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Abstract. In this paper I look at a number of issue surrounding the question of the title. I will begin with a report
of a recent paper by Beckman er al where they examine the issue of a certain type of locality and differentiate
it from the idea of causality (no “faster than light” signaling), and show that, surprisingly, the former is slighlty
more restrictive than the latter. I then discuss H. Stapp’s argument that one can demonstrate the non-locality
of Quantum mechanics by showing that one obtains a contradiction with th predictions of quantum mechanics
if one assumes that quantum mechanics is local, and that certain counterfactual lines of argument are valid.
Finally I conclude with a statement of my position that quantum mechanics is local, presenting a simple field
theoretic analysis of a Bell type experiment. Using this I argue that the quantum correlations present in such
a Bell experiment are the result of a common cause, just as they are in the case of classical correlations.

Ever since Bell published his famous paper, in which he showed that no local classical
model could duplicate the correlations seen in quantum systems, the argument around the
question of the title has raged. Here I will present three different ways of examining
the question, all tending toward answering the question in the negative, that quantum
mechanics is local. It is also, I hope a glimpse into why answering the question is so
much less straightforward than it would first seem.

1. Local vs causal operators

Beckman et a/ [1] have recently written a paper in which they examine quantum oper-
ations which transform a quantum state shared by two space-like separated observers in
a space-time. Let us define two spatially and temporally limited regions A and B, such
that both regions are entirely space-like separated from each other. Each of these regions
contains operators with in the context say of a quantum field theory, which are localized
within each of these regions. These sets of operators:

My ={04},Mp = {O3} (D

are such that any operator in M commutes with any operator in M. These are the local
operators available in the two regions. They are, for example, the various field operators
in a quantum field theory smeared by functions whose support lies in the regions A and B.

We will consider a set of operators which operate on a subspace of the total Hilbert
space operated on by the sets My x Mp. Define a general linear transformation on the
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initial density matrix p by

E(p) = Y. mUipU; )
A
with
=1 ?)
A

in order to preserve the trace of p. If more than one of the coefficients p) is non-zero, this
is a dissipative or entropy non-preserving interaction. We define this transformation to be
a local transformation if each of the U, is the product of separate unitary transformation
in region A and in B. L.e,,

U =UpnUp- 4)
In contrast, define the the transformation as causal from B to A if
Tr (4 E(WapW})) = Tr(AE(p)) )

with A4 being any Hermitian operators is a local operators in the region A, W3, being an
arbitrary unitary operator in region B, p being an arbitrary density matrix for the combined
system.

In words, this requirement is that no local transformation made by B on any initial
density matrix before the transformation E can make any difference to the expectation
value of any local operator in region A (and thus not to the outcome of any measurement
made in region A). B cannot do anything to signal A even in a probabilistic sense.

It is easy to show that any local transformation is causal, since the trace reduces to the
sum of terms of the form

TH AU UsgWapW, U p) = Tr(AUs 4Wa Uy gUs sWsp) (6)

because both U, and W commute with 4 and U, 4. But since both Uy, and Wj are unitary,
this reduces to

Tr(AUs 4UrpBpB U ) = Tr(AUwpUy ), (7)

which is independent of Wp, the requirement of causality from B to A.

The crucial result of their paper is to point out that one can have transformations £
which are non-local (i.e., cannot be written in terms of any sum of local transformations),
but are still causal. This is most easily seen by a specific example of such a trasformation.

The easiest way to characterize the transformation is to write it out in detail. Consider
the universe of discourse for A and B to be that each has two spin 1/2 (or rather more
generally, two two level systems). Define the Pauli spin operators on each to be (X,Y,Z)
with subscripts indicating which particle and in which region they operate. Thus Zy4
means the ‘z’ Pauli operator operating on the first particle in the A region. These operators
all have two eigenvalues with values of +1.
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The transformation £ be composed of the following four transformations. To begin,
I take E)(p) to be the identity, E)(p) = p. The other three transformations are

Ex(p) = %[p+ZlAPZlA] (8)

E3(p) = %[p'*’ZlBPZlB] 9)
U5:l+%(1+ZM)(1+ZIB)(—I+U23) (10)
Ea(p) = Una(p)Uss (11)

E(p) = E4(E3(E2(Ei(p))))- (12)

E, decohers the system over the eigenvalues of Z14 while E3 does the same over Z;p.
E,4 rotates the second spin at B by the transformation Uz if and only if both of the first
spins at A and B have Z eigenvalue of +1. The E; and E3 are clearly local, while Es is
clearly non-local (the easiest way to demonstrate this is to show that it is not causal).
Furthermore, this conjunction of the three is still non-local, as Beckman et al show.
However, this transformation is causal from B to A—i.e. any transformation at B is
invisible at A.
To see this, define the projection operator

1
Pp1A='2'(1+ﬂZ1A); u==l (13)

and similarly for other projectors at the first particle at B. Then

1
Eo(E3(E2(E1(p)))) = 7 (Pr14P+15UssE1 (P)UspPr14Pr15 +

P_14P11BE\(P)P-14Ps18 + Py1aP-18E\ (p) Py 1aP-15 + (14
P_14P_1BE\(p)P-14P-138).
Then, in the first term of the trace, Tr(AE (WBpr )), we have
1
7 T7(AP414P118UsBEy (WspW) V3P 14Py 15) = )

Tr(APy1 4Py \BE\(WepWp) Py 14P11B)

because Uzz commutes with 4, Py, and Pig. Thus as far as this trace is concerned, £4
acts as the identity transformation, and

Tr(AE(WepWy)) = Tr(AE(Ex(E1 (WepWy)))). (16)

But, the transformation E3E>E) is a local transformation and thus is causal, making the
RHS independent of Wp. 1.e., this transformation is a causal transformation from B to A.

However, this transformation as it stands is not causal from A to B. For example,
starting from an intial state in which particles 1A, 1B, and 2A are all in the Z eigenstate
with value +1 and 2B is in some arbitraty state, the expectation values for an operator at
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B on the second particle will in general be different than if particle 1A is rotated to the
—1 eigenstate of Z 4, because of the absense of the rotation U, on the state of the second
B particle during the application of the operator E to this state. I.e., expectation values of
B do depend on the operations carried out at A.

What is now needed is to make all expectation values of operators on particle 2B be
independent of U»p. The way to do this is to apply another transformation, E; which
makes the reduced density matrix at particle 2B be the identity. In that case any expecta-
tion value at B will be independent of U»5. They did this by making the transformation £
be an incoherent projection into a Bell state basis between the particles 2A and 2B.

Define the local operator

1
Ei(p) = Z(P + X24X28pX28Xo04 + YouYappY28Y24 + 224228228 724). (17)

The operator
E(p) = E4(E3(E2(E1(p)))) (18)

is now both non-local and causal. The causality from B to A follows from a similar
argument as the one just given with the trivial £|. Causality from A to B follows from
the insensitivity of any operators at B to the rotation Usp. After the operation of £}, the
density matrix over the second two particles will have a terms of the form

M++H)+ == N{(++[+(== 1,

one of the projectors onto a Bell state, where the two eigenstates correspond to the Z op-
erators on the two particles 2A and 2B. A will in general be a density matrix over the
first particles at A and B, and will depend on the intial density matrix and the unitary
transformation which is applied at A to test causality (W,). But taking the trace over the
second particle at A leaves us with the identity matix for the particle 2B, which will be
insensitive to the rotation Uz. l.e., any expectation value at B will be the same as if Usp
had been the identity. But with the identity for Usg, the transformation £y is trivial and
the total operation is local and causal. I.e., the changes in expectation values at B are
the same as they would have been had the Uz been the identity, and thus is causal from
A to B. This operator is thus a causal operator. The only non-trivial part in their paper is
then to show that it is still non-local, which I will skip. I refer to their original paper for
the proof.

Thus, what they showed was that locality (as defined by them) of transformations
is a slightly stronger requirement than causality. However, I also note that the use of
entropy non-preseving local transformations was crucial to the above argument. If the
transformation E is a unitary transformation

E(p)=UpU", (19)

then it would seem that locality and causality are equivalent. Thus, the existence of deco-
hering transformations seems to be crucial in the breakdown of the equivalence between
locality and causality. While such decohering transformations can be implimented by
the use of local unitary transformations and the use of (correlated) ancilla (extra physical
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systems at A and B), this would be philosophically unsatisfactory as one would naturally
be drawn to simply increasing the size of what one called the system to include the ancilla.
This would restore the equivalence between causality and locality. IL.e., one would need
require a theory in which the decohering interactions were fundamental to the theory, and
did not arise out of the neglect of auxilliary degrees of freedom. A non-local, but causal
theory would thus look quite different from any of our current theories of quantum fields.

2. Stapp’s argument for non-locality

Let me now examine a different tactic to try to separate locality from causality in quantum
theories. This is an attempt by Stapp [2] to define locality not in a technical quantum
operator sense as above, but logically, by the use of counterfactual reasoning.

Henry Stapp (2] has tried to argue for many years that quantum mechanics can be
shown to be non-local without any additional assumptions. In one of his latest attempts,
he uses the Hardy state (see below) to derive a conclusion from one sequence of possible
measurements, plus some locality assumptions in the context of counterfactual reasoning,
to derive a contradiction with other conclusions of quantum mechanics for the same state.

The state I will describe is a generalization of a state given by Hardy [3]. It is a state
for two 2-level systems, located I will assume on the left and the right, and designated by
L and R. The two levels will be labeled by the values 1 and 0. The operators corresponding
to the Pauli projection operators in the direction n, namely (1 + n-g)/2 will be denoted
by L, or R,,. They have eigenvalues 1 or 0.

Consider the state defined in the L, and R, basis given by

1 4 sin(6)?
0s(0)

. . _ cos(0)
where | 10) is the eigenstate of value +1 for L, and 0 for R,, and N = T

Now, this same state can be rewritten in the following three different ways.

‘I’:N(cos((-)) [11)+sin(8)]10) + ) |01) —sin(0) |00),  (20)

in(0)?
= N )(eos(®) 1) +5in(6) [0)) + [0)(+ o) 1) ~sin(@) 03)
=N((|1) +0))(cos(8) | 1) +sin(0) |0)) + 2tan(B) |0 )(sin(0) | 1) — cos(B) |0)))
)
= N((1)+10)) gy 1)+ (1)= 10))(= S (1) +n(®) [0)).

@n

The first line says that if one measures the operator L, and find the value 1, and measure
the Rg = c0s(20)R- + sin(260)R,, you will with certainly also measure value 1; (the quan-
tity in brakets multiplying the state | 1} for the left particle is the eigenstate with value +1
for the operator Rg). The second line says that if you measure Rg and find value 1 and L,
you will also find value 1 with certainty (since (| 1)+ ]0))/+/2 is the +1 eigenstate of L.
Finally the third line says that if you measure L, and find value 1 and you measure R,
you will find value 1 with certainty. However, if we look at the original expression for the
state P, if we measure L. and find value 1, we will with probability cos(8)? find value 1
and with probability sin(8)? find value 0 for R,.
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