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We propose a notion of symmetric reduction for a system of proof-nets for Mul-
tiplicative Affine Logic with Mix (MAL + Mix) (namely, multiplicative linear
logic with the mix-rule the unrestricted weakening-rule). We prove that such a
reduction has the strong normalization and Church-Rosser properties. A notion
of irrelevance in a proof-net is defined and the possibility of cancelling the ir-
relevant parts of a proof-net without erasing the entire net is taken as one of the
correctness conditions; therefore purely local cut-reductions are given, minimiz-
ing cancellation and suggesting a paradigm of “computation without garbage
collection”. Reconsidering Ketonen and Weyhrauch’s decision procedure for
affine logic [15, 4], the use of the mix-rule is related to the non-determinism of
classical proof-theory. The question arises, whether these features of classical
cut-elimination are really irreducible to the familiar paradigm of cut-elimination
for intuitionistic and linear logic.
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1. Introduction

1. Classical Multiplicative Affine Logic is classical multiplicative linear logic
with the unrestricted rule of weakening, but without the rule of contraction.
Classical affine logic is a much simpler system than classical logic, but it pro-
vides similar challenges for logical computation, both in the sense of proof-
search and of proof normalization (or cut-elimination). For instance, the prob-
lem of confluence of cut-elimination (the Church—-Rosser property) is already
present in affine logic, but here we do not have the problem of non-termination.
Affine logic is also simpler than linear logic from the point of view of proof-
search: e.g., propositional linear logic is undecidable, yet becomes decidable
when the unrestricted rule of weakening is added. Provability in constant-only
multiplicative linear logic is NP-complete, yet it is decidable in linear time for
constant-only multiplicative affine logic, as it is shown below.

The tool we will use here, proof-nets for affine logic, is older than the notion of
a proof-net for linear logic. In a 1984 paper [15], J. Ketonen and R. Weyhrauch
presented a decision procedure for first-order affine logic (called then direct
logic) which essentially consists in building cut-free proof-nets, using the uni-
fication algorithm to determine the axioms. The 1984 paper is sketchy and it
has been corrected (see [3, 4], where the relation between the decision proce-
dure and proof-nets for MLL ™ are discussed), but it contains the main ideas
exploited in the present paper, namely, the construction of proof-nets free from
irrelevance through basic chains. Yet neither the 1984 paper nor its 1992 re-
visitation contained a treatment of cut-elimination.

2. The problem of non-confluence for classical affine logic is non-trivial: the
following well-known example (given in Lafont’s Appendix to [14]) reminds
us that the Church—-Rosser property is non-deterministic under the familiar
asymmetric cut-reductions.

Example 1
di dz d dz
FT o, _EA Y FA
FT,A A -A weakenings weakenings
FT,A reduces to FTUA or to FT,A

Asymmetric reductions.

Indeed classical logic gives no justification for choosing between the two in-
dicated reductions, the first commuting the cut-rule with the left application of
the weakening-rule (“pushing ds up into d;”, thus erasing ds), the second com-
muting the cut-rule with the right application of the weakening-rule (“push-
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ing d; up into dy”, thus erasing d;). Therefore the cut-elimination process in
MAL, a fortiori in LK, is non-deterministic and non-confluent.

Compare this with normalization in intuitionistic logic. In the typed A calculus
a cut / left weakening pair corresponds to substitution of ¢ : A for a variable
z : A which does not occur in u : B; such a substitution is unambiguously
defined as u[t/z] = u. Moreover in Prawitz’s natural deduction NJ [19] the
rule corresponding to weakening-right is the rule “ex falso quodlibet” and the
normalization step for such a rule involves a form of n-expansion:

d d
d Do
: L L
L A B

AAB reduces to ANB

Such a reduction does not yield cancellation. Thus the cut-elimination proce-
dure for the intuitionistic sequent calculus LJ inherits one sensible reduction-
strategy from natural deduction: “push the left derivation up into the right
one”. In the case of a weakening | cut pair it is always the left dedution to be
erased.

3. Here we are interested in exploring an obvious remark: for classical logic
in addition to the asymmetric reductions of Example 1, there is a symmetric
possibility, the “Mix” of d; and da.

Example 1 cont.

& @
z z i ds
T A : :
F,LA ™ FA,-4 " KT FA
FT,A reduces to FT,A L

Symmetric reduction.

Instead of choosing a direction where to “push up” the cut-rule, we do both
asymmetric reductions, using the mix-rule.

The idea is loosely related to a procedure well-known in the literature for the
case when both cut-formulas result from a contraction-rule, with the name
cross-cut reduction. Let dy and dg be derivations of the left and right premises
of the cut-rule:
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