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Applications in Risk Management

This chapter discusses applications of Monte Carlo simulation to risk manage-
ment. It addresses the problem of measuring the risk in a portfolio of assets,
rather than computing the prices of individual securities. Simulation is use-
ful in estimating the profit and loss distribution of a portfolio and thus in
computing risk measures that summarize this distribution. We give particular
attention to the problem of estimating the probability of large losses, which
entails simulation of rare but significant events. We separate the problems of
measuring market risk and credit risk because different types of models are
used in the two domains.

There is less consensus in risk management around choices of models and
computational methods than there is in derivatives pricing. And while sim-
ulation is widely used in the practice of risk management, research on ways
of improving this application of simulation remains limited. This chapter em-
phasizes a small number of specific techniques for specific problems in the
broad area of risk management.

9.1 Loss Probabilities and Value-at-Risk

9.1.1 Background

A prerequisite to managing market risk is measuring market risk, especially
the risk of large losses. For the large and complex portfolios of assets held
by large financial institutions, this presents a significant challenge. Some of
the obstacles to risk measurement are administrative — creating an accurate,
centralized database of a firm’s positions spanning multiple markets and asset
classes, for example — others are statistical and computational. Any method
for measuring market risk must address two questions in particular:

◦ What statistical model accurately yet conveniently describes the move-
ments in the individual sources of risk and co-movements of multiple
sources of risk affecting a portfolio?
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◦ How does the value of a portfolio change in response to changes in the
underlying sources of risk?

The first of these questions asks for the joint distribution of changes in risk
factors — the exchange rates, interest rates, equity, and commodity prices to
which a portfolio may be exposed. The second asks for a mapping from risk
factors to portfolio value. Once both elements are specified, the distribution of
portfolio profit and loss is in principle determined, as is then any risk measure
that summarizes this distribution.

Addressing these two questions inevitably involves balancing the complex-
ity required by the first with the tractability required by the second. The
multivariate normal, for example, has known deficiencies as a model of mar-
ket prices but is widely used because of its many convenient properties. Our
focus is more on the computational issues raised by the second question than
the statistical issues raised by the first. It is nevertheless appropriate to men-
tion two of the most salient features of the distribution of changes in market
prices and rates: they are typically heavy-tailed, and their co-movements are
at best imperfectly described by their correlations. The literature document-
ing evidence of heavy tails is too extensive to summarize — an early refer-
ence is Mandelbrot [246]; Campbell, Lo, and MacKinlay [74] and Embrechts,
Klüppelberg, and Mikosch [111] provide more recent accounts. Shortcomings
of correlation and merits of alternative measures of dependence in financial
data are discussed by, among others, Embrechts, McNeil, and Straumann
[112], Longin and Solnik [240], and Mashal and Zeevi [255]. We revisit these
issues in Section 9.3, but mostly work with simpler models.

To describe in more detail the problems we consider, we introduce some
notation:

S = vector of m market prices and rates;
∆t = risk-measurement horizon;
∆S = change in S over interval ∆t;

V (S, t) = portfolio value at time t and market prices S;
L = loss over interval ∆t

= −∆V = V (S, t) − V (S + ∆S, t + ∆t);
FL(x) = P (L < x), the distribution of L.

The number m of relevant risk factors could be very large, potentially reaching
the hundreds or thousands. In bank supervision the interval ∆t is usually
quite short, with regulatory agencies requiring measurement over a two-week
horizon, and this is the setting we have in mind. The two-week horizon is often
interpreted as the time that might be required to unwind complex positions
in the case of an adverse market move. In other areas of market risk, such
as asset-liability management for pension funds and insurance companies, the
relevant time horizon is far longer and requires a richer framework.
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The notation above reflects some implicit simplifying assumptions. We con-
sider only the net loss over the horizon ∆t, ignoring for example the maximum
and minimum portfolio value within the horizon. We ignore the dynamics of
the market prices, subsuming all details about the evolution of S in the vector
of changes ∆S. And we assume that the composition of the portfolio remains
fixed, though the value of its components may change in response to the mar-
ket movement ∆S and the passage of time ∆t, which may bring assets closer
to maturity or expiry.

The portfolio’s value-at-risk (VAR) is a percentile of its loss distribution
over a fixed horizon ∆t. For example, the 99% VAR is a point xp satisfying

1 − FL(xp) ≡ P (L > xp) = p

with p = 0.01. (For simplicity, we assume throughout that FL is continuous so
that such a point exists; ties can be broken using (2.14).) A quantile provides
a simple way of summarizing information about the tail of a distribution, and
this particular value is often interpreted as a reasonable worst-case loss level.
VAR gained widespread acceptance as a measure of risk in the late 1990s, in
large part because of international initiatives in bank supervision; see Jorion
[203] for an account of this history. VAR might more accurately be called a
measure of capital adequacy than simply a measure of risk. It is used primarily
to determine if a bank has sufficient capital to sustain losses from its trading
activities.

The widespread adoption of VAR has been accompanied by frequent crit-
icism of VAR as a measure of risk or capital adequacy. Any attempt to sum-
marize a distribution in a single number is open to criticism, but VAR has a
particular deficiency stressed by Artzner, Delbaen, Eber, and Heath [19]: com-
bining two portfolios into a single portfolio may result in a VAR that is larger
than the sum of the VARs for the two original portfolios. This runs counter
to the idea that diversification reduces risk. Many related measures are free
of this shortcoming, including the conditional excess E[L|L > x], calling into
question the appropriateness of VAR.

The significance of VAR (and related measures) lies in its focus on the tail
of the loss distribution. It emphasizes a probabilistic view of risk, in contrast
to the more formulaic accounting perspective traditionally used to gauge cap-
ital adequacy. And through this probabilistic view, it calls attention to the
importance of co-movements of market risk factors in a portfolio-based ap-
proach to risk, in contrast to an earlier “building-block” approach that ignores
correlation. (See, for example, Section 4.2 of Crouhy, Galai, and Mark [93].)
We therefore focus on the more fundamental issue of measuring the tail of
the loss distribution, particularly at large losses — i.e., on finding P (L > x)
for large thresholds x. Once these loss probabilities are determined, it is a
comparatively simple matter to summarize them using VAR or some other
measure.

The relevant loss distribution in risk management is the distribution un-
der the objective probability measure describing observed events rather than
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the risk-neutral or other martingale measure used as a pricing device. His-
torical data is thus directly relevant in modeling the distribution of ∆S. One
can imagine a nested simulation (alluded to in Example 1.1.3) in which one
first generates price-change scenarios ∆S, and then in each scenario simulates
paths of underlying assets to revalue the derivative securities in a portfolio. In
such a procedure, the first step (sampling ∆S) takes place under the objective
probability measure and the second step (sampling paths of underlying assets)
ordinarily takes place under the risk-neutral or other risk-adjusted probability
measure. There is no logical or theoretical inconsistency in this combined use
of the two measures. It is useful to keep the roles of the different probability
measures in mind, but we do not stress the distinction in this chapter. Over
a short interval ∆t, it would be difficult to distinguish the real-world and
risk-neutral distributions of ∆S.

9.1.2 Calculating VAR

There are several approaches to calculating or approximating loss probabilities
and VAR, each representing some compromise between realism and tractabil-
ity. How best to make this compromise depends in part on the complexity of
the portfolio and on the accuracy required. We discuss some of the principal
methods because they are relevant to our treatment of variance reduction in
Section 9.2 and because they are of independent interest.

Normal Market, Linear Portfolio

By far the simplest approach to VAR assumes that ∆S has a multivariate
normal distribution and that the change in value ∆V (hence also the loss L)
is linear in ∆S. This gives L a normal distribution and reduces the problem
of calculating loss probabilities and VAR to the comparatively simple task of
computing the mean and standard deviation of L.

It is customary to assume that ∆S has mean zero because over a short
horizon the mean of each component ∆Sj is negligible compared to its stan-
dard deviation, and because mean returns are extremely difficult to estimate
from historical data. Suppose then that ∆S has distribution N(0, ΣS) for
some covariance matrix ΣS . Estimation of this covariance matrix is itself a
significant challenge; see, for example, the discussion in Alexander [10].

Further suppose that
∆V = δ�∆S, (9.1)

for some vector of sensitivities δ. Then L ∼ N(0, σ2
L) with σ2

L = δ�ΣSδ, and
the 99% VAR is 2.33σL because Φ(2.33) = 0.99.

One might object to the normal distribution as a model of market move-
ments because it can theoretically produce negative prices and because it is
inconsistent with, for example, a lognormal specification of price levels. But
all we need to assume is that the change ∆S over the interval (t, t + ∆t) is
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