11.

Theorem of Borsuk and
Topological Transversality

In this chapter we provide an easily accessible and unified account of some
of the most fundamental results in fixed point theory. Among them, the
antipodal theorem of Borsuk and the theorem on topological transversality
occupy the central position; all the other results in this chapter are their
consequences. The chapter ends with diverse applications to various fields.

§5. Theorems of Brouwer and Borsuk

Our aim in this paragraph is to establish the theorem of Borsuk and its
immediate consequence, the Brouwer fixed point theorem. We obtain these
results by first establishing the Lusternik—Schnirelmann—Borsuk theorem
about the n-sphere. Our approach is elementary, in that it involves only some
simple simplicial decompositions of the sphere and a combinatorial lemma.

1. Preliminary Remarks

Let E be a normed linear space. We recall that a finite set of s+ 1 points in
E is said to be affinely independent if it is not contained in any (s — 1)-flat
of E.

(1.1) DEFINITION. Let {po,p1,...,ps} be an affinely independent set of
s+ 1 points in E. Their convex hull

{l‘EE‘l‘:i)\zl)“ OS)\lgl, i)\zzl}
i=0 i=0

is called the (closed) s-simplex with vertices py, ..., ps and is denoted
by [po,--.,ps). If the vertices do not have to be explicitly stated, a
simplex is denoted by ¢ or ¢°, the upper index indicating its dimen-
sion.
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The k-simplex spanned by any k + 1 of the vertices po,...,ps is called a
k-face of o®; the only s-face of o is o° itself. The boundary, do® (which
is not necessarily the topological boundary of ¢* in E), is the union of all
faces of dimension < s — 1; the open s-simplex is 0° — Jo®. The 0-faces of
o® are its vertices, and the 1-faces [p;, p;| are called the edges of o°; because
o is convex, it is easy to see that the diameter §(c®) of o° is the length of
its longest edge.

A simplex is obviously a compact metric space. Moreover, because the
set of its vertices is affinely independent, each x € ¢° = [pg,...,ps] can
be written uniquely as x = > 7_, \;(z)p;, where > 7 _ \j(z) =1 and 0 <
Ai(z) <1lforeachz € 0¥ andi =0,...,s;the (s+1)-tuple (Ag(x), ..., \s(2))
of real numbers is called the barycentric coordinates of x € o, and each
Ai 1 0 — [0,1] is called the ith barycentric coordinate function of o.

(1.2) PROPOSITION. Any two s-simplices are affinely homeomorphic. Fur-
thermore, for any simplex o, each of its barycentric coordinate func-
tions \; : 0 — [0,1] is continuous.

PROOF. Let R**! be the (s + 1)-dimensional Euclidean space and A% C
R*T! be the s-simplex having the unit points ey = (1,0,...,0),...,es =
(0,0,...,1)in R**! as vertices; A® is called the standard s-simplez. Observe
that the barycentric coordinates of any x € A® are precisely the Euclidean
coordinates of z, so that

As:{()\o,...,)\s) GRSJrl 0< N\ <1, 2A,_1}

We now show that any given o® = [py, ..., ps] C E is affinely homeomorphic
to A%. Let h : R*™' — E be the map h(Mo,...,Xs) = Y.;_o \ip;; this
is clearly continuous, and g = h|A® maps A® onto ¢°; since g is also a
bijective map of the compact A® onto o, we conclude that g is an affine
homeomorphism of A® onto ¢®. To prove that the barycentric coordinate
functions are continuous, let m; : R**! — R be the projection onto the ith
coordinate space; since \; = m; o g~ !, and both 7;, g~ ! are continuous, the
proof is complete. O

2. Basic Triangulation of S"

Because we will be using simplices throughout, it is convenient to work with
an equivalent norm for Euclidean space under which the unit sphere can be
regarded as the union of geometric simplices.

Let E be the normed space of all those sequences x = {z1, z2, ...} of real
numbers having at most finitely many z,, # 0, with the norm ||z|| = >_ |z;|.
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The subset {x € E | z; = 0 for all i« > n} is denoted by E™; the (closed)
unit n-ball is

K" ={zcE"| |z <1}.

The unit n-sphere is S™ = {x € E"! | ||z|| = 1}; its upper hemisphere
is 8" = {r € 8" | x,41 > 0}, and its lower hemisphere is " = {z € §" |
Tpt1 < 0}; clearly, 8 = S7 U S”. Observe that for any k < n, we have

Sk:{xGS”|mk+2:---:xn+1:0}

and that S"~1 =87 NS".

Given an n-dimensional normed linear space L™ it is easy to see that
there is a homeomorphism of L™ onto E™ sending points symmetric with
respect to the origin in L™ onto points symmetric with respect to the origin
in E™ and mapping the unit sphere in L™ onto S". Therefore, the results
that will be established in this paragraph in E” remain valid for any finite-
dimensional normed linear space L™.

By a triangulation of S™ is meant a decomposition of S™ into simplices
that are pasted together along common faces in an orderly manner. Pre-
cisely:

(2.1) DEFINITION. A finite family .#" = {o} of simplices in S™ is called
a triangulation of S™ provided:
(i) the intersection of any two simplices in " is either empty or a
common face of each,
(i) if o € ™ then every face of ¢ is in .,
(iii) S"={o | o € S}
(iv) each (n — 1)-simplex of .#" is the common face of exactly two
n-simplices in /.

We remark that (iv) can be deduced from properties (i)—(iii).

The following triangulation of S§™ is important for our purposes: For
eachi=1,....,n+1,let e; = {01,5%,...} € E, where 5;'» is the Kronecker
delta; clearly, the unit ball K"*! is precisely the convex hull of the set
{e1,...,ent1,—€1,...,—€nt1}. It is easy to see that the set of all n-simplices
[£e1,...,+ent1] and all their faces provides a triangulation of S, called
the basic triangulation; this triangulation is denoted by X". Note that each
simplex of X" has a unique representation (called its standard form) by a
symbol [te;,, ..., xe; |, where ig < - -+ < .

Let o : 8™ — 8™ be the antipodal map x — —x; two elements of any
sort (points, simplices, sets) corresponding under o will be called antipodal.
Note that for each k < n, the restriction a|S* is the antipodal map of S*.
It is clear that no simplex of Y™ contains a pair of antipodal vertices, and
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that for each simplex o* € X™ the set a(c") is also a simplex of X", Since
we need to consider triangulations of ™ other than XY™ that have these two
properties, we make the formal

(2.2) DEFINITION. A triangulation .#" of 8" is called symmetric if:
(a) for each k < n, the k-sphere S* is a union of k-simplices of .7",
(b) for each k < n, and each simplex o* € .#", the set a(c*) is also
a k-simplex of .¥™.

We have already observed that X" is a symmetric triangulation; moreover,
symmetric triangulations of S™ with arbitrarily small simplices clearly exist;
a formal inductive proof of this evident geometric fact could be based on the
observations that a symmetric small simplex triangulation of S = 98" 1!
can be extended to a small simplex simplicial decomposition of §™*!, and
that

{O_n+1’a(o_n+1) | 0_n+1 c SﬁJrl}

is then a symmetric triangulation of §"*1.

3. A Combinatorial Lemma

Let .7%, respectively .#™, be triangulations of S¥, respectively S™. A map
f of the vertices of .#* to the vertices of .#" is called a simplicial vertex
map if for each simplex [po, ..., ps] of #*, the points f(po),..., f(ps) are
the vertices of a (possibly lower-dimensional) simplex of .#". Clearly, f
extends to a map S* — S™ (denoted also by f) sending simplices of .#*
into simplices of .#".

(3.1) DEFINITION. Let .#* be an arbitrary triangulation of S*, and let
f % — X" be a simplicial vertex map. An r-simplex [po, . . ., p]
of ¥ is called positive if:

(i) the vertices f(po), ..., f(p,) span an r-simplex o” € X",
(ii) the standard form of ¢” is “alternating in sign”,

o’ = [—i—eio, —Ciyseens (—1)T€ir],

with the first vertex positive.
An r-simplex of .Z* is negative if its f-image is an r-simplex of X"
which, in standard form, is alternating in sign and has negative first
vertex.
An r-simplex of .#* that is neither positive nor negative is called
neutral.

For any simplicial vertex map f : ¥ — X" and any subset L C S*, the
number of positive r-simplices in L under f is denoted by p(f, L, 7).
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The main result of this section relies on the following

(3.2) PROPOSITION. Letk <n, andlet f : /% — X™ be a simplicial vertex
map of a symmetric triangulation of S* into ™. If ao f = fo a,
then

p(f, 8% k) = p(f, 8% k—1) mod 2.

PRroOOF. Consider the upper hemisphere S fﬁ of S* and decompose the set
of k-simplices in S _’ﬁ into three disjoint classes:

o, = {sF c 8% | s is positive},

of_ = {s* c 8% | s" is negative},

oy = {s¥ 8% | s is neutral}.
Consider the sum

T= Y plfs"k=1)+ Y pfis"k=1)+ > p(f,s" k=1);

Ske.ﬂf+ skcof_ skea

we will determine the parity of 7.

First note that, because each p(f,s*, k — 1) is the number of positive
(k — 1)-faces of s*, the sum T involves all the positive s*~! in Sﬁ. Observe
next that each positive s*~1 not in §¥~! will occur twice in the sum 7, since
it is a face of exactly two s¥; because each positive s*~1 on §*~! is the face
of only one s* € S_’f_, we conclude that T = p(f, S*~1, k — 1) mod 2.

We now develop another expression for 7. Consider any neutral s*. Since
sk can have no positive (k — 1)-face (hence make no contribution to the
sum), unless dim f(s¥) > k — 1, we can write f(s*) = [*e;,,. .., +e;, ] with
19 < - -+ <1, in which there is either one repeated vertex, or all the vertices
are distinct but the signs do not alternate. In each case, a positive (k—1)-face
can occur only if there is at most one pair of adjacent vertices with the same
sign; and if removal of one of these vertices gives a positive face, so also will
removal of the adjacent one. Thus, p(f, s,k — 1) is even for each s* € .,
so that

T= Z p(f, % k—1)+ Z p(f,s" k—1) mod 2.

sked, skeo_

Noting now that each positive s¥ has exactly one positive (k — 1)-face, as
also does each negative s*, we find

Z p(f,s* k—1) = card oy, Z p(f,s* k—1) = card &_,
skedy skeo_

and therefore
T = (card «7; + card «7_) mod 2.
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Finally, as ao f = foa, it follows that an s* € S _’ﬁ is negative if and only
if a(s*) € S* is positive, so that card &/ = card{s* € S* | s* is positive};
therefore card @7, + card .« = p(f, S* k), and the proof is complete. [

Proposition (3.2) leads to the main result of this section:

(3.3) THEOREM (Combinatorial lemma). Let f : /"™ — X" be a simplicial
vertex map of a symmetric triangulation of S™. If ao f = foa, then
f maps an odd number of simplices of S™ onto

0'8 = [61, —€2, ..., (—1)n€n+1].
PROOF. According to the definition, an s™ € " is positive if and only if
its image, in standard form, is of. According to the lemma,
p(f,snﬂ?,) EP(f?‘Sn_lvn_ 1) = Ep(f7SO’O) mod 2.

As S° consists of exactly two vertices and f|SY maps them onto a pair of
antipodal vertices, it is clear that p(f, S°,0) = 1, completing the proof. [

4. The Lusternik—Schnirelmann—Borsuk Theorem

The combinatorial lemma will be applied to obtain the Lusternik—Schnirel-
mann—Borsuk theorem about the n-sphere, which is equivalent to the Borsuk
antipodal theorem.

(4.1) LeEMMA (Lebesgue). Let {M;,...,M,} be a family of closed non-
empty sets in a compact metric space X, with My N --- N0 M, = 0.
Then there exists an € > 0 with the property: any subset A C X
meeting every M; must have 6(A) > e.

PROOF. Let Z be the compact metric space M7 x - -- X M,, and consider the
continuous A : Z — R defined by

(1,...,2p) — max{d(z;,z;) | 1 <i<j<n}

Because M1N---NM, = (), the map ) is never zero; consequently, it assumes
a minimum, € > 0. If A C X meets each M;, there is an x; € AN M, for each
i=1,...,n;since A(x1,...,2,) > €, at least one d(x;,z;) > €, s0 6(A) > e.
This completes the proof. ]

As an immediate consequence, we have

(4.2) THEOREM (Lebesgue). Let {My,...,M,} be a closed covering of
a compact metric space X. Then there exists a X\ > 0 (a Lebesgue
number of the covering) with the property: if any set A of diameter
< X\ meets M;,,..., M, , then

M;, NN M;, #0. O
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With these preliminaries, we are ready to establish the fundamental

(4.3) LEMMA. Let My,...,M,1 be n+ 1 closed sets on S™, no one of
which contains a pair of antipodal points. If the family

(M, Myir,a(My), .. (M)
covers 8™, then My N---N M, 1 # 0.

PROOF. Denote a(M;) by M_;; since M; does not contain any pair of an-
tipodal points, we have d(M;, M_;) =¢; >0 foreachi=1,...,n+ 1.
Linearly order the covering by

My, M_1; M_o, Mo; M3, M_3; M_4, My;...,

and let A be a Lebesgue number for this closed covering.

Let " be a symmetric triangulation of S™ with the diameter of each
simplex < € = min(\,e1,...,&,41). We first construct a simplicial vertex
map f: " — X" as follows:

For each vertex p € /", let M, be the first set of the ordered covering
containing p, and set

F(p) = (signj)(=1)"*eyy).
This is, in fact, a simplicial vertex map: since 2" can be described as the set
of all simplices [te;,,...,+e; ] with no two entries antipodal, it is enough
to show that no two vertices p;, p; of a simplex of " can map to antipodal
vertices, and this follows from d(p;,p;) < € and the definition of ¢.

It is evident, from the definition of f, that a o f = f o «, so from (3.3),
there is some simplex [p1,...,pn+1] such that

f[p17 e 7pn+1] == [617 —€2,..., (_1)nen+1]~

This means that each p; € M;, so that [p1,...,ppi1] N M; # 0 for i =
1,...,n+1. Since §([p1, - .., pnt1]) < A, it follows that My N---NM, 1 # 0,
and the proof is complete. O

We now establish the main result of this section.

4.4) THEOREM (Lusternik—Schnirelmann—Borsuk). In any closed coverin,
Y g
{M,...,Mp41} of S™ by n+1 sets, at least one set M; must contain
a pair of antipodal points.

PRrROOF. We argue by contradiction. Assume that no M; contains a pair of
antipodal points; then (4.3) applied to the covering {M;, ..., M, 11, a(My),

coya(Mp41)} would show My N---N M,11 # (; since any xg € My N---N
M, +1 must also be in some set «(M;) of the covering {a (M), ..., a(Mp4+1)}
of 8™, this means that M; would contain a pair of antipodal points, contra-
dicting our hypothesis and completing the proof. 0
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5. Equivalent Formulations. The Borsuk—Ulam Theorem

Results equivalent to the Lusternik—Schnirelmann—Borsuk theorem use the
notions of extendability and homotopy in their formulation. For the conve-
nience of the reader, and to establish the terminology, we recall the relevant
definitions. By space we understand a Hausdorff space; unless specifically
stated otherwise, a map is a continuous transformation.

(a) Let X,Y be two spaces and A C X. A map f: A — Y is called
extendable over X if there is a map F : X — Y with F|A = f.

(b) Two maps f,g : X — Y are called homotopic if there is a map
H: X xI—Y with H(z,0) = f(z) and H(x,1) = g(z) for each x € X.
The map H is called a homotopy (or continuous deformation) of f to g,
and written H : f ~ g. For each ¢, the map x — H(x,t) is denoted by
H;: X —Y; clearly the family {H; : X — Y }o<i<1 determines H and vice
versa.

Recall that the relation of homotopy is an equivalence relation in the set
of all continuous maps of X into Y’; for reflexivity, note H(z,t) = f(x) shows
f =~ f; for symmetry, observe that if H : f ~ g then (x,t) — H(x,1 —t)
gives g~ f;if H: f ~¢gand G : g >~ h, then

[ H(z,2t), 0
D(x’t)_{G(x,%—l), 1

is continuous and shows that f ~ h, establishing transitivity. Thus, the rela-
tion of homotopy decomposes the set of all maps of X into Y into pairwise
disjoint classes called homotopy classes. An f : X — Y homotopic to a
constant map is called nullhomotopic; in this case we write f ~ 0. A space
X is called contractible if idx : X — X is nullhomotopic.

Observe that to establish a homotopy H : f ~ g is essentially an ex-
tendability problem: one has given a map h : (X x 0) U (X x 1) — Y and
seeks an extension over X x I. For the special case of maps of spheres into
arbitrary spaces, their nullhomotopy is equivalent to a simpler extendability
property, which is very frequently used:

(5.1) THEOREM. A map f:S™ — Y is nullhomotopic if and only if f is
extendable to an F : K"t! — Y.

PROOF. Assume f : 8" — Y is extendable to F : K"t! — Y. For z € §"
and 0 < ¢t < 1, set H(xz,t) = F(tx) to see that H : 0 ~ f. Conversely, if
H:8" x I —Y shows 0~ f, define an extension F : K"t — Y of f by
H(S5",0) 0< |yl <3
F — y V) PR
=Lt 2l -, 3 2 21

This completes the proof. ]
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We say that f : S® — S* is antipode-preserving if f(—x) = — f(z) for all
x € S™. With this terminology we now prove Borsuk’s antipodal theorem
and also show that it is equivalent to various geometric results about the
n-sphere. A fixed point version of the theorem will be derived in the next
section.

(5.2) THEOREM. The following statements are equivalent:
(1) The Lusternik—Schnirelmann—Borsuk theorem.
(2) There is no antipode-preserving map f : S — S"~1.
(3) (Borsuk’s antipodal theorem) An antipode-preserving map f :
S7~1 — 8"~ s not nullhomotopic.
(4) (Borsuk-Ulam) Ewvery continuous f : 8™ — E™ sends at least
one pair of antipodal points to the same point.

PROOF. (1)=(2). Supose f : S* — S™"~ ! is antipode-preserving. Decompose
S~ into n + 1 closed sets A1, ..., A, by projecting the boundary of an
n-simplex centered at 0 onto S™~! and letting A; be the images of the
(n — 1)-faces. Clearly, no A; contains a pair of antipodal points.

Let M; = f~*(A;),i=1,...,n+ 1. The M; are closed and cover S™, so
by (1), there is an x € M; N aM; for some i. Because f is antipode-preserv-
ing, this means that f(z) and fa(x) = af(z) both belong to A;, which is a
contradiction.

(2)=(3). Suppose some antipode-preserving g : "1 — S"7! were
nullhomotopic. Then g would be extendable toa G : K™ — S"~1. Regarding
K™ as 8%, we define ¢ : §" — S"~1 by

G(z), x e ST,
plw) = { —Ga(x), x€ S;

This is consistently defined on S N S™, and is an antipode-preserving map
of 8™ to S"~1, contradicting (2).

(3)=(4). Assume f : S™ — E™ is such that f(x) # f(—=z) for every
x € 8™. Define F: S — 8"~ 1 by

@) - f(-w)
Fo = e =

Then F|S"~1:8"~1 — 8§71 is antipode-preserving, and since F|S? is an
extension over K", F|S™~! would be nullhomotopic, contradicting (3).

(4)=-(1). Assume there were some closed covering My, ..., M, of S™
with no M; containing a pair of antipodal points, i.e., M; N a(M;) = 0
for each i. Let g; : 8™ — I be an Urysohn function with g;|M; = 0 and
gila(M;) =1 for each i = 1,...,n, and define g : ™ — E" by

9(x) = (91(2), .. ., gn(x)).
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According to (4), there must be a z € 8™ with g(2) = ga(z), so that g;(z) =
gi(a(z)) for i = 1,...,n, and therefore z € S™ — (JI"_ | M; — U}, a(M;).
Since both {M;} ! and {a(M;)} ]! cover 8™, the point z must belong to
both M, 1 and «(M,+1), which is the desired contradiction. U

6. Some Simple Consequences

We give two consequences of (5.2) that are particularly useful for our later
work. The first relaxes the condition —f(z) = f(—=x) in (5.2)(3) to simply

f@) # f(=a);
(6.1) THEOREM. A map f:S™ — S™ with f(x) # fa(x) for each x is not
nullhomotopic.
PROOF. Since f(x) # fa(x), the map g : S™ — S™ given by
@ f()
1f (@) = (=)l

is continuous and clearly antipode-preserving. Now, f,g : 8" — S™ are
never antipodal; for if g(z) = —f(2) for some z € S™, then

L+ [1f(z) = F(=2)]f(2) = f(=2),
so since [|£(2)| = [lf(=2)]l = 1, we would have 1+ [£(2) — f(~2)|| = 1,
which is impossible. Since f and g are never antipodal,
(1 —t)f(z) +tg(x)
hi(z) =
O a 0@ + tg(a)]
is a well defined pont of S™ for all (¢,x) € [0,1] x 8™ and hence {h;}o<t<1

is a homotopy joining f and g. From this, since g is not nullhomotopic by
(5.2)(3), we infer that neither is f. This completes the proof. O

The reader can easily show that in fact, (6.1) is equivalent to (5.2)(3).
The second consequence, which we shall use frequently, is Borsuk’s fixed
point theorem:

(6.2) THEOREM (Borsuk). Let U be a bounded symmetric conver open
neighborhood of the origin in E™, and let F : U — E™ be antipode-
preserving on OU, i.e., —F(a) = F(—a) for each a € OU. Then F
has a fized point.

PRrROOF. Let p: E™ — R be the Minkowski functional for U, and let E be
the set E™ with the norm ||z|; = p(z). The identity map h : E" — F is a

homeomorphism mapping U onto the unit ball K7* of E. Considering the
map g =ho Foh™': K" — E, which is antipode-preserving on 0K, we
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first show that ¢ has a fixed point; for if g(x) # = in K7, then

g(z) —x
fla) = 7= ~——
lg(z) — [y
would be a continuous map f : K" — 0K7{, so that f|OK] : 0K — 0K}
would be nullhomotopic; but f|OKT is easily seen to be antipode-preserving

and this is a contradiction. Therefore, hFh~!(z) = x for some x € K7, so
that Fh=(x) = h='(z) and F has a fixed point. O

7. Brouwer’s Theorem

The following special case of Borsuk’s theorem (5.2)(3) is basic in fixed point
theory.

(7.1) THEOREM. The identity map id : 8™ — S™ is not homotopic to a
constant map.

PROOF. Since id : S™ — S™ is antipode-preserving, (5.2)(3) applies. O

This result has many equivalent formulations; it is in fact equivalent to
Brouwer’s fixed point theorem:

(7.2) THEOREM. The following statements are equivalent:

(1) 8™ is not contractible in itself.

(2) (Bohl) Ewvery continuous F : K" — E"*1 has at least one of
the following properties:
(a) F' has a fized point,
(b) there are x € OK™ ! and A € (0,1) such that x = \F(x).

(3) (Brouwer) Ewvery continuous F : K" — K" has at least one
fized point.

(4) (Borsuk) There is no retraction r : K"tt — 8™ i.e., there is no
continuous r : K™"tY — 8™ that keeps each x € S™ fized.

PROOF. (1)=>(2). Suppose F(z) # x for all x € K" and y # tF(y) for
all 0 <t <1,y € K™ then y # tF(y) also for t = 0, and by our first
hypothesis, for t = 1. Let r : E"™ — {0} — 8™ be the map z — x/||x||.
Then H : §™ x I — S™ defined by

r(y — 2tF (1)), 0<t<
10 = {50 ey, 322

would show that id : S™ — S™ is homotopic to a constant.

(2)=(3). The second possibility in (2) cannot occur, because F'(S™) C
K"t

(3)=-(4). If there were a retraction, the map x — —r(x) would be a fixed
point free map of K™t into itself.

,_.MI»—-



96 II. Theorem of Borsuk and Topological Transversality

(4)=(1). Assume h : 0 ~ id, where h(S™,0) = xg € S™. Defining r :
K"+l — 8" by

0, |l < 3,
) ={
h(a/ll), 2zl = 1), ezl > 3,
would give a retraction of K"*! onto S™. O

The following example shows that Brouwer’s theorem (7.2)(3) cannot be
extended to infinite-dimensional normed linear spaces.

ExaMPLE. Let E be a noncomplete normed linear space, and K its closed
unit ball. By (4.3.10) there is a deleting homeomorphism h : E ~ E — {0}
such that h(z) = x for all 2 € K. Consider the map r : K — 0K given by
x +— h(z)/||h(z)||, which is well defined because h(y) # 0 for all y € E. If
x € OK, then h(z) = x, so r|0K =id and r : K — 0K is a retraction; the
map x — —r(z) is therefore a fixed point free map of K into itself.

This example shows that to obtain any generalization of the Brouwer
fixed point theorem valid in infinite-dimensional spaces, it is necessary to
restrict the type of map F': K — K that will be considered. We will show
in the next paragraph that every compact map F' : K — K (i.e., a contin-
uous map such that F(K) is compact) of the unit ball K of any normed
linear space has a fixed point. Note that this statement, valid in all normed
linear spaces, is precisely the Brouwer theorem whenever the space F is
finite-dimensional, since in that case a continuous F' : K — K is necessarily
compact. On this basis, it appears that for infinite-dimensional normed lin-
ear spaces, the natural analogue of a continuous map in finite-dimensional
normed spaces is that of a compact (rather than simply continuous) map;
maps of this type arise naturally in many problems of analysis.

8. Topological KKM-Principle

Among the results equivalent to Brouwer’s fixed point theorem, the theorem
of Knaster—Kuratowski—-Mazurkiewicz occupies a special place: it admits
an infinite-dimensional version which, as shown by Ky Fan, is particularly
suitable for applications.

Let E be a vector space and X C E an arbitrary subset. Recall that a
set-valued map G : X — 2% is called a KKM-map provided conv{z1, ..., x4}
C Ui_, Gz; for each finite subset {z1,...,z,} C X; G is called strongly
KKM provided x € Gz for each z € X and the cofibers of G (i.e., the sets
{r € X |y & Gz} for y € E) are all convex.

The basic topological property of KKM-maps is given in

(8.1) THEOREM. Let E be a linear topological space, X an arbitrary subset
of E, and G : X — 2F o KKM-map such that each Gz is finitely
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closed. Then the family {Gx | x € X} has the finite intersection

property.
PROOF. We argue by contradiction, so assume ();_, Gz; = (. Working in
the finite-dimensional flat L spanned by {z1,...,z,}, let d be the Euclidean
metric in L and C = conv{xy,...,z,} C L; note that because each L N Gz;
is closed in L, we have d(z,L N Gz;) = 0 if and only if x € L N Gz;.
Since (Ni—; L N Gz; = 0 by assumption, the function X : C — R given by
¢ — Yy i ,d(e,L N Gx;) is not zero for any ¢ € C, and we can define a
continuous f : C' — C by setting

fle) = % Zd(c,LﬂGwi) -y

By Brouwer’s theorem, f would have a fixed point ¢y € C. Let
I = {’L ’ d(CQ,L N GIZ) 75 0}
Then the fixed point ¢y cannot belong to | J{Gz; | i € I}; however,

co = f(co) € conv{z; |i €I} C LJ{GQCZ | i€ I},
and with this contradiction, the proof is complete. ]

As an immediate consequence of (8.1), we obtain the following funda-
mental result:

(8.2) THEOREM (Topological KKM-principle). Let E be a linear topological
space, X C E an arbitrary subset, and G : X — 2F o KKM-map. If
all the sets Gx are closed in E, and if one of them is compact, then

({Gz |z € X} #0. O

Clearly, the topological KKM-principle contains as a special case the
geometric KKM-principle (3.1.5). We now give two simple applications that
do not follow from the geometric principle.

(8.3) THEOREM. Let C be a nonempty compact convexr set in a Hilbert
space H with scalar product ( , ), and let f : C — H be continuous.
Then there exists a yo € C' such that

(f(yo)syo —x) <0 forallz € C.
PROOF. Define G : C — 2¢ by

Gx={yeC|(f(y),y—=z) <0}

Clearly, GG is strongly KKM, and hence, because C' is convex, it is a KKM-
map (see (3.1.2)). Since f is continuous, the sets Gz are closed, therefore
compact. By the topological KKM-principle, we find a point yy € C' such
that yo € Gz for all x € C', which is the required conclusion. O
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As an immediate consequence, we have

(8.4) THEOREM. Let C be a nonempty compact convex set in a Hilbert
space H. Let F : C'— H be continuous and such that for each x € C
with © # F(x) the line segment [z, F(x)] contains at least two points
of C. Then F has a fized point.

PROOF. Define f: C — H by f(x) = x — F(z) for 2 € C. By (8.3) we find
a point yo € C such that

(*) (yo — F(y0),y0 —x) <0 forallz € C.

We show that yg is a fixed point of F. Indeed, if not, then the segment
[y0, F'(y0)] must contain a point of C' other than yo, say z = tyo+(1—1)F(yo)
for some 0 < t < 1; then from (x) we get (1 —¢)(yo — F'(v0),v0 — F(y0)) <0,
and since ¢ < 1, we must have yo = F(yo). O

The theorem just proved implies that any continuous self-map of a com-
pact convex set in a Hilbert space has a fixed point, thus showing in partic-
ular that the Brouwer fixed point theorem is equivalent to the topological
KKM-principle.

Numerous applications of the topological KKM-principle will be given
in §7.

We conclude by observing that as a special case of (8.1) we obtain one
of the basic results in fixed point theory:

(8.5) THEOREM (Knaster-Kuratowski-Mazurkiewicz). Let X = {zo,...
... Ty} be the set of vertices of a simplex o™ C R™ and G : X — 2&"
a KKM-map assigning to each x; € X a compact set Gx; C o™. Then
the intersection of the sets Gxqg,...,Gx, is not empty. O

We leave to the reader an easy proof that (8.1) and (8.5) are in fact
equivalent.

9. Miscellaneous Results and Examples

A. Homotopy, retraction, and extendability of maps

(A.1) Let f,g: X — S™ be two maps. Show:

(a) If f(z) # —g(x) for all z € X, then f ~ g.
(b) If f(x) # g(z) for all z € X, then f ~ —g.
(c) If f(z) L g(z) for all z € X, then f ~ g.
(
(

(A.2) Let f:S™ — S™ be a map. Prove:
a) If f(z) # —z for all x € S”, then f ~idgn.
b) If f(z) # z for all z € 8™, then f ~ «, where a: S — S™ is the antipodal map.

(A.3) Let f,g: X — S™ be two maps such that f(z) # +g(x) for x € X. Show: There is
h: X — S" such that g ~ h and f(x) L h(x) for each z € X.
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[Take
llg(z) — (9(=), f(x))f ()]

(A4) Let X be any space and A C X. Show: A is a retract of X if and only if for every
space Y, each f: A — Y is extendable over X.

(A.5) Let K™ be the unit ball in R™ with boundary §™ 1. Show: K™ x {0}US"™ ! x[0,1]
is a retract of K™ x [0,1].
[Consider 7 : K™ x [0,1] — K™ x {0} U 8" ~! x [0, 1] given by

x 2—1t t
(M’Q‘ 2l ) lell =1 =3

r(z,t) = 93
o) el <1 L]

DN

27t7 I

[\V]

(A.6) Let Y be any space and fo, f1 : S — Y be homotopic. Show: If fy has an extension
over K™t then so also does f1.
[Use (A.4) and (A.5).]

B. Borsuk’s antipodal theorem

(B.1) Let My,...,My,42 be a closed covering of S™ by n + 2 nonempty sets. Show: If no
M; contains a pair of antipodal points, then Mj N---N M, 42 = () and any (n+ 1)-element
subfamily has a nonempty intersection.

[If x € MyN---N Mpyo then z € a(M;) for some j, contradicting the assumption
on Mj. For the second part: To show, say, M1 N---N Myy1 # 0, note that

(My,..., Mpi1,a(My),...,a(Mnyi1)}

must be a covering of S™, since an z not in the union must belong to both M, 2 and
a(Mp+2); then apply (4.3).]

(B.2) Prove: In each decomposition of K"t into n 4 1 closed sets, at least one of the
sets must have diameter equal to 2.
[Use (4.4).]

(B.3) Prove the “invariance of dimension number” theorem: R™ is not homeomorphic to
R"™ whenever n # m.
[Suppose n > m and h : R — R™ is a homeomorphism. Consider 1|S™ ! and apply

(5.2)(4).]

(B.4) Let f1,..., fn be n continuous real-valued functions on S™. Show: There exists at
least one p € S™ with f;(p) = fi(—p) for all i € [n].
[Consider the map © — (f1(z),..., fa(z)) of S™ into R™.]

(B.5) Let fi,...,fn be n continuous real-valued functions on S™ such that —f;(p) =
fi(—=p) for every p € 8™. Show: The f; have a common zero on S™.
[Consider the proof of (5.2)(3)=-(4).]

(B.6) Let f1,..., fnt2 be n+ 2 continuous real-valued functions on S™ and assume that
for each p € S™ there is at least one f; with f;(p) = 0 # f;(—p). Show: The f1,..., fnt2
have no common zero, but any n + 1 of them do.

[Use (B.1) with M; = f; *(0).]
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(B.7) Let f:S™ — S™ be nullhomotopic. Show: f has a fixed point and sends some z to
its antipode, i.e., f(zg) = —x¢ for some zg.

[If f has no fixed point, then f ~ —id. If no point maps to its antipode, then f ~ id,
which is not nullhomotopic.]

C. Theorem of Brouwer and related results

(C.1) Let X be a compact subset of R" with nonempty interior. Show: There is no
retraction of X onto its boundary (Borsuk [1931]).

(C.2) (Theorem on partitions) Let J" be the n-cube {(z1,...,zn) | |z;| <1 for i € [n]};
the ith face {z € J" | z; = 1} is denoted by Ji+, and the opposite face {z € J" | z; = —1}
by J; . For each i € [n] let A; be a closed set separating J;r and J; (ie., J" —A; =
U;r UU;, where the U;r, U, are disjoint open sets with J;r C U;r and J;- C U;"). Prove:
Ni—y 4; # 0 (Eilenberg-Otto [1938]; see also the book by Hurewicz—Wallman [1941]).
[For each 4 define
hi() = { —d(z, A;), =€ U;:,
d(z, A;), rzeU,,

and show that the map z — = + (h1(x),..., hn(z)) maps J" into itself.]

(C.3) (Miranda theorem) Let f1,..., fn be continuous real-valued functions on J" such
that for each i € [n],

fi(z) >0 forer{", fi(z) <0 forxeJd; .
Show: There exists T € J™ such that f;(Z) = 0 for each i € [n] (Miranda [1940]).

(C.4) Let f : (K" 8") — (K™™' 8™) be a continuous map such that one of the
following conditions holds: (a) Fix(f|S™) =0, (b) f(z) = —x for each z € S™, (c) f|S™:
S™ — S™ is not nullhomotopic. Show: f : K" — K" is surjective (Kuratowski-
Steinhaus).

(C.5) (Theorem of Frum-Ketkov and Nussbaum) Let E be a Banach space and D a closed
ball about the origin in F.

(a) Let f : D — E be continuous with f(dD) C D. Show: If P : E — E is a
finite-dimensional linear projection with ||P|| = 1, then Po f: D — E has a fixed point.

(b) Let K be a compact subset of E. By an approzimating sequence for K is meant
a sequence { Py} of finite-dimensional linear projections in E such that (i) ||Pn|| = 1 for
all n; (ii) Prz — z for each z € K. Show: If {P,} is an approximating sequence for K,
then for each £ > 0 there exists an integer n. such that P, (K) C Be(K) for all n > ne.

(¢) Let f : D — E be continuous with f(0D) C D and assume that there exists a
compact subset K of F that admits an approximating sequence { Py} of projections and
satisfies d(f(z), K) < ad(z, K) for some a < 1 and all z € D. Prove: f has a fixed point
(Frum-Ketkov [1967], Nussbaum [1972a]).

[Establish successively the following assertions: for each n there is a fixed point zn
of P, o f; given € > 0, we have (1 — a)d(zn, K) < € for large n (use the definition of
a and (b)), implying d(xn, K) — 0; there is a subsequence {zn,;} converging to some
zg € K. Then f(z9) = z0.]

D. Sperner’s lemma and the Knaster—Kuratowski-Mazurkiewicz theorem

Let A™ = [po,...,pn] be an n-simplex. By a subdivision ¥ of A™ is meant a decompo-
sition of A™ into finitely many nonoverlapping n-simplices o1, ...,y such that (1) the
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intersection of any two simplices in . is either empty, or a common face of each, and
(2) each (n — 1)-simplex in .% that is not on dA™ is the common face of exactly two
n-simplices of .. The mesh of .7 is max{diam o} |4 € [k]}; the carrier of a vertex v € .%
is the lowest-dimensional face [p;,, ..., p;,| of A™ that contains v.

(D.1) Prove: Subdivisions of A™ having arbitrarily small mesh exist.
[Use repeated barycentric subdivision (cf. III, 8.2).]

(D.2) (Sperner’s lemma) Let .7 be a subdivision of A™. A labeling of the vertices of .7
that assigns to each vertex v € . one of the letters {p;,,...,p;, } whenever [p;;,...,p;,]
is the carrier of v, is called a Sperner labeling of .. Given a Sperner labeling of ., an
n-simplex o; € . is called complete if its vertices are labeled po,...,pn. Prove: In any
Sperner labeling of ., the number of complete simplices is odd (and therefore at least
one will exist) (Sperner [1928]).

[The result being trivial for n = 0, proceed by induction, assuming that it is true
for every A" 1. Given a Sperner labeling of a subdivision . of A”, consider the set of
(n — 1)-simplices labeled (po,...,pn—1). These arise from the « n-simplices of . labeled
(po,---,Pn—1,Pi), Pi # Pn, and the B complete simplices. Each of the « simplices has
2 faces labeled (po,...,pn—1) and each complete n-simplex only 1, so counting the n-
simplices of ., we get a total of 2« + 3 simplices labeled (pg,...,pn—1). This total is
precisely that of the v (n — 1)-simplices (po, . . ., Pn—1) in the interior of A", each counted
twice, and the § such simplices on dA™, so 2a + 8 = 2v + §. Now, the § simplices
necessarily belong to the face (pg,...,pn—1) of A™, and are the complete simplices in a
Sperner labeling of a subdivision of that face. By the induction hypothesis, J is therefore
odd, so 3 is odd. This completes the inductive step.]

(D.3) (Knaster-Kuratowski-Mazurkiewicz theorem) Let A™ = [po,...,pn] be an n-sim-
plex, and let Mg, ..., My be n+1 closed sets such that [p;,,...,pi,] C M;, U---UM;, for
each subset {io,...,is} C {0,...,n}. Prove: (\;_q M; # 0 (Knaster-Kuratowski-Mazur-
kiewicz [1929)).

[{Mo,...,Mn} is a closed covering of A™ and p; € M; for each i. Let A > 0 be a
Lebesgue number for {M;}, so that if A C A™ is any set with 6(A) < A, then N{M; |
M; N A#Q} #0. Let . be a subdivision of A™ with mesh < A. If v is any vertex of .7,
choose the carrier [p;,,...,pi.] of v, and give v any one of the labels {p;,,...,p;,} such
that v € M;,. Apply (D.2).]

(D.4) Let A™ = [py, ..., pn] be an n-simplex, and let {M; | i = 0,...,n} be a closed cover-
ing of A™ such that [po, ..., Di,...,pn]NM; =0 foreach i = 0,...,n. Prove: (;_q M; # 0.
[Let X = {po,...,pn} C R™ and show that p; — M; is a KKM-map.]

(D.5) Let A™ = [pg,-..,pn] be an n-simplex, and let {M; | i = 0,...,n} be a closed
covering such that [po,...,Di,...,pn] C M; for each i = 0,...,n. Prove: ;o M; # 0
(Alexandroff-Pasynkoff [1957]).

[For each i = 0,...,n — 1, let M} = M;, 1 and M;, = My. Apply (D.3) by showing
that p; — M) is KKM.]

(D.6) Let A™ = [pg,...,pn] be an n-simplex. Show that there exists a A > 0 with the
property: If 5 is any finite closed covering of A™ and if each H € J# has diameter < ),
then there are at least n + 1 sets in J# that have a nonempty intersection (Lebesgue).
[Let A; = [po, ..., Di,---,pnl; since iy A; = 0, they have a Lebesgue number A > 0:
any set in A™ of diameter < A does not meet at least one A;. Assume that the sets of
J have diameter < \. Define &y to be all the sets in S that do not meet Ag, and
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proceeding recursively, let @ be the family of all sets in 7 — Uf;ll &, that do not meet
Ak, k=0,1,...,n. Then U?:o &, =, each H € 7 belongs to at least one &;, and the
n+ 1 closed sets M; = |J{H | H € ®;} satisfy the conditions in (D.4).]

(D.7) Prove: A™ is not a retract of A™.
[If 7 : A™ — HA™ were a retraction, consider the sets M; = r~1[po,...,Dis--.,0n]
and apply (D.5).]

(D.8) Let A™ = [pog,...,pn] be an n-simplex, and let Uy, Uy, ...,Un be n + 1 open sets
in A™ such that [p;,,...,pi,] C Ui, U---UU;, for each subset {ip,...,is} C {0,...,n}.
Prove: (;_, U; # 0 (Lassonde [1990]).

E. Universal maps

(E.1) Let X, Y be topological spaces. A map f : X — Y is called universal if for any
g : X — Y there exists x € X such that f(z) = g(z). Recall that a space X is called a
fized point space if every continuous f : X — X has a fixed point. Show:
) If f: X — Y is universal, then f(X) =Y.

If f: X — Y is universal, then Y is a fixed point space.

X is a fixed point space if and only if id x is universal.

If gf is universal then so is g.

)

)

)
(e) Let AC X and f: X - Y. If flJA: A— Y is universal then so is f.
)
)

- 0O & o T

Any continuous map f: X — [0,1] of a connected space onto [0, 1] is universal.
Let Y be a connected linearly ordered space with the interval topology, with
the minimal and maximal elements. Then any continuous map f: X — Y of a
connected space X onto Y is universal.

(a
(
(
(
(
(8

(E.2) Let X, Y be metric spaces and £ > 0. A continuous f : X — Y is called an e-map
if 5(f71(y)) <eforally €Y. Let X, Y be compact metric spaces and f: X — Y be a
map. Assume that for each € > 0 there exist a space Z: and an e-map f: : Y — Z¢ such
that fe o f: X — Z is universal. Show: f is universal (Holsztyriski [1969)]).

(E.3) Let f: K" — K"*! be a map such that f(8") C " and f|S" : 8" — S" is
not homotopic to a constant. Show: f is universal (Holsztynski [1969]).

(E4) Let f: X — K" be a map of a normal space into the (n + 1)-ball and A =
f71(8™). Prove: f is universal if and only if the map f|A : A — 8™ is not extendable
over X (Lokutsievskil [1957], Holsztyniski [1967]).

F. Fized point spaces

Given subsets A, B in a metric space (X, d) and € > 0, an e-displacement of A into B is
any continuous map fe : A — B such that d(a, fe(a)) < ¢ for all a € A.

(F.1) Let (X,d) be a compact metric space and assume that for each £ > 0, there is an
e-displacement pe : X — X such that ps(X) is a fixed point space. Show: X is a fixed
point space (Borsuk [1932]).

(F.2) Let X be a compact metric space and assume that for each € > 0 there is an e-map
f: X — K" onto some (n + 1)-ball such that f|A: A — S™, where A = f~1(8"), is
not extendable over X. Prove: X is a fixed point space (Lokutsievskil [1957]).

(F.3) Show: The Hilbert cube I is a fixed point space.
[Use (F.1) and the Brouwer fixed point theorem.]
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(F.4) Let (X,d) be a metric space and K(X) the set of all nonempty compact subsets
of X. For A € K(X) and € > 0 we denote by Us(A) the e-neighborhood of the set A in X.
We define the Borsuk metric Dy in K(X) by letting, for A, B € K(X),

Dg(A, B) = inf{there are e-displacements fe : A — U:(B) and ge : B — U:(A)}.
€

Prove: If {A,} is a sequence of fixed point spaces in K(X) and Dg(An, A) — 0, then A
is also a fixed point space.

(F.5) Prove: The unit ball

K> = {x: {z;} € 1P

o0
2 2
ol = > a? < 1}
=1

in the Hilbert space [? is not a fixed point space (Kakutani [1943]).
[Show that ¢ : K — K given by (z1,x2,...) — (V1—||z]|?,z1,22,...) is a
continuous map without fixed points.]

(F.6) Let X be a normal space and L a closed subset of X homeomorphic to the half-line
[1,00). Show: X is not a fixed point space (Klee [1955]).
[Prove that L is a retract of X using the Tietze-Urysohn theorem.]

(F.7) Let E be an infinite-dimensional normed linear space and K its closed unit ball.
Prove: K is not a fixed point space (Dugundji [1955]).

[Define by induction a sequence {en } in K such that dist(e,+1,span(er,...,en)) = 1.
Prove that L = [e1, ea]UJea, e3]U- - - is closed in K and that L is homeomorphic to [1, 00);
then apply (F.6). The argument in this hint was suggested by V. Klee and independently
by C. Bowszyc.]

G. Vector fields

Let A C R"™, and let F : A — R"! be a map; from F we obtain a vector field
f:A— R"™ by f(z) =2 — F(z). A zero of f is called also a singularity of f; clearly,
the singularities of f are precisely the fixed points of F'.

(G.1) Let f,g : 8 — R""! — {0} be two singularity free vector fields that are never
opposite. Show: f ~ g.

(G.2) Let f : (K"t oK"Y — (R, R"™ — {0}) be a vector field on K"*?
without singular points on OK™'!. We say that f is essential if for any given ¢ :
(K" oK™ — (R R — {0}) satisfying g|0K" ! = flJoK™ ! there is a sin-
gular point for g; f is said to be inessential if f|S™ can be extended without singularities
over K™, Show: A vector field f: (K", K" ™) — (R"1, R"1 — {0}) is essential
if and only if the map ¢ : S™ — S™ defined by z — f(x)/||f(z)|| is not nullhomotopic.

(G.3) Let f,g: (K", oK™ — (R", R"*! — {0}) be two homotopic vector fields.
Prove: If f is essential, then so is g.

(G.4) Let f: (K"t oK™ ™) — (R, R"1 — {0}) be an essential vector field. Show:
The vector field flOK™ ! : 8" — R — {0} points in every direction.

(G.5) Let f: (K" oK™y — (R"1 R"™! — {0}) be a vector field such that the
vectors at antipodal points never have the same direction. Show: f is essential.
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(G.6) Let f: K™ — R"™ {0} be a nonsingular vector field on K™, Show: There is
a pair of antipodal points on S™ = OK™! at which the vectors have the same direction.

(G.7) Show: There is no singularity free vector field f : K" — R"*1 — {0} on K"}
such that f is everywhere outward normal or everywhere inward normal on the boundary.

[If f: 8™ — R™ — {0} has no inward normal, then it can be deformed to a field
that has outward normal everywhere.]

H. Topological theory of KKM-maps

In this subsection, C' stands for a nonempty convex set in R® and X for a subset of C;
by (X) we denote the set of finite subsets of X, and for A € (X) we let [A] = conv A. We
recall that F : X — 2¢ is a KKM-map if [A] C [J{Fz | z € A} for each A € (X). We say
that a map T : X — 2¢ has the matching property if the condition

[A] C U{Ta: | z € A} for some A € (X)

implies that
m{Txﬂ[B} |z € B}#0 for some B € (X).

(H.1) (“Closed” and “open” versions of the KKM-property) Prove: If F : X — 2% is a
closed-valued (or an open-valued) KKM-map, then

m{Fxﬁ [A] |z € A} #0  for each A € (X).

(H.2) (Matching theorems) Prove: If T : X — 29 is an open-valued (or a closed-valued)
KKM-map, then T" has the matching property.
[Use the map z +— Fz = C — Tz and (H.1).]

(H.3) (Fized point theorems) Let T : C — 2¢ be a convex-valued map with open fibers
(or with closed fibers) such that for some A € (C), we have Tz N A # (0 for all x € [A].
Show: Fix(T') # 0.

[Use (H.2) and the following observation: if T : C' — 2¢ is convex-valued and R =
T~ then, given any A € (C), the following properties are equivalent: (i) Tz N A # 0 for
each z € [4], (ii) [A] C U{Rz | = € A}.]

(The above results, except the “closed” version of (H.1), are due to Lassonde [1990].)

10. Notes and Comments

The antipodal theorem of Borsuk

This is one of the central results in fixed point theory. It was established by
Borsuk [1933a] together with (4.4); the Borsuk-Ulam theorem was conjec-
tured by Ulam and proved by Borsuk. Theorem (4.4) was discovered earlier
by Lusternik—Schnirelmann [1930] in their work on topological methods in
analysis.

The combinatorial proof of (5.2) presented in the text is an adaptation
of that in Granas’s tract [1962]. The first proof of this type was given by
Tucker [1945] for n = 3; Fan [1952a] extended Tucker’s result to arbitrary n
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and established some generalizations of the Borsuk—Ulam and Lusternik—
Schnirelmann—Borsuk theorems. A combinatorial proof of the antipodal the-
orem was also found by Krasnosel’skii-Krein [1949]. The first proof of the
antipodal theorem using the analytical definition of the degree was given in
the lecture notes by J.T. Schwartz [1969]. For yet another analytical proof
see the lecture notes by Nirenberg [1973]. An elementary proof based on
degree theory may also be found in Dugundji’s book [1965]. A notewor-
thy algebraic proof of the Borsuk—Ulam theorem is given by Arason—Pfister
[1982].

K. Borsuk and P. Alexandroff, Radachéwka, 1962

The Lusternik—Schnirelmann category

Let X be a topological space. A set A C X has Lusternik—Schnirelmann
category < n, written Cat A < n, if A is the union of n closed sets each
deformable to a point in X. It is easy to establish that:

(a) Cat B<CatAif B C A.

(b) Cat(AU B) < Cat A + Cat B.

(c) Cat A <dimA— 1.

(d) If f: A — X is homotopic to the inclusion i : A — X, then

Cat A < Cat(f(A)).
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The following theorem of Lusternik—Schnirelmann [1930] is equivalent
to Theorem (4.4), and hence to Borsuk’s antipodal theorem: If P™ is the
n-dimensional real projective space, then Cat(P™) =n + 1.

This notion of category plays a basic role in the critical point theory
developed by Lusternik—Schnirelmann. Let f be a smooth real-valued func-
tion on a smooth manifold M. A point p € M is called a critical point of f
provided there is a local coordinate system (z1,...,x,) in a nbd of p with
0f(p)/0z; = 0 for all i« = 1,...,n. The number of critical points is gov-
erned by the following fundamental result of Lusternik—Schnirelmann: If M
is compact, then f has at least Cat M critical points on M.

The following is a simple application. Let f(z) = f(z1,...,2,) be a
smooth function defined on a nbd of the unit sphere S*~! in R"™. The
critical points of f are determined by the equations

(+) d{f(x)—)\zn:xﬂ:(), Zn:x§:1
i=1 =1

(if f is a quadratic form, then the corresponding critical points coincide with
eigenvectors of f, and to Lagrange multipliers correspond eigenvalues of f).
Assume that the function f is even, i.e., f(x) = f(—=z) for all z € 8"~ 1.
Since by identifying x with —x for all € S™~! we obtain the projective
space P"~ 1 it follows from the above theorem of Lusternik-Schnirelmann
that f: P"~! — R has at least Cat(P" ') = n different critical points and
hence the equation (x) has at least n different pairs of solutions.

Results related to the Borsuk—Ulam theorem

The Borsuk—Ulam theorem suggested deriving more precise results for maps
f: 8" — R. In 1942 Kakutani (n = 2) and in 1950 Yamabe—Yujobo (for
general n) showed that there exist n + 1 points {x;} satisfying (z;,z;) =0
for ¢ # j and such that f(z1) =--- = f(xn4+1). This has a consequence that
any compact conver K C R"! has a circumscribing (n + 1)-cube C (i.e.,
every face of C' meets K): for each direction o € S™ let f(«) be the distance
between two parallel planes perpendicular to « that contain K between
them, each of the planes meeting K. In 1950 Dyson (n = 2) and in 1954
Yang (arbitrary n) showed that any f : S™ — R maps the 2n endpoints of
some n mutually orthogonal diameters to a single point. For more details
see Yang [1954].

Theorem of Brouwer

This is one of the oldest and best known results in topology. It was proved for
n = 3 by Brouwer [1909]; for differentiable maps an equivalent result was
established earlier by Bohl [1904]. Hadamard [1910] (using the Kronecker
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index) gave an analytic proof for arbitrary n; somewhat earlier, Brouwer
gave a proof using the simplicial approximation technique and the notion
of degree; that proof appeared in Brouwer [1912] (cf. comment on p. 277).
Other proofs depending on various definitions of degree were also given by
J.W. Alexander [1922] and Birkhoff-Kellogg [1922].

A simple combinatorial proof of the Brouwer theorem (based on Sper-
ner’s lemma [1928]) was given by Knaster-Kuratowski-Mazurkiewicz [1929];
they noted also that for a map f : K™ — R™ the condition f(OK™) C K™
suffices for the existence of a fixed point. For a noteworthy analytical proof
of the Brouwer theorem see Lax [1999]; for another proof due to Milnor
[1978] see “Miscellaneous Results and Examples”.

FEquivalent formulations

The fact that the Brouwer fixed point theorem admits an equivalent for-
mulation in terms of homotopy and another one in terms of retraction was
observed by Borsuk [1931a], [1931b]; these simple but significant observa-
tions provided the justification for the study of nonextendability problems
and were the starting point of many further important developments. The
fact that there is no retraction r : K"l — 8§ (besides being equiva-
lent to Brouwer’s theorem) provides a key to a number of other results in
topology; it can be used, for example, to prove the domain invariance in
R™ and also the “tiling” covering theorem of Lebesgue (see the book of
Hurewicz—Wallman [1941]). Among the proofs of this nonretraction result
we mention an analytic proof by Milnor (cf. Milnor’s book [1965]) based on
the approach of M. Hirsch [1963], the inductive proof by Sieklucki [1983],
and that of Alexandroff-Pasynkoff [1957] based on the Knaster—-Kuratowski—
Mazurkiewicz theorem. For a discussion of the not entirely correct approach
of Hirsch [1963] in the simplicial context see Joshi [2000].

Computing fixed points

Brouwer’s theorem ensures that each self-map f : ¢ — o of a simplex has
at least one fixed point. Until the late sixties computer methods to find a
fixed point of a given such map were severely limited: the techniques used
were all based on iterative procedures that required additional restrictions
on the map in order to guarantee convergence. Scarf [1967] developed a
finite algorithm (based essentially on Sperner’s lemma) for approximating
a fixed point for any continuous f : ¢ — o; to improve accuracy, the early
programs included a Newton method subroutine, depending on the function
considered. Scarf’s paper initiated considerable activity in computation of
fixed points. By using homotopy techniques, Eaves [1972] gave an algorithm
with improved accuracy over that of Scarf, and avoiding the Newton method:
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working on o x I with the given function on o x {0}, a known function with
a unique fixed point on o x {1}, and a suitable homotopy joining them,
this approach relies on the fact that connected 1-manifolds (the fibers of
the homotopy) are homeomorphic either to the circle or to the unit interval.
An introduction to this currently active research area and to some of its
immediate applications may be found in Scarf-Hansen [1973] and the book
of Allgower—Georg [1990].

Brouwer’s theorem in the infinite-dimensional case

The fact that the Brouwer theorem does not hold for arbitrary continuous
maps of the unit ball in infinite-dimensional Banach spaces was observed by
several authors.

In 1935 (answering a question of Ulam), Tychonoff showed that the unit
sphere in [? is a retract of the unit ball. Leray [1935] observed that the unit
sphere in C0, 1] is contractible. Kakutani [1943] gave an example of a fixed
point free homeomorphism of the unit ball in /2 into itself. Dugundji [1951]
proved the following theorem: A closed unit ball in a normed linear space is
a fized point space if and only if it is compact. Klee [1955] generalized this
result to arbitrary convex sets in metrizable locally convex spaces.

In their study of fixed points of Lipschitz maps, Lin—Sternfeld [1985] established the
following result: A convex set in a Banach space, having the fized point property for Lip-
schitz maps, must be compact. From this one can deduce the following earlier result of
Nowak [1979]: In every infinite-dimensional Banach space there exists a Lipschitz retrac-
tion of the unit ball on its boundary. For more details the reader is referred to Bessaga
[1994] and to the book of Goebel-Kirk [1991].

Universal maps

A map f : X — Y is called universal if for each g : X — Y there is
x € X such that f(z) = g(z) (clearly X is a fixed point space if and only if
the identity map 1x is universal). This notion is due to Holsztynski [1964],
who obtained the following generalizations of the theorems of Hurewicz and
Brouwer:

(i) Let X be a normal space and Jj} = {(x1,...,z,) € J" |z = sgnk}
for k==+1,+2,...,£n, where J = [=1,+1]. Let f : X — J™ be a
map and Ay, ..., A, be a sequence of closed sets in X such that Ay
partitions X between f~H(J™,) and f~1(JP) fork=1,...,n. Then
[ is universal if and only if (i_, A; # 0.

(ii) If X is a normal space, then the covering dimension dim X > n if
and only if there is a universal map f: X — J™.

Further results (and some applications to dimension theory) can be found
in Holsztyhski [1967], [1969].



§5. Theorems of Brouwer and Borsuk 109

Fized point spaces

A space X has the fixed point property (or is a fixed point space) if every
continuous f : X — X has a fixed point. Clearly, this property is topolog-
ically invariant. Borsuk [1931a] observed that if X is a fixed point space,
so also is every retract of X. For Cartesian products of fixed point spaces,
the result depends on the number of factors. The product of two compact
fixed point spaces need not be a fixed point space. We mention the following
examples:
(i) there is a finite polyhedron P that is a fixed point space while
P x [0,1] is not a fixed point space (see an example of Lopez [1967]
given below and Bredon [1971]);
(ii) there is a finite polyhedron P with the fixed point property such
that the suspension of P is not a fixed point space (Holsztyhski
[1970));
(iii) there are two manifolds X, Y that are fixed point spaces while X xY
is not a fixed point space (Husseini [1977]).
In contrast with finite products, an infinite product of compact nonempty
fixed point spaces is a fixed point space whenever every finite product of
those spaces is a fixed point space (Dyer [1956]). Thus by the Brouwer
theorem, the Hilbert cube I*° and in fact any Tychonoff cube are fixed
point spaces.
Several important results are summarized in the following list of fixed
point spaces:
(i) projective spaces of even dimension (J.W. Alexander [1922]),
(ii) compact convex sets in L? and in C"[0, 1] (Birkhoff-Kellogg [1922]),
(iii) compact convex sets in Banach spaces (Schauder [1927a], [1927b],
11930]),
(iv) weakly compact convex sets in separable Banach spaces (with re-
spect to weakly continuous maps) (Schauder [1927a]),
(v) compact absolute retracts (Borsuk [1931a]),
(vi) compact convex sets in locally convex linear topological spaces (Ty-
chonoff [1935]).

Two compact metric spaces X and Y are quasi-homeomorphic if for each £ > 0 there
isan eemap f : X — Y and an e-map ¢g : Y — X. The question of whether the fixed
point property is invariant under quasi-homeomorphisms was treated by Borsuk [1938]:
it is not invariant for arbitrary continua but is invariant if X and Y are compact ANRs.

Some examples

We give some noteworthy examples of continua lacking the fixed point prop-
erty.
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(a) (Knill [1967]) Let S = {x € R? | ||z|| = 1} be the unit circle and A
be a closed half-line spiraling to S. Let X = AU S and regard X as a subset
of R? x {0} C R3. Let Z = CX C R3 be the cone over X with vertex
p = (0,0,—1) as shown in Figure 1. Clearly, Z is contractible (to p); Knill
showed that Z is not a fixed point space but is a cell-like continuum (i.e., it
is the intersection of a decreasing sequence of closed 3-cells in R?).
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(b) (Kinoshita [1953]) Let X be the “can-with-a-roll-of-toilet-paper”
shown in Figure 2. Clearly, X is a contractible continuum; Kinoshita showed
that neither X nor the cone CX over X has the fixed point property. In
connection with the above two examples see Sieklucki [1985].

Figure 3
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(c) (Borsuk [1935]) Let X be the continuum in R? shown in Figure 3.
It consists of a solid cylinder with two tunnels carved out; the width of each
tunnel tends to zero as the tunnel approaches the limiting circle. Borsuk
showed that X is a cell-like continuum that admits a fixed point free hom-
eomorphism. Such a homeomorphism can be described as follows: the top
and the bottom of the cylinder rotate about the axis of the cylinder, and
each point lying between the top and the bottom is moved down below its
original position. Borsuk’s example can be used to construct a fixed point
free flow with bounded orbits in R* (Kuperberg-Reed [1981]). For related
results, the reader is referred to Kuperberg et al. [1993]. We remark that
there exists a 3-dimensional continuum in R* that has the properties of the
Borsuk example and in addition is simply connected (Verchenko [1940]).

(d) Let X be a plane continuum not separating the plane. It can be
shown that X is the intersection of a decreasing sequence of closed 2-cells in
R2. Since the twenties, the following problem has remained unsolved: does X
have the fixed point property? The following related partial result was estab-
lished by Cartwright-Littlewood [1951]: Let h be an orientation-preserving
homeomorphism of R? onto itself, and let X = h(X) be a continuum not
separating the plane. Then h|X has a fized point.

(e) (Lopez [1967]) We now describe a polyhedron Z with the fixed point
property such that Z x [0,1] lacks this property. Let P"(C') denote the
complex n-dimensional projective space (of real dimension 2n). It is obtained
from C™*! — {0} by identifying all the points on each complex line through
0 to any particular point. Specific embeddings P*(C) C P""1(C) can be
obtained from the inclusions C"*! x {0} C C"*! x C. The space P!(C) is
readily seen to be homeomorphic to the 2-sphere S2.

Let (a,b) € §? x §? and form a quotient space Z of the disjoint union
P%(C) + 8% x 82 + P*(C) + X P¥(C) by identifying

S§? = pY(C)c P(C) with 82 x {b} in §% x §2,
S? = PY(C)c PY(C) with {a} x 8% in §? x S?,

and (a,b) with any point of X P¥(C'), the suspension of P¥(C).

The space Z is triangulable; Lopez showed that Z has the fixed point
property but Z x [0,1] does not. This is another example showing that the
fixed point property is not an invariant of homotopy type. Although not
so easily visualized as example (a), it has the advantage of having no local
pathology.

Further, more special examples of fixed point spaces and additional
references can be found in the surveys by Bing [1969], Fadell [1970], and
Brown [1974].
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