Chapter 5

EQUALITY

The basic tableau rules of Chapter 3 do not give any special role to
equality. It is time to bring it into the picture. This is done by adding
axioms to the tableau system, which has the effect of narrowing things
to normal generalized Henkin models. In addition, some useful derived
tableau rules will be presented.

1. Adding Equality

Leibniz’s principle is that objects are equal just in case they have
the same properties. This principle is most easily embodied in axioms,
rather than in tableau-style rules.

DEFINITION 5.1 (EQUALITY AXIOMS) FEach sentence of the following
form is an equality axiom:

(Va)(vB)[(a = B) = (V) (7(a) 2> 7(B))]

In this, = is of type (t,t), for some t, then o and (3 are of type t and ~y
is of type (t). EQ denotes the set of equality azioms.

I will show that a closed formula ® of L(C) is valid in normal gen-
eralized Henkin models if and only if ® has a tableau derivation from
EQ. But before that is done I give some handy derived tableau rules,
and examples of their use.

2. Derived Rules and Tableau Examples

There are two derived rules involving equality that are more “tableau-
like” in flavor, and are what I primarily use in constructing tableau
proofs and derivations. I do not know if they can serve as full replace-
ments for the official Equality Axioms, since I have been unable to prove
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a completeness theorem using them. Nonetheless, the derived rules be-
low are the ones I generally use in practice.

DEFINITION 5.2 (DERIVED REFLEXIVITY RULE) For a grounded term
T of LT(C), at any point in a proof (T = 7) may be added to the end of
a tableau branch. Schematically,

Justification of Derived Reflexivity Rule Let 7 be a grounded
term of type t. (7 = 7) can be added to the end of a branch via the
following sequence of steps.

(Va)(VB)[(a = B) = (Vy)(v(a) D ¥(B))] 1.
(VB)I(T = B) = (v1)(v(7) 2 v(B)] 2.
[(r=7)=()((r) Dv(1))] 3.
[(r=7)D (V) (r) Dy(T)] 4

(V) (y(T) Dv(1)) D (r=7)] 5.

/

(VN (T) 2 (7)) 6. (T=7) T

In this, 1 is an equality axiom; 2 is from 1 and 3 is from 2 by universal
rules; 4 and 5 are from 3 by a conjunction rule; 6 and 7 are from 5 by
a disjunction rule. Clearly the left branch continues to closure. The
remaining open branch, the right one, indeed, has (7 = 7) on it.

The next rule embodies the familiar notion of substitutivity of equals
for equals.

DEFINITION 5.3 (DERIVED SUBSTITUTIVITY RULE) Suppose ®(«)
is a formula of LT(C) in which the variable a may have free occur-
rences, but no other variables occur free. Also suppose 71 and T are
grounded terms of the same type as a. As usual, let ®(11) denote the
result of replacing free occurrences of o in ®(a) with occurrences of T;
and similarly for ®(72). Then, if both ®(11) and (11 = T2) occur on a
tableau branch, ®(13) can be added to the branch end. Schematically,

®(r1)
(11 =79)
®(72)

Justification of Derived Substitutivity Rule  Assume 7 and
are grounded terms of type t, and ®(71) and (71 = 72) occur on a tableau
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branch. I show ®(73) can be added to the end of the branch.

®(7y)
(11 =72)

(Ya)(VB)[(a = B) = (V1) (v(e) D v(B8))] 1.
(VB[ = B) = (Y1) (v(11) D v(B))] 2.
(11 =72) = (Vy)(v(11) D v(72))] 3.

(11 =m2) D (V) (v ( 1) D (7)) 4.

(Y1) (v(11) D v(12)) D (1 =T2)] 5.

/N

~(n=m) 6. (V)(v(n
(Aa.®(a)

D(m)) 7.
(1) D (Pa.®(a))(m2) 8.

~— e

~~

) 9 (Aa.®(a))(m) 10.

—(Aa.®(a))
1. d(ry) 12.

—1(13(7'1) 1

In this, 1 is an equality axiom; 2 is from 1 and 3 is from 2 by universal
rules; 4 and 5 are from 3 by a conjunction rule; 6 and 7 are from 4
by a disjunction rule; 8 is from 7 by a universal rule, using the term
(Aa.®(a)); 9 and 10 are from 8 by a disjunction rule; 11 is from 9 and
12 is from 10 by a predicate abstract rule. The two left branches are
closed, leaving the right one which contains ®(73).

Now I give several examples of tableau derivations using the derived
rules. The first example is (intentionally) a simple one. It appeared
earlier as Example 2.9, where an informal reading was given, and validity
was shown directly.

EXAMPLE 5.4 Here is a proof of (AX.(3z)X (z))({(Az.z = ¢)).

(AX.(F) X (2))((Az.z =) 1.
(Fz)(Az.x = c)(z) 2.

ﬂé)\xac—c)() 3.
(c=

4

J

J

) 4.
¢) 5.

In this, 2 is from 1 by an abstract rule; 3 is from 2 by a universal rule;
4 is from 3 by an abstract rule, and 5 is by the derived reflexivity rule.

The next example shows how, by using the derived rules, we can
reverse things and prove a version of the equality axioms.
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EXAMPLE 5.5 I give a tableau proof (using derived rules, not axioms)
of

(Vo) (VB)[(Yy)(v(a) D ¥(8)) O (e = B)].

(Vo) (VB [(Vy) (v(@) D ¥(B)) D( =p)] 1
~(VB)(Y7)(v(P) D v(8)) D (P =8)] 2.
(V) ((P) 2v(Q)) D (P = Q)] 3.

(V) (v(P) D Q)) 4

(AXA(X =Q))(P) D (MX~(X=Q)(Q) 6.

/ AN

SDXA(X =Q)(P) T XX =Q)(Q) 8.
~-(P=Q) 9. ~(Q=Q) 10.
Q=Q) 1L

Here 2 is from 1, and 3 is from 2 by an existential rule (P and Q
are new parameters of the appropriate type); 4 and 5 are from 3 by a
conjunctive rule; 6 is from 4 by a universal rule, using the grounded term
(AX.~(X = @Q)); 7 and 8 are from 6 by a disjunction rule; 9 and 10 are
from 7 and 8 by abstract rules; 11 is the derived reflexivity rule.

Though the derived tableau rules for equality allow us to prove the
axioms, it does not follow they are their equivalent. To establish that,
we would need to have a cut elimination theorem for the tableau system
with the equality rules. And the way to prove cut elimination is to first
have a completeness proof. I conjecture that such a completeness result
is provable, but I don’t know how to do it.

Exercises

EXERCISE 2.1 Prove the following characterization of equality—it says
it is the smallest reflexive relation.

(Vz)(vy){(z = y) = (VR)[(V2)R(z, ) > R(z,y)]}

EXERCISE 2.2 Give a tableau derivation of the following from EQ.

(Va)(vO)[(a = B) > (Vy)(aly) = B(7))]

More generally, one can do the same with the following.

(Va)(vB)[(a=B) > (V1) - (Vm)(alys- - 1) = B0, - - s )]
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3. Soundness and Completeness
The results of this section combine to prove the following.

THEOREM 5.6 Let ® be a closed formula and let S be a set of closed
formulas of L(C).

1 @ is valid in all normal generalized Henkin models if and only if ®
has a tableau derivation from EQ.

2 ® is a consequence of S with respect to normal generalized Henkin
models if and only if ® has a tableau derivation from S U EQ.

The theorem above combines soundness and completeness. One di-
rection, soundness, is almost immediate. Every equality axiom is true in
every normal generalized Henkin model, so the implications from right
to left in Theorem 5.6 follow immediately from Theorems 4.4 and 4.5.
As usual, the completeness direction is more work. The key item is to
prove the following Proposition. Once we have it, completeness follows
immediately using part 2 of Theorem 4.30.

PROPOSITION 5.7 Given a generalized Henkin model in which all mem-
bers of EQ are true, there is a normal generalized Henkin model in which
exactly the same closed formulas of L(C) are true.

The rest of this section is given over to a proof of Proposition 5.7—it is
broken up into constructions and Lemmas. The ideas are the same as in
Godel’s original completeness proof for first-order logic with equality—
bring equivalence classes into the picture.

For the rest of this section, assume (M, A) is a generalized Henkin
model, M = (H,Z,£), and all members of EQ are true in this model.

For 01,02 € H(t), let us write O; =7 Oz as a more readable alter-
native notation for (O1,0s) € Z(=%%). Thus =1 is the interpretation
of the equality constant symbol (of a particular type, which will be in-
dicated only if needed). Since all equality axioms are true in (M, A), it
is an easy consequence that =z is an equivalence relation.

For each O € H(t), let O be the equivalence class determined by O,
that is, O = {O' | O =7 O'}. Define a new Henkin domain mapping
by setting H(t) = {O | O € H(t)}. Also, define a new interpretation
by setting Z(A) to be the equivalence class containing Z(A), that is,
I(A)=1Z(A).

LEMMA 5.8 If O; = Oq then £(O1) = £(02).



2 Springer
http://www.springer.com/978-1-4020-0604-3

Types, Tableaus, and Gddel's God
Fitting, M.

2002, XV, 181 p., Hardcowver

ISBEN: @78-1-4020-0604-3





