
CHAPTER 6

Models Constructed via Conditioning:
Cox, Cluster, and Marked Point Processes

In this chapter, we bring together a number of the most widely used classes
of point process models. Their common theme is the generation of the final
model by a two-stage construction: first, the generation of an indexed family
of processes, and then an operation applied to members of the family to
produce the final process. The first two classes (Cox and cluster processes)
extend the simple Poisson process in much the same way that the mixed
and compound Poisson distributions extend the basic Poisson distribution.
Independence plays a central role and leads to elegant results for moment
and generating functional relationships. Both processes are used typically
in contexts where the realizations are stationary and therefore define infinite
collections of points. To deal with these issues, we anticipate the transition
from finite to general point processes to be carried out in Chapter 9 and
present in Section 6.1 a short review of some key results for more general
point processes and random measures.

The third class of processes considered in this chapter represents a general-
ization in a different direction. In many situations, events are characterized by
both a location and a weight or other distinguishing attribute. Such processes
are already covered formally by the general theory, as they can be represented
as a special type of point process on a product space. However, marked point
processes are deserving of study in their own right because of their wide range
of applications, such as in queueing theory, and their conceptual importance
in contexts such as Palm theory (see [MKM] especially).

6.1. Infinite Point Families and Random Measures
Although the framework developed for finite point processes in Chapter 5
needs to be extended, it nevertheless contains the essential ingredients of the
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158 6. Models Constructed via Conditioning

more general theory. We retain the assumption that the points are located
within a complete, separable metric space (c.s.m.s.) X , and will generally
interpret X as either R1 or R2.

The space X∪ as in (5.3.10) is no longer the appropriate space for defining
the realizations; instead we move to a description of the realizations in terms
of counting measures, meaning measures whose values on Borel sets are non-
negative integers. The interpretation is that the value of the measure on such
a set counts the number of points falling inside that set.

A basic assumption, which really defines the extent of current point pro-
cess theory, is that the measures are boundedly finite: only a finite number
of points fall inside any bounded set (i.e. there are no finite accumulation
points). In the martingale language of Chapters 7 and 14, this is equivalent
to requiring the realizations to be ‘nonexplosive’. The space X∪ is then re-
placed by the space1 N#

X of all boundedly finite counting measures on X . A
remarkable feature is that a relatively simple and natural distance between
counting measures can be defined and allows N#

X to be interpreted as a met-
ric space in its own right. It then acquires a natural topology and a natural
family of Borel sets B(N#

X ) that can be used to define measures on N#
X . We

shall not give details here but refer to Chapter 9 and Appendix A2.6.
Thus, the way is open to formally introducing a point process on X as a

random counting measure on X , meaning technically a measurable mapping
from a probability space (Ω, E ,P) into the space (N#

X ,B(N#
X )). Often, the

latter space itself is taken as the canonical probability space for a point process
on X . Every distinct probability measure on (N#

X ,B(N#
X )) defines a distinct

point process.
As in the finite case, specific examples of point processes are commonly

specified by their finite-dimensional distributions, or fidi distributions for
short. These can no longer be defined globally, as was done through the
Janossy measures for a finite point process, but are introduced by specifying
consistent joint distributions

Pk(A1, . . . , Ak; n1, . . . , nk) = Pr{N(A1) = n1, . . . , N(Ak) = nk} (6.1.1)

for the number of points in finite families of bounded Borel sets. Indeed, this
was the way we introduced the Poisson process in Chapter 2.

Consistency here combines conditions of two types: first, the usual con-
ditions (analogous to those for any stochastic process) for consistency of
marginal distributions and invariance under simultaneous permutation of the
sets and the numbers falling into them; second, conditions to ensure that the
realizations are almost surely measures, namely that

N(A ∪ B) = N(A) + N(B) a.s. and N(An)→ 0 a.s. (6.1.2)

1 In this edition, we use M#
X (and N#

X ) to denote spaces of boundedly finite (counting)

measures on X where in the first edition we used M̂X (and N̂ X ), respectively.
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for (respectively) all disjoint Borel sets A, B, and all sequences {An} of Borel
sets with An ↓ ∅. These two conditions reduce to the requirements on the
fidi distributions that, for all finite families of disjoint bounded Borel sets,
(A1, . . . , Ak),

n∑
r=0

Pk(A1, A2, A3, . . . , Ak; n− r, r, n3, . . . , nk)

= Pk−1(A1 ∪ A2, A3, . . . , Ak; n, n3, . . . , nk), (6.1.3)

and
P1(Ak; 0)→ 1 (6.1.4)

for all sequences of bounded Borel sets {Ak} with Ak ↓ ∅. Moreover, for point
processes defined on Euclidean spaces, it is enough for these relationships to
hold when the sets are bounded intervals.

Example 6.1(a) Simple Poisson process on R. Recall equation (2.2.1):

Pr{N(ai, bi] = ni, i = 1, . . . , k} =
k∏

i=1

[λ(bi − ai)]ni

ni!
e−λ(bi−ai). (6.1.5)

Consistency of the marginals means that if one of the variables, say N(a1, b1],
is integrated out (by summing over n1), the resulting quantity is the joint
probability corresponding to the remaining variables. Invariance under per-
mutations of the variables means that if the sets and the number of points
falling into them are written down in a different order, the resulting probabil-
ity is not affected. In the present example, both conditions are obvious from
the product form of the joint distributions. The additivity requirement (6.1.3)
comes from the additivity property of the Poisson distribution: for Poisson
random variables N1 and N2 that are independent (as is implied here by the
product form of the distributions), their sum again has a Poisson distribution.
Finally, (6.1.4) follows from the property e−δn → 1 when δn → 0.

Moment measures, factorial moment measures, and probability generating
functionals can be defined as in Sections 5.4 and 5.5. The main differences are
that in defining the moment measures we should restrict ourselves to bounded
sets and that in defining the p.g.fl. we should confine ourselves to functions
h in V(X ), the space of nonnegative, measurable functions bounded by unity
and such that 1 − h(x) vanishes outside some bounded set. Within these
constraints, the relations between generating functionals, moment measures,
and all the various quantities derived from these in Chapter 5 hold much as
they did there. A more detailed account, examining existence and convergence
conditions, is given in Chapter 9.

For many of the examples that we consider, the point processes will be
defined on a Euclidean space and stationary, meaning that their fidi distri-
butions are invariant under simultaneous shifts of their arguments: writing
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A + u = {x + u, x ∈ A}, stationarity means that, for all real u,

Pk(A1, . . . , Ak; n1 . . . nk) = Pk(A1 + u, . . . , Ak + u; n1, . . . , nk). (6.1.6)

The full consequences of this assumption are quite profound (see the foretaste
in Chapter 3), but for the present it is enough to note the following.

Proposition 6.1.I (Stationarity Properties).
(i) A point process with p.g.fl. G[h] is stationary if and only if for all real u,

G[(Suh)] = G[h], where (Suh)(x) = h(x− u).
(ii) If a point process is stationary and the first-moment measure M1 ex-

ists, then M1 reduces to a multiple of the uniform measure (Lebesgue
measure), M1(dx) = m �(dx) = m dx, say.

(iii) If a point process is stationary and the second-moment measure M2 ex-
ists, then M2 reduces to the product of a Lebesgue component along the
diagonal x = y and a reduced component2, M̆2(du) say, where u = x−y,
orthogonal to the diagonal.

Proof. The fidi distributions as above are determined by the p.g.fl. and
can be evaluated by taking h to be the sum of simple functions on disjoint
sets; conversely, the fidi distributions determine the p.g.fl., which has the
shift-invariance properties under stationarity. Property (ii) can be proved
from Cauchy’s functional equation (see Section 3.6), while property (iii) is
the measure analogue of the familiar fact that the covariance function of a
stationary time series is a function of the difference in the arguments only:

c(x, y) = c̆(x− y).

Similar expressions for the moment densities follow from property (iii) when-
ever the moment measures have densities, but in general they have a singular
component along the diagonal x = y, which reappears as an atom at the
origin in the reduced measure M̆2(·) (see also Section 8.1). General routes to
these reduced measures are provided by the factorization theorems in Section
A2.7 or by the disintegration theory outlined in Section A1.4 (see Chapter 8
for further discussion and examples). Estimation of these reduced moment
measures and their Fourier transforms (spectral measures) is a key issue in the
statistical analysis of point process data and will be taken further in Chapter 8
and in more detail in Chapter 12.

We shall also need the idea of a random measure, so we note some el-
ementary properties. The general theory of random measures is so closely
interwoven with point process theory that the two can hardly be separated.
Point processes are indeed only a special class (integer-valued) of the former,

2 In this edition, we use M̆2(·) and C̆2(·) to denote reduced second moment and covariance
measures (and m̆ and c̆ for their densities) where in the first edition we wrote M̂2(·) and
Ĉ(·), etc.
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and much of the general theory runs in parallel for both cases, a fact exploited
more systematically in Chapter 9. Here we provide just sufficient background
to handle some simple applications.

The formal definition of a random measure ξ(·) proceeds much as in the
discussion for point processes given above. Once again, the realizations ξ(·)
are required to be a.s. boundedly finite and countably additive, and their
distributional properties are completely specified by their finite-dimensional
distributions. Since the values of the measure are no longer integer-valued in
general (although still nonnegative), these take the more general form

Fk(A1, . . . , Ak; x1, . . . , xk) = Pr{ξ(Ai) ≤ xi, i = 1, . . . , k}. (6.1.7)

The moment measures are defined as for point processes, although the spe-
cial role played by the factorial moment measures is not sustained, particularly
when the realizations are continuous. In place of the p.g.fl., the most useful
transform is the Laplace functional, defined for f ∈ BM+(X ), the space of all
nonnegative f ∈ BM(X ), by

L[f ] ≡ Lξ[f ] = E
[
exp
(
−
∫

X f(x) ξ(dx)
)]

. (6.1.8)

[We sometimes write Lξ as a reminder of the random measure ξ to which the
Laplace functional L relates and

∫
f dξ as shorthand for the integral in (6.1.8).]

Of course, the Laplace functional can also be defined for point processes and
is therefore the natural tool when both are discussed together.

Although Lξ defines (the fidi distributions of) a random measure ξ uniquely,
via appropriate inversion theorems, there is no easy counterpart to the expan-
sion of the p.g.fl. about the zero function as in equations (5.5.3). There is,
however, a Taylor series expansion for the Laplace functional about f ≡ 0,
corresponding to the p.g.fl. expansion about h ≡ 1. It takes the form

L[sf ] = 1− s

∫
X

f(x) M1(dx) +
s2

2!

∫
X (2)

f(x1)f(x2) M2(dx1 × dx2)− · · ·

+
(−s)r

r!

∫
X (r)

f(x1) . . . f(xr) Mr(dx1 × · · · × dxr) + · · · . (6.1.9)

This expression is just the expectation of the expansion of the ordinary
Laplace transform of the linear functional Y =

∫
X f(x) ξ(dx). Its validity

depends first on the existence of all moments of the random measure ξ and
second on the convergence, typically in a disk around the origin s = 0 with
radius determined by the length of the largest interval (0, r) within which the
Laplace transform is analytic. Finite Taylor series expansions, when just a
limited number of moment measures exist, are possible for imaginary values
of s, corresponding to the use of the characteristic functional, and are set out
in Chapter 9.
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Example 6.1(b) Gamma random measures (stationary case). Suppose that
the random variables ξ(Ai) in (6.1.7) are independent for disjoint Borel sets
Ai in Rd and have the gamma distributions with Laplace–Stieltjes transforms

E(e−sξ(Ai)) = ψ(Ai, s) = (1 + λs)−α�(Ai) (λ > 0, α > 0, Re(s) ≥ 0),
(6.1.10)

where �(·) denotes Lebesgue measure. By inspection, ψ(Ai, s)→ 1 as s→ 0,
showing that ξ(A) is a.s. finite for any fixed bounded set A. Then, since X
is separable, it can be represented as a denumerable union

⋃
Ai of such sets

and

Pr{at least one ξ(Ai) is infinite} ≤
∞∑

i=1

Pr{ξ(Ai) =∞} = 0.

As in the case of a Poisson process, additivity of ξ is a consequence of in-
dependence and the additivity property of the gamma distribution. Also,
ψ(Ai, s) → 1 as �(Ai) → 0, implying the equivalent of (6.1.4), which guar-
antees countable additivity for ξ and is equivalent to stochastic continuity of
the cumulative process ξ((0, t]) when the process is on R1.

The Laplace functional of ξ can be found by extending (6.1.10) to the case
where f is a linear combination of indicator functions and generalizing: it
takes the form

L[f ] = exp
(
−
∫

X
log[1 + λf(x)] α �(dx)

)
.

Expanding this expression as in (6.1.9) and examining the first and second
coefficients, we find

E
(
ξ(dx)

)
= λα �(dx),

E
(
ξ(dx) ξ(dy)

)
= λ2α2 �(dx) �(dy) + δ(x− y)λ2α �(dx).

(6.1.11)

Thus, the covariance measure for ξ(·) vanishes except for the diagonal com-
ponent along x = y, or, equivalently, the reduced covariance measure is just
an atom of mass λ2α at the origin. These features are consequences of the
independence of the increments and the purely atomic nature of the sample
paths ξ(·), equivalent when X = R1 to the pure jump character of the cu-
mulative process (see Section 8.3 for further discussion). From these results,
we can also confirm the expressions for the moments as follow directly from
(6.1.10), namely

Eξ(A) = λα �(A) and var ξ(A) = λ2α �(A).

Exercise 6.1.1 gives a more general version of a gamma random measure.

Example 6.1(c) Quadratic random measure. Let Z(t) be a Gaussian process
with a.s. continuous trajectories, and consider, for any Borel set A, the set
function

ξ(A) =
∫

A

Z2(u) du.
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Since Z is a.s. continuous, so is Z2, so the integral is a.s. well defined and
is additive on disjoint sets. In particular, when Z has zero mean, each value
Z2(t) is proportional to a chi-square random variable, so ξ(A) for suitably
‘small’ sets A is also approximately a chi-square r.v. Generally, ξ(A) can
be defined (being an integral) as a limit of linear combinations of Z2(ti) for
points ti that become dense in A, and this is quadratic in the Z, hence the
name. The random measure properties of ξ are discussed in more detail in
Chapter 9. See Exercise 6.1.3 for the first two moments of ξ.

The next example has a long history. It was originally introduced in early
work by Campbell (1909) to describe the properties of thermionic noise in
vacuum tubes. Moran (1968, pp. 417–423) gives further details and references.
In his work, Campbell developed formulae for the moments, such as

E
[ ∫

g(x) N(dx)
]

=
∫

g(x) M(dx),

which led Matthes et al. (1978) to adopt the term Campbell measure for the
concept that underlies their treatment of moments and Palm distributions
(see also Chapter 13). Since that time, the ideas have appeared repeatedly
in applications [see e.g. Vere-Jones and Davies (1966), where the model is
referred to as a ‘trigger process’ and used to describe earthquake clustering].
Here we introduce it as a prelude to the major theme of this chapter. It is,
like the other models in the chapter, a two-stage model, for which we consider
here only the first stage.

Example 6.1(d) Intensity of a shot-noise process. A model for a shot-noise
process is that the observations are those of a Poisson point process with a
random intensity λ(·) with the following structure. A stochastic process λ(t)
is formed as a filtered version of a simple stationary Poisson process N(·) on
R at rate ν with typical realization {ti}, the filtering being effected by
(1) a nonnegative function g that integrates to unity and vanishes on (−∞, 0],

and
(2) random ‘multiplier’ effects, {Yi}, a series of i.i.d. nonnegative random

variables with common distribution F (·).
We then define λ(t) by

λ(t) =
∑

i:ti<t

Yig(t− ti) =
∫ ∞

0
Y (u)g(t− u) N(du), (6.1.12)

where Y (u) is a (fictitious) process of i.i.d. variables with distribution F .
Since λ(t), when finite, is stationary in t and is measurable, it is locally

integrable: indeed, since its arguments are nonnegative, if it has finite expec-
tation it must be finite a.s. For Borel sets A, the integral

ξ(A) ≡
∫

A

λ(u) du =
∑

i

Yi

∫
A+ti

g(u) du

is then well defined, though possibly infinite (see Exercise 6.1.4).
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The Laplace functional of ξ can be evaluated as follows. We require

L[f ] = E
[

exp
(
−
∫

R
f(u)λ(u) du

)]
.

Now, from (6.1.12), the integral can be written as a sum of terms∫
R

f(u)λ(u) du =
∑

i

Yi

∫
R

f(u)g(u− ti) du ≡
∑

i

Zi, say.

If the points ti are treated as given (i.e. fixed), then the Zi are independent
and, with φ(·) denoting the common Laplace–Stieltjes transform of the Yi,
Zi = Yi

∫
R f(u)g(u− ti) du has the transform

E(e−Zi) = E
[
exp
(
− Yi

∫
R f(u)g(u− ti) du

)]
= φ
[ ∫

R f(u)g(u− ti) du
]
≡ ζ(ti),

say, which lies in (0, 1] because f , g and the Yi are all nonnegative. Proceeding
formally, the last three equations give us

L[f ] = E
[∏

ti∈N ζ(ti)
]

= GN [ζ], by definition of a p.g.fl.,

= exp
[
ν
∫
R[ζ(t)− 1] dt

]
, GN is the p.g.fl. of a Poisson process,

= exp
{
ν
∫
R

[
φ
( ∫

R f(u)g(u− t) du
)
− 1
]
dt
}
.

It is clear from the random measure analogue of Proposition 6.1.I that the
random measure ξ(·) here is stationary (we can easily check that L[Suf ] =
L[f ]). With a view to applying the expansion (6.1.9), we find after some
manipulation that L[f ]− 1 equals

ν

∫ [
− µ1

∫
f(u)g(u− t) du + 1

2µ2

∫
f(u)g(u− t) du

∫
f(v)g(v − t) dv − · · ·

]
dt

+ 1
2ν2
∫ ∫ [

µ2
1

∫
f(u)g(u− t) du

∫
f(v)g(v − s) dv + · · ·

]
dt ds + · · · ,

where µj = E(Y j) for j = 1, 2. Collect terms, identify the measures associated
with first and second powers of f(·), and recall that

∫∞
−∞ g(u) du = 1 and

g(u) = 0 for u < 0; then

M1(dt) = νµ1 dt,

M2(ds× dt) =
[
ν2µ2

1 + νµ2

∫ min(s,t)

−∞
g(s− u)g(t− u) du

]
ds dt,

so that M1 has constant density νµ1 and M2 has the density

m(s, t) = m̆2(v) = ν2µ2
1 + νµ2

∫ ∞

0
g(y)g(y + |v|) dy, where v = s− t.
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The fact that M2 is absolutely continuous stems from the absolute continuity
of the trajectories. The appearance of the reduced density m̆2 here is charac-
teristic of the stationary form of the moment measures (see Proposition 8.1.I
and onward).

While these arguments appear intuitively reasonable, to make them rig-
orous we must check two further points. First, we must establish that the
random measure ξ is well defined in the sense that, despite the infinite sums
in the definition, the realizations are a.s. boundedly finite; see Exercise 6.1.4.

Second, the implicit conditioning step, consisting here of being given a re-
alization {ti} of the Poisson process and then taking expectations over such
realizations, needs to be justified. In a more general context, this task hinges
on the technical concept of measurability and is the subject of the next propo-
sition; it appears repeatedly in this and later chapters.

As in Example 6.1(d), the models considered in this chapter are defined
in two steps: first, an initial process is laid down and then a secondary pro-
cess is defined, with distributions conditional on the realization of the initial
process. The existence and other properties of such processes depend on
extensions of standard theorems concerning the structure of bivariate distri-
butions. Because a realization of a point process (or indeed a more general
random measure) can be thought of as a point in a metric space, the same
basic apparatus for describing the distributions conditional on the realization
of a random measure is available as for dealing with bivariate distributions
in R2. A general discussion of conditions for a bivariate random system in
which each component takes its value in a c.s.m.s. is in Proposition A1.5.II.
To apply the concepts in a point process context, the key idea we utilize is
that of a measurable family of point processes or random measures.

Suppose there is given a family {N(· | y): y ∈ Y} of point processes taking
their values in the c.s.m.s. X and indexed by the elements y of the c.s.m.s.
Y . This family forms a measurable family if, for each set A in B(N#

X ), the
function P(A | y) is B(Y)-measurable, where

P(A | y) = Pr{N(· | y) ∈ A}. (6.1.13)

As in Proposition A1.5.II, we average across a measurable family of point
processes to form a new point process as a mixture of the originals.

Proposition 6.1.II. Suppose there is given
(a) a measurable family of point processes P(A | y), defined on the c.s.m.s.
X and indexed by elements of Y , and

(b) a Y-valued random variable Y with distribution Π on B(Y).
Then the integrals

P(A) = E[P(A | Y )] =
∫

Y
P(A | y) Π(dy) (6.1.14)

define a probability measure P on B(X ) and hence a point process on X .

Corresponding concepts can readily be defined for random measures and
are set out in Exercise 6.1.5.
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The next lemma gives simple sufficient conditions for checking whether an
indexed family of point processes forms a measurable family.

Lemma 6.1.III. Each of the following conditions is necessary and sufficient
to define a measurable family of point processes on a Euclidean space:
(a) for all choices of positive integer k, finite unions of disjoint intervals

(B1, . . . , Bk), and nonnegative integers (n1, . . . , nk), the fidi probabilities
Pk(B1 . . . , Bk; n1, . . . , nk | y) are B(Y)-measurable functions of y;

(b) for all functions h in the space V(X ), the p.g.fl. G[h | y] is a B(Y)-
measurable function of y.

Proof. Denote by A the class of subsets A of NX for which P(A | y) is
measurable in y with respect to B(Y). If (a) holds, then A contains the
cylinder sets used in defining the fidi probabilities. It follows from the closure
properties of families of measurable functions (see Appendix A1.4) that the
class A is closed under monotone limits and therefore contains the σ-field of
all subsets of X generated by the cylinder sets; that is, A ⊇ B(X ). Hence the
given family of point processes forms a measurable family. If, alternatively,
(b) holds, then by taking h to be a linear combination of indicator functions
and differentiating, we can recover the fidi distributions. Differentiation and
the other operations involved preserve measurability so that the result follows
from (a). The necessity of (a) is obvious, and that of (b) follows on observing
that G[h | y] for a general h ∈ V(X ) can be obtained from the case where h
is a linear combination of indicator functions by operations that preserve the
measurability in y.

We can immediately apply this lemma to give sufficient conditions that are
simpler to check than those of Proposition 6.1.II.

Corollary 6.1.IV. Suppose there is given a Y-valued random variable Y
with distribution Π on B(Y) and either
(a) a family of fidi probabilities Pk(B1 . . . , Bk; n1, . . . , nk | y) satisfying con-

dition (a) of Lemma 6.1.III or
(b) a family of p.g.fl.s G[h | y] satisfying condition (b) of Lemma 6.1.III.
For each of these cases, there exists a well-defined point process on X for
which in case (a) the fidi probabilities are given by

Pk(B1, . . . , Bk; n1, . . . , nk) = E
[
Pk(B1, . . . , Bk; n1, . . . , nk | Y )

]
=
∫

Y
Pk(B1, . . . , Bk; n1, . . . , nk | y) Π(dy) (6.1.15a)

and in case (b) the p.g.fl. is given by

G[h] = E
(
G[h | Y ]

)
=
∫

Y
G[h | y] Π(dy). (6.1.15b)

The following is perhaps the simplest example to which these ideas ap-
ply; their applications will be explored more systematically in the next two
sections.
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Example 6.1(e) Mixed Poisson process. Take the distributions (6.1.5) as a
candidate for a measurable family, with the role of y played by λ and that of Y
played by the half-line R+ = [0,∞). For a fixed set of half-open intervals, the
function (6.1.5) is a continuous and hence a measurable function of λ so that
condition (a) of Lemma 6.1.III is satisfied. Thus, the simple Poisson processes
form a measurable family with respect to the real variable λ. Consequently,
we can mix (average) them with respect to a distribution Π for λ to obtain the
fidi distributions of a new point process. If, for example, Π is the exponential
distribution with density µe−µλ dλ, then the number of points falling into
any given set A has a geometric distribution pn = qpn with parameter p =
µ/(µ + |A|) , q = 1− p. Moreover, the locations of the points in A, given the
number of events in A, are uniformly distributed over A.

Alternatively, we could work from the p.g.fl. for the Poisson process, namely
G[h] = exp

(
−λ
∫

[1−h(u)] du
)
, and take expectations over λ using condition

(b) of the lemma and Corollary 6.1.IV. The resultant process has p.g.fl.

G[h] =
∫ ∞

0
exp
(
− λ
∫

[1− h(u)] du
)
Π(dλ) = Π∗( ∫ [1− h(u)] du

)
, (6.1.16)

where Π∗(θ) = E(e−θY ) is the Laplace–Stieltjes transform of an r.v. Y with
distribution Π. In particular, when Π is exponential with mean 1/µ, the p.g.fl.
reduces to

G[h] =
µ

µ +
∫
[1− h(u)] du

.

This reduces to the p.g.f. µ
/[

µ + |A|(1 − z)
]

of the geometric distribution
described above when we set h(u) = 1− (1− z)IA(u).

Exercises and Complements to Section 6.1
6.1.1 A general gamma random measure on the c.s.m.s. X can be constructed as

a process with independent nonnegative increments for which the increment
ξ(A) on the bounded Borel set A has a gamma distribution with Laplace
transform

E(e−sξ(A)) = (1 + λs)−α(A),

where the scale parameter λ is finite and positive and the shape parameter
measure α(·) is a boundedly finite measure on BX .
(a) Verify that these marginal distributions, coupled with the independent

increment property, lead to a well-defined random measure.
(b) In the case X = R, show that ξ(·) may be regarded as the increments of

an underlying nondecreasing stochastic process X(t), which with positive
probability is discontinuous at t if and only if α({t}) > 0.

(c) Show that ξ has as its Laplace functional

L[f ] = exp

(
−
∫

X
log(1 + λf(x))α(dx)

)
(f ∈ BM+(X )).

[Hint: See Chapter 9 for more detail, especially parts (b) and (c).]
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6.1.2 Stable random measure. Consider a random measure ξ for which E(e−sξ(A)) =
(1+ [exp(−sα)])−Λ(A) for some fixed measure Λ(·) and that has independence
properties as in Example 6.1(a). Verify that for 0 < α < 1, there is a well-
defined random measure with marginal distributions as stated.

6.1.3 Let ξ be the quadratic random measure of Example 6.1(c) in which the Gauss-
ian process Z is stationary with zero mean, variance σ2 and cov(Z(s), Z(t)) =
c(s − t). Show that for bounded Borel sets A and B,

E[ξ(A)] = σ2�(A),

cov(ξ(A), ξ(B)) = 2
∫

A

∫
B

c2(u − t) dudt.

6.1.4 Random measure and shot noise. Denote by {xi} the points of a stationary
Poisson process on R with rate parameter ν, and let {Yj: j = 0, ±1, . . .} de-
note a sequence of i.i.d. r.v.s independent of {xj}. Let the function g be as
in Example 6.1(d). Investigate conditions under which the formally defined
process

Y (t) =
∑
xj≤t

Yjg(t − xj)

is indeed well defined (e.g. by demanding that the series is absolutely conver-
gent a.s.). Show that sufficient conditions are that
(a) E|Y | < ∞, or else
(b) g(·) is nonincreasing on R+ and there is an increasing nonnegative function

g̃(·) with g̃(t) → ∞ as t → ∞ such that
∫∞
0

g̃(t)g(t) dt < ∞ and whose
inverse g̃−1(·) satisfies Eg̃−1(|Y |) < ∞ [see also Daley (1981)].

6.1.5 Write down conditions, analogous to (6.1.13), for a measurable family of ran-
dom measures, and establish the analogue of Proposition 6.1.II for random
measures. Frame sufficient conditions for the existence of a two-stage process
similar to those in Lemma 6.1.III and Corollary 6.1.IV but using the Laplace
functional in place of the p.g.fl.

6.1.6 Let ξ be a random measure on X = Rd. For a nonnegative bounded mea-
surable function g, define G(A) =

∫
A

g(x) �(dx) (A ∈ BX ), where � denotes
Lebesgue measure on Rd, and

η(A) =
∫

X
G(A − x) ξ(dx).

(a) Show that η(A) is an a.s. finite-valued r.v. for bounded A ∈ BX and that
it is a.s. countably additive on BX . Then, the existence theorems in Chap-
ter 9 can be invoked to show that η is a well-defined random measure.

(b) Show that if ξ has moment measures up to order k, so does η, and find
the relation between them. Verify that the kth moment measure of η is
absolutely continuous with respect to Lebesgue measure on (Rd)(k).

(c) Denoting the characteristic functionals of ξ and η by Φξ[·] and Φη[·], show
that, for f ∈ BM+(X ),

h(x) =
∫

X
f(y)g(y − x) dy

is also in BM+(X ), and Φη[f ] = Φξ[h].
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6.1.7 (Continuation). By its very definition, η is a.s. absolutely continuous with
respect to Lebesgue measure, and when ξ is completely random, its density

Y (t) ≡
∫

X
g(t − x) ξ(dx)

is called a linear process. [The shot-noise process noted in (6.1.12) is an
example; for other references, see e.g. Westcott (1970).] Find the characteristic
functional of Y when ξ is a stationary gamma random measure.

6.2. Cox (Doubly Stochastic Poisson) Processes

The doubly stochastic Poisson process—or, more briefly, the Cox process, so
named in recognition of its appearance in a seminal paper of Cox (1955)—is
obtained by randomizing the parameter measure in a Poisson process. It is
thus a direct generalization of the mixed Poisson process in Example 6.1(e).
We first give a definition, then discuss the consequences of the structural
features it incorporates, and finally in Proposition 6.2.II give a more mathe-
matical definition together with a list of properties.

Definition 6.2.I. Let ξ be a random measure on X . A point process N on
X is a Cox process directed by ξ when, conditional on ξ, realizations of N are
those of a Poisson process N(· | ξ) on X with parameter measure ξ.

We must check that such a process is indeed well defined. The probabilities
in the Poisson process N(· | ξ) are readily seen to be measurable functions
of ξ; for example, P (A; n) = [ξ(A)]ne−ξ(A)/n! is a measurable function of
ξ(A), which in turn is a measurable function of ξ as an element in the metric
spaceM#

X of boundedly finite measures on X ; hence, we can apply Corollary
6.1.IV(a) and take expectations with respect to the distribution of ξ to obtain
a well-defined ‘mixed’ point process on X .

The finite-dimensional (i.e. fidi) distributions are easily obtained in terms
of the distributions of the underlying directing measure ξ and are all of mixed
Poisson type. Thus, for example,

P (A; k) = Pr{N(A) = k} = E
(

[ξ(A)]k

k!
e−ξ(A)

)
=
∫ ∞

0

xk

k!
e−x FA(dx),

(6.2.1)
where FA is the distribution function for the random mass ξ(A).

The factorial moment measures of the Cox process turn out to be the ordi-
nary moment measures of the directing measure; this is because the factorial
moment measures for the Poisson process are powers of the directing measure.
Thus, denoting by µk and γk the ordinary moment and cumulant measures
for ξ, we have for k = 2,

M[2](A×A) = E
(
E[N(A)(N(A) − 1) | ξ]

)
= E
(
[ξ(A)]2

)
= µ2(A×A) ,
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and similarly for the covariance measures

C[2](A×A) = γ2(A× A) .

The algebraic details are most easily handled via the p.g.fl. approach out-
lined in Corollary 6.1.IV(b). As a function of the parameter measure ξ, the
p.g.fl. of the Poisson process can be written, for h ∈ V(X ), as

G[h | ξ] = exp
(
−
∫

X [1− h(x)] ξ(dx)
)
. (6.2.2)

For fixed h, this is a measurable function of ξ as an element of MX . Thus,
the family of p.g.fl.s (6.2.2) is a measurable family in the sense of Corollary
6.1.IV(b), which implies that we can indeed construct the p.g.fl of a point pro-
cess by taking expectations in (6.2.2) with respect to any probability measure
for ξ inMX . The expectation

E
[

exp
(
−
∫

X
[1− h(x)] ξ(dx)

)]
,

however, can be identified with the Laplace functional [see (6.1.8)] of the
random measure ξ, evaluated at the function [1− h(x)]. This establishes the
first part of the proposition below. The remaining parts are illustrated above
for particular cases and are left for the reader to check in general.

Proposition 6.2.II. Let ξ be a random measure on the c.s.m.s. X and Lξ

its Laplace functional. Then, the p.g.fl. of the Cox process directed by the
random measure ξ is given by

G[h] = E
[
exp
( ∫

X [h(x) − 1] ξ(dx)
)]

= Lξ[1− h]. (6.2.3)

The fidi distributions of a Cox process are of mixed Poisson type, as in (6.2.1);
its moment measures exist up to order n if and only if the same is true for ξ.
When finite, the kth factorial moment measure M[k] for the Cox process equals
the corresponding ordinary moment measure µk for ξ. Similarly, the kth
factorial cumulant measure C[k] of the Cox process equals the corresponding
ordinary cumulant measure γk for ξ.

Note that this last result implies that the second cumulant measure of a Cox
process is nonnegative-definite (see Chapter 8). Also, for bounded A ∈ BX ,

varN(A) = M[1](A) + C[2](A×A)

= M[1](A) + var
(
ξ(A)

)
≥ M[1](A) = EN(A),

so a Cox process, like a Poisson cluster process, is overdispersed relative to
the Poisson process.

Example 6.2(a) Shot-noise or trigger process [see Example 6.1(d) and Lowen
and Teich (1990)]. We continue the discussion of this example by supposing
the (random) function

λ(t) =
∑

i:xi<t

Yig(t− xi) (6.2.4)
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to be the density of the random measure directing the observed Poisson pro-
cess. In more picturesque language, the epochs {xi} are trigger events with
respective sizes (or weights) {Yi} that decay according to the function g. Note
that in the definition it is not necessary to assume that g decays monotoni-
cally: integrability is sufficient (see also Exercise 6.1.4).

Now we use the generating function formalism to obtain some elementary
properties of the shot-noise process. Conditional on the sequence {(xi, Yi)},
we can appeal to (6.2.2) and write

G[h | {(xi, Yi)} ] = exp

(∑
i

−Yi

∫ ∞

xi

[1− h(t)] g(t− xi) dt

)
. (6.2.5)

Write φ(θ) = E(e−θY1) for the common Laplace–Stieltjes transform of the
{Yi}. Taking expectations in (6.2.5) first with respect to {Yi} and then with
respect to {xi}, we have for the p.g.fl. of the process

G[h] = E

(∏
i

φ
( ∫∞

xi
[1− h(t)] g(t− xi) dt

))

= exp

(
ν

∫
R

[
φ
( ∫∞

x [1− h(t)] g(t− x) dt
)
− 1
]
dx

)
. (6.2.6)

By taking logarithms in this expression and expanding, it follows that the
point process has factorial cumulant measures existing to as many orders as
the r.v.s Yi have finite moments, as is consistent with Proposition 6.2.II. It also
follows that these moment measures are absolutely continuous with densities

m1 = νµ1

∫ ∞

0
g(u) du,

c[2](t1, t2) = c̆[2](t1 − t2) ≡ c̆[2](t′1) = νµ2

∫ ∞

0
g(u)g(t′1 + u) du,

c[k](t1, . . . , tk) = c̆[k](t′1, . . . , t
′
k−1)

= νµk

∫ ∞

0
g(u)g(t′1 + u) · · · g(t′k−1 + u) du,

where t′j = tj − tk (j = 1, . . . , k − 1) and µk = E(Y k). These relations are
analogues of Campbell’s formulae in the theory of shot noise (see references
preceding Example 6.1(c)), while the first two illustrate the proposition insofar
as the right-hand sides represent the ordinary cumulants of the directing shot-
noise process. The fact that they are absolutely continuous reflects the same
property in the realizations of ξ.

The representation (6.2.6) shows that the process can equally be regarded
as a Neyman–Scott Poisson cluster process [see Example 6.3(a)]. The fact
that the shot-noise process and the associated Neyman–Scott process have
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the same p.g.fl. means that they are identical as point processes: no mea-
surements on the point process can distinguish the clustering and doubly
stochastic (or Cox) interpretations. This ambiguity of interpretation is an
extension of the corresponding ambiguity concerning the dual interpretation
of contagious distributions alluded to in Exercise 1.2.3. The possibility of
such dual interpretations is not restricted to cluster processes: for example,
Exercise 6.2.1 sketches a nontrivial characterization of the class of renewal
processes that can be represented as Cox processes.

Example 6.2(b) Boson processes (Macchi, 1971a, 1975) [see Example 5.4(c)].
In optical problems concerning light beams of low density, the particulate
aspects of light are important, and the emission or reception of individual
photons (or more generally bosons) can be treated as a point process in time,
or space, or both. A standard approach to modelling this situation is to treat
the photon process as a Cox process directed by the fluctuating intensity of the
light beam, with this latter phenomenon modelled as the squared modulus of
a complex Gaussian process. Thus, for the (density of the) random intensity,
we take the function

λ(t) = λ|X(t)|2 (λ > 0), (6.2.7)

where X(·) is a complex Gaussian process with zero mean and complex co-
variance function C(s, t). The process λ(·) is similar to the quadratic ran-
dom measure discussed in Example 6.1(c) with appropriate attention given
to the conventions regarding a complex Gaussian process. These require that
X(t) = U(t) + iV (t), where U(·) and V (·) are real Gaussian processes such
that

E
(
U(s)U(t)

)
= E
(
V (s)V (t)

)
= C1(s, t),

E
(
U(s)V (t)

)
= −E

(
U(t)V (s)

)
= C2(s, t),

C(s, t) = E
(
X(s)X(t)

)
= 2
(
C1(s, t) + iC2(s, t)

)
.

Here it is to be understood that C1 is real, symmetric, and nonnegative-
definite, while C2 is antisymmetric (so, in particular, C2(s, s) = 0, and
E[X(s)X(t)] = 0 for all s, t).

The moments of the process λ(·) are given by a classical result concerning
the even moments of a complex Gaussian process (see e.g. Goodman and
Dubman, 1969)

E
(
X(s1) · · ·X(sk)X(t1) · · ·X(tk)

)
=

+
∣∣∣∣∣∣∣
C(s1, t1) · · · C(s1, tk)

...
. . .

...
C(sk, t1) · · · C(sk, tk)

∣∣∣∣∣∣∣
+

= C+
 s1, . . . , sk

t1, . . . , tk

 , (6.2.8)

where the permanent per B ≡ +|B|+ of a matrix B contains the same terms as
the corresponding determinant detB but with constant positive signs for each
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product of matrix elements in place of the alternating positive and negative
signs of the determinant, so, for example,

+∣∣∣∣ a b
c d

∣∣∣∣+ = ad + bc.

It can be shown (see Minc, 1978) that for any nonnegative-definite Hermitian
matrix B, perB ≥ det B.

Equations (6.2.7) and (6.2.8), taken together with Proposition 6.2.I, show
that the factorial moment densities for the boson process are given by

m[k](t1, . . . , tk) = E
(
λ(t1) · · ·λ(tk)

)
= λk C+

 t1, . . . , tk
t1, . . . , tk

 . (6.2.9)

This result paves the way for a discussion that exactly parallels the discussion
of the fermion process of Example 5.4(c). In place of the expansion of the
Fredholm determinant d(λ) used there, we have here an analogous expansion
of the function

d+(λ) = 1 +
∞∑

k=1

λk

k!

∫
A

· · ·
∫

A

C+
u1, . . . , uk

u1, . . . , uk

du1 · · · duk ,

where as before the observation region A is a closed, bounded set in a gen-
eral Euclidean space Rd. Corresponding to the expression (5.4.18) for the
Fredholm minor is the expression

λkR+
−λ

(
x1, . . . , xk

y1, . . . , yk

)
=

1
d+(λ)

{
λkC+

x1, . . . , xk

y1, . . . , yk


+ λk

∞∑
j=1

(−λ)j

∫
A

· · ·
∫

A

C+
x1, . . . , xk, u1, . . . , uj

y1, . . . , yk, u1, . . . , uj

 du1 · · ·duj

}
.

(6.2.10)

This shows that the Janossy measures for the photon process have densities

jk(x1, . . . , xk) = λkd+(λ)R+
−λ

(
x1, . . . , xk

x1, . . . , xk

)
(k = 1, 2, . . .). (6.2.11)

Macchi (1971a) established (6.2.11) directly by evaluating the expectation

jk(x1, . . . , xk) = E
(

λ(x1) · · ·λ(xk) exp
(
−
∫

A

λ(u) du

))
[see also Grandell (1976) and Exercises 6.2.5–6 for further discussion].
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Example 6.2(c) A pseudo-Cox process: the Gauss–Poisson process. The
Gauss–Poisson process will be introduced as a two-point cluster process in
Example 6.3(d) in the next section. Here we wish only to point out that the
p.g.fl. G[h] in (6.3.30) for such a process, if the measures Q1 and Q2 there are
absolutely continuous with respect to Lebesgue measure, equals

exp
(∫

X
[1− h(x)] m(x) dx − 1

2

∫
X

∫
X

[1− h(x)] [1− h(y)] c(x, y) dx dy

)
,

where, in the notation of (6.3.30), in which Q2(·) is symmetric,

m(x) dx = Q1(dx) + 2Q2(dx×X ) and c(x, y) dx dy = 2Q2(dx× dy).

This expression is identical in form with the expression L∗[1 − h] for the
Laplace functional of a Gaussian process, {X(t): t ∈ R} say, with mean m(t)
= EX(t) and covariance c(t, u) = cov(X(t), X(u)), provided only that the
function c(t, u) is positive-definite. On the other hand, the process is not
an example of the construction described in Definition 6.2.I because, a.s., a
realization of a Gaussian process takes both positive and negative values, so
the notion of a Poisson process with parameter measure with density equal
to the realization of such a Gaussian process is void. Newman (1970) coined
the name ‘Gauss–Poisson’ because of this formal property of the p.g.fl.

This example also serves to illustrate that while the conditions of 6.2.II
are sufficient for a functional L∗[1 − h] to represent the p.g.fl. of a point
process, they are not necessary because the functional displayed at the outset
of Example 6.2(c) is not the Laplace functional of a random measure.

Exercises and Complements to Section 6.2
6.2.1 Let {In} = {(an, bn]: n = 1, 2, . . .} be a sequence of random intervals on R+ of

lengths Xn = bn − an > 0 a.s. and having gaps Yn = an+1 − bn > 0 a.s., with
{Xn} i.i.d. exponential r.v.s, {Yn} i.i.d. r.v.s independent of {Xn} and with
finite mean, and a1 = 0. Let a Cox process N on R+ be directed by a random
measure ξ, which has density λ on the set

⋃∞
n=1 In and zero elsewhere. Show

that N(·) + δ0(·) is a renewal process.
[The points of the set {an, bn: n = 1, 2, . . .} are those of an alternating renewal
process with exponential lifetimes for one of the underlying lifetime distribu-
tions. Kingman (1964) showed, effectively, that any stationary Cox process
that is also a stationary renewal process must be directed by the stationary
version of the random measure described.]

6.2.2 Discrete boson process. Let C ≡ (cij) be a (real or complex) covariance ma-
trix. The discrete counterpart of Example 5.4(c) and its associated exercises
is the mixed Poisson process obtained by taking N(i) (i = 1, . . . , K) to be
Poisson with random parameter λ|Zi|2, where Z = (Z1, . . . , ZK) has the mul-
tivariate normal distribution N(0, C). For K = 1, this reduces to a geometric
distribution with p.g.f. P (1+ η) = 1/(1−λc211η). For K > 1, the multivariate
p.g.f. has the form

P (1 + η1, . . . , 1 + ηK) =
1

det(I − λDηC)
, (6.2.12)

where Dη = diag(η1, . . . , ηK).
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The factorial moment relations corresponding to (6.2.9) may be written
down as follows. For any k > 0, let r1, . . . , rK be nonnegative integers such
that r1+· · ·+rK = k; here, rj is to be interpreted as the number of repetitions
of the index j in defining the factorial moment

m[k](i1, . . . , ik) = E(N(1)[r1] · · · N(K)[rK ]),

where the set (i1, . . . , ik) consists of the index j repeated rj times (j =
1, . . . , K). We then have

m[k](i1, . . . , ik) = λkC+
 i1, . . . , ik

i1, . . . , ik

 . (6.2.13)

6.2.3 (Continuation). The relations (6.2.12) and (6.2.13) of Exercise 6.2.2 are to-
gether equivalent to the identity for the reciprocal of the characteristic poly-
nomial

1
det(I − λDηC)

= 1 +
∞∑

k=1

λk

k!

∑
perm

C+
 i1, . . . , ik

i1, . . . , ik

 ηi1 · · · ηik ,

where the inner summation extends over all distinct permutations of k indices
from the set i1, . . . , ik allowing repetitions [this is related to the Master The-
orem of MacMahon (1915, Sections 63–66); see also Vere-Jones (1984, 1997)].

6.2.4 (Continuation). Using (6.2.12), we have also

P (z1, . . . , zK) = d+(λ) det(I − λDzR−λ),

where R−λ = C(I + λC)−1 and d+(λ) = det(I + λC). From this p.g.f.,
we obtain the multivariate probabilities in the form (using the notation of
preceding exercises)

πk(i1, . . . , ik) = Pr{N(j) = rj (j = 1, . . . , K)}

= λkd+(λ) ·
R+

−λ

(
i1, . . . , ik
i1, . . . , ik

)
r1! · · · rk!

.

6.2.5 (Continuation). Derive the results of Example 6.2(b) by a suitable passage to
the limit of the last three exercises.
[An alternative route to these results uses the expansion of Z(t) in an orthog-
onal series over A: see Macchi (1971a) and Grandell (1976).]

6.2.6 (Continuation). When C(s, t) = σ2e−α|s−t| in Example 6.2(b), show that with
β =

√
α(α − 2σ2) ,

Pr{N(0, T ] = 0} = eαT ( cosh βT + (α + 2σ2)β−1 sinh βT )−1
.

6.3. Cluster Processes
Cluster processes form one of the most important and widely used models
in point process studies, whether applied or theoretical. They are natural
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models for the locations of objects in the plane or in three-dimensional space,
in a remarkable range of contexts: for example, plants, molecules, protozoa,
human settlements, stars, galaxies, and earthquake epicentres. Along the
time axis, they have been used to model photoelectric emissions, volcano
eruptions, arrivals and departures at queueing systems, nerve signals, faults
in computer systems, and many other phenomena. The cluster mechanism is
also a natural way to describe the locations of individuals from consecutive
generations of a branching process, an application with unexpectedly rich
mathematical structure as well as its obvious practical applications.

The intuitive motivation of such processes involves two components: the
locations of clusters and the locations of elements within a cluster. The su-
perposition of the latter constitutes the ‘observed’ process. To model the
cluster elements, we specify a countable family of point processes N(· | yi)
indexed by the cluster centres {yi} (a ‘cluster field’ in [MKM]). To model the
cluster locations, we suppose there is given a process Nc of cluster centres,
often unobserved, whose generic realization consists of the points {yi} ⊂ Y .
More often than not, we have Y = X ; it is useful to preserve the notational
distinction as a reminder of the structure of the process. The centres yi act as
the germs (= ancestors in the branching process context) for the clusters they
generate; it is supposed in general that there are no special features attaching
to the points of a given cluster that would allow them to be distinguished
from the points in some other cluster. More formally, we have the following
definition.

Definition 6.3.I. N is a cluster process on the c.s.m.s. X , with centre process
Nc on the c.s.m.s. Y and component processes the measurable family of point
processes {N( · | y): y ∈ Y}, when for every bounded A ∈ BX ,

N(A) =
∫

Y
N(A | y) Nc(dy) =

∑
yi∈Nc(·)

N(A | yi) <∞ a.s. (6.3.1)

The definition requires the superposition of the clusters to be almost surely
boundedly finite. There is, however, no requirement in general that the indi-
vidual clusters must themselves be a.s. finite [i.e. the condition N(X | y) <∞
a.s. is not necessary], although it is a natural constraint in many examples.
A general cluster random measure can be introduced in the same way by al-
lowing the component processes to be random measures (see Exercise 6.3.1).

For the remainder of this section, we require the component processes to
be mutually independent. We shall then speak of the component processes
as coming from an independent measurable family and thereby defining an
independent cluster process. In this definition, it is to be understood that
multiple independent copies of N(· | y) are taken when Nc{y} > 1. If Y = X
(i.e. the cluster centre process and the component processes are all defined
on the same space X and X admits translations), then the further constraint
that the translated components N(A− y | y) are identically distributed may
be added, thus producing a natural candidate for a stationary version of the
process.
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Conditions for the existence of the resultant point process are not so easily
obtained as for the Cox process, even though the superposition of the cluster
member processes involves only operations that are clearly measurable. The
difficulty revolves around the finiteness requirement embodied in equation
(6.3.1). The number of clusters that are potentially able to contribute points
to a given bounded set soars as the dimension of the state space increases,
imposing delicate constraints that have to be met by any proposed existence
theorem. For independent cluster processes, the finiteness condition can be
rephrased somewhat more formally as follows.

Lemma 6.3.II. An independent cluster process exists if and only if, for any
bounded set A ∈ BX ,∫

Y
pA(y) Nc(dy) =

∑
yi∈Nc

pA(yi) <∞ Πc-a.s., (6.3.2)

where pA(y) = Pr{N(A | y) > 0} for y ∈ Y and A ∈ BX , and Πc is the
probability measure for the process of cluster centres.

Proof. The sum (6.3.2) is required to converge a.s. as part of the definition
of a cluster process. The converse, for given Nc, is an application of the second
Borel–Cantelli lemma to the sequence of events

Ei = {cluster i contributes at least one point to the set A}.

The condition of Lemma 6.3.II can alternatively be rephrased in terms
of generating functionals (see Exercise 6.3.2). When the components of the
process are stationary (i.e. their cluster centre process is stationary and the
distribution of the cluster members depends only on their positions relative
to the cluster centre), a simple sufficient condition for the resultant cluster
process to exist is that the mean cluster size be finite; even in the Poisson
case, however, this condition is not necessary (see Exercise 6.3.5 for details).

The moments are easier to handle. Thus, taking expectations conditional
on the cluster centres yields

E[N(A) | Nc] =
∑

yi∈Nc

M1(A | yi) =
∫

Y
M1(A | y) Nc(dy),

where M1(· | y) denotes the expectation measure of the cluster member pro-
cess with centre at y, assuming this latter exists. From the assumption that
the cluster member processes form a measurable family, it follows also that
whenever M1(A | y) exists, it defines a measurable kernel (a measure in A for
each y and a measurable function of y for each fixed Borel set A ∈ BX ). Then
we can take expectations with respect to the cluster centre process to obtain

E[N(A)] =
∫

Y
M1(A | y) Mc(dy), (6.3.3)

finite or infinite, where Mc(·) = E[Nc(·)] is the expectation measure for the
process of cluster centres. From this representation, it is clear that the first-
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moment measure of the resultant process exists if and only if the integral in
(6.3.3) is finite for all bounded Borel sets A.

Similar representations hold for the higher-order moment measures. In
the case of the second factorial moment measure, for example, we need to
consider all possible ways in which two distinct points from the superposition
of clusters could fall into the product set A×B (A, B ∈ BX ). Here there are
two possibilities: either both points come from the same cluster or they come
from distinct clusters. Incorporating both cases, supposing the cluster centre
process is given, we obtain

E[N [2](A×B | Nc)] =
∫

Y
M[2](A×B | y) Nc(dy)

+
∫

Y(2)
M1(A | y1)M1(B | y2) N [2]

c (dy1 × dy2),

where the superscript in N [2] denotes the process of distinct pairs from N and
in the second integral we have used the assumption of independent clusters.
Taking expectations with respect to the cluster centre process, we obtain for
the second factorial moment of the cluster process

M[2](A×B) =
∫

Y
M[2](A×B | y) Mc(dy)

+
∫

Y(2)
M1(A | y1)M1(A | y2) Mc

[2](dy1 × dy2). (6.3.4)

Again, the second factorial moment measure of the cluster process exists if
and only if the component measures exist and the integrals in (6.3.4) converge.
Restated in terms of the factorial cumulant measure, equation (6.3.4) reads

C[2](A×B) =
∫

Y(2)
M(A | y1) M(B | y2) Cc

[2](dy1 × dy2)

+
∫

Y
M[2](A×B | y) Mc(dy). (6.3.5)

Many of these relationships are derived most easily, if somewhat mechani-
cally, from the portmanteau relation for the probability generating function-
als, which takes the form, for h ∈ V(X ) and exploiting the independent cluster
assumptions,

G[h] = E
(
G[h | Nc]

)
= E

[
exp
(
−
∫

Y

(
− log Gm[h | y]

)
Nc(dy)

)]
= Gc

[
Gm[h | · ]

]
, (6.3.6)

where Gm[h | y] for h ∈ V(X ) is the p.g.fl. of N(· | y), and

G[h | Nc] =
∏

yi∈Nc

Gm[h | yi] = exp
[
−
∫

Y

(
− log Gm[h | y]

)
Nc(dy)

]
(6.3.7)
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is the conditional p.g.fl. of N given Nc. The a.s. convergence of the infinite
product in (6.3.7) is equivalent to the a.s. convergence of the sum in Lemma
6.3.II by Exercise 6.3.2. The measurable family requirements of the family
of p.g.fl.s for the cluster centres follow from the initial assumptions for the
process. Thus, the p.g.fl. representation is valid whenever the cluster process
exists.

One class of cluster processes occurs so frequently in applications, and is so
important in the theory, that it warrants special attention. In this class, (1◦)
the cluster centres are the points of a Poisson process, and (2◦) the clusters
are independent and finite with probability 1. Whenever condition (1◦) holds,
we speak of a Poisson cluster process. The basic existence and moment results
for Poisson cluster processes are summarized in the proposition below.

Proposition 6.3.III. Suppose that the cluster centre process is Poisson with
parameter measure µc(·) and that the cluster member processes form an in-
dependent measurable family. Then, using the notation above,
(i) a necessary and sufficient condition for the existence of the resultant

process is the convergence for each bounded A ∈ BX of the integrals∫
Y

pA(y) µc(dy); (6.3.8)

(ii) when the process exists, its p.g.fl. is given by the expression

G[h] = exp
(
−
∫

Y

(
1−Gm[h | y]

)
µc(dy)

)
; (6.3.9)

(iii) the resultant process has first and second factorial moment measures and
second factorial cumulant measure given, respectively, for A, B ∈ BX , by

M1(A) = M[1](A) =
∫

Y
M[1](A | y) µc(dy), (6.3.10)

M[2](A×B) =
∫

Y
M[2](A×B | y) µc(dy) + M1(A)M1(B), (6.3.11)

C[2](A×B) =
∫

Y
M[2](A×B | y) µc(dy); (6.3.12)

(iv) when X = Rd, the distribution function F of the distance from the origin
to the nearest point of the process is given by

1− F (r) = exp
(
−
∫

Y
pSr(0)(y) µc(dy)

)
, (6.3.13)

where Sr(0) is the sphere in X = Rd of radius r and centre at 0.

Proof. Since E[Nc(dy)] = Mc(dy) = µc(dy) for a Poisson cluster process,
condition (6.3.8) implies the a.s. convergence of (6.3.2) and hence the exis-
tence of the process. If the process exists, then since for h̄ ∈ V(Y), Gc[h̄] =
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exp
(
−
∫
[1 − h̄(y)] µc(dy)

)
, equation (6.3.9) is just the appropriate special

form of (6.3.6) with h̄(y) = Gm[h | y] for h ∈ V(X ) and so it holds. Putting
h(x) = 1− IA(x), the integral in (6.3.9) reduces to

1−Gm[1− IA(·) | y] = pA(y) ,

from which the necessity of (6.3.8) is obvious.
The moment relations are just restatements of equations (6.3.3–5) for the

special case of the Poisson process, where M c(dy) = µc(dy) and C[2](dy1 ×
dy2) ≡ 0. The final equation (6.3.13) is a consequence of the fact that if R is
the distance from the origin to the nearest point of the process, then R > r
if and only if the sphere Sr(0) contains no point of the process, which yields
(6.3.13) as the special case of (6.3.9) with h(x) = 1− ISr(0)(x).

If X = Y = Rd and the process is stationary, and the factorial measures
entering into equations (6.3.10–12) have densities, then the latter equations
simplify further. In this case, the cluster centre process reduces to a Poisson
process with constant intensity µc, say, and the first-moment density for the
cluster member process can be written

m1(x | y) = m1(x− y | 0) ≡ ρ1(x− y), say.

Similarly, the second factorial moment and cumulant densities can be written

m[2](x1, x2 | y) = m[2](x1 − y, x2 − y) ≡ ρ[2](x1 − y, x2 − y),

c[2](x1, x2 | y) = c[2](x1 − y, x2 − y) ≡ γ[2](x1 − y, x2 − y).

Substituting, we obtain simplified forms for the corresponding densities of the
cluster process:

m = µc

∫
X

ρ1(u) du = µcM1(X | 0) = µcE[Nm(X | 0)],

m̆[2](u) = m[2](y, y + u) = µc

∫
X

ρ[2](w, u + w) dw + m2, (6.3.14)

c̆[2](u) = µc

∫
X

ρ[2](w, u + w) dw.

A more systematic treatment of such reduced densities m̆[2] and c̆[2] is given
in Section 8.1.

The particularly simple form of these expressions means that it is often
possible to obtain explicit expressions for the second moments of the counting
process in such examples. Note also that since the cumulant density c̆[2](u)
is everywhere nonnegative, the resultant process is generally overdispersed
relative to a Poisson process with the same first-moment measure (i.e. it shows
greater variance in the number of counts). The alternative terms in the first
line of (6.3.14) illustrate the sufficient condition for the existence of the process
mentioned earlier and in Exercise 6.3.5: if the mean cluster size M1(X | 0)
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is finite, then the first-moment measure of the resultant process exists, and a
fortiori the resultant process itself exists.

Other aspects of the process, such as interval properties, are generally less
easy to obtain. Nevertheless, some partial results may be obtained in this
direction via equation (6.3.13). Suppose that X = Y = R. Then, from
(6.3.13) but using the half-interval (0, t) in place of the ‘sphere’ (−t, t), the
survivor function S(t) [see below (2.1.3)] for the length of the interval from 0
to the first point of the process in R+ is given by

S(t) = exp
(
−
∫

R
p(t | y) µc(dy)

)
, (6.3.15)

where p(t | y) = p(0,t)(y), a special case of the function pA(y) in (6.3.2). Tak-
ing logarithms of (6.3.15) and differentiating, we see that the hazard function
r(t) for this first interval is given by

r(t) = −
∫

R

∂p(t | y)
∂t

µc(dy) .

When the process is stationary, a further differentiation gives the hazard func-
tion q(·) of the distribution of the interval between two consecutive points of
the process, as in Exercise 3.4.2.

In higher dimensions, a similar approach may be used for the nearest-
neighbour distributions, although explicit expressions here seem harder to
determine (see Chapter 15).

In all of Examples 6.3(a)–(e) below, the spaces X and Y of Definition 6.3.I
are the same.

Example 6.3(a) The Neyman–Scott process: centre-satellite process; process
of i.i.d. clusters (Neyman and Scott, 1958, 1972; Thompson, 1955; Warren,
1962, 1971). Suppose that the individual cluster members are independently
and identically distributed; that is, we are dealing with i.i.d. clusters as in
Section 5.1 [see also Examples 5.3(a) and 5.5(a)]. Write F (dx | y) for the
probability distribution of the cluster members with cluster centre at y and
Q(z | y) for the p.g.f. of the total cluster size (assumed finite). Then, the clus-
ter member p.g.fl. is given by (5.5.12), which in the notation above becomes

Gm[h | y] = Q

(∫
X

h(x) F (dx | y)
∣∣∣ y), (6.3.16)

while the corresponding factorial measures take the form

M[k](dx1 × · · · × dxk | y) = µ[k](y)
k∏

i=1

F (dxi | y), (6.3.17)

where µ[k](y) is the kth factorial moment for the cluster size distribution when
the cluster centre is at y. Note that if F is degenerate at y, we obtain the
compound Poisson process discussed in Example 2.1.10(b) and again in the
next section, while if every cluster has exactly one point [so Q(z | y) = z], we
have random translations, first mentioned above at Exercise 2.3.4(b).
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In many practical applications with X = Rd, the cluster centre process
is stationary Poisson at rate µc, Q(z | y) and µ[k](y) are independent of y,
and F (dx | y) is a function of the vector distance x− y alone and has density
function f(x | y) = f̆(x − y) = (d/dx)F̆ (x − y). With these simplifying
assumptions, the resultant p.g.fl. takes the compact form

G[h] = exp
{

µc

∫
Rd

[
Q

(∫
Rd

h(y + x) F̆ (dx)
)
− 1
]

dy

}
, (6.3.18)

while from the densities in (6.3.14), the mean rate and second factorial cumu-
lant measures for the resultant process are given by m = µcµ[1] and

c̆[2](u) = µcµ[2]

∫
Rd

f̆(y + u) f̆(y) dy, (6.3.19)

respectively. Also, for the survivor function S(t) of the interval to the first
point in the case d = 1, we obtain

− logS(t) = µc

∫
R

[
1−Q

(
1− F̆ (y + t) + F̆ (y)

)]
dy (6.3.20)

with a pleasing simplification when F̆ (·) is the exponential distribution (see
Exercise 6.3.7). Exercise 6.3.10 sketches a two-dimensional extension.

Example 6.3(b) Bartlett–Lewis model: random walk cluster process; Poisson
branching process (Bartlett, 1963; Lewis, 1964a, b). In this example, we take
X = Y = Rd and suppose that the points in a cluster are the successive end
points in a finite random walk, starting from and including the cluster centre.
The special case where the random walk has unidirectional steps in R1 (i.e.
forms a finite renewal process), was used as a road traffic model in Bartlett
(1963) and studied in depth by Lewis (1964a) as a model for computer failures.

A closed-form expression for Gm[h | y] does not appear to exist, although
for the special case where both the step lengths and the number of steps are
independent of the positions of the cluster centre, it can be represented in the
form

h(y)
(

q0 + q1

∫
X

h(y + x1) F (dx1)

+ q2

∫
X (2)

h(y + x1)h(y + x1 + x2) F (dx1) F (dx2) + · · ·
)

,

(6.3.21)

where qj is the probability that the walk terminates after j steps and F is the
common step-length distribution.

Assuming also a constant intensity µc for the Poisson process of cluster
centres, the mean density takes the form

m = µc

∞∑
j=0

(j + 1)qj = µc(1 + m[1]), (6.3.22)

while the reduced form for the second factorial cumulant measure is given by
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C̆[2](du) = µc

∞∑
j=1

qj

j∑
k=1

(j − k + 1)
(
F k∗(du) + F k∗(−du)

)
. (6.3.23)

Expressions for the nearest point and nearest-neighbour distance can be
obtained at least for the case X = R and unidirectional F (·). Under these
conditions, the probability p(t | y) that a cluster with centre at y has a point
in the interval (0, t) is given by

p(t | y) =



0 for y > t,
1 for 0 ≤ y ≤ t,

∞∑
i=0

ri+1

|y|∫
0

[
F (|y|+ t− x)− F (|y| − x)

]
dF i∗(x) for y < 0,

where ri =
∑∞

j=1 qj . Substituting in (6.3.17) and simplifying, we obtain for
the log survivor and hazard functions

− logS(t) = µct + µcm[1]

∫ t

0
[1− F (x)] dx = mt− µcm[1]

∫ t

0
F (x) dx,

(6.3.24a)
r(t) = µc + µcm[1]

(
1− F (t)

)
, (6.3.24b)

where 1 + m[1] = m/µc as in (6.3.22) (see also Exercise 6.3.9).

The next model, the Hawkes process, figures widely in applications of point
processes to seismology, neurophysiology, epidemiology, and reliability. It is
also an important model from the theoretical point of view and will figure
repeatedly in later sections of this book. One reason for its versatility and
popularity is that it combines in the one model both a cluster process repre-
sentation and a simple conditional intensity representation, which is moreover
linear. It comes closest to fulfilling, for point processes, the kind of role that
the autoregressive model plays for conventional time series. However, the class
of processes that can be approximated by Hawkes processes is more restricted
than the class of time series models that can be approximated by autore-
gressive models. In particular, its representation as a cluster process means
that the Hawkes process can only be used in situations that are overdispersed
relative to the Poisson model.

In introducing the model, Hawkes (1971a, b, 1972) stressed the linear rep-
resentation aspect from which the term ‘self-exciting’ derives. Here we derive
its cluster process representation, following Hawkes and Oakes (1974), mainly
because this approach leads directly to extensions in higher dimensional spaces
but also because it simplifies study of the model.

Example 6.3(c) Hawkes process: self-exciting process; infectivity model [see
also Examples 6.4(c) (marked Hawkes process), 7.2(b) (conditional intensity
representation), 8.2(e) (Bartlett spectrum), 8.5(d) (mutually exciting point
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processes) and 8.3(c) (linear prediction formulae)]. The points {xi} of a
Hawkes process are of two types: ‘immigrants’ without extant parents in
the process, and ‘offspring’ that are produced by existing points. An evolu-
tionary construction of the points is as follows. Immigrants {yj}, say, arrive
according to a Poisson process at constant rate µc, while the offspring arise as
elements of a finite Poisson process that is associated with some point already
constructed. Any point of the process, located at x′, say, has the potential
to produce further points whose locations are those of a (finite) Poisson pro-
cess with intensity measure µ(A − x′); we assume that µ(·) has total mass
ν ≡ µ(X ) < 1 and that all these finite Poisson processes are mutually in-
dependent and, given the point that generates them, identically distributed
(modulo the shift as noted) and independent of the immigrant process as
well. Consequently, each immigrant has the potential to produce descendants
whose numbers in successive generations constitute a Galton–Watson branch-
ing process with Poisson offspring distribution whose mean is ν. Since ν < 1,
this branching process is subcritical and therefore of finite total size with
mean 1/(1− ν) <∞ if we include the initial immigrant member. Regard the
totality of all progeny of a given immigrant point yj as a cluster; then the
totality of all such immigrant points and their clusters constitutes a Hawkes
process.

An important task is to find conditions that ensure the existence of a
stationary Hawkes process (i.e. of realizations of point sets {xi} on the whole
space X = Rd having the structure above and with distributions invariant
under translation). Since the immigrant process is stationary, a sufficient
condition, by Exercise 6.3.5, is that the mean cluster size be finite [or else,
since the immigrant process is Poisson, Proposition 6.3.III(i) can be invoked].

The cluster centres may be regarded as ‘infected immigrants’ from outside
the system and the clusters they generate as the process of new infections
they produce. Then, µ(dx) is a measure of the infectivity at the point x due
to an infected individual at the origin.

The key characteristics of any cluster are the first- and second-moment
measures for the total progeny. From Exercise 5.5.6, the first of these is given
by

M1(A | 0) = δ0(A) + µ(A) + µ2∗(A) + · · · (bounded A ∈ BX ),

while the second satisfies the integral equation∫
X

M[2](dy, y + A | 0)

=
∫

X
M1(y + A | 0) M1(dy | 0)− δ0(A) +

∫
X

M[2](du, u + A | 0)
∫

X
µ(dv),

so that

(1−ν)
∫

X
M[2](dy, y+A | 0) =

∫
X

M1(y+A | 0) M1(dy | 0)−δ0(A). (6.3.25)
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From the general results (6.3.10–12), it now follows that the mean density of
the resultant cluster process is given by

m = λM1(X | 0) = µc/(1− ν), (6.3.26)

while for its factorial covariance measure we have

C̆[2](A) = µc

∫
X

M[2](dy, y + A | 0)

=
µc

1− ν

[ ∫
X

M1(y + A | 0) M1(dy | 0)− δ0(A)
]
.

(6.3.27)

This corresponds to the reduced density

c̆[2](x) =
µc

1− ν

[ ∫
X

m1(y) m1(x + y) dy − δ0(x)
]

when M1(A | 0) is absolutely continuous with density m1(x), say, apart from
the δ-function at the origin. An important feature of these formulae is that
they lead to simple Fourier transforms, and we exploit this fact later in illus-
trating the spectral theory in Example 8.2(e).

For a parametric example, with X = R and µ(·) with support in R+,
suppose that for some α > 0 and 0 < ν < 1

µ(dx) =
{

ναe−αxdx for x ≥ 0,
0 otherwise.

Then M1(·) is absolutely continuous apart from an atom at the origin; for its
density m1(·), we find on x ≥ 0 that

m1(x) = δ(x) + ναe−α(1−ν)x.

It follows that C̆[2](·) is absolutely continuous also, and by substituting in
(6.3.26) and (6.3.27), we find that the covariance density of the stationary
process is given by

c̆[2](y) =
µcαν(1− 1

2ν)
(1− ν)2

e−α(1−ν)|y|. (6.3.28)

Example 6.3(d) The Gauss–Poisson process: process of correlated pairs
(Bol’shakov, 1969; Newman, 1970; Milne and Westcott, 1972). This process
has the curious distinction of being simultaneously a Neyman–Scott process,
a Bartlett–Lewis process, and a pseudo-Cox process [Example 6.2(c)]. Its
essential characteristic is that the clusters contain either one or two points
(so it exists if and only if the cluster centre process exists). Let one point be
taken as the cluster centre, let F (dx | y) denote the distribution of the second
point relative to the first, and let q1(y), q2(y) be the probabilities of 1 and 2
points, respectively, when the centre is at y. Then, we may regard the process
as a special case of the Example 6.3(b) with

Gm[h | y] = q1(y)h(y) + q2(y)h(y)
∫

Y
h(x) F (dx | y)
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so that for the resultant process (and recall that X = Y = Rd here),

log G[h] =
∫

X

(
h(y)− 1

)
q1(y) µ(dy)

+
∫

X

∫
X

(
h(x)h(y)− 1

)
q2(y) µ(dy) F (dx | y). (6.3.29)

This is not quite in standard form because the measure q2(y) µ(dy) F (dx | y)
is not symmetric in general. However, the value of the p.g.fl. is unaltered
when we replace this measure by its symmetrized form Q2(dx × dy), say, so
without loss of generality we may write the p.g.fl. in the form

log G[h] =
∫

X

(
h(x)−1

)
Q1(dx)+

∫
X (2)

(
h(x)h(y)−1

)
Q2(dx×dy), (6.3.30)

where Q1 and Q2 are boundedly finite and Q2 is symmetric with boundedly
finite marginals. If now we define Q̃2 = 2Q2 and substitute in (6.3.30), we
obtain the standard form in (6.3.32) below using Khinchin measures.

Conversely, given any two such measures Q1 and Q2, any expression of the
form (6.3.30) represents the p.g.fl. of a process of correlated points because
we can first define a measure µ by

µ(A) = Q1(A) + Q2(A×X ),

then appeal to the Radon–Nikodym theorem to assert the existence µ-a.e. of
nonnegative functions q1(·), q2(·) with q1(x) + q2(x) = 1 satisfying, for all
bounded A ∈ BX ,

Q1(A) =
∫

A

q1(x) µ(dx) and Q2(A×X ) =
∫

A

q2(x) µ(dx),

and finally use Proposition A1.5.III concerning regular conditional probabili-
ties to define a family of probability measures {F (· | x): x ∈ X} by

Q2(A×B) =
∫

A

F (B | x) Q2(dx ×X ) =
∫

A

F (B | x)q2(x) µ(dx)

for all bounded A and all B ∈ BX .

This discussion characterizes the p.g.fl. of such two-point cluster processes,
but Milne and Westcott (1972) give the following stronger result.

Proposition 6.3.IV. For (6.3.30) to represent the p.g.fl. of a point process,
it is necessary and sufficient that

(i) Q1 and Q2 be nonnegative and boundedly finite, and
(ii) Q2 have boundedly finite marginals.

Proof. The additional point to be proved is that (6.3.30) fails to be a p.g.fl.
if either Q1 or Q2 is a signed measure with nontrivial negative part. Exercise
6.3.11 sketches details [see also Example 6.2(c) and Exercises 6.3.12–13].
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Observe that for the process with p.g.fl. given by (6.3.30), the expectation
and second cumulant measures exist and are given, respectively, by

M(dx) = Q1(dx) + Q2(dx×X ) + Q2(X × dx), (6.3.31a)
C[2](dx1 × dx2) = Q2(dx1 × dx2) + Q2(dx2 × dx1), (6.3.31b)

the representation holding whether or not Q2 is given in its symmetric version.
It appears to be an open problem to determine conditions similar to those

in Proposition 6.3.IV for an expansion such as (6.3.30) with just k terms
(k ≥ 3) to represent the log p.g.fl. of a point process [see Milne and Westcott
(1993) for discussion].

Example 6.3(e) A bivariate Poisson process [see also Examples 7.3(a) (in-
tensity functions and associated martingales), 7.4(e) (random-time transfor-
mation to unit-rate Poisson process) and 8.3(a) (spectral properties), and
Exercise 8.3.7 (joint forward recurrence time d.f.)]. A bivariate process can
be represented as a process on the product space X × {1, 2}, where indices
(or marks) 1, 2 represent the two component processes. The p.g.fl. expansions
are most conveniently written out with the integrals over each component
space taken separately. Consider, in particular, a Poisson cluster process on
X × {1, 2} in which the clusters may be of three possible types only: a single
point in process 1, a single point in process 2, and a pair of points, one from
each process. Arguments analogous to those in the preceding example show
that the joint p.g.fl. can be written in the form

log G[h1, h2] =
∫

X

(
h1(x) − 1

)
Q1(dx) +

∫
X

(
h2(x)− 1

)
Q2(dx)

+
∫

X (2)

(
h1(x1)h2(x2)− 1

)
Q3(dx1 × dx2),

where Q1, Q2 and Q3 are boundedly finite and Q3 has boundedly finite
marginals. The marginal p.g.fl. for process 1 can be found by setting h2 = 1
and is therefore a Poisson process with parameter measure

µ1(dx) = Q1(dx) + Q3(dx×X );

similarly, the process with mark 2 is also Poisson with parameter measure

µ2(dx) = Q2(dx) + Q3(X × dx).

Finally, the superposition of the two processes is of Gauss–Poisson type, with

Q̃1(dx) = Q1(dx) + Q2(dx)

and (taking the symmetric form)

Q̃2(dx1 × dx2) = 1
2 [Q3(dx1 × dx2) + Q3(dx2 × dx1)].
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Evidently, this is the most general example of a bivariate Poisson cluster pro-
cess with Poisson marginals since clusters of any higher order would introduce
higher-order clusters in the marginals and hence destroy the Poisson property.

The resulting fidi distributions are infinitely divisible bivariate Poisson dis-
tributions of the kind studied by Holgate (1964) and Milne (1974); see also
Griffiths, Milne and Wood (1979). The particular bivariate distribution stud-
ied by Dwass and Teicher (1957) corresponds to the situation where the pairs
must occur for both processes at the same location x; the resultant process is
then not only infinitely divisible but also has complete independence.

Example 6.3(e) appears in many guises—for example as the joint process
of the input and output streams of the M/M/∞ queue. It is closely related to
the Gauss–Poisson process, which is nothing other than the ‘ground process’
(see Section 6.4) of the bivariate example above. We shall use it repeatedly
to illustrate the structure of multivariate processes—their moments, spectra,
conditional intensities, and compensators. See in particular Example 7.3(a).

There are, of course, many examples of bivariate Poisson processes that are
not infinitely divisible; one class may be obtained by mixing over the relative
proportions of pairs and single points in the example above (see Exercise
6.3.12). A queueing example is given in Daley (1972a).

The previous examples illustrate the point that the same process can be
represented in several equivalent ways as a Poisson cluster process: the Gauss–
Poisson process, for example, can be represented either as a Neyman–Scott
process or as a Bartlett–Lewis type process for appropriately chosen special
cases of those models. This same example also points the way to an intrinsic
characterization of Poisson cluster processes. In the next result, the mea-
sures Kk(·) are extended versions of the Khinchin measures defined for finite
processes by (5.5.5).

Proposition 6.3.V. The p.g.fl. of every Poisson cluster process with a.s.
finite clusters can be uniquely represented in the form

log G[h] =
∞∑

k=1

1
k!

∫
X (k)

(
h(x1) . . . h(xk)− 1

)
Kk(dx1 × · · · × dxk), (6.3.32)

where the {Kk} form a family of symmetric, boundedly finite measures on
B(X (k)) such that each Kk(·) has boundedly finite marginals Kk( ·×X (k−1)),
and the sum

∞∑
k=1

1
k!

k∑
i=1

(
k

i

)
Kk

(
A(i) × (Ac)(k−i)) (6.3.33)

is finite for bounded A ∈ BX .
Conversely, given any such family of measures {Kk: k ≥ 1}, the p.g.fl.

(6.3.32) represents the p.g.fl. of a Poisson cluster process.

Proof. Suppose there is given a Poisson cluster process with cluster centres
defined on the space Y and having parameter measure µc(·). Suppose also
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that the clusters are a.s. finite, so that they can be represented in terms of
a family of Janossy measures Jk(· | y) (see Section 5.3), conditioned by the
location y of the cluster centre. Note that by definition these measures are
symmetric. Consequently, we consider the quantities Kk(·) defined by setting

Kk(B) =
∫

Y
Jk(B | y) µc(dy)

(
B ∈ B(X (k))

)
and check that they are in fact boundedly finite measures. From Proposition
6.3.III, we know that the integral

∫
Y pA(y) µ(dy) converges for each bounded

set A ∈ BX . Here, pA(y) is just the sum over k ≥ 1 of the probabilities that
the cluster has k members of which at least one falls into the set A, so that,
referring to (5.3.10), pA(y) equals

∞∑
k=1

Jk(X (k) | y)− Jk((Ac)(k) | y)
k!

=
∞∑

k=1

k∑
i=1

(
k

i

)
Jk

(
A(i) × (Ac)(k−i) | y

)
k!

.

The finiteness of Kk(B) follows when B is of the form A(k) for bounded
A. Similarly, by taking the term in the sum with i = 1, we deduce the
bounded finiteness of the marginals. Finally, (6.3.33) is just a restatement of
the necessary and sufficient condition that (6.3.8) be finite.

We can then obtain the representation (6.3.32) from the standard repre-
sentation of a Poisson cluster p.g.fl.

log G[h] =
∫

Y
(G[h | y]− 1) µc(dy)

(
h ∈ V(X )

)
by expressing G[h | y] in terms of the associated Janossy measures as in equa-
tion (5.5.3) and rearranging the integrations. Note that the term with k = 0
drops out of the summation. Uniqueness follows from standard results con-
cerning uniqueness of the expression of the p.g.fl. and its logarithm about the
origin.

Now suppose conversely that a family of measures Kk satisfying the stated
conditions is given. We wish to construct at least one Poisson cluster process
that has the p.g.fl. representation (6.3.32). Take X = Y , and let the measure
µ0(·) be defined over bounded A ∈ BX by

µ0(A) =
∞∑

k=1

Kk(A×X (k−1))/k! (6.3.34)

as the parameter measure for the cluster centre process. Note that the finite-
ness condition (6.3.33) entails the finiteness of (6.3.34) because

k∑
i=1

(
k

i

)
Kk

(
A(i) × (Ac)(k−i)) =

k∑
i=1

k

i

(
k − 1
i− 1

)
Kk

(
A×A(i−1) × (Ac)k−i

)
≥ Kk(A×X (k−1)).
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As in the Gauss–Poisson case, we can define µ0-a.e. a probability distribu-
tion {qk(y)} on k = 1, 2, . . . as the Radon–Nikodym derivatives in∫

A

qk(y) µ0(dy) =
Kk(A×X (k−1))

k!
,

these probabilities {qk(y)} determining the number of points k in a cluster
with centre y. The cluster member structure can be defined by taking one
point as the cluster centre and locating the positions of the others relative to
it through the distribution Pk−1(B | y) defined µ0-a.e. over B ∈ B(X (k−1))
by ∫

A

Pk−1(B | y) Kk(dy ×X (k−1)) = Kk(A×B),

appealing again to the existence of regular conditional probabilities. We can
now check that the process with these components has the p.g.fl. representa-
tion (6.3.32) and that the existence condition (6.3.33) is satisfied.

Note that there are many other processes that could be constructed from
the same ingredients. In particular (see below Theorem 2.2.II), we can in-
troduce an arbitrary probability q̃0(y) of empty clusters with 0 ≤ q̃0(y) < 1
(all y) by redefining

q̃k(y) =
(
1− q̃0(y)

)
qk(y) (k = 1, 2, . . .)

and setting
µ̃c(dy) =

(
1− q̃0(y)

)−1
µc(dy).

The p.g.fl. is unaltered by this transformation, and the resultant processes are
equivalent; we record this formally.

Corollary 6.3.VI. The probability of a zero cluster is not an estimable
parameter in any Poisson cluster model.

A similar range of possibilities exists for the way the cluster centre x is
defined relative to the joint distributions Pk(·) of the points in the cluster. In
the construction above, we have chosen to fix the centre at an arbitrary point
of the cluster. The measures Jk( · | y) are then related to the Pk( · | y) by
J1(A) = P1(A) and, for k ≥ 2, the symmetrization relations

Jk(A1 ×A2 × · · · ×Ak | y) = k−1
∑
sym

δy(A1)Pk−1(A2 × · · · ×Ak | y).

Alternatively, we might prefer to locate the cluster centre at the multivariate
centre of mass of the distribution (assuming this to be defined) or else in some
other manner. This can be done without altering the final form of the p.g.fl. If
it is necessary to select one particular form of representation for the process,
we shall choose that used in the proof above and refer to it as the regular
representation of the given process. The proposition implies that there is a
one-to-one correspondence between measures on B(M#

X ) induced by Poisson
cluster processes and the elements in their regular representations.



6.3. Cluster Processes 191

Exercises and Complements to Section 6.3
6.3.1 LeCam’s precipitation process. Formulate a definition for a general cluster

random measure ζ analogous to Definition 6.3.I by replacing {N(· | y)} by
a measurable family of random measures {ξ( · | y)}. When these components
are independent and Lξ[f | y] denotes the Laplace functional of ξ( · | y) defined
over f ∈ BM+(X ) [see around (6.1.8)], the Laplace functional Lζ of ζ is related
to {Lξ[f | y]} and the p.g.fl. Gc of the cluster centre process by

Lζ = Gc[Lξ[f | · ] ]

provided ζ is well defined. [This model is discussed in LeCam (1961), who
was motivated by the problem of modelling precipitation.]

6.3.2 Show that an independent cluster process exists if and only if, for each h ∈
V(X ), the infinite product G[h | Nc] =

∏
i
Gm[h | yi] converges Πc-a.s.

6.3.3 Frequently, it may be desired specifically to include the cluster centres with
the points generated by the cluster member processes with p.g.fl. Gm[h | y].
Show that the modified process has p.g.fl. Gc[h(·)Gm[h | · ] ].

6.3.4 Moment measures for a cluster process. For a cluster process, the r.v. Xf ≡∫
X f(y) N(dy) can be expressed as the sum

∑
i
Yf(yi), where the yi are the

cluster centres and Yf(y) =
∫

X f(x) Nm(dx | y) is the potential contribution
to Xf from a cluster member with centre at y. Assume that for f ∈ BM+(X )

M1,f (y) ≡ E[Yf (y)] =
∫

X
f(x) M1(dx | y) < ∞,

M2,f (y) ≡ E[Y 2
f (y)] =

∫
X (2)

f(x1)f(x2) M2(dx1 × dx2 | y) < ∞.

Use a conditioning argument to obtain the basic relations

EXf =
∫

Y
E[Yf (y)]Mc(dy) =

∫
Y

M1,f (y)Mc(dy)

=
∫

Y

∫
X

f(x)M1(dx | y)Mc(dy),

EX2
f =
∫

Y
V2(y)Mc(dy) +

∫
Y(2)

M1,f (y)M1,f (z) Mc
2 (dy × dz),

var Xf =
∫

Y
V2(y)Mc(dy) +

∫
Y(2)

M1,f (y)M1,f (z)Cc
2(dy × dz),

where V2(y) = M2,f (y) − (M1,f (y))2 = varYf (y). Derive equations (6.3.3–5)
by considering also cov(Xf , Xg) and setting f(·) = IA(·), g(·) = IB(·).
[Hint: Take care in passing from ordinary to factorial moments.]

6.3.5 (a) Show that a sufficient condition for the existence of a stationary cluster
process is that the mean cluster size be finite.

(b) Show by counterexample that the condition is not necessary, even for a
Poisson cluster process.
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[Hint: For part (a), show first that in the stationary case,

M1(A) = µc

∫
X

M1(A | x) dx = µc

∫
X

M1(A − x | 0) dx = m�(A),

and then observe that p(A | x) ≤ M1(A | x). For part (b), consider a com-
pound Poisson process with infinite mean batch size.]

6.3.6 (a) Show that a stationary Poisson cluster process is simple if and only if
each cluster member process is simple.

(b) When this condition is satisfied, show that the d.f. F corresponding to
an interval between successive points of the process has coefficient of
variation ≥ 1. [Hint: Show that R(t) ≡ − log S(t) in (6.3.8) is subadditive
in t > 0 and hence that S(t) ≥ exp(−R′(0+)t). Use Korolyuk’s theorem
to identify 1/R′(0+) as the first moment of F , and use a hazard function
argument (see Exercise 3.4.2) to identify the second moment of F with
(2/R′(0+))

∫∞
0

S(t) dt. Exercise 6.3.9(b) below gives a special case.]

6.3.7 For a Neyman–Scott Poisson cluster process as around (6.3.20) with Y = X =
R, suppose F (x) has an exponential distribution. Use (6.3.20) to show (see
Vere-Jones, 1970) that the hazard function below (6.3.15) for the distance
from the origin to the nearest point of the process is given by

r(t) =
µc(1 − Q(e−λt))

1 − e−λt
.

6.3.8 Consider a Neyman–Scott cluster process with cluster centres yi the points
of a Poisson process at rate µc and for each such point a Poisson-distributed
random number ni of points, with mean Yi for an i.i.d. sequence of r.v.s {Yi},
are located at {yi+xij: j = 1, . . . , ni}, where the xij are i.i.d. with probability
density g(·). Show that such a process {yi + xij: i = 1, . . . , ni, all i} is
identical with the shot-noise process of Example 6.2(a).

6.3.9 (a) Evaluate the first-moment measure of the interval (0, t] for a cluster with
centre y in a Bartlett–Lewis process as

Mc((0, t] | y) =


0 y > t,

1 +
∑∞

i=1 riF
i∗(t − y) 0 < y ≤ t,∑∞

i=1 ri[F i∗(t + |y|) − F i∗(|y|)] y ≤ 0.

(b) Show that the hazard function for the interval distribution in the process
corresponding to (6.3.24) is

r(t) = µc + µcm[1](1 − F (t)) −
m[1]f(t)

1 + m[1](1 − F (t))
,

where f(t) is the density corresponding to F (t). Now verify Exercise
6.3.6(b): the interval distribution has coefficient of variation ≥ 1 (Lewis,
1964a).

6.3.10 Suppose the common d.f. in a Neyman–Scott type process in R2 is circular
normal with density f(x, y) = (2π)−1 exp[− 1

2 (x2 + y2)]. Show that the prob-
ability that a particular point of a given cluster falls in the circle of radius r
and centre at the origin, when the cluster centre is at a distance ρ from the
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origin, equals

P (r | ρ) ≡ e−ρ2/2
∫ t

0

ue−u2/2I0(uρ) du,

where I0 is the modified Bessel function of zero order. Then the log sur-
vivor function of the distance from the origin to the nearest point of such a
Neyman–Scott Poisson cluster process, with cluster p.g.f. Q(z), is given by

− log S(r) = 2πµc

∫ ∞

0

[1 − Q(1 − P (r | ρ))] ρdρ.

In particular, if the number in each cluster has a Poisson distribution with
mean λ,

− log S(r) = 2πµc

∫ ∞

0

(1 − e−λP (r|ρ)) ρdρ.

6.3.11 Show that P (z) = exp{q1(z−1)+q2(z2 −1)} is a univariate p.g.f. if and only
if q1 ≥ 0, q2 ≥ 0, and hence complete the proof of Proposition 6.3.IV.
[Hint: To be a p.g.f., P (z) must have nonnegative coefficients as a power
series in z, while by virtue of its representation, P (z) is an entire function.
Hence, show that log P (z) must be well defined and nondecreasing on the
whole positive half-line z > 0, and deduce that both q1 and q2 ≥ 0.]

6.3.12 Show that a point process N is Gauss–Poisson if and only if the first two
Khinchin measures are nonnegative with boundedly finite marginals and all
remaining Khinchin measures vanish. [This is a rephrasing of Proposition
6.3.IV and Examples 6.2(c) and 6.3(d).]

6.3.13 Show that the functional of (possibly signed) measures Q1(·) and Q2(· × ·)∫
X

[h(x) − 1] Q1(dx) + 1
2

∫
X (2)

[h(x) − 1] [h(y) − 1] Q2(dx × dy)

equals the logarithm of the p.g.fl. of some point process if and only if Q1 is
nonnegative and the symmetrized version

Q
s

2(A × B) = 1
2 (Q2(A × B) + Q2(B × A))

is nonnegative and bounded as in Q
s

2(A × B) ≤ min (Q1(A), Q1(B)) for
bounded A, B ∈ BX . [Hint: Reduce the functional above to the form of
(6.3.30) and appeal to Proposition 6.3.IV. See also Example 6.2(d).]

6.3.14 Proposition 6.3.V represents a Poisson cluster process with a.s. finite clusters.
Realize a cluster of size k and choose one of its points, Y say, at random.
Show that

Pr{Y ∈ A} =
Kk(A × Y(k−1))

Kk(Y(k))
,

but

Pr

{
a cluster realization of
size k has a point in A

}
=

k∑
i=1

(
k

i

)
Kk(A(i) × (Ac)(k−i))

Kk(Y(k))
.

6.3.15 The factorial cumulant measures C[k] of a Gauss–Poisson process vanish for
k = 3, 4, . . . . Show in general that for a Poisson cluster process with clusters
of size not exceeding k0, C[k] vanishes for k > k0. [Hint: Use (6.3.32) and
write 1 + h for h.]
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6.4. Marked Point Processes
In many stochastic process models, a point process arises not as the primary
object of study but as a component of a more complex model; often, the point
process is the component that carries the information about the locations in
time or space of objects that may themselves have a stochastic structure and
stochastic dependency relations. From the point of view of point process
theory, many such models can be subsumed under the heading of marked
point processes. In this section, we provide an initial study of such processes,
particularly those with links to the Cox and cluster processes described in the
two preceding sections.

For any marked point process, the locations {xi} where the events occur
constitute an important process in their own right (the xi may denote times
but could also be two- or three-dimensional, for example). We shall refer to
this process as the ground process and accordingly denote it by Ng.

Definitions 6.4.I.
(a) A marked point process (MPP), with locations in the c.s.m.s. X and

marks in the c.s.m.s. K, is a point process {(xi, κi)} on X × K with the
additional property that the ground process Ng(·) is itself a point process;
i.e. for bounded A ∈ BX , Ng(A) = N(A×K) <∞.

(b) A multivariate (or multitype) point process is a marked point process
with mark space the finite set {1, . . . , m} for some finite integer m.

If a marked point process N is regarded as a process on the product space
X × K, then the ground process Ng is the marginal process of locations.
However, it is a consequence of Definition 6.4.I(a) that not all point processes
on product spaces are marked point processes. For example, the bivariate
Poisson process on R2 with parameter measure µ dx dy cannot be represented
as an MPP on R × R because such a Poisson process has N(A × R) = ∞
a.s. for Borel sets A of positive Lebesgue measure. However, in the special
case of a multivariate point process, the extra condition is redundant since
the finiteness of the mark space immediately implies that each component
process Ni(·) = N(· × {i}) is boundedly finite and we can write

Ng(·) = N(· × {1, . . . , m}) =
m∑

i=1

Ni(·). (6.4.1)

In general, an MPP can be regarded either as a point process in the product
space X ×K subject to the finiteness constraint on the ground process Ng as
set out above, or as an ordinary (not necessarily simple) point process in X ,
{xi} say, with an associated sequence of random variables {κi} taking their
values in K. Either approach leads to the representation of the MPP as a set of
pairs {(xi, κi)} in the product space. They are equivalent whenever it can be
shown that the marks κi in an MPP are well-defined random variables, which
is certainly the case when the ground process has finite intensity, but there
are subtleties in general: see Section 8.3 and Chapter 9 for further discussion.
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The class of MPPs is a great deal richer than might at first appear. This
is due to the great variety of forms that can be taken by the marks and the
variety of dependence relations that can exist between the marks themselves
and their locations. When X = R, for example, many remarkable results can
be obtained by taking the mark at an event xi to represent some feature from
the history of the process up to xi. A careful study of such MPPs lies at the
heart of the fundamental researches of Matthes, Mecke, and co-workers.

Extending the concepts of earlier chapters, we define for MPPs the following
two classes of point processes.

Definition 6.4.II.
(a) The MPP N is simple if the ground process Ng is simple.
(b) The MPP N on X = Rd is stationary (homogeneous) if the probability

structure of the process is invariant under shifts in X .

The structure of an MPP may be spelled out in a variety of ways. If the
ground process Ng is not necessarily simple, it can be thought of as a cluster
process in which the cluster centres xi are the distinct locations in X and the
cluster members are all pairs in X × K of the form (xi, κij), where the κij

are the marks of the points with common location xi. Equally, however, the
family κij could be thought of as a single, compound mark in the space K∪

defined as in (5.3.8). This last comment implies that by suitably redefining
the marks, any MPP on X can be represented as an MPP on X for which the
ground process Ng is simple. For many applications, though not for all, we
may therefore assume that the MPPs we encounter are simple.

The next pair of definitions characterize two important types of indepen-
dence relating to the mark structure of MPPs. Observe in part (b) that a
crucial feature is the role of order in the location space: it reflects the evolu-
tionary property that we associate with a time-like dimension.

Definition 6.4.III (Independent marks and unpredictable marks). Let the
MPP N = {(xi, κi)} on X ×K be given.
(a) N has independent marks if, given the ground process Ng = {xi}, the {κi}

are mutually independent random variables such that the distribution of
κi depends only on the corresponding location xi.

(b) For X = R, N has unpredictable marks if the distribution of the mark at
xi is independent of locations and marks {(xj , κj)} for which xj < xi.

The most common case of an MPP with independent marks occurs when
the κi are in fact i.i.d. Similarly, the most common case of a process with
unpredictable marks occurs when the marks are conditionally i.i.d. given the
past of the process (but the marks may influence the future of Ng).

The next proposition outlines the basic structure of processes with inde-
pendent marks, introducing in particular the mark kernel F (· | ·) at a specified
location. P.g.fl.s for MPPs are defined over the space V(X × K) of measur-
able functions h(x, κ) that lie between 0 and 1 and for some bounded set A,
h(x, κ) = 1 for all κ ∈ K and x /∈ A.
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Proposition 6.4.IV (Structure of MPP with independent marks). Let N
be an MPP with independent marks.
(a) The probability structure of N is completely defined by the distribution of

the ground process Ng and the mark kernel {F (K | x): K ∈ B(K), x ∈ X},
representing the conditional distribution of the mark, given the location
x.

(b) The p.g.fl. for N takes the form

G[h] = Gg[hF ] (h ∈ V(X ×K)), (6.4.2)

where Gg is the p.g.fl. of Ng and hF (x) =
∫

K h(x, κ) F (dκ | x).
(c) The moment measure Mk of order k for N exists if and only if the corre-

sponding moment measure Mg
k exists for the ground process Ng, in which

case
Mk(dx1 × · · · × dxk × dκ1 × · · · × dκk)

= Mg
k (dx1 × · · · × dxk)

k∏
i=1

F (dκi | xi).
(6.4.3)

Similar representations hold for factorial and cumulant measures.

Proof. All the statements above are corollaries of the general results for
conditional point processes outlined in Section 6.1. In the present case, we
deduce statements for the process of pairs {(xi, κi)} from their distribution
conditional on the process of locations {xi} using the conditional indepen-
dence of the κi.

Because of the independence properties, it is easiest to approach the state-
ments via the p.g.fl. Given the locations xi, the p.g.fl. of the pairs (xi, κi)
takes the form

G[h(x, κ) | Ng] =
∏

i

[ ∫
K

h(xi, κ) F (dκ | xi)
]

=
∏

i

hF (xi). (6.4.4)

Note that hF ∈ V(X ) when h ∈ V(X × K) because for some bounded set
A, h(x, κ) = 1 for x /∈ A and all κ ∈ K, and hence for such x, hF (x) =∫

K h(x, κ) F (dκ | x) = 1. Provided then that Ng exists, the final product is
well defined for h ∈ V(X × K) and defines a measurable function of Ng. We
thus have a measurable family satisfying Lemma 6.1.III(b); taking expecta-
tions over the locations, we obtain (6.4.2). Since the p.g.fl. is well defined, so
are the fidi distributions and hence the probability structure of the process.

To justify the expressions for the moment measures, consider an integral
of the form

∫
h(x1, . . . , xk, κ1, . . . , κk) N(dx1 × dκ1) · · · N(dxk × dκk). Con-

ditional on the locations {xi}, its expectation can be written∫
K
· · ·
∫

K
h(x1, . . . , xk, κ1, . . . , κk) F (dκ1 | x1) · · · F (dκk | xk). (6.4.5)
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Now taking expectations over the locations, assuming the moment measure
to exist for the ground process, we obtain (6.4.3), finite or infinite according
to whether the integrals converge. But convergence of the integrals for all
appropriate h is the necessary and sufficient condition for the existence of the
moment measures, so statement (c) follows.

In many applications, K = R+ and interest centres on the random measure
defined by

ξ(A) =
∫

A×K
κ N(dx× dκ) =

∑
xi∈A

κi . (6.4.6)

Its properties when ξ has independent marks are summarized below. Observe
that if κi = κ a.s. for all i, then ξ(A) = κNg(A).

Proposition 6.4.V. If K = R+ and the MPP N has independent marks,
ξ in (6.4.6) defines a purely atomic random measure on X with only finitely
many atoms on any bounded set A ∈ BX . It has Laplace functional

Lξ[h] = Gg[φh] (h ∈ BM+(X )), (6.4.7)

where φh(x) =
∫

K e−κh(x) F (dκ | x) and Gg is as in (6.4.2).
The moment measure Mξ

k of order k for ξ exists if
(i) the moment measure Mg

k of order k exists for the ground process Ng,
(ii) the kth moment of the mark distribution, µk(x) =

∫
R+

κk F (dκ | x) exists
Mg

1 -a.e., and
(iii) the integrals defining Mξ

k in terms of µr and Mg
s for r, s = 1, . . . , k,

converge.
When they exist, the first- and second-moment measures are given, for

bounded A, B ∈ BX , by

M ξ
1 (B) =

∫
B

µ1(x) Mg
1 (dx) , (6.4.8)

M ξ
2 (A×B) =

∫
A×B

µ1(x1)µ1(x2) Mg
[2](dx1 × dx2) +

∫
A∩B

µ2(x) Mg
1 (dx) .

(6.4.9)

Proof. The statements follow from reasoning similar to that used in Propo-
sition 6.4.IV. The integral in (6.4.6) is a.s. finite when A is bounded (since
the sum is then over an a.s. finite number of terms) and is easily seen to have
the additivity properties required of a random measure. Its Laplace func-
tional and moment measures can again be found by first conditioning on the
locations. Thus, Lξ(h | Ng) equals

E
[

exp
(
−
∫

R+

h(x) ξ(dx)
) ∣∣∣∣ Ng

]
=
∏

i

[ ∫
R+

e−κh(xi) F (dκ | xi)
]
.
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Equation (6.4.7) follows on taking expectations over the locations. Note that
when h ∈ BM+(X ), the Laplace–Stieltjes transform φh ∈ V(X ), as is required
for a p.g.fl. Equation (6.4.8) is derived similarly.

To obtain (6.4.9), we have to condition on the location of pairs (xi, xj)
defined by the product counting measure Ng×Ng. Note the special attention
given to the diagonal pairs (xi, xi): Mξ

2 (A×B) equals

E
[∫

A

∫
B

(∫
K

∫
K

κ1κ2 F (dκ1 |x1) F (dκ2 |x2)
)

Ng(dx1) Ng(dx2)

+
∫

A∩B

(∫
K

κ2 F (dκ | x)
)

Ng(dx)
]

=
∫

A×B

µ1(x1)µ1(x2) Mg
[2](dx1 × dx2) +

∫
A∩B

µ2(x) Mg
1 (dx) .

These expressions can be checked by expanding the functionals and transforms
concerned (see Exercise 6.4.1 for the case k = 3).

As for cluster processes, the results simplify if the process is stationary,
and the relevant factorial moment densities exist. Stationarity implies that
the mark kernel is independent of x, F (· | x) = F (·) say, so that φh in (6.4.7)
becomes φh(x) =

∫
K e−κh(x) F (dκ), the usual Laplace–Stieltjes transform of

the distribution F evaluated at h(x) ∈ BM+(X ). Given the existence of the
reduced densities m̆g

[2](·) and c̆ g
[2](·), and writing µk =

∫
K κk F (dκ), (6.4.8)

and (6.4.9) lead to

m = µ1mg , (6.4.10)
m̆2(u) = (µ1)2m̆

g
[2](u) + δ(u)µ2mg , (6.4.11a)

c̆2(u) = (µ1)2c̆
g
[2](u) + δ(u)µ2mg . (6.4.11b)

The appearance of the δ-function in (6.4.11) is a reminder that the ξ process,
as well as the process Ng, is purely atomic and therefore has a diagonal
concentration (see Section 8.1 below). Equation (6.4.11b) leads to the well-
known expression for the variance of a random sum of i.i.d. r.v.s,

var ξ(A) = [E(κ)]2 varNg(A) + E[Ng(A)] var κ. (6.4.12)

Extension of the discussion above to the mark space K = R is possible but
leads to signed measures and requires the use of characteristic functionals in
place of Laplace functionals; see Exercise 6.4.2.

An important special case arises when the ground process Ng is Poisson.
We call such a process a compound Poisson process. As such, it extends the
compound Poisson process introduced in Section 2.2, where K = Z+. For this
(generalized) compound Poisson process, the marks often represent a weight
associated with the point, such as a monetary value in financial applications,
an energy or seismic moment in seismology, a weight or volume in forestry or
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geological prospecting, and so on. In such cases, ξ measures the total value,
energy, weight, volume, etc., accumulating within a certain time interval or
region. We give some examples shortly but first present a simple, important
structural property that foreshadows results for more general classes of MPPs.

Lemma 6.4.VI. A compound Poisson process that has mark kernel F (· | ·),
and for which the Poisson ground process Ng has intensity measure µ(·), is
equivalent to a Poisson process on the product space X × K with intensity
measure Λ(dx× dκ) = µ(dx) F (dκ | x).

Proof. We examine the p.g.fl.s. Substituting in (6.4.2) for the p.g.fl. of the
Poisson process for Ng and rearranging, we have, using notation from (6.4.2),

G[h] = exp
(∫

[hF (x)− 1] µ(dx)
)

= exp
(∫ ∫

[h(x, κ)− 1] F (dκ | x) µ(dx)
)
,

where the last expression can be identified with the p.g.fl. of the Poisson
process on the product space.

Many classical stochastic models are rooted in the compound Poisson pro-
cess. One famous example is as follows.

Example 6.4(a) Lundberg’s collective risk model (Lundberg, 1903; Cramér,
1930). Suppose that claims Wi against an insurer are made at times ti. Let
ξ(t) represent the accumulated claims

∑
i:0<ti<t Wi over the period (0, t). If

the distribution of a generic claim W is supposed constant (independent of t)
and the claim times ti follow a Poisson process with constant intensity µ,
then the pairs {(ti, Wi)} form a compound Poisson process. Typically, in this
context, the claim distribution is chosen from the gamma, Weibull, or Pareto
families or various modifications of these chosen to fit the specific application.
From equations (6.4.10) and (6.4.11), we obtain the elegant special forms

E[ξ(t)] = µE(W ) t,

var ξ(t) = µE(W 2) t.

The crucial simplification underlying this elegance arises from the location
process being Poisson, for then the covariance density c[2](·) vanishes.

If the insurance company has initial capital U0 and it is assumed that gross
premium income comes in at a constant rate α, then the financial reserve of the
company after time t, excluding running costs, depreciation, inflation, income
from investment, and other external factors, is equal to U(t) = U0 +αt− ξ(t).
The classical ruin problem consists in determining whether, and if so when,
U(t) first becomes zero. If α ≤ µE(W ), ruin is certain, but the time to
ruin may still be of importance. If α > µE(W ), ruin may be avoided and
interest centres around estimating the probability of ruin, say η. In both
cases, important information may be derived from the observation that, if
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τi = ti − ti−1, then the random variables Zi = Wi − ατi are independent, so
that the process

Un − U0 =
n∑

i=1

Zi = αtn − ξtn

constitutes a random walk. In particular, this observation, coupled to a stan-
dard martingale argument, leads to the classical Cramér bound on the prob-
ability of ultimate ruin. The argument is outlined in Exercise 6.4.3 (or else,
see e.g. Embrechts et al., 1997, Section 1.1).

Example 6.4(b) Negative binomial processes. The negative binomial distri-
bution is a common choice for the count random variables N(A) in appli-
cations to processes N(·) where a clustering alternative is preferred to the
Poisson process. It is somewhat surprising that the only known examples of
processes yielding the negative binomial form for the distributions of N(A)
are both extreme cases: a compound Poisson process that has the complete
independence property and in which all the clusters are concentrated at single
points, and a mixed Poisson process in which the individual realizations are
indistinguishable from those of a Poisson process. The usefulness of the neg-
ative binomial distribution in practice stems more from its relative simplicity
and tractability than its link to organic physical models, although it will of
course be true that for long time intervals, when the time scale of clustering is
short relative to the time scale of observation, the compound Poisson model
may be an adequate approximation. We describe these two models; see also
Grégoire (1984) and the review article of Diggle and Milne (1983).

(i) Compound Poisson process leading to negative binomial distributions.
Suppose there is given a compound Poisson process with constant intensity µ
and discrete mark distribution that is independent of the location x. If N(A)
is to have a negative binomial distribution, then we know from Example 5.2(a)
that the cluster size distribution should have the logarithmic form

πn(x) = (ρn/n) log[1/(1− ρ)].

Taking this as the mark distribution, we find that the p.g.fl. for the resulting
random measure ξ, which in this case is again a point process but nonorderly,
now has the form

G[h] = exp
(∫

X

log
(
[1− ρh(x)]/(1− ρ)

)
log(1− ρ)

µ(dx)
)

(h ∈ V(X )).

This corresponds to the multivariate p.g.f. for the fidi distributions on disjoint
sets A1, . . . , Ak,

Pk(A1, . . . , Ak; z1, . . . , zk) =
k∏

i=1

[
1− ρ

1− ρzi

]−µ(Ai)/ log(1−ρ)

,
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representing one simple type of multivariate negative binomial distribution.
The factorial cumulant measures can be obtained from the expansion

log G[1 + η] =
∫

X

log[1− ρη(x)/(1− ρ)]
log(1− ρ)

µ(dx)

= − 1
log(1− ρ)

∞∑
k=1

1
k

(
ρ

1− ρ

)k ∫
X

[η(x)]k µ(dx)

so that C[k](·) for k ≥ 2 is a singular measure with a concentration c[k]µ(·)
on the diagonal x1 = · · · = xk, where c[k] is the kth factorial moment of
the logarithmic distribution, or, equivalently, c[k]/ log[1/(1 − ρ)] is the kth
factorial cumulant of the negative binomial distribution.

Recall the p.g.f. of the negative binomial distribution in Example 5.2(a) and
the p.g.fl. for a local process on a bounded Borel set A as in Example 5.5(b).
The p.g.fl. for the type (i) negative binomial process applied to Example 5.5(b)
gives us (since the integral over Ac vanishes)

GA[1− IA + h∗] = exp
(

1
log(1− ρ)

∫
A

log
(

1− ρh

1− ρ

)
µ(dx)

)
,

where h∗(x) = h(x)IA(x). Thus, the localized process is still a negative bino-
mial process. The local Janossy measures can be found from the expansion

log
(

1− ρh

1− ρ

)
= − log(1− ρ) +

∞∑
n=1

ρn

n
h(n),

from which we deduce that p0(A) = exp[−µ(A)] and

J1(dx | A) = ρp0(A) µ(dx),

J2(dx1 × dx2 | A) = ρ2p0(A)[µ(dx1)µ(dx2) + δ(x1, x2)µ(dx1)],

where the two terms in J2 represent contributions from two single-point clus-
ters at x1 and x2 (x1 �= x2) and a two-point cluster at x1 = x2.

(ii) Mixed Poisson process leading to negative binomial distributions. Take
the mixing distribution Π with Laplace–Stieltjes transform Π∗ as in (6.1.16),
now generalized to the nonstationary case, to have the gamma distribution
Γ(α, λ) with Laplace–Stieltjes transform (1 + s/λ)−α. Then

G[h] = Π∗
(∫

X
[1− h(x)] µ(dx)

)
=
(

1 +
1
λ

∫
X

[1− h(x)] µ(dx)
)−α

,

so that the multivariate p.g.f. has the form

Pk(A1, . . . , Ak; z1, . . . , zk) =

(
1 +

1
λ

k∑
i=1

(1− zi)µ(Ai)

)−α

.
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The factorial cumulants can be obtained from the expansion

log G[1 + η] = −α log
(

1− 1
λ

∫
X

η(x) µ(dx)
)

= α
∞∑

k=1

1
k

(∫
X

η(x)
λ

µ(dx)
)k

,

so
C[k](dx1 × · · · × dxk) = αλ−k(k − 1)! µ(dx1) · · ·µ(dxk),

where we can recognize the coefficient of the product measure on the right-
hand side as the kth cumulant measure of the negative binomial distribution.
Note that Example 5.2(a) corresponds to the case where the measure µ(·) is
totally finite, in which case µ(X )/λ here equals the parameter µ there.

Most of the examples of point processes that we have considered in earlier
sections can be adorned with marks in a way similar to the Poisson process in
Examples 6.4(a) and (b) above. The choice of underlying model will depend
on the context and anticipated dependence structure. The most interesting
extensions appear when we drop the assumption of completely independent
marks and consider ways in which either the marks can influence the future
development of the process or the current state of the process can influence
the distribution of marks, or both. Using the Hawkes process of Example
6.3(c) as below illustrates some of the many possible issues that can arise.

Example 6.4(c) Marked Hawkes process. Marked versions of the Hawkes
process of Example 6.3(c) are best known from Hawkes (1971b, 1972), who
considered the multivariate case in detail, with an application in Hawkes and
Adamopoulos (1973), though Kerstan (1964) considered them at length. We
consider here the case of unpredictable marks; for a more general multivariate
extension, see Example 8.3(c). Both extensions have important applications
in seismology [see also Example 6.4(d) below], epidemiology, neurophysiology,
and teletraffic (see e.g. Brémaud and Massoulié, 1996).

In extending the Hawkes process of Example 6.3(c) to an MPP {(xi, κi)},
we interpret the marks κi as the ‘type’ of an individual in a multitype branch-
ing process. Recall that, in the branching process interpretation, points in a
Hawkes process are either ‘immigrants’ without parents or ‘offspring’ of an-
other point in the process. This (multitype) model now incorporates the
following assumptions:
(i) immigrants arrive according to a compound Poisson process N(dy× dκ)

with constant rate µc and fixed mark distribution F (dκ);
(ii) each individual in the process, whether an immigrant or not, has the

potential to act as an ancestor and thereby yield first-generation off-
spring according to an ordinary Poisson process with intensity measure
µ(du | κ) = ψ(κ) µ(du) that depends only on the mark κ of the ancestor
event and the distance u of the offspring from the ancestor; and

(iii) the marks of the offspring form an i.i.d. sequence with the same d.f. F
as the immigrants.
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The factor ψ(κ) determines the relative average sizes of families with dif-
ferent marks, while the measure µ(·) determines how the family members are
spread out along the time axis. For a stable process, µ(X ) must be finite, and
for the sake of definiteness, we assume that µ(X ) = 1 so that ψ(κ) becomes
the expected number of direct offspring with mark κ.

In principle, the analysis of such a process requires the general theory of
multiple type branching processes with a continuous range of types. How-
ever, the assumption of i.i.d. marks (i.e. offspring types) greatly simplifies the
analysis. Indeed, the assumptions above imply that the ground process Ng
for this marked point process can be described as an ordinary Hawkes process
with immigration rate µc and infectivity measure

µg(du) = ρ µ(du), where ρ = E[ψ(κ)] =
∫

K
ψ(κ) F (dκ) <∞.

If then ρ < 1, the total number of progeny is a.s. finite with finite mean
1/(1 − ρ) so that the ground process is well defined and has a stationary
version (see Exercise 6.3.5). Since the overall process may itself be regarded
as a Poisson cluster process taking its values in X ×K, a second application
of Exercise 6.3.5 implies that the overall process has a well-defined stationary
version. We state this formally for reference.

Proposition 6.4.VII. Using the notation above, sufficient conditions for the
existence of a stationary version of the marked Hawkes process with unpre-
dictable marks are
(i) the intensity measure µ(·) is totally finite (and then taken to be a prob-

ability measure); and
(ii) ρ = E[ψ(κ)] < 1.

First- and second-order properties of the process can be obtained by com-
bining results for branching processes with results for cluster processes and are
given in Chapter 8. The p.g.fl. is difficult to obtain explicitly; one approach
is suggested in Exercise 6.4.4.

Many variations and extensions of this model are possible. Example 7.3(b)
will show that the conditional intensity for this process has a very simple and
powerful linear form, which lends itself to various types of generalization. The
mark can be expanded to include a spatial as well as a size component, as for
the spatial ETAS model described below. The assumption of unpredictable
marks can also be weakened in several ways, for example by allowing the
distributions of the marks of the offspring to depend on either the mark of the
ancestor or the offspring’s distance from the ancestor, or both. See Example
8.3(e) for a somewhat simpler model illustrating such dependence.

If the branching structure is critical rather than subcritical (i.e. ρ = 1),
further types of behaviour can occur. For example, if the infectivity function
is sufficiently long-tailed, Brémaud and Massoulié (2001) provides examples
of stationary Hawkes processes without immigration (i.e. of a Hawkes process
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whose clusters overlap at such large distances that the process maintains a
stationary regime). Further details are given in Chapter 10.

Example 6.4(d) Ordinary and spatial ETAS models. Ogata (1988) intro-
duced the ETAS (Epidemic Type After-Shock) model to describe earthquake
occurrence, following earlier applications of the Hawkes model to this context
by Hawkes and Adamopoulos (1973) and Vere-Jones and Ozaki (1982). It cor-
responds to the special case of the marked Hawkes process where X = K = R,
the xi are interpreted as the occurrence times of the earthquakes and the κi

as their magnitudes, and the following specific choices are made:

ψ(κ) = Aeα(κ−κ0)I{κ>κ0}(κ),

µ(du) =
K

(c + u)1+p
I{u>0}(u) du,

F (dκ) = βe−β(κ−κ0)I{κ>κ0}(κ) dκ.

These choices are dictated largely by seismological considerations: thus,
the mark distribution cited above corresponds to the Gutenberg–Richter fre-
quency–magnitude law, while the power-law form for µ follows the empirical
Omori Law for aftershock sequences. The free parameters are β, α, c, A and p.
K = p cp is a normalizing constant chosen to ensure

∫∞
0 µ(du) = 1.

In this case, sufficient conditions for a stationary process are that

p > 0, β > α, and ρ = Aβ/(β − α) < 1.

The last condition in particular is physically somewhat unrealistic since it is
well known that the frequency–magnitude distribution cannot retain the pure
exponential form indefinitely, but must drop to zero much more quickly for
very large magnitudes.

An important extension involves adding locations to the description of the
offspring so that the branching structure evolves in both space and time.
Then, one obvious way of extending the model is to have the ground process
include both space and time coordinates, retaining the same mark space K.

From the computational point of view, however, and especially for the
conditional intensity and likelihood analyses to be described in Chapter 7,
there are advantages in keeping the ground process to the set of time points
and regarding the spatial coordinates as additional dimensions of the mark.
The weight (magnitude) component of the mark retains its unpredictable
character (so the weights are i.i.d. given the past), but we allow the spatial
component of the mark to be affected by the spatial location of its ancestor.

No matter which of these descriptions we adopt, the cluster structure
evolves over both space and time, offspring events occurring at various dis-
tances away from the initial ancestor, just as they follow it in time. When
the branching structure is spatially homogeneous, the infectivity measure
µ(dt × dx) depends both on the time delay u = t − t0 and the displacement
y = x− x0 from the time and location of the ancestor (t0, x0).
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Various branching mechanisms of this type have been proposed in the lit-
erature [see e.g. Ogata (1998) for a review]. Thus, Vere-Jones and Musmeci
(1992) suggests a space–time diffusion with infectivity density

µ(du× dy × dz) =
βe−βu

2πuσyσz
exp
[
− 1

2u

(
y2

σ2
y

+
z2

σ2
z

)]
du dy dz,

whereas Ogata’s space–time ETAS model uses a simpler product form for
the space and time terms. Many choices are possible for the components
of the model without affecting the underlying cluster character. In some
applications, the assumption of spatial homogeneity may not be appropriate,
so the infectivity or mark distribution may depend on the absolute location
of the offspring as well as its separation from the ancestor.

In all of this wide diversity of models, the basic sufficient condition for the
existence of a stationary version of the model, essentially the subcriticality of
the offspring branching process, is affected only insofar as the integral of the
infectivity measure needs to be extended over space as well as time.

We conclude this section with a preliminary foray into the fascinating and
also practically important realm of stochastic geometry. Marked point pro-
cesses play an important role here as models for finite or denumerable families
of random geometrical objects. The objects may be of many kinds: triplets
or quadruplets of points (then, the process would be a special case of a cluster
process), circles, line segments, triangles, spheres, and so on.

Definition 6.4.VIII (Particle process). A particle process is a point process
with state space ΣX equal to the class of nonempty compact sets in X .

Thus, a typical realization of a particle process is a sequence, ordered in
some way, of compact sets {K1, K2, . . .} from the c.s.m.s. X . An underlying
difficulty with such a definition is that of finding a convenient metric for the
space ΣX . One possibility is the Hausdorff metric defined by

ρ(K1, K2) = inf{ε: K1 ⊆ Kε
2 and K2 ⊆ Kε

1},

where Kε is the halo set
⋃

x∈K Sε(x) (see Appendix A2.2); for further ref-
erences and discussion, see Stoyan et al. (1995), Stoyan and Stoyan (1994),
and Molchanov (1997), amongst others. In special cases, when the elements
are more specific geometrical objects such as spheres or line segments, this
difficulty does not arise, as there are many suitable metrics at hand. Very
often, interest centres on the union set or coverage process

Ξ =
⋃

Si

(see Hall, 1988), which is then an example of a random closed set in X .
Now let us suppose that X = Rd and that for each compact set S ⊂ X we

can identify a unique centre y(S), for example its centre of gravity. Then, we
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may introduce an equivalence relation among the sets in ΣX by defining two
compact sets to belong to the same equivalence class if they differ only by a
translation. The sets in Σo ≡ Σo

X , the compact subsets of X with their centres
at the origin, index the equivalence classes so that every set S ∈ ΣX can be
represented as the pair (y, So), where y ∈ X and So ∈ Σo, and S = y + So

(set addition). This opens the way to defining the particle process as an MPP
{yi, Si}, where the {yi} form a point process in X and the marks {Si} take
their values in Σo. Once again, there is the problem of identifying a convenient
metric on Σo, but this point aside, we have represented the original particle
process as an example of a so-called germ–grain model in which the {yi} are
the germs and the {Si} are the grains. The next example illustrates one of
the most straightforward and widely used models of this type.

Example 6.4(e) Boolean model. This is the compound Poisson analogue
for germ–grain models. We suppose that the locations {yi} form a Poisson
process in X and that the compact sets So

i are i.i.d. and independent of the
location process; write Si = yi+So

i . Two derived processes suggest themselves
for special attention. One is the random measure Υ(·) formed by superposing
the compact sets Si. With the addition of random weights Wi, this gives the
bounded set A the (random) mass

Υ(A) =
∑

i

Wi �(A ∩ Si) (A ∈ BX ), (6.4.13)

where �(·) is the reference measure on X (e.g. Lebesgue measure, or counting
measure on a lattice). The other is the localized measure of the union set Ξ
described above, which gives the bounded set A the (random) mass

Ψ(A) = �(A ∩ Ξ) ≡ �
{⋃

i(A ∩ Si)
}
. (6.4.14)

For example, (6.4.13) might represent the total mass of ejected material falling
within the set A from a series of volcanic eruptions at different locations; then
(6.4.14) would represent the area of A covered by the ejected material.

In both cases, the processes can be represented in terms of densities forming
random processes (random fields) on X . Thus, (6.4.13) and (6.4.14) have
respective densities

υ(x) =
∑

i

WiISi(x) (6.4.15)

and
ψ(x) = I{∪i Si}(x). (6.4.16)

Many aspects of these and related processes are studied in the stochas-
tic geometry literature such as Mathéron (1975), Stoyan et al. (1995) and
Molchanov (1997). Here we restrict ourselves to a consideration of the mean
and covariance functions of (6.4.15) and (6.4.16) under the more explicit as-
sumptions that X = R2, that the location process Ng of centres {y(Si)} = {yi}
is a simple Poisson process with constant intensity λ, and that each Si is a
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disk of random radius Ri and has weight Wi that may depend on Ri but
that the pairs (Ri, Wi) are mutually independent and independent also of the
centres {yi}. Consistent with our earlier description, we thus have an MPP
on R2, with mark space R+ ×R+, and hence a point process N on R2 ×R2

+.
The mean and covariance function for υ(x) can be found by first condi-

tioning on the ground process Ng as in earlier examples. Thus, writing υ(x)
as

υ(x) =
∫

R2×R2
+

wI{r≥‖y−x‖}(r, y) N(dy × dr × dw) (6.4.17)

and taking expectations, the independence assumptions coupled with the sta-
tionarity of the Poisson process yield

E[υ(x)] = λ E
[

W

∫
R2

I{R≥‖y‖}(R, y) dy

]
= λ E

[
W

∫ R

0

∫ 2π

0
r dr dθ

]
= λ π E(WR2) .

The second moment E[υ(x1)υ(x2)] can be found similarly by first condi-
tioning on the {yi}. Terms involving both pairs of distinct locations and
coincident locations (arising from the diagonal term in the second-moment
measure of the location process) are involved. However, as for Poisson cluster
processes, we find that the covariance cov[υ(x1), υ(x2)] depends only on the
term involving coincident locations: it equals

E
[∫

R2×R+×R+

w2I{r≥‖y−x1‖,r≥‖y−x2‖}(r, y) N(dy × dr × dw)
]

= λE
[
W 2
∫

R2
I{R≥max(‖y−x1‖,‖y−x2‖)}(R, y) dy

]
= 2λE

[
W 2(R2 arcos(u/R)− u

√
R2 − u2

)
I{R≥u}(R)

]
,

where u = 1
2‖x1 − x2‖. Note that the first moment is independent of x and

the covariance is a function only of ‖x1 − x2‖, as we should expect from the
stationary, isotropic character of the generating process. Note also that if the
radius R is fixed, the covariance vanishes for ‖x1 − x2‖ > 2R.

The resemblance of these formulae to those for Poisson cluster processes
is hardly coincidental. From a more general point of view, the process is
a special case of LeCam’s precipitation model in Exercise 6.3.1, where the
Poisson cluster structure is generalized to cluster random measures. Some
details and extensions are indicated in Exercise 6.4.6.

The corresponding formulae for the union process present quite different
and, in general, much harder problems since we lose the additive structure
for the independent contributions to the sum process. The first moment
E[ψ(x)] represents the volume fraction of space (in this case area) occupied
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by the union set Ξ. It can be approached by the following argument, which
is characteristic for properties of the Boolean model. First, note that

1− E[ψ(x)] = 1− Pr{Ξ � x} = Pr{Ξ �� x} = E
[∏

i

[1− ISi(x)]
]
.

Conditioning on the locations {yi} (i.e. on the ground process Ng), we can
write

Pr{Ξ �� x | Ng} =
∏

i

Pr{Ri < ‖x− yi‖} =
∏

i

h(yi; x) ,

say, where h(y; x) = E[I[0,‖y−x‖)(R)] and R has the common distribution of
the i.i.d. radii Ri. Removing the conditioning, we have

1− E[ψ(x)] = E
[∏

i

h(yi; x)
]

= Gg[h(· ; x)] = exp
(
− λ

∫
R2

[1− h(y; x)] dy

)
.

Substituting for h(y; x) and simplifying, we obtain for the mean density the
constant

p∗ ≡ E[ψ(x)] = 1− e−λ E(πR2). (6.4.18)

For the second product moment, using similar reasoning, we have

m2(x1, x2) = E[ψ(x1)ψ(x2)] = Pr{Ξ � x1, Ξ � x2}
= Pr{Ξ � x1}+ Pr{Ξ � x2} − [1− Pr{Ξ �� x1 or x2}]
= E[ψ(x1)] + E[ψ(x2)]− [1− Pr{Ξ �� x1, Ξ �� x2}]
= 2p∗ − 1 + Gg[h(· ; x1, x2)],

say, where h(y; x1, x2) = E[I[0,min(‖y−x1‖,‖y−x2‖)](R)]. Substituting for the
p.g.fl. of the Poisson ground process, putting u = 1

2‖x1−x2‖ and simplifying,
we find that m(x1, x2) equals

2p∗−1+exp
(
−λE

[
πR2(1+I{R<u})+2

(
R2 arsin

u

R
+u
√

R2 − u2
)
I{R≥u}

])
.

Exercise 6.4.10 sketches an extension to higher-order product moments.

Exercises and Complements to Section 6.4
6.4.1 For the atomic random measure ξ with independent marks as in Proposition

6.4.V, show that the third-order moment measure Mξ
3 (A1 × A2 × A3) equals∫

A1×A2×A3

µ1(x1)µ1(x2)µ1(x3)Mg
[3](dx1 × dx2 × dx3)

+

[∫
A1×A23

+
∫

A2×A31

+
∫

A3×A12

]
µ1(x1)µ2(x2) Mg

[2](dx1 × dx2)

+
∫

A1∩A2∩A3

µ3(x1)Mg
1 (dx1),

where Aij = Ai ∩ Aj for i �= j.
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[Hint: Each side is the coefficient of 1
6s3 in the respective expansions of (6.4.7)

with argument sh(·), using (6.1.9) for the Laplace functional, (5.5.4) [with
η(x) = φsh(x) − 1 = −sh(x)µ1(x) + 1

2s2[h(x)]2µ2(x) − 1
6s3[h(x)]3µ3(x) + · · ·

and µr(x) =
∫

K κr F (dκ | x), r = 1, 2, 3] for the p.g.fl., and φsh as in (6.4.7).
The general case now follows by appealing to the symmetry (invariance under
permutations of the axes) of the moment measures.]

6.4.2 Develop formulae, analogous to those of Proposition 6.4.V, for characteristic
functionals of MPPs with marks in R. Use these to extend the results of
Proposition 6.4.V to the case where ξ may be a signed measure.

6.4.3 Cramér bound on probability of ruin. For the compound risk process, verify
the following results [with notation as for Example 6.4(a)].
(i) The sequence Un − U0 forms a random walk with mean α/µ − E(W ).
(ii) If ruin occurs, then it does so at the first time point tn for which Un < 0.
(iii) If α ≤ µE(W ), then ruin is certain, but if α > µE(W ), then there is

positive probability that ruin will never occur.
(iv) In the latter case, if the Laplace–Stieltjes transform E(e−sW ) is an entire

function of s, then there exists positive real s∗ such that E(e−s∗W ) = 1.
(v) The sequence {ζn} = {exp(−s∗Un)} constitutes a martingale for which

the time of ruin is a stopping time.
(vi) Let pM denote the probability that ruin occurs before the accumulated

reserves reach a large number M . Deduce from the martingale property
that

pME[exp(s∗∆0) | 0] + (1 − pM)E[exp(−s∗∆M) | M ] = exp(−s∗U0),

where −∆0 and ∆M are the respective overshoots at 0 and M .
(vii) Hence, obtain the Cramér bound for the probability of ultimate ruin

p = lim
M→∞

pM ≤ exp(−s∗U0) .

6.4.4 Find first and second factorial moment measures for the ground processes of
the marked and space–time Hawkes processes described in Example 6.4(c).
[Hint: Use the cluster process representation much as in Example 6.3(c).]

6.4.5 Study the Laplace functional and moment measures for the random measure
ξ for a Hawkes process with unpredictable marks. [Hint: Use the cluster
representation to get a general form for the p.g.fl. of the process as a process
on X × K. From it, develop equations for the first and second moments.] Are
explicit results available?

6.4.6 Formulate the process Υ(A) in (6.4.13) as an example of a LeCam process (see
Exercise 6.3.1). Show that in the special case considered in (6.4.17), when the
random sets are spheres [= disks in R2] with random radii we can write

Lξ[f | x] = E

[
exp

(
− W

∫
R2

f(y) I{R≥‖x−y‖}(y) dy

)]
.

Derive expressions for the mean and covariance functions of υ(x) as corollaries.
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6.4.7 Higher-order moments of the union set. In the context of the union set Ξ of
the Boolean model of Example 6.4(e), show that the kth product moment

E[ψ(x1) · · · ψ(xk)] = Pr{Ξ � xj (j = 1, . . . , xk)},

for k distinct points x1, . . . , xk in X = R2, equals

1 +
k∑

r=1

(−1)r
∑′

r
q(xj1 , . . . , xjr ),

where
∑′ denotes the sum over all distinct r-tuplets of the set {x1, . . . , xk},

q(x1, . . . , xr) = Gg[h(· ; x1, . . . , xr)], and the function h(y ; x1, . . . , xr) =
Pr{R < min1≤j≤r{‖xj − y‖}}. [Hint: The relation arises from taking ex-
pectations in the expansion of products of indicator random variables

I{Ξ � all xj} =
∏

j
I{Ξ � xj} =

∏
j
(1 − I{Ξ �� xj})

= 1 +
∑k

r=1
(−1)r

∑′

r

∏r

�=1
I{Ξ �� xj�}

and ∏r

�=1
I{Ξ �� xj�} =

∏r

�=1

∏
i
I{Si �� xj�} =

∏
i

∏r

�=1
I{Si �� xj�},

and the conditional expectation of the last product, given the locations {yi},
equals h(yi; xj1 , . . . , xjr ), as indicated.]
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