Chapter 3

CLASSICAL LOGIC—BASIC TABLEAUS

Several varieties of proof procedures have been developed for first-
order classical logic. Among them the semantic tableau procedure has
a considerable attraction, [Smu68, Fit96]. It is intuitive, close to the
intended semantics, and is automatable. For higher-order classical logic,
semantic tableaus are not as often seen—most treatments in the liter-
ature are axiomatic. Among the notable exceptions are [Tol75, Smi93,
Koh95, Gil01]. In fact, semantic tableaus retain much of their first-order
ability to charm, and they are what I present here. Automatability be-
comes more problematic, however, for reasons that will become clear
as we proceed. Consequently the presentation should be thought of as
meant for human use, and intelligence in the construction of proofs is
expected.

This chapter examines what I call a basic tableau system; rules are
lifted from those of first-order classical logic, and two straightforward
rules for predicate abstracts are added. It is a higher-order version of the
second-order system given in [Tol75]. I will show it corresponds to the
generalized Henkin models from Section 5 of Chapter 2. In Chapters 5
and 6 I make additions to the system to expand its class of theorems
and narrow its semantics to Henkin models.

1. A Different Language

In creating tableau proofs I use a modified version of the language
defined in Chapter 2. That is, I give tableau proofs of sentences from the
original language L(C), but the proofs themselves can involve formulas
from a broader language that is called L*(C). Before presenting the
tableau rules, I describe the way in which the language is extended for
proof purposes.

33

34 TYPES, TABLEAUS, AND GODEL’S GOD

Existential quantifiers are treated at higher orders exactly as they are
in the first-order case. If we know an existentially quantified formula is
true, a new symbol is introduced into the language for which we say, in
effect, let that be something whose value makes the formula true. As
usual, newness is critical. For this purpose it is convenient to enhance the
collection of free variables by adding a second kind, called parameters.

DEFINITION 3.1 (PARAMETERS) In L(C), for each type t there is an
infinite collection of free variables of that type. The language L*(C)
differs from L(C) in that, for each t there is also a second infinite list
of free variables of type t, called parameters, a list disjoint from that
of the free variables of L(C) itself. Parameters may appear in formulas
in the same way as the original list of free variables but they are never
quantified or A bound. p, ¢, P, Q, ... are used to represent parameters.

Parameters appear in tableau proofs. They do not appear in the
sentences being proved. Since they come from an alphabet distinct from
the original free variables, an alphabet that is never quantified or A
bound, we never need to worry about whether the introduction of a
parameter will lead to its inadvertent capture by a quantifier or a A—
introducing them will always involve a free substitution. Thus rules that
involve them can be relatively simple.

Special Terminology Technically, parameters are a special kind of
free variable. But to keep terminology simple, I will continue to use
the phrase free variable for the free variables of L(C) only, and when I
want to include parameters in the discussion I will explicitly say so.

The notion of truth in generalized Henkin models must also be ad-
justed to take formulas of L*(C) into account. As I have just noted,
parameters are special free variables, so when dealing semantically with
L*(C), valuations must be defined for parameters as well as for the
free variables of L(C). Essentially, the difference between a generalized
Henkin frame and a generalized Henkin model lies in the requirement
that the extension of a formula appearing in a predicate abstract must
correspond to the designation of that abstract, which is a member of the
appropriate Henkin domain. In L*(C) there are parameters, so there
are more formulas and predicate abstracts than in L(C). Then requiring
that something be a generalized Henkin model with respect to L*(C) is
apparently a stronger condition than requiring it be one with respect to
L(C), though Section 6 establishes that this is not actually so.

DEFINITION 3.2 (GROUNDED) A term or a formula of LT(C) is
grounded if it contains no free variables of L(C), though it may con-
tain parameters.

CLASSICAL LOGIC—BASIC TABLEAUS 35

The notion of grounded extends the notion of closed. Specifically, a
grounded formula of L*(C) that happens to be a formula of L(C) is a
closed formula of L(C), and similarly for terms.

2. Basic Tableaus

I now present the basic tableau system. It does not contain machinery
for dealing with equality—that comes in Chapter 5. The rules come
from [Tol75], where they were given for second-order logic. These rules,
in turn, trace back to the sequent-style higher-order rules of [Pra68} and
[Tak67].

All tableau proofs are proofs of sentences—closed formulas—of L{C).
A tableau proof of ® is a tree that has =@ at its root, grounded formulas
of L1 (C) at all nodes, is constructed following certain branch extension
rules to be given below, and is closed, which means it embodies a con-
tradiction. Such a tree intuitively says —-® cannot happen, and so @ is
valid.

The branch extension rules for propositional connectives are quite
straightforward and well-known. Here they are, including rules for vari-
ous defined connectives.

DEFINITION 3.3 (CONJUNCTIVE RULES)

XAY ~(XVY) =(XDY) X=Y
X X X XoY
Y -y ~Y YoX

For the conjunctive rules, if the formula above the line appears on a
branch of a tableau, the items below the line may be added to the end of
the branch. The rule for double negation is of the same nature, except
that only a single added item is involved.

DEFINITION 3.4 (DOUBLE NEGATION RULE)

X
X

Next come the disjunctive rules. For these, if the formula above the
line appears on a tableau branch, the end node can have two children
added, labeled respectively with the two items shown below the line in
the rule. In this case one says there is tableau branching.

36 TYPES, TABLEAUS, AND GODEL’S GOD

DEFINITION 3.5 (DISJUNCTIVE RULES)

Xvy CS(XAY)
X|Y -X | Y
XDY '—l(XEY)

“X[Y —~(XoY)[~(Y¥>X)

This completes the propositional connective rules. The motivation
should be intuitively obvious. For instance, if X AY is true in a model,
both X and Y are true there, and so a branch containing X AY can
be extended with X and Y. If X VY is true in a model, one of them
is true there. The corresponding tableaun rule says if X VY occurs on a
branch, the branch splits using X and Y as the two cases. One or the
other represents the “correct” situation.

Though the universal quantifier has been taken as basic, it is con-
venient, and just as easy, to have tableau rules for both universal and
existential quantifiers directly. To state the rules simply, I use the fol-
lowing convention. Suppose ®(af) is a formula in which the variable of,
of type t, may have free occurrences. And suppose 7° is a term of type
t. Then ®(r*) is the result of carrying out the substitution {a'/7'} in
®(ot), replacing all free occurrences of o with occurrences of 7. Now,
here are the existential quantifier rules.

DEFINITION 3.6 (EXISTENTIAL RULES) In the following, p* is a param-
eter of type t that is new to the tableau branch.

(Fat)®(at) ~(Val)®(at)
®(p") -®(p")

The rules above embody the familiar notion of existential instantia-
tion. Since the convention is that parameters are never quantified or A-
bound, we don’t have to worry about accidental variable capture. More
precisely, in the rules above, the substitution {a!/p'} is free for the for-
mula $(at).

The universal rules are somewhat more straightforward. Once again,
note that in them the substitution {af/7'} is free for the formula ®(a?).

DEFINITION 3.7 (UNIVERSAL RULES) In the following, Tt is any
grounded term of type t of LT (C).

(Vat)®(at) —=(3a)®(a')
o(rh) -®(7")

CLASSICAL LOGIC—BASIC TABLEAUS 37

Finally we have the rules for predicate abstracts. Earlier notation

is extended a bit, so that if ®(a1,...,q,) is a formula, oy, ..., o
are distinct free variables, and 7, ..., 7, are grounded terms of the
same respective types as ar, ... , Gp, then ®(7y,...,7,) is the result of

simultaneously substituting each 7; for all free occurrences of ¢; in ®.

DEFINITION 3.8 (ABSTRACT RULES)

Mo, .. ,an®(a1,...,00))(T1,... ,Tn)
D(11,. .. ,Tn)

={Aa1,. .. ,0n.®(01,... ,00))(T1,... ,Tn)
—®(71,...,Tn)

Now what, exactly, constitutes a proof.

DEFINITION 3.9 (CLOSURE) A tableau branch is closed if it contains
® and ~®, where ® is a grounded formula. A tableau is closed if each
branch is closed.

DEFINITION 3.10 (TABLEAU PROOF) For a sentence ® of L(C), a
closed tableau beginning with ~® is a proof of ®.

DEFINITION 3.11 (TABLEAU DERIVATION) A tableau derivation of a
sentence ® from a set of sentences S, all of L(C), is a closed tableau
beginning with —~®, allowing the additional rule: at any point any member
of S can be added to the end of any open branch.

This concludes the presentation of the tableau rules. In the next
section I give several examples of tableaus. Classical first-order tableau
rules, as in [Smu68, Fit96] are analytic—they only involve subformulas
of the formula being proved. (It is not the case with the cut rule, but
this is an eliminable rule.) Higher-order rules, for the most part, have
an analytic nature as well. The important exception is the rule for the
universal quantifier. It allows us to pass from (Yat)®(at) to ®(7*) where
7t is an arbitrary grounded term. Since terms can involve predicate
abstracts, applications of this rule can introduce formulas that are not
subformulas of the one being proved—indeed, they may be much more
complicated. There is no way around this. In a sense, the introduction
of predicate abstracts embodies the “creative element” of mathematics.

3. Tableau Examples

Tableaus for first-order classical logic are well-known, but the ab-
straction rules of the previous section are not as widely familiar. I give

2 Springer
http://www.springer.com/978-1-4020-0604-3

Types, Tableaus, and Gddel's God
Fitting, M.

2002, XV, 181 p., Hardcowver

ISBEN: @78-1-4020-0604-3

