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Steady-State Properties of GI/G/1

1 Notation. The Actual Waiting Time

We consider the (FIFO) GI/G/1 queue in the notation of III.1b. That is,
the customers are numbered n = 0, 1, 2, . . ., Un is the service time of n, Tn
the time between the arrivals of n and n+ 1 and A(x) = P(Tn ≤ x) is the
interarrival distribution, B(x) = P(Un ≤ x) the service-time distribution
(we assume A(0) = P(Tn = 0) = 0, B(0) = P(Un = 0) = 0). We let
µA = ETn denote the interarrival mean and µB = EUn the mean service
time (µA, µB are assumed finite throughout). Then ρ = µB/µA is the traffic
intensity. Unless otherwise stated, it is assumed that customer 0 has just
arrived at time t = 0 to an empty queue.

Some basic tools in the analysis of the system are: random walks that
yield information on the waiting–time distribution; regenerative processes
that permit conclusions to be made on the existence of limits of other
functionals such as queue lengths; and rate conservation that will provide
relations between the limits and in particular express the distributions of
workload and queue size in terms of the waiting-time distribution.

Some of the basic facts on the waiting times have already been touched
upon, but will now be put together. Define Xn = Un − Tn, µ = EXn =
µB − µA, S0 = 0, Sn = X0 + · · · + Xn−1, Mn = max0≤k≤n Sk, M =
max0≤k<∞ Sk. Then the cases µ < 0, µ = 0 and µ > 0 correspond to
ρ < 1, ρ = 1, resp. ρ > 1, and III.6 yields:
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Proposition 1.1 The (actual) waiting time process {Wn} is a Lindley
process generated by {Sn}, i.e. Wn+1 = (Wn +Xn)+. In particular,

Wn = max
(
Sn, Sn − S1, . . . , Sn − Sn−1, 0

)
(1.1)

D= Mn (1.2)

and if ρ < 1, then a limiting steady–state distribution exists and is given
by Pe(Wn ≤ x) = P(M ≤ x).
[The formulas (1.1) and (1.2) require slight variants for W0 
= 0, cf. III.6.
However, the limit result still holds true.]

Our interest in the following is centered around the so–called stable case
ρ < 1 and we shall only briefly as a digression indicate the typical behaviour
for ρ ≥ 1.

Proposition 1.2 (i) If ρ = 1, σ2 = VarXn < ∞, then the limiting distri-
bution of Wn/

√
n exists and is that of the absolute value of a normal r.v.

with mean zero and variance σ2; (ii) if ρ > 1, then Wn/n
a.s.→ µ = µA(ρ−1).

Proof. In case (i), it is well known that Mn/
√
n has the asserted limit prop-

erties (the easiest proof is presumably by Donsker’s theorem, Billingsley,
1968, Ch. 2; for a direct proof, see Chung, 1974, pp. 217–222). In case (ii),
we have Sn/n

a.s.→ µ > 0. Hence by (1.1), Wn > 0 eventually. Hence if η is
the last n with Wn = 0, we have Wn = Sn − Sη, n ≥ η, from which we get
Wn/n ∼ Sn/n ∼ µ. �

Now define σ(0) = 0, σ = inf {n ≥ 1 : Wn = 0} , σ(1) = σ, σ(k + 1) =
inf {n > σ(k) : Wn = 0}. Since W0 = 0, we may interpret σ as the number
of customers served in the first busy period and σ(k) as the index of the
customer initiating the kth busy cycle.

Proposition 1.3 The σ(k) are regeneration points for the waiting–time
process. We have P(σ < ∞) = 1 if and only if ρ ≤ 1. Hence for ρ ≤
1, {Wn} is aperiodic regenerative with imbedded renewal sequence {σ(k)}.
Furthermore, σ = σ(1) coincides with the weak descending ladder epoch,
σ = τ− = inf {n ≥ 1 : Sn ≤ 0}. We have

Wn = Sn = U0 + · · ·+Un−1 −T0 − · · ·−Tn−1, n = 0, . . . , σ− 1, (1.3)

−Sσ = −Sτ− = I (1.4)

where I is the idle period corresponding to the first busy cycle, and
furthermore Eσ <∞ if and only if ρ < 1.

Proof. By the Lindley process property, we have Wn = Sn, n = 0, . . . , σ−1,
and this makes it clear that σ = τ−. Also I is the amount by which the last
interarrival time exceeds the residual work at the time of the last arrival in
the cycle,

I = Tσ−1 − (Wσ−1 + Uσ−1) = −Sσ = −Sτ− .



268 X. Steady-State Properties of GI/G/1

It is clear that the σ(k) are regeneration points, and by general random
walk results we have finally σ = τ− < ∞ a.s. if and only if µ = EXn ≤ 0,
i.e. ρ ≤ 1, and Eτ− = ESτ−/µ < ∞ if and only if µ < 0, i.e. ρ < 1. Finally
aperiodicity follows from P(σ = 1) = P(U ≤ T ) > 0. �

For the sake of easy reference, some of the main r.v.’s occurring in the
rest of the chapter will now be introduced.

Definition 1.4 Suppose ρ < 1. Then throughout this chapter:
(i)W will denote a random variable having the steady–state distribution H,
say, of Wn, H(x) = P(W ≤ x) = Pe(Wn ≤ x); similarly,
(ii) V , Q have the steady state distributions of the workload Vt, resp. the
queue length Qt (which will be shown to exist if the interarrival distribution
A is nonlattice);
(iii) QAn , QDn denote the queue length just prior to the nth arrival and just
after the nth departure, and QA, QD the corresponding steady–state quan-
tities;
(iv) U, T,X,

{
T (k)

}∞
0

have the distributions of Un, Tn, Xn = Un − Tn,
{T0 + · · · + Tk−1}∞0 , respectively, and are mutually independent and inde-
pendent of W , V , Q, QA, etc.; similar conventions apply for
(v) U∗, T ∗ having densities dB0(x)/dx = B(x)/µB and dA0(x)/dx =
A(x)/µA.

The distributions B0, A0 are familiar from renewal theory, V.3. Also, from
the independence of Wn and Un, it is seen that we may identify W +U by
the sojourn time in the steady state.

A main problem for the study of the actual waiting time is obviously to
study the distribution of W . Various expressions are available for H(x) =
P(W ≤ x). From Proposition 1.1 and VIII.2.2 we have

H(x) =
(
1 − ‖G+‖)U+(x) =

(
1 − ‖G+‖) ∞∑

n=0

G∗n
+ (x), (1.5)

whereas Proposition 1.3 and VI.(1.5) yield

H(x) =
1

Eσ
E

σ−1∑
n=0

I(Wn ≤ x) =
1

Eσ
E

σ−1∑
n=0

I(Sn ≤ x) . (1.6)

These formulas are, however, not intrinsically different in view of VIII.2.3(b).
A somewhat different characterization of H is as the unique solution to
Lindley’s integral equation III.(6.6) with

F (x) = P(Xn ≤ x) = P(Un − Tn ≤ x) =
∫ ∞

0

B(x + y)A(dy), x ∈ R.

Also, the characteristic function has been found in VIII.4 but is obviously
quite complicated.
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The representation (1.5) will turn out to be particularly useful when
combined with VIII.3.1(b) stating that

G+(A) = U− ∗ F (A) =
∫ 0

−∞
F (A− x)U−(dx), A ⊆ (0,∞). (1.7)

Proposition 1.5 W
D= (W +X)+, whereas the conditional distribution of

(W + X)− given W + X ≤ 0 coincides with the common distribution of
−Sτ− and I. In particular, for f : [0,∞) → [0,∞)

Ef
(
(W +X)−

)
=

Ef(−Sτ−)
Eτ−

= −EX
Ef(I)

EI
, (1.8)

E(W +X)− = −EX. (1.9)

Proof. The first statement was noted previously in III.6.6 and yields in
particular

P(W+X ≤ 0) = P
(
(W +X)+ = 0

)
= P(W = 0) = 1−‖G+‖ = 1/Eτ−,

cf. VIII.2.3(c). Also, by VIII.3.2(b),

Ef
(
(W +X)−

)
=

∫ 0

−∞
f(−x)H ∗ F (dx) =

(
1 − ‖G+‖) ∫ 0

−∞
f(−x)U+ ∗ F (dx)

=
(
1 − ‖G+‖) ∫ 0

−∞
f(−x)G−(dx) =

1
Eτ−

Ef(−Sτ−)

= P(W +X ≤ 0)Ef(−Sτ−).

Recalling ESτ− = Eτ−EX and (1.4), the proof is complete. �

Problems

1.1 Give a direct proof of (1.9) by using W +X = (W +X)+ − (W +X)−.

2 The Moments of the Waiting Time

The problem is to study conditions for the existence of EW p, p > 0, and, as
far as possible, to derive an explicit expression. In view of W D= M , this is
really a random walk problem (as in the case for many other aspects of the
behaviour of the waiting time, cf. e.g. Sections 6 and 7) and can therefore be
formulated in that setting alone. The queueing interpretation may, however,
require some slight reformulations: for example, in the following existence
result, E(X+)p+1 = E

(
(U − T )+

)p+1
< ∞ is readily seen to be equivalent

to EUp+1, whereas EX− <∞ is automatic in view of ET = µA <∞.
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Theorem 2.1 Consider a random walk with µ = EX < 0 and let p > 0.
Then EMp < ∞ provided that E(X+)p+1 < ∞. Conversely, if EMp < ∞
and EX− <∞, then E(X+)p+1 <∞.

Proof. We first note that the pth moment νn of a sum Y1 + · · · + Yn of
nonnegative i.i.d. summands with EY p1 < ∞ is O(np). Indeed, if p ≤ 1
Jensen’s inequality gives νn ≤ (nEY )p, whereas for p ≥ 1 we have

ν1/p
n =

[
E(Y1 + · · · + Yn)p

]1/p = ‖Y1 + · · · + Yn‖p ≤ n‖Y ‖p.
Hence if α = E

[
Spτ+ ; τ+ < ∞]

<∞,

EMp =
(
1 − ‖G+‖) ∞∑

n=0

∫ ∞

0

xpG∗n
+ (dx) =

(
1 − ‖G+‖) ∞∑

n=0

‖G+‖nO(np)

will be finite in view of ‖G+‖ < 1, whereas if α = ∞ then the term
corresponding to n = 1 in the sum is infinite and hence EM p = ∞.

Write U(y) = U−[−y, 0]. Then by VIII.3.1(b)

α

p
=

∫ ∞

0

xp−1P
(
Sτ+ > x, τ+ < ∞)

dx =
∫ ∞

0

xp−1U− ∗ F (x,∞) dx

=
∫ ∞

0

F (dy)
∫ y

0

xp−1U(y − x) dx . (2.1)

By the elementary renewal theorem (the proof is valid also if the interarrival
distribution has an atom at 0 as G−) we have for suitable c1, c2 that U(z) ≤
c1 + c2z, and since for large y∫ y

0

xp−1
[
c1 + c2(y − x)

]
dx

=
1
p
ypc1 +

1
p
yp+1c2 − 1

p+ 1
yp+1c2 ∼ c2

p(p+ 1)
yp+1 (2.2)

it follows that E(X+)p+1 < ∞ implies α < ∞ and hence EMp < ∞.
Conversely, if EX− < ∞, then ESτ− = Eτ−EX > −∞ and hence U(z) ≥
d1 + d2z with d2 > 0. If EMp < ∞, then α < ∞ and combining (2.1) and
(2.2) yields E(X+)p+1 < ∞ . �

Not even the moments of M (if they exist) can be found very explicitly.
For example, VIII.4.5 and (1.5) yield the expressions

EM =
∞∑
n=1

1
n

ES+
n =

E[Sτ+ ; τ+ < ∞]
1 − ‖G+‖ . (2.3)

A further important relation is the following:

Theorem 2.2 If E|X |p+1 < ∞ for some p = 1, 2, . . ., then
p∑
q=0

(
p+ 1
q

)
EM qEXp+1−q = E

[−(M +X)−
]p+1 =

ESp+1
τ−

Eτ−
. (2.4)
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(Note that in the queueing setting, we may rewrite the r.h.s. of (2.4) as
(−1)pEXEIp+1/EI; cf. (1.8).)

Proof. The last identity in (2.4) follows from (1.8). To show the remaining
part of the theorem, first suppose E(X+)p+2 < ∞. Then

EMp+1 < ∞, E
[
(M +X)−

]p+1 ≤ E|X |p+1 <∞,

and since (M +X)+(M +X)− = 0 we get

(M +X)p+1 =
[
(M +X)+ − (M +X)−

]p+1

=
[
(M +X)+

]p+1 +
[−(M +X)−

]p+1
,

E(M +X)p+1 =
p+1∑
q=0

(
p+ 1
q

)
EM qEXp+1−q

= E
[
(M +X)+

]p+1 + E
[−(M +X)−

]p+1

= EMp+1 + E[−(M +X)−]p+1

and cancelling EMp+1, (2.4) follows. In the general case, replace Xn by
X

(k)
n = Xn ∧ k and let M (k) be defined in terms of the X (k)

n rather than
the Xn. Then E(X(k)+)p+2 < ∞, hence

p∑
q=0

( p+ 1
q

)
EM (k)qEX(k)p+1−q

= E[−(M (k) +X(k))−]p+1 < ∞ .

But clearly, M (k) ≤ M and M (k) ↑ M as k → ∞. Hence the desired
conclusion follows by monotone convergence as k → ∞. �

Rewriting in queueing notation, we get in particular for the mean waiting
time (p = 1) that

2E(−X)EW = EX2 − E
[
(W +X)−

]2 = VarX − Var(W +X)−

= EX2 − ES2
τ−

Eτ−
= EX2 − E(−X)EI2

EI
(2.5)

(here the second equality follows from (1.9)). Considerable effort has been
put into converting these expressions into bounds or approximations that
are more explicit in the sense that only the distribution of X (or U , T ) is
invoked, and preferably only even the first few moments. We return to the
approximations in Section 7 and XIII.6, and here present only some of the
roughest bounds,

EU2 − EUET ≤ 2E(−X)EW ≤ VarX = Var U + Var T . (2.6)

(The lower bound may be negative and hence trivial. The upper bound is
in fact sharp in an asymptotic sense; cf. Section 7.) Here the upper bound
is obvious from Var(W +X)− ≥ 0. For the lower bound, rewrite (2.5) as

EU2 − 2EUET + ET 2 − E[(W +X)−]2 = EU2 − 2EUET + E(CD)
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where C = T + (W +X)−, D = T − (W +X)−. Here

D = T +W +X − (W +X)+ = W + U − (W +X)+

so that

E(CD) = E
[
T
(
W − (W +X)+

)]
+ETEU+E

[
(W +X)−(W +U)

]
(2.7)

The two last terms in (2.7) are obviously nonnegative, and thus it is suf-
ficient to show that the first one is so too. But f(T ) = T and g(T ) =
W − (W +U −T )+ are both nondecreasing in T for fixed W , U . Hence by
a well–known inequality (Problem 2.2)

E
[
f(T )g(T )

∣∣W,U] ≥ E
[
f(T )

∣∣W,U] · E
[
g(T )

∣∣W,U]
= ET · E

[
W − (W +X)+

∣∣W,U],
E
[
T
(
W − (W +X)+

)] ≥ ET · E
[
W − (W +X)+

]
= ET · 0 = 0.

�

Problems

2.1 Consider a random walk with ‖G+‖ = ‖G−‖ = 1. Show that ESτ+ < ∞,
ESτ− > −∞ if and only if EX2 < ∞, EX = 0, and that then EX2 =
−2ESτ+ESτ− . [Hint: Necessity and the stated identity follows by Wiener–Hopf
factorization of the ch.f.]
2.2 (chebycheff’s covariance inequality) Let X be a r.v. and f, g non-
decreasing functions. Show that E[f(X)g(X)] ≥ Ef(X)Eg(X) [Hint: Reduce to
the case Ef(X) = 0 and consider E[f(X)(g(X) − g(b))] where b is the point at
which f changes sign.]
2.3 Carry out the last step in the proof of Corollary IX.3.4.

Notes Theorem 2.1 goes back to Kiefer & Wolfowitz (1956) and there are many
proofs around. As one of many applications of (2.5), we mention in particular the
observation by Minh and Sorli (1983) that when estimating EW by simulation,
the only unknown quantities are EI and EI2, and that simulating these rather
than EW increases precision. Bounds for EW and related quantities are surveyed
in Stoyan (1983) and Daley et al. (1994). For Problem 2.2, see also Thorisson
(2000), p. 2.

3 The Workload

In continuous time, there is a regenerative structure similar to the one in
Proposition 1.3: the instants with a customer entering an empty queue are
regeneration points. Letting C be the first such instant after t = 0 and
recalling that we start with customer 0 having just arrived, it is seen that
C is just the length of the first busy cycle. Furthermore, C < ∞ a.s. is
equivalent to σ < ∞ a.s., i.e. to ρ ≤ 1 (cf. Proposition 1.3). In fact, there
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is a close relation between σ, C and the first busy period G: since precisely
the customers 0, 1, . . . , σ − 1 are served in the first busy period, we have
G = U0 + · · · + Uσ−1 and the first busy cycle ends at the arrival time
C = T0 + · · · + Tσ−1 of customer σ. One checks immediately that {σ ≤ n}
is independent of Tn, Tn+1, . . . , Un, Un+1, and hence Wald’s identity yields
the first part of

Proposition 3.1 Suppose ρ ≤ 1. Then the mean busy cycle is EC =
µBEσ, the mean busy period is EG = µAEσ and the mean idle period is
EI = EC−EG = −µEσ. Furthermore the mean busy period is nonlattice if
and only if the interarrival distribution A is so, and spread out if and only
if A is so.

The second part is often stated to be obvious, but some care is needed
(cf. Problem 3.3), and we give the proof (when ρ < 1) in the form of the
following more general result:

Proposition 3.2 Let T0 > 0, T1 > 0, . . . be i.i.d. with common distribution
A with µA < ∞, and let σ ≥ 1 be a random time such that Eσ < ∞ and
Tn, Tn+1, . . . are independent of {σ ≤ n} for all n. Then then distribution
K of C = T0 + · · · + Tσ−1 is nonlattice if and only if A is so, and spread
out if and only if A is so.

Proof. By Wald’s identity, we have EC < ∞. Also by an obvious iterative
procedure we may assume that random times σ(1) = σ < σ(2) < · · ·
have been constructed such that

{
T0 + · · · + Tσ(k)−1

}
is a renewal process

governed by K. Then, in the obvious notation, the renewal measures satisfy
UA ≥ UK . Suppose K was lattice, say aperiodic on N, but A not. Then by
Blackwell’s renewal theorem,

h

µA
= lim

n→∞
[
UA(n) − UA(n− h)

] ≥ lim
n→∞

[
UK(n) − UK(n− h)

]
=

1
µK

for all h < 1, which is impossible. Similarly, assume that A is spread out
but K not. Then UK is concentrated on a Lebesgue null set N , and Stone’s
decomposition shows that the UA–measure of N is finite, whereas the UK–
measure is infinite, contradicting UA ≥ UK .

If, conversely,A is not spread out, then UA is concentrated on a Lebesgue
null set N . Hence UK is concentrated on N , and K cannot be spread out.
That K is lattice if A is so is even more trivial. �

The remaining part of Proposition 3.1 now follows immediately when
ρ < 1. When ρ = 1, replace B by an equivalent (in the sense of null sets)
and stochastically smaller distribution B̃. Then the busy cycle distributions
are equivalent, and since ρ̃ < 1, Proposition 3.2 applies to C̃.
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Corollary 3.3 Suppose ρ < 1 and that A is nonlattice. Then a limiting
steady–state distribution of the workload Vt exists and is given by

Ef(V ) =
1

EC
E

∫ C

0

f(Vs) ds. (3.1)

If A is spread out, then Vt → V in total variation.

Proof. For ρ < 1, we have Eσ < ∞. Hence Proposition 3.1 ensures that
the basic limit theorems for regenerative processes in VI.1 and VII.1 are
applicable. �

As a first application of (3.1), note that the time spent by {Vt} in state 0
in the time interval [0, C) is the just the idle period. Thus combining with
Proposition 3.1, we get

P(V = 0) =
1

EC
E

∫ C

0

I(Vs = 0) ds

=
EI

EC
=

(µA − µB)Eσ
µAEσ

= 1 − ρ . (3.2)

[Note that this is always explicit in contrast to P(W = 0) = 1/Eσ.]
We next express the distribution of V in terms of the steady–state waiting

time distribution (for the meaning of U ∗, T ∗, see Definition 1.4):

Theorem 3.4 The conditional distribution of V given V > 0 is the same
as the distribution H ∗B0 of W + U∗. Equivalently,

P(V ≤ x) = 1 − ρ+ ρP(W + U∗ ≤ x) = 1 − ρ+ ρH ∗B0(x), (3.3)

cf. (3.2). An alternative characterization is V D= (W + U − T ∗)+.

Proof. Let Xt = (Vt − x)+. Then {Xt} has derivative −1 when Vt > x
and 0 otherwise, whereas the jump at the arrival of customer n is (Wn +
Un− x)+ − (Wn − x)+. Hence the rate conservation law VII.6.6 applied to
a stationary version yields

P(V > x) =
1
µA

[
E(W +U−x)+−E(W −x)+] =

µB
µA

P
(
U∗ > (W −x)−)

where the last identity follows from

E
[
(U + a)+ − a+

]
=

∫ ∞

a−
B(u) du = µBP(U∗ > a−) (3.4)

(integration by parts) by conditioning upon a = W −x. Hence P(V > x) =
ρP

(
U∗ > (x − W )+

)
which (since U∗ > 0) is the same as P(V > x) =

ρP(U∗ > x−W ), x ≥ 0, and (3.3) follows.
For V D= (W + U − T ∗)+, consider Xt =

∫Mt

t
I(Vs > x) dx where Mt

is the next arrival instant after t. The process {Xt} decreases linearly at
unit rate on intervals where Vs > x, is 0 at the nth arrival instant and then
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jumps to
∫ Tn

0
I(Wn + Un − s > x) ds. It follows by rate conservation that

for x ≥ 0

P(V > x) =
1
µA

∫ ∞

0

A(s)I(W + U − s > x) ds = P(T ∗ < W + U − x)

= P(W + U − T ∗ > x) = P
(
(W + U − T ∗)+ > x

)
.

�

Note that in the M/G/1 case, we have T ∗ D= T and hence

V
D= (W + U − T ∗)+ D= (W + U − T )+ D= W

so that we obtain another proof that V D= W in M/G/1, as found already
in III.9 and VII.6.

Since EU∗ = EU2/2µB, it follows also by combining with (3.2) that:

Corollary 3.5 EV = ρ

{
EU2

2µB
+ EW

}
.

It is instructive to consider the following two direct proofs of Corollary 3.5.
The first uses rate conservation applied to Xt = V 2

t . Here in steady state,
EX ′

t = E[2V ; V > 0] = 2EV , so by rate conservation EV is

1
2µA

E
[
(W + U)2 −W 2

]
=

1
2µA

[
EU2 + 2µBEW

]
= ρ

{
EU2

2µB
+ EW

}
(if EU3 = ∞ so that EW 2 = ∞, use a truncation argument as in the proof
of Theorem 2.2). The second proof uses a sample part decomposition of a
regenerative cycle, cf. the partitioning of the subgraph of {Vt}0≤t<C into
triangles and parallelograms in Fig. 3.1.
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Figure 3.1

The area is U2
n/2 of the nth triangle and WnUn of the nth parallelogram,

hence

EV =
1

EC
E

∫ C

0

Vs ds =
1

EC
E

σ−1∑
n=0

[
U2
n/2 +WnUn

]
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=
1

EC
E

∞∑
n=0

E
[
U2
n/2 +WnUn; σ > n

∣∣Uk, Tk, k = 0, . . . , n− 1
]

=
1

EC
E

∞∑
n=0

E
[
U2/2 +WnU ; σ > n

]
=

1
µAEσ

{
1
2

EU2Eσ + µBE

σ−1∑
n=0

Wn

}

= ρ

{
EU2

2µB
+

1
Eσ

E

σ−1∑
n=0

Wn

}
= ρ

{
EU2

2µB
+ EW

}
.

Problems

3.1 Define Rt as the residual service time of the customer being served at time
t (Rt = 0 if the server is idle). Show that P(R ≤ x) = 1 − ρ+ ρB0(x).
3.2 Let {Bt} be the forward recurrence time of the arrival process. Show that
{(Bt, Vt)} is strong Markov.
3.3 Show that the assumption Eσ < ∞ of Proposition 3.2 is indispensable.
[Hint: Tn = 1 + θZn where θ ∈ (0, 1) is irrational, Zn = ±1 w.p. 1/2 and σ =
inf {n ≥ 1 : Z0 + · · · + Zn−1 = 0}.]

Notes Since rate conservation holds in a more general stationary setting, it is

clear that many results of the present section have parallels in such situations too,

sometimes at a cost of a slightly more complicated formulation. See e.g. Sigman

(1995).

4 Queue Length Processes

In the same way that the (actual) waiting time process is obtained by
observing the virtual waiting time (workload) just before arrival times, it
is sometimes of interest to look at the queue length (number in system)
at certain random times. In particular, seen from the point of view of the
arriving customer, the queue length at the time of arrival is a basic quantity
and motivates the study of

{
QAn

}
n∈N

; cf. Definition 1.4. To distinguish from{
QAn

}
,
{
QDn

}
, we use the terminology “at an arbitrary point of time” when

considering {Qt}t≥0 in the steady state, and Q in Definition 1.4 refers to
this case (i.e. P(Q = k) = limt→∞ P(Qt = k)). We start by an elementary
but celebrated result:

Theorem 4.1 (little’s law) Suppose ρ < 1 and that A is nonlattice.
Then the arrival rate λ = µ−1

A , the mean steady–state queue length � = EQ
at an arbitrary point of time and the mean steady–state sojourn time w =
E(W + U) are related by � = λw.
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Proof. By reference to Proposition 3.1, regenerative processes apply to
{Qt}t≥0 exactly as to the workload to show that a limiting steady–state
r.v. Q exists (the convergence is always in t.v. since the state space N is
discrete) and has distribution given by

Ef(Q) =
1

EC
E

∫ C

0

f(Qs) ds. (4.1)

Letting f(x) = x, it is seen that each of the customers n = 0, 1, . . . , σ − 1
provide a contribution Wn + Un to

∫ C
0
Qs ds. Hence

� =
1

EC
E

∫ C

0

Qs ds =
1

µAEσ
E

σ−1∑
n=0

(Wn + Un) = λE(W + U) = λw.

�

Theorem 4.2 (distributional little’s law) Let {N ∗(t)} be a time–
stationary version of the renewal arrival process that is independent of
W,U , etc. Then Q

D= N∗(W + U), i.e. P(Q = 0) = ρ and

P(Q ≥ k) = P(N∗(W + U) ≥ k) = P
(
W + U > T ∗ + T (k−1)

)
for k = 1, 2, . . .. An alternative characterization is

P(Q ≥ k) = P
(
V > T (k−1)

)
= ρP

(
W + U∗ > T (k−1)

)
, (4.2)

P(Q = k) =
∫ ∞

0

[
A∗(k−1)(t) −A∗k(t)

]
H ∗B0(dt).

Proof. Let τn = T0 + · · ·+Tn−1 be the arrival time of customer n. Then his
service interval is [τn+Wn, τn+Wn+Un), and the time during this interval
where Qt ≥ k is the intersection with [τn+k−1,∞) which has length

rn = (τn +Wn + Un − τn+k−1)+ − (τn +Wn − τn+k−1)+.

Since τn+k−1 − τn is independent of Wn, Un, {σ > n} and distributed as
T (k−1), it follows that

P(Q ≥ k) =
1

EC
E

∫ C

0

I(Qs ≥ k) ds

=
1

µAEσ
E

∫ C

0

I(Qs ≥ k) ds =
1

µAEσ
E

σ−1∑
n=0

rn

=
1

µAEσ
E

σ−1∑
n=0

[
(Wn + Un − T (k−1))+ − (Wn − T (k−1))+

]
.

But conditionally upon T (k−1) = x, this last expression is of the same form
as (3.4) and so becomes

ρP
(
U∗ > T (k−1) −W

)
= ρP

(
V > T (k−1)

∣∣V > 0
)

= P
(
V > T (k−1)

)
(4.3)

= P
(
W + U − T ∗ > T (k−1)

)
= P

(
N∗(W + U) ≥ k

)
, (4.4)
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where we used the first part of Theorem 3.4 for (4.3) and the last for (4.4).
The first part of the present theorem now follows from (4.4) and the last
from (4.3). �

Theorem 4.3 Suppose ρ < 1. Then QA, QD are welldefined and have the
same distribution given by

P(QA ≥ k) = P(QD ≥ k) = P
(
W + U ≥ T (k)

)
. (4.5)

If either A or B is continuous, this may be rewritten as

P(QA = 0) = P(QD = 0) = P(W = 0) = H(0), (4.6)
P(QA ≥ k) = P(QD ≥ k) = P

(
W > T (k−1)

)
, k = 1, 2, . . . , (4.7)

P(QA = k) = P(QD = k) = P
(
T (k−1) < W < T (k)

)
, (4.8)

P(QA = k) = P(QD=k) =
∫ ∞

0+

[
A∗(k−1)(t) −A∗k(t)

]
H(dt). (4.9)

Proof. Clearly,
{
QAn

}
,
{
QDn

}
are regenerative w.r.t. the renewal sequence

{σ(k)} and hence the existence of the limiting distribution is immediate.
That the distributions are equal follow by rate conservation applied to
Xt = I(Qt ≥ k + 1), since upward jumps occur at arrival epochs with
QAn = k and downward at departure epochs with QDn = k.

As in the proof of Theorem 4.2, we have{
QAn+k ≥ k

}
=

{
τn+k ≤ τn +Wn + Un

}
.

From this (4.5) follows by taking probabilities and letting n → ∞. If either
A or B is continuous, then so is the distribution of W + U − T so that for
k ≥ 1 (4.5) becomes

P
(
W + U > T (k)

)
= P

(
W + U − T > T (k−1)

)
= P

(
W > T (k−1)

)
(using W D= (W + U − T )+). From this (4.6)–(4.9) follow by easy manip-
ulations (in (4.9), 0 must be excluded from the domain of integration to
deal with the case k = 1 where T (k−1) = 0). �

Problems

4.1 Consider the set–up of Theorem 4.3. Explain that if P(U = T ) > 0, it may
happen that P(QA = 0) is effectively smaller than P(W = 0).
4.2 Derive the distribution of QD by a direct argument similar to the one used
for QA.

Notes It is clear as in Section 3 that much of the analysis carries over be-

yond the independence assumptions in GI/G/1. In particular, this is the case for

Little’s law which basically does not require anything more than the existence

of limits of the Cesaro averages of the number of customers in continuous time

and of the sojourn times in discrete time. The literature is extensive; see e.g.
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Sigman (1995) and El–Taha and Stidham (1999). A series of papers by Glynn

and Whitt, e.g. Glynn and Whitt (1986, 1989), deal with broader interpretations

of 
 = λw. For an extension H = λG that has been studied extensively, see e.g.

Sigman (1995); it is essentially equivalent to the rate conservation law and applies

typically to the same kind of problems.

5 M/G/1 and GI/M/1

Most of the steady–state characteristics of M/G/1 and GI/M/1 have al-
ready been found at various places; see in particular Sections 3, 4 and
VIII.5. We collect here some of the main facts, give some complements and
sketch some alternative approaches.

Theorem 5.1 Consider the GI/M/1 queue with interarrival distribution
A, service intensity δ and ρ = (δµA)−1 < 1. Then in the steady state:
(a) The distribution of the waiting time W is a mixture of an atom at 0 and
an exponential distribution with intensity η on (0,∞) with weights 1 − θ,
resp. θ. Here θ = Ee−ηT = 1 − η/δ, where η is the solution > 0 of

1 = Eeη(Un−Tn) =
δ

δ − η

∫ ∞

0

e−ηxA(dx) . (5.1)

(b) The distribution of the workload V is a mixture of an atom at 0 and
an exponential distribution with intensity η on (0,∞) with weights 1 − ρ,
resp. ρ.
(c) The distribution of the queue length Q at an arbitrary point of time is
modified geometric and given by P(Q = 0) = 1 − ρ, P(Q ≥ k) = ρθk−1,
k = 1, 2, . . ..
(d) The common distribution of the queue lengths QA, QD just before ar-
rivals, resp. just after departures, is geometric with parameter θ, i.e. with
point probabilities πn = (1 − θ)θn.

Proof. (a) was shown in VIII.5.8. When U is exponential, we have U ∗ D= U ,
and we get the Laplace transform of W + U ∗ as[

1 − θ + θ
η

η + s

] δ

δ + s
=

[η + (1 − θ)s]δ
(η + s)(δ + s)

=
ηδ + ηs

(η + s)(δ + s)
=

η

η + s

which proves (b); cf. Theorem 3.4. For (c) and (d), note first that
conditioning upon T (k−1) in (4.7) yields

P
(
W > T (k−1)

)
= θEe−ηT

(k−1)
= θ

[
Ee−ηT

]k−1
= θk,

and (d) follows. (c) is obtained similarly from (4.2) and P
(
V > T (k−1)

)
=

ρθk−1. �

Imbedded Markov chain analysis plays an important historical role in the
proof of results like (c) and (d) and is also applicable to a number of further
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models. We therefore next present the main steps of this approach, though
it is certainly neither the shortest nor the most elegant one for simple
queues such as GI/M/1 (and M/G/1 below). It was found in III.6.2 that
the Markov chain

{
QAn

}
has transition matrix

P =


r0 q0 0 0 . . .
r1 q1 q0 0
r2 q2 q1 q0
...

. . .

 ,

where qk =
∫∞
0

e−δt (δt)k

k! A(dt) and rn = qn+1 + qn+2 + · · ·. By direct
insertion it is now seen that πn = (1 − θ)θn solves πP = π, provided that
θ satisfies (i)

∑∞
0 rnθ

n = 1, (ii)
∑∞

0 qnθ
n = θ. An elementary calculation

shows that (i) follows from (ii). If η, θ are connected by η = δ(1 − θ),
θ = 1 − η/δ, we may rewrite (ii) as

1 − η

δ
=

∞∑
n=0

qnθ
n =

∫ ∞

0

e−ηtA(dt),

which is the same as (5.1). Alternatively, π can be derived by remarking
that

{
QAn

}
is a Lindley process governed by f1 = q0, f0 = q1, f−1 = q2, . . .,

hence the stationary distributions is that of the random walk maximum M
which was found in VIII.5.5(b).

To proceed from QA to Q, we use semi–regeneration; cf. VII.5. The cycle
length is an interarrival time T and we let Ek refer to the case where k
customers were present just before the start of the interarrival interval. The
imbedded Markov chain in VII.5 is just

{
QAn

}
with stationary distribution

π, and thus by VII.(5.1), we have

P(Q = j) =
1
m

∞∑
k=0

πk Ek

∫ T

0

I(Qt = j) dt,

where m =
∑∞

0 πkEkT = µA. If {Ns} is a Poisson process with intensity δ
and j ≤ k + 1, integration by parts yields

Ek

∫ T

0

I(Qt = j) dt =
∫ ∞

0

P(Nt = k + 1 − j)A(t) dt

=
∫ ∞

0

e−δt
(δt)k+1−j

(k + 1 − j)!
A(t) dt =

∫ ∞

0

δ−1
∞∑

�=k+2−j
e−δt

(δt)�

�!
A(dt)

which equals δ−1rk+1−j . For j > k + 1, we get 0 and hence

P(Q = j) =
1
µA

∞∑
k=j−1

πkδ
−1rk+1−j = ρ

∞∑
i=0

(1 − θ)θj−1θiri

= ρ(1 − θ)θj−1
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(using (i) above) and (c) is shown. For an alternative proof using rate con-
servation, let Xt = I(Qt ≥ j + 1). The rate of upward jumps is µ−1

A πj and
the rate of downward jumps is δP(Q = j+1). Equating these two quantities
yields P(Q = j + 1) = ρπj which shows that (c) follows immediately from
(d).

Theorem 5.2 Consider the M/G/1 queue with interarrival intensity β,
service time distribution B, and ρ = βµB < 1. Then in the steady state:
(a) The distributions of the waiting time W and the workload V are the
same and given as H = (1− ρ)

∑∞
0 ρnB∗n

0 , where B0(x) = µ−1
B

∫ x
0 B(y) dy

is the stationary excess distribution.
(b The distributions of the queue lengths Q,QA, QD at an arbitrary point,
just before arrivals, resp. just after departures, are the same, say π, which
can be expressed in terms of H and the Poisson distribution by π0 = 1− ρ,

πk =
∫ ∞

0+
e−βt

(βt)k−1

(k − 1)!
H(dt) = ρ

∫ ∞

0

e−βt
(βt)k−1

(k − 1)!
H ∗B0(dt) , (5.2)

k = 1, 2, . . .. In particular,

EQ = ρ
[
1 + β(EW + EU∗)

]
= ρ+ βEW = ρ+

ρ2µ
(2)
B

2(1 − ρ)µ2
B

. (5.3)

Proof. For W D= V , see III.9.2, VII.6.7 and Section 3. Further, H = (1 −
ρ)

∑∞
0 B∗n

0 is just the Pollaczeck–Khinchine formula VIII.(5.5).

In (b), Q D= QA
D= QD follows from W

D= V and Theorems 4.3 and 4.2.
Also, Theorem 4.3 yields P(Q = 0) = 1 − ρ and

P(Q ≥ k) = P
(
W > T (k−1)

)
=

∫ ∞

0+

∞∑
�=k−1

e−βt
(βt)�

�!
H(dt) ,

from which the first part of (5.2) follows; the second follows since (a) shows
that ρH ∗ B0 coincides with H on (0,∞). The proof of (5.3) is now easy.

�

The alternative approach of imbedded Markov chain analysis for M/G/1
starts by noting that

QDn+1 = (QDn − 1)+ +Kn (5.4)

where Kn is the number of customers arriving while customer n is being
served. Clearly,

{
QDn

}
is a Markov chain with transition matrix

P =



q0 q1 q2 q3 . . .
q0 q1 q2 q3 . . .
0 q0 q1 q2 . . .
0 0 q0 q1 . . .
0 0 0 q0 . . .
...

. . .


,
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where qk = P(Kn = k) =
∫∞
0

e−βt (βt)k

k! B(dt). Irreducibility is obvious
since all qk > 0, and also EKn is the expected number βµB = ρ of arriving
customers in a service interval. Thus EiQ

D
1 = ρ + i − 1 for i ≥ 1, and it

is a matter of routine to check from Foster’s criteria in I.5 that we have
recurrence when ρ ≤ 1 and ergodicity when ρ < 1 (when ρ = 1, there is in
fact null recurrence, and when ρ > 1 there is transience; cf. Problem 5.4).

Assume in the following that ρ < 1. Then the equation πP = π becomes

π0 = π0q0 + π1q0,

π1 = π0q1 + π1q1 + π2q0,

π2 = π0q2 + π1q2 + π2q1 + π3q0 (5.5)
...

Letting rn = qn+1 + qn+2 + · · ·, it follows by adding equations 0, . . . , n and
solving for πn+1q0 that

π1q0 = π0r0,

π2q0 = π0r1 + π1r1,

π3q0 = π0r2 + π1r2 + π2r1 (5.6)
...

If we sum these equations and note that
∑∞

0 rn = ρ, we get

(1 − π0)q0 = π0ρ+ (1 − π0)(ρ− r0),

from which it easily follows that π0 = 1 − ρ. The remaining πn are then
recursively determined by (5.6), but cannot be found in closed formulas.

However, many properties of π can be derived directly from equations
(5.4)–(5.6). Let us look at (5.4) which in the limit becomes

QD
D= (QD − 1)+ +K = QD − I(QD > 0) +K (5.7)

(in obvious notation). Taking squared expectations yields

EQD
2

= EQD
2
+P(QD > 0)+EK2−2EQD+2EQD EK−2P(QD > 0)EK.

Eliminating EQD
2 and solving for EQD using EK = ρ, P(QD = 0) = 1−π0

= ρ and

EK2 =
∫ ∞

0

∞∑
k=0

k2e−βt
(βt)k

k!
B(dt) =

∫ ∞

0

[βt+(βt)2]B(dt) = ρ+β2µ
(2)
B

then easily yields the same expression as in (5.3) (QD D= Q will be shown
in a moment). Also the generating function π̂[s] =

∑∞
0 snπn = EsQ

D

can
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be found in the same way. In fact, (5.7) yields

π̂[s] = EsQ
D−I(QD>0)EsK = (π0 + π1 + sπ2 + s2π3)

∞∑
n=0

snqn,

sπ̂[s] =
[
π̂[s] + π0(s− 1)

]
q̂[s] =

[
π̂[s] + (1 − ρ)(s− 1)

]
q̂[s],

π̂[s] =
(1 − ρ)(1 − s)q̂[s]

q̂[s] − s
(5.8)

where, letting B̂[·] denote the Laplace transform of B,

q̂[s] =
∫ ∞

0

∞∑
k=0

e−βt
(sβt)k

k!
B(dt) =

∫ ∞

0

e−βt(1−s)B(dt) = B̂
[
β(1−s)] .

To proceed fromQD toQ, we use again semi–regeneration. The imbedded
Markov chain is

{
QDn

}
with stationary distribution π, and a cycle C started

by QDn = k ≥ 1 is just a service interval of length U ; for k = 0 we have
to add the idle period of expected length 1/β. It follows that for j ≥ 1 we
have

P(Q = j) =
1
m

∞∑
k=0

πk Ek

∫ C

0

I(Qt = j) dt,

where

m = π0 (1/β + µB) +
∞∑
i=1

πiµB =
1 − ρ

β
+ µB =

1
β
.

For j ≥ 1 fixed, write αk = Ek
∫ C
0 I(Qt = j)dt. Then α0 = α1. For k > j

we have αk = 0, whereas for 1 ≤ k ≤ j we get

αk =
∫ ∞

0

e−βt
(βt)j−k

(j − k)!
B(t) dt =

∫ ∞

0

β−1
∞∑

�=j−k+1

e−βt
(βt)�

�!
B(dt)

= β−1rj−k.

It follows that

P(Q = j) = β
∞∑
k=0

πkαk = π0rj−1 +
j∑

k=1

πkrj−k = πj ,

where the last equality follows from (5.6). The truth of this for all j ≥ 1
implies Q D= QD.

For an alternative proof using rate conservation, let Xt = I(Qt ≥ j+ 1).
The rate of upward jumps is βP(Q = j) and the rate of downward jumps
is βP(QD = j) (interpret β as the departure rate). Equating these two
quantities yields Q D= QD.
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Problems

5.1 Derive the steady–state characteristics of the GI/G/1 queue where U − 1 is
exponential with rate say δ and T ≥ 1.
5.2 Check that the formulas for EW (see VIII.5.7) and EQ in M/G/1 are in
agreement with Little’s formula, and that EW = EV in agreement with Corollary
3.5.
5.3 Show that EW and EQ in M/G/1 are minimized by M/D/1 subject to the
constraints that β and µB are fixed. See further XI.5.
5.4 Show by a modification of the derivation of π0 = 1 − ρ from (5.6) that the
stationary measure is infinite for ρ = 1 and that therefore

{
QD

n

}
is null recurrent.

Show also that there is transience for ρ > 1. [Hint: Yn+1 ≥ Yn − 1 +Kn.]
5.5 Give a direct derivation of (5.8) by multiplying equation n in (5.6) by sn+1

and summing over n. Check the formula for the mean by differentiation.
5.6 Let Rt denote the attained service of the customer in service at time t (if
any) and define Dn(x) = P(R ≤ x,Q = n), n = 1, 2, . . . (thus ‖Dn‖ = πn). Show
that Dn has density

βB(x)e−βt

{
(π0 + π1)

(βt)n−1

(n− 1)!
+

n−2∑
k=0

πn−k
(βt)k

k!

}
.

Notes A further classical topic for the M/G/1 queue is the connection of the

busy period to branching processes. This is most readily understood in the pre-

emptive LCFS setting (where the busy period distribution is the same as for

FCFS). Here one defines the children of a particular customer as the customers

who arrived while he was in service. A simple example of the connection is then

that the number of customers served in the busy period is the same as the total

number of progeny of the customer initiating the busy period. A fairly general

formulation is in Shalmon (1988) who also gives references to earlier work (to

which we add Neuts, 1969). A recent generalization goes from the compound

Poisson M/G/1 case to Lévy processes, see LeGall and Le Yan (1998).

6 Continuity of the Waiting Time

We consider here and in the next two sections a family of GI/G/1 queue-
ing systems indexed by k = 0, 1, 2, . . . with service time distribution B(k),
interarrival distribution A(k) and U

(k)
n , T (k)

n , X(k)
n , S(k)

n , W (k)
n , W (k), etc.

defined the obvious way. The problem, stated in a rough form, is to study
the limiting behaviour of W (k) as k → ∞ under appropriate conditions,
assuming that ρk < 1 for k = 1, 2, . . . and that A(k) w→ A(0), B(k) w→ B(0)

(weak convergence). In Sections 7, 8 we consider the extreme cases where
the limit has traffic intensity ρ0 = 1 or ρ0 = 0, whereas the situation here
is 0 < ρ0 < 1. It is then reasonable to ask for conditions under which
W (k) D→ W (0). This is denoted as a continuity (or stability or robustness)
property of the waiting time, and is of importance for example to justify
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the approximation of a queueing system with given A(0), B(0) by systems
with A(k), B(k) of phase type (cf. III.4).

To facilitate notation, we suppress from now on indices n and k = 1, 2, . . .
whenever convenient (thus, e.g. EU → EU (0) or limk→∞ EU = EU (0) means
EU

(k)
n → EU

(0)
n ).

We shall first state and prove the main result in random walk terms, and
thereafter reformulate in terms more natural for queues.

Theorem 6.1 Consider random walks {Sn}n∈N,
{
S

(0)
n

}
n∈N

with µ =

EX < 0, F w→ F (0), k → ∞, µ0 = EX
(0)
n < 0. Then M

D→ M (0) provided
that the X+ are uniformly integrable or equivalently that EX+ → EX(0)+.

The key step of the proof is

Lemma 6.2 Define Kn = maxr≥n Sr. Then lim
n→∞ lim

k→∞
P(Kn > 0) = 0.

Proof. By general results on weak convergence, EX+ → EX(0)+ is equiv-
alent to the uniform integrability of the X+ since X+ D→ X(0)+ . Choose
c < 0 such that E

[
X(0)+∨c] < 0 and define X̆n = Xn∨c. Then X̆n

D→ X̆(0),
S̆n ≥ Sn, K̆n ≥ Kn. Hence for the proof it is no restriction to assume that
the X are uniformly bounded below, say by c. Then the X themselves are
uniformly integrable, hence µ = EX → µ0 < 0. Now for µ < 0,

P(Kn > 0) = P

(
max
r≥n

Sr
r
> 0

)
= P

(
max
r≥n

{
Sr
r

− µ

}
> −µ

)
≤ 1

|µ|E
∣∣∣∣Snn − µ

∣∣∣∣,
using the fact that {Sr/r − µ}r=n,n+1,... is a backward martingale and

Kolmogorov’s inequality. Decompose Sn − nµ as S̃n + ˜̃
Sn, where

X̃n = XnI(Xn ≤ d)−E[Xn;Xn ≤ d], ˜̃
Xn = XnI(Xn > d)−E[Xn;Xn > d]

with d satisfying P(X (0)
n = d) = 0, E[Xn;Xn > d] < ε for all k. Then σ̃2 =

VarX̃n → σ̃2
0 = VarX̃

(0)
n since the X̃ are bounded uniformly in k, so that

E|Sn/n− µ| ≤ E|S̃n/n| + E| ˜̃Sn/n| ≤ σ̃/
√
n+ 2ε,

using the Cauchy–Schwarz inequality. Hence

lim
n→∞ lim

k→∞
P(Kn > 0) ≤ lim

n→∞
1

|µ0|
[
σ̃0/

√
n+ 2ε

]
=

2ε
|µ0| ,

and since ε is arbitrary, the proof is complete. �

Proof of Theorem 6.1. From X
D→ X(0) it follows that {Xr}nr=0

D→{
X

(0)
r

}n
r=0

and hence by the continuous mapping theorem Mn
D→ M

(0)
n .
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Now let x > 0 satisfy P(M (0) = x) = 0. Then also P(M (0)
n = x) = 0 for

each n and hence

lim sup
k→∞

P(M (k) > x) ≤ lim sup
k→∞

[
P(M (k)

n > x) + P(K(k)
n > 0)

]
= P(M (0)

n > x) + lim sup
k→∞

P(K(k)
n > 0),

lim inf
k→∞

P(M (k) > x) ≥ lim inf
k→∞

P(M (k)
n > x) = P(M (0)

n > x).

Letting n → ∞ yields P(M > x) → P(M (0) > x). Hence M D→ M (0) (note
that x = 0 is not a continuity point of M). �

Apparently the point mass of M at zero is of particular interest, but
P(M = 0) → P(M (0) = 0) does not follow alone from M

D→ M (0). However:

Proposition 6.3 If in addition to the assumptions of Theorem 6.1 the
distribution F (0) of X(0) is continuous, then P(M = 0) → P(M (0) = 0).

Proof. The assumptions ensure that P(S(0)
n = 0) = 0 for each n ≥ 1 and

hence P(Mn = 0) → P(M (0)
n = 0). Now argue exactly as above. �

Corollary 6.4 Consider for k = 0, 1, 2, . . . GI/G/1 queues with A w→ A(0),
B

w→ B(0), ρ0 < 1. Then W
D→ W (0) provided that the U are uniformly

integrable, or equivalently, that EU → EU (0). If in addition either A(0) or
B(0) is continuous, then also P(W = 0) → P(W (0) = 0).

Proof. Appealing to the interpretation X = U − T , W D= M , it is straight-
forward to check the assumptions of Theorem 6.1 and Proposition 6.3 (the
uniform integrability of the X+ follows from X+ ≤ U and the uniform
integrability of the U). �

Problems

6.1 Let F (k) be concentrated at −1, k with point masses 1− 1/2k, 1/2k and let
F (0) = limF (k). Show that

P(M (k) ≥ 1) ≥ P(Xn = k for some n = 1, . . . , k) → e−1/2

and deduce that M (k) D→M (0) does not hold.

Notes Continuity problems are treated e.g. in Borovkov (1976), Stoyan (1983),

Brandt et al. (1990) and Kalashnikov (1994). A classical reference for Markov

chains is Karr (1975).

7 Heavy Traffic Limit Theorems

If, in the set–up of Section 6, the limiting traffic intensity ρ0 is 1 rather
than < 1, we are in the situation of heavy traffic where all queueing systems
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are heavily congested. We expect again W = W (k) D→ W (0), but now
W (0) = ∞ a.s. It will turn out that a more precise result can be obtained,
namely that under weak conditions |µ|W is approximately exponentially
distributed. We start again by formulating this for the random walk setting
(σ2 denotes VarX).

Theorem 7.1 Consider random walks {Sn}n∈N,
{
S

(0)
n

}
n∈N

with µ < 0,
µ → 0, limk→∞ σ2 > 0, and the X2 uniformly integrable. Then Y =
|µ|M/σ2 is approximately exponentially distributed with intensity 2, i.e.
P(Y > y) → e−2y. Furthermore, EY → 1/2.

Remark 7.2 The conditions of Theorem 7.1 are not intrinsically different
from the apparently stronger

X
D→ X(0), σ2 → σ2

0 > 0, µ0 = 0. (7.1)

Indeed, the uniform integrability ensures that {F} = {F (k)} is tight.
Thus every subsequence {k′} has a weakly convergent subsequence {k′′},
i.e. X(k′′) D→ X(0) for some X(0). But then by uniform integrability,
µ0 = limµk′′ = 0, σ2

0 = lim σ2
k′′ > 0. Furthermore, a standard analyti-

cal argument shows that if we can show the asymptotic exponentiality for
{k′′}, then it will hold for {k′} as well. Hence for the proof we can (and
shall) assume that (7.1) holds. Also, by rescaling, we may take σ2 = 1; then
Y = |µ|M = −µM . �

Two approaches to Theorem 7.1 will be considered, the first being based
on characteristic functions ϕY (y) = EeiyY . Thus we have to show ϕY (y) =
ϕM (−µy) → (1 − iy/2)−1. In the proof, we let µ2 = EX2 (thus µ2 → 1
since µ → 0, σ2 → 1).

Lemma 7.3 For each y, it holds as k → ∞ that

ϕX(−µy) = 1 − iµ2y − µ2y2

2
+ o(µ2). (7.2)

Proof. Define g(z) = eiyz − 1 − iyz + y2z2/2. Then for each ε > 0, we can
bound |g(z)| by cε|z3| for |z| ≤ ε and by dε|z2| for |z| > ε. Hence∣∣Eg(−µX)

∣∣ ≤ cεE
[|− µX

∣∣3; ∣∣−µX∣∣ ≤ ε] + dεE
[
(µX)2;

∣∣−µX∣∣ > ε]

≤ µ2
{
εcεEX

2 + dεE
[
(µX)2; | − µX | > ε

]}
and therefore lim supk→∞ µ−2|Eg(−µX)| ≤ εcε by uniform integrability.
Since cε remains bounded as ε ↓ 0, it follows that

ϕX(−µy) −
(
1 − iµ2y − µ2y2

2
µ2

)
= Eg(−µX) = o(µ2),

and the lemma follows since µ2 → 1. �
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Proof of Theorem 7.1. We first note that as in Section 6 we have M D→ ∞.
But

E
[
(M +X)−

]2 ≤ E(X−)2P(M ≤ c) + E[X2; X < −c].
Letting first k → ∞ and next c → ∞ yields

E
[
(M +X)−

]2 → 0 (hence E(M +X)− → 0). (7.3)

From this EY → 1/2 is clear from (2.5). Now for each z, eiyz+ = eiyz + 1−
e−iyz− . Letting Z = M +X and taking expectations we get

ϕM (y) = ϕM (y)ϕX(y)+1−ϕ−(M+X)−(y) =
1 − ϕ−(M+X)−(y)

1 − ϕX(y)
. (7.4)

Since eiz − 1 − iz = z2O(1) for z real, we get

ϕ−(M+X)−(−µy) = 1 + iµyE(M +X)− + O(1)µ2y2E
[
(M +X)−

]2
= 1 − iµ2y + o(µ2),

using (1.9) and (7.3). Hence by Lemma 7.3 and (7.4),

ϕM (−µy) =
iµ2y + o(µ2)

iµ2y + µ2y2/2 + o(µ2)
→ 1

1 − iy/2
. �

The second proof of Theorem 7.1 involves more advanced tools (weak
convergence in function space) but is perhaps more illuminating and yields
additional information, namely asymptotics of the M (k)

n . We let {Bξ(t)}t≥0
denote Brownian motion with unit variance and drift ξ. The inverse Gaus-
sian distribution function G(t; ξ, c) with parameters ξ ∈ R, c > 0 is the
c.d.f. of the first passage time τ(ξ, c) = inf {t > 0 : Bξ(t) ≥ c},

G(T ; ξ, c) = P(τ(ξ, c) ≤ T ) = P

(
max

0≤t≤T
Bξ(t) ≥ c

)
. (7.5)

This distribution (defective for ξ < 0) can in fact be found explicitly. We
defer the derivation to XIII.4 and here use only the formula∥∥G(·; ξ, c)∥∥ = P

(
max

0≤t<∞
Bξ(t) ≥ c

)
= e2ξc, ξ < 0. (7.6)

Proposition 7.4 Under the conditions of Theorem 7.1, it holds for any
T < ∞ that

|µ|
σ2
M�Tσ2/µ2


D→ max
0≤t≤T

B−1(t), P

( |µ|
σ2
M�Tσ2/µ2
 > y

)
→ G(T ; −1, y).

Proof. We may again assume that (7.1) holds with σ2
0 = 1. Let {c} =

{
c(m)

}
be any sequence with c(m) → ∞ and define

B(t) = B(m)(t) =
1√
c

[
S�ct
 −  ct!µ] .
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It then follows from the invariance principle (Donsker’s theorem) in its
standard form (e.g. Billingsley, 1968, Ch. 3) that B D→ B0 in D. Taking
c = µ−2 we have  ct!µ/√c → −t, i.e.{|µ|S�t/µ2


}
0≤t<∞ =

{
B(t) +  ct!µ/√c}

0≤t<∞
D→ {B0(t) − t}0≤t<∞

D= B−1.

Hence, since f → sup0≤t≤T f(t) is continuous a.e. on D w.r.t. any proba-
bility distribution concentrated on the continuous functions, it follows from
the continuity of B−1 that

|µ|M�T/µ2
 = sup
0≤t≤T

|µ|S�t/µ2

D→ max

0≤t≤T
B−1(t)

which yields the desired conclusion in view of σ2 → 1. �

Proof of Theorem 7.1. We assume again σ2 → 1 and write

Y = Y1 ∨ Y2 =
(|µ|M�T/µ2


) ∨ (
sup

n>T/µ2
|µ|Sn

)
.

Here by (7.6) and Proposition 7.4,

lim
T→∞

lim
k→∞

P(Y1 > y) = lim
T→∞

G(T ; −1, y) = e−2y, (7.7)

whereas
{
(Sn − nµ)2

}
is a backward submartingale, hence

P(Y2 > 0) = P

(
max

n>T/µ2
(Sn/n− µ) > −µ

)
≤ 1

µ2
E
[
S�T/µ2
/�T/µ2
 − µ

]2 =
σ2

µ2 T/µ2! ,

lim
T→∞

lim
k→∞

P(Y2 > 0) ≤ lim
T→∞

1
T

= 0. (7.8)

Combining (7.7) and (7.8), the desired conclusion is obtained exactly as in
the proof of Theorem 6.1. �

Corollary 7.5 Consider GI/G/1 queueing systems with A w→ A(0), B w→
B(0), where A(0), B(0) are not both degenerate, ρ < 1, ρ → ρ0 = 1 and
the U2, T 2 uniformly integrable. Then Y = |µ|W/σ2 is approximately ex-
ponentially distributed with intensity 2 and EY → 1/2. Here µ = EX =
EU − ET , σ2 = VarX. Furthermore, for each T

P

( |µ|
σ2
W�Tσ2/µ2
 > y

)
→ G(T ; −1, y).

The proof is a routine application of Theorem 7.1 and is omitted.
Results of the type in Corollary 7.5 are of high potential relevance, since

the heavy traffic situation occurs widely in practice (when designing a ser-
vice facility, one usually avoids for economical reasons to keep the server
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idle for a large proportion of the time). Given a queue with ρ smaller than
but close to 1, we may imbed the system in the set–up of Corollary 7.5,
writing A = A(k), B = B(k) for some large k. It is then suggested that the
following approximations may be used:

EW ≈ VarX/2E(−X), P(W > y) ≈ exp
{−2E(−X)y/VarX

}
. (7.9)

Note that when EX ≈ 0, we have EX2 ≈ VarX and one may thus re-
place VarX by EX2 in (7.9). However, inspection of (2.5) shows that
EX2/2E(−X) and VarX/2E(−X) are both upper bounds for EW and
hence VarX/2E(−X) is the best approximation.

We return to a special aspect of heavy traffic approximations in XIII.6,
but finally we mention that in view of the formulas of Sections 3 and 4, it
is straightforward to derive analogues of Corollary 7.5 for workload, queue
length and so on (cf. Problem 7.1).

Problems

7.1 Show that under the conditions of Corollary 7.5 the steady–state workload
V has the same limiting distribution as W . Show similarly, using the results of
Section 4, that |µ|Q/σ2, |µ|QA/σ2 have limiting exponential distributions with
intensities 2µA.
7.2 Show (7.6) by optional stopping of the martingale {e−2ξBξ (t)} at τ (ξ, c)∧T .

Notes Heavy traffic limit theory was largely initiated by Kingman in the 1960s,
with the functional CLT point of view being developed by Iglehart and Whitt.
For surveys, see Glynn (1990) and Whitt (2002).

Without second moments, one often gets a stable rather than a Brownian limit.
See e.g. Furrer et al. (1997) and Heath et al. (1999) for recent papers in the area,
and Whitt (2002) for a survey and references.

A notable recent development is heavy traffic limit theory for queueing net-
works, where the limit is reflected Brownian motion in an orthant. See further
the Notes to IV.6 and IX.2.

8 Light Traffic

Intuitively, light traffic means that the generic interarrival time T is much
larger than the generic service time U , implying that typically the system
is idle in the steady state. When considering the GI/G/1 queue at an
arbitrary point of time, the idleness probability is 1 − ρ = P(Q = 0) =
P(V = 0), so that light traffic certainly requires ρ to be close to 0. A
more refined question is to study the behaviour of Q, V given {Q > 0} =
{V > 0}. To this end, we consider a sequence of GI/G/1 queues in the
notation of Sections 6 and 7, assuming throughout that the interarrival time
T = T (k) satisfies T D→ ∞, k → ∞, and that the service time distribution B
is fixed, i.e. does not depend on k = 1, 2, . . . (this certainly implies ρ → 0).
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Proposition 8.1 As k → ∞, it holds without further conditions that (a)
W→0 in t.v., (b) V conditionally upon V > 0 converges to the equilibrium
service time U∗ in t.v., (c) Q conditionally upon Q > 0 converges to 1 in
t.v.
[For basic facts about total variation convergence, see A8.]

Proof. Let Zε denote a r.v. that is 0 w.p. ε and ε−1 w.p. 1− ε. Then T (k) is
stochastically larger than Zε for all large k so that W ≤so Mε (stochastical
order), the maximum of a random walk with increments distributed as
U − Zε. Since Mε ≤so Mδ

D= when ε < δ, we get

Mε
D= (Mε + U − Zε)+ ≤so (Mδ + U − Zε)+

which converges in t.v. to 0 as ε ↓ 0. Hence P(Mε > 0) → 0 and therefore
P (W > 0) → 0, proving (a). It follows by Theorem 3.4 that

P(V ∈ A |V > 0) = P(W + U∗ ∈ A) ∼ P(U∗ ∈ A)

uniformly in A ⊆ (0,∞), showing (b). For (c), (4.2) then yields

P(Q ≥ 2) = ρP(W + U∗ > T ) ∼ ρP(U∗ > T ) = o(ρ),

P(Q = 1 |Q > 0) = 1 − P(Q ≥ 2 |Q > 0) = 1 − o(ρ)
ρ

→ 1. �

The intuitive content of Proposition 8.1(b),(c) is that a busy cycle in
light traffic with high probability only contains one customer and that
if we observe the system at an arbitrary point of time and see it busy,
it is because we sample the single service time in the cycle rather than
the following idle period. The situation at arrival instants is different: if a
customer has to wait (W > 0), we expect him to be customer n = 1 in the
cycle, not n = 0 who does not have to wait, so that W given W > 0 should
most often be the residual service time U0 − T0 of the previous customer
given it is positive. To rigorously verify this intuition as well as to derive
precise asymptotics of P(W > 0) is, however, more difficult than in the
case of V and will occupy the rest of this section.

We start again in a triangular array random walk setting, where we are
given random walks {Sn} = {S(k)

n } with increments X0, X1, . . ., increment
distributions F (x) = P(X ≤ x), maxima M = maxn=0,1,... Sn etc. (indexed
by k = 1, 2, . . .). Call two families {R} = {R(k)}, {S} = {S(k)} of r.v.’s
with values in [0,∞) light traffic equivalent if

P(R > 0) → 0, P(S > 0) → 0,
P(R > 0)
P(S > 0)

→ 1 (8.1)

as k → ∞ and the conditional t.v. distance converges to 0,∥∥P(R ∈ · |R > 0) − P(S ∈ · |S > 0)
∥∥ → 0. (8.2)
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Theorem 8.2 Assume that X D→ −∞ as k → ∞, and that

0 = lim
a↑∞

lim
k→∞

E[X ;X > a]
p+

= lim
a↑∞

lim
k→∞

∫∞
a
xF (dx)
p+

(8.3)

where p+ = P(X > 0) =
∫∞
0
F (dx). Then M and X+ are light traffic

equivalent.

Remark 8.3 Let F+ denote the conditional distribution ofX givenX > 0.
Then (8.3) means that the family {F+} is uniformly integrable. This should
be compared with the unconditional uniform integrability conditions for
heavy traffic in Section 7. �

The key step in the proof is (take Sτ+ = 0 when τ+ = ∞):

Lemma 8.4 The ascending ladder heights Sτ+ and the X+ are light traffic
equivalent.

Proof. By (1.7), we can write G+ = L+K where L,K are the restriction to
(0,∞) of F , resp. F ∗∑∞

1 G∗n
− (L is the contribution from the atom of U−

at zero). For simplicity of notation, let R = R(k) be the measure R(dx) =∑∞
1 G∗n

−
(
d(−x)) on (0,∞). Then for z ≥ 0,

K(z) =
∞∑
n=1

∫ 0

−∞
F (z − x)G∗n

− (dx) =
∫ ∞

0

F (z + x)R(dx)

=
∫ ∞

z

R(y − z)F (dy) ≤
∫ ∞

z

R(y)F (dy). (8.4)

To proceed from (8.4), we will need the estimate

R(t) ≤ ϕ(t)(1 + t), (8.5)

where ϕ(t) is bounded uniformly in k, nondecreasing and tends to 0 for any
fixed t as k → ∞. FirstX D→ −∞ implies Sτ−

D→ −∞ (with high probability
Sτ− coincides with X0). In particular, G−(−t) → 0 for all t > 0. Since
R(1) ≤ G−(−1)

(
1 + R(1)

)
, this implies that R(1) is bounded. Similarly,

R(n− 1, n] ≤ G(−n)
(
1 + R(1)

)
so that R(n) ≤ G−(−n)n

(
1 + R(1)

)
, and

from these estimates (8.5) follows.
Letting z = 0 in (8.4), we get

lim sup
k→∞

P
(
Sτ+ > 0, Sτ+ 
= X+

0

)
p+

= lim sup
k→∞

K(0,∞)
p+

≤ lim sup
k→∞

∫∞
0
ϕ(y)(1 + y)F (dy)

p+

≤ lim sup
k→∞

{
(1 + a)ϕ(a) + 2ϕ(∞)

∫∞
a yF (dy)

p+

}
= lim sup

k→∞
2ϕ(∞)

∫∞
a yF (dy)

p+
.
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Letting a → ∞, this converges to 0 according to (8.3), which easily yields
the assertion. �

Proof of Theorem 8.2: Just note that P(M > 0) = P(Sτ+ > 0),

P(M 
= Sτ+ |M > 0) = P
(
τ+(2) < ∞ ∣∣ τ+ < ∞)

= P(Sτ+ > 0) → 0

and appeal to Lemma 8.4. �

We next consider GI/G/1 queues. In view of W D= M , Theorem 8.2
states that W and (U−T )+ are light traffic equivalent provided X = U−T
satisfies (8.3). It remains to carry out the relevant translation to conditions
in terms of A,B, and to give some examples.

The first example is thinning of the arrival process where the results are
in terms of Γ(t) =

∑∞
1 A∗n(t) (the renewal function except that the n = 0

term is not included).

Corollary 8.5 Given a GI/G/1 queueing system specified in terms of
U, T , define for each k = 1, 2, . . . another GI/G/1 system by thinning of the
arrival process with retention probability 1/k. That is, T = T0 + · · ·+TN−1

where N is independent of T0, T1, . . . with P(N = �) = (1 − 1/k)�−1/k,
� = 1, 2, . . . Then W and (U −T )+ are light traffic equivalent provided that
EU2 < ∞. Writing Γ =

∑∞
1 A∗n, one then has

P(W > 0) ∼ p+ = P(U − T > 0) ∼ 1
k

EΓ(U). (8.6)

Proof. Obviously,

P(U − T > y) =
∫ ∞

y

∞∑
�=1

1
k
(1 − 1/k)�−1A∗�(u− y)B(du)

for y > 0 so that

kP(U − T > y) ↑
∫ ∞

y

Γ(u− y)B(du), k → ∞. (8.7)

Taking y = 0 gives p+ ∼ EΓ(U)/k. Further, by integration by parts we
have ∫ ∞

a

xF (dx) = aP(U − T > a) +
∫ ∞

a

P(U − T > x) dx. (8.8)

We can bound Γ(y) by c(1 + y), and therefore an upper bound for (8.8) is

c

k

[
aB(a) + aE(U − a)+ +

∫ ∞

a

{
B(x) + E(U − x)+

}
dx

]
=

c

k

[
aB(a) + (1 + a)E(U − a)+ +

1
2

E(U − a)+2
]
.

Here [· · ·] → 0 as a → ∞ because of EU 2 < ∞, and combining with
p+ ∼ EΓ(U)/k shows that (8.3) holds. �
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Next consider the scaling case T = kT∗ with A∗(t) = P(T∗ ≤ t)
independent of k.

Corollary 8.6 Assume T = kT∗ where P(T∗ ≤ t) ∼ ctα, t ↓ 0. Then W
and (U − T )+ are light traffic equivalent provided that EUα+1 < ∞, and
then

P(W > 0) ∼ p+ = P(U − T > 0) ∼ c

kα
EUα (8.9)

Proof. For y > 0,

P(U − kT∗ > y) =
∫ ∞

y

A∗
(u− y

k
−
)
B(du).

Letting y = 0, we get

kαp+ =
∫ ∞

0

kαA∗
(u
k
−
)
B(du) → c

∫ ∞

0

uαB(du)

(using dominated convergence and c1 = supt A∗(t−)/tα < ∞). These
estimates show also that an upper bound for (8.8) is

c1
kα

[
aE(U − a)+α +

∫ ∞

a

E(U − x)+αdx
]

=
c

k

[
aE(U − a)+α +

1
α+ 1

E(U − a)+α+1
]
.

Here [· · ·] → 0 as a → ∞ because of EUα+1 < ∞, and combining with
p+ ∼ cEUα/kα shows that (8.3) holds. �

Let B(x) denote the overshoot distribution, B
(x)

(y) = B(x + y)/B(x).

Corollary 8.7 Assume that there exists a distribution G with finite mean
such that B(x) is stochastically dominated by G for all x. Then W and
(U − T )+ are light traffic equivalent.

Proof. For y > 0,

P(U − T > y) = p+P(U > T + y |U > T ) ≤ p+G(y).

Hence an upper bound for (8.8) is

p+

[
aG(a) +

∫ ∞

a

G(x) dx
]
.

Here [· · ·] → 0 as a → ∞ when µG =
∫∞
0
G(x) dx < ∞, and therefore

(8.3) holds. �

Remark 8.8 Intuitively, what are the reasons that delay occurs in light
traffic? Two reasons come immediately to mind: short interarrival times
(clustering) or long service times. To make such a study more rigorous, one
way is to describe the conditional distribution of U, T given X = U−T > 0
For example, in the scaling case T = kT∗ in Corollary 8.6, one has in
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M/D/1 that U ≡ 1 (being constant) is unchanged in this distribution,
whereas the conditional distribution of T∗ is that of T∗ given T∗ ≤ 1/k
(which is asymptotically the uniform distribution on (0, 1/k)) so that de-
lay is caused by short interarrival times. If instead one considers D/M/1,
T = k is unchanged in the conditional distribution, whereas the conditional
distribution of U is that of U + k so that delay is caused by long service
times. See further the Problems, which also contain an example (Prob-
lem 8.3) where it is necessary to have both long service times and short
interarrival times if delay is to occur in light traffic. �

Problems

8.1 Show that in Corollary 8.6, one has

P (U ≤ u, T∗ ≤ t/k | U − kT∗ > 0) →
∫ u

0
(y ∧ t)αB(dy)∫∞
0
yαB(dy)

, 0 < t < u.

8.2 Show that if the service time U has a nondecreasing failure rate, then (8.3)
holds.
8.3 Take P(U > u) = e−u2

, T = kT∗, P(T∗ ≤ t) = e−1/
√

t. Show using Problem

8.2 that (8.3) holds, and that conditionally upon U − kT∗ > 0, U/k1/5 P→ K,

k4/5T∗
P→ K, U − kT∗

P→ 0, where K = 4−2/5 is the unique point where ϕ(z) =
z−1/2 + z2 attains it minimum.

Notes The study of light traffic goes back to Bloomfield and Cox (1972), but
the first mathematically more substantial results are those of Daley and Rolski
(1984, 1991). The present exposition follows Asmussen (1992b), who also gives
further examples and conditions for EW (k)p ∼ E(U − T )p, p > 0, together with
the corresponding asymptotics. See also Sigman (1992) for workloads.

Whitt (1989) suggests approximations in the whole range ρ ∈ (0, 1) using

interpolating between heavy traffic (ρ ↑ 1) and light traffic (ρ ↓ 0); the details

involve the explicit solution of M/M/1. Further frequently studied topics in light

traffic limit theory are Taylor expansions such as EW ≈ a1ρ+ · · ·+ anρ
n and, of

course, models beyond GI/G/1 such as networks. See e.g. Kovalenko (1995) and

Baccelli and Schmidt (1996) for these and further subjects.

9 Heavy–Tailed Asymptotics

We now assume that the service time distribution B is heavy–tailed, more
precisely that B is long–tailed (for all y, B(x− y)/B(x) → 1 as x →
∞) and that its stationary excess (integrated tail) distribution B0(x) =∫ x
0
B(y) dy / µB is in the class S of subexponential distributions (see A5

for these concepts). We will derive tail asymptotics first for the steady–state
waiting time W and later, under the added regularity condition B ∈ S ∗

(see (A.5.3)), for the maximal waiting time in a busy cycle (the parallel
results for light tails are given in XIII.5 and state that both tails decay



296 X. Steady-State Properties of GI/G/1

with the same exponential rate). We assume throughout ρ < 1. The result
on W is as follows:

Theorem 9.1 (a) Consider a random walk such that µ = EX < 0 and
that F (x) ∼ B(x), x → ∞, for some distribution B on (0,∞) which is
long–tailed and satisfies B0 ∈ S. Then, writing F I(x) =

∫∞
x F (y) dy, it

holds that

P(M > x) ∼ 1
|µ|F I(x), x→ ∞; (9.1)

(b) for a GI/G/1 queue with ρ < 1 and the service time distribution B
satisfying the assumptions of (a),

P(W > x) ∼ ρ

1 − ρ
B0(x), x → ∞. (9.2)

The proof uses the following lemma:

Lemma 9.2 Let Y1, Y2, . . . be i.i.d. with common distribution G ∈ S and
let N be an independent integer–valued r.v. with EzN < ∞ for some z > 1.
Then P(Y1 + · · · + YN > u) ∼ EN G(u).

Proof. Recall from A5 that G∗n(u) ∼ nG(u), u → ∞, and that for each
z > 1 there is a D < ∞ such that G∗n(u) ≤ G(u)Dzn for all u. Therefore
we can use dominated convergence with

∑
P(N = n)Dzn as majorant to

obtain

P(Y1 + · · · + YN > u)
G(u)

=
∞∑
n=0

P(N = n)
G∗n(u)
G(u)

→
∞∑
n=0

P(N = n)·n = EN.

�

For the proof of Theorem 9.1, it is instructive to first consider the M/G/1
case where A is exponential with rate β. The Pollaczeck–Khinchine formula
states that W D= Y1 + · · · + YK where the Yi have distribution B0 and
K is geometric with parameter ρ, P(K = k) = (1 − ρ)ρk. Since EK =
ρ/(1 − ρ) and EzK < ∞ whenever ρz < 1, the result follows immediately
from Lemma 9.2. The argument for the general random walk or GI/G/1
case is similar. In fact, we have a similar representation M = Y1 + · · · +
YK where K is the number of ladder steps and Y1, Y2, . . . are i.i.d. with
common distribution G = G+/‖G+‖. The difficulty is that whereas K is
still geometric, then the parameter θ = ‖G+‖ is not explicit as for M/G/1,
and also it is not a priori clear that the tail behaviour of G is the same as
that of B0.

Write G+(x) = G+(x,∞) = P(Sτ+ > x, τ+ < ∞) and let µG− be the
mean of G−, U− =

∑∞
0 G∗n

− .

Lemma 9.3 G+(x) ∼ F I(x)/|µG− |, x→ ∞.
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Proof. By (1.7),

G+(x) =
∫ 0

−∞
F (x − y)U−(dy).

The heuristics is now that the contribution from the interval (−N, 0] to the
integral is O(F (x)) which by long–tailedness is o(F I(x)), whereas for large
y, U−(dy) is close to Lebesgue measure on (−∞, 0] normalized by |µG− | so
that we should have

G+(x) ∼ 1
|µG− |

∫ 0

−∞
F (x− y) dy =

1
|µG− |F I(x) .

We now make this precise. If G− is nonlattice, then by Blackwell’s re-
newal theorem U−(−n − 1,−n] → 1/|µG− |. In the lattice case, we can
assume that the span is 1 and then the same conclusion holds since then
U−(−n− 1,−n] is just the probability of a renewal at −n.

Given ε, choose N such that F (n − 1)/F (n) ≤ 1 + ε for n ≥ N (this is
possible since B is long–tailed, cf. A5.1(a)), and that U−(−n − 1,−n] ≤
(1 + ε)/|µG− | for n ≥ N . We then get

lim
x→∞

G+(x)
F I(x)

≤ lim
x→∞

∫ 0

−N

F (x− y)
F I(x)

U−(dy) + lim
x→∞

∫ −N

−∞

F (x− y)
F I(x)

U−(dy)

≤ lim
x→∞

F (x)
F I(x)

U−(−N, 0] + lim
x→∞

1
F I(x)

∞∑
n=N

F (x+ n)U−(−n− 1,−n]

≤ 0 + lim
x→∞

1
F I(x)

1 + ε

|µG− |
∞∑
n=N

F (x+ n)

≤ (1 + ε)2

|µG− | lim
x→∞

1
F I(x)

∫ ∞

N

F (x + y) dy

=
(1 + ε)2

|µG− | lim
x→∞

F I(x +N)
F I(x)

=
(1 + ε)2

|µG− | .

Here in the third step we used that B(x)/B0(x) → 0 (since B is long–tailed)
and hence F (x)/F I(x) → 0, and in the last that F I is asymptotically
proportional to B0 ∈ S. Similarly,

lim
x→∞

G+(x)
F I(x)

≥ (1 − ε)2

|µG− | .

Letting ε ↓ 0, the proof is complete. �

Proof of Theorem 9.1. We first show part (a). By Lemma 9.3, P(Yi >
x) ∼ F I(x)/(θ|µG− |). Hence using dominated convergence precisely as for
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M/G/1, M = Y1 + · · · + YK yields

P(M > u) ∼
∞∑
k=1

(1 − θ)θk k
F I(u)
θ|µG− | =

F I(u)
(1 − θ)|µG− | .

Now just observe that (1− θ)|µG− | = (1−‖G+‖)|µG− | = |µ| by VIII.(2.1).
To get (b) from (a), just observe that

F (x)
B(x)

=
∫ ∞

0

B(x+ y)
B(x)

A(dy) →
∫ ∞

0

1 · A(dy) = 1

by dominated convergence. This implies F I(x) ∼ µBB0(x) and, using |µ| =
µA − µB , that

P(W > x) = P(M > x) ∼ µB
|µ|B0(x) =

ρ

1 − ρ
B0(x) . �

Now consider the cycle maximum. In the random walk case, we consider
a reflected version (Lindley process) {Wn} starting from W0 = 0 and define
the cycle σ as for GI/G/1,

σ = inf {n ≥ 1 : Wn = 0} = τ− = inf {n ≥ 1 : Sn ≤ 0} .
The cycle maximum is

Mσ = max
0≤n<σ

Sn = max
0≤n<σ

Wn.

Its relevance for extreme value theory has been explained in VI.4, and in
fact, VI.4.10 and the following result immediately show that max0≤k≤nWn

after a suitable normalization has a Fréchet limit distribution as n → ∞
when B is regularly varying (analogously Problem VI.4.1 gives a Gumbel
limit when B is heavy–tailed Weibull; it is straighforward to adapt the
argument to see that the same is the case for the log–normal distribution).

Theorem 9.4 Consider a reflected random walk (Lindley process) {Wn}
such that µ = EX < 0 and that F (x) ∼ B(x), x → ∞, for some B ∈ S ∗.
Then

P(Mσ > x) ∼ EσF (x), x → ∞. (9.3)

The same conclusion holds for the GI/G/1 waiting time when the service
time distribution B satisfies B ∈ S ∗.

For the proof, we first introduce some notation. Define

N1(x, x0) = #
{
n < σ : Sn ≤ x0, Sn+1 > x

}
,

p1(x, x0) = P
(
Sn+1 > x for some n < σ with Sn ≤ x0

)
,

p2(x, x0) = P
(
τ(x) < σ, x0 ≤ Sτ(x)−1 ≤ x

)
.

where τ(x) = inf {n ≥ 1 : Sn > x} (note that the definitions of p1(x, x0)
and p2(x, x0) are not symmetric in the sets [0, x0] and (x0,∞)). Then

p1(x, x0) ≤ P(Mσ > x) ≤ p1(x, x0) + p2(x, x0) . (9.4)
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Lemma 9.5 EN1(x, x0) ∼ EσP(M ≤ x0)F (x).

Proof. Define C(A) = E
∑σ−1
n=0 I(Sn ∈ A) = EσP(W ∈ A). We get

EN1(x, x0) = E

σ−1∑
n=0

I(Sn ≤ x0, Sn+1 > x) = E

σ−1∑
n=0

I(Sn ≤ x0)F (x− Sn)

=
∫ x0

0

F (x− y)C(dy) = Eσ

∫ x0

0

F (x− y)P(W ∈ dy) .

Now just divide by F (x) and use F (x− y)/F (x) → 1 uniformly in 0 ≤ y ≤
x0, as follows from 1 ≤ F (x− y)/F (x) ≤ F (x− x0)/F (x) → 1. �

Lemma 9.6 p1(x, x0) ∼ EσP(W ≤ x0)F (x).

Proof. After τ(x), the expected time {Sn} spends in (0, x0) before hitting
(−∞, 0] is bounded by a1 + a2x0. Hence with α(x, x0) = (a1 + a2x0)F (x−
x0), we have

P
(
N1(x, x0) ≥ k + 1

∣∣N1(x, x0) ≥ k
) ≤ α(x, x0),

P
(
N1(x, x0) ≥ k + 1

) ≤ p1(x, x0)α(x, x0)k,

E
[
N1(x, x0); N1(x, x0) ≥ 2

] ≤ p1(x, x0)α(x, x0)
1 − α(x, x0)

,

p1(x, x0) ≤ EN1(x, x0) ≤ p1(x, x0) +
p1(x, x0)α(x, x0)

1 − α(x, x0)
.

Now just note that α(x, x0) → 0 and use Lemma 9.5. �

Letting first x → ∞ and next x0 → ∞ in (9.4), the following estimate
will complete the proof of Theorem 9.4:

Lemma 9.7 lim
x0→∞ lim sup

x→∞
p2(x, x0)
F (x)

= 0.

The proof is based upon a downcrossing argument. Define m+ = EX+,
m− = EX− (thus m = −µ = m− −m+) and

Dσ(x) = E

σ−1∑
n=0

I
(
Sn > x, Sn+1 ≤ x

)
,

D(x) = E

∞∑
n=0

I
(
Sn > −x, Sn+1 ≤ −x).

Lemma 9.8 lim
x→∞D(x) =

m−
m

.

Proof. Let U denote the occupation (renewal) measure of the random walk,
U(A) =

∑∞
0 P(Sn ∈ A). Then (Problem VIII.3.4) U [x, x + z] ≤ a1 + a2z

for all x, z and has limit z/m as z → −∞ in the nonlattice case (that
is, U(dz − x) converges vaguely to Lebesgue measure normalized by m).
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Similar estimates as in the proof of the key renewal theorem then yield

D(x) =
∫ ∞

−x
U(dy)F (−x− y) =

∫ ∞

0

U(dz − x)F (−z)

→ 1
m

∫ ∞

0

F (−z)dz =
m−
m

.

The lattice case is similar though easier. �

Proof of Lemma 9.7. By regenerative process theory,

Dσ(x)
Eσ

= lim
n→∞ P(Wn > x,Wn+1 ≤ x) =

∫ ∞

x

P(W ∈ dy)F (x − y).

Theorem 9.1 makes it plausible that we can replace P(W ∈ dy) by
m−1F (y) dy; for the rigorous proof which indeed uses B ∈ S ∗ in an
essential way, see Asmussen et al. (2002). We then get

Dσ(x)
Eσ

∼ 1
m

∫ ∞

x

F (y)dy
∫ x−y

−∞
F (dz)

=
F (x)
m

∫ 0

−∞
F (dz)

∫ x−z

x

F (y)
F (x)

dy

∼ F (x)
m

∫ 0

−∞
|z|F (dz) = F (x)

m−
m

,

where the third step is an easy consequence of long–tailedness.
On the other hand, the overshoot over x after an upcrossing from a

level ≤ x0 converges in distribution to ∞ by long–tailedness, so that the
expected subsequent number of downcrossings of level x before [0, x0] is hit
is approximately m−/m by Lemma 9.8. Hence we get

EσF (x)
m−
m

∼ Dσ(x) ≥ EN1(x, x0)
m−
m

+ p2(x, x0)

∼ EσF (x)P(M ≤ x0)
m−
m

+ p2(x, x0) ,

lim sup
x→∞

p2(x, x0)
F (x)

≤ EσP(M > x0)
m−
m

.

Let x0 ↑ ∞. �

Notes Theorem 9.1 has a long history associated with the names of (in al-
phabetical order) von Bahr, Borovkov, Cohen, Pakes and Veraverbeke. These
contributions are given a final form in Embrechts and Veraverbeke (1982). There
are numerous recent analogues for more general models, e.g. Whitt (2001) and
Boxma et al. (2002) for many–server queues, Heath et al. (1999), Jelenkovic and
Momcilovic (2001) and Zwart et al. (2003) for fluid queues, and Baccelli et al.
(1999) and Baccelli and Foss (2003) for (feed-forward) networks. Also tail asymp-
totics for the busy period has received considerable attention, see Baltrunas et
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al. (2002) and references therein. For other queue disciplines than FIFO, see the
Notes to III.9.

For some remarkable explicit waiting–time distributions in M/G/1 with heavy
tails, see Abate and Whitt (1999).

Theorem 9.4 was given independently by Samorodnitsky et al. (1997), assum-
ing regular variation, and Asmussen (1998a); the latter paper used the “plausible”
step in the proof of Lemma 9.7, which was only recently justified by Asmussen
et al. (2002; in connection with the results of that paper, see also Bertoin and
Doney, 1994b, and Asmussen et al., 2003).

A current trend in the literature related to stressing the importance of heavy
tails is the study of long–range dependence (LRD). In a stationary process setting,
this means that the dependence between X0 and Xt decays slowly; a common
precise definition is that |Cov(X0,Xt)| is not integrable (note that this is a nec-

essary condition for a CLT for
∫ T

0
Xt dt with variance constant proportional to√

T ; cf. the Notes to VI.3). Again, statistical studies are taken as the main mo-
tivation, but they are far from uncontroversial; see Mikosch and Stărică (2003).
LRD is related to self–similarity, i.e. the existence of a constant H (the Hurst

parameter) such that
{
c−HXtc

}
t≥0

D
= {Xt}t≥0. The volumes edited by Park and

Willinger (2000) and Taqqu et al. (2002) may be taken as a starting point for the
area. A main example is fractional Brownian motion (FBM), a certain Gaussian
process with stationary long–range dependent increments; see e.g. Massoulie and
Simonian (1999), Norros (2000) and Piterbarg (2001).

The simplest result pointing to the connection between heavy tails and LRD
is covariance asymptotics for renewal processes (Daley, 1999). Another simple
case is alternating renewal processes where in the notation of VI.2b one of F0, F1

is heavy–tailed; this is in turn relevant for fluid models involving on–off sources
with heavy–tailed on periods. See Heath et al. (1998, 1999).
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