DAVID HAREL, DEXTER KOZEN, AND JERZY TIURYN

DYNAMIC LOGIC

PREFACE

Dynamic Logic (DL) is a formal system for reasoning about programs. Tra-
ditionally, this has meant formalizing correctness specifications and proving
rigorously that those specifications are met by a particular program. Other
activities fall into this category as well: determining the equivalence of pro-
grams, comparing the expressive power of various programming constructs,
synthesizing programs from specifications, etc. Formal systems too numer-
ous to mention have been proposed for these purposes, each with its own
peculiarities.

DL can be described as a blend of three complementary classical ingre-
dients: first-order predicate logic, modal logic, and the algebra of regular
events. These components merge to form a system of remarkable unity that
is theoretically rich as well as practical.

The name Dynamic Logic emphasizes the principal feature distinguishing
it from classical predicate logic. In the latter, truth is static: the truth value
of a formula ¢ is determined by a valuation of its free variables over some
structure. The valuation and the truth value of ¢ it induces are regarded
as immutable; there is no formalism relating them to any other valuations
or truth values. In Dynamic Logic, there are explicit syntactic constructs
called programs whose main role is to change the values of variables, thereby
changing the truth values of formulas. For example, the program z := z+1
over the natural numbers changes the truth value of the formula “z is even”.

Such changes occur on a metalogical level in classical predicate logic. For
example, in Tarski’s definition of truth of a formula, if v : {z,y,...} = N
is a valuation of variables over the natural numbers N, then the formula
Jdz x? = y is defined to be true under the valuation u iff there exists an
a € N such that the formula x? = y is true under the valuation u[z/a], where
ulz /a] agrees with u everywhere except x, on which it takes the value a. This
definition involves a metalogical operation that produces u[z/a] from u for
all possible values a € N. This operation becomes explicit in DL in the form
of the program z := 7, called a nondeterministic or wildcard assignment.
This is a rather unconventional program, since it is not effective; however,
it is quite useful as a descriptive tool. A more conventional way to obtain
a square root of y, if it exists, would be the program

(1) z:=0; while 22 <y do z:= 2+ 1.

In DL, such programs are first-class objects on a par with formulas, complete
with a collection of operators for forming compound programs inductively
99

D.M. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, 2nd Edition, Volume 4, 99-217.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

100 DAVID HAREL, DEXTER KOZEN, AND JERZY TIURYN

from a basis of primitive programs. To discuss the effect of the execution of
a program « on the truth of a formula ¢, DL uses a modal construct <a>¢,
which intuitively states, “It is possible to execute a starting from the current
state and halt in a state satisfying ¢.” There is also the dual construct [a]p,
which intuitively states, “If a halts when started in the current state, then
it does so in a state satisfying ¢.” For example, the first-order formula
3z z? = y is equivalent to the DL formula <z := 7> 22 = y. In order to
instantiate the quantifier effectively, we might replace the nondeterministic
assignment inside the < > with the while program (1); over N, the two
formulas would be equivalent.

Apart from the obvious heavy reliance on classical logic, computability
theory and programming, the subject has its roots in the work of [Thiele,
1966] and [Engeler, 1967] in the late 1960’s, who were the first to advance
the idea of formulating and investigating formal systems dealing with prop-
erties of programs in an abstract setting. Research in program verification
flourished thereafter with the work of many researchers, notably [Floyd,
1967], [Hoare, 1969], [Manna, 1974], and [Salwicki, 1970]. The first precise
development of a DL-like system was carried out by [Salwicki, 1970], follow-
ing [Engeler, 1967]. This system was called Algorithmic Logic. A similar
system, called Monadic Programming Logic, was developed by [Constable,
1977). Dynamic Logic, which emphasizes the modal nature of the pro-
gram/assertion interaction, was introduced by [Pratt, 1976].

Background material on mathematical logic, computability, formal lan-
guages and automata, and program verification can be found in [Shoen-
field, 1967] (logic), [Rogers, 1967] (recursion theory), [Kozen, 1997a] (formal
languages, automata, and computability), [Keisler, 1971} (infinitary logic),
[Manna, 1974] (program verification), and [Harel, 1992; Lewis and Papadim-
itriou, 1981; Davis et al., 1994] (computability and complexity). Much of
this introductory material as it pertains to DL can be found in the authors’
text [Harel et al., 2000).

There are by now a number of books and survey papers treating logics of
programs, program verification, and Dynamic Logic [Apt and Olderog, 1991;
Backhouse, 1986; Harel, 1979; Harel, 1984; Parikh, 1981; Goldblatt, 1982;
Goldblatt, 1987; Knijnenburg, 1988; Cousot, 1990; Emerson, 1990; Kozen
and Tiuryn, 1990]. In particular, much of this chapter is an abbreviated
summary of material from the authors’ text [Harel et al., 2000}, to which we
refer the reader for a more complete treatment. Full proofs of many of the
theorems cited in this chapter can be found there, as well as extensive in-
troductory material on logic and complexity along with numerous examples
and exercises.

DYNAMIC LOGIC 101

1 REASONING ABOUT PROGRAMS

1.1 Programs

For us, a program is a recipe written in a formal language for computing
desired output data from given input data.

EXAMPLE 1. The following program implements the Euclidean algorithm
for calculating the greatest common divisor (gcd) of two integers. It takes
as input a pair of integers in variables z and y and outputs their ged in
variable z:

while y # 0 do

begin
z =z mod y;
Ti=Y;
Y=z

end

The value of the expression z mod y is the (nonnegative) remainder obtained
when dividing z by y using ordinary integer division.

Programs normally use wvariables to hold input and output values and
intermediate results. Each variable can assume values from a specific do-
main of computation, which is a structure consisting of a set of data values
along with certain distinguished constants, basic operations, and tests that
can be performed on those values, as in classical first-order logic. In the
program above, the domain of z, y, and z might be the integers Z along
with basic operations including integer division with remainder and tests
including #. In contrast with the usual use of variables in mathematics, a
variable in a program normally assumes different values during the course
of the computation. The value of a variable x may change whenever an
assignment z := t is performed with x on the left-hand side.

In order to make these notions precise, we will have to specify the pro-
gramming language and its semantics in a mathematically rigorous way. In
this section we give a brief introduction to some of these languages and the
role they play in program verification.

1.2 States and Ezecutions

As mentioned above, a program can change the values of variables as it
runs. However, if we could freeze time at some instant during the execu-
tion of the program, we could presumably read the values of the variables
at that instant, and that would give us an instantaneous snapshot of all
information that we would need to determine how the computation would
proceed from that point. This leads to the concept of a state—intuitively,
an instantaneous description of reality.

102 DAVID HAREL, DEXTER KOZEN, AND JERZY TIURYN

Formally, we will define a state to be a function that assigns a value to
each program variable. The value for variable must belong to the domain
associated with z. In logic, such a function is called a valuation. At any
given instant in time during its execution, the program is thought to be
“in” some state, determined by the instantaneous values of all its variables.
If an assignment statement is executed, say z := 2, then the state changes
to a new state in which the new value of z is 2 and the values of all other
variables are the same as they were before. We assume that this change
takes place instantaneously; note that this is a mathematical abstraction,
since in reality basic operations take some time to execute.

A typical state for the ged program above is (15,27,0,...), where (say)
the first, second, and third components of the sequence denote the values
assigned to z, y, and z respectively. The ellipsis “...” refers to the values
of the other variables, which we do not care about, since they do not occur
in the program.

A program can be viewed as a transformation on states. Given an initial
(input) state, the program will go through a series of intermediate states,
perhaps eventually halting in a final (output) state. A sequence of states
that can occur from the execution of a program « starting from a particular
input state is called a trace. As a typical example of a trace for the program
above, consider the initial state (15,27,0) (we suppress the ellipsis). The
program goes through the following sequence of states:

(15,27,0), (15,27,15), (27,27,15), (27,15,15), (27,15,12), (15,15,12),
(15,12,12), (15,12,3), (12,12,3), (12,3,3), (12,3,0), (3,3,0), (3,0,0).

The value of z in the last (output) state is 3, the ged of 15 and 27.

The binary relation consisting of the set of all pairs of the form (input
state, output state) that can occur from the execution of a program a, or
in other words, the set of all first and last states of traces of «, is called
the input/output relation of a. For example, the pair ((15,27,0),(3,0,0))
is a member of the input/output relation of the ged program above, as is
the pair ((—6, —4,303),(2,0,0)). The values of other variables besides z, v,
and z are not changed by the program. These values are therefore the same
in the output state as in the input state. In this example, we may think of
the variables z and y as the input variables, x as the output variable, and
z as a work variable, although formally there is no distinction between any
of the variables, including the ones not occurring in the program.

1.8 Programming Constructs

In subsequent sections we will consider a number of programming con-
structs. In this section we introduce some of these constructs and define a
few general classes of languages built on them.

DYNAMIC LOGIC 103

In general, programs are built inductively from atomic programs and tests
using various program operators.

While Programs

A popular choice of programming language in the literature on DL is the
family of deterministic while programs. This language is a natural ab-
straction of familiar imperative programming languages such as Pascal or
C. Different versions can be defined depending on the choice of tests allowed
and whether or not nondeterminism is permitted.

The language of while programs is defined inductively. There are atomic
programs and atomic tests, as well as program constructs for forming com-
pound programs from simpler ones.

In the propositional version of Dynamic Logic (PDL), atomic programs
are simply letters a,b,... from some alphabet. Thus PDL abstracts away
from the nature of the domain of computation and studies the pure interac-
tion between programs and propositions. For the first-order versions of DL,
atomic programs are simple assignments x := t, where z is a variable and ¢
is a term. In addition, a nondeterministic or wildcard assignment x :=7 or
nondeterministic choice construct may be allowed.

Tests can be atomic tests, which for propositional versions are simply
propositional letters p, and for first-order versions are atomic formulas
p(t1,... ,t,), where t1,... ,t, are terms and p is an n-ary relation symbol
in the vocabulary of the domain of computation. In addition, we include
the constant tests 1 and 0. Boolean combinations of atomic tests are often
allowed, although this adds no expressive power. These versions of DL are
called poor test.

More complicated tests can also be included. These versions of DL are
sometimes called rich test. In rich test versions, the families of programs
and tests are defined by mutual induction.

Compound programs are formed from the atomic programs and tests by
induction, using the composition, conditional, and while operators. For-
mally, if ¢ is a test and a and § are programs, then the following are
programs:

s a;p
e if ¢ then o else 3
¢ while ¢ do a.

We can also parenthesize with begin ... end where necessary. The ged
program of Example 1 above is an example of a while program.

The semantics of these constructs is defined to correspond to the ordinary
operational semantics familiar from common programming languages.

2 Springer
http://www.springer.com/978-1-4020-0139-0

Handbook of Philosophical Logic
Gabbay, D.; Guenthner, F. (Eds.)
2002, XN, 431 p. 1 illus., Hardcover
ISBEN: 278-1-4020-0139-0

