Chapter 4

SOUNDNESS AND COMPLETENESS

This chapter contains a proof that the basic tableau rules are sound
and complete with respect to generalized Henkin models. Soundness is
by the “usual” argument, is straightforward, and is what I begin with.
Completeness is something else altogether. For that I use the ideas
developed simultaneously in [Tak67, Pra68|, where they were applied to
give a non-constructive proof of a cut elimination theorem.

1. Soundness

Soundness means that any sentence having a tableau proof must be
valid. Tableau soundness arguments follow the same pattern for all log-
ics: some notion of satisfiability is defined for tableaus; then satisfiability
is shown to be preserved by each tableau rule application. Note that in
the following, L™ (C) is used rather than L(C), because formulas of the
larger language L*(C) can occur in tableaus.

DEFINITION 4.1 (TABLEAU SATISFIABILITY) A tableau branch is sat-
isfiable if the set of formulas on it is satisfiable in a generalized Henkin
model for LT(C) (see Definition 2.29). A tableau is satisfiable if some
branch is satisfiable.

Now, two key facts about these notions easily give us soundness. For
the first, a closed tableau branch contains some formula and its negation,
hence cannot be satisfiable. Since a closed tableau has every branch
closed, we immediately have the following.

LEMMA 4.2 A closed tableau cannot be satisfiable.

The second key fact takes more work to prove, but the work is spread
over several cases, each of which is rather simple.
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LEMMA 4.3 If a branch extension rule is applied to a satisfiable tableau,
the result is another satisfiable tableau.

Proof Suppose 7 is a satisfiable tableau. Then it has some satisfiable
branch, say B. Also suppose some branch extension rule is applied to 7
to produce a new tableau, 7’. It must be shown that 7’ is satisfiable.

The rule that was applied to turn 7 into 7’ may have been applied
on a branch other than B. In this case B is still a branch of 77, and
of course is still satisfiable, so 7" is satisfiable. Now, for the rest of the
proof assume a branch extension rule has been applied to the satisfiable
branch B itself. And to be specific, say all the grounded formulas on
B are true in the generalized Henkin model (M, A4) with respect to the
valuation v, where M = (H,Z,E).

There are several cases, depending on which branch extension rule
was applied. I consider only a few of these cases and leave the rest to
you.

Disjunction Suppose the grounded formula X VY occurred on B and
a rule was applied to it. Then in 7’ the branch B has been replaced
with two branches: B lengthened with X, and B lengthened with Y.
All formulas on B are true in (M, A) with respect to valuation v,
hence M Iy 4 X VY. Then either M Ik, 4 X or M Iy 4 Y. In the
first case, all members of B lengthened with X, and in the second
case, all members of B lengthened with Y, are true in (M, A) with
respect to v. Either way, some branch of 77 is satisfiable.

Existential Quantifier Suppose the grounded formula (3a)®(a) oc-
curred on B and a rule was applied to it, so that in 7’ branch B has
been lengthened with ®(p) where p is a parameter new to B, of the
same type as «.

Since all formulas on B are true in (M, A) with respect to v, M I, 4
(3a)®(c). Then, by definition of truth in a model, there must be
some a-variant w of v such that M I, 4 ®(). Let 0 = {p/a}—
the substitution that replaces p by a—and consider the valuation
w® (Definition 2.26). 1 claim all formulas on B extended with ®(p)
are true in (M, A) with respect to w?, so the extended branch is
satisfiable.

First of all, v and w agree on all variables except a. It is easy to
see that w and w” agree on all variables except p, so the only vari-
ables on which v and w® can differ are o and p. But a does not
occur free in any formula on B, since these formulas are all grounded.
And p does not occur either, since p was new to the branch. Conse-
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quently all formulas on B are true in (M, A) with respect to w7, by
Proposition 2.30.

Finally, note that since p did-not occur in (3a)®(a), then ®(a) =
®(p)o. We have M Iy, 4 ®(a), and by Proposition 2.31

My, 4 B(a) © M iky 4 S(p)o
& Mikyo 4 (p).

This completes the argument for the existential case.

Abstraction Suppose the grounded formula
Aag, ... ,anD(ar, ... ,an))(11,... ,Tn)

occurred on B, and a rule was applied to it, so that in 7’ branch B
has been lengthened with ®(r1,...,7,). We are assuming that the
formulas on B are all true in (M, A) with respect to valuation v. I
will show that this extends to include ®(ry,...,7,) as well.

Let 0 = {0y /71, ..., an/7n}. This is free for ®(ay,... ,on) because
T, -.. , Tnp must be grounded, and parameters are never quantified or
A-bound. Now consider the valuation v?. Note the following useful
items.

1 v7(ai) = (v* I x A)(eio) = (v * T * A)(73)

2 If B is different from a;, ..., a,, v°(8) = (v* I * A)(Bo) =
(v* I * A)(B) = v(B).
Since (Ao, ... ,om.®(0q,... ,an))(71,... , ) is on B, we have

My 4 Aad,. .., 0n.®(ag,. .., o)) (7T1,... ,Tn).
For this to be the case

(v*Tx A)(1),...,(v*T*xA)()) €
E((v+T* A)((Aat,...,an®(a1,...,an)))).

Since we have a generalized Henkin model, A is proper, so

E((vxITx A)({Aaa,. .. ,0n.Blaq,...,an)))) =
{{w(a),... ,wlay)) | wis an a, ... ,ay-variant of v
and M iy, 4 ®(a, ..., 00)}

and consequently M Ik, 4 ®(ay,...,a,) where w is the oq, ...,
ap-variant of v such that w(ay) = (v*Z x A)(n1), ..., w(oy) =
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(v*Z % A)(7,). But, by items 1 and 2 above, v7 itself is this ¢y, ...,
ap-variant of v. We thus have

Mlbyo 4 ®(ar,... an).
Now, by Proposition 2.31,

Miky 4 B(aq, ... ,an)0,
that is,

My A ®(T1,. .. ).

There are other cases—I leave them to you. m

THEOREM 4.4 (SOUNDNESS) If a sentence ® of L(C) has a tableau
proof, ® must be true in all generalized Henkin models with respect to
L(C).

Proof Suppose ® has a tableau proof, but is not true in every gen-
eralized Henkin model with respect to L{C)—I derive a contradiction.
Since @ is not true in every generalized Henkin model with respect to
L(C), {—®} is satisfiable, and by Proposition 2.33, is so in a generalized
Henkin model with respect to L1 (C). A tableau proof of ® begins with
a tableau consisting of a single branch, containing the single formula
—®, so this must be a satisfiable tableau. As we apply branch extension
rules, we continue to get satisfiable tableaus, by Lemma 4.3. Since &
is provable, we can get a closed tableau. Hence there must be a closed,
satisfiable tableau, which is impossible according to Lemma 4.2. =

Essentially the same argument also establishes the following.

THEOREM 4.5 Let S be a set of sentences and ® be a single sentence
of L(C). If ® has a tableau derivation from S, then ® is a generalized
Henkin consequence of S.

2.  Completeness

The proof of completeness, for basic tableaus, with respect to gen-
eralized {enkin models, is of considerable intricacy. It is spread over
several subsections, each devoted to a single aspect of it. All the ba-
sic ideas go back to [Tak67, Pra68|, where they were used to establish
non-constructively a cut-elimination theorem for higher-order Gentzen
systems. I also use aspects of the (second-order) presentation of [Tol75],
in particular the central goal, for us, is to prove that something called
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a Hintikka set is satisfiable. This contains the essence of the proofs
of [Tak67, Pra68]. [And71] abstracted the Takahashi, Prawitz ideas to
prove a higher-order Model Existence Theorem which could simply have
been cited, but the ideas of the completeness proof are pretty and deserve
to be better known, hence the full presentation.

In outline, the completeness proof is as follows. In Section 2.1 the
notion of a Hintikka set is defined: it is a set of grounded formulas of
L7*(C) meeting certain closure conditions bearing an obvious relation-
ship to the tableau rules. In Section 2.2 pseudo-models are introduced.
These are the closest we come, in higher-order logic, to the Herbrand
models familiar in the first-order setting. Unfortunately, they will not
look like proper models in the higher-order sense, because objects as-
signed as meanings for predicate abstracts might lie outside the range
allowed for quantifiers. In Section 2.3 some rather technical (but impor-
tant) results about the behavior of substitution in pseudo-models are
shown. In Section 2.4 it is established that each Hintikka set is satisfi-
able in some pseudo-model. Section 2.5 shows that pseudo-models, in
fact, are proper generalized Henkin models after all, and so each Hin-
tikka set is satisfiable in such a model. Finally in Section 2.6 it is shown
how to extract a Hintikka set from a failed tableau proof attempt, and
this puts the last step in place for the completeness proof.

2.1 Hintikka Sets

Hintikka sets are fairly familiar from propositional and first-order
logics—see [Fit96] and [Smu68] for instance. They play a similar role
in the higher-order case, though arguments about them are much more
complex. You should note that the basic tableau rules all correspond
directly to Hintikka set conditions (I omit the connective = as a small
convenience).

DEFINITION 4.6 (HINTIKKA SET) A non-empty set H of grounded for-
mulas of L1 (C) is a Hintikka set if it meets the following conditions.

1 Atomic Case. If ® is atomic, not both ® € H and -® € H.
2 Conjunctive Cases.

(a) If (PAV) € H then®ec H and ¥ € H.
(b) If -(®& Vv ¥) € H then =® € H and -V € H.
(¢c) If (® D V¥) e H then ® € H and ~¥ € H.

& Disjunctive Cases.

(a) If (B V ¥) € H then either ® € H or ¥ € H.
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