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I
Markov Chains

1 Preliminaries

We consider a Markov chain X0, X1, . . . with discrete (i.e. finite or count-
able) state space E = {i, j, k, . . .} and specified by the transition matrix
P = (pij)i,j∈E . By this we mean that P is a given E × E matrix such
that pi· = (pij)j∈E is a probability (vector) for each i, and that we study
{Xn} subject to exactly those governing probability laws P = Pµ (Markov
probabilities) for which

P(X0 = i0, X1 = i1, . . . , Xn = in) = µi0pi0i1pi1i2 · · · pin−1in (1.1)

where µi = P(X0 = i). The particular value of the initial distribution µ is
unimportant in most cases and is therefore suppressed in the notation. An
important exception is the case where X0 is degenerate, say at i, and we
write then Pi so that Pi(X0 = i) = 1.

Given µ, it is readily checked that (1.1) uniquely determines a probabil-
ity distribution on Fn = σ(X0, . . . , Xn). Appealing to basic facts from the
foundational theory of Markov processes (to be discussed in Section 8), this
set of probabilities can be uniquely extended to a probability law Pµ govern-
ing the whole chain. Thus, since the transition matrix P is fixed here and in
the following, the Markov probabilities are in one–to–one correspondence
with the set of initial distributions.

If P is a Markov probability, then (with the usual a.s. interpretation of
conditional probabilities and expectations)

pij = Pi(X1 = j) = P
(
Xn+1 = j

∣∣Xn = i
)
, (1.2)
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P(Xn+1 = j |Fn) = pXnj = PXn(X1 = j), (1.3)
E
[
h(Xn, Xn+1, . . .)

∣∣Fn

]
= EXnh(X0, X1, . . .) . (1.4)

Conversely1, either (1.3) or (1.4) is sufficient for P to be a Markov proba-
bility. The formal proof of these facts is an easy (though in part lengthy)
exercise in conditioning arguments and will not be given here. However,
equations (1.2), (1.3), (1.4) have important intuitive contents. Thus (1.4)
means that at time n, the chain is restarted with the new initial value Xn.
Equivalently, the post–n–chain Xn, Xn+1, . . . evolves as the Markov chain
itself, started at Xn but otherwise independent of the past. Similarly, in
simulation terminology (1.3) means that the chain can be stepwise con-
structed by at step n drawing Xn+1 according to pXn· (to get started,
draw X0 according to µ).

Recall from A10 (the Appendix) that a stopping time σ is a r.v. with
values in N ∪ {∞} and satisfying {σ = n} ∈ Fn for all n, that Fσ denotes
the σ–algebra which consists of all disjoint unions of the form ∪∞

0 An with
An ∈ Fn, An ⊆ {σ = n} (here n = ∞ is included with the convention F∞
= σ(X0, X1, . . .)), and that σ and Xσ are measurable w.r.t. to Fσ. The
important strong Markov property states that for the sake of predicting the
future development of the chain a stopping time may be treated as a fixed
deterministic point of time. For example, we have the following extension
of (1.4):

Theorem 1.1 (strong markov property) Let σ be a stopping time.
Then a.s. on {σ < ∞} it holds that

E
[
h(Xσ, Xσ+1, . . .)

∣∣Fσ

]
= EXσh(X0, X1, . . .). (1.5)

Proof. We must show that for A ∈ Fσ, A ⊆ {σ < ∞} we have

E
[
h(Xσ, Xσ+1, . . .); A

]
= E

[
EXσh(X0, X1, . . .); A

]
.

However, if A ∈ Fn and σ = n on A, this is immediate from (1.4). Replace
A by A ∩ {σ = n} and sum over n. �

The mth power (iterate) of the transition matrix is denoted by Pm =
(pmij ). An easy calculation (e.g. let n = nm in (1.1) and sum over the ik
with k 
∈ {0,m, . . . , nm}) shows that X0, Xm, X2m, . . . is a Markov chain
and that its transition matrix is simply Pm.

Associated with each state is the hitting time

τ(i) = inf {n ≥ 1 : Xn = i}
(with the usual convention τ(i) = ∞ if no such n exists) and the number
of visits Ni =

∑∞
1 I(Xn = i) to i. Clearly, {τ(i) < ∞} = {Ni > 0} and we

1The meaning of (1.4) is that this should hold for any h : E ×E × · · · → R for which
(1.4) makes sense, say h is bounded or nonnegative; similarly, (1.5) should hold for all
n and j. In (1.3), PXn(X1 = j) means g(x) = Px(X1 = j) evaulated at x = Xn.
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call i recurrent if the recurrence time distribution Pi(τ(i) = k) is proper, i.e.
if Pi(τ(i) < ∞) = 1, and transient otherwise. The chain itself is recurrent
(transient) if all states are so.

Proposition 1.2 Let i be some fixed state. Then:
(i) The following assertions (a), (b), (c) are equivalent: (a) i is recurrent;
(b) Ni = ∞ Pi–a.s.; (c) EiNi =

∑∞
1 pmii = ∞;

(ii) the following assertions (a′), (b′), (c′) are equivalent as well: (a′) i is
transient; (b′) Ni < ∞ Pi–a.s.; (c′) EiNi =

∑∞
1 pmii < ∞.

Proof. Define τ(i; 1) = τ(i),

τ(i; k + 1) = inf {n > τ(i; k) : Xn = i} , θ = Pi(τ(i; 1) < ∞).

Then Ni is simply the number of k with τ(i; k) < ∞, and by the strong
Markov property and Xτ(i;k) = i,

Pi(τ(i; k + 1) <∞) = EiP
(
τ(i; k + 1) < ∞, τ(i; k) < ∞ ∣∣Fτ(i;k)

)
= Ei

[
P
(
τ(i; k + 1) < ∞ ∣∣Fτ(i;k)

)
; τ(i; k) < ∞]

= Ei
[
PXτ(i;k)(τ(i; 1) < ∞); τ(i; k) < ∞]

= θPi(τ(i, k) < ∞) = · · · = θk+1. (1.6)

If (a) holds, then θ = 1 so that it follows that all τ(i; k) < ∞ Pi–a.s., and
(b) also holds. Clearly, (b)⇒(c) so that for part (i) it remains to prove
(c)⇒(a) or equivalently (a′)⇒(c′). But if θ < 1, then

EiNi =
∞∑
k=0

Pi(Ni > k) =
∞∑
k=1

Pi(τ(i; k) < ∞) =
∞∑
k=1

θk < ∞.

For part (ii), it follows by negation that (a′) ⇐⇒ (c′) ⇐⇒ (b′′) Pi(Ni <
∞) > 0. However, clearly (b′)⇒(b′′) and from (1.6) it is seen that if (b′′)
holds, then θ < 1. Thus (b′′) ⇒ (a′). �

It should be noted that though Proposition 1.2 gives necessary and suf-
ficient conditions for recurrence/transience, the criteria are almost always
difficult to check: even for extremely simple transition matrices P , it is
usually impossible to find closed expressions for the pmii . Some alternative
general approaches are discussed in Section 5, but in many cases the re-
currence/transience classification leads into arguments particular for the
specific model.

Our emphasis in the following is on the recurrent case and we shall briefly
discuss some aspects of the set–up. Two states i, j are said to communicate,
written i ↔ j, if i can be reached from j (i.e. pmji > 0 for some m) and
vice versa. Clearly, the relation is transitive and symmetric. Now suppose
i is recurrent and that j can be reached from i. Then also i can be reached
from j. In fact even τ(i) < ∞ Pj–a.s. since otherwise Pi(τ(i) = ∞) > 0.
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Furthermore, j is recurrent since
∞∑
m=1

pmjj ≥
∞∑
m=1

pm1
ji p

m
ii p

m2
ij = ∞

if m1,m2 are chosen with pm1
ji > 0, pm2

ij > 0. Obviously i ↔ i by recurrence,
and it follows that ↔ is an equivalence relation on the recurrent states so
that we may write

E = T ∪R1 ∪R2 · · · , (1.7)

where R1, R2, . . . are the equivalence classes (recurrent classes) and T the
set of transient states. It is basic to note that the recurrent classes are
closed (or absorbing), i.e.

Pi(Xn ∈ Rk for all n) = 1 when i ∈ Rk

(this follows from the above characteriztion of Rk as the set of all states
that can be reached from i). When started at i ∈ Rk the chain therefore
evolves within Rk only, and the state space may be reduced to Rk. If, on
the other hand, X0 = i is transient, two types of paths may occur: either
Xn ∈ T for all n or at some stage the chain enters a recurrent class Rk and
is absorbed, i.e. evolves from then on in Rk.

Most often one can restrict attention to irreducible chains, defined by
the requirement that all states in E communicate. Such a chain is either
transient or E consists of exactly one recurrent class. In fact, if a recurrent
state, say i, exists at all, it follows from the above that any other state j
is in the same recurrence class as i.

A recurrent state is called positive recurrent if the mean recurrence time
Eiτ(i) is finite. Otherwise i is null recurrent. The period d = d(i) is the
period of the recurrence–time distribution, i.e. the greatest integer d such
that Pi(τ(i) ∈ Ld) = 1 where Ld = {d, 2d, 3d, . . .}. If d = 1, i is aperiodic.

Proposition 1.3 Let R be a recurrent class. Then the states in R (i) are
either all positive recurrent or all null recurrent; (ii) have all the same
period.

Proof. (i) is deferred to Section 3. Let i, j ∈ R and choose r, s with prij > 0,
psji > 0. Then pr+sii > 0, i.e. r+s ∈ Ld(i), and whenever pnjj > 0, pr+s+nii > 0
also, i.e. r + s+ n ∈ Ld(i) so that n ∈ Ld(i) also. It follows that Pj(τ(j) ∈
Ld(i)) = 1, i.e. d(j) ≥ d(i). By symmetry, d(i) ≥ d(j). �

Proposition 1.4 Let i be aperiodic and recurrent. Then: (a) there exists
ni such that pmii > 0 for all m ≥ ni; (b) if j can be reached from i, then
there exists nj such that pmij > 0 for all m ≥ nj.

Proof. For (a), see A7.1(a). For (b), choose kj with p
kj

ij > 0 and let nj =
ni + kj . �
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Problems

1.1 Explain that Pµ =
∑

i∈E µiPi.
1.2 Show that (1.2) implies (1.4).
1.3 Show that if θ = pii > 0, then the exit time η(i) = inf {n ≥ 1 : Xn �= i} has
a geometric distribution, Pi(η(i) = n) = (1 − θ)θn−1, n = 1, 2, . . ..
1.4 In a number of population processes one encounters Markov chains with
E = N, Xn representing the population size at time n, state 0 absorbing and
Pi(τ (0) < ∞) > 0 for all i. Explain why it is reasonable to denote {τ (0) <∞} as
the event of extinction. Show that any state i ≥ 1 is transient and that Xn → ∞
a.s. on the event {τ (0) = ∞} of nonextinction.

Notes In this book, we use the terminology that a Markov chain has discrete
time and a Markov process has continuous time (the state space may be discrete
as here or general as in Section 8). However, one should note that it is equally
common to let “chain” refer to a discrete state space and “process” to a general
one (time may be discrete or continuous).

One more convention: the bold typeface for say the initial distribution µ in-
dicates a representation as a (row) vector, but in many contexts it is more
convenient to think of the measure interpretation, and we then write µ. Simi-
larly, a function on the state space may be written either as a (column) vector
f = (fi)i∈E or just as f (with value f(i) at i) We will change freely between these
notations; say we use whichever of ν(f),νf which in a given context is convenient
to represent

∑
νif(i). Accordingly, we can think of the transition matrix P as

an operator acting on measures to the left and on functions to the right, and we
sometimes write νP as νP and P f as Pf . A particularly important function is
the constant 1 which we write as 1 in vector notation.

Markov chains and processes with a discrete state space form in many ways
a natural starting point of applied probability: when considering a specific phe-
nomenon, the first attempt to formulate and solve a stochastic model is usually
performed within the Markovian set–up, and also the mathematical question
arising in connection with Markov chains are to a large extent the same as for
more general models (in particular, this is so in queueing theory). The present
text therefore starts with a treatment of the relevant features of discrete Markov
chains and (in Chapter II) processes. The exposition is in principle self–contained,
but the novice will miss examples, and thus the aim is more to provide a refresher
and reference, covering also some topics that are not in all textbooks.

We will not list the many textbooks containing introductory chapters on

Markov chains and processes. More advanced treatments of discrete Markov

chains are in Brémaud (1999), Chung (1967), Freedman (1971), Kemeny et al.

(1976) and Orey (1971), and of discrete Markov processes in Chung (1967) and

Anderson (1991).

2 Aspects of Renewal Theory in Discrete Time

Let f1, f2, . . . be the point probabilities of a distribution on {1, 2, . . .}. Then
by a (discrete time) renewal process governed by {fn} we understand a



8 I. Markov Chains

point process (see A3 for the terminology) on N with epochs S0 = 0, Sn =
Y1+· · ·+Yn, where the Yi are i.i.d. with common distribution {fn}. Instead
of epochs, we usually speak of renewals. The associated renewal sequence
u0, u1, . . . is defined by uk = P(Sn = k for some k ≥ 0), i.e. the probability
of a renewal at k.

A renewal occurs at k > 0 if either Y1 = k which happens w.p. fk = fku0,
or if Y1 = � < k and Y2 + · · · + Yn = k − � for some n. The probability of
this is f�uk−�, and so

uk = fku0 + fk−1u1 + · · · + f1uk−1, k ≥ 1, (2.1)

i.e. in convolution equation u = δ0 + u ∗ f where δ0i = I(i = 0). In
conjunction with u0 = 1, (2.1) clearly uniquely determines {un}.

Figure 2.1

These concepts are intimately related to Markov chains. Consider some
fixed recurrent state i, let Y1 = τ(i) and more generally let Yk be the inter–
occurence time between the (k−1)th and kth visit to i. Then Y1, Y2, . . . are
i.i.d. w.r.t. Pi according to the strong Markov property, the common distri-
bution {fn} is the recurrence time distribution of i and the renewals are the
visits to i so that un = pnii. Conversely, any renewal processs can be con-
structed in this way from a Markov chain which we shall denote by {An}.
Indeed, define An = n− sup {Sk : Sk ≤ n} as the backward recurrence time
at n, i.e. the time passed since the last renewal; see Fig. 2.1. Then the paths
of {An} are at 0 exactly at the renewals, i.e. the renewals are the recurrence
times of 0, and the Markov property follows by noting that {An} moves
from i to either i+1 or 0, the probability of i+1 being P(Yk > i+1 |Yk > i)
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independently of A0, . . . , An−1. The state space E is N if {fk} has infinite
support and {0, 1, . . . ,K − 1} with K = inf {k : f1 + · · · + fk = 1} other-
wise. A closely related important Markov chain is the forward recurrence
time chain {Bn}, i.e. Bn is the waiting time until the next renewal after
n; see again Fig. 2.1. The Markov property is even more immediate since
the paths decrease deterministically from i to i − 1 if i > 1, whereas the
value of Bn+1, following Bn = 1, is chosen according to {fk} independently
of the past. The state space is {1, 2, . . .} in the infinite support case and
{1, . . . ,K} otherwise, and a renewal occurs at n if and only if Bn−1 = 1.

Lemma 2.1 {un} and {fn} have the same period d.

Proof. Since un ≥ fn, it is clear that the period df of {fn} is at least that
du of {un}. Conversely, it is only possible that P(Sk = n) > 0 and hence
un > 0 if n is a multiple of df . Hence du ≥ df . �

If d = 1 in Lemma 2.1, we will call the renewal sequence (process)
aperiodic.

Renewal processes with the Yk having a possible continuous distribution
will play a major role in later parts of the book. We shall here exploit the
connection between (discrete) renewal processes and Markov chains in the
limit theory. Within the framework of renewal processes, the main result
is as follows (to be translated to Markov chains in Section 4):

Theorem 2.2 Let {un} be an aperiodic renewal sequence governed by {fn}
and define µ =

∑∞
1 nfn = EY1. Then un → 1/µ as n → ∞ (here 1/∞ =

0).

Proof. Define rn = fn+1 +fn+2 + · · · = P(Y1 > n) and let L be the index
of the last renewal in {0, . . . , n}. Then L = � if there is a renewal at � and
the next Y is > n− �, i.e. the probability is u�rn−� so that

1 = P(L ≤ n) = r0un + r1un−1 + · · · + rnu0. (2.2)

Now let λ = lim supun and choose n(k) such that un(k) → λ. Let i satisfy
fi > 0. Choosing N such that rN < ε, we obtain from (2.1) and un ≤ 1
that for k sufficiently large

λ− ε ≤ un(k) ≤ rN +
N∑
j=1

fjun(k)−j (2.3)

≤ ε+ (1 − fi)(λ + ε) + fiun(k)−i. (2.4)

Letting first k → ∞ and next ε ↓ 0 yields lim inf un(k)−i ≥ λ which is only
possible if un(k)−i → λ. Repeating the argument we see that this also holds
for any i of the form i = x1a1 + · · ·+xtat where xk ∈ N, fak

> 0. But since
{fn} is aperiodic, it follows by A7.1(a) (see also Proposition 1.4) that any
sufficiently large i, say i ≥ a, can be represented in this form. Thus letting
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n = n(k) − a in (2.2) we obtain for any N

1 ≥
N∑
j=0

rjun(k)−a−j → λ

N∑
j=0

rj . (2.5)

Since r0 + r1 + · · · = µ, this proves 1 ≥ λµ.
It remains to show that ν = lim inf un ≥ µ−1. This is clear if µ = ∞ and

can be proved similarly as above if µ < ∞. In fact, if {m(k)} is chosen such
that um(k) → ν, we obtain, instead of (2.3),

ν + ε ≥ um(k) ≥
N∑
j=1

fjum(k)−j ≥ (ν − ε)
∑

j≤N,j �=i
fj + fium(k)−i

= (1 − fi)(ν − ε) − rN (ν − ε) + fium(k)−i.

As above, this implies lim supum(k)−i ≤ ν and um(k)−i → ν. Hence for
fixed N

1 ≤
N∑
j=0

rjum(k)−a−j +
∞∑

j=N+1

rj → ν

N∑
j=0

rj +
∞∑

j=N+1

rj ,

which tends to νµ+ 0 as N → ∞. �

Corollary 2.3 Let {un}, {fn} have period d > 1. Then: (i) {und}∞n=1 is
an aperiodic renewal sequence governed by {fnd}∞n=1; (ii) um = 0 whenever
m is not of the form m = nd; (iii) und → d/EY = d/µ as n → ∞.

Proof. Here (i) and (ii) are obvious, and from Theorem 2.2 we get

und → (
fd + 2f2d + 3f3d + · · ·)−1 = d/EY. �

Sometimes one also encounters defective governing distributions {fn},
i.e. f∞ = 1− f1 − f2 − · · · > 0. The corresponding renewal sequence is still
uniquely determined by u0 = 1 and (2.1), and can be interpreted in terms
of a terminating or transient renewal process. This is defined simply by
attaching the Yk mass f∞ at ∞. If f∞ > 0, then σ = inf {n ≥ 1 : Yn = ∞}
is finite a.s., and Sn < ∞ for n = 0, . . . , σ−1, = ∞ for n ≥ σ. In particular,
the number σ of renewals is finite a.s., and hence the probability un of a
renewal at n tends to zero as n → ∞. More precisely:

Proposition 2.4 If f∞ > 0, then the expected number of renewals is given
by Eσ =

∑∞
0 un = 1/f∞.

Proof. Since un is the probability of a renewal at n, the expected number
of renewals is indeed

∑∞
0 un. But it is also

Eσ =
∞∑
n=1

P(σ ≥ n) =
∞∑
n=1

P(Yk < ∞, k = 1, . . . , n− 1)

=
∞∑
n=1

(1 − f∞)n−1 = 1/f∞.

�
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Problems

2.1 Define the generating function of {fn} by f̂ [s] =
∑∞

0 snfn (f0 = 0). Show

that û[s] =
∑∞

0 snun = (1 − f̂ [s])−1.
2.2 Consider the geometric case fn = (1− θ)θn−1. Show that un is constant for
n > 0, un = 1 − θ.
2.3 Show that {unvn} is a renewal sequence if {un}, {vn} are so.
2.4 Let {un} be a renewal sequence with

∑∞
1 fn �= 1. Assume that

∑∞
1 ρnfn = 1

for some ρ. Show that {ρnun} is a renewal sequence and that un ∼ cρ−n for some
c ≥ 0 (provided {fn} is aperiodic).

Notes The proof of Theorem 2.2 is a classical argument due to Erdös et al.

(1949) (many texts today use coupling instead and we return to this in VII.2).

Additional material on renewal sequences and related topics can be found in

Kingman (1972).

3 Stationarity

Let ν = (νi)i∈E be any nonnegative measure on E (it is not assumed that
ν is a distribution, |ν| =

∑
νi = 1, neither that ν is finite, |ν| < ∞, but

just that all νi < ∞). We can then define a new measure νP by usual
matrix multiplication (viewing ν as a row vector), so that νP attaches
mass

∑
i∈E νipij to j. We call ν 
= 0 stationary if all νi < ∞ and νP = ν,

i.e. if in algebraic terms ν is a left eigenvector of the transition matrix P
corresponding to the eigenvalue 1.

Of particular importance is the case where ν is a distribution.
Irrespective of whether ν is stationary or not, we then have

Pν(X1 = j) =
∑
i∈E

Pν(X0 = i)pij =
∑
i∈E

νipij = (νP )j .

Thus νP can be interpreted as the Pν–distribution of X1, and in a similar
manner the Pν–distribution of Xm is νPm. In particular, if ν is stationary,
then νPm = ν for all m so that the distribution of Xm is independent of
m. More generally:

Theorem 3.1 Suppose that ν is a stationary distribution. Then:
(i) The chain is strictly stationary w.r.t. Pν , i.e. the Pν–distribution of
(Xn, Xn+1, . . .) does not depend on n;
(ii) there exists a strictly stationary version {Xn}n∈Z of the chain with
doubly infinite time, such that Pν(Xn = i) = νi for all n ∈ Z.

Proof. (i) Clearly (Xn, Xn+1, . . .) is a Markov chain with transition matrix
P w.r.t. Pν . Then the distribution of the whole sequence is uniquely given
by the initial distribution which is νP n = ν, hence independent of n.

(ii) This is a standard construction based upon Kolmogorov’s consistency
theorem and valid for general stationary sequences: let Pn(1),...,n(k) be the
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Pν–distribution of
(
X0, Xn(2)−n(1), . . . , Xn(k)−n(1)

)
, n(1) < n(2) < · · · <

n(k), and note that (by stationarity)
{
Pn(1),...,n(k)

}
is a consistent family

(see Breiman, 1968, p. 105, for more detail). �

Question of existence and uniqueness of stationary distributions is one of
the main topics of Markov chain theory. We start by an explicit construction
(a generalization of which will also turn out to be basic for non–Markovian
processes; cf. VI.1 and VII.6):

Theorem 3.2 Let i be a fixed recurrent state. Then a stationary measure
ν can be defined by letting νj be the expected number of visits to j in between
two consecutive visits to i,

νj = Ei

τ(i)−1∑
n=0

I(Xn = j) =
∞∑
n=0

Pi(Xn = j, τ(i) > n). (3.1)

The proof is based upon the following lemma:

Lemma 3.3 Let λ be an arbitrary initial distribution and σ a stopping
time, and define new measures λ(σ), µ(0), µ(1) by λj(σ) = Pλ(Xσ = j),

µj(0) = Eλ

σ−1∑
n=0

I(Xn = j), µj(1) = Eλ

σ∑
n=1

I(Xn = j).

Then λ + µ(1) = µ(0) + λ(σ), µ(1) = µ(0)P .

Proof. The first statement follows by computing Eλ

∑σ
0 I(Xn = j) by split-

ting first into the contribution from n = 0 and the sum from 1 to σ, and
next into the sum from 0 to σ − 1 and the contribution from n = σ. The
second follows from

µj(1) =
∞∑
n=1

Pλ(Xn = j, σ ≥ n) =
∞∑
n=1

Eλ

[
P
(
Xn = j, σ ≥ n

∣∣Fn−1

)]
=

∞∑
n=1

Eλ

[
P
(
Xn = j

∣∣Fn−1

)
; σ ≥ n

]
=

∞∑
n=1

Eλ

[
pXn−1j ; σ ≥ n

]
=

∑
k∈E

pkj

∞∑
n=0

Pλ(σ > n,Xn = k) =
∑
k∈E

pkjµk(0) = (µ(0)P )j .

Here in the third step we used the Fn−1–measurability of I(σ ≥ n). �

Proof of Theorem 3.2. If in Lemma 3.3 we take λ as the one–point distri-
bution at i and σ = τ(i), we have µ(0) = ν and λ(σ) = λ. The conclusion
of the lemma can be written λ+νP = ν +λ. Hence νP = ν, and we need
only to check that νj < ∞ for any j. Clearly, νi = 1 and νj = 0 if j is not
in the same recurrent class as i. Otherwise observe first that pmji > 0 for
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some m so that νj < ∞ follows from

νi =
∑
k∈E

νkp
m
ki ≥ νjp

m
ji . (3.2)

�

Theorem 3.4 If the chain is irreducible and recurrent, then a station-
ary measure ν exists, satisfies νj > 0 for all j and is unique up to a
multiplicative constant.

Here existence is immediate from Theorem 3.2 (we denote in the following
the measure in (3.1) by ν(i)). Also, νi > 0 for any i ∈ E and any stationary
measure ν is clear from (3.2) since we may choose j with νj > 0. The key
step for uniqueness is the following:

Lemma 3.5 Let i be some fixed state and let ν be superstationary (i.e.
νP ≤ ν) with νi ≥ 1. Then νj ≥ ν

(i)
j for all j ∈ E.

Proof. With P̃ the matrix obtained from P by replacing the ith column
by zeros, it is easily seen by induction that p̃kjn is the taboo probability
Pk(Xn = j, τ(i) > n). In particular, if we let k = i and sum over n, we
get ν(i) = δ(i) ∑∞

0 P̃
n

where δ(i) is the distribution degenerate at i. We
next claim that νj ≥ δ

(i)
j + (νP̃ )j . Indeed, for j = i this follows from

νi ≥ 1 = δ
(i)
i , and for j 
= i we have (νP̃ )j = (νP )j ≤ νj . Hence

ν ≥ δ(i) + νP̃ ≥ δ(i)(I + P̃ ) + νP̃
2 ≥ · · ·

≥ δ(i)
N∑
n=0

P̃
n

+ νP̃
N+1 ≥ δ(i)

N∑
n=0

P̃
n
,

and letting N → ∞, ν ≥ ν(i) follows. �

Proof of Theorem 3.4. If ν is stationary, then νi > 0 as observed above.
Thus we may assume νi = 1 and the proof will be complete if we can show
ν = ν(i). But according to the lemma, we have ν ≥ ν(i). Hence µ = ν−ν(i)

is nonnegative and µP = µ. As noted above µi = 0 then implies µ = 0
and ν = ν(i). �

Clearly, the total mass of the stationary measure ν(i) given by (3.1) is

|ν(i)| =
∑
j∈E

ν
(i)
j = Ei

τ(i)−1∑
n=0

1 = Eiτ(i). (3.3)

Now if the chain is irreducible and recurrent, it follows by uniqueness that
the |ν(i)| = Eiτ(i) are either all finite or all infinite, i.e. that the states are
all positive recurrent or all null recurrent, proving the remaining part of
Proposition 1.3. In the first case, ν hence can be normalized to a stationary
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distribution π = ν/|ν| which is unique. In particular, for each j we have
πj = ν

(j)
j /|ν(j)| = 1/Ejτ(j) which yields an expression for π independent

of the reference state i. In summary:

Corollary 3.6 If the chain is irreducible and positive recurrent, there
exists a unique stationary distribution π given by

πj =
1

Eiτ(i)
Ei

τ(i)−1∑
n=0

I(Xn = j) =
1

Ejτ(j)
(3.4)

Corollary 3.7 Any irreducible Markov chain with a finite state space is
positive recurrent.

Proof. With Si =
∑∞

0 I(Xn = i), we have
∑
i∈E Si = ∞ so that by finite-

ness Si = ∞ for at least one i. But then i is recurrent, and therefore by
irreducibility the chain is recurrent. Since obviously the stationary measure
cannot have infinite mass if E is finite, we have positive recurrence. �

Example 3.8 Consider the backward and forward recurrence time chains
{An}, {Bn} of a renewal process governed by {fn}. It is clear from the
discussion in Section 2 that both chains are irreducible on the appropriate
state spaces. It is also clear that 0 is recurrent for {An} and 1 for {Bn} with
{fn} as recurrence time distribution in both cases. In particular, positive
recurrence is equivalent to µ =

∑
nfn < ∞. For {An}, the stationary

measure (3.1) with i = 0 becomes νn = rn = fn+1 + fn+2 + · · ·, n =
0, 1, . . .. Indeed, n is visited once in between two consecutive visits to 0 if the
recurrence time is ≥ n+1. This occurs w.p. rn and otherwise n is not visited.
In particular, if µ < ∞, then the stationary distribution is πn = rn/µ. In
an entirely similar manner it is seen that the stationary measure for {Bn}
is νn = rn−1, n = 1, 2, . . ., and if µ < ∞ then πn = rn−1/µ defines the
stationary distribution. �

The above assumption of irreducibility and recurrence (i.e. one recurrent
class) can easily be weakened by invoking the decomposition (1.7) of the
state space. For example, if ν(r) is a stationary measure on the rth recurrent
class Rr, it is easy to see that ν =

∑
r ν(r) is stationary for the whole

chain. Conversely, the restriction of a stationary ν to Rr is stationary (for
the chain restricted to Rr). Also, some transient chains have a stationary
measure. The theory is more difficult than for the recurrent case and will
not be discussed here. We remark only that a stationary distribution always
attaches mass zero to the transient states because P(Xn = i) → 0 when i is
transient. It is then easy to see that the most general form of a stationary
distribution is a convex combination of the unique stationary distributions
on the positively recurrent classes.

An alternative proof of the uniqueness of the stationary measure will be
given in VII.3. It relies on restricting the Markov chain to a subset F of
the state space, a procedure that also has other applications and which
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we now take the opportunity to discuss briefly. Let τ(F ; k) be the time of
the kth visit of {Xn} to F , and define τ(F ) = τ(F ; 1), XF

k = Xτ(F ;k).
In the recurrent case, τ(F ; k) < ∞ for all k, and by the strong Markov
property

{
XF
k

}
is a Markov chain. The transition matrix has elements

pFk� = Pk(Xτ(F ) = �), k, � ∈ F , but these cannot in general be found
explicitly in terms of the pij (but see Problem 3.8). Nevertheless, we have
the following result:

Proposition 3.9 If {Xn} is irreducible and recurrent with stationary mea-
sure ν, then

{
XF
k

}
is also irreducible and recurrent, and the stationary

measure νF = (νF� )�∈F can be obtained by restricting ν to F , i.e. (up to a
multiplicative constant) νF� = ν�, � ∈ F . In particular, if

{
XF
k

}
is positive

recurrent, then the stationary distribution is given by πF� = ν�/
∑
k∈F νk.

Proof. The first assertion is obvious. If we choose the initial state i in (3.1)
in F , then both {Xn} and

{
XF
k

}
visit � ∈ F the same number of times

in between visits to i. Hence, also constructing νF according to (3.1) with
the same i yields νF� = ν�. �

The formula which conversely expresses ν in terms of νF (and P ) is
given in VII.5.

Occasionally, the following criterion is useful:

Lemma 3.10 Let {Xn} be irreducible and F a finite subset of the state
space. Then the chain is positive recurrent if Eiτ(F ) < ∞ for all i ∈ F .

Proof. Define σ(i) = inf
{
k ≥ 1 : XF

k = i
}
, τ(F ; 0) = 0, Yk = τ(F ; k) −

τ(F ; k − 1). Then with m = maxj∈F Ejτ(F ) we have for i ∈ F that

Eiτ(i) = Ei

σ(i)∑
k=1

Yk =
∞∑
k=1

Ei
[
E
[
Yk

∣∣Fτ(F ;k−1)

]
; k ≤ σ(i)

]
≤ m

∞∑
k=1

Pi
(
k ≤ σ(i)

)
= mEiσ(i).

Since E is finite,
{
XF
n

}
is positive recurrent. Thus Eiσ(i) < ∞, implying

Eiτ(i) <∞ and positive recurrence of {Xn}. �

Problems

3.1 Compute a stationary measure if P is doubly stochastic, i.e. both the rows
and columns sum to 1.
3.2 Show that a Bernoulli random walk (E = Z, pn(n+1) = θ, pn(n−1) = 1 − θ)
is doubly stochastic and, if in addition θ �= 1/2, transient. Show that both νn = 1
and µn = θn/(1 − θ)n are stationary.
3.3 (Continuation of Problem 2.1). Show that the generating function ν̂[s] of the
stationary measure of the backward recurrence–time chain of a renewal process
is given by ν̂[s] = (f̂ [s] − 1)/(s− 1).
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3.4 A set A of states i called an atom if pi· is the same for all i ∈ A. Show that
τ (A) is finite Pi–a.s. either for all i ∈ A or for no i ∈ A, and that in the first case
a stationary measure can be defined by

νj = Ei

τ(A)∑
n=1

I(Xn = j) with i ∈ A arbitrary.

3.5 Consider the recurrence times An, Bn of a renewal process. Show that
{(An, Bn)} is Markov with the set of states of the form (i, 1) being an atom,
and that the stationary measure is given by νij = fi+j .
3.6 Show that {(Xn,Xn+1)} is a Markov chain, and compute the stationary
measure in terms of that of {Xn}.
3.7 Let {Xn} have stationary distribution π and let τ = inf {n ≥ 1 : Xn = X0}
be the time of return to the initial state. Evaluate Eπτ .
3.8 In block notation corresponding to E = F +F c, write the transition matrix
as

P =

(
P F F P F F c

P F cF P F cF c

)
.

Show that
{
XF

n

}
has transition matrix

P F = P F F + P F F c(I − P F cF c)−1P F cF .

Notes A concept somewhat related to a stationary distribution is that of a
quasi–stationary distribution. For the precise definition, assume that a special
state, say 0 ∈ E, is absorbing, and write E0 = E\{0}. Then λ = (λi)i∈E0 is
called quasi–stationary if Pλ(X1 = j | τ (0) > 1) = λj . Closely related are Yaglom
limits, defined as limits λj of Pi(Xn = j | τ (0) > n). A main result in the area
states that a (proper) Yaglom limit is necessarily quasi–stationary. However, it
is more difficult to assess when a quasi–stationary distribution or a Yaglom limit
is unique (the finite case is, however, easy).

Under weak irreducibility conditions, it is trivial to check that when a quasi–
stationary distribution λ exists, then Pλ(τ (0) > n) = θn where θ = Pλ(τ (0) > 1)
= Pλ(X1 �= 0). This implies in particular EiR

τ(0) < ∞ for R < 1/θ. A recent
result of Ferrari et al. (1995) goes the other way and states that under mild
additional conditions, EiR

τ(0) <∞ for some R > 1 is necessary and sufficient for
the existence of a quasi–stationary distribution. Further recent references in the
area include Seneta (1994) and Glynn and Thorisson (2001).

4 Limit Theory

The aim is to obtain the limiting behaviour of the pnij . We start by noting
that this is nontrivial only in the positive recurrent case:

Proposition 4.1 If state j is either transient or null recurrent, then pnij →
0 for any i ∈ E.
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Proof. In the transient case, I(Xn = j) = 0 eventually so that the Pi–
expectation pnij must tend to zero. In the null recurrent case, write

pnij =
n∑
k=1

Pi(τ(j) = k)un−k where un = pnjj . (4.1)

Now {un} is a renewal sequence governed by a distribution by infinite
mean and therefore by Corollary 2.3 un → 0. Letting n → ∞ in (4.1) and
appealing to dominated convergence yields pnij → 0. �

Theorem 4.2 (ergodic theorem for markov chains) Suppose that
the chain is irreducible, positive recurrent and aperiodic with stationary
distribution π. Then pnij → πj for all j. That is, P n → 1π.

Proof. We use again (4.1). By Theorem 2.2, un → µ−1 where µ is the
mean recurrence time Ejτ(j) = π−1

j . Appeal to dominated convergence
once more to get pnij → πj . �

The conclusion is that the limiting distribution of Xn is π, irrespective of
the initial state. Replacing Pi by Pν shows that the same conclusion more
generally holds for any initial distribution ν.

The case d > 1 can be quite easily reduced to the case d = 1. To this end,
we need the concept of cyclic classes, i.e. a partitioning of E into disjoint
sets E0, . . . , Ed−1 with the property that the only possible transitions are
of the form Er → Er+1 (here we identify Ed with E0, Ed+1 with E1 and
so on).

Proposition 4.3 Consider an irreducible chain with period d > 1, let i be
some arbitrary but fixed state and define

Er =
{
j ∈ E : Pnd+rij > 0 for some n ≥ 0

}
, r = 0, . . . , d− 1.

Then E0, . . . , Ed−1 partition E into nonempty disjoint sets, and if j ∈
Er, then Pj(X1 ∈ Er+1) = 1 and more generally Pj(Xm ∈ Er+m) = 1.
Furthermore, these properties determine the Er uniquely up to a cyclic
rotation.

Proof. It is obvious that Er 
= ∅ (take n = 0). By irreducibility, each j is
in some Er so that ∪d−1

0 Er = E. Suppose that pnd+rij and pmd+sij are both
> 0, and choose t with ptji > 0. Then nd+r+ t and md+s+ tmust both be
multiples of d, so that r− s = 0 (mod d), showing that the Er are disjoint.
Clearly, j ∈ Er and pmjk > 0 implies k ∈ Er+m. Summing over all such k
yields Pj(Xm ∈ Er+m) = 1. Uniqueness is easy and is omitted. �

It follows that if d > 1, then the chain X0, Xd, X2d, . . . has E0, . . . , Ed−1

as disjoint closed sets. In the irreducible positive recurrent case it is fur-
thermore clear that {Xnd} is aperiodic positive recurrent on each Er, i.e.
admits a unique stationary distribution π(r) concentrated on Er. Now if π
is stationary for {Xn}, its restriction to Er is also stationary for {Xnd},
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and thus by uniqueness π is a convex combination
∑d−1

0 αrπ
(r) of the π(r).

Since

αr+1 = Pπ(X1 ∈ Er) = Pπ(X0 ∈ Er) = αr,

we must even have αr = d−1. Also, the limiting behaviour of pnjk can easily

be seen from pndj� → π
(r)
� if j, � ∈ Er. Indeed, if j ∈ Er then pnd+sjk = 0 for

all n if k 
∈ Er+s, whereas if k ∈ Er+s then by dominated convergence

pnd+sjk =
∑

�∈Er+s

psj�p
nd
�k →

∑
�∈Er+s

psj�π
(r+s)
k = π

(r+s)
k = dπk. (4.2)

In view of this discussion one can assume aperiodicity in most cases. An
irreducible aperiodic positive recurrent chain is simply called ergodic.

A further noteworthy property of the stationary distribution is as the
limit of time averages (aperiodicity is not required),

1
n

n∑
k=0

f(Xk) → π(f) = πf = Eπf(Xk) =
∑
i∈E

f(i)πi, (4.3)

which holds if f is say bounded or nonnegative. The (easy) proof is carried
out in a more general setting in VI.3; a corresponding CLT is in Section 7.

It is reasonable to ask what is the rate of convergence of pnij to πi. In
particular, there has been considerable interest in geometrical ergodicity,
defined by the requirement pnij − πj = O(δn) for some δ < 1 independent
of i, j. One has:

Proposition 4.4 (a) An ergodic Markov chain is geometrically ergodic
provided Eiz

τ(i) < ∞ for some i ∈ E and some z > 1; (b) any irreducible
aperiodic finite Markov chain is geometrically ergodic.

Proof. Part (a) is a contained in the more general VII.2.11 proved later. For
(b), we can choose mki such that pmki > πi/2 for all m ≥ mki. By finiteness,
this implies the existence of ε > 0 and M < ∞ such that pmki > ε for all
m ≥ M and all k. Hence Pi(τ(i) > (n + 1)M | τ(i) ≥ nM) ≤ 1 − ε, and
hence by the geometrical trials lemma A6.1 Eiz

τ(i) < ∞ when z > 1 is
chosen with zM(1 − ε) < 1. Now just appeal to (a). �

Also in the null recurrent case it is sometimes possible in various ways to
obtain limit statements in terms of the stationary measure which are more
refined than just pnij → 0. For example:

Proposition 4.5 If the chain is irreducible recurrent with stationary
measure ν, then for all i, j, k, � ∈ E∑m

n=0 p
n
ij∑m

n=0 p
n
�k

→ νj
νk
, m→ ∞. (4.4)

For the proof, we need two lemmas (the proof of the first is a straightforward
verification and omitted; generalizations are in Problem 5.1 and Section 6).
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Lemma 4.6 The matrix P̃ with elements p̃ij = νjpji/νi is a transition
matrix. Furthermore, the ijth element p̃mij of P̃

m
is given by p̃mij = νjp

m
ji/νi.

Lemma 4.7 Define Nm
i =

∑m
n=0 I(Xn = i) as the number of visits to i be-

fore time m. Then in the irreducible recurrent case, limm→∞ EjN
m
i /EkN

m
i

= 1 for any j, k ∈ E.

Proof. It may be assumed that k = i. By recurrence, Nm
i ↑ ∞ and hence

EiN
m
i ↑ ∞. Since Nm−n

i = Nm
i + O(1), dominated convergence yields

EjN
m
i

EiNm
i

=
m∑
n=0

Pj(τ(i) = n)
EiN

m−n
i

EiNm
i

→
∞∑
n=0

Pj(τ(i) = n) = 1. �

Proof of Proposition 4.5. Consider a Markov chain
{
X̃n

}
with transition

matrix P̃ given by Lemma 4.6. The expression for p̃nij shows that {Xn} and{
X̃n

}
are irreducible at the same time and (sum over n and use Proposition

1.2) recurrent at the same time. Hence
{
X̃n

}
satisfies the assumptions of

Lemma 4.7, and we obtain

1 = lim
m→∞

ẼjN
m
i

ẼiNm
i

· EiN
m
k

E�Nm
k

= lim
m→∞

∑m
n=0 p̃

n
ji∑m

n=0 p̃
n
ki

·
∑m

n=0 p
n
ik∑m

n=0 p
n
�k

=
νk
νj

lim
m→∞

∑m
n=0 p

n
ij∑m

n=0 p
n
ik

·
∑m
n=0 p

n
ik∑m

n=0 p
n
�k

=
νk
νj

lim
m→∞

∑m
n=0 p

n
ij∑m

n=0 p
n
�k

.

�

Notes The terminology “ergodic” as used above is standard, but one should
beware not to confuse it with the meaning it has in general stationary process the-
ory (e.g. Breiman, 1968, Ch. 6), namely that the invariant σ–field is trivial. In the
Markov chain setting, this does not require aperiodicity, whereas the tail σ–field
of a positive recurrent Markov chain being trivial is equivalent to aperiodicity;
see e.g. Freedman (1971).

For further results on geometric convergence rates, see VII.2.10. Studying con-
vergence rates via asymptotics of pn

ij −πj as n→ ∞ is not the only possible point
of view. For example, in a number of models one has observed that ‖νP n − π‖
(t.v. distance) changes from ‖ν −π‖ to 0 rather abrubtly at a certain time point
N , and this N may be a more appropriate measure of the convergence rate than
sharp estimates of the deviation of pn

ij from πj when n is so large that the dif-
ference is negligible anyway. Surveys of such broader aspects are in Rosenthal
(1995) and Saloff–Coste (1996).

One might expect from Proposition 4.5 and the ergodic theorem for Markov

chains that if the chain is also aperiodic, then the strong ratio property pn
ij/p

n
�k →

νj/νk holds. This is, however, not true for all null recurrent chains and presents

in fact difficult and not completely solved problems; see Orey (1971). There

has also been much discussion of the strong ratio property in relation to

quasi–stationarity; see Kesten (1995).
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5 Harmonic Functions, Martingales and Test
Functions

There is a concept dual to that of a stationary measure, namely that of a
harmonic function h defined as a right eigenvector h of P corresponding
to the eigenvalue 1.2 The requirement Ph = h means

h(i) =
∑
j∈E

pijh(j) = Eih(X1) = E
[
h(Xn+1)

∣∣Xn = i
]
,

i.e. that {h(Xn)} is a martingale. Similarly, one defines h to be subharmonic
if Ph ≥ h, i.e. {h(Xn)} is a submartingale, and superharmonic or excessive
if Ph ≤ h, i.e. {h(Xn)} is a supermartingale.

Proposition 5.1 If the chain is irreducible and recurrent, then any non-
negative superharmonic function h is necessarily constant. Similarly, any
bounded subharmonic function h is constant.

Proof. We must show that h(i) = h(j) for i 
= j. Now from the convergence
of any non–negative supermartingale we have that Z = limh(Xn) exists
Pi–a.s. Since Pi(Xn = i i.o.) = 1, it follows that Z = h(i) Pi–a.s. Similarly,
Pi(Xn = j i.o.) = 1 implies that Z = h(j) Pi–a.s. and hence h(i) = h(j).
The subharmonic case is similar, using the a.s. convergence of any bounded
submartingale. �

When concerned with the recurrent case as in most of this book, the
implication is that (super– or sub–) harmonic functions do not play a ma-
jor role. In the rest of this section we will see, however, that a number
of useful recurrence/transience criteria and other properties can be stated
in terms of functions h (commonly referred to as test functions or Lya-
pounov functions), having properties which are rather similar and allowing
for arguments along the lines of the proof of Proposition 5.1.

The problems we study are trivial if E is finite, and in the infinite case
we write h(j) → ∞ if the set {j : h(j) ≤ a} is finite for any a < ∞.

Proposition 5.2 Suppose the chain is irreducible and let i be some fixed
state. Then the chain is transient if and only if there is a bounded nonzero
function h : E\{i} → R satisfying

h(j) =
∑
k �=i

pjkh(k), j 
= i. (5.1)

Proof. Obviously h(j) = Pj(τ(i) = ∞) is bounded and satisfies (5.1). If the
chain is transient, then furthermore h 
= 0. Suppose, conversely, that there
is an h as stated and define h̃(j) = h(j), j 
= i, h̃(i) = 0, α = P h̃(i). By
changing the sign if necessary, we may assume α ≥ 0 so that P h̃(i) ≥ h̃(i).

2See Notes to Section 1 for notation, identication of h with h, of Ph with Ph, etc.



5. Harmonic Functions, Martingales and Test Functions 21

Since P h̃(j) = h̃(j) for j 
= i, h̃ is thus subharmonic. Hence if the chain is
recurrent, we have by Proposition 5.1 that h(j) = h̃(j) = h̃(i) = 0 for all
j 
= i, contradicting h 
= 0. Hence the chain is transient. �

Proposition 5.3 Suppose the chain is irreducible and let E0 be a finite
subset of the state space E. Then:
(i) the chain is recurrent if there exists a function h : E → R such that
h(x) → ∞ and ∑

k∈E
pjkh(k) ≤ h(j), j 
∈ E0. (5.2)

(ii) the chain is positive recurrent if for some h : E → R and some ε > 0
we have infx h(x) > −∞ and∑

k∈E
pjkh(k) < ∞, j ∈ E0, (5.3)

∑
k∈E

pjkh(k) ≤ h(j) − ε, j 
∈ E0. (5.4)

An often encountered compact way to write (5.3)–(5.4) is

Ph(j) ≤ h(j) − ε+ bI(j ∈ E0).

The intuitive content of (5.2) is that the “center” of the state space in the
h–scale corresponds to small values, and that the drift points to the center;
similarly, (5.4) can be interpreted as a uniformly positive drift towards the
center.

Proof. By adding a constant if necessary, we may assume h ≥ 0. Write
T = τ(E0) and define Yn = h(Xn)I(T > n).
(i) Note first that (5.2) may be rewritten as E[h(Xn+1) |Xn = j] ≤ h(j)
for j 
∈ E0. Let X0 = i 
∈ E0. Then on {T > n}, Xn 
∈ E0 (this fails for
n = 0 if X0 ∈ E0) and hence

Ei[Yn+1 |Fn] ≤ Ei
[
h(Xn+1); T > n

∣∣Fn

]
= I(T > n)Ei[h(Xn+1) |Fn] ≤ I(T > n)h(Xn) = Yn. (5.5)

If T ≤ n, then Yn = Yn+1 = 0, and thus Ei[Yn+1 |Fn] ≤ Yn, i.e. {Yn} is a
nonnegative supermartingale and hence converges a.s., Yn

a.s.→ Y∞. Suppose
the chain is transient. Then h(Xn) ≤ a only finitely often, i.e. h(Xn) → ∞,
and since Y∞ <∞, we must have Pi(T = ∞) = 0. But Pi(T < ∞) = 1 for
all i 
∈ E0 implies that some j ∈ E0 is recurrent, a contradiction.
(ii) Again let X0 = i 
∈ E0. Then as in (5.5), we get on {T > n} that

Ei[Yn+1 |Fn] ≤ I(T > n)Ei[h(Xn+1) |Fn] ≤ Yn − εI(T > n).

Again, the same is obvious on {T ≤ n} and hence

0 ≤ EiYn+1 ≤ EiYn − εPi(T > n) ≤ · · · ≤ EiY0 − ε

n∑
k=0

Pi(T > k).
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Letting n → ∞ and using Y0 = h(i) yields EiT ≤ ε−1h(i). Thus for j ∈ E0,

EjT =
∑
i∈E0

pji +
∑
i�∈E0

pjiEi(T + 1) ≤ 1 + ε−1
∑
i�∈E0

pjih(i)

which is finite by (5.3). That the chain is positive recurrent now follows by
Lemma 3.10. �

Proposition 5.4 Suppose the chain is irreducible and let E0 be a finite
subset of E and h a function such that∑

k∈E
pjkh(k) ≥ h(j), j 
∈ E0, (5.6)

and that h(i) > h(j) for some i 
∈ E0 and all j ∈ E0. Then: (i) if h is
bounded, then the chain is transient; (ii) if h is bounded below and∑

k∈E
pjk|h(k) − h(j)| ≤ A, j ∈ E, (5.7)

for some A <∞, then the chain is null recurrent or transient .

Proof. Define T as above but let now Yn = h(Xn∧T ). It is then readily ver-
ified that {Yn} is a submartingale when X0 = i 
∈ E0. In (i), boundedness
then implies Yn

a.s.→ Y∞ where EiY∞ ≥ EiY0 = h(i). But Y∞ < h(i) on
{T < ∞} so that Pi(T <∞) < 1, showing transience.

For (ii), we can choose j ∈ E0 such that α = Pj(τ(i) < T ) > 0. Then
Ejτ(j) ≥ EjT ≥ αEiT so that is suffices to show EiT = ∞. Suppose
EiT <∞. Then in particular, T < ∞ Pi–a.s. and by (5.7),

Ei

T∑
n=1

|Yn−Yn−1| = Ei

∞∑
n=1

I(T ≥ n)E
[|Yn−Yn−1|

∣∣Fn−1

] ≤ AEiT < ∞.

Thus we can interchange summation and expectation to get

EiYT = EiY0 + Ei

T∑
n=1

(Yn − Yn−1) = h(i) +
∞∑
n=1

Ei[Yn − Yn−1; T ≥ n]

= h(i) +
∞∑
n=1

Ei
(
I(T ≥ n)E

[
Yn − Yn−1

∣∣Fn−1

]) ≥ h(i),

using the submartingale property in the last step. This is a contradiction
since YT < h(i). �

Proposition 5.5 Suppose the chain is irreducible and recurrent, and let
E0 be a finite subset of the state space E. Then the chain is geometrically
ergodic if for some h ≥ 0 with h(i) > A > 0, i ∈ E0, and some r > 1∑

k∈E
pjkh(k) < ∞, j ∈ E0, (5.8)
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k∈E

pjkh(k) ≤ h(j)/r, j 
∈ E0. (5.9)

Proof. Let X0 = i 
∈ E0, Yn = rnh(Xn∧T ). Then it follows easily from
(5.9) that {Yn} is a nonnegative supermartingale. By recurrence, the limit
is Y∞ = rTh(XT ) ≥ ArT . On the other hand, EiY∞ ≤ EiY0 = h(i). For
j ∈ E0, (5.8) then yields

Ejr
T ≤ r + r

∑
i�∈E0

pjiEir
T ≤ 1 +A−1

∑
i�∈E0

pjih(i) < ∞.

It remains to show that Ejr
T ≤ for all j ∈ E0 implies geometric ergod-

icity. By Proposition 4.4, this will follow if we can show Eir
T < ∞ for all

i ∈ E0. This in turn follows by a variant of the proof of Lemma 3.10, left
as Problem 5.3. �

Proposition 5.6 Suppose the chain is irreducible and positive recurrent
with stationary distribution π, and let f, g, h be nonnegative functions on
E such that ∑

j∈E
pijh(j) ≤ h(i) − f(i) + g(i), i ∈ E. (5.10)

If π(g) < ∞, π(h) < ∞, then also π(f) <∞.

Proof. We can rewrite (5.10) as f ≤ h−Ph+g. Thus P kf ≤ P kh−P k+1h+
P kg and for any i,

n∑
k=1

P kf(i) ≤ Ph(i) − Pn+1h(i) +
n∑
k=1

P kg(i) ≤ Ph(i) +
n∑
k=1

P kg(i).

Applying π to the left and noting that π(Ph)/n = π(h)/n → 0 yields
π(f) ≤ π(g) < ∞. �

Example 5.7 Consider a queue where service takes place at a discrete
sequence of instants n = 0, 1, 2, . . ., let Xn be the queue length at time
n, Bn the number of customers arriving between n and n+ 1 and An the
maximal number of customers that can be served at the (n + 1)th service
epoch. Thus with Yn = Bn − An

Xn+1 = (Xn + Yn)+, (5.11)

a recurrence relation (the Lindley recursion) also typical for many other
queueing situations and discussed in length in III.6. For example, this could
describe the queue at the stop of a bus with regular schedule, with An the
number of free seats in the nth bus.

Assume further that the random vectors (An, Bn) are i.i.d.; then {Xn}
is a Markov chain on N. Let µ = EYn. With h(i) = i, (5.11) then yields
EiW1 = E(i + Y1)+ ≥ i + µ. Thus, if µ ≥ 0, Proposition 5.4(ii) shows
immediately that {Xn} cannot be positive recurrent. Suppose on the other
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hand that µ < 0 and let µi = E[Yn; Yn > −i]. Then µi → µ, i → ∞, and
hence for i so large, say i > i0, that µi ≤ µ/2,

E(i+ Y1)+ = E[i+ Y1; Y1 > −i] ≤ i+ µi ≤ i+ µ/2.

Thus Proposition 5.3(ii) with E0 = {0, . . . , i0}, h(i) = i, ε = −µ/2 yields
positive recurrence.

For geometrical ergodicity, assume µ < 0 and that EzB1 < ∞ for some
z > 1. By replacing z by a smaller z if necessary, we may assume r1 =
EzY1 < 1. We have Ezi+Y1 = zir1, and as above, one then gets Eiz

W1 < zir
for i ≥ i0 and some r ∈ (r1, 1). Thus Proposition 5.5 with h(i) = zi yields
geometric ergodicity.

Finally, assume µ < 0, µ2 = EY 2
n < ∞. With h(i) = i2, we then have

Eh(i+Y1) = h(i)+µ2+2iµ. As above, this implies Ph(i) ≤ h(i)−f(i)+g(i)
for i ≥ i0 where g(i) = µ2/2, f(i) = −iµ. Since π(g) < ∞, Proposition
5.6 yields π(f) < ∞. I.e., the stationary distribution has finite mean when
µ2 < ∞ [see further X.2]. �

Problems

5.1 (doob’s h–transform) Suppose the chain is irreducible and h ≥ 0 har-

monic with h �= 0. Show that h(i) > 0 for all i and that the matrix P̃ with
elements p̃ij = h(j)pij/h(i) is a transition matrix.
5.2 Consider a population process satisfying the assumptions of Problem 1.4
and with all states i, j ≥ 1 communicating. Show that the extinction probability
qi = Pi(τ (0) < ∞) is either 1 for all i ≥ 1 or 0 for all i ≥ 1. Let E0 be finite
and suppose (5.2) holds. Show that qi = 1 if h(j) → ∞ and that qi < 1 if h
is bounded with h(i) < h(j) for some i �∈ E0 and all j ∈ E0. [Hint: Consider

{X̃n} evolving as {Xn} except that p̃01 = 1 rather than p̃01 = 0, and use h as

test function for {X̃n}.] Show in particular that if E[Xn+1 |Xn] ≤ Xn (i.e. the
expected number of children per individual does not exceed 1), then extinction
occurs a.s.
5.3 Carry out the last part of the proof of Proposition 5.5.

Notes Results of type Proposition 5.3, 5.4(i) have a long history and are often

referred to as Foster’s criteria. A main reference for test function techniques

is Meyn and Tweedie (1993), who also treat the case of an uncountable state

space (essentially, all results carry over at the cost of more tedious proofs and

formulations). It is known that many of the sufficient conditions given above are

also necessary in the sense that a test function with the stated properties must

exist. However, finding the appropriate one is far from easy in more complicated

models; Brémaud (1999) surveys a number of examples dealing with nonstandard

queueing models. See also Fayolle et al. (1995).
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6 Nonnegative Matrices

Finite square matrices with nonnegative elements occur in a variety of
contexts in applied probability. The so–called Perron–Frobenius theory of
such matrices describes in quite some detail their spectral properties (and
therefore also the asymptotic properties of their powers), and is therefore
a powerful and indispensable tool for many applications. We shall here
develop this theory by exploiting the intimate connection to Markov chains
with a finite number of states.

We start by recalling some facts from linear algebra. Let A be any p ×
p matrix and define for λ ∈ C Eλ = {x ∈ Cp : x 
= 0,Ax = λx}. Thus
sp(A) = {λ : Eλ 
= ∅} is the set of eigenvalues of A or the spectrum of A,
and spr(A) = sup

{|λ| : λ ∈ sp(A)
}

is the spectral radius of A. If λ ∈ sp(A),
then λ is a root in the characteristic polynomial det(A − λI), and if the
multiplicity is 1, we call λ simple. Then also the geometric multiplicity
dim

(
Eλ ∪ {0}) is 1, i.e. the eigenvector is unique up to a constant. If

λ ∈ sp(A), then λ is also eigenvalue for the transposed matrix AT. The
existence of an eigenvector for AT then means that νA = λν for some row
vector ν 
= 0, called a left eigenvector for A (x ∈ Eλ is a right eigenvector).
The following lemma is standard (all statements are easy to verify if one
writes A on the Jordan canonical form):

Lemma 6.1 (i) sp(Am) =
{
λm : λ ∈ sp(A)

}
; (ii) the Am–multiplicity of

λ ∈ sp(A) is the sum of the A–multiplicities of the λi ∈ sp(A) with λmi = λ;
(iii) if λ ∈ sp(A) is not simple, then either dim

(
Eλ ∪ {0}) > 1 or for any

h ∈ Eλ we can find k with Ak = h + λk; (iv) An = O
(
nk[spr(A)]n

)
for

some k = 0, 1, 2, . . ..

We start by examining the spectral properties of ergodic transition
matrices:

Proposition 6.2 Let P = (pij)i,j=1,...,p be an ergodic p × p transition
matrix with stationary distribution π. Then spr(P ) = 1 and 1 is a simple
eigenvalue of P with π and 1 = (1 · · · 1)T as corresponding left and right
eigenvectors. Furthermore for λ ∈ sp(P ), λ 
= 1, we have |λ| < 1 and
with λ1 = max

{|λ| : λ ∈ sp(P ), λ 
= 1
}

it holds for some k that the powers
P n = (pnij) satisfy

pnij = πj + O(nkλn1 ), n → ∞. (6.1)

Proof. It is clear that πP = π, P1 = 1 and hence 1 ∈ sp(P ). Also
h ∈ E1 means that h is harmonic and thus h = c1 (cf. Proposition 5.1;
the extension to the complex case is easy). Thus if 1 is not simple, Lemma
6.1(iii) shows that we can find k with Pk = 1+k. But then P nk = n1+k
which in Markov chain terms means that EikXn = n + ki, contradicting
that k is bounded in the finite case. Similarly, the ergodic theorem means
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that P n → 1π and hence if λ ∈ sp(P ), k ∈ Eλ, we have λnk = P nk →
1πk. But λnk can only converge if |λ| < 1 or λ = 1.

It only remains to prove (6.1). Write P = P 1 + P 2 with P 1 = 1π,
P 2 = P − 1π. It is then readily checked that P 1P 2 = P 2P 1 = 0 and
hence P n = P n

1 +P n
2 . It is also easily seen that P n

1 = P 1 = 1π. Hence by
Lemma 6.1(iv) it suffices to show that if λ ∈ sp(P 2)\ {0}, then |λ| ≤ λ1.
But from P 2k = λk we get P k = (P 1 +P 2)λ−1P 2k = λk, i.e. λ ∈ sp(P ).
If λ = 1, we would have k = c1 and hence P 2k = 0 which is impossible.
Hence |λ| ≤ λ1. �

If λ1 < δ < 1, (6.1) may be rewritten as pnij = πj + O(δn), and we have
obtained a second proof of Proposition 4.4(b), stating that any irreducible
finite Markov chain is geometrically ergodic.

A matrix Q is nonnegative if qij ≥ 0 for all i, j, and substochastic if also
Q1 ≤ 1, i.e. the rows sums are at most 1. The following result is often used
and holds under weaker conditions than irreducibility:

Proposition 6.3 Let Q be substochastic, such that to each i there is a k
and j1, . . . , jm with

∑
� qk� < 1 and qij1qj1j2 . . . qjmk > 0. Then spr(Q) < 1.

Proof. Let λ be an eigenvalue of absolute value spr(Q) and let h ∈ Eλ.
Consider a Markov chain {Xn} on {0, 1, . . . , p} such that 0 is absorbing,
and the probability of a transition i → j is qij for i, j ≥ 1 and 1 − ∑

� qi�
for j = 0. The assumptions on Q and a geometrical trials argument (cf.
A6.1) then easily yield that Xn = 0 eventually and that taking h0 = 0
makes λ−nhXn a martingale. If |λ| ≥ 1, boundedness would imply L1–
convergence (necessarily to h0) so that taking X0 = i yields hi = h0 = 0
which contradicts h 
= 0. Hence |λ| < 1 and spr(Q) < 1. �

We shall now derive a close analogue of Proposition 6.2 for nonnegative
matrices A. We shall adopt the definitions of irreducibility and the period
d from transition matrices to nonnegative matrices by noting that they
depend only on the pattern of entries i, j with aij > 0. Thus A is irreducible
if for any i, j we can find m such that amij > 0, and we have:

Lemma 6.4 If A is an irreducible nonnegative matrix, then the greatest
common divisor d of the m with amii > 0 does not depend on i. If d = 1,
then it holds for all sufficiently large m that amij > 0 for all i, j.

Proof. Choose a transition matrix P with pij > 0 for exactly the same i, j
as for which aij > 0. Then amij > 0 precisely when pmij > 0 and results from
Section 1 complete the proof. �

The d in Lemma 6.4 is called the period of A, and A is aperiodic if d = 1.

Theorem 6.5 (perron–frobenius) Let A be an irreducible non–
negative p× p matrix. Then:
(a) the spectral radius λ0 of A is strictly positive and a simple eigenvalue of
A with the corresponding left and right eigenvectors ν, h satisfying νi > 0,
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hi > 0 for all i;
(b) if A is also aperiodic, then λ1 = max

{|λ| : λ ∈ sp(A)\{λ0}
}
< λ0 .

Furthermore, if we normalize ν,h by νh =
∑p

1 νihi = 1, then for some k

An = λnhν + O(nkλn1 ), n → ∞; (6.2)

(c) if A has period d > 1, then |λ| ≤ λ0 for any λ ∈ sp(A). Further-
more, λ ∈ sp(A), |λ| = λ0 holds exactly when λ is of the form λ0θ

k,
k = 0, 1, . . . , d− 1, with θk = e2πk/d the roots of unity.

Figure 6.1

Figure 6.1 depicts sp(A) for the aperiodic case in (a) and for the periodic
case d = 5 in (b). The eigenvalues fall in pairs of complex conjugates since
A is real. We shall refer to λ0 as the Perron–Frobenius root of A.

The proof of the Perron–Frobenius theorem will be reduced to the
Markov case in Proposition 6.2. We need some lemmas.

Lemma 6.6 If A has all aij > 0, then there exists λ ∈ sp(A), x ∈ Eλ
with λ > 0, xi > 0, i = 1, . . . , p.

Proof. The basic observation is that all aij > 0 implies

xi ≥ 0,
p∑
i=1

xi > 0 ⇒ all components of Ax are > 0. (6.3)

Define

K =
{
x ∈ Rp : 0 ≤ xi ≤ 1,

p∑
i=1

xi = 1
}
,

S =
{
µ ≥ 0 : Ax ≥ µx for some x ∈ K

}
,

λ = sup {µ : µ ∈ S}. Since AK is compact, λ < ∞. For a given x ∈ K,
(6.3) implies Ax ≥ εx for small enough ε, and hence λ > 0. Now choose
λn ∈ S, xn ∈ K with λn ↑ λ, Axn ≥ λnxn. Passing to a subsequence if
necessary, we may assume that x = limxn exists. Then Ax ≥ λx and we
shall complete the proof by showing that indeed Ax = λx (xi > 0 is then
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ensured by (6.3)). Otherwise let y = cAx with c > 0 chosen so that y ∈ K.
Then Ay − λy = cA(Ax − λx) has all components > 0 by (6.3). Hence
Ay ≥ (λ+ ε)y for some ε > 0, a contradiction. �

Lemma 6.7 Suppose that Ak = λk with λ > 0 and all ki > 0. Then the
matrix P with elements aijkj/λki is a transition matrix, P1 = 1, and the
formulas

λA = λλP , hA
i = kih

P
i , πA

i = πP
i /ki

establish a one–to–one correspondence between λA ∈ sp(A) and λP ∈
sp(P ) and the corresponding right and left eigenvectors (πAA = λAπA

etc.). Furthermore, λA is simple for A if and only if λP is simple for P .

Proof. Everything is a straightforward verification except for the last
statement which follows from

det(P − µI) = det(λ−1A − µI) = λ−p det(A − µλI).

Indeed, multiplying the ith row by ki and the jth column by k−1
j leaves

the determinant unchanged and transform P into λ−1A, I into I. �

Proof of Theorem 6.5 in the aperiodic case. Choose first m with all amij > 0,
cf. Lemma 6.4, and next λ, k with Amk = λk, λ > 0, all ki > 0, cf. Lemma
6.6. Then by Lemma 6.7 1 is simple for Pm = (amijkj/ki) and hence λ
simple for Am. If λ0 ∈ sp(A) satisfies λm0 = λ, then by Lemma 6.1(ii) λ0

is simple for A. Choose h ∈ Eλ0 . Then Amh = λm0 h = λh, and since λ is
simple for Am, it follows that we may take h = k. Then by nonnegativity,
Ah = λ0h implies λ0 > 0 and P = (aijkj/λ0ki) is a transition matrix.
Applying Proposition 6.2 and Lemma 6.7 everything then comes out in a
straightforward manner. For (6.2), note that if πP = π, π1 = 1 and we
let νi = πi/hi, then νA = λ0ν, νh = 1 and

anij = λn0
pnijhi

hj
= λn0

hi
hj

{
πj + O

(
nk
(λ1

λ0

)n)}
= λn0hiνj + O(nkλn1 ).

�

Proof of Theorem 6.5 in the periodic case. We can reorder the coordinates
by a cyclic class argument so that A has the form

0 A1 0 . . . 0
0 0 A2 0
...

. . .
...

0 0 0 . . . Ad−1

Ad 0 0 . . . 0

 .

Letting Bk = AkAk+1 · · ·AdA1 · · ·Ak−1, it follows that Ad is block–
diagonal with diagonal elements Bk which are irreducible aperiodic. Let µk
be the Perron–Frobenius root of Bk and Bkh

(k) = µkh
(k) with h

(k)
i > 0.
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Now

BkAkh
(k+1) = AkBk+1h

(k+1) = µk+1Akh
(k+1)

(identifying d + 1 with 1). Since Akh
(k+1) 
= 0, it follows that µk+1 ∈

sp(Bk) and hence µk+1 ≤ µk. Hence all µk are equal, say µk = µ, and we
may take h(k) = Akh

(k+1) = Ak . . .Ad−1h
(d). Now

det(Ad − ηI) =
d∏
k=1

det(Bk − ηI).

This shows that if λ ∈ sp(A), then η = λd is in sp(Bk) for some k. Hence
|λ| = |η|1/d ≤ |µ|1/d = λ0 (say) and |λ| = λ0 can only occur if λd = µ, i.e.
λ is of the form λ0θ

k for some k. Also the Ad–multiplicity of µ is exactly
d. By Lemma 6.1(ii) the proof is now complete if we can show that each
λ0θ

k is an eigenvalue and that z(0) ∈ Eλ0 may be taken with all z(0)
i > 0.

But an easy calculation shows that

z(k) =
(
(λ0θ

k)0h(1)T · · · (λ0θ
k)d−1h(d)T

)T

satisfies Az(k) = λ0θ
kz(k). �

Problems

6.1 Is it true that if P is an infinite ergodic transition matrix, then all pn
ij > 0

for some n?
6.2 Suppose that A is an irreducible aperiodic nonnegative matrix such that
Am is a transition matrix for some m = 1, 2, . . . Show that then A is itself a
transition matrix. Show also that the result fails in the periodic case.
6.3 Let A be irreducible and nonnegative, and assume that Ax ≤ λx with
x ≥ 0, x �= 0 and λ > 0. Show that spr(A) ≤ λ provided either (i) A is
irreducible, or (ii) all xi > 0. Show also in case (i) that spr(A) < λ if in addition
Ax �= λx.

Notes Standard references for nonnegative matrices are Berman and Plem-

mons (1994) and Seneta (1994). Of extensions of the Perron–Frobenius theorem,

we mention in particular operator versions such as the Krein–Rutman theorem,

e.g. Schaefer (1970), and the more probabilistic inspired discussion of Nummelin

(1984).

7 The Fundamental Matrix, Poisson’s Equation
and the CLT

We assume throughout this section that {Xn} is irreducible positive
recurrent with stationary distribution π.
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Let f be a real–valued function on E, sometimes written as a column
vector f (see Notes to Section 1 for this and other notational issues like
π(f) versus πf , Pf versus P f , etc.). The equation

g = f + Pg, (7.1)

with g the unknown, is referred to as Poisson’s equation.

Proposition 7.1 Assume that f is π–integrable. Then: (i) a necessary
condition for the existence of a π–integrable solution to Poisson’s equation
is π(f) = 0; (ii) a π–integrable solution is unique up to a multiple of 1; (iii)
if π(f) = 0, then for any k g(i) = Ei

∑τ(k)−1
0 f(Xn) is a finite solution

satisfying g(k) = 0.

Proof. Multiplying (7.1) by π immediately gives (i). If g1, g2 are solutions,
then d = g1 − g2 satifies d = P d, i.e. d is harmonic and must therefore be
constant by Proposition 5.1, showing (ii). In (iii), we have from Corollary
3.6 that

π(|f |)Ekτ(k) = Ek

τ(k)−1∑
n=0

|f |(Xn) ≥ Pk
(
τ(j) < τ(k)

)
Ej

τ(k)−1∑
n=0

|f |(Xn).

This shows first that g(j) is finite and next, upon replacing |f | by f in the
left identity, that g(k) = 0. Conditioning upon X1 and using the definition
of g then gives

g(i) = f(i) +
∑
j �=k

pijg(j) = f(i) +
∑
j∈E

pijg(j) = f(i) + Pg(i),

which is the same as (7.1). �

Theorem 7.2 Let f be a π–integrable function on E and define f̃(i) =
f(i)−π(f). Assume that g is a solution of g = f̃+Pg and that π(g2) <∞.
Then

1√
n

(
f(X0) + · · · + f(Xn−1) − nπ(f)

) D→ N(0, σ2(f)) (7.2)

where σ2(f) = π(g2) − π
(
(Pg)2

)
.

Proof. We may assume w.l.o.g. that π(f) = 0 so that f = f̃ . Let ∆k =
g(Xk) − Pg(Xk−1). Then g = f + Pg implies

n∑
k=0

f(Xk) = g(X0) − Pg(Xn) +
n∑
k=1

∆k. (7.3)

Since Pg(Xk−1) = E(g(Xk) |Fk−1), the sequence {∆k} is a martingale
difference sequence, and we have

Var(∆k |Fk−1) = Var(g(Xk) |Fk−1) = ω2(Xk−1)
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where ω2(i) = g2(i)− (Pg)2(i). Here π(ω2) = σ2(f) is finite by assumption
so that

∑n
1 Var(∆k |Fk−1)/n → σ2(f) by the LLN (4.3). Therefore an

appropriate martingale CLT (e.g. Hall and Heyde, 1980, p. 58, or Shiryaev,
1996, p. 541) shows that

∑n
1 ∆k/n

1/2 has a limiting N(0, σ2(f)) distribu-
tion. In view of (7.3), this is equivalent to the assertion of the theorem.

�

Now assume that E is finite and define the fundamental matrix Z by

Z = (I − P + 1π)−1 =
∞∑
n=0

(P − 1π)n = I +
∞∑
n=1

(P n − 1π). (7.4)

Note that by Proposition 6.2 we have |λ| < 1 for any eigenvalue of P − 1π
when P is aperiodic, so that the first series converges and equals the inverse;
the last expression for Z follows by verifying by induction that (P −1π)n =
P n−1π (we omit the easy proof that (7.4) also holds in the periodic case).
Some easily verified identities are

πZ = π, Z1 = 1, PZ = ZP = Z − I + 1π. (7.5)

Proposition 7.3 Assume that E is finite. Then if πf = 0, the unique
solution g of Poisson’s equation satisying πg = 0 is g = Zf .

Proof. From (7.5), we first get πg = πf = 0 and next

Pg = (Z − I + 1π)f = g − f + 0. �

Proposition 7.4 zij =
{

πjEπτ(j) i = j
πjEπτ(j) − πjEiτ(j) i 
= j

.

Note in particular that whereas the calculation of Eiτ(i) = 1/πi is easy,
so is not the case for Eiτ(j), and the answer (zjj − zij)/πj is provided by
Proposition 7.4.

Proof. Define f = 1j − πj1. Then π(f) = 0, and so by Proposition 7.1(iii)
the solution g of Poisson’s equation with g(j) = 0 is given by

g(i) = Ei

τ(j)−1∑
n=0

I(Xn = j) − πjEiτ(j) = δij − πjEiτ(j).

Thus the solution g∗ satifying π(g∗) = 0 is

g∗(i) = g(i) − π(g) = δij − πjEiτ(j) − πj + πjEπτ(j).

On the other hand, by Proposition 7.3 we have

g∗(i) = 1′
iZf = zij − πj .

Equating these two expressions yields the result (if i = j, note that
πjEiτ(j) = δij = 1). �

Corollary 7.5 In the finite case, σ2(f) = π(2f •Zf −f •f)− f
2

where
f = πf and • denotes multiplication element by element, (a • b)i = aibi.
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Proof. We have π(f ) = f , g = Z(f − f1) in Theorem 7.2 and thus

σ2(f ) = π(g • g − Pg • Pg)
= π

(
(Zf − f1) • (Zf − f1) − (Zf − f) • (Zf − f)

)
= π

(
f

2
1 − 2fZf − f • f + 2f • Zf

)
= f

2 − 2f
2

+ π(−f • f + 2f • Zf ),

where we used (7.5) repeatedly in the second step. �

8 Foundations of the General Theory of
Markov Processes

We shall consider two generalizations, first that of a general (not necessarily
countable) state space E, and next that of a continuous time parameter
t ∈ [0,∞).

In the general state space case, one needs to assume that E is equipped
with a measurable structure, i.e. a σ–algebra E to which all subsets of E
considered in the following are assumed to belong. Instead of the transition
matrix we have a transition (or Markov) kernel, i.e. a function P (x,A) of
x ∈ E and A ∈ E such that P (x, ·) is a probability on (E,E) for each x and
P (·, A) is E–measurable for each A.

Markov chains with transition kernel P and the corresponding Markov
probabilities Pµ (with µ a distribution on (E,E)) are defined by the
requirements Pµ(X0 ∈ A) = µ(A),

Pµ(Xn+1 ∈ A |Fn) = P (Xn, A) (8.1)

where Fn = σ(X0, . . . , Xn). With the usual a.s. interpretation of
conditional probabilities, it follows from (8.1) that

Pµ(Xn+1 ∈ A |Xn = x) = P (x,A) (8.2)

Also, say by induction, one easily gets

Pµ(X0 ∈ A0, X1 ∈ A1, . . . , Xn ∈ An)

=
∫
A0

µ(dx0)
∫
A1

P (x0, dx1) · · ·
∫
An−1

P (xn−2, dxn−1)P (xn−1, An). (8.3)

This formula also immediately suggests how to define the Markov proba-
bilities and the Markov chain: take X0, X1, . . . as the projections EN → E
and let

En = σ(X0, . . . , Xn), E∞ = σ(X0, X1, . . .) = EN.

Then by standard arguments from measure theory it can be seen that
the r.h.s. of (8.3) in a unique way corresponds to a probability Pnµ on
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(EN,En). The Pnµ have the consistency property Pnµ(A) = Pmµ (A), m ≤ n,
A ∈ Em, and hence define a finitely additive probability on the algebra
∪∞

0 En. The desired Pµ is the (necessarily unique) extension to E∞ =
σ (∪∞

0 En). The existence, i.e. the σ–additivity on ∪∞
0 En, may be seen

either from Kolmogorov’s consistency theorem which requires some topo-
logical assumptions like E being Polish and E the Borel σ–algebra, or by a
measure–theoretic result of Ionescu Tulcea (see Neveu, 1965).

The continuous–time case is substantially more involved. What will be
needed in later chapters is, however, only a few basic facts and we shall
therefore just outline a theory which needs several amendments when
pursuing Markov process theory in its full generality.

One does not get very far without topology, so we assume right from the
start that E is Polish with E the Borel σ–algebra. That a process {Xt}t≥0

with state space E is Markov means intuitively just the same as in discrete
time: given the history Ft = σ(Xs; s ≤ t), the process evolves from then
on as restarted at time 0 in state Xt and depending on Ft through Xt only.
Formally, this may be expressed by the existence of a family of probability
measures Pµ with the property Pµ(X0 ∈ A) = µ(A),

Eµ
[
h(Xs+t; t ≥ 0)

∣∣Fs

]
= EXsh(Xt; t ≥ 0) (8.4)

where Px,Ex refer to X0 = x and (8.4) should hold for a class of functions
h of the process sufficiently rich to determine the distribution of {Xt}t≥0.
For example, it would suffice to consider the class H of all h of the form

h(xt; t ≥ 0) =
n∏
i=0

I(xti ∈ Ai). (8.5)

If {Xt}t≥0 has paths say in D = D([0,∞), E), then (8.4) for all h ∈ H
will be equivalent to (8.4) to hold for all bounded measurable h : D → R.
In fact, an easy induction argument shows that it is even sufficient to let
n = 0 in (8.5), and the Markov property in this equivalent formulation then
becomes

P(Xs+t ∈ A |Fs) = P t(Xs, A) where P t(x,A) = Px(Xt ∈ A). (8.6)

Given a Markov process, it is clear that P t(x,A) as defined by (8.6) is a
transition kernel. Using the Markov property we get

P t+s(x,A) = ExP(Xs+t ∈ A |Fs) = EP t(Xs, A) =
∫
P t(y,A)P s(x, dy),

which in operator notation is written P t+s = P tP s and referred to as the
Chapman–Kolmogorov equations (or the semi–group property). Conversely,
given a family {P t}t≥0 satisfying the Chapman–Kolmogorov equations, it
is possible to construct a corresponding Markov process. To this end, we
proceed as in discrete time: let Xt : E[0,∞) → E be the projection and
define for 0 = t0 < t1 < · · · < tn a probability on the sub–σ–algebra
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σ(Xti ; i = 0, . . . , n) by

Pµ(Xt0 ∈ A0, Xt1 ∈ A1, . . . , Xtn ∈ An)

=
∫
A0

µ(dx0)
∫
A1

P t1−t0(x0, dx1)

· · ·
∫
An−1

P tn−1−tn−2(xn−2, dxn−1)P tn−tn−1(xn−1, An). (8.7)

That this defines a semigroup is readily apparent from the Chapman–
Kolmogorov equations. Since E is Polish, there thus exists a unique
extension to E [0,∞), and the Markov property (8.4) with h ∈ H is inherent
in the definition (8.7).

There are, however, severe difficulties associated with this approach.
First, the intuitive description of a particular model is seldom in terms
of the P t. Next, the construction makes E [0,∞) the collection of measur-
able sets, i.e. when A 
∈ E [0,∞) one cannot make sense of Pµ(A). But E [0,∞)

is not very rich since one can easily see that A ∈ E [0,∞) implies that A de-
pends on the Xt for t in a countable collection TA ⊂ [0,∞) of time points.
Thus for example sets like{

ω : Xt(ω) is a continuous function of t
}

is not in E [0,∞), and (when say E = R) similarly max0≤t≤T Xt and
inf {t : Xt = 0} are not measurable. Hence it is necessary to construct ver-
sions of the process with sample paths say in D. This requires further
properties of the P t, typically continuity requirements. We shall not go
into this since the explicit examples that we shall encounter will almost
a priori satisfy such path regularity properties. For example, queues are
constructed by simple transformations of sequences of service times and
interarrival times, and not starting from semi–groups, consistent families
and so on.

Now let σ be a stopping time w.r.t. {Ft}t≥0 amd let Fσ be the stop-
ping time σ–algebra, cf. A10. We say that {Xt}t≥0 has the strong Markov
property w.r.t. σ if a.s. on {σ <∞}

P
(
Xσ+t ∈ A

∣∣Fσ

)
= P t(Xσ, A); (8.8)

again, this implies a functional form

Eµ
[
h(Xσ+t; t ≥ 0)

∣∣Fσ

]
= EXσh(Xt; t ≥ 0).

The process is strong Markov if it has the strong Markov property w.r.t.
any stopping time σ.

Proposition 8.1 A Markov process {Xt}t≥0 has the strong Markov prop-
erty w.r.t. any stopping time σ which assumes only a countable number of
values, σ ∈ {∞, s1, s2, . . .}.



8. Foundations of the General Theory of Markov Processes 35

Proof. We must show that for A ∈ E, F ∈ Fσ

Pµ
(
Xσ+t ∈ A; F, σ <∞)

= Eµ
[
P t(Xσ, A); F, σ <∞]

.

However, if F ⊆ {σ = sk} this is immediate from the Markov property
(8.4). In the general case, decompose F ∩{σ < ∞} as the disjoint union of
the sets F ∩ {σ = sk} and sum over k. �

As an immediate consequence, we have:

Corollary 8.2 Any discrete time Markov chain (with discrete or general
state space) has the strong Markov property.

Also in continuous time, Proposition 8.1 is greatly helpful in establishing
the strong Markov property. A typical example is the following:

Corollary 8.3 Assume that {Xt}t≥0 has right–continuous paths and that
for any bounded continuous f : E → R and any s it holds that Exf(Xs) is
a continuous function of x or, more generally, that the paths of EXtf(Xs)
are right–continuous functions of t. Then the strong Markov property holds.

Proof. Let σ be a given stopping time and define σ(k) = n2−k on{
(n− 1)2−k < σ ≤ n2−k

}
. Then the σ(k) are stopping times and σ(k) ↓ σ

as k → ∞. By Proposition 8.1 we have furthermore

Eµ
[
f(Xσ(k)+s)

∣∣Fσ(k)

]
= EXσ(k)f(Xs). (8.9)

If F ∈ Fσ, then F ∈ Fσ(k), and hence (8.9) implies

Eµ[f(Xσ(k)+s); F ] = Eµ[EXσ(k)f(Xs); F ].

A check of the assumptions show that the integrands converge pointwise.
Thus by dominated convergence,

Eµ[f(Xσ+s); F ] = Eµ[EXσf(Xs); F ].

The truth of this for all bounded continuous f and all F ∈ Fσ implies
(8.8). �

We next consider the hitting time τ(A) of a Borel subset A, τ(A) =
inf {t > 0 : Xt ∈ A}. That τ(A) is a stopping time is a triviality in discrete
time since then obviously

{τ(A) ≤ n} =
n⋃
k=1

{Xk ∈ A} .

However, in continuous time some (perhaps unexpected) difficulties arise
even for elementary sets like closed and open ones, and this is in fact one
of the reasons that one needs to amend and extend the theory that has
been discussed so far and which may still appear reasonably simple and
intuitive. We discuss these points briefly below, but first state and prove
a more elementary result that is sufficient to deal with virtually all the
processes to be met and all the questions to be asked in this book.
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Proposition 8.4 Suppose the paths of {Xt} are piecewise continuous with
right limits. Then:
(a) the jump times 0 < ι(1) < ι(2) < · · · are stopping times w.r.t. {Ft};
(b) if A is closed, then τ(A) is a stopping time w.r.t.

{
Ft

}
.

Proof. Let Q(t) be the set of numbers of the form qt with q rational and
0 ≤ q ≤ 1, and let d be some metric on E. Then the sets G1 = {ι(1) ≤ t}
and

G2 =
∞⋃
m=1

∞⋂
n=1

⋃
u,s∈Q(t)

{|u− s| ≤ 1/n, d(Xu, Xs) > 1/m
}

coincide. In fact, on G1 we have for somem a jump of size at least m−1, and
this easily gives G1 ⊆ G2. Conversely, the uniform continuity of {Xs}s≤t on
Gc1 easily shows Gc1 ⊆ Gc2. Since d(Xu, Xs) is Ft–measurable for u, s ≤ t,
we have G1 = G2 ∈ Ft, and thus ι(1) is a stopping time. For ι(2), just add
the requirement u, s ≥ ι(1) in the definition of G2, and so on.

To prove (b), define m(S) = inf {d(Xu, A); u ∈ S}, S ⊆ [0,∞). If A is
closed, we have Xτ(A) ∈ A by right–continuity, and hence in the special
case of continuous paths

{τ(A) ≤ t} =
{
m
(
[0, t]

)
= 0

}
=

{
m
(
Q(t)

)
= 0

} ∈ Ft. (8.10)

But if Ik,n =
{
u : ι(k) − 1/n ≤ u < ι(k) ≤ t

}
, then

{u ∈ Ik,n} =
{
u < ι(k) ≤ t ∧ (u+ 1/n)

} ∈ Ft.

Thus as in (8.10)

{τ(A) ≤ t} = lim
n→∞

{
τ(A) ∈ [0, t]

∖ ∞⋃
k=1

Ik,n

}

= lim
n→∞

{
m
(

Q(t)
∖ ∞⋃
k=1

Ik,n

)
= 0

}
∈ Ft.

�

We conclude with a brief discussion of some more difficult topics which,
however, are not essential for the rest of the book. Define Ft+ = ∩s>tFs

and let G(µ) denote the Pµ–completion of G (some arbitrary σ–field), i.e.
the smallest σ–field containing G and all Pµ–null sets. Then:

Proposition 8.5 Suppose that {Xt} has right–continuous paths. Then:
(a) If A is open, then τ(A) is a stopping time w.r.t.

{
Ft+

}
;

(b) For any Borel set A, τ(A) is a stopping time w.r.t.
{
F

(µ)
t+

}
.

Proof of (a). If A is open and Xu ∈ A, then Xu+v ∈ A for all small positive
v. Hence the event {τ(A) ≤ t} may be written as

∞⋂
n=1

⋃
s≤t+1/n

{Xs ∈ A} =
∞⋂
n=1

⋃
s∈Q(t+1/n)

{Xs ∈ A} ,
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and here the event on the r.h.s. is clearly in Ft+.
The proof of (b) is far beyond the present scope (and need!), and we

refer, e.g., to Dellacherie and Meyer (1975–93). �

One now defines a history of the process as an increasing family {Gt}t≥0

of σ–fields (a filtration) with Ft ⊆ Gt (or equivalenty Xt Gt–measurable)
for all t, and say that {Xt} is Markov with transition semigroup {P t} w.r.t.
{Gt} and some fixed governing probability measure if

P(Xt+s ∈ A |Gs) = P t(Xs, A). (8.11)

Apart from {Ft}, some main candidates for the history are {Ft+} and{
F

(µ)
t+

}
. It follows immediately from the chain rule for conditional expec-

tations that if {Xt} is Markov w.r.t. some history, then {Xt} is Markov
w.r.t. {Ft} as well. Conversely:

Proposition 8.6 Let {Xt} be Markov w.r.t. {Ft} and satisfy the regular-
ity conditions of Corollary 8.3. Then:
(a) for each µ and each bounded measurable h, we have Pµ–a.s. that

Eµ
[
h(Xs+t; t ≥ 0)

∣∣Fs

]
= Eµ

[
h(Xs+t; t ≥ 0)

∣∣Fs+

]
= Eµ

[
h(Xs+t; t ≥ 0)

∣∣F(µ)
s+

]
;

(b) (blumenthal’s 0–1 law) if A ∈ F0+, then for a fixed x ∈ E either
Px(A) = 0 or Px(A) = 1.
(c) {Xt} is Markov w.r.t. {Ft+} and

{
F

(µ)
t+

}
as well.

Proof. (a) The second identity is just a general property of the completion
operator. For the first, arguments similar to those used many times above
show that it suffices to take h of the form h(Xt) with t > 0 and h con-
tinuous and bounded. Since then h(Xs+t+1/n) a.s.→ h(Xs+t), it follows from
a continuity result for conditional expectations (Chung, 1974, p. 340) that
indeed

Eµ
[
h(Xs+t)

∣∣Fs+

]
= lim

n→∞ Eµ
[
h(Xs+t+1/n)

∣∣Fs+1/n

]
= lim

n→∞ EXs+1/n
h(Xt) = EXsh(Xt) = Eµ

[
h(Xs+t)

∣∣Fs

]
,

and the proof of (a) is complete. For (b), let t = 0 and h = I(A) in (a) to
obtain Px(A|F0+) = Px(A|F0) a.s. Here the l.h.s. is just I(A) and since
F0 is Px–trivial, the r.h.s. is constant. Hence I(A) is constant a.s. which is
only possible if the probability is either 0 or 1. Finally (c) is an immediate
consequence of (a). �

We stop the discussion of the foundations of the general theory of Markov
processes at this point. As for the topics discussed in Sections 2–4, clas-
sification of states and limit theory will be discussed in Chapter II for a
discrete state space and continuous time process. The case of a general E is
much more complicated even in discrete time. For example, it is not clear
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what recurrence should mean since even in simple–minded continuous state
space models, Px(τ(x) < ∞) will most often be 0. Some results (more or
less the best known ones) are given in VII.3 and can, somewhat surpris-
ingly, be derived as simple consequences of the ergodic theorm for discrete
Markov chains. In continuous time, the existing theory is hardly equally
satisfying, but a number of special cases will be encountered. For example,
the main problem within the whole area of renewal theory (Chapter V) will
be seen to be equivalent to the ergodicity question for the continuous–time
and –state version of the recurrence time chains in Section 2.

Notes General Markov chains in discrete time are discussed, e.g., in Neveu
(1965), Meyn and Tweedie (1993) and Revuz (1984). For up–to–date and readable
accounts of the continuous–time case, see Rogers and Williams (1994) or Revuz
and Yor (1999).

A topic not treated above but used at a few places in the book is the generator
A of a continuous-time Markov process, a certain operator on a subspace DA

of functions on E. There are many variants of the definition around, but the
intutition behind them all is that one should have

Exf(Xh) = f(x) + Af(x)h+ o(h), f ∈ DA. (8.12)

The domain DA is specified by additional requirements in (8.12), one classical
variant (see e.g. Karlin and Taylor, 1981) being that f should be bounded and the
convergence in (8.12) uniform. Note that the identification of DA in this set–up
is tedious even in such a basic case as standard Brownian motion where A is a
restriction of the differential operator f → f ′′/2. Note also that DA actually may
contain crucial information on the process. For example, for reflecting Brownian
motion with reflection at 0 or absorbtion at 0, Af = f ′′/2 in both cases, but
f ∈ DA requires f ′(0) = 0 in the reflected case and f(0) = 0 in the absorbing
case.

Typically, f(Xt) −
∫ t

0
Af(Xs) ds is a martingale (the Dynkin martingale) for

f ∈ DA, and a modern variant of the definition is that f ∈ DA, g = Af means
that f(Xt) −

∫ t

0
g(Xs) ds is a local martingale.

The most basic case is a Markov jump process as in Chapter II, where in the

finite case it holds for any of the possible definitions that DA is the set of all

functions on E and A is the operator f → Λf where Λ is the intensity matrix.
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