one checks that c satisfies the three characterizing properties: the
diagonal, symmetry and affinity property.

Knowing the tensor product polar form, we can apply the main theorem 9.2
to obtain the Bézier points of ¢(s,t) over [0,1]2. These are the points

ci;j=cl0m7i01.7.1,077701.4.1] ,
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Xo1 X11

X00

X10

Figure 11.11: A biaffine reparametrization.

which can be written as
J
— E k—i—j j—k i —
Cij = ﬁijkb[XO() n+. T X00X01 Jh X01X10 Zk X10X11 k Xll] 5
k=0

with n!8;jx the number of permutations of (0 77 01 .. 1) such that exactly
k ones sit in the last i positions. Hence,

nl \k
- Qe

From 11.3, we recall that the points

ﬂijk = 1 (]>Z(Z+1—k)(n—1)(TL—Z—FI—]—FI{)(TL—])'

b[Xoo ... X00X01 - - - X01X10 - - - X10X11 - - - X11]

arise when we subdivide the Bézier net of b(x) over xppxg1X10 in X171, See
also [DeRose et al. '93].

11.11 Conversion to triangular
Bézier representation

A tensor product polynomial b(xz,y) of degree (m,n) is of total degree <
m + n. Thus, it has a Bézier representation of degree | = m + n over any
triangle pqr. To compute it, let by ... Zm, Y1 - .. Yn] be the tensor product
polar form of b(z,y). Then, the (non-tensor product) polar form of b(x) is
given by

1
C[Xl...Xl] = ﬁzb[xil"'xim7yim+1"'y7il} y

where the sum extends over all permutations (i;...4;) of (1...1) and x; =
(4, y:). Namely, c obviously satisfies the three characterizing properties: the
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diagonal, symmetry and affinity property.

The Bézier points of b(x) over a triangle with vertices p = [p1, p2]t, @ =
[q1,q2]" and r = [r1, 73] can be obtained by the main theorem 11.2.

They are the points

bijx = clp.t.pq.i. qr.*. 1]
.
= Z (5gmb[p1 2opiq B Yo,
at+B+y=m

(e, 8,7)<(4,34,k)

P2 L% page TP qora KT g

= ()G )

Namely, there are (;) choices to pick a from ¢ many p;’s etc., and there are

where

m! permutations of the first m variables pi1,.%.,p1,q1,.%.,q1,71 .7.,r1 and n!
permutations of the last n variables. <

From 9.5 we recall that the points

b[pl...plql...qﬂ"l...Tl,pg...pg(]Q...QQ’I‘Q...TQ]

arise in the tensor product de Casteljau algorithm used to compute b(r) from
the Bézier points over [p, q].

11.12 Problems

1 Consider a functional polynomial with convex Bézier polyhedron. Show
that degree elevation and uniform subdivision, as illustrated in Fig-
ure 11.6 preserve the convexity of the Bézier polyhedron.

2 There are parametric Bézier patches for which the statement in Problem 1
does not hold. Provide an example.

3 Generalize the intersection algorithm presented in Section 3.7 to trian-
gular Bézier patches.

4 Let vi = q—p and vy = r—q. Show that a Bézier net b; over pq is planar
if all Ay, Ay, b, Ay, Ay, bs, Ay, Ay, by are zero. Thus, the maximum of
these differences is a measure for the flatness of a triangular Bézier patch.

5 Storing triangular Bézier nets should be dealt with efficiently storage-
and accesswise. An efficient way to deal with these Bézier nets is to store
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the points by;jx, 7 +j + k = n, in a linear array, say
a[L] = bijk y

n+2) )

where L = L(i, j) runs from 1 to ("}

Fast access is guaranteed if the function L is stored in a matrix L = [L;;].
Provide an explicit formula for a function L used in Problem 5.
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