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§4. Further Results and Applications

This paragraph is devoted primarily to applications of the main theorems
in the text. We begin with two direct and simple applications of the Banach
principle, first to establish some fixed point theorems for nonexpansive maps
in Hilbert space and second to integral and differential equations. In Sec-
tion 3, we give numerous applications of the elementary invariance of domain
theorem. The last two sections are devoted to some further applications of
the geometric KKM-principle.

1. Nonexpansive Maps in Hilbert Space

The Banach principle involves a contractive map in an arbitrary complete
metric space. By giving the space a sufficiently rich structure, the con-
tractiveness hypothesis on the map can be relaxed to nonexpansiveness; of
course, uniqueness of the fixed point cannot be preserved, as the reflection
of R2 in a line shows.
In this section we deal with (real) Hilbert space; the following proposition

will play a basic role.

(1.1) Proposition. Let H be a Hilbert space, and let u, v be two elements
of H. If there is an x ∈ H such that ‖x− u‖ ≤ R, ‖x− v‖ ≤ R and
‖x− (u+ v)/2‖ ≥ r, then ‖u− v‖ ≤ 2

√
R2 − r2.

Proof. By the parallelogram law,

‖u− v‖2 = ‖(x− v)− (x− u)‖2

= 2‖x− v‖2 + 2‖x− u‖2 − ‖x− v + x− u‖2

= 2‖x− v‖2 + 2‖x− u‖2 − 4
∥∥∥∥x− u+ v2

∥∥∥∥2,
and the conclusion follows. �
We apply this proposition to study nonexpansive maps on bounded sets:

(1.2) Lemma. Let C ⊂ H be a bounded set , and let F : C → C be
nonexpansive. Assume that x, y and a = (x + y)/2 belong to C. If
‖x− F (x)‖ ≤ ε and ‖y − F (y)‖ ≤ ε, then

‖a− F (a)‖ ≤ 2
√
2δ(C)

√
ε,

where δ(C) = diameter of C.

Proof. Because

‖x− y‖ ≤
∥∥∥∥x− a+ F (a)2

∥∥∥∥+ ∥∥∥∥y − a+ F (a)2

∥∥∥∥,
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at least one of the terms on the right, say the first, must satisfy∥∥∥∥x− a+ F (a)2

∥∥∥∥ ≥ 12‖x− y‖.
But also ‖x− a‖ = 12‖x− y‖ and

‖x− F (a)‖ ≤ ‖x− F (x)‖+ ‖F (x)− F (a)‖ ≤ ε+ ‖x− a‖ = ε+ 1
2
‖x− y‖.

By (1.1), we conclude that

‖a− F (a)‖ ≤ 2
√(
ε+ 12‖x− y‖

)2 − ( 12‖x− y‖)2 = 2√ε√ε+ ‖x− y‖,
and since both ε and ‖x− y‖ do not exceed δ(C), the proof is complete. �

This leads to the desired modification of the Banach theorem.

(1.3) Theorem (Browder–Göhde–Kirk). Let C be a nonempty closed
bounded convex set in a Hilbert space. Then each nonexpansive map
F : C → C has at least one fixed point.

Proof. There is no loss in generality to assume that 0 ∈ C. For each integer
n = 2, 3, . . . let Fn =

(
1− 1n
)
F ; because C is convex and contains the origin,

each Fn maps C into itself. Moreover, each Fn : C → C is contractive, so
by Banach’s theorem, each Fn has a fixed point xn, and

‖xn − F (xn)‖ =
1
n
‖F (xn)‖ ≤

1
n
δ(C).

For each n ≥ 2, let Qn = {x ∈ C | ‖x − F (x)‖ ≤ 1
nδ(C)}; then Q2 ⊃

Q3 ⊃ · · · is a descending sequence of closed sets, and by what we have just
shown, no Qn is empty. We observe that if x, y ∈ Q8n2 and a = (x + y)/2,
then according to the lemma

‖a− F (a)‖ ≤ 2
√
2δ(C)

√
δ(C)
8n2
, so that

x+ y
2
∈ Qn.

Let dn = inf{‖x‖ | x ∈ Qn}; because the Qn are descending, we see that
d2 ≤ d3 ≤ · · · is a nondecreasing sequence of reals, which, being bounded
by δ(C), converges to some d. Finally, let

An = Q8n2 ∩B
(
0, d+

1
n

)
.

Then An is a descending sequence of nonempty closed sets. We calculate
the diameter of An: if x, y ∈ An, then ‖0−x‖ ≤ d+1/n, ‖0− y‖ ≤ d+1/n,
and by our observation above, ‖0 − (x + y)/2‖ ≥ dn; therefore, by (1.1)
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we find

‖x− y‖ ≤ 2

√(
d+
1
n

)2
− d2n = 2

√
2dn−1 + n−2 + (d2 − d2n).

The term on the right is therefore an upper bound for δ(An), and shows
that δ(An)→ 0 as n→∞.
By Cantor’s theorem, there is an x0 ∈

⋂
nAn; since x0 ∈

⋂
nQ8n2 , we

find
‖x0 − F (x0)‖ ≤ δ(C)/(8n2) for all n;

therefore, ‖x0 − F (x0)‖ = 0, and x0 is a fixed point. �
Let C be a closed ball in a Hilbert space H; we will now consider the

nonexpansive maps defined on C with values in H. For this purpose, we
need the nonexpansiveness of the standard retraction of H on C:

(1.4) Lemma. Let H be a Hilbert space and C the closed ball {x ∈ H |
‖x‖ ≤ c}. Define a map r : H → C by

r(x) =

x, ‖x‖ ≤ c,
c
x

‖x‖ , ‖x‖ ≥ c.

Then r : H → C is nonexpansive.
Proof. We first observe that if u, v �= 0, then

(u− r(u), r(v)− r(u)) ≤ 0.
This is certainly true for ‖u‖ ≤ c since r(u) = u; and if ‖u‖ ≥ c, we have

(u− r(u), r(v)− r(u)) =


(
1− c‖u‖

)
[(u, v)− c‖u‖], ‖v‖ ≤ c,(

1− c‖u‖

)[
c
(u, v)
‖v‖ − c‖u‖

]
, ‖v‖ ≥ c,

so that because |(u, v)| ≤ ‖u‖‖v‖, our observation is established. To prove
the lemma, write

x− y = r(x)− r(y) + x− r(x) + r(y)− y ≡ r(x)− r(y) + a;
then

‖x− y‖2 = ‖r(x)− r(y)‖2 + ‖a‖2 + 2(a, r(x)− r(y));
because of our observation,

(a, r(x)− r(y)) = −(x− r(x), r(y)− r(x))− (y − r(y), r(x)− r(y)) ≥ 0,
so ‖x− y‖2 ≥ ‖r(x)− r(y)‖2, and the proof is complete. �
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This leads to the desired result:

(1.5) Theorem (Nonlinear alternative for nonexpansive maps). Let H
be a Hilbert space and C the closed ball {x ∈ H | ‖x‖ ≤ c}. Then
each nonexpansive F : C → H has at least one of the following two
properties:
(a) F has a fixed point ,
(b) there exist x ∈ ∂C and λ ∈ (0, 1) such that x = λF (x).

Proof. By (1.4), the map r : H → C is nonexpansive, therefore so also is
r ◦F : C → C, and by (1.3), we have rF (x) = x for some x ∈ C. Now we re-
peat the reasoning of (0.2.3): If F (x) ∈ C, then x = rF (x) = F (x), so F has
a fixed point; if F (x) does not belong to C, then x = rF (x) = cF (x)/‖F (x)‖,
so x ∈ ∂C, and taking λ = c/‖F (x)‖ < 1 completes the proof. �
Several fixed point theorems are obtained from (1.5) by imposing condi-

tions that prevent occurrence of the second possibility:

(1.6) Corollary. Let C = {x ∈ H | ‖x‖ ≤ r}, and let F : C → H
be nonexpansive. Assume that for all x ∈ ∂C, one of the following
conditions holds:
(a) ‖F (x)‖ ≤ ‖x‖,
(b) ‖F (x)‖ ≤ ‖x− F (x)‖,
(c) ‖F (x)‖2 ≤ ‖x‖2 + ‖x− F (x)‖2,
(d) (x, F (x)) ≤ ‖x‖2,
(e) F (x) = −F (−x).
Then F has a fixed point.

The proof is strictly analogous to the proof of (1.4.2) and (1.4.3), and is left
to the reader.

As a further application, we have

(1.7) Corollary. Let H be a Hilbert space and F : H → H be non-
expansive. Assume (x, x − F (x)) ≥ µ(‖x‖)‖x‖, where µ(‖x‖) → ∞
as ‖x‖ → ∞. Then the nonexpansive field x �→ f(x) = x − F (x) is
surjective.

Proof. Given a point y0 ∈ H let g(x) = x− [F (x) + y0] for x ∈ H. From
(x, g(x))
‖x‖ =

(x, f(x))
‖x‖ − (x, y0)‖x‖ ≥ µ(‖x‖)− ‖y0‖

it follows that for a sufficiently large r > 0,

(x, g(x)) ≥ 0 for all x ∈ H with ‖x‖ = r.
By (1.6)(d), because G(x) = F (x) + y0 is nonexpansive, we get g(x0) = 0
for some x0; hence y0 = x0 − F (x0) = f(x0), and our assertion follows. �
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2. Applications of the Banach Principle to
Integral and Differential Equations

Use of the Banach principle requires that a given F : Y → Y be contractive
relative to some complete metric d in Y . If the given F is not contractive
with respect to one metric, it may be possible to find another complete
metric with respect to which F is contractive. For example, the (linear)
map (x, y) �→ 1

10 (8x + 8y, x + y) of R
2 into itself is not contractive with

respect to the usual metric

d[(x, y), (z, w)] =
√
(x− z)2 + (y − w)2;

but it is contractive, with contraction constant 910 , relative to the (equiva-
lent, and complete) metric

d̂ [(x, y), (z, w)] = |x− z|+ |y − w|.

Thus, each complete metric d in Y determines a class F (d) of maps F :
Y → Y that are contractive with respect to d, and in general,F (d) �= F (d̂ )
even for equivalent metrics d and d̂.
If E is a Banach space, recall that two norms |x| and ‖x‖ are equivalent

if there are constants m,M > 0 with m‖x‖ ≤ |x| ≤ M‖x‖, so that a map
Lipschitzian in one norm is Lipschitzian in any equivalent norm. Thus, in
Banach spaces, to study a Lipschitzian map F : E → E, it is frequently
very fruitful to seek a norm under which F is contractive.
These considerations are illustrated in the following proof of the existence

of solutions for the Volterra integral equation of the second kind.

(2.1) Theorem. Let K : [0, T ]× [0, T ]×R→ R be continuous and satisfy
a Lipschitz condition

|K(t, s, x)−K(t, s, y)| ≤ L|x− y|

for all (s, t) ∈ [0, T ]× [0, T ], and x, y ∈ R. Then for any v ∈ C[0, T ]
the equation

u(t) = v(t) +
∫ t
0
K(t, s, u(s)) ds (0 ≤ t ≤ T )

has a unique solution u ∈ C[0, T ]. Moreover , if we define a sequence
of functions {un} inductively by choosing any u0 ∈ C[0, T ] and setting

un+1(t) = v(t) +
∫ t
0
K(t, s, un(s)) ds,

then the sequence {un} converges uniformly on [0, T ] to the unique
solution u.
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Proof. Let E be the Banach space of all continuous real-valued functions
on [0, T ] equipped with the norm

g = max
0≤t≤T

e−Lt|g(t)|.

This norm is in fact equivalent to the sup norm ‖x‖, since

e−LT‖x‖ ≤ x ≤ ‖x‖;

and moreover, it is also complete.
Define F : E → E by

F (g)(t) = v(t) +
∫ t
0
K(t, s, g(s)) ds;

to prove that the integral equation has a solution, it is enough to show that
F : E → E has a fixed point. We prove that, in fact, F is contractive: for

F (g)− F (h) ≤ max
0≤t≤T

e−Lt
∫ t
0
|K(t, s, g(s))−K(t, s, h(s))| ds

≤ L max
0≤t≤T

e−Lt
∫ t
0
|g(s)− h(s)| ds

= L max
0≤t≤T

e−Lt
∫ t
0
eLse−Ls|g(s)− h(s)| ds

≤ L g − h max
0≤t≤T

e−Lt
∫ t
0
eLs ds

= L g − h max
0≤t≤T

e−Lt
eLt − 1
L

≤ (1− e−LT ) g − h .

Because 1−e−LT < 1, the map F : E → E is contractive; Banach’s principle
therefore guarantees first a unique fixed point u ∈ E, and then that the
sequence {un} determined by the iterations described in the statement of
the theorem converges uniformly in the norm x , therefore also in the sup
norm ‖x‖, to that fixed point. �

Observe that if we had used the sup norm ‖x‖ rather than x , then F
would be contractive when regarded as a map C[0, λ]→ C[0, λ], where λ <
min{T, 1/L}. Thus, if T > 1/L, then the Banach principle with the usual
sup norm would have guaranteed a unique solution only on a subinterval of
[0, T ], whereas by modifying the norm we have shown that in fact there is a
unique solution on the entire interval [0, T ].
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(2.2) Theorem. Let f : [0, T ]×R→ R satisfy the Lipschitz condition

|f(s, x)− f(s, y)| ≤ L|x− y|

for s ∈ [0, T ], x, y ∈ R. Then the initial value problem
du

ds
= f(s, u), u(0) = 0,

has exactly one solution u defined on the entire interval [0, T ].

Proof. If K(t, s, u) = f(s, u) and v(t) = 0 in (2.1), the Volterra equation
becomes

u(t) =
∫ t
0
f(s, u(s)) ds,

and the solution of this integral equation is precisely the solution of the
present initial value problem. �

3. Applications of the Elementary Domain Invariance

We now give applications of the elementary domain invariance theorem in
various fields such as linear functional analysis and the geometry of Banach
spaces.

a. Domain invariance and invertibility of linear operators

We begin with two simple propositions:

(3.1) Proposition. Let T : E → E be a linear operator in a Banach
space. If ‖I − T‖ < 1, then T is invertible, and

‖T−1‖ ≤ 1
1− ‖I − T‖ .

Proof. The map I − T : E → E is contractive, since
‖(I − T )(x− y)‖ ≤ ‖I − T‖‖x− y‖,

so by (1.2.2), the map I − (I − T ) = T is a homeomorphism, therefore
invertible. The bound for the norm follows from

1 = ‖TT−1‖ = ‖T−1 − T−1(I − T )‖ ≥ ‖T−1‖ − ‖T−1‖‖I − T‖. �
(3.2) Proposition. Let T : E → E be an invertible linear operator in a

Banach space. Then each linear operator S with ‖T − S‖ < 1/‖T−1‖
is invertible, and

‖S−1‖ ≤ ‖T−1‖
1− ‖I − ST−1‖ .
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Proof. Because T is invertible, it is enough to show that J = S ◦ T−1 is
invertible, for then S = J ◦ T has T−1J−1 as inverse. From

‖I − J‖ = ‖I − ST−1‖ = ‖(T − S) ◦ T−1‖ ≤ ‖T − S‖‖T−1‖ < 1

and (3.1) we find that J is in fact invertible; and since S−1 = T−1J−1, the
norm estimate follows from (3.1). �

These results lead to

(3.3) Theorem. Let E be a Banach space and A ⊂ L (E,E) the set of all
invertible linear operators. Let Inv : A → A be the map T �→ T−1.
Then A is open in L (E,E) and Inv is a homeomorphism of A onto
itself.

Proof. By (3.2), for each T ∈ A , the ball B(T, 1/(2‖T−1‖)) is also con-
tained inA ; thereforeA is open inL (E,E). To prove that Inv is continuous
at any given T ∈ A , it is enough to note that if S ∈ B(T, 1/(2‖T−1‖)), so
that ‖I − ST−1‖ < 12 , then by (3.2) we have S ∈ A and

‖S−1 − T−1‖ = ‖T−1(T − S)S−1‖

≤ ‖T−1‖2
1− ‖I − ST−1‖‖T − S‖ ≤ 2‖T

−1‖2‖T − S‖;

and since Inv ◦ Inv = id, it follows that Inv is a homeomorphism. �

Let E,F be Banach spaces and S : E → F a linear operator. If there is
some m > 0 such that ‖Sx‖F ≥ m‖x‖E for all x ∈ E, then it is immediate
that S is injective; if such an S is also surjective, then it is invertible because
‖S−1y‖E ≤ (1/m)‖y‖F for all y ∈ F shows that the inverse is continuous.
The following result extends this observation to suitable perturbations of
such operators, and is of importance in work with “a priori” estimates for
linear differential operators.

(3.4) Theorem (Schauder invertibility theorem). Let E,F be Banach
spaces and S, T : E → F two linear operators, with S invertible.
Assume that there is an m > 0 such that for each 0 ≤ t ≤ 1, the
operator Lt = (1− t)S+ tT satisfies ‖Ltx‖F ≥ m‖x‖E for all x ∈ E.
Then Lt is invertible for all 0 ≤ t ≤ 1, and in particular , T is
invertible.

Proof. We begin by showing that if an operator Ls is invertible, then for
each t in the open interval Js = {t | |t − s| < m/‖T − S‖}, the operator
Lt is invertible or, what is equivalent, that L−1s Lt : E → E is invertible for
each t ∈ Js. For this purpose, note that

Lt = S + s(T − S) + (t− s)(T − S) = Ls + (t− s)(T − S),
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so that
L−1s Lt = I + (t− s)L−1s (T − S).

Because ‖Lsx‖F ≥ m‖x‖E , we have ‖L−1s ‖ ≤ 1/m, so for t ∈ Js, we find

‖(t− s)L−1s (T − S)‖ ≤ |t− s|
1
m
‖T − S‖,

and by (3.1), the operator L−1s Lt is therefore invertible.
To prove the theorem, letJ = {t ∈ [0, 1] | Lt is invertible}. By what we

have just shown, J is an open set. If t �∈J , then again by what we have
just shown, no operator Ls with s ∈ Jt can be invertible, so that [0, 1]−J
is also an open set. Because [0, 1] is connected and J is nonempty, we
conclude that J = [0, 1]. �

b. The inverse function theorem

As another application we obtain a standard theorem in analysis:

(3.5) Theorem (Inverse function theorem). Let E be a Banach space,
U ⊂ E open, and f : U → E a C1 map. Assume that at some
x0 ∈ U , the derivative Df(x0) : E → E is an isomorphism. Then
there exists a neighborhood V of x0 and a neighborhood W of f(x0)
such that :
(1) Df(x) : E → E is invertible for each x ∈ V ,
(2) f |V : V →W is a homeomorphism of V onto W ,
(3) the inverse g : W → V of f |V is differentiable at each w ∈ W
and Dg(w) = [Df(gw)]−1,

(4) the map w �→ Dg(w) of W into L (E,E) is continuous.

Proof. We first consider the special case where x0 = 0, f(0) = 0, and
Df(0) = I. Because the set of invertible operators is open in L (E,E) and
x �→ Df(x) is continuous with Df(0) invertible, we can find a ball B with
0 ∈ B ⊂ U on which Df(x) is invertible.
Define F : B → E by F (x) = x− f(x). Then F is a C1 map, DF (0) =

I −Df(0) = 0, and because F is continuously differentiable, there is a ball
V with 0 ∈ V ⊂ B such that M = sup{‖DF (x)‖ | x ∈ V } < 12 . The map
F : V → E is contractive: for, by the mean value theorem,

‖F (x1)− F (x2)‖ ≤M‖x1 − x2‖ ≤ 12‖x1 − x2‖ for all x1, x2 ∈ V.

Thus, by (1.2.1), the map f : V → E is a homeomorphism onto the open
set W = f(V ) containing f(0) = 0, and the proof of both (1) and (2) is
complete. We observe, for later reference, that if x, a ∈ V , then

‖x− a‖ − ‖f(x)− f(a)‖ ≤ ‖F (x)− F (a)‖ ≤ 12‖x− a‖,
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so that
‖x− a‖ ≤ 2‖f(x)− f(a)‖.

We now prove (3). Let g :W → V be the inverse of f |V . Given y, b ∈W ,
let g(b) = a, g(y) = x, and write Df(a) = T . By the differentiability of f at
a, we have

f(x)− f(a) = T (x− a) + ϕ(x, a),

where ϕ(x, a)/‖x− a‖ → 0 as ‖x−a‖ → 0. Applying T−1 to this expression
and noting that f(x) = y, f(a) = b, we find

T−1(y − b) = g(y)− g(b) + T−1ϕ[g(y), g(b)]

so it suffices to show that

R =
‖T−1ϕ[g(y), g(b)]‖

‖y − b‖ → 0 as ‖y − b‖ → 0.

Because g|W :W → V is bijective, we have

R ≤ ‖T
−1‖‖ϕ[g(y), g(b)]‖
‖g(y)− g(b)‖

‖g(y)− g(b)‖
‖y − b‖

≤ 2‖T−1‖‖ϕ[g(y), g(b)]‖‖g(y)− g(b)‖ = 2‖T
−1‖‖ϕ(x, a)‖‖x− a‖ ,

where we have used the observation above that ‖x − a‖ ≤ 2‖f(x) − f(a)‖
on V , i.e., ‖g(y)−g(b)‖ ≤ 2‖y−b‖ onW . Thus, as ‖y−b‖ → 0, the continuity
of g shows that ‖x−a‖ → 0, and therefore R→ 0. This completes the proof
of (3).
To prove (4), we note that w �→ Dg(w) is the composition Inv ◦Df ◦ g

of three continuous maps, so it is continuous on W .
This completes the proof of the theorem in the special case where f(0)=0

and Df(0) = I. To prove the theorem as it is stated, apply this special case
to the function

h(x) = [Df(x0)]−1(f(x+ x0)− f(x0)). �

c. Stability of open embeddings and monotone operators

We now apply elementary domain invariance to stability of open embeddings
into Banach spaces.

(3.6) Theorem. Let X be any space, E a Banach space, and F : X → E
an embedding of X onto an open U ⊂ E. Let G : X → E be a map
such that G◦F−1 : U → E is contractive. Then x �→ Fx+Gx is also
an open embedding of X into E.
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Proof. Consider h = (F + G) ◦ F−1 = I + GF−1 : U → E. By domain
invariance this h maps U homeomorphically onto an open h(U) ⊂ E. Since
F +G = h ◦ F , the proof is complete. �
As an evident consequence we obtain the stability property of Lip-

schitzian open embeddings into Banach spaces.

(3.7) Theorem. Let X be a metric space and E a Banach space, and let
F : X → E be an open embedding such that F−1 is Lipschitzian. Let
G : X → E be a Lipschitzian map such that L(G)L(F−1) < 1. Then
x �→ Fx+Gx is also an open embedding of X into E.

Proof. It is enough to observe that L(G ◦ F−1) ≤ L(G)L(F−1) and to
apply (3.6). �
We next derive some simple facts about monotone operators in Hilbert

spaces.
Let H be a Hilbert space and U ⊂ H. A map f : U → H (not necessarily

continuous) is said to be monotone if

(i) (fx− fy, x− y) ≥ 0 for all x, y ∈ U ;
f is called strongly monotone if for some C > 0,

(ii) (fx− fy, x− y) ≥ C‖x− y‖2 for all x, y ∈ U.
Clearly, every strongly monotone map is injective.

(3.8) Theorem. Let U ⊂ H be open, and let f : U → H be Lipschitzian
and strongly monotone, i.e.,

‖fx− fy‖ ≤M‖x− y‖ for all x, y ∈ U and some M > 0
and

(fx− fy, x− y) ≥ C‖x− y‖2 for all x, y ∈ U.
Then f is an open map, in particular f(U) is open in H, and f is a
homeomorphism of U onto f(U).

Proof. It is clearly enough to show that for a sufficiently small λ, the map
λf is a contractive field. Given λ > 0, we have for x, y ∈ U ,
‖(I − λf)x− (I − λf)y‖2

= ‖x− y‖2 + λ2‖fx− fy‖2 − 2λ(fx− fy, x− y)

≤ ‖x− y‖2 +M2λ2‖x− y‖2 − 2λC‖x− y‖2

≤ (1 +M2λ2 − 2λC)‖x− y‖2.

Fix λ < 2C/M2; then 1 + M2λ2 − 2λC < 1, and therefore I − λf is a
contraction; our assertion now follows from (1.2.1). �
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As a corollary we have

(3.9) Theorem. Let f : H → H be a Lipschitzian and strongly monotone
map. Then f is a homeomorphism of H onto itself.

Proof. By (3.8) it is enough to show that f(H) is closed inH. Let fxn → y;
from (ii) and the Cauchy inequality we get

‖fxn − fxm‖ ≥ C‖xn − xm‖ for all n,m ≥ 1,
and hence {xn} is a Cauchy sequence. Let xn → x; then fxn → fx, and
hence y = fx. �

d. Application to negligible sets

A subset B of a space Y is called negligible whenever Y −B is homeomorphic
to Y ; a homeomorphism h : Y −B ≈ Y is called a deleting homeomorphism.
We now show that any complete subset of a noncomplete normed linear
space is negligible.

(3.10) Theorem. Let E be a noncomplete normed linear space and C a
complete subset of E. Then there is a homeomorphism h : E−C ≈ E
with h(x) = x whenever d(x,C) ≥ 1.

Proof. Let Ê be the completion of E; taken with the natural extension of
the given norm, Ê is a Banach space. Let {xn} be a Cauchy sequence in E
converging to some point in Ê − E, with ‖x1‖ +

∑∞
n=1 ‖xn − xn+1‖ < ∞;

since no scalar multiple of a point in Ê−E can belong to E, replacing all the
xn by a suitable scalar multiple, we can assume that {xn} ⊂ E converges
to y0 ∈ Ê −E and ‖x1‖+

∑∞
n=1 ‖xn − xn+1‖ = 12 .

Let x0 = 0, and let L ⊂ E be the jagged line in E consisting of the
segments [x0, x1] ∪ [x1, x2] ∪ · · · ; we construct a piecewise linear map ϕ of
the unit interval [0, 1] onto L ∪ {y0} as follows: let s0 = 0 and for n ≥ 1,
let sn be the nth partial sum of the series with sum 1

2 ; for each n ≥ 0,
map the interval [2sn, 2sn+1] linearly onto the segment [xn, xn+1] and set
ϕ(1) = y0. It is clear that |ϕ(t) − ϕ(t′)| = 1

2 |t − t′| whenever t, t′ belong
to a common interval [2sn, 2sn+1], so by the triangle inequality, we have
|ϕ(t)− ϕ(t′)| ≤ 12 |t− t′| for all t, t′ ∈ I. Extend ϕ to a map of (−∞, 1] into
E by ϕ(t) = 0 for t < 0.
Now let H : Ê → Ê be the map x �→ ϕ[1 − d(x,C)]. This map is

contractive, because

‖ϕ[1− d(x,C)]− ϕ[1− d(z, C)]‖ ≤ 12‖d(z, C)− d(x,C)‖ ≤
1
2‖x− z‖;

therefore, by (1.2.1), the map h(x) = x − H(x) is a homeomorphism of Ê
onto itself.
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It is clear that h(E − C) ⊂ E; for if x ∈ E − C, then d(x,C) > 0, so
H(x) ∈ E, and therefore h(x) = x − H(x) also belongs to E. To establish
the converse inclusion, assume x �∈ E − C, so that x ∈ (Ê − E) ∪ C; if
x ∈ Ê − E, then d(x,C) > 0, so H(x) ∈ E, while if x ∈ C, then x ∈ E and
H(x) = y0 �∈ E; in both cases, exactly one of x,H(x) belongs to E, so we
conclude that h(x) = x−H(x) �∈ E. Thus h(E − C) ≈ E. �

The class of linear spaces for which such deleting homeomorphisms exist
is very broad because of

(3.11) Lemma. Every infinite-dimensional Banach space (E, ‖ · ‖) admits a
noncomplete norm · with x ≤ ‖x‖ for all x ∈ E.

Proof. Assume first that E is separable. Choose a countable separat-
ing family {fn | n = 1, 2, . . .} of continuous linear functionals such that
|fn(x)| ≤ (1/n)‖x‖ for each n, and define T : E → l2 by T (x) = {fn(x)}.
This is a continuous linear operator, and T : E → T (E) is bijective be-
cause the family {fn} is separating. If the linear subspace T (E) ⊂ l2 were
complete, then because a bijective continuous linear map of Banach spaces
is a homeomorphism, the inverse T−1 : T (E) → E would be continuous;
but this is impossible because T{x | ‖x‖ ≤ 1} is easily seen to be compact,
and E is infinite-dimensional. Thus, the l2 norm on T (E) is not complete,
and defining ‖x‖0 = ‖T (x)‖ gives an incomplete norm on E. We note that
‖x‖0 ≤

√∑
(1/n2)‖x‖, so that ‖ · ‖0 is continuous.

Now let E be arbitrary. Pick a separable infinite-dimensional closed linear
subspace L ⊂ E and an incomplete norm ‖ · ‖0 on L. Let A = {x ∈ L |
‖x‖0 < 1}; because ‖ · ‖0 is continuous, there is an ε > 0 such that L ∩ {x |
‖x‖ < ε} ⊂ A. Let C = conv[A ∪ {x | ‖x‖ < ε}]; since C is a symmetric
convex body with no rays, the Minkowski functional ϕC gives a norm, and
because ϕC(x) = ‖x‖0 for x ∈ L, that norm is not complete. Finally, the
continuity of ϕC implies that

b = sup{ϕC(x) | ‖x‖ ≤ 1}

is finite, so x = b−1ϕC(x) is an incomplete norm with x ≤ ‖x‖. �

Combining this with (3.10) gives

(3.12) Theorem (Klee). Let E be an arbitrary infinite-dimensional normed
linear space, and C ⊂ E compact. Then there is a homeomorphism
h : E − C ≈ E.

Proof. We can assume that E is a Banach space, else the result follows
directly from (3.10). By (3.11), there is an incomplete norm x ≤ ‖x‖;
denote (E, · ) by Ê; the identity map j : E → Ê is therefore con-
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tinuous, so Ĉ = j(C) is compact, therefore complete, in Ê. By (3.10),
there is a deleting homeomorphism ĥ : Ê − Ĉ ≈ Ê given by ĥ(x̂) =
x̂− ϕ̂[1− d̂(x̂, Ĉ)], where d̂ is the norm-induced metric and ϕ̂ is a piecewise
linear map ϕ̂ : (−∞, 1)→ Ê.
Because ϕ̂ is piecewise linear, it is continuous with any linear topology

in the range space, so regarding it as a map ϕ : (−∞, 1) → E we have ϕ
continuous and j ◦ ϕ = ϕ̂. Now define h : E − C → E by

h(x) = x− ϕ[1− d̂(j(x), Ĉ)];

this map is clearly continuous and makes the diagram

E − C E

Ê − Ĉ Ê

h ��

j

��
j

��

ĥ
��

commutative. Finally, define g : E → E − C by

g(x) = x+ ϕ[1− d̂(ĥ−1j(x), Ĉ)];

this map is also continuous. We have

g[h(x)] = h(x) + ϕ[1− d̂(ĥ−1jh(x), Ĉ)]
= {x− ϕ[1− d̂(j(x), Ĉ)]}+ ϕ[1− d̂(ĥ−1ĥj(x), Ĉ)]
= x,

and similarly h ◦ g = id. Thus, h : E − C → E is a homeomorphism having
g as its inverse. �

4. Elementary KKM-Principle and Its Applications

In this section we present a version of the geometric KKM-principle that
permits us to establish in an elementary manner a large number of important
results in Hilbert space theory. The approach, in which neither the weak
topology nor compactness are used, is based on some simple intersection
property of convex sets in Hilbert spaces.

a. Basic intersection property of convex sets in Hilbert spaces

Let (H, ‖ · ‖) be a Hilbert space. From the parallelogram equality it follows
immediately that the norm ‖ · ‖ in H is uniformly convex , i.e., if {xn} and
{yn} are sequences in H such that the numerical sequences ‖xn‖, ‖yn‖, and
1
2‖xn + yn‖ converge to 1, then the sequence {‖xn − yn‖} tends to 0.
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The following preliminary result will be of importance.

(4.1) Lemma. Let (H, ‖ · ‖) be a Hilbert space and {Cn} be a decreasing
sequence of nonempty closed convex subsets of H. Suppose that d =
supn d(0, Cn) is finite. Then there exists a unique point x ∈

⋂
Cn

such that ‖x‖ = d.

Proof. Letting Pn = Cn ∩K(0, d + 1/n) for each n = 1, 2, . . . , we obtain
a decreasing sequence {Pn} of nonempty closed and convex sets and we
show that δ(Pn)→ 0, where δ(Pn) is the diameter of Pn. Indeed, for any n,
let xn, yn ∈ Pn be such that δ(Pn) ≤ ‖xn − yn‖ + 1/n; since the point
1
2 (xn + yn) also belongs to Pn, the values ‖xn‖, ‖yn‖, and

1
2‖xn + yn‖ lie

between d(0, Cn) and d + 1/n, and therefore the three sequences converge
to d. By the uniform convexity of the norm, we infer that ‖xn − yn‖ → 0,
and consequently δ(Pn) → 0. Applying now the Cantor theorem, we get a
unique point x ∈

⋂
Pn; for this point we have d(0, Cn) ≤ ‖x‖ ≤ d+ 1/n for

each n, implying that ‖x‖ = d. �

We are now in a position to prove the desired result:

(4.2) Theorem (Intersection property). Let {Ci | i ∈ I} be a family of
closed convex sets in a Hilbert space H with the finite intersection
property. If Ci0 is bounded for some i0 ∈ I, then the intersection⋂
{Ci | i ∈ I} is not empty.

Proof. Let 〈I〉 be the set of all finite subsets of I containing i0. For
any J ∈ 〈I〉, let CJ =

⋂
{Cj | j ∈ J} and note that since each CJ is a

nonempty closed convex subset of Ci0 , the supremum d = supJ∈〈I〉 d(0, CJ)
is finite.
Let {Jn} be an increasing sequence of sets in 〈I〉 with d(0, CJn) ≥ d−1/n.

Then {CJn} is a decreasing sequence of nonempty closed convex sets in H
such that d = supn d(0, CJn). Applying Lemma (4.1), we get a unique point
x ∈
⋂
n CJn with ‖x‖ = d.
Next, let J ∈ 〈I〉 be arbitrary, and set Cn = CJ ∩ CJn . Again, {Cn}

is a decreasing sequence of nonempty closed convex sets in H such that
d = supn d(0, Cn), so by Lemma (4.1), there is a unique point x

′ ∈
⋂
n Cn =

CJ ∩
⋂
n CJn with ‖x′‖ = d. By the uniqueness it is evident that x = x′

belongs to CJ .
Finally, we observe that the point x belongs to CJ for all J ∈ 〈I〉, which

proves that the set
⋂
{Ci | i ∈ I} ⊃

⋂
{CJ | J ∈ 〈I〉} is not empty. �

Using (4.2) and the basic geometric property (3.1.4) of KKM-maps, we
obtain the desired version of the geometric KKM-principle:
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(4.3) Theorem (Elementary KKM-principle). Let H be a Hilbert space,
X a nonempty subset of H, and G : X → 2H a KKM-map with
closed convex values such that Gx0 is bounded for some x0 ∈ X.
Then the intersection

⋂
{Gx | x ∈ X} is not empty. �

In the remaining part of this section we give a number of applications of
Theorem (4.3).

b. Theorem of Stampacchia

A function ϕ : X → R on a subset of a normed linear space is said to
be coercive if {x ∈ X | ϕ(x) ≤ r} is bounded for each r ∈ R. If H is a
Hilbert space, a bilinear form a : H × H → R is coercive if the function
x �→ a(x, x)/‖x‖ is coercive on H − {0}.

(4.4) Theorem (Stampacchia). Let C be a nonempty closed convex subset
of a Hilbert space H, a : H ×H → R a continuous coercive bilinear
form, and l : H → R a continuous linear form. Then there exists a
unique point y0 ∈ C such that a(y0, y0−x) ≤ l(y0−x) for all x ∈ C.

Proof. It follows from the coercivity of a that a(x, x) > 0 for all x �= 0, so
there can be at most one solution. Consider the map G : C → 2C given by

Gx = {y ∈ C | a(y, y − x) ≤ l(y − x)}.

It is easy to check that the values of G are closed, convex (since x �→ a(x, x)
is continuous and convex) and bounded (because a is coercive); furthermore,
since x ∈ Gx, and the cofibers of G are convex, it follows from (3.1.2) that
G is a KKM-map. Therefore, by (4.3), there is a y0 ∈

⋂
x∈C Gx, which was

to be proved. �
We note that the special case C = H of (4.4) yields

(4.5) Theorem (Lax–Milgram–Vishik). Let a : H ×H → R be a contin-
uous coercive bilinear form. Then for any continuous linear form l :
H → R there exists a unique point y0 ∈ H such that a(y0, x) = l(x)
for all x ∈ H.

Proof. By the Stampacchia theorem, because C = H, there exists a unique
y0 ∈ H such that a(y0, z) ≤ l(z) for all z ∈ H; replacing in this inequality z
by −z we obtain a(y0, z) ≥ l(z) for all z ∈ H, and the conclusion follows.�

c. Variational inequalities. Theorem of Hartman–Stampacchia

We now extend the above results to a certain class of nonlinear operators
that we describe below. Let H be a Hilbert space and C be any subset
of H. We recall that an operator f : C → H is said to be monotone on C
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if (f(y) − f(x), y − x) ≥ 0 for all x, y ∈ C. We say that f : C → H
is hemicontinuous if the function [0, 1] � t �→ (f(y + t(x − y)), x − y) is
continuous at 0 for all x, y ∈ C, and coercive if for some x0 ∈ C the function
x �→ (f(x), x− x0)/‖x− x0‖ is coercive on C − {x0}.

(4.6) Theorem (Hartman–Stampacchia). Let C be a nonempty closed
convex subset of H, f : C → H monotone coercive hemicontinuous,
and l : H → R a continuous linear form. Then there exists a point
y0 ∈ C such that (f(y0), y0 − x) ≤ l(y0 − x) for all x ∈ C.

Proof. We consider only the case of a bounded C; an easy proof of the
general case is left to the reader. Define G,F : C → 2C by

Gx = {y ∈ C | (f(y), y − x) ≤ l(y − x)},
Fx = {y ∈ C | (f(x), y − x) ≤ l(y − x)}.

Because f is monotone, we have

(f(y), y − x) ≥ (f(x), y − x) for all x, y ∈ C,

and therefore Gx ⊂ Fx for each x ∈ C. Observe that x ∈ Gx and that the
cofibers of G are convex; thus, by (3.1.2), G is a KKM-map; consequently,
so is the map F . Since by definition the values of F are convex and closed,
we infer by (4.3) that for some y0 ∈ C we have y0 ∈

⋂
x∈C Fx, and thus

(f(z), y0 − z) ≤ l(y0 − z) for all z ∈ C.

Choose any x ∈ C and let zt = y0 + t(x− y0) for t ∈ [0, 1]. We have

(f(y0 + t(x− y0)), y0 − x) ≤ l(y0 − x) for t > 0.

Now let t→ 0; the hemicontinuity of f gives (f(y0), y0 − x) ≤ l(y0 − x).
Since x was arbitrary, the conclusion follows. �
As an immediate consequence we obtain

(4.7) Theorem (Minty–Browder). Let f : H → H be a monotone coercive
hemicontinuous operator. Then for any continuous linear form l :
H → R there exists a point y0 ∈ H such that (f(y0), x) = l(x) for
all x ∈ H. �

As another consequence of Theorem (4.6), we get a version of the fixed
point theorem of Browder–Göhde–Kirk:

(4.8) Theorem. Let C be a nonempty closed convex bounded subset of H,
and let F : C → H be nonexpansive (i.e., ‖F (x) − F (y)‖ ≤ ‖x − y‖
for all x, y ∈ C). Suppose that for each x ∈ C with x �= F (x) the
line segment [x, F (x)] contains at least two points of C. Then F has
a fixed point.
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Proof. Since F is nonexpansive, the operator f(x) = x−F (x) from C to H
is monotone continuous. Applying Theorem (4.6) we get a point y0 ∈ C such
that (y0 − F (y0), y0 − x) ≤ 0 for all x ∈ C. Since for some t > 0 the point
y0+t(F (y0)−y0) lies in C, we can insert that value into the above inequality
to get (y0−F (y0), F (y0)−y0) ≥ 0, showing that y0 is a fixed point for F . �

d. Maximal monotone operators

We conclude this section by deriving some basic facts in the theory of
maximal monotone operators in a Hilbert space H. A set-valued operator
T : H → 2H is said to be monotone if (y∗−x∗, y−x) ≥ 0 whenever x∗ ∈ Tx
and y∗ ∈ Ty, and maximal monotone if it is monotone and maximal in the
set of all monotone operators from H into 2H ordered by S ≤ T if Sx ⊂ Tx
for all x ∈ H. In what follows, we denote by D(T ) the domain of T , i.e.,
D(T ) = {y ∈ H | Ty �= ∅}.
It is clear from the definitions that:
(1) if T is monotone, then

sup
x∗∈Tx

(x∗, y − x) <∞ for all x ∈ D(T ) and y ∈ ConvD(T ),

(2) if T is maximal monotone, then y∗ ∈ Ty whenever
(x∗ − y∗, x− y) ≥ 0 for all x ∈ D(T ) and x∗ ∈ Tx.

For the proof of our main result, we need

(4.9) Lemma. Let E be a vector space, C ⊂ E convex , and D an arbitrary
subset of C. Let g : D × C → R be a function such that :
(a) g(x, y) + g(y, x) ≤ 0 for all (x, y) ∈ D ×D,
(b) y �→ g(x, y) is convex on C for each x ∈ D.
Then the map G : D → 2C given by Gx = {y ∈ C | g(x, y) ≤ 0} is a
KKM-map.

Proof. Let A = {x1, . . . , xn} ⊂ D, and let y0 =
∑n
i=1 λixi be a convex

combination of the xi’s; we are going to show that y0 ∈ G(A).
In view of (a), we have

g(xi, xj) + g(xj, xi) ≤ 0 for all i, j ∈ [n].
So, multiplying by λi and summing over i, we find

n∑
i=1

λig(xi, xj) +
n∑
i=1

λig(xj, xi) ≤ 0 for every j ∈ [n],

and therefore, because y �→ g(x, y) is convex, we get
n∑
i=1

λig(xi, xj) + g(xj , y0) ≤ 0 for every j ∈ [n].
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By multiplying each of the above inequalities by λj , then summing over all
j, and using the convexity of y �→ g(x, y), we finally get

n∑
i=1

λig(xi, y0) +
n∑
j=1

λjg(xj, y0) ≤ 0.

This implies that g(xi, y0) ≤ 0 for at least one point xi, i.e., y0 ∈
⋃n
i=1 Gxi,

as asserted. �

We are now able to prove the desired result:

(4.10) Theorem. Let T : H → 2H be a monotone set-valued operator
and u : H → H be a single-valued , linear , monotone, and bounded
operator. Set D = D(T ) and C = ConvD(T ). Assume that for some
x0 ∈ D the set

{y ∈ C | sup
x∗∈Tx0

(u(y) + x∗, y − x0) ≤ 0}

is bounded. Then there is a point y0 ∈ C such that

sup
x∗∈Tx

(u(y0) + x∗, y0 − x) ≤ 0 for all x ∈ D.

Proof. We show that the map G : D → 2C defined by

Gx = {y ∈ C | sup
x∗∈Tx

(u(y) + x∗, y − x) ≤ 0} for x ∈ D

satisfies all the conditions of the elementary KKM-principle (4.3).
First, we show that G is a KKM-map. To this end consider the function

f : C ×D × C → R given by

f(ξ, x, y) = sup
x∗∈Tx

(u(ξ) + x∗, y − x).

Because T is monotone, f is well defined and satisfies the following condi-
tions:
(a) f(ξ, x, y) + f(ξ, y, x) ≤ 0 for all (x, y) ∈ D ×D and all ξ ∈ C,
(b) y �→ f(ξ, x, y) is convex on C for each x ∈ D and each ξ ∈ C.

Now, observe that using f , we can equivalently describe G : D → 2C as

Gx = {y ∈ C | f(y, x, y) ≤ 0}.

To show that G is KKM, let A = {x1, . . . , xn} ⊂ D and let y0 ∈ [A].
Define g : A × [A] → R by g(x, y) = f(y0, x, y). It follows from (a) and
(b) that g satisfies the conditions of (4.9), so the map G : A → 2[A] given
by Gx = {y ∈ [A] | g(x, y) ≤ 0} is KKM. This implies in particular that
y0 ∈ Gxi for some xi ∈ A, which means that f(y0, xi, y0) = g(xi, y0) ≤ 0,
that is, y0 ∈ Gxi. The proof that G is KKM is complete.
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On the other hand, the values of G are closed and convex (because the
function y �→ (u(y), y) is continuous and convex on C), and the value Gx0
is bounded by assumption. By the elementary KKM-principle (4.3), we get⋂
{Gx | x ∈ D} �= ∅. �

(4.11) Corollary (Minty). Let T : H → 2H be a maximal monotone
operator. Then:
(a) I + T is surjective (I denotes the identity operator on H),
(b) if D(T ) is bounded , then T is surjective.

Proof. (a) It is clearly enough to show that 0 ∈ (I+T )(H). By (4.10) with
u = I, there is y0 ∈ C = ConvD(T ) such that

(x∗ − (−y0), x− y0) ≥ 0 for all x ∈ D(T ) and x∗ ∈ Tx.

Because T is maximal monotone, we derive that −y0 ∈ Ty0, or equivalently,
that 0 ∈ y0 + Ty0.
(b) As in (a), it is sufficient to show that 0 ∈ T (H). Since T is maxi-

mal, D(T ) is not empty, and therefore C is closed, convex, bounded, and
nonempty. By (4.10) with u = 0, we find y0 ∈ C such that

(x∗, x− y0) ≥ 0 for all x ∈ D(T ) and x∗ ∈ Tx.

Since T is maximal monotone, this implies that 0 ∈ Ty0. �

5. Theorems of Mazur–Orlicz and Hahn–Banach

In this section, using the Markoff–Kakutani theorem, Theorem (3.2.2) and
the fact that a Tychonoff cube is compact, we derive some basic facts of
linear functional analysis.
Let E be a vector space and E′ the algebraic dual of E. We recall that

a functional p : E → R is said to be sublinear if

p(x+ y) ≤ p(x) + p(y) for all x, y ∈ E,(i)

p(αx) = αp(x) for all α ≥ 0 and x ∈ E.(ii)

Note that if p is sublinear, then 0 = p(0) = p(x + (−x)) ≤ p(x) + p(−x),
and therefore

(iii) −p(−x) ≤ p(x) for each x ∈ E.

(5.1) Lemma (Banach). Let p : E → R be a sublinear functional. Then
there exists an f ∈ E′ such that f(x) ≤ p(x) for all x ∈ E.

Proof. Let X = RE be the linear topological space of maps E → R
equipped with the product topology; clearly, X has sufficiently many linear
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functionals (the evaluation maps f �→ f(x) are in fact linear and continuous
from RE to R). Consider now the sets

X0 =
∏
x∈E
[−p(−x), p(x)],

X1 ={g ∈ X0 | −p(−x) ≤ g(x+ y)− g(y) ≤ p(x) for all x, y ∈ E};

clearly, bothX0 andX1 are nonempty (because from −p(y−x) ≤ p(x)−p(y)
≤ p(x− y) it follows that p ∈ X1). They are both convex and compact (by
the Tychonoff theorem).
We define a family {Ty | y ∈ E} of maps Ty : X1 → X1 by

(Tyg)(x) = g(x+ y)− g(y) for x ∈ E.

Clearly, the family {Ty} consists of continuous affine maps and is commuting.
By the Markoff–Kakutani fixed point theorem, there exists an f ∈ X1 such
that

Tyf = f for all y ∈ E,

i.e., f(x+ y) = f(x) + f(y) for all x, y ∈ E.
Note that the additivity of f gives f(rx) = rf(x) for each r ∈ Q. Let λ

be any real number, and {rn} be a sequence of rational numbers such that
rn → λ and rn < λ. Because f is in X1, we have

−(λ− rn)p(−x) ≤ f(λx)− f(rnx) ≤ (λ− rn)p(x),

and therefore f(λx) = lim f(rnx) = lim rnf(x) = λf(x). Thus, f ∈ E′ and
f(x) ≤ p(x) for all x ∈ E. �

(5.2) Lemma. Let p : E → R be a sublinear functional and x0 ∈ E. Then
there exists an f ∈ E′ such that f(x0) = p(x0) and f(x) ≤ p(x) for
all x ∈ E.

Proof. Define p∗ : E → R by

p∗(x) = inf{p(x+ λx0)− λp(x0) | λ ≥ 0}, x ∈ E.

Clearly, because −p(−x) ≤ p∗(x) ≤ p(x) for all x ∈ E, p∗ is well defined
and p∗ ≤ p. Since for each α > 0,

p∗(αx) = inf{p(αx+ λx0)− λp(x0) | λ ≥ 0}
= inf{α[p(x+ (λ/α)x0)− (λ/α)p(x0)] | λ ≥ 0}
= α inf{p(x+ λ′x0)− λ′p(x0) | λ′ = λα−1 ≥ 0} = αp∗(x),

p∗ is positively homogeneous. Now, for x1, x2 ∈ E and fixed ε > 0 take
λ1, λ2 ≥ 0 so that p∗(xi) ≥ p(xi + λix0) − λip(x0) − ε for i = 1, 2. Letting
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µ = λ1 + λ2, and adding the above inequalities, we obtain

p∗(x1) + p∗(x2) ≥ p(x1 + λ1x0) + p(x2 + λ2x0)− µp(x0)− 2ε
≥ p(x1 + x2 + µx0)− µp(x0)− 2ε
≥ p∗(x1 + x2)− 2ε,

and this (because ε was arbitrary) implies that p∗ is sublinear. By Lemma
(5.1), there is a linear functional f ∈ E′ such that

f(x) ≤ p∗(x) ≤ p(x) for all x ∈ E.

Then
−f(x0) = f(−x0) ≤ p∗(−x0) ≤ p(−x0 + λx0)− λp(x0)

for all λ ≥ 0, which implies by putting λ = 1 that −f(x0) ≤ −p(x0), and
hence f(x0) = p(x0). �

We are now in a position to prove the following fundamental result:

(5.3) Theorem (Mazur–Orlicz). Let p : E → R be a sublinear functional.
Assume that we are given a family {xt | t ∈ T} of points in E and a
family {βt | t ∈ T} of real numbers, both indexed by the same abstract
set T . Then the following two conditions are equivalent :
(A) there exists a linear functional f ∈ E′ such that f(x) ≤ p(x) for
all x ∈ E and βt ≤ f(xt) for all t ∈ T ,

(B) for every convex combination
∑n
i=1 λixti of points xt1 , . . . , xtn

in E,
n∑
i=1

λiβti ≤ p
( n∑
i=1

λixti

)
.

Proof. Clearly, (A)⇒(B); we are going to show that (B) implies (A). Con-
sider the convex sets

X0 =
∏
x∈E
[−p(−x), p(x)],

Y = {f ∈ E′ | −p(−x) ≤ f(x) ≤ p(x) for all x ∈ E}.

By Lemma (5.1), Y is nonempty, and because Y is closed in X0, it is also
compact.
Consider now the family Φ = {ϕt | t ∈ T} of continuous affine functions

ϕt : Y → R defined by ϕt(f) = βt − f(xt) for f ∈ Y , and examine the
following two conditions:
(C) there exists an f ∈ Y such that

ϕt(f) = βt − f(xt) ≤ 0 for all ϕt ∈ Φ,
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(D) for every convex combination ψ =
∑
λiϕti ∈ [Φ] = convΦ of ele-

ments of Φ, there is an f ∈ Y such that

ψ(f) =
∑
λi[βti − f(xti)] ≤ 0.

We observe that (C) is clearly equivalent to (A), and by (3.2.2), also (C)
and (D) are equivalent.
It follows that it is enough to show that (B) implies (D). So assume

that (B) is true, and let ψ =
∑
λiϕti ∈ convΦ. By assumption we have∑

λiβti ≤ p(
∑
λixti). Let x0 =

∑
λixti ; by Lemma (5.2), there is an f ∈ Y

such that f(x0) = p(x0), so we have∑
λiβti ≤ f

(∑
λixti

)
,

and thus ψ(f) =
∑
λi[βti − f(xti)] ≤ 0; hence (D) is true, and the proof is

complete. �
As an immediate consequence we obtain a refined version of the Hahn–

Banach theorem:

(5.4) Theorem. Let p : E → R be a sublinear functional , C a convex
subset of E and g : C → R a concave function such that g(y) ≤ p(y)
for all y ∈ C. Then there is a linear functional f ∈ E′ such that
g(y) ≤ f(y) for all y ∈ C and f(x) ≤ p(x) for all x ∈ E.

Proof. Take T = C, βt = g(t), and xt = t for t ∈ C; then condition (B) of
(5.3) is satisfied. Consequently, by the Mazur–Orlicz theorem, there exists a
linear functional f ∈ E′ such that f(x) ≤ p(x) for all x ∈ E and g(t) ≤ f(t)
for all t ∈ C. �
Another consequence is concerned with an extended version of the clas-

sical moments problem:

(5.5) Theorem. Let E be a normed linear space, {xm}∞m=1 a given se-
quence in E, and {cm}∞m=1 a sequence of real numbers. Then the
following two conditions are equivalent :
(A) there exists a linear functional f ∈ E∗ such that f(xm) ≥ cm for
all m = 1, 2, . . . and ‖f‖ ≤M , where M > 0,

(B) for every convex combination
∑n
i=1 λixi of the points x1, . . . , xn

we have
n∑
i=1

λici ≤M
∥∥∥ n∑
i=1

λixi

∥∥∥.
Proof. Clearly, it is enough to show that (B)⇒(A). To this end, letting
p(x) =M‖x‖ for x ∈ E, we apply (5.3) to the set T =N and the sequences
{xm} and βm = cm. �
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6. Miscellaneous Results and Examples

A. Applications of the Banach theorem and of related results to analysis

(A.1) (Systems of linear equations) Consider the infinite system of linear equations

(∗) xi =
∞∑
j=1

aijxj + bi, i = 1, 2, . . . , bi, aij ∈ R,

and assume that one of the following conditions is satisfied:
(a) for some constants 0 ≤ α < 1 and β > 0 we have

∞∑
j=1

|aij | ≤ α, |bi| ≤ β for each i = 1, 2, . . . ,

(b) for some p > 1 we have

∞∑
i=1

( ∞∑
j=1

|aij |p/(p−1)
)p−1

< 1,
∞∑
i=1

|bi|p <∞,

(c) letting ci = sup{|aij | | j = 1, 2, . . .}, we have
∞∑
i=1

ci < 1,
∞∑
i=1

|bi| <∞.

Prove: The system (∗) has a unique solution in the space, respectively: m (the space of
bounded sequences with the sup norm), lp and l1.

(A.2) (Integral equations) LetK : [a, b]×[a, b]→ R be a measurable and square integrable
function. Assume that for a real parameter λ,

|λ|
(∫
K(s, t)2 ds dt

)1/2
< 1.

Show: The integral equation u(s) = f(s) + λ
∫
K(s, t)u(t) dt (a ≤ s ≤ b), where f ∈

L2[a, b], has a unique solution u ∈ L2[a, b].

(A.3) (Application of the nonlinear alternative for contractive maps) We seek the solutions
to the initial value problem

(P)
{
x′(t) = f(t, x(t)), t ∈ [0, T ],
x(0) = 0,

where f : [0, T ]×R→ R is continuous. Suppose
(a) for each r > 0 there is an lr ∈ R such that

|f(t, x)− f(t, y)| ≤ lr|x− y| for all t ∈ [0, T ] and x, y ∈ [−r, r],

(b) there is a continuous function ϕ : [0,∞)→ (0,∞) such that

|f(t, x)| ≤ ϕ(|x|) for all t ∈ [0, T ] and x ∈ R.

Prove: If T <
∫∞
0 ds/ϕ(s), then the initial value problem (P) has a unique solution

x ∈ C1([0, T ]).
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[Consider the family of problems

(Pλ)
{
x′(t) = λf(t, x(t)), t ∈ [0, T ],
x(0) = 0,

depending on a parameter λ ∈ [0, 1]. Fix an M so that T <
∫M
0 ds/ϕ(s) and show that

if x is a solution of the problem (Pλ) for some λ, then |x(t)| < M for all t ∈ [0, T ]. Let
L = lM be the constant given in (a), and define the norm ‖ ‖L in C([0, T ]) by

‖x‖L = sup{e−tL|x(t)| | t ∈ [0, T ]}.

Set U = {x ∈ C([0, T ]) | |x(t)| < M for all t ∈ [0, T ]} and prove that G : U → C([0, T ])
given by G(x)(t) =

∫ t
0 f(s, x(s)) ds is contractive in the norm ‖ ‖L; conclude the argument

by showing that λG has no fixed points on the boundary of U .]

B. Nonexpansive maps and monotone operators in Hilbert space

(B.1) Let f : A→ H be a map (not necessarily continuous) on a subset A ⊂ H.
(a) f is monotone ⇔ (fx− fy, x− y) ≥ 0 for all x, y ∈ A.
(b) f is strictly monotone ⇔ (fx− fy, x− y) > 0 for all x, y ∈ A, x 
= y.
(c) f is strongly monotone ⇔ (fx− fy, x− y) ≥ C‖x− y‖2 for all x, y ∈ A and some
C > 0.

Show:
(i) Every contractive field is strictly monotone.
(ii) Every nonexpansive field is monotone.
(iii) Every strongly monotone map is injective.
(iv) f is strongly monotone with constant C if and only if 1C f − I is monotone.
(v) If f is strongly monotone, then ‖fx− fy‖ ≥ C‖x− y‖.
(vi) If f : H → H is differentiable, then f is strongly monotone if and only if
(Df(x)h, h) ≥ C‖h‖2 for some C > 0 and all h ∈ H.

(B.2) (Minimizing convex functionals) Let C ⊂ H be a closed convex set.
(a) Let ϕ : C → R be a quasi-convex l.s.c. coercive function. Prove: ϕ attains its

minimum at some y0 ∈ C.
[For each x ∈ C, let Γx = {y ∈ C | ϕ(y) ≤ ϕ(x)} and apply (4.2).]
(b) Let a : H×H → R be a coercive continuous bilinear form, and let l : H → R be a

continuous linear form. Show: There is a unique y0 ∈ C such that the following equivalent
properties hold:
(i) 12 [a(y0, y0 − x) + a(y0 − x, y0)] ≤ l(y0 − x) for all x ∈ C,
(ii) the quadratic form x �→ ϕ(x) = 12a(x, x)− l(x) on C attains its minimum at y0.

[Verify first that (i)⇔(ii); to prove (ii), apply (a) to the coercive convex function ϕ.]

(B.3) (Nikodym theorem) Let C ⊂ H be closed convex. Show: There exists a retraction
r : H → C with the following properties:

(i) If x0 ∈ H, then r(x0) is the unique point in C with ‖x0−r(x0)‖ = inf{‖x0−x‖ |
x ∈ C} = d(x0, C).

(ii) For each x0 ∈ H, the point r(x0) is a solution of the variational inequality
(r(x0)− x0, r(x0)− x) ≤ 0 for all x ∈ C.

(iii) The retraction r is nonexpansive.
(iv) If C = H0 is a linear subspace of H, then r : H → H0 is the orthogonal projection
(i.e., for each x ∈ H, (x− r(x), y) = 0 for all y ∈ H0).

(Parts (i) and (iv) are due to Nikodym [1931].)
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(B.4) Let C be a closed convex set in Rn and f : C → R be a C1 function that attains
its minimum at y0 ∈ C. Let F (x) = grad f(x). Show: (F (y0), y0 − x) ≤ 0 for all x ∈ C.

(B.5) (Complementarity problem) Let Rn+ = {x = (x1, . . . , xn) ∈ Rn | xi ≥ 0 for all i},
and let F : Rn → Rn. The complementarity problem is to find y0 ∈ Rn+ such that
F (y0) ∈ Rn+ and (F (y0), y0) = 0.
(a) Show: The following statements are equivalent: (i) y0 ∈ Rn+ is a solution of the

complementarity problem, (ii) (F (y0), y0 − x) ≤ 0 for all x ∈ Rn+.
[For (ii)⇒(i), note that if y0 ∈ Rn+ solves (ii), then letting ei ∈ Rn be the standard

unit basis, we have x = y0 + ei ∈ Rn+ for each i ∈ [n], and therefore F (y0) ∈ Rn+ by (ii);
deduce that (F (y0), y0) ≤ 0 and finally that (F (y0), y0) = 0.]
(b) Let F : Rn → Rn be strongly monotone and continuous on the cone Rn+. Show:

The complementarity problem for F has a unique solution.
(The above results are due to Karamardian [1972].)

(B.6) Let C = {x ∈ H | ‖x‖ ≤ r} and f : C → H be monotone and hemicontinuous.
Prove: if f(y) 
= λy for all λ < 0 and ‖y‖ = r, then there is y0 ∈ C such that f(y0) = 0.
[Apply (4.6) to get y0 ∈ C with (fy0, y0 − x) ≤ 0 for all x ∈ X, consider two cases:

‖y0‖ = r and ‖y0‖ < r.]

(B.7) Let f : H → H be monotone and hemicontinuous. Prove: If (fx, x)/‖x‖ → ∞
uniformly as ‖x‖ → ∞, then f is surjective (G. Minty).
[Given y0 ∈ H consider x �→ g(x) = f(x)− y0 and apply (B.6) to the map g : H → H

on a sufficiently large ball.]

(B.8) Let C ⊂ H be a closed convex set, and let r : H → C be the map sending each
x ∈ H to its nearest point in C. Show: r : H → C is nonexpansive.
[Use the reasoning in the latter half of (1.4).]

(B.9) Show: The nonlinear alternative (1.5) for nonexpansive maps and its corollaries
(1.6)(a)–(d) remain valid if in (1.5) and (1.6) the closed ball in H is replaced by any
closed convex bounded subset C ⊂ H with 0 ∈ Int(C).

(B.10) Let C be a bounded closed convex subset of a Hilbert space and F be a family of
commuting nonexpansive maps of C into C. Show: The maps in F have a common fixed
point (F. Browder).

C. Nonexpansive maps in Banach spaces

(C.1) A Banach space is uniformly convex if there is a monotone increasing surjection
ϕ : [0, 2] → [0, 1] continuous at 0, with ϕ(0) = 0, ϕ(2) = 1, such that ‖x‖ ≤ 1, ‖y‖ ≤ 1,
and ‖x− y‖ ≥ ε implies ‖(x+ y)/2‖ ≤ 1− ϕ(ε). Let η : [0, 1]→ [0, 2] be the inverse of ϕ.
(a) Let E be uniformly convex, and u, v two elements of E. Assume that there is an

x ∈ E with ‖x− u‖ ≤ R, ‖x− v‖ ≤ R, ‖x− (u+ v)/2‖ ≥ r > 0. Prove:

‖u− v‖ ≤ Rη
[
R− r
R

]
.

[Write r = (1− (R− r)/R)R.]
(b) Let E be a uniformly convex Banach space and C ⊂ E a closed bounded convex

set. Prove: Every nonexpansive F : C → C has a fixed point (Browder [1965], Göhde
[1965], Kirk [1965]).
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(c) Let C be a closed convex set in a uniformly convex Banach space E. Show: For
each x0 ∈ E, there is a unique u ∈ C with ‖x0 − u‖ = infc∈C ‖x0 − c‖.

(C.2) Let K∞ = {x = {xi} ∈ c0 | ‖x‖ = sup1≤i<∞ |xi| ≤ 1} be the unit ball in c0.
Show that ϕ : K∞ → K∞ given by (x1, x2, . . .) �→ (1, x1, x2, . . .) is a nonexpansive map
without fixed points (Beals).

(C.3) Let E be a Banach space. A set S ⊂ E is star-shaped if there is some p ∈ S such
that tx + (1− t)p ∈ S for all x ∈ S and 0 ≤ t ≤ 1. A set A ⊂ S is called an attractor for
a map F : S → S provided⋃

n≥1
Fn(x) ∩A 
= ∅ for each x ∈ S.

(a) Let S be a compact star-shaped subset of a Banach space. Prove: Every nonex-
pansive F : S → S has a fixed point.
(b) Let S be a star-shaped subset of a Banach space and F : S → S a nonexpansive

map with a compact attractor. Show: F has a fixed point (Göhde [1965]).
[Assuming, without loss of generality, that 0 ∈ S, establish that given λ ∈ (0, 1) there

is a point xλ ∈ S satisfying ‖xλ − Fxλ‖ ≤ d(1− λ), where d = δ(S); then find a point yλ
in a compact attractor A of F such that ‖yλ−Fn(λ)(xλ)‖ ≤ (1−λ) for a sufficiently large
integer n(λ). Establish the inequality ‖yλ − Fyλ‖ ≤ (1− λ)(d+ 2) and use compactness
of A to conclude the proof.]

(C.4) Let E be a Banach space, and A ⊂ E any nonempty subset. Let

ra(A) = inf{r | A ⊂ B(a, r)} (a ∈ A),
r(A) = inf{ra(A) | a ∈ A},
Č(A) = {a ∈ A | ra(A) = r(A)}.

(a) Let A be a bounded closed set. Show: δ[Č(A)] ≤ r(A).
(b) Let K be a bounded closed convex set and T : K → K nonexpansive. Prove: If

Conv T (K) = T (K), then T [Č(K)] ⊂ Č(K).
(c) A convex set K in a Banach space is said to have normal structure if r(D) < δ(D)

for each bounded closed convex D ⊂ K with δ(D) > 0.
Let E be a reflexive Banach space, and K a nonempty bounded closed convex set

with normal structure. Prove: If δ(K) > 0, then Č(K) is a nonempty proper closed convex
subset of K (Brodskĭı–Milman [1948]).
[Observe K ⊂ B(u, r) ⇔ u ∈

⋂
{B(x, r) | x ∈ K}. Next note that for each ε > 0, the

set Cε(K) =
⋂
{B(x, r(K)+ ε)|x ∈ K} 
= ∅ and that Č(K) =

⋂
{Cε(K) | ε > 0}. Now use

the Mazur–Šmulian theorem.]

(d) The Hilbert space l2 renormed by ‖x‖ = supn{ 12
√∑

i x
2
i , |xn|} is reflexive. Let

K = {x | ‖x‖ ≤ 1 and xi ≥ 0 for all i}. Show: K is a closed bounded convex set that does
not have normal structure.
(e) Prove: If E is a uniformly convex Banach space, then every bounded closed convex

set has normal structure (Brodskĭı–Milman [1948]).

(C.5) Let E be a reflexive Banach space, and K a nonempty bounded closed convex set
with normal structure. Prove: Every nonexpansive T : K → K has a fixed point (Kirk
[1965]).
[Use the Kuratowski–Zorn lemma to find a minimal nonempty closed convex K0 ⊂ K

with T (K0) ⊂ K0; show that Conv T (K0) = K0; then apply (C.4)(b) and (c).]



78 I. Elementary Fixed Point Theorems

(C.6) The following example of Alspach [1981] shows that if C is a weakly compact convex
set in a Banach space, then a nonexpansive T : C → C need not have a fixed point.
Let T : I2 → I2 be the “baker’s transformation”

T (x, y) =
{
(x/2, 2y), 0 ≤ y ≤ 12 ,
(x/2 + 1/2, 2y − 1), 1

2 < y ≤ 1,

which can be visualized as first squeezing I2 into the rectangle {(x, y) | 0 ≤ x ≤ 12 , 0 ≤
y ≤ 2}, then cutting off the top half and placing it next to the lower half. It is known that
T is measure-preserving, i.e., µ(TA) = µ(A) for every measurable A ⊂ I2.
In L1(I) with the usual norm ‖f‖ =

∫
I |f |, consider the weakly compact subset

C = {f ∈ L1(I) | 0 ≤ f ≤ 1,
∫
I f =

1
2}.

For each f ∈ C, let

T̂ f(x) =
{
min[2f(2x), 1], 0 ≤ x ≤ 12 ,
max[2f(2x− 1)− 1, 0], 1

2 < x ≤ 1

(the graph of T̂ f is that obtained from the graph of f after the top half of the squeezed
rectangle is placed next to the lower half). Prove: (a) T̂ is an isometry C → C, (b) T̂ has
no fixed point.
[(a) Observe that if Af is the ordinal set {(x, y) ∈ I2 | y ≤ f(x)}, then ‖f − g‖ =

the measure of the symmetric difference Af�Ag of the ordinal sets, and recall that T is
measure-preserving. (b) If T̂ f = f , then either f = 0 or f = 1 a.e.; but then

∫
I f 
=

1
2 .]

(C.7) Let C be a compact convex set in a normed linear space and F be a family of
commuting nonexpansive maps of C into itself. Prove: There is a common fixed point for
the family F (DeMarr [1964]).

D. Geometric and elementary KKM-theory

(D.1) (Intersection property in superreflexive spaces) Let E be a Banach space. We call
E superreflexive if it admits an equivalent uniformly convex norm. Let {Ci | i ∈ I} be a
family of closed convex sets in a superreflexive Banach space with the finite intersection
property. Show: If C0 is bounded for some i0 ∈ I, then

⋂
{Ci | i ∈ I} 
= ∅.

[First assume E to be uniformly convex; follow the proof of (4.1) and (4.2).]

(D.2) (Mazur–Schauder theorem) Let E be a reflexive Banach space and C a closed convex
subset of E. Let ϕ : C → R be a lower semicontinuous, quasi-convex, and coercive (i.e.,
ϕ(x)→∞ as ‖x‖ → ∞) functional on C. Show: The functional ϕ attains its minimum at
some x0 ∈ C (Mazur–Schauder [1936]).
[For E superreflexive, use (D.1); in the general case equip E with the weak topology.]

(D.3) (KKM-maps in superreflexive spaces) Let E be a superreflexive Banach space and
X ⊂ E. Let G : X → 2E be a KKM-map with closed convex values such that one the sets
Gx0 is bounded. Show:

⋂
{Gx | x ∈ X} 
= ∅.

[Use (3.1.4) and (D.1).]

(D.4) (Hartman–Stampacchia theorem in reflexive Banach spaces) Let E be a Banach
space, E∗ its dual space and for (ξ, ν) ∈ E∗×E denote ξ(ν) by 〈ξ, ν〉. A map f : C → E∗
defined on a subset C ⊂ E is called monotone if 〈f(x)− f(y), x− y〉 ≥ 0 for all x, y ∈ C;
f is hemicontinuous if for all x, y ∈ C the mapping [0, 1] � t �→ 〈f(y + t(x− y)), x− y〉 is
continuous at 0.
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Let E be a reflexive Banach space, C a nonempty closed bounded convex subset of
E, and let f : C → E∗ be monotone and hemicontinuous. Prove: There exists a y0 ∈ C
such that 〈f(y0), y0 − x) ≤ 0 for all x ∈ C (Hartman–Stampacchia [1965]).
[Equip E with the weak topology and using the geometric KKM-principle follow the

proof of (4.6).]

(D.5) Let C be a nonempty bounded closed convex subset of a superreflexive Banach
space E, and let S, T : C → 2C be such that:
(i) Sx ⊂ Tx for all x ∈ C,
(ii) S has convex cofibers,
(iii) T has closed and convex values.

Show: If x ∈ Sx for each x ∈ C, then
⋂
{Tx | x ∈ C} 
= ∅.

(D.6) Let C be a nonempty bounded closed convex subset of a superreflexive Banach
space E, and let f, g : C × C → R satisfy:

(i) g(x, y) ≤ f(x, y) for all x, y ∈ C,
(ii) x �→ f(x, y) is quasi-concave on C for each y ∈ C,
(iii) y �→ g(x, y) is l.s.c. and quasi-convex on C for each x ∈ C.

Prove:
(a) For any λ ∈ R, either (i) there exists a y0 ∈ C such that g(x, y0) ≤ λ for all
x ∈ C, or (ii) there exists a w ∈ C such that f(w,w) > λ.

(b) The following minimax inequality holds:

inf
y∈C
sup
x∈C
f(x, y) ≤ sup

x∈C
g(x, x).

[For (a), define S, T : C → 2C by Sx = {y ∈ C | f(x, y) ≤ 0} and Tx = {y ∈ C |
g(x, y) ≤ 0} and apply (D.5).]

(D.7) (Maximal monotone operators in reflexive spaces) Let E be a reflexive Banach
space. A set-valued operator T : E → 2E

∗
is monotone if 〈y∗ − x∗, y − x〉 ≥ 0 whenever

x∗ ∈ Tx and y∗ ∈ Ty; T is called maximal monotone if it is monotone and maximal in
the set of all monotone operators from E into 2E

∗
. Show: If T : E → 2E

∗
is maximal and

D(T ) = {x ∈ E | Tx 
= ∅} is bounded, then T is surjective (F. Browder).
[Follow the proof of (4.10), (4.11). If E is superreflexive, use (4.3); if not, equip E

with the weak topology and apply the geometric KKM-principle.]

E. Selected results

(E.1) (Elementary implicit function theorem) Let (E1, ‖ ‖) and (E2, | |) be Banach spaces,
and let U ⊂ E1 be open and V ⊂ E2 be open connected. Assume H : U × V → E1 is a
continuous map with the following properties:
(i) ‖H(u, v)−H(u′, v)‖ ≤ α‖u− u′‖, where 0 ≤ α < 1 and α is independent of v,
(ii) H(u, v) 
= u for any (u, v) ∈ ∂U × V ,
(iii) for some v0 ∈ V the equation H(u, v0) = u has a unique solution u ∈ U .

Show:
(a) For each v ∈ V the equation H(u, v) = u has a unique solution uv .
(b) The assignment v �→ uv is a continuous map from V to U .
(c) If the restriction H|(U × V ) : U × V → E1 is C1, then the assignment v �→ uv is
a C1 map from V to U .

(E.2) (Miranda theorem) Let E1, E2 be Banach spaces and H : E1 × [0, 1] → E2 be a
continuous map with the following properties:
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(i) (x, t) �→ H(x, t) admits a continuous partial derivative Hx : E1 × [0, 1] →
L (E1, E2) with respect to x ∈ E1,

(ii) the set {x ∈ E1 | H(x, t) = 0 for some t ∈ [0, 1]} is compact,
(iii) if H(x, t) = 0 for some x and t, then the linear operator Hx(x, t) is invertible,
(iv) for some t0 ∈ [0, 1] the equation H(x, t0) = 0 has a unique solution.

Show: The equation H(x, t) = 0 has a unique solution for each t ∈ [0, 1] (Miranda [1971]).

(E.3) (Hartman theorem) Let (E, | |) be a Banach space and (C (E,E), ‖ ‖) the Banach
space of bounded uniformly continuous functions p : E → E with the sup norm ‖ ‖. Let
L ∈ GL(E) be a given hyperbolic isomorphism: E = E1 ⊕ E2, L|Ei = Li ∈ GL(Ei),
i = 1, 2, with ‖L1‖ < 1 and ‖L−12 ‖ < 1. We assume that α = max(‖L1‖, ‖L

−1
2 ‖) < 1 and

that E is given the norm |x1 + x2| = max(|x1|, |x2|) for xi ∈ Ei, i = 1, 2.
(a) For ν > 0 let

Lν(L) = {Λ = L+ λ | λ ∈ C (E,E) is bounded by ν and

Lipschitz with constant ≤ ν}.

Call Lν(L) admissible if its elements are Lipschitz isomorphisms of E onto itself. Show:
1o Lν(L) ⊂ C (E,E) is a complete metric space. 2o Lν(L) is admissible for small ν.
[For 2o, use elementary domain invariance.]
(b) Let Lν(L) be admissible and assume that Λ = L + λ and Λ′ = L + λ′ are two

elements of Lν(L). Consider the equation

(i) hΛ = Λ′h for h ∈H ,

where H = {h = 1+ p | p ∈ C (E,E)} with 1 = idE . Show: The equation (i) is equivalent
to the equation

(ii) p = L−1[pΛ+ λ− λ′(1 + p)] for p ∈ C (E,E).

(c) Show: The equation (ii) is equivalent to the system

(iii)
{
p1 = [L1p1 + λ′1(1 + p)− λ1]Λ−1,
p2 = L−12 [p2Λ+ λ2 − λ

′
2(1 + p)],

where pi, Li, λi, λ′i (i = 1, 2) are the components of p, L, λ, λ
′, respectively, with respect

to the splitting E = E1 ⊕ E2.
(d) Define a map H : C (E,E)×Lν(L)×Lν(L)→ C (E,E) by

H((p1, p2), Λ, Λ
′) = ([L1p1 + λ

′
1(1 + p)− λ1]Λ−1, L−12 [p2Λ+ λ2 − λ

′
2(1 + p)]).

Show: If α+ ν < 1, then H is (α+ ν)-contractive with respect to (p1, p2) and continuous
with respect to (Λ,Λ′).
(e) Assume Lν(L) is admissible with α + ν < 1. Show: To each pair Λ,Λ′ ∈ Lν(L)

there corresponds a unique homeomorphism hΛΛ′ = h ∈ H such that hΛ = Λ′h; this
homeomorphism depends continuously on Λ, Λ′.
[Use (b), (c), (d) and the parametrized version of the Banach theorem (1.6.A.2).]
(The above proof of a theorem of Hartman [1964] is due to Pugh [1969].)

(E.4) (Bruhat–Tits theorem) Let (X, d) be a complete metric space that satisfies the
following semiparallelogram law : for any a, b ∈ X there is a point z ∈ X such that for all
x ∈ X,

(∗) d(a, b)2 + 4d(x, z)2 ≤ 2d(x, a)2 + 2d(x, b)2.
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(a) Prove: The point z in (∗) is the midpoint between a and b, i.e., d(a, z) + d(b, z) =
1
2d(a, b).
(b) Let A be a bounded subset of X. Show: There exists a unique closed ball K(a, r)

in X of minimal radius containing A (J.-P. Serre).
[For uniqueness, use (a); for existence, consider a sequence of closed balls K(an, rn) ⊃

A with rn → r. Prove that {an} is a Cauchy sequence and that K(a, r), where a = lim an,
is the desired ball.]
(c) Let G be a group of isometries of X. Show: If G has a bounded orbit G (x), then

G has a common fixed point (Bruhat–Tits [1972]).
[Letting K(x, r) be the unique closed ball of minimal radius containing G (x), prove

that x is a common fixed point of G .]

7. Notes and Comments

Fixed points for nonexpansive maps

Nonexpansive maps appear for the first time in Kolmogoroff [1933], where
they were used in the axiomatic treatment of measure theory. Pontrjagin and
Schnirelmann [1932] used the notion in dimension theory and established the
following result: If X is a compact metric space with dimX ≥ r, then there
exists a nonexpansive map ϕ : X → Rr such that dimϕ(X) = r.
In Section 1 we give only a few theorems that are related to the con-

traction principle. Theorem (1.3) is a special case of more general results
(see (C.1(b))) obtained independently by Browder [1965], Göhde [1965], and
Kirk [1965]. Earlier, a general fixed point result for isometries was obtained
by Brodskĭı–Milman [1948]. All the above authors used weak-topology ar-
guments in the proofs of their results; the elementary proof of (1.3) given in
the text is due to Goebel [1969]. We remark that in (1.3), the sequence of
iterates {Fn(x)} does not necessarily converge to a fixed point of F ; it can
be proved, however, that for each x ∈ C the sequence 1n (x+Fx+ · · ·+Fnx)
converges weakly to a fixed point of F (Baillon [1975]).

We also remark that the nonlinear alternative for nonexpansive maps (1.5) remains
valid for nonexpansive set-valued maps in uniformly convex spaces (Frigon [1995]). For
single-valued maps, (1.5) and its corollaries (1.6) can be easily deduced (as observed by
Z. Guennoun) from the following result given in Browder’s survey [1976]: Let E be a uni-
formly convex Banach space, C ⊂ E be closed , convex , and bounded , and F : C → E be
nonexpansive. Then the nonexpansive field f(x) = x−Fx is demiclosed on C, i.e., if {xn}
in C converges weakly to x and {f(xn)} converges strongly to y, then x ∈ C and f(x) = y.

For further results on nonexpansive maps (including some applications as
well as some iterative techniques for approximating fixed points) the reader
is referred to “Miscellaneous Results and Examples”, the surveys of Opial
[1967], Petryshyn [1975], Browder [1976], and to the books by Goebel–Reich
[1984] and Goebel–Kirk [1991].
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Applications of the Banach theorem

The fundamental idea of applying fixed point results to produce theorems
in analysis is due to Poincaré [1884], [1912] and was developed further in the
works of Birkhoff [1913], Birkhoff–Kellogg [1922] and then Schauder [1927a],
[1927b], [1930]. Systematic applications of the Banach principle to various
existence theorems in analysis were initiated by Caccioppoli [1930]. An ex-
pository account of many such applications may be found in the surveys by
Niemytzki [1936] and Miranda [1949]. For applications to differential and
integral equations the reader is referred to Pogorzelski’s book [1966] and to
Griffel [1985]. The renorming technique used in Section 2 was introduced by
Bielecki [1956]. Numerous (and diverse) applications of the Banach theorem
are given in “Miscellaneous Results and Examples”.

Applications of the elementary domain invariance

Elementary domain invariance permits a simple and unified treatment of a
number of familiar results in various fields. Theorem (3.4), established by
Schauder [1934], is an abstraction (in the linear case) of Poincaré’s method
of continuation of solutions along a parameter and underlies the general
idea due to Bernstein that obtaining suitable a priori bounds for solutions
of a class of problems is frequently sufficient to establish their existence. For
many uses of Theorem (3.4) in partial differential equations the reader is
referred to the book of Gilbarg–Trudinger [1977].
The proof of the inverse function theorem presented in the text is an

adaptation of that given in H. Cartan’s book [1967].
Monotone operators were introduced independently by Kachurovskĭı

[1960], Zarantonello [1960], and Minty [1962]. Kachurovskĭı observed that
the gradient maps of convex functions are monotone and introduced the
term “monotonicity”. Theorem (3.9), due to Zarantonello [1960], is one of
the simplest results of the theory that is related to the contraction principle.
More information on monotone operators and their applications to integral
and differential equations can be found in the surveys by Kachurovskĭı [1968]
and Browder [1976] and also in Brézis’s book [1973].
Theorem (3.12) is due to Klee [1956], who was the first to study the

negligibility of sets in Banach spaces. The method of proof presented in the
text is based on the noncomplete norm technique due to Bessaga. By refining
this technique, Bessaga [1966] proved that every infinite-dimensional Hilbert
space is diffeomorphic to its unit sphere, and as a consequence established
the following theorem: There exists a C∞ retraction of the closed unit ball
in an infinite-dimensional Hilbert space onto its boundary. The last result
implies the existence of a fixed point free C∞ self-map of the closed unit ball
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in an infinite-dimensional Hilbert space. For more details on negligibility of
sets the reader is referred to the book of Bessaga–Pełczyński [1975].

Other invertibility results

We mention some global invertibility theorems that are not proved in the
text. In the differentiable case the following result is due to Hadamard [1906]:
If f : E → F is a C1 map between finite-dimensional Banach spaces and
if f is a local homeomorphism such that ‖[f ′(x)]−1‖ ≤M for some M > 0
and all x ∈ E, then f is a diffeomorphism. For a proof of the Hadamard
theorem for arbitrary Banach spaces, the reader is referred to the lecture
notes by J.T. Schwartz [1969].

S. Mazur and S. Ulam, Lwów, 1935

A general invertibility theorem is due to Banach–Mazur [1934]: Let X
and Y be metric spaces, where X is connected and Y is locally arcwise
connected and simply connected. Let f : X → Y be a proper map. Then f is
invertible if and only if it is a local homeomorphism.
A special case of the Banach–Mazur theorem was established earlier

by Caccioppoli [1932]: Let f : E→F be a C1 proper map between Banach
spaces. Then f is a diffeomorphism if and only if it is a local diffeomorphism.
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The proofs of the above two results can be found in Berger’s book [1977].
For some other related results the reader is referred to Carathéodory–

Rademacher [1917] and Ambrosetti–Prodi [1972].

Applications of the elementary KKM-principle

The presentation in Section 4 follows Granas–Lassonde [1995]. Variational
inequalities (the systematic study of which began around 1965) are of im-
portance in many applied problems (see Kinderlehrer–Stampacchia [1980],
where an introductory account of the theory and further references can be
found). Theorem (4.6) is due to Hartman–Stampacchia [1966]; its proof is a
simplification of the one in Dugundji–Granas [1978]. Theorem (4.7) is due to
Minty [1962]. The significance of maximality of set-valued monotone opera-
tors was brought to light by Minty [1965], to whom the theory of maximal
monotone operators in a Hilbert space is due.
For more general or related results the reader is referred to Brézis’s

book [1973], Browder’s survey [1976] and also to “Miscellaneous Results
and Examples”.

Mazur–Orlicz theorem

Kakutani [1938] proved the Hahn–Banach theorem using the Markoff–Kaku-
tani theorem and the compactness of the Tychonoff cube. The same idea is
used in §4 for the proof of Banach’s lemma (5.1) on which the proof of the
Mazur–Orlicz theorem (5.3) is based. This proof follows Granas–Lassonde
[1991] and is due to F. C. Liu (unpublished). We remark that the formulation
of (5.3) (obtained from the original one by replacing “linear combinations”
with “convex combinations”) permits getting at once a refined version of the
Hahn–Banach theorem (5.4). Theorem (5.5), due to Mazur–Orlicz [1953], is
a generalization of the classical “moments problem” theorem. The classi-
cal separation theorems of Mazur and Eidelheit (called by Bourbaki the
“geometric forms of the Hahn–Banach theorem”) also follow at once from
Theorem (5.3).
S. Mazur observed that the Mazur–Orlicz and Hahn–Banach theorems

remain valid if in their formulation a sublinear functional p is replaced by
a convex functional; the corresponding proofs can be found in Alexiewicz
[1969]. For more recent applications of the Mazur–Orlicz theorem the reader
is referred to Liu [1993].
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