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QUANTUM LOGICS

1 INTRODUCTION

The official birth of quantum logic is represented by a famous article of
Birkhoff and von Neumann “The logic of quantum mechanics” [Birkhoff
and von Neumann, 1936]. At the very beginning of their paper, Birkhoff
and von Neumann observe:

One of the aspects of quantum theory which has attracted the
most general attention, is the novelty of the logical notions which
it presupposes .... The object of the present paper is to discover
what logical structures one may hope to find in physical theories
which, like quantum mechanics, do not conform to classical logic.

In order to understand the basic reason why a non classical logic arises
from the mathematical formalism of quantum theory (QT), a comparison
with classical physics will be useful.

There is one concept which quantum theory shares alike with
classical mechanics and classical electrodynamics. This is the
concept of a mathematical “phase-space”. According to this
concept, any physical system S is at each instant hypothetically
associated with a “point” in a fixed phase-space ¥; this point
is supposed to represent mathematically, the “state” of S, and
the “state” of S is supposed to be ascertainable by “maximal”
observations.

Maximal pieces of information about physical systems are called also pure
states. For instance, in classical particle mechanics, a pure state of a single
particle can be represented by a sequence of six real numbers (r{,... ,7s)
where the first three numbers correspond to the position-coordinates, where-
as the last ones are the momentum-components.

As a consequence, the phase-space of a single particle system can be
identified with the set IR®, consisting of all sextuples of real numbers. Sim-
ilarly for the case of compound systems, consisting of a finite number n of
particles.

Let us now consider an ezperimental proposition P about our system,
asserting that a given physical quantity has a certain value (for instance:
“the value of position in the z-direction lies in a certain interval”). Such
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a proposition P will be naturally associated with a subset X of our phase-
space, consisting of all the pure states for which P holds. In other words,
the subsets of ¥ seem to represent good mathematical representatives of
experimental propositions. These subsets are called by Birkhoff and von
Neumann physical qualities (we will say simply events). Needless to say,
the correspondence between the set of all experimental propositions and
the set of all events will be many-to-one. When a pure state p belongs to
an event X, we will say that our system in state p verifies both X and the
corresponding experimental proposition.

What about the structure of all events? As is well known, the power-set
of any set is a Boolean algebra. And also the set F(X) of all measurable
subsets of ¥ (which is more tractable than the full power-set of X) turns out
to have a Boolean structure. Hence, we may refer to the following Boolean
algebra:

B = (¥(¥),¢,NU,—,1,0),
where:

1) C,N,U, — are, respectively, the set-theoretic inclusion relation and
the operations intersection, union, relative complement;

2) 1 is the total space X, while 0 is the empty set.

According to a standard interpretation, N,U, — can be naturally re-
garded as a set-theoretic realization of the classical logical connectives and,
or, not. As a consequence, we will obtain a classical semantic behaviour:

e a state p verifies a conjunction X NY iff p € X NY iff p verifies both
members;

e p verifies a disjunction X UY iff p € X UY iff p verifies at least one
member;

e p verifies a negation —X iff p ¢ X iff p does not verify X.

To what extent can such a picture be adequately extended to QT? Birkhoff
and von Neumann observe:

In quantum theory the points of X correspond to the so called
“wave-functions” and hence ¥ is ... a function-space, usually
assumed to be Hilbert space.

As a consequence, we immediately obtain a basic difference between the
quantum and the classical case. The excluded middle principle holds in
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classical mechanics. In other words, pure states semantically decide any
event: for any p and X,

peXorpe —X.

QT is, instead, essentially probabilistic. Generally, pure states assign only
probability-values to quantum events. Let 1) represent a pure state (a wave
function) of a quantum system and let P be an experimental proposition
(for instance “the spin value in the z-direction is up”). The following cases
are possible:

(i) 1 assigns to P probability-value 1 (¢(P) = 1);
(ii) 7 assigns to P probability-value 0 (¢(P) = 0);

(iii) 1 assigns to P a probability-value different from 1 and from 0 (¢(P) #
0,1).

In the first two cases, we will say that P is true (false) for our system in
state 1. In the third case, P will be semantically indeterminate.

Now the question arises: what will be an adequate mathematical repre-
sentative for the notion of quantum experimental proposition? The most
important novelty of Birkhoff and von Neumann’s proposal is based on the
following answer: “The mathematical representative of any experimental
proposition is a closed linear subspace of Hilbert space” (we will say simply
a closed subspace).® Let H be a (separable) Hilbert space, whose unitary
vectors correspond to possible wave functions of a quantum system. The
closed subspaces of H are particular instances of subsets of H that are closed
under linear combinations and Cauchy sequences. Why are mere subsets of
the phase-space not interesting in QT? The reason depends on the super-
position principle, which represents one of the basic dividing line between
the quantum and the classical case. Differently from classical mechanics,
in quantum mechanics, finite and even infinite linear combinations of pure
states give rise to new pure states (provided only some formal conditions
are satisfied). Suppose three pure states ¢ ,;,%s and let ¢ be a linear
combination of 1 , ¥2:

Y = 191 + caa.

LA Hilbert space is a vector space over a division ring whose elements are the real or
the complex or the quaternionic numbers such that

(i) An inner product (., .) that transforms any pair of vectors into an element of the
division ring is defined;

(ii) the space is metrically complete with respect to the metrics induced by the inner
product (., .).
A Hilbert space H is called separable iff # admits a countable basis.
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According to the standard interpretation of the formalism, roughly this
means that a quantum system in state ¢ might verify with probability |c;|?
those propositions that are certain for state ¥ (and are not certain for 1)
and might verify with probability |cz|* those propositions that are certain
for state ¥y (and are not certain for 4). Suppose now some pure states
¥1,12, . .. each assigning probability 1 to a given experimental proposition
P, and suppose that the linear combination

Y= Zciwi (es #0)

is a pure state. Then also ¢ will assign probability 1 to our proposition
P. As a consequence, the mathematical representatives of experimental
propositions should be closed under finite and infinite linear combinations.
The closed subspaces of H are just the mathematical objects that can realize
such a role.

What about the algebraic structure that can be defined on the set C(#)
of all mathematical representatives of experimental propositions (let us call
them quantum events)? For instance, what does it mean negation, con-
junction and disjunction in the realm of quantum events? As to negation,
Birkhoff and von Neumann’s answer is the following:

The mathematical representative of the negative of any experi-
mental proposition is the orthogonal complement of the math-
ematical representative of the proposition itself.

The orthogonal complement X' of a subspace X is defined as the set
of all vectors that are orthogonal to all elements of X. In other words,
Ye X' iffy L X iff for any ¢ € X: (¥,¢) = 0 (where (¢,¢) is the inner
product of ¢ and ¢). From the point of view of the physical interpretation,
the orthogonal complement (called also orthocomplement) is particularly
interesting, since it satisfies the following property: for any event X and
any pure state 1,

P(X) =1 iff P(X') =0;

$(X) =0 iff Y(X) =1;

In other words, v assigns to an event X probability 1 (0, respectively)
iff ¢ assigns to the orthocomplement of X probability 0 (1, respectively).
As a consequence, one is dealing with an operation that inverts the two
extreme probability-values, which naturally correspond to the truth-values
truth and falsity (similarly to the classical truth-table of negation).

As to conjunction, Birkhoff and von Neumann notice that this can be still
represented by the set-theoretic intersection (like in the classical case). For,
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the intersection X N'Y of two closed subspaces is again a closed subspace.
Hence, we will obtain the usual truth-table for the connective and:

) verifies X NY iff ¢ verifies both members.

Disjunction, however, cannot be represented here as a set-theoretic union.
For, generally, the union X UY of two closed subspaces is not a closed sub-
space. In spite of this, we have at our disposal another good representative
for the connective or: the supremum X UY of two closed subspaces, that
is the smallest closed subspace including both X and Y. Of course, X UY
will include X UY.

As a consequence, we obtain the following structure

C(H) =(C(H),E,n,U,",1,0),

where C, M are the set-theoretic inclusion and intersection; LI, ' are defined
as above; while 1 and 0 represent, respectively, the total space ‘H and the
null subspace (the singleton of the null vector, representing the smallest
possible subspace). An isomorphic structure can be obtained by using as
a support, instead of C(H), the set P(H) of all projections P of H. As is
well known projections (i.e. idempotent and self-adjoint linear operators)
and closed subspaces are in one-to-one correspondence, by the projection
theorem. Our structure C() turns out to simulate a “quasi-Boolean be-
haviour”; however, it is not a Boolean algebra. Something very essential is
missing. For instance, conjunction and disjunction are no more distributive.
Generally,

XNuz)y£(Xny)u(xnz).

It turns out that C(H) belongs to the variety of all orthocomplemented or-
thomodular lattices, that are not necessarily distributive.

The failure of distributivity is connected with a characteristic property of
disjunction in QT. Differently from classical (bivalent) semantics, a quantum
disjunction X UY may be true even if neither member is true. In fact, it
may happen that a pure state ¢ belongs to a subspace X UY, even if 9
belongs neither to X nor to Y (see Figure 1).

Such a semantic behaviour, which may appear prima facie somewhat
strange, seems to reflect pretty well a number of concrete quantum situa-
tions. In QT one is often dealing with alternatives that are semantically
determined and true, while both members are, in principle, strongly inde-
terminate. For instance, suppose we are referring to some one-half spin
particle (say an electron) whose spin may assume only two possible values:
either up or down. Now, according to one of the uncertainty principles, the
spin in the z direction (spin;) and the spin in the y direction (spin,) rep-
resent two strongly incompatible quantities that cannot be simultaneously
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