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Abstract. The usual formulation of quantum theory is rather abstract. In recent work [ have shown that we
can, nevertheless, obtain quantum theory from five reasonable axioms. Four of these axioms are obviously
consistent with both classical probability theory and quantum theory. The remaining axiom requires that there
exists a continuous reversible transformation between any two pure states. The requirement of continuity rules
out classical probability theory. In this paper ! will summarize the main points of this new approach. I will
leave out the details of the proof that these axioms are equivalent to the usual formulation of quantum theory
(for these see reference [1]).

1. Introduction

The usual formulation of quantum theory is very obscure employing complex Hilbert
spaces, Hermitean operators and so on. While many of us, as professional quantum the-
orists, have become very familiar with the theory, we should not mistake this familiarity
for a sense that the formulation is physically reasonable. Quantum theory, when stripped
of all its incidental structure, is simply a new type of probability theory. Its predecessor,
classical probability theory, is very intuitive. It can be developed almost by pure thought
alone employing only some very basic intuitions about the nature of the physical world.
This prompts the question of whether quantum theory could have been developed in
a similar way. Put another way, could a nineteenth century physicist have developed
quantum theory without any particular reference to experimental data? In a recent paper
I have shown that the basic structure of quantum theory for finite and countably infinite
dimensional Hilbert spaces follows from a set of five reasonable axioms [ 1]. Four of these
axioms are obviously consistent with both classical probability theory and with quantum
theory. The remaining axiom states that there exists a continuous reversible transforma-
tion between any two pure states. This axiom rules out classical probability theory and
gives us quantum theory. The key word in this axiom is the word “continuous”. If it is
dropped then we get classical probability theory instead. The proof that quantum theory
follows from these axioms, although involving simple mathematics, is rather lengthy. In
this paper I will simply discuss the main ideas referring interested readers to the main

paper [1].
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Various authors have set up axiomatic formulations of quantum theory, for example
see references [2, 3,4, 5, 6,7, 8,9, 10, 11] (see also [12, 13, 14]). Much of this work is
in the quantum logic tradition. The advantage of the present work is that there are a small
number of simple axioms which can be easily motivated without any particular appeal
to experiment, and, furthermore, the mathematical methods required to obtain quantum
theory from these axioms are very straightforward (essentially just linear algebra).

2. Basic notions

We will consider situations in which a preparation apparatus prepares systems which may
be transformed by a transformation apparatus and measured by a measurement apparatus.
Associated with any given preparation will be a state. The state is defined to be (that
thing described by) any mathematical object that can be used to determine the probability
associated with each outcome of any measurement that may be performed on a system
prepared by the associated preparation. The point is that, if one knows the state, one can
predict probabilities for any measurement that may be performed. It is not entirely clear
that one will be able to ascribe states to preparations. The first axiom, to be introduced
later, will make this possible by assuming that the same probability is obtained under the
same circumstances. If we can ascribe a state it is clear from the definition above that
one way of describing the state is by that mathematical object which simply lists all the
probabilities for every outcome of every conceivable measurement that could possibly be
made on the system. This would be a very long list. Since most physical theories have
some structure, it is likely that this would be too much information. We can imagine
that a set of K appropriately chosen probability measurements will be just sufficient and
necessary to determine the state (so K is the smallest number of probabilities required
to specify the state). We will call these the fiducial measurements. We can list just the
probabilities corresponding to these fiducial measurements in the form of a column vector.
Thus, the state can be written

I4
b2
p=| 7. (1)
V7'
We will call the integer K the number of degrees of freedom. This number plays an
important role in this work.

The allowed states p will belong to some set S. We expect that there will exist sets of
states which can be distinguished from each other in this set by a single shot measurement.
Consider one such set. If Alice picks a state from this set and sends it to Bob then Bob can
set up a measurement apparatus such that each state gives rise to a disjoint set of outcomes.
By knowing which outcomes are associated with which state, Bob can tell Alice which
state she sent. Let the maximum number of states in any such set be called N. We will

call N the dimension (because in quantum theory it corresponds to the dimension of the
Hilbert space).
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Figure 1. The situation considered consists of a preparation device with a knob for varying the state of the
system produced and a release button for releasing the system, a transformation device for transforming the state
(and a knob to vary this transformation), and a measuring apparatus for measuring the state (with a knob to vary
what is measured) which outputs classical information.

Associated with any particular type of system will be the two integers K and N. It
turns out that in classical probability theory we have K = N and in quantum theory we
have K = N?. We will explain why this is the case later.

First, let us describe the type of scenario we wish to consider. This is shown in
Figure 1. We have three types of apparatus. The preparation apparatus prepares systems
in some state. It has a knob on it for varying the type of state prepared. It also has
a release button, whose role will be described shortly. The system then passes through
a transformation apparatus. This has a knob on it which varies the transformation effected.
Unless otherwise stated, we will assume that the transformation device is set to leave the
state unchanged (i.e. effect the identity transformation). Finally the system impinges onto
a measurement apparatus. This has a knob on it to vary the measurement being performed.
It also has some classical information coming out. Either we obtain a non-null outcome,
labeled / = 1 to L, or we obtain a null outcome. We require that if the release button
is pressed on the preparation apparatus (and assuming that the transformation is set to
the identity) then we will certainly obtain a non-null outcome. On the other hand, if the
release button is not pressed then we will certainly obtain a null outcome. To illustrate
this we could think of an array of detectors labeled / = 1 to L. If none of the detectors
click then we can say this is a null result. Since we allow null outcomes we need not
assume that states are normalized.

All quantities are reducible to measurements of probability. For example, any mea-
surement of an expectation value is really a probability weighted sum. Therefore, we
need only consider measurements of probability. Henceforth, when we refer to a “mea-
surement” or a “probability measurement” we mean specifically a measurement of the
probability that the outcome belongs to some non-null subset of outcomes with a given
knob setting on the measurement apparatus.

If we never press the release button then all the fiducial probability measurements will
be equal to zero (so the state will be represented by a column vector with K zero’s). We
will call this state the null state.
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It is normal in probability theory to talk about pure states and mixed states. A mixed
state is any state which can be simulated by a mixture of two distinct states. Thus, we
prepare randomly either state 4 or state B with probabilities A and 1 —A where 0 <A < 1.
Pure states are defined to be those states (except the null state) which are not mixed states.
Pure states will turn out to be extremal states in the set of allowed states (this set being
convex).

We will now describe classical probability theory and then quantum theory. We will
find that it is possible to give the two theories a very similar mathematical structure. This
will help us to appreciate the similarities and differences between the two theories.

3. Classical probability theory

Consider a ball that can be in one of N boxes (or be missing). The state is fully determined
by specifying the probabilities, p,, for finding the ball in each box. This information can,
as in the previous section, be written

D
p2
p=|P3]. )
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Since the ball may be missing, the sum of the probabilities in this vector must be less than

or equal to one. There are N entries in p. Hence, K = N. There are some interesting
special cases. The states

1 0 0
0 1 0

p: = 0 po=1|0 pp=|1! etc. €]
0 0 0

represent the case where the ball is definitely in one of the boxes. These states cannot be
simulated by mixtures of other states and hence are pure states for this system. The state

0
0

Prul =0 = 0 (4)

0
represents the case where the ball is missing. These N + 1 states are extremal in the space
of allowed states. Since we are casting classical probability theory and quantum theory
in similar mathematical forms, let us consider how we can represent measurements in the

classical case. One measurement we could make is to look and see if the ball is in box 1.
The probability of finding the ball in box 1 is p;. We can write this as
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Hence, we can identify the vector ry, defined as

1
0

=91, (6)

with the measurement where we look to see if the ball is in box 1. We can write down
similar vectors for the other boxes. However, we could perform more complicated mea-
surements. For example, we could toss a A biased coin and look in box 1 if it came up
heads and in box 2 if it came up tails. In this case the measurement being performed
would be represented by the vector

r=Ar +(1-A)r; @)
since then r - p = Ap; + (1 — A) p2. In general it can be shown that the probability associ-

ated with any measurement is given by
Probpess =1 P t))

where r is associated with the measurement and p is associated with the state.

Consider a classical bit. This is a system with N = 2. In this case the extremal states

arc
pn=(o) P- (‘f) Pt = (8) )

The set of allowed states Sclagsical are given by the convex hull of these extremal states as
shown in Figure 2a. Note that the normalized states (for which p; + p2 = 1) lie on the
hypotenuse. Note also that the pure states form a discrete set. There is no continuous path
from one pure state to another which goes through the pure states.

We see that classical probability theory is characterized by K = N, by the set Sgjassical
of allowed states p and the set R¢jassical 0f allowed measurements r, and by the formula

probye,s =1 P.
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