MARTIN BUNDER

COMBINATORS, PROOFS AND
IMPLICATIONAL LOGICS

1 INTRODUCTION

In this chapter we first look at operators called combinators. These are
very simple but extremely powerful. They provide a means of doing logic
and mathematics without using variables, are powerful enough to allow the
definition of all recursive functions and have more recently been used as a
basis for certain “functional” computer languages.

We are interested in another use here which involves the functional
character or type possessed by many combinators. Each type can be
interpreted as a theorem of the intuitionistic implicational logic H_, and
combinators possessing that type can be interpreted as Hilbert-style proofs
of that theorem. Weaker sets of combinators can be used to represent
proofs in sublogics of H_, , these include the substructural logics, such
as the relevance logics R_, and T—,. There is a further interpretation of
combinators and types as programs and specifications which we will not
discuss here.

Next we look at lambda calculus. This also allows the definition of all
recursive functions and has also been used in foundations of mathematics
and computer language development. Many lambda terms also have types
and these again are the theorems of H_,. The lambda terms represent
natural deduction style proofs of these theorems.

In the third section of this chapter we look at translations from combi-
nators to lambda terms and vice versa. For the combinators and lambda
terms that represent proofs in H_, these translations are well known, for
those corresponding to proofs in weaker logics they are quite new.

In a fourth section we develop a new algorithm which, given an implica-
tional formula, allows us to find lambda terms representing natural deduc-
tion style proofs of the formula or demonstrates that the formula has no
proof.

Most implicational substructural logics are specified by substructural
rules or by axioms and not by rules in the natural deduction form. Qur
translation procedure, together with the algorithm, provides us with a sim-
ple constructive means of finding Hilbert-style proofs in many of these logics.
As the translation procedure tells us which lambda terms are translatable
into which sets of combinators, the algorithm can be directed to look only
for the lambda terms of the appropriate kind. The algorithm is inherently
finite; for any given formula, and for many logics, bounds for the proof
searches can be written down.

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 6, 229-286.
© 2002, Kluwer Academic Publishers. Printed in the Netherlands.

230 MARTIN BUNDER

The H_, algorithm has been implemented by Anthony Dekker as Brouwer
7.9.0 (see [Dekker, 1996]) and, for any implicational formula, produces a
A-term proof (or even 50 alternative proofs) or a guarantee that there is
no proof, virtually instantly. The implementation has more recently been
extended by Martijn Oostdijk as LambdaCal2, (see [Oostdijk, 1996]) to
cover the other implicational systems in this chapter as well as certain sys-
tems with other connectives. This implementation supplies combinator and
lambda calculus proofs.

2 COMBINATORY LOGIC

Combinators are operators which manipulate arbitrary expressions by can-
cellation, duplication, bracketing and permutation. Combinators were first
defined by Schénfinkel in his 1924 paper and rediscovered by Curry in [1930].
To illustrate their use we consider the following examples:
let Azy (rather than A(z,y)) represent z + y. The commutative law for
addition can then be written as

Azy = Ayzx.
Given a combinator C with the property:
Czxyz = zzy

this becomes
Azy = CAxy

which could be simply written, without variables, as
A= CA.

Given an identity combinator I, i.e. one such that

In =2
we can write
O+zx=12
as
A0z ==z
or
Alz = Iz
and so, without variables, as
A0=1.

z+0==z

COMBINATORS, PROOFS AND IMPLICATIONAL LOGICS 231

would be
CA0 =1

Schonfinkel found that only two combinators, K and S, were enough to
define all others.

We will now introduce these, other combinators, and our method of writ-
ing functional expressions (such as Azy rather than A(z,y)) more formally.

2.1 Combinators and Application

DEFINITION 1 (Combinator).
1. K and 8 are combinators.
2. If X and Y are combinators so is (XY).

(The operation in (2) is called application.)

Though it is possible, it is often not convenient to work without vari-
ables; we therefore introduce terms which are made up of combinators and
variables using application. Other constants could also be included in (1)
below.

DEFINITION 2 (Term).
1. K,S,z, ¢4, 2,...,21,%2, ... are terms

2. If X and Y are terms so is (XY).

Notation We use association to the left for terms. This means that our
Azy is short for ((Az)y). A binary function over the real numbers such as
A is therefore interpreted as a unary function from real numbers into the
set of unary functions from real numbers to real numbers.

The process of going from CXY Z to XZY or from IX to X is called
reduction. This is defined as follows:

DEFINITION 3 (Reduction). The relation X > Y (X reduces weakly to
Y') is defined as follows:

(K) KXY > X

(S) SXYZ v XZ(YZ)
() X > X

(B XvY = UX o UY
(

(

X
v) XvoY = XU»bv YU
X

)
T) >YandY » Z => X o Z

232 MARTIN BUNDER

(K) and (S) are called the reduction axioms for K and S.

DEFINITION 4 (Weak equality). X = Y if this can be derived from the
axioms and rules of Definition 3 with “=" instead of “ v”, together with

() X=Y = Y=X.

The formal system consisting of at least Definition 1 and the postulates in
Definitions 3 we call combinatory logic. Other axioms and rules may be
added.
We now show how the combinators we met earlier, and others, can be
defined. We use “=” for “equals by definition”.
DEFINITION 5.
SKK
S(KS)K
S(BBS)(KK)
CB
SS(KI)
B(BW)(BBB')

wIETAw
M e e

Each of these defined combinators has a characteristic reduction theorem:
THEOREM 6.

1.IX > X
2. BXYZ v X(YZ)
3. CXYZ v XZY
4. B'XYZ > Y(XZ)
5 WXY » XYY
6. S'XYZ v YZ(XZ)
Proof.
1. SKKX » KX(KX) by (S)
so SKKX b X by (K) and (7)
2. S(KS)KXYZ v KSX(KX)YZ Dby (r) and (v)
> S(KX)YZ by (K) and (v)
> KXZ(YZ) by (S)
> X(YZ) by (K) and (v).
so S(KS)KXYZ v X(YZ) by (7) []
If M(Xy,...,X,) is a term made up by application using zero or more
occurrences of each of Xi,...,X,,, we can find a combinator Z such that

ZXlXQXn > M(Xl,,Xn)

COMBINATORS, PROOFS AND IMPLICATIONAL LOGICS 233

This property is called the “combinatory completeness” of the com-
binatory logic based on K and S.
The combinator Z above is represented by

Z = [m)(z2)(. .. (2] M (21, .. ., 22)) ..)

where each [z;](...) is called a bracket abstraction.
Bracket abstractions can be defined in various ways, a simple definition,
involving S and K, is as follows:

DEFINITION 7 (Bracket abstraction [z;]).

(@) [xi]lzs = 1

k) [z]Y = KYifz, gY
(n) [&:]Yz; = Yifa,; ¢Y
() @Yz = S(wlv)(=)2),

where z; ¢ Y stands for z; does not appear in Y.

The above clauses must be used in the order giveni.e. (ikns). In the order
(iksn), we would always obtain S([z;]Y)I for [z;]Yz;, if z; € Y, instead of
the simpler V.

Repeated bracket abstraction as in [z1]([z2](. .. ([z=]M) . ..)) we will write
as [z1,Zg,...,Zn)M.

EXAMPLE 8.
(21,22, 23) 23(2173) = [71,22|S([23]23) ([23)(0125)) by (s)

= [z1,22]SIz; by (z) and (n)

= [z]K(SIzy) by (k)

= S(KK)(SI) by (k) and (5).

S(KK)(SI)z1zoxs > KK (SIzi)zezs

4 K(SI.”L‘l):L‘QZ'g
> Slzizs
> Izz(zix3)
> zz(xic3).

Bracket abstraction has the following property which we call (3) for
lambda abstraction in Section 3.

THEOREM 9. ([z]X)Y v [Y/x]X where [Y/z]X is the result of substituting
Y for all occurrences of x in X.

Proof. By a simple induction on the length of X.]

2 Springer
http://www.springer.com/978-1-4020-0583-1

Handbook of Philosophical Logic
Gabbay, D.; Guenthner, F. (Eds.)
2002, XN, 406 p. 1 illus., Hardcover
ISBEN: 978-1-4020-0583-1

