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Abstract The essential interaction between classical and intuitionistic features in the sys-
tem of linear logic is best described in the language of category theory. Given
a symmetric monoidal closed category C with products, the category C x C°?
can be given the structure of a *-autonomous category by a special case of the
Chu construction. The main result of the paper is to show that the intuition-
istic translations induced by Girard’s trips determine the functor from the free
*-autonomous category .4 on a set of atoms {P, P’,...} to C x C°?, where C
is the free monoidal closed category with products and coproducts on the set of
atoms {Po, Pr, P5, P}, ...} (apair Po, Py in C for each atom P of A).
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1. Preface

An essential aim of linear logic [16] is the study of the dynamics of proofs,
essentially normalization (cut elimination), in a system enjoying the good proof-
theoretic properties of intuitionistic logic, but where the dualities of classical
logic hold. Indeed classical linear logic CLL has a denotational semantics
and a game-theoretic semantics; proofs are formalized in a sequent calculus,
but also in a system of proof-nets and in the latter representation cut elimina-
tion not only has the strong normalizability property, but is also confluent. Al-
though Girard’s main system of linear logic is classical, considerable attention
in the literature has also been given to the system of intuitionistic linear logic
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ILL, where proofs are also formalized in a sequent calculus and in a natural
deduction system. A better understanding of the relations between CLL and
ILL is one of the goals to which the present work is intended as a contribution.

The fact that intuitionistic logic plays an important role in the architecture
of linear logic is not surprising: as indicated in the introductory section of Gi-
rard’s fundamental paper [16], a main source of inspiration for the system was
its denotational semantics of coherent spaces, a refinement of Scott’s seman-
tics for the A-calculus. Fundamental decisions about the system CLL were
made so that CLL has a semantics of proofs in coherent spaces in the same
way as intuitionistic logic has a semantics of proofs in Scott’s domains. But
linear logic is not just a refinement of intuitionistic logic, such as ILL: there
are expectations that CLL may tell us something fundamental about classical
logic as well, indeed, that through linear logic a deep level of analysis may
have been reached from which the “unity of logic” can be appreciated [17].
Therefore the relations between classical and intuitionistic components of lin-
ear logic deserve careful investigation.

A natural points of view to look at this issue is categorical logic. 1t has been
known for years that monoidal closed categories provide a model for intuition-
istic linear logic, though a fully adequate formulation of the syntax and of
the categorical semantics of ILL especially with respect to the exponentials,
has required considerable subtlety and effort [4, 5, 6]. It is also well known
that *-autonomous categories give a model for classical linear logic [3]. The
appendix to [2] provides a method, due to Barr’s student Chu, to construct
*-autonomous categories starting from monoidal closed ones.

In our proof-theoretic investigation we encounter a special case of Chu’s
construction, namely Chu(C, T) where C is a symmetric monoidal closed cat-
egory with terminal object T. More specifically, given the free *-autonomous
category A on a set of objects (propositional variables) { P, P', ...} and given
the symmetric monoidal closed category C with products, free on the set { Pp,
Py, P, Py, ...} (apair Pp, Py in C for each atom P of A), the category C xCP
can be given the structure of a *-autonomous category by Chu’s construction.
Indeed, since the dualizing object is the terminal object, Chu(C, T) is just
C x C° and the pullback needed to internalize the homsets is in fact a prod-
uct. Here the tensor product (X, X°?) ® (Y,Y°P) must be an object of the
form (X ® Y, (X —o YP) x (Y —o X°P)) and the identity of the tensor
must be (1, T). Dually, the par (X, XP)p(Y,Y ) is defined as ((X? —o
Y) x (Y —o X),X° ® Y°) and the identity of the par must be (T, 1).
Now since A is free, there is a functor F' of *-autonomous categories from A
to (C x C°P) taking P to (Po, Pr). This is well-known, but so far no famil-
iar construction had been shown to correspond to the functor F' given by the
abstract theory. The main contribution of this paper is to show that a familiar
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proof-theoretic construction, namely Girard’s trips [16] on a proof-net, repre-
sent the action of such a functor on the morphisms of .A. Of course one could
state the same result using Danos—Regnier graphs, as it was done in [8], but as
we shall see a simpler definition of orientations is possible in terms of Girard’s
trips.

The key idea is simple enough and may be illustrated as a logical translation
of formulas and proofs in CMALL into formulas and proofs in IMALL. In
the translation a CMALL sequent S: - I', A becomes polarized: a selected
formula-occurrence A is mapped to a positive formula-occurrence Ao in the
succedent of an intuitionistic sequent S’ (the output part of a logical computa-
tion); all other formula-occurrences C in I' are mapped to negative Cf in the
antecedent of S’ (the input part). The polarized occurrences of an atom A be-
come Ag, Ay, just two copies of A. Negation changes the polarity. For other
complex polarized formulas, the polarization of the immediate subformulas is
uniquely determined — for instance, (ApB); becomes A; ® By — except in
the cases of (ApB)o and (A ® B);. In these cases we take the product (log-
ically, the with) of two possible choices (the “switches” in a proof-net): for
instance, (ApB)o is encoded as (A; —o Bo)&(Br — Aop). The intuitive
motivation is clear: ApB has a reading simultaneously as the internalization
of the function space Hom 4( A+, B) and of the function space Hom 4 (B, A).
The fact that the translation is functorial here means, roughly, that it is defined
independently on the formulas (objects) and on the proofs (morphisms) and
that it admits the rule of Cut (composition of morphisms); it is also compatible
with cut-elimination. In this form the result can be easily proved within the
formalisms of the sequent calculi for CMALL and IMALL. However, when
we ask questions about the faithfulness and fullness of such a functor, thus
also asking questions about the identity of proofs in linear logic, we find it
convenient to consider the more refined syntax of proof-nets.

On the other hand, proof-nets are also useful to highlight the geometric as-
pect of certain logical properties; indeed ideas related to the present result
have already proved quite useful in the study of what is sometimes called
the géometrie du calcul (geometry of computations). Our own investigation
has been motivated by the desire to understand and clarify the notion of a
proof-net and the present result appears to reward many collective efforts in
this direction. Given a proof-structure, i.e., a directed graph where edges
are labeled with formulas, a correctness criterion characterizes those proof-
structures which correspond to proofs in the sequent calculus. Girard’s original
condition ( “there are no short trips”) [16] is exponential in time on the size of
the proof-structure, but other quadratic criteria were found soon after (among
others, one was given in [7]). Thus it is natural to ask what additional informa-
tion is contained in the construction of Girard’s trips other than the correctness
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