Chapter 1

CLASSICAL LOGIC—SYNTAX

1. Terms and Formulas

The formulation of a higher-order logic allows some freedom—there
are certain places where choices can be made. Several of these choices
produce equivalent results. Before getting to the formal machinery, 1
informally set out my decisions on these matters. Other treatments may
make different choices, but ultimately it is largely a matter of conve-
nience that is involved.

Often classical first-order logic is formulated with a rich variety of
terms, built up from constant symbols and variables using function sym-
bols. Since higher-order constructs are already complicated, I have de-
cided to have constant symbols but not function symbols. If necessary
for some purpose, it is not a major issue to add them—doing so yields
a conservative extension.

Higher-order logic can be formulated with or without explicit abstrac-
tion machinery. Speaking informally, one wants to make sure that every
formula specifies a class, but there are two ways of making this happen.
One is to assume comprehension azxioms, formulas of the general form:

AX)[X(z1,... ,zp) = @(T1,... ,Zn)].

where p(z1,...,2p) is a formula with free variables as indicated. Such
axioms ensure that to each formula corresponds an ‘object.” The other
approach is to elaborate the term-forming machinery, so that there is
an explicit name for the object specified by a formula ¢. This involves
predicate abstraction, or A-abstraction:

(Az1,- e s T (T1,. -+ ,Zn)).

4 TYPES, TABLEAUS, AND GODEL’S GOD

The two approaches are equivalent in a direct way. I have chosen to use
explicit abstracts for several reasons. First, axioms are not as natural
when tableau systems are the proof machinery of choice. And second,
predicate abstraction has already played a major role in earlier inves-
tigations of modal logic [FM98], and makes discussion of major issues
considerably easier here.

Finally, one can characterize higher-order formulas more-or-less the
way it is done in the first-order setting, taking quantifiers and connec-
tives as “logical constants.” This is the approach of [Sch60]. Alterna-
tively, following [Chu40], one can think of quantifiers and connectives as
constants of the language, which itself is formulated in lambda-calculus
style. In this book I take the first approach, though one can make
arguments for the second on grounds of elegance and economy. My jus-
tification is that doing things the way that has become standard for
first-order logic will be less confusing to the reader.

Recently one further alternative has become available. In [Gil99,
Gil01], Paul Gilmore has shown that by a relatively simple change, a
system of classical higher-order logic can be developed allowing a con-
trolled degree of impredicativity—typing rules can be relaxed to permit
the formation of certain useful sentences that are not “legal” in the ap-
proach presented here. This, in turn, allows a more natural development
of arithmetic in the higher-order setting. I do not follow Gilmore’s ap-
proach here, but I recommend it for study. Much of what I develop
carries over quite directly.

So these are my choices: no function symbols, explicit predicate ab-
straction, quantifiers and connectives as in the first-order setting, and
no impredicativity. With this out of the way I can begin presenting the
formal syntactical machinery.

In first-order logic, relation symbols have an arity—some are one-
place, some are two-place, and so on. In higher-order logic this simple
idea gets replaced by a typing mechanism, which is considerably more
complex. Terms, and certain other items, are assigned types, and rules
of formation make use of these types to ensure that things fit together
properly. I begin by saying what the types are.

DEFINITION 1.1 (TYPE) 01is a type. Ifty,... ,tn are types, (t1,... ,tn)
is a type. I generally use t, ty, ta, t', etc. to represent types.

An object of type 0 is intended to be a ground-level object—it corre-
sponds to the designation of a constant symbol or variable in standard
first-order logic. An object of type (t1,... ,tn) is a predicate that takes
n arguments, of types t1, ..., t, respectively. Thus a constant symbol
of type (0,0,0), say, would be called a three-place relation symbol in

CLASSICAL LOGIC—SYNTAX 5

standard first-order logic—it applies to three ground-level arguments.
But now we can have relation symbols of types such as ((0), (0,0),0), to
which nothing in first-order logic corresponds.

DEFINITION 1.2 (L(C)) Let C be a set of constant symbols with a type
associated to each, containing at least an equality symbol =% for each
type t. I denote the classical higher-order language built up from C by
L(C). The rest of this section amounts to the formal characterization of
L(C).

For each type t I assume there are infinitely many variable symbols
of that type. I generally use letters from the beginning of the Greek
alphabet to represent variables, with the type written as a superscript:

of, Bt +t, Likewise I generally use letters from the uppercase
Latin alphabet as constant symbols, again with the type written as a
superscript: At, Bt, C?, D?, As noted, equality is primitive, so for

each type t there is a constant symbol =% of type (t,t). Often types
can be inferred from context, and so superscripts will be omitted where
possible, in the interests of uncluttered notation.

Sometimes it is helpful to refer to the order of a term or formula—first-
order, second-order, and so on. It is simplest to define this terminology
first for types themselves.

DEFINITION 1.3 (ORDER) Type 0 is of order 0. Type (t1,...,tn) has
as its order the maximum of the orders of t1, ... , tn, plus one.

Thus (0,0) is of order 1, or first-order. Likewise (0, (0,0)) is of order
2, or second-order. Types will play the fundamental role, but order
provides a convenient way of referring to the maximum complexity of
some construct. When I talk about the order of a constant or variable,
I mean the order of its type. Likewise once formulas are defined, I may
refer to the order of the formula, by which I mean the highest order of
a typed part of it.

Next I define the class of formulas, and their free variables. This
definition is more complex than the corresponding first-order version
because the notion of term cannot be defined first; both term and formula
must be defined together. And to define both, I need the auxiliary notion
of predicate abstract which is, itself, part of a mutual recursion involving
Definitions 1.4, 1.5, and 1.6.

DEFINITION 1.4 (PREDICATE ABSTRACT OF L(C)) Let ® be a for-
mula of L(C) and oy, ..., an be a sequence of distinct variables of
types ti, ..., tp respectively. {Aai, ... ,an.®) is a predicate abstract of

6 TYPES, TABLEAUS, AND GODEL’S GOD

L(C). Its type is {t1,... ,tn), and its free variable occurrences are the
free variable occurrences in the formula ®, except for occurrences of the
variables aq, ..., op.

DEFINITION 1.5 (TERM OF L(C)) Terms of each type are character-
ized as follows.

1 A constant symbol of L(C) or variable is a term of L(C). If it is a
constant symbol, it has no free variable occurrences. If it is a variable,
it has one free variable occurrence, itself.

2 A predicate abstract of L(C) is a term of L(C). Its free variable
occurrences were defined above.

T 15 used, with and without subscripts, to stand for terms.

DEFINITION 1.6 (FORMULA OF L(C)) The notion of formula is given
as follows.

1 If 7 is a term of type (t1,...,tn), and T1, ..., T, 15 a sequence of
terms of types t1, ... , tp respectively, then 7(m1,... ,Tn) is a formula
(atomic) of L(C). The free variable occurrences in it are the free
variable occurrences of T, T1, ..., Tn-

2 If ® is a formula of L(C) so is =®. The free variable occurrences of
-® are those of ®.

3 If ® and ¥ are formulas of L(C) so is (2 AV). The free variable
occurrences of (B A ¥) are those of ® together with those of V.

4 If ® is a formula of L(C) and « is a variable then (Yo)® is a formula
of L(C). The free variable occurrences of (Ya)® are those of ®, except
for occurrences of a.

EXAMPLE 1.7 Suppose a{%0 is a variable of type (0,0) (and so first-
order), 3° is a variable of type 0, and ~{0.0.0) ig 5 variable of type
({0,0),0) (second-order). Both 3° and 7{®%") are terms. Then the
expression 74009 ((0:0 30} is an atomic formula. Generally I will
write the simpler looking (o, 3), and give the information contained
in the superscripts in a separate description. Since this atomic formula
contains a variable -y of order 2, it is referred to as a second-order atomic
formula.

DEFINITION 1.8 (SENTENCE) A formula with no free variables is a sen-
tence.

CLASSICAL LOGIC—SYNTAX 7

One can think of V, D, =, and I as defined symbols, with their usual
definitions. But sometimes it is convenient to take them as primitive—I
do whatever is most useful at the time. Also square and curly paren-
theses are used, as well as the official round ones, to aid readability.
And finally, I write the equality symbol in infix position, following stan-
dard convention. Thus, for example, T write (o =%# g) in place of
—_{t,t) (at”@t)_

Several examples involving just first and second-order notions will be
considered, so a few special alphabets are introduced informally, to make
reading the examples a little easier.

Order | Constants | Variables

0 a, b c ... Ty Y, 2, ...
1 ABC,... | X,Y, Z, ...
2 A B, C, ... X,), 2, ...

EXAMPLE 1.9 For this example I give explicit type information (in su-
perscripts), until the end of the example. After this I omit the super-
scripts, and say in English what is needed to restore them.

Suppose z°, X©@ and X {(0)) are variables (the first is of order 0, the
second is of order 1, and the third is of order 2). Also suppose PO and
g° are constant symbols of L(C) (the first is of order 2 and the second
is of order 0).

1 Both X0 (X)) and X (20) are atomic formulas. All variables
present have free occurrences.

2 (AX0) x{ON (X)) is a predicate abstract, of type ({(0))). Only
the occurrence of X (¥ is free.

3 Since PUO) is of type ((0)), (AXOD a0 (X (O))(PUON)Y is a formula.
Only X is free.
4 [(AX 0N (0 (x(0)y(plON) 5 X (0 ()] is a formula. The only free

variable occurrences are those of X and z°.

5 (VX ON[(AX O (0N (X Oy (PUONY 5 X{0(£0)] is a formula. The
only free variable occurrence is that of V.

6 (A0 (VXA WD xOn (X O)y(ploN) 5 X0 (£0)]) is a predi-
cate abstract. It has no free variable occurrences, and is of type (0).

The type machinery is needed to guarantee that what is written is well-
formed. Now that the exercise above has been gone through, I will
display the predicate abstract without superscripts, as

(Az.(VX)[(AX.X(X))(P) D X(2))),

2 Springer
http://www.springer.com/978-1-4020-0604-3

Types, Tableaus, and Gddel's God
Fitting, M.

2002, XV, 181 p., Hardcowver

ISBEN: @78-1-4020-0604-3

