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Abstract. The Einstein-Podolsky-Rosen argument will be revisited and its validity checked for the case of real-
istic, imperfect measurements described in terms of positive operator valued measures. It is shown how Bell’s
inequalities can be satisfied if the degree of unsharpness in the observables involved is sufficiently large. The
EPR contradiction between the assumptions of (usharp) reality, locality and the validity of quantum mechanics
is resolved by maintaining realism and quantum mechanics and weakening locality. The form of nonlocality
allowed is that of objectification-at-a-distance. Problems associated with the quantum description of localised,
spacelike separated measurements are briefly discussed.

1. Introduction

In this contribution I will review the analysis of the Einstein-Podolsky-Rosen argument
[19], Bell’s inequalities [5] and of associated experiments for spins in terms of positive
operator valued measures (in short: POVMs). Specifically, I will explore the relation
between the Clauser-Horne-Shimony-Holt (CHSH) [16] inequality and a fundamental
classicality property of observables—their coexistence; this leads to the question whether
for macroscopic systems a relatively ‘small’ amount of unsharpness may suffice to ensure
(and explain) the practical impossibility of exhibiting nonclassical features such as those
represented by Bell-type inequalities.

I will present a derivation of Bell’s inequalities for unsharp spins which follows a re-
construction by Mittelstaedt and Stachow [32] of the original EPR argument. In this
treatment, the Bell inequalities follow from a conjunction of two assumptions, (unsharp)
reality and locality, applied in the context of the quantum mechanics of an entangled
pair of spins. Since the reality assumption can be consistently incorporated into the
quantum formalism, it is locality that is incompatible with the latter. However, a contra-
diction only arises when the degree of unsharpness of the spins is not too high; otherwise
the nonlocality of quantum mechanics cannot be detected with such observables. The
contradiction can be resolved if the locality assumption is weakened so as to allow for
a benign form of nonlocality: one has to accept that (unsharp) objectification can oc-
cur over spacelike distances or between dynamically separated parts of a system. Note
that this argument is nof about the supplementation of quantum mechanics with hidden
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variables but exhibits only the inevitability and nature of quantum nonlocality. But it
does raise the question of a consistent description of the process of measurement for ex-
tended, entangled systems and for localised measurements in spacelike separated regions
of spacetime.

A note on terminology may be in place. The term ‘Bell inequality’ refers, strictly
speaking, to the inequality originally exhibited by Bell for pair probabilities associated
with a triple of spin observables. Bell’s argument made explicit use of the strict corre-
lation between certain pairs of observables in the spin singlet state and thereby ignored
the unavoidable experimental imprecisions. In order to provide a derivation of Bell’s
theorem without any recourse to quantum mechanical properties while taking into account
experimental imperfections, Clauser, Horne, Shimony and Holt considered the case of
a quadruple of spins, one pair each pertaining to one of the two particles involved. The
ensuing inequality is known as ‘CHSH inequality’. I will follow the widespread practice
of referring to the latter as (Bell-)CHSH or simply Bell inequality.

2. Bell-CHSH inequalities, joint probabilities and coexistence

The role of CHSH inequalities as classicality conditions has been systematically studied
by Pitowsky [36] and by Beltrametti and Maczynski in the early 1990s [6, 7, 8]. This was
preceded by the observation due to Fine {20, 21] that a full set of Bell or CHSH inequal-
ities is equivalent to the existence of triple or quadruple joint probability distributions.
The concept of POVM as a joint observable for EPR-Bell observables was considered
by Abu-Zeid and deMuynck in 1984 [1], with the conclusion that the violation of Bell
inequalities reflects the nonexistence of such joint observables in the case of noncommut-
ing sharp spin observables. The issue of formulating and exploring the meaning and role
of Bell-type inequalities for unsharp spins has to my knowledge been addressed first by
Busch in 1985 [11]; this was taken up and generalised by Kar and Roy in 1996 [28]. This
part of my contribution will draw on the valuable review of Kar and Roy [29].

In this section I will exhibit the relationship between operator Bell inequalities and
coexistence, showing that in the EPR context the latter implies the former but not con- -
versely. This stands in contrast to the situation discussed by Fine and others, who showed
that a set of Bell inequalities forms a necessary and sufficient condition for a family of pair
probabilities to be embeddable into a quadruple joint probability. To explain the reason
for this discrepancy, it will be helpful to briefly review Fine’s theorem.

2.1. FINE'S THEOREM

In an EPR-Bell experiment on a correlated pair of spin 1/2 systems, one measures pairs
of random variables ({ak,a;},{b¢,b;}), where k € {1,2}, ke {1,2} and ¢ € {3,4},
le {3,4_1} label two variables (spin observables) of system 4 and B, respectively. This
gives rise to sets of frequencies which are to approach probabilities provided in a theoret-
ical model of the experiment:

P, by, P2, P3, P3, D3, P4, D3, (1)
p137 pliapf}: Pi3a P4, ---7}723,-”7 P24y ooy piz'
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Fine’s theorem establishes a set of Bell-CHSH inequalities as a necessary and sufficient
condition for this set of probabilities to be embeddable into a single classical probability
model, that is, for the existence of a quadruple joint probability measure such that the
single and pair probabilities arise as marginals.

Theorem 1. For a system of probabilities (1) to be embeddable into a quadruple joint
probability distribution {p1234,p1233,---,P133a} it is necessary and sufficient that the
Sfollowing set of Bell-CHSH inequalities holds:

P13+ pia—Put+psn<l,
Piitpiz—pPa3+pusl,
2)
P33 +tpu—patpi3<l,
Put+pn—pi3t+pusl,

cococo
ININ I IN

or equivalently:

Pr+ps—pi3—pua—paut+ps<l,
pr+pi—pi3—pua—ps+pusl, 3)
D2+ pa—p3—pla—put+pi3sl,
ptp3-pi3—pn—puat+tpasl,

oo oo
INININ N

We sketch the first steps of the proof. We introduce short-hands for the sought-for
4-probabilities:

P14 =a P34 =¢€ Pins =k P33 =P
Pia=>b Pii=/f piazi =1t Pini =4 @
P24 =¢C Pi1334a =& Pi3qa =m P13z =7
Pu=d Piasa=h Pia=n Piziz =S

Next we use these to reproduce the pair probabilities:

piz=at+b+etf pi3=k+Ll+ptgq

pis=c+d+g+h
pua=a+c+et+g
pa=b+d+f+h
pn=a+b+k+{
ppa=c+d+m+n
pu=a+c+k+m

pz=m+n+r+s
Pia=k+m+p+r
piz=f+n+qg+s
pi=etf+ptg
pi3=g+h+r+s
Py —et+g+ptr
pua=fthtqts

&)

We have to establish a minimum subset of {a,b,...,s} such that all other numbers can
be expressed in terms of these and the given marginality relations. Start with a,b,¢,d
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assumed given. This yields:

etf=pi3—a-b p+q=pyp—k—L=pj3—-patatbd
g+h=p3—c—d r+s=pjz—m—n=piz—pyy+c+d
etg=pu—a—c p+r=py—k-m=py—-puatatc
f+h=ps-b—d gq+s=piz—{l~n=pua—pu+b+d
(6)
k+l{=pp3—a-b pt+tg=pp—e—f=pp—pi3ta+b
m+n=py3—c—d r+s=ps3—g~-h=p33—pit+tc+d
k+m=py—a-c p+r=py—e—g=py—puatatc
b+tn=py—b—-d q+s=pu—-f-h=py—pi+tb+d

Next, consider ¢, k, p given;

f =p3—a-b-e

g = pu—a—c—e

h = p3—c—d—(pu—a—-c—e)=p3—putate—d

{ = p3—a-b—k

m= pu—a—c—k (7)
n = pyy—c—d—(pu—a—c—k)y=py3—putat+k-d

g = piy—pntatb-p

r = pyg—putatc—p

s = pi—pistetd—(pyy—putatc—p)

= p3 =P~ Platputdtp-a
As a check, we can see that
a+b+--+r+s=p3+p3=1 8)
The task is to ensure that all numbers a, b,...,rs are nonnegative. Hence:

a>05620c20d>0, e>0f>0,g>0 h>0 )
k20€>0 m>20,n>20,p>20,92 Or>0s>0

Inserting the expressions for the pair probabilities into the Bell inequality (2) and using
the positivity (9) readily confirms the validity of the Bell inequality, given the existence of
the quadruple joint probabilities (4-jpd). This constitutes the necessity part of the proof.
Next one wants to see that a sufficient set of Bell inequalities ensures the existence of
a 4-jpd. Thus one has to ensure that numbers a,b,c,d,e,k, p > 0 can be found such that
(5) holds and all remaining numbers f,g,4,¢,m,n, q,r,s, which are determined by the first
seven numbers, are nonnegative.
The nine inequalities f,g,4,¢,m,n,q,r,s >0 can be organised as follows, using (7):

pia—p;3+d < ate<min{piz—b,p1a—c}
Pu—py+d < a+k<min{pys—b,pu—c} (10)
pitpuy—pi—pu—d < p—as<min{py—pn+b,piy—putc}
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This system, together with the inequalities @, b,¢,d, e, k, p > 0, leads eventually to a set of
inequalities for b, ¢ and d, hence these numbers must lie in the intersection of a number
of intervals. The condition that these intervals are nonempty finally entails the CHSH
inequalities. Then one can choose b,c¢,d > 0 to lie in their respective intervals, and this
enables one to choose a, e, k, p > 0 satisfying (10), which ensure the nonnegativity of the
remaining nine constants.

2.2. COEXISTENCE AND BELL-CHSH INEQUALITIES FOR SPIN %

In recent years there has been increasing interest in the use of POVMs for tests of
Bell-type inequalities as an indication of nonlocal quantum correlations (e.g., [4, 24, 37,
40, 42]). There are nonseparable mixed states for which the Bell-CHSH inequalities are
violated not for the usual pairs of sharp spins but only for suitable families of unsharp
observables. This situation is one illustration of the fact that optimisation of information
gain in measurements can under certain conditions only be achieved with POVMs that are
no PVMs. A comprehensive introduction to the topic of POVMs and their application in
quantum foundations and experiments can be found in the monograph [13].

We will only be concemmed with POVMs whose domains are finite Boolean alge-
bras, which can be represented as power sets of finite value spaces Q= {1,2,...,N},
£=292 Thus the definition of the full POVM follows from the additivity if only the
map i — E; := E ({i}) is given. Hence in the sequel we will simply refer to the POVM
E:X(€2%) — E(X) in terms of set {Ey,Ey, ..., En}.

The set of POVMs is known to contain noncommuting subsets that can be measured
jointly, that is, their ranges can be contained in the range of one common POVM. Such
families of POVMs are called coexistent. It has been shown that pairs or triples of unsharp
spin observables are coexistent if their degree of unsharpness is large enough [12]. Let us
consider spin 1/2 POVMs generated by effects of the form

E(n\) :=%(1+kn-o),

where 6 = (0],02,03) denotes the vector of Pauli spin matrices, 7 is a unit vector in R?
denoting a point on the unit sphere 2, and A € [0, 1]. The eigenvalues are 3 (1£1), and
the spectral projections are P, := % (I£n-0). Thus,

E(n) = %(I+X)P,,+%(1—K)P_,,.

From this representation it is evident that the POVM {E (n,A),E (—n,A)} is a smeared
version of the PVM {P,, P_,,}. This is the formal sense in which the former represents an
unsharp spin.

A pair of sharp spin observables is noncommutative if their respective vectors n,n;
are not collinear. Such pairs have no joint observable. But two unsharp spin observ-
ables can be coexistent. Necessary and sufficient conditions for this to happen are as
follows [12]:

Theorem 2. A pair of unsharp spin observables
a={E{(n,A),E(—n,N)}, & ={E(n2,L),E(—n2,\)} is coexistent if and only if

Mint + n2|| + Aflm —maf} < 2. an
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