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Fundamental Conc.epts

Readers of this book are assumed to have some knowledge of the fundamental
concepts that underlie the elaborate mathematical structure of quantum mechanics.
Nevertheless, a recapitulation of these basic ideas is in. order here. Introductory
treatments take the beginner to base camp, and for goed reason do not raise issues
that can be postponed safely until demanding climbing is about to start. That is to
come, however. For that reason, this review of the fundamentals will include some
discussion of the role of relativity in quantum mechanies, why consistency imposes
non-classical conditions on the electromagnetic field, and:fundamental features of
quantum mechanics that are only revealed by multi-particle states:

1.1 Complementarity and Uncertainty

With the wisdom of hindsight, today one can say that certain qualitative features
of nature, apparent well before Planck and Einstein invented:quantization, posed
profound enigmas for the conceptual structure of classical!physics. One example
will suffice to make this point.

According to the equipartition theorem of classical statistical mechanics, the
specific heat of a gas is proportion to the number of dégrees of freedom Ny of
the individual molecules that compose the gas. If the gas-is noble, with appar-
ently structureless constituents, the straightforward count would give Ny = 3 for
the translational degrees of freedom, which agrees with experiment at all but low
temperatures. But even a.19%P-century skeptic could:ask why this is credible, for
if the atoms are structureless, how can they display an excitation spectrum — can
a structureless piano play a sonata? Furthermore, according to classical statistical
mechanics, the degrees of freedom that generate the excitation spectrum must be
included at all temperatures in calculating the specific heat, and this would destroy
the agreement with experiment.

The classical Weltanschauung leads to whole array of profound puzzles. To give
just one other example, it cannot explain why the properties of a sample of an
élement are identical to that of any other sample of the same element, irrespective of
their prior chemical and physical history — whether one sample had been extracted
from one compound and- another from a different compound, by totally different
methods. Such puzzles, recognized by only a handful before 1900, were removed
by the hypothesis that energy is quantized. With this assumption, it no longer
matters that the molecules have electronic, nuclear, and even subnuclear modes of
excitation if the gas in which the molecule finds itself is at room temperature, for
then the naive count of Ny is correct because the internal degrees of freedom are
effectively frozen out. Should the molecule be at the center of the sun, however, that
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count would be deeply wrong because then it would dissociate into its electrons and
nuclei, and these separate constituents would react with the surrounding matter.

(a) Complementarity

That quantization of energy is incompatible with classical mechanics was obvious
and distressing to Planck from the start. In the following quarter century, it became
increasingly clear that quantization in any guise could not be grafted onto classical
mechanics or electrodynamics. — that a fundamentally new theory was necessary
because classical physics could not even provide a language for describing a host of
atomic phenomena in purely qualitative terms. This theory — quantum mechanics
and quantum electrodynamics — would have to lead logically from basic assump-
tions to quantization of such quantities as energy and angular momentum, and also
incorporate atomic phenomena with continuous energy spectra, such as collisions.
And the new theory would have to satisfy Bohr’s correspondence principle — loosely
speaking, reduce to classical mechanics and electrodynamics in the limit of large
quantum numbers. How experiment and theory combined to give birth to quantum
mechanics and electrodynamics is a fascinating story that is beyond the scope of
this book; brief remarks about this history and subsequent developments, and some
references to the original literature and to historical studies, can be found at the
end of this chapter, and in chapter 13.

The study of the interaction between light and matter provided most of the
crucial clues in the historical development of the quantum theory, and still offers a
fairly direct path to central concepts of quantum mechanics and electrodynamics.
To be specific, consider the Compton effect, which emerges from the scattering of
~y-rays by electrons. Classical electrodynamics would describe the incident «y-ray
as a nearly monochromatic wave packet of mean wave vector k, and claim that
its energy and momentum are proportional to the square of the field strength.!
This field would force the electrons to oscillate with frequency w = ck, and the
acceleration of the charge would produce an outgoing ( “scattered”) electromagnetic
wave having the same frequency and wavelength as the incident radiation, and an
angular distribution that is roughly dipolar. After the collision, classical physics
would say that the electron would acquire a momentum along k if it had been at
rest initially.

‘The experiments of Compton and his followers gave results in striking disagree-
ment with these predictions. Most, but not all, of their results could be accounted

for by accepting Einstein’s photon concept: that the electromagnetic wave is to be
viewed as an assembly of massless particles, photons, each carrying an energy and
momentum given by

E=ho, p=hk, B~ 1.054 x _10_27erg sec, (1)

where A is Planck’s constant. By treating the process as a collision between a mass-
less photons and an electron of mass m obeying the relativistic laws of energy and
momentum conservation for particles, Compton could account for his observation

The magnitude & of the wave vector is related to the wavelength A by k = 27/}, and its
direction k/k = k is normal to the wavefront. We usually use the reduced wave length X = X/2m;
also @ always stands for a unit vector. i
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that the scattered y-rays had a wavelength A’ longer than that of the incident ray,

N = X4 2A¢sin® 10 (2)
where J
Ac = h/me (3)

is the electron’s Compton wavelength, 3.86 x10™*! cm, and 6 the laboratory scat-
tering angle. Furthermore, Bothe and Geiger confirmed that the scattered electrons
came off in coincidence at an angle correlated with that of the scattered photon as
expected from these conservation laws.

From the classical perspective, the relations in Eq. 1 are a scandalous liaison be-
tween unrelated concepts — that of particle and wave. This is but one example of
Bohr’s complementarity principle, which asserts that to attain an understanding of
phenomena in the quantum realm it is necessary to engage two or more concepts
that are mutually inconsistent from the classical viewpoint. In Eq. 1 the complemen-
tary concepts constitute wave-particle duality. As we shall learn in chapter 10, when
electrodynamics is reformulated as a quantum theory, this rather vague formula-
tion of complementarity becomes much sharper: the v-rays produced by Compton’s
radioactive source are states of the electromagnetic field with a definite number of
photons, but in such states the field strengths do not have definite values. The states
produced by an ideal laser, on the other hand, have well-defined field strengths, but
not a definite number of photons. Here the complementary concepts are those of
photon and field strengths; one or the other can be given a sharp meaning, but not
both simultaneously.

In the Compton effect, the relation between wavelength and scattering angle is
correctly given by (2), and the conservation of energy and momentum gives the
observed angle at which the electron emerges once the photon’s angle 8 is specified,
but that does not say which value of § will be observed when the next radioactive
decay produces a y-ray. It is difficult, at best, to imagine anything the experimenter
could do to specify further the collision in the hope of getting an in-principle predic-
tion of the value of 6, e.g., by measuring the impact parameter between the photon
and the electron, as one can do in a collision between billiard balls. This suggests
that the only empirically reproducible data the experimenter can hope to find is the
probability distribution for the scattering angle §. Einstein’s original “naive” photon
concept has no means for calculating such a probability distribution. This can, it
turns out, be done successfully with quantum electrodynamics.

The Compton effect also serves as an illustration of the correspondence principle.
For incident light of low enough frequency or long enough wavelength, the scattered
light has the same frequency and wavelength as the incident light. According to (2),
here “long enough” means wavelengths long compared to the Compton wavelength,
A > (h/mc). When this inequality is satisfied, the angular distribution calculated
from quantum electrodynamics reduces to the classical Thomson cross section.

A large body of evidence attesting to the wave nature of light had been accu-
mulated in the century preceding the discovery of the photoelectric and Compton
effects. How can the phenomena of interference and diffraction be reconciled with
these corpuscular manifestations of light?

To examine this question, consider the diffraction of a plane wave incident nor-
mally on a transmission grating of parallel slits, each of width d, separated by D,
with D >> d. According to classical optics, the angular separation A« between the
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maxima in the interference pattern, and the angular width da of each maximum,

are
Aar(\D), da=(d/D)Aa< Aa, (4)

where A is the wavelength. As detector of the transmitted light a photographic
emulsion will do. If the light intensity is very low, and the plate is exposed for a
sufficiently short time, a few dark spots will be seen, each due to a photochemical
reaction triggered by a single photon. As the length of exposure is increased, the
number of spots will increase and they will acquire a density distribution that
approaches that of the classically predicted interference pattern. In short, the wave
picture gives the correct probability for where a photon is detected.

If we accept the proposition that photons have corpuscular properties, this would
presumably imply that the “size” of a photon is microscopic and small compared to
a single slit. Then it is only natural to ask what would be observed if the plane wave
that covers the whole grating were replaced by sequential exposures that illuminate
just one slit at a time. According to classical optics, however, this would produce a
succession of diffraction patterns from individual slit, which have an angular width
A/d, i.e., cover many of the maxima in the diffraction pattern when the whole
grating is illuminated.

This consideration, and others of a similar vein, lead to an important conclusion:

In any setup that allows light to traverse different paths, these paths can
either be combined coherently to form an interference pattern in which
case the experiment cannot reveal which path a photon follows, or the
apparatus can be modified to determine which path is followed but this
destroys the interference pattern.

This is yet another illustration of complementarity: an arrangement designed to
manifest one of the properties of a phenomenon expected from the classical view-
point contains the possibility of observing at least some of the other classical prop-
erties. In this instance, the complementary properties are the wave property of
interference and the particle property of path.

The elegant experiment sketched in Fig. 1.1 further elucidates the complemen-
tarity of the concepts of path and interference. Here two trapped and effectively
stationary Hg' ions are illuminated by a laser beam. The photons that comprise
this beam are scattered by the ions and then detected. Because the probability of
scattering is small, the experiment is in effect a succession of individual photon
collisions by one or the other of the two ions. If, for a moment, we assume the ions
to be structureless, and that there is no such thing as polarization, the scattered
light would have the same angular distribution as in the classical Young two hole
interference experiment. The ions are, however, spin } objects. Furthermore, the
laser produces linearly polarized light, and the experiment can select scattered pho-
tons of various linear polarizations. As a consequence, by judicious choices of the
polarizations of the incident and scattered photons, the events can be separated
into two categories:

1. those in which there is no possibility that either ion underwent a spin flip ;
2. those in which one of the ions must have undergone a spin flip.

In case 1, it is impossible to determine which of the two ions was responsible for
scattering, so the path taken by the photon is unknown in principle. In case 2, on the
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Fic. 1.1. Sketch of an interference experiment. L is a linearly polarized laser beam, T
a trap that holds two Hg' ions effectively at rest, P a polarizer, and D a detections
screen. (a) Events in which spin flip is excluded and the two. possible photon paths are
indistinguishable. (b) Events in which one of the ions must have had a spin flip which, in
principle, determines the photon path. From U. Eichmann, J.C. Berquist, J.J. Bollinger,
J.M. Gilligan, W.M. Itano, D.J. Wineland and M.G. Raizen, Phys. Rev. Lett. 70, 2359
(1993). See also W.M. Itano et al., Phys. Rev. A 57, 4176 (1998).

other hand, an examination of the spins of the ions after the photon has scattered
would select which one caused the scattering and thus determine the photon’s path.
Hence the events in category 1 should show the Young interference pattern, while
those in category 2 should not. The data confirming this is shown in Fig. 1.1.
Note well that in this experiment there is no instrument that actually measures
the spin of the ions after scattering. This fact establishes two important points:

e The question of whether there is interference is settled solely by whether it is
impossible or possible to determine which path is taken by a photon. Whether
or not the determination is actually made does not matter.

e The “destruction” of the interference pattern arising from collisions where one
ion has undergone a spin flip cannot be ascribed to some “irreducible distur-
bance caused by measurements” carried out on these photons. The collisions
which do not cause a spin flip, and do produce the interference pattern, dis-
turb the photons as much or as little as those in which there is a spin flip. To
repeat the preceding point, all that counts is whether or not evidence exists
that can reveal the photon’s path.

For clarity’s sake, the absence or presence of interference was just stated as a
crystal clear distinction. The full story is that the visibility of the interference
pattern diminishes as the confidence grows with which the photon path becomes
knowable. For this purpose, consider diffraction by two holes in an opaque screen,
with one of the holes being partially absorbing.! The amplitude and intensity are
then

@ = e L pettl2 o2 = a2 4+ b + 2abcos[(d/L)kx] , (5)

1D.M. Greenberger and A. YaSin, Phys. Lett. A 128, 391 (1988).
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where L1 2 are the distances from the two holes to the observation point, d is the
separation of the holes, and L the separation between the screen to the parallel
detection plane (assuming d/L < 1). If there is no absorber, a equals b. The
visibility of the diffraction pattern can be defined as .

I(p|12nax — |90|r2mn 2ab
= = - (6)

el + ek, a2+ b2

‘If two detectors are placed just behind the holes, they will register with rates
proportional to a? and b?. The probabilities that any one photon takes one or the
other path are then a?/N and ¥*/N, with N = a2 + b2, and their difference is

2 _ 32
a®—b
A=——— .

a? +b? (7)
Thus there is a smooth transition as |a/b| departs from a = b, when the two paths
are equally likely (A = 0) and the visibility has its maximum value of V = 1, to
zero visibility as |b/a] — 0 when it is certain that every photon takes one of the
two paths, i.e., |A| = 1. Moreover,

Vi AT=1, (8)

so there is a relationship between the degrees to which the complementary wave-like
and particle-like features can be in evidence simultaneously. As V is linear in b, a
substantial diffraction pattern survives even when b? <a? and it is reasonably safe
to bet on the path of the next photon.

A similar conclusion applies to the famous debate in which Einstein proposed
to determine which of two slits in a plate each particle traverses in contributing
to a diffraction pattern by measuring the recoil of the plate, which Bohr showed
is incorrect because the uncertainty principle must also be applied to the plate
(see the discussion following Eq.17). A more elaborate analysis shows that when
measurement of the plate’s recoil provides incomplete knowledge of which slit is
traversed there is also a visible diffraction pattern.!

(b) The Uncertainty Principle

The uncertainty principle emerges when the Kinstein relations for the photon’s
momentum and energy are combined with the assumptions that the energy density
of classical electrodynamics gives the probability of detecting individual photons
in a given space-time volume. The classical electric field E(r,t) in empty space
satisfies :

vtla2 E=0, V-E=0 (9)
c? H2 S i* ’

with boundary conditions appropriate to the apparatus in question; so does the

magnetic fleld. The most general solution of (9) is

E(r,t) = / dk e F 1) () | (10)

'W.K. Wooters and W.IL. Zurek, Phys. Rev. D 19, 473 (1979); WZ.
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where w = ck and k « a = 0. If the photon is detected in some region with sides Az;
(i =1,2,3), then the electromagnetic energy and momentum densities are nonzero
in that region, and fall off quickly outside it. This requires E(r,t) to have the same
character. The theory of Fourier integrals then tells us that the size of the region
in k-space in which the Fourier amplitude a(k) is substantial is related to the size
of the spatial region by

~

Furthermore, the time At that the packet takes to pass any point is related to the
dispersion in frequency by 7
AwAt 2 1. (12)

The Einstein relations then recast these inequalities for classical wave packet prop-
agation into inequalities involving dispersions in photon momentum and energy,’

These are the Heisenberg uncertainty relations, first formulated by him for non-
relativistic particles, not photons. However, once the ability to determine any ob-
ject’s momentum and energy is restricted by the uncertainty relations, those of all
other objects with which it can, in principle, interact must also satisfy such re-
striction, for if they did not, those other objects could be used to “defeat” the
uncertainty principle.

It must be emphasized that momentum conservation must be used to reach this
last-conclusion, and plays a central role in what follows. That energy and momentum
are conserved by any isolated systems on an event-by-event basis, and not just as
an average over a large number of events, is, as we shall see, a consequence of the
fundamental principles of quantum mechanics. It is supported by an enormous body
of evidence, beginning with the experiments on Compton scattering done before the
invention of quantum mechanics, and most strikingly by experiments that observe
the recoil of electrons, nuclei, nucleons and other particles when they emit, absorb
or scatter neutrinos. _

If the uncertainty relations also hold for massive particles, that would suggest that
they too display wave-particle duality. This supposition is confirmed by diffraction
experiments first done with electrons, then with neutrons, and more recently with
atoms. An especially striking illustration of the universality of wave-particle duality
is given in Fig. 1.2, which shows the diffraction pattern of electrons scattered from
a standing light wave. These all demonstrate that a de Broglie wavelength

>\deB = h/p (14)

is to be ascribed to a particle of momentum p. Here, again, our tale is anachronistic,
because de Broglie’s conjecture was the opening breakthrough in the invention of
quantum mechanics.

The uncertainty relations are still another manifestation of complementarity, for
they stipulate that in a description of a system using one classical attribute, say,

1The momentum-coordinate uncertainty relation is an unambiguous inequality that follows
from the formalism of quantum mechanics, whereas the energy-time relation is more qualitative
- and subtle, a distinction that this argument fails to reveal. This issue will be discussed in §2.4(d).
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Fi1g. 1.2. Diffraction pattern produced by scattering electrons from the standing light
wave created by two opposed lasers. From D.L. Freimund, K. Aflatooni and H. Batelaan,
reprinted by permission from Nature 413, 142 (2001) ©Macmillan Magazines, Ltd. The
solid curve is based on the original theory by P.L. Kapitza and P.A.M. Dirac (Proc. Camb.
Phil. Soc. 29, 297 (1933)).

position, one surrenders the possibility of specifying the complementary classical
attribute, momentum.

It so happens that Heisenberg derived the uncertainty relations by also using the
Compton effect, but in the complementary sense — by analyzing to what extent
the position and momentum of an electron can be determined. For this purpose he
devised a famous thought experiment, the y-ray microscope. His argument will not
be repeated here. But one implication of the argument, recognized afterward by
Pauli, is important and often overlooked.

The uncertainty relations do not say whether it is possible to determine one
member of the pair x; and p; to arbitrary accuracy by surrendering all knowledge
of the other. To increase the resolving power of the microscope, the wavelength A
of the scattered light that is to form an image of the electron must be shortened.
But according to (2), the shortest wavelength attainable is of order the Compton
wavelength i/mc, unless the scattering angle 6 approaches zero, in which circum-
stance the microscope would be swamped by the incident light. Furthermore, the
wavelength varies across the microscope’s aperture by an amount of order i/me,
and this again limits the resolution to that same degree. The conclusion, therefore,
is that a massive particle’s position can only be determined to an accuracy of order
its Compton wavelength Ag, no matter how poorly its momentum is known. From
today’s perspective this is not surprising, because for incident photon frequencies
above 2mc? /1, or wavelengths short compared to Ag, pair creation becomes possi-
ble, and the notion that a measurement is being performed on a one-particle system
breaks down. This remark is our first indication that the concepts of non-relativistic
quantum mechanics must undergo far-reaching modifications when relativistic ef-
fects become important.

This conclusion does not mean that a massive particle’s position can never be
specified in quantum mechanics. The Compton wavelength is very short compared

e —
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to all lengths that characterize non-relativistic quantum states because Ag vanishes
in the nonrelativistic limit ¢ — oco. Put in a dimensionless manner, the ratio of the
Compton to de Broglie wavelengths is

Ac P v
’ (15)

>\deB mc

and therefore the inability to specify a massive particle’s position to arbitrary ac-
curacy is acceptable in nonrelativistic quantum mechanics.

By the same token, however, position is an ill-defined concept for the massless
photon. A photon’s position cannot be specified to better than the mean wavelength
of the wave packet that describes its propagation. This distinction is reflected in the
formalism. In nonrelativistic quantum mechanics, it is possible to define a probabil-
ity distribution in coordinate space, and in momentum space.! In contrast, quantum
electrodynamics allows an unambiguous definition of the momentum distribution
for photons, but not of a photon probability distribution in coordinate space.

Several questions remain unsettled about the degree to which coordinates or
momenta of massive particles can be determined.

First, can a definite time be assigned to a position determination? The uncer-
tainty in time is the interval §t taken by the scattered photon of wavelength X’ to
pass a point, which is given by

St~ X' je > B/mc? . (16)

This is the time required for light to traverse a Compton wavelength, and is negli-
gible in nonrelativistic physics.

Second, is a position determination reproducible? After a time 7 the particle
struck by the «-ray will have moved a distance 7(p + Ap)/m, and this stochastic
drift can be reduced to any desired degree by repeating the measurement quickly
enough. So, in the nonrelativistic regime, position determinations are, in effect,
arbitrarily accurate and reproducible.

Third, can momenta be determined to arbitrary accuracy? To determine the mo-
mentum, a particle’s position is measured at two points r; and 75 with inaccuracies
Ary and Arq sufficiently large to produce negligible uncertainty of the momentum,
but small compared to the separation L = |ry — r3|. By increasing L the accuracy
can be refined to any desired degree, in contrast with the case of position determina-
tions. The setup produces states that continue to have a well-defined momentum,
because an almost free particle has a nearly constant momentum. On the other
hand, a free particle state that has been determined to have a well-defined position
has a large uncertainty in momentum, and as a consequence will lose its localization
in a time that shrinks as the accuracy of the position determination increases.

Fourth, how quickly can a momentum determination be made? The preceding
determination only produces a state of well-defined momentum after the long time
interval Lm/p. But it can be used to prepare a target of low momentum particles for
subsequent Compton scattering, and then a selection of the appropriate scattered
photon will prepare a particle with the desired momentum. Because there is no
need to form an image with the scattered photons in this case, the wavelength can
be chosen so as to make the preparation time 6t & A/c arbitrarily short.

1Because of the uncertainty principle, it is not possible, however, to define a joint probability
distribution in coordinates and momenta (i.e., in phase space). In this connection, see §2.2(f).
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These considerations justify the assumption of nonrelativistic quantum mechan-
ics that coordinate and momentum space probability distributions exist at a definite
instant. It should be understood, however, that knowledge of the momentum dis-
tribution does not determine the coordinate distribution, or vice versa, for that
would fly in the face of the uncertainty principle. To determine these distributions
one must know the Schrédinger wave function, in either coordinate or momentum
space; the wave [unction, however, cannot be computed from either or even both
probability distributions except in very special cases.

Finally, we must still confirm that the uncertainty principle is a universal con-
straint, as it was assumed to be in extending it to massive particles from its first
appearance for photons in our account. '

-Consider, first, a simple position measurement, in which a particle moving along
the z-direction ‘is passed through a perpendicular slit of width d, which determines
the z-coordinate to within an uncertainty Az = d: Diffraction will cause the beam
to spread by an angle -

sinf ~ = ~ h (17)

d  p.d’
which produces an uncertainty Ap, of momentum in the z-direction of order
p.sinf. This conforms with the uncertainty principle, i.e., dAp, ~ k. But the
assumption that momentum conservation is strictly valid would imply that the un-
certainty principle could be “defeated” if the screen’s momentum were precisely
known. The latter precision is limited, however, by the requirement that the slit’s
position must be known with a precision much better than d if the previous claim
about the determination of the particle’s position is to stand, which implies that the
screen has a momentum uncertainty much greater than A/d. This greatly exceeds
the uncertainty Ap, of the particle’s momentum along z, which is of order h/d,
and therefore precludes a circumvention of the uncertainty principle. In a nutshell,
consistency demands that the apparatus also obeys the uncertainty principle. (The
screen’s mass is macroscopic, 8o its momentum uncertainty will produce negligible
motion, and not undermine the position measurement.)

And now we can close the circle, so to say, by asking whether there are any
restrictions on the accuracy of electromagnetic quantities beyond those on photon
position and momentum, from which we began. There must be such restrictions
because, if classical electrodynamics were left untouched, the position and momen-
tum of a charged particle could be determined from the electric and magnetic field
emanating from that particle. If those fields could be determined simultaneously
with arbitrary precision, that knowledge could, once again, be used to “defeat” the
" uncertainty principle. Hence the uncertainty relations for the sources of the fields
must also impose uncertainty relations on the fields.

The argument that leads to these relations, due to Bohr and Rosenfeld, is subtle
and will be sketched in §10.2 after the quantum theory of the electromagnetic field
has been developed. In brief, they noted that field strengths cannot be measured
at mathematically sharp space-time points, but must be done with test charges of
finite spatial extent V whose response to the fields is observed over a finite time
interval 7', because the response of point test bodies would be infinitely large as they
would be sensitive to arbitrarily high frequency modes of the field. Hence, realistic
measurements determine an average over the space-time volume Q = VT of, say,
the electric field, (), where Q can be as small as one pleases, but must be finite.
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The uncertainty in momentum and position of a charged test body will cause it to
radiate uncertain electromagnetic fields which will confuse field measurements by
another test body in another space-time region, and thereby produce an uncertainty
in the fields in the latter region. .

One example of such a field uncertainty relation is that for uncertainties in space-
time averaged electric field components:

h 0?2 S(t—r/c) :
— Q ds} .
871'Q192 Ll d ! /ﬂz 28131(9:(/2 r (18)

The integral runs only over the portions of the two regions, {}; and {23, that can be
connected by light signals, because the delta-function vanishes unless the distance
r and time difference ¢ between the two space-time integration points constitute a
light-like interval. :

This elegant result has two features that should be noted. First, the uncertainty
product does not depend on the charge or mass of the test bodies, but depends only
on the natural constants and on the regions in which the fields are measured, and of
course it vanishes as A — 0. Thus this is an important illustration of the universality
of the uncertainty principle. Second, if the two regions cannot be connected by
light signals, then there is no restriction on the accuracy to which the two fields
in question can be determined, because no measurement in one region can then
produce an effect in the other region. This is an example of the relativistic causality
principle, which plays a central role in quantum field theory.

A last, important, word. Precisely the same result, Eq. 18, will be derived in §10.2
from the “canonical” quantum theory of the electromagnetic field without resort
to intuitive arguments involving test bodies, or order-of-magnitude estimates. Such
concordance between heuristic and formal arguments should always be demanded
of a basic theory. :

AFE,(Q)AE, () >

1.2 Superposition

Quantum mechanics is a strictly linear theory, and all experimental data are con-
sistent with this assumption. In the history of physics, it is the first and only basic
theory with this property. Newton’s equations are linear only in special circum-
stances, such as harmonic motion. Maxwell’s equations are linear in empty space,
but lose that property when charges are present. The theory of gravitation, general
relativity, is inherently nonlinear. All this does not mean that quantum mechanics
does not lead to nonlinear effects. Obviously it must, or it could not even reduce
to classical mechanics and electrodynamics in the appropriate limit. So what does
the opening sentence then mean?

(a) The Superposition Principle

The Schrédinger equation, for any system no matter how complicated, has the form

(H - ih%) U(t)=0, (19)

where H is the Hamiltonian and ¥ (¢) the wave function. The specifics of the system,
including such essentials as the number and types of degrees of freedom it possesses,
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and whether it is to be treated in a Lorentz-invariant manner by quantum feld
theory, are buried in the form of H, which will then be reflected in ¥. But all
such “details” have no bearing on the following fact: if ¥(¢) and W(t) are any
two solutions of (19), and ¢ are arbitrary complex numbers, then the linear
superposition

\I/(t) = Cqul(t) + Cg‘I’Q(t) (20)

is also a solution of the Schrédinger equation (19).

This fundamental statement is called the superposition principle. In important
respects it is the most profound principle of quantum mechanics, and it is often the
root cause of those features of quantum mechanics that are most enigmatic from
the perspective of our everyday experience. In this section we examine some of the
surprising implications of the superposition principle.

The discussion of the preceding section already exploited superposition repeat-
edly — for example, in connection with the diffraction grating, and in other situa-
tions where electromagnetic or de Broglie waves were superposed coherently. These
are all examples that have a more or less direct counterpart to phenomena in clas-
sical optics. The full import of the superposition principle can only be appreciated,
however, by considering phenomena that have no classical counterpart.

The simplest examples of these deeply non-classical features are provided by
two-particle states. This was first revealed by Heisenberg’s treatment of the helium
spectrum in 1926, in which, among other things, he showed that what would ap-
pear to be a magnetic interaction between electrons is really due to two-particle
interference; this topic will be taken up in §6.2. A fuller appreciation of the aston-
ishing properties of many-particle states, and their implications for the foundations
of quantum mechanics, arose from a 1935 paper by Einstein, Podolsky and Rosen,
cited henceforth as EPR. This paper and related topics are treated at length in
chapter 12. '

(b) Two-Particle States

All the examples considered in §1.1 involved superposition of waves in three-dimen-
sional coordinate space, as in classical optics or in acoustics. The Schrédinger equa-
tion deals with waves in a three-dimensional space only in the special instance of
one-particle systems, however, in which case |¥(r,t)|2d3r is the probability for find-
ing one particle in an infinitesimal interval about the point 7 in everyday space.
But if quantum mechanics is to supercede classical mechanics, it must, for an N-
body system, specify probability distributions in 3N coordinates; that is, it must
deal with waves not in three-dimensional coordinate space but in 3N-dimensional
configuration space. This is evident in the simplest situation, a system of N free
particles of mass m, in which case the Schrédinger equation is
h? 9]

VAU(ry...ry;t) = ihE\Il(rl...TN;t) , (21)

2m

where V3 is the Laplacian in 3N dimensions,

N
8 8
V%’Z<ﬁ+a—y2+ﬁ)' (22)
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The multi-dimensional wavelike character of quantum states, which has no counter-
part in classical wave phenomena, gives the concept of coherence a more subtle and
richer meaning in quantum mechanics than it has in classical optics, and leads to
phenomena that are astonishing and counterintuitive from a classical perspective.
Tt suffices for now to consider two-body systems without mutual interactions, the
generalization to N > 2 being rather straightforward. The Hamiltonian is then

H:HI‘I'HQ, (23)

where H; is the Hamiltonian of body 4. Each body (e.g., a many electron atom)
may have internal degrees of freedom which: interact with each other. All that
matters is that there be'no interaction between the two bodies. Two distinct types
of Schrédinger equations:then come into play.. The complete two-body equation

v L0 - '
(Hy+ H2)W(q1q2;t) = ma‘l’((hqmt), (24)

and the one-body equations

Hiho (a151) = i, (550) (25)

where ¢; stands for all the coordinates of body 4, including those needed to de-
scribe its internal motions, and a; is.a:label that distinguishes between the different
solutions of this last equation.

Because H; does not depend on the coordinates of particle 2, and vice versa, H
acting on the product of one-body wave functions results in

(Hy+ Ha)Ya, (q151)%a, (925 1) = Ya, (@25 1) (Hﬂﬁal (q1; t)) +1a, (q1;1) (Hz?,baQ (25 t)),

and therefore

(H - ng;) P (@15 (02:1) = 0.  (20)

Hence a product of one-body wave functions, Ya, (q1;t)¥a,(ga; 1), is a solution of the
two-body Schrédinger equation provided there is no interaction between them.! As
the two-body equation (24) is linear, the superposition of such products,

U(q1g2;t) = D Cayanthar (015 8)%as (42;8) , (27)

a102

where the ¢, 4, are arbitrary complex constants, is again a solution of the Schrédin-
ger equation for a non-interacting two-body system. It is essential to note that in
the preceding sentence “constants” means just that — independent of time.

If there is an interaction, the Hamiltonian will have an additional term involv-
ing the coordinates of both particles, Hi2(q1¢2), and a product of one-body wave

Mn the Ianguage of partial differential equations, this is just the method of separation of vari-
ables. Put in the more abstract form used here, it is not only more transparent, but it is illustrative
of quantum mechanical thinking. That is, if A1 and A2 are any two operators that commute with
each other (as do Hy and Hz because they act on different variables), then eigenstates of A1 + A2
are products of separate eigenstates of Ay and As. Those who find this illuminating comment
inscrutable should ignore it for now; it will be explained in detail in §2.1.
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functions is then no longer a solution, nor are linear combinations with constant
coeflicients. For now we are only concerned with interactions of finite range, how-
ever, in which case the simple solutions (27) remain valid in many circumstances.
That is, if the coordinates ¢; are separated into a center-of-mass position r;, and
internal coordinates, then in such systems Hio tends rapidly to zero as the separa-
tion R = |r; — ra| becomes large compared to an appropriate microscopic length
scale, e.g., the Bohr radius ~ 10728 cm if the bodies are neutral atoms. At such
separations, therefore, H = H; + Hj, and Eq. 27 is a solution wherever R is large
compared to that scale. Furthermore, if the bodies are not involved in any processes
sufficiently energetic to excite their internal motions, then in such an energy regime
they are in effect “elementary” particles, and their wave functions can be treated as
if they depend only on the center-of-mass coordinates r;. We will, therefore, often
use the terms particle, system and body indiscriminately.

(¢) Two-Particle Interferometry

Two-particle states can display interference effects if both particles are detected
in coincidence while not showing conventional one-particle interference patterns.
This is the phenomenon we shall now examine with the help of a simple and yet
quite realistic Gedanken (or thought) experiment. Careful study of this experiment
proves to be a sound investment for it reveals features that are central to both the
formulation and interpretation of quantum mechanics.

Consider two particles a and b described by a wave function W(r,7y;¢). From ¥
we can form the joint probability distribution

Pap(rars;t) = [U(rars; t)]* . (28)

This is the probability of detecting a at r, and b at ry, in coincidence. We can also
form the one-particle probability distributions, e.g., that for detecting @ when b is
not observed at all:

Py(rq;t) = /d3rb Pop(rarp;t) (29)
Our purpose is to establish the following assertion: »

In any experimental setup that allows the two particles to traverse dif-
ferent paths, and in which it is possible, in principle, to determine the
path taken by one particle by some observation on the other, neither
particle will, by itself, display an interference pattern (i.e., in P, or in
P,), but there may be an interference pattern in the a-b coincidence rate
Pap, i.€, in the correlation of positions for a and b. On the other hand, if
the setup is such that no observation on one particle can, in principle,
determine the path of the other, then either particle by itself, or both,
‘may display an interference pattern (i.e., in P, and/or B;).

The words “in principle” are critical here. They allude, as we shall see, to the fact
that whether an observation is or is not made does not matter — what matters is
whether such an observation is possible at all!

INote also the similarity to the statement on p. 4 regarding one-particle interference effects.
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Fia. 1.3. Two-particle interferometer. The free particle A undergoes the two-body decay
A — a+b, with a passing through one of the two pin holes on the right and then detected
on the right-hand screen, while b does the same on the left.

The state that will be analyzed to establish these contentions describes the par-
ticles produced in a decay process 4 — a + b, and the experimental setup is the
two-particle interferometer shown in Fig. 1.3. This consists of two parallel opaque
screens S, and Sy, each pierced by two pinholes symmetrically placed about the axis
normal to the screens, and two parallel detection screens D, and D) sensitive only
to @ and b, respectively. The detectors record the coordinates of particles striking
them in coincidence, i.e., determine the joint probability distribution P, of Eq. 28.
This thought experiment is not far-fetched because there are several real-life exam-
ples of A. One is positronium, the bound electron-positron system, whose ground
state annihilates into two photons; another is the neutral kaon K°, a particle that
decays into two 7 mesons.

In the process A — a + b momentum is conserved, and so the decay products
(daughters) will go in exactly opposite directions if A was at rest. Then if a passes
through one of the two holes on the right, b must pass through the diametrically
opposed hole on the left, and therefore a determination of the path of one determines
that of the other. On the other hand, if A were at rest its position would be totally
uncertain; it could be anywhere with respect to the interferometer. Conversely, if 4
is at the exact center of the setup, its momentum would be totally uncertain, there
would be no correlation between the directions of a and b, and observation on one
daughter would not determine the path of the other.

Hence A’s vertical localization s must exceed some lower limit to assure that
the daughters can only pass through one pair of diametrically opposed pinholes.
This limit is set by the uncertainty principle and momentum conservation. The
former states that A’s momentum uncertainty satisfies Aps 2 h/s; the latter that
the spread in angles © between the daughters’ momenta (see Fig. 1.4(b)) is given
by © ~ (Apa/hk) > (1/sk), where we assume that the energy release in the
decay is large enough so that both daughters have momenta of approximately the
same magnitude fik. But if the source A is to only illuminate one or the other of
the opposed holes, ©® must be much smaller than ¢, the angle subtended by the
two pinholes on one screen as seen from A. Consequently, the condition on A’s
localization is

ES 30)
5> kb (

We now turn to the daughters’ wave function Wou(7,75) outside the screens S,
and Sp. In this region they do not interact with each other, and therefore ¥, must
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(a) (b)
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F1G. 1.4. (a) Angles pertaining to the two-particle interferometer. (b) Kinematics in the
process A — a + b.

be a linear combination of products of one-particle wave functions of the form (27),
with each particle’s wave function being a spherical wave 1(r) = ¢**" /r emanating
from one of the pinholes. For example, one such term is (L} ) (L, ), for the case
where a emerges from the upper hole on the right and b from the lower one on the
left, with the distances Lib being defined in Fig. 1.3.

In general, W, is a linear combination of four such products with four arbi-
trary coefficients determined by matching W, (ro7s) to the interior wave function
Wi, (rerp) at the pinholes. Nothing essential is lost, and considerable simplification
is gained, by considering the case where A is in a spherically symmetric wave packet.
In this case the initial state A is invariant under reflection through the y = 0 plane
perpendicular to the interferometer, which is equivalent to a rotation through =
about an axis perpendicular to the interferometer’s symmetry axis. Assuming that
the interaction responsible for the process A — a + b is invariant under rotations,
the daughters’ state Uy, (7,7p) must have the same reflection symmetry, and as a
consequence the values of this wave function at the four pinholes are given by just
two complex numbers:

Vi(riry) = Un(ror)) =a,  Un(rir))=Uu(rer,) =6,  (31)

where 'f'ib are the positions of the pinholes.

These coefficients have a simple meaning: |c|? is the probability for a and b to
pass through diametrically opposed holes, i.e., for A to have undergone back-to-
back decay, whereas |(|? is the probability for both to pass through either the two
upper or two lower holes. Clearly, |3/a|? < 1 if the initial state of A satisfies the
source size condition (Eq. 30). '

The outside wave function evaluated at the detectors, when (31) holds, is

i ot T — r— T+ et s+ rr— ep—
\Ilout = g (ezk:La eszb + esza eszb) 4 ﬂ (esza ezk:Lb 4 e'LkLa eszb ) ) (32)

Here the distance Lg from the screens to the detectors is assumed to be much larger
than that between the holes on either screen, so that the denominators in e®*" /r can
all be replaced by Lg, which has been absorbed into an irrelevant overall factor,
and = means equal apart from such a factor. In this geometry (the Fraunhoffer

T e
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diffraction limit), the various lengths can be approximated by
LEFeXTOy,, Lf~XFoy, (33)

where X is the same length in all four cases, while 8 and the y coordinates are
defined in Fig. 1.4. With these small-angle approximations, (32) simplifies to

Uout (Yap) = ccos(k0(ya — b)) —I—ﬂ cos[kf(y, + up)] - (34)

The novel two-particle interference phenomena require, as we will now see, that
the decay be dominantly back-to-back, that is, |3/a|?> ~ 0. The joint probability
distribution for detecting a at y, and b at y; in coincidence is then

Pab(yayb) = |CO_S[k0(ya - yb)]|2 . (35)

This asserts that the coincidence rate will display an interference pattern in the
variable |y, —yp|, the “distance,” so to say, between locations on the widely separated
detection screens.

In striking contrast, the distributions of locations of particles on the individual
detection screens show no interference pattern. This is so because, according to
(29), the probability for detecting a at y, regardless of where b struck the other
detector, is

Y
Pulwa) = 5 [ s Pluas ) = const. + 0(1/Y) (36)

This distribution is independent of a’s position, a result that requires the size 2Y
of the detection region for b to be large enough to yield no information about b’s
position, i.e., Y > (1/k#), the distance between interference fringes.

Quantum optics experiments that confirm the remarkable effect just described
have been done, though for technical reasons, not by using photon pairs produced in
a momentum-conserving decay such as just discussed. The results of an outstanding
example are shown in Fig. 1.5. '
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Fic. 1.5. Results of a two photon interference experiment which is effectively equivalent
to the setup in Fig. 1.3 (L. Mandel, Rev. Mod. Phys. 71, S274 (1999)). The horizontal
~ scales are the counterpart of y, —y». On the left are the singles rates at the two detectors
D, and Dy, on the right the coincidence rate, with the solid line being the theoretical
expectation.
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The existence of interference effect in the coincidence rate when there is none in
the individual rates is a quantum mechanical phenomenon. Hence it is important
to understand why this initially surprising result is, in retrospect, not surprising!

The absence of an interference pattern in the individual rates is due to the pos-
sibility of determining the path that both particles took by an observation on just
one. To accomplish this one can, for example, replace b’s position detector D; by
a device that determines b’s momentum along y as it arrives at the left-hand de-
tection plane. This would determine which hole in S it traversed, and because of
the back-to-back decay which hole in the other screen was traversed by a. Hence
there can be no interference pattern in the locations of a’s position, for that would
require a coherent addition of amplitudes from the two holes on the right side,
which is excluded by the knowledge of which hole a traversed. Of course, the same
conclusion holds for b.

The preceding paragraph might lead one to suspect either an error or a swindle,
because it talks of an apparatus that measures position and momentum of one
and the same object, which is impossible if the uncertainty principle is valid. The
suspicion is unfounded, however. The experimental setup measures momentum or
position, with the choice of which measurement is actually made being on an event-
by-event basis, and if one wishes decided only after the decay A — a+b has occurred
while the daughters are still en route. It is this feature of two-particle states that
lies at the heart of EPR experiments, which will be discussed shortly.

To shed further light on what has just been discussed, consider what happens if
the back-to-back decay does not dominate, and 8 is not negligible. In particular,
consider the case where the source size s is small enough so that the two holes on
either side are illuminated equally, i.e., @ = 8. Then (34) becomes

Wout(Yayp) = cos(kby,) - cos(kbyp) , (37)

which describes independent diffraction patterns on each of the two detection
screens. There are no correlations in either coordinates or momenta, the reason
being that determining which hole was traversed by one particle does not deter-
mine which path the other took.

The interference pattern in the coincidence rate when back-to-back decay dom-
inates is due to a correlation in the momenta of @ and b. At the detecting planes
the particles have y-components of momentum, p, and py, that are either k6 or
—hk0. At each detector there is a random distribution of events with +Ak#, but a
strict correlation between those on the right and left: if one particle has momen-
tum Ak6, the other is guaranteed to have —hkf. The formalism needed to relate
this correlation in momenta to a correlation in positions will only be developed in
the next chapter. Briefly put, the coordinate space wave function Wou(y.ys ) is the
Fourier transform of a wave function in momentum space ®(p,ps), and the latter
just expresses the earlier sentence in precise terms:  ° :

D = §(pg — hk0)d(py + BkO) + 5(pa + hk0)5(py — HkO) | (38)

where §(p) is the Dirac delta function, which is the statement that the momentum
is precisely p. When this expression is Fourier transformed, it immediately leads to
cos[kB(y, — yp)], in agreement with (32) when 8 = 0.
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(d) EPR Correlations

"The phenomena revealed by the two-particle interferometer have remarkable fea-
tures that Einstein called “spooky action-at-a-distance,” and which were first dis-
cussed by Einstein, Rosen and Podolsky (EPR).

There is, of course, nothing novel about using a particular measurement on one
particle to determine a property of another that is, at the time, arbitrarily far away.
If it is known that a missile with known linear and angular momenta will separate
into two pieces, it suffices to determine these momenta of one piece to determine
those of the other. Here, however, there are remarkable features that are totally
foreign to classical physics. The wave-like correlation in position between particles
that are arbitrarily far apart is such a feature — a feature that is complementary
(in Bohr’s sense) to the sharp correlations in their momenta, Eq.38. While this
momentum correlation seems very natural from a classical perspective, it must not
be forgotten that the observed momentum distribution |®(p.ps)|? is a coherent
superposition of the two classically understandable terms in (38).

It is even more remarkable that a free choice between determining the position
or momentum of b assigns the distant particle a, without disturbing it, to distinct
categories of events that form distinct diffraction patterns. Furthermore, this choice
can be made while the particles are on the way to the detectors. This feature is not
evident with arbitrarily small pinholes, because such an idealized aperture produces
no angular variation in intensity. With a finite aperture of width 2d, the one-particle
distribution is no longer uniform, as it is Eq. 36, but becomes

2 2

sin ke(p + ya) (39)

ke(p + ya)

sinke(p — yq)
ke(p - ya)

Pa(ya) =

where € = d/Lo,p =1+ 1¢Lo, and 2[ is the distance between the pinholes. This is
the incoherent sum of two conventional one-hole diffraction patterns with centers
separated by 2p. '

This EPR feature can be demonstrated by the following experiment. On the
right, the apparatus always measures the coordinate of a; and on the left, the
apparatus switches at random between measurements of position or momentum of
b. All measurements are done in coincidence. This does not require communication
" between the widely separated laboratories, because there can be a protocol to insert
only one specimen of A at regularly spaced intervals sufficiently long to insure that
both laboratories carry out observations on the same a + b specimen. After the run
is over, the list of choices that were made in observing b is transmitted to the distant
laboratory, where the data on the coordinate of a are separated into three sets: (1)
those where p, = hkf, (2) those where p, = —hk6, and (3) those where y, was
measured. No human intervention is necessary aftet the apparatus is set to work;
the collection, transmission and processing of the data can be fully automated.

The predictions of quantum mechanics are that

e set (1) will display the diffraction pattern of the upper hole alone (the first
term of Fq. 39);

e set (2), the diffraction pattern of the lower hole (the second term);

e set (3), the oscillating correlation function |cos[k0(ya — us)]|%
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While this particular experiment has not been done, enough experiments of the
EPR variety have been so that there is no reason to doubt that what has just been
claimed would be confirmed.

This setup provides no means for instantaneous signaling between the left-hand
and right-hand laboratories. The observations on a in themselves give no informa-
tion about what is learned about b in coincidence. No correlation can be elicited
until the list of observation by one arm of the experiment are combined with the
data from the other arm.

The interference patterns displayed, or not displayed, by the two-particle wave
function are, to underscore it yet again, determined by what the experimenter can
in principle do, and not by what may actually be done. This is best brought out by
the delayed choice property — by the freedom to decide whether the momentum
or coordinate is to be determined just before the particles are actually detected.
What counts is whether the option to make this choice exists, and not whether the
option is exercised. If the wave function is to pass the delayed choice test, it must
possess a sufficient richness of properties to cope with a measurement that will be
done in the future. It must, in this example, be able to display itself in a wave-like
or particle-like guise, or in various combinations of these guises, depending, so to
say, on what question will be asked of it.

The two cases discussed in detail, the one where there are independent one-
particle diffraction patterns and no interference effects in the coincidence rate, and
the other where there is an interference effect in the coincidence rate but no one-
particle diffraction patterns, are limiting cases of the general situation described by
Eq. 32 for arbitrary values of 8/a. The quality that changes along this continuum is
the degree of confidence with which it possible to determine the path of one particle
by an observation on the other.! If @ = 0, it is known for sure which path a took
from a momentum measurement on b, but as [ increases this becomes progressively
less certain, and the two possible paths become equally probable when = «. The
smooth transition from two-particle to one-particle interference goes hand-in-hand
with this decrease of knowledge attainable in principle.

1.3 The Discovery of Quantum Mechanics

Quantum mechanics is among the great intellectual achievements of the 20" cen-
tury, and how this came about is interesting in itself. The following only offers the
briefest of sketches.

The history separates naturally into two eras: 1900-1925, the development of the
“Old Quantum Theory”; and 1925 to circa 1935, in which quantum mechanics and
electrodynamics were discovered and their principal features elucidated.

In 1900 Max Planck discovered that he could only account for the spectrum of
thermal radiation, which was in violent contradiction with classical electrodynam-
ics, by assuming that the material sources of radiation have a discrete (“quantized”)
energy spectrum. That this entailed a grave contradiction with classical physics was

1This complementarity between one-particle and two-particle interference, which is related to
the confidence of knowledge about paths, can be phrased quantitatively as a relationship, similar
to (8), between the visibility of the corresponding diffraction patterns; see G. Jaeger, A. Shimony
and L. Vaidman, Phys. Rev. A 51, 54 (1995).
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clear to Planck and troubled him. In 1905, Albert Einstein produced a much deeper
departure from classical concepts by applying quantization to the thermodynamics
of the electromagnetic field itself, introduced what was later to be called the pho-
ton, and predicted correctly the basic feature of the photo-electric effect. Although
this and later Einstein papers on the quantum theory had a great influence, his idea
that light has corpuscular aspects was only widely accepted after the discovery of
the Compton effect in 1923. The next major step came in 1913 with Niels Bohr’s
quantum theory of the hydrogen spectrum based on Ernest Rutherford’s model of -
the atom. This led to a great advance in the understanding of atomic structure and
spectra, as can be seen in the massive 1924 edition of Arnold Sommerfeld’s Atombau
und Spektrallinien. The culminating theoretical advances of this first period were
Wolfgang Pauli’s exclusion principle and the discovery of electron spin? by Samuel
Goudsmit and George Uhlenbeck, both in 1925.

Experimental physics played an indispensable role throughout this first period,
of course. The 19*"-century studies of thermal (“black body”) radiation gave the
first clearcut demonstrations that classical physics suffers from fatal deficiencies.
In 1914 the Franck-Hertz experiment used inelastic electron scattering to establish
that atoms did indeed have quantized excitation energies; in 1921 the Stern-Gerlach
experiment demonstrated the quantization of angular momentum; and to repeat,
in 1923 Arthur Compton performed his fundamental experiment on the scattering
of v rays. These were, of course, only the highest peaks of an imposing mountain
range that held many riches that were to prove invaluable in what was to come.

The practitioners of the Old Theory understood full well that a logical structure
was lacking — that it was not really a theory, but a jumble of folklore and recipes
with many striking successes and deep insights undermined by perplexing failures.?

The discovery of quantum mechanics arose from two distinct and seemingly un-
related streams of ideas: wave mechanics and matrix mechanics. Wave mechanics
started first in 1923-24 with Louis de Broglie’s suggestion that massive particles
have wave-like properties — that wave-particle duality does not only apply to pho-
tons. This idea did not take on a powerful form until Erwin Schrédinger discovered
his wave equation in 1926. Before then matrix mechanics had been initiated by
Werner Heisenberg in the summer of 1925 and was already well established by
year’s end.

Heisenberg sought to focus on what is actually observable and to discard notions,
such as electronic orbits in atoms, which he argued are not. He therefore replaced
the classical coordinates and momenta of a charged particle by arrays of observable
radiative transition amplitudes. Then he showed that these arrays obey a noncom-
mutative algebra whose rules were constrained by empirically confirmed knowledge
about radiative transitions that had been developed with the Old Theory, such
as the Kramers-Heisenberg dispersion formula (see §10.7). In keeping with Bohr’s
correspondence principle, which states that the quantum theory must reduce to
classical theory in the limit of large quantum numbers, Heisenberg assumed that
his arrays obeyed equations of motion that had the same form as those of classical

2Electron spin was also proposed at the same time by R. de L. Kronig, but not published
because Pauli convinced him the idea was nonsensical. It is said that the Nobel Prize was never
awarded for electron spin because of this.

1In this connection, Hans Bethe recalled that he had a great advantage over older people in
learning quantum mechanics in 1926 because he did not know the Old Quantum Theory!
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mechanics. It should be said that this ground-breaking paper, which Heisenberg in
private referred to as “fabricating quantum mechanics,” is very difficult to follow,
in contrast to most of the others that will now be referred to.

That Heisenberg’s arrays are matrices was quickly recognized by Max Born, who
with Pascual Jordan then derived the canonical (¢,p) commutation rule. This was
followed, in November 1925, by the Born, Jordan and Heisenberg magnum opus
which gave a nearly complete formalism: conservation laws, angular momentum,
canonical transformations, some stationary state perturbation theory, and a first
stab at quantization of the electromagnetic field. Independently, and based only on
Heisenberg’s first paper, Paul Dirac in the same month presented a development
of almost comparable sweep that postulated a correspondence between classical
Poisson brackets and commutation rules. Finally, in January 1926 Pauli published
his tour de force matrix mechanics solution of the Kepler problem, including both
the Stark and Zeeman effects (see §5.2 and §5.4(c)).

Schrodinger called his papers “Quantization as an Eigenvalue Problem.” His ap-
proach was inspired by de Broglie’s suggestion and the analogy between geometri-
cal optics and classical point mechanics that William R. Hamilton had created in
the 1830s. Schrodinger’s first paper, submitted in January 1926, put forward the
time-independent wave equation. His point of departure was to replace Hamilton’s
characteristic function W by Alog 1 in the Hamilton-Jacobi equation (see §2.8(a)).
From this he formulated a variational principle which led to the wave equation,
and he then showed that its eigenvalues in the case of a Coulomb field reproduce
the Bohr spectrum. In the following half year Schrédinger published a series of
papers which also produced the complete theory. Particularly noteworthy was his
demonstration that his “wave mechanics” is mathematically equivalent to “matrix
mechanics.”

Among the many successful early applications of quantum mechanics three merit
special attention. First, in 1926, Heisenberg’s successfully analyzed the He spec-
trum, which had baffled the Old Theory. In solving this problem he discovered that
. the Pauli principle requires antisymmetrical wave functions! (something which he
could only do with Schrédinger’s theory!), and that the correlations resulting there-
from produce large electrostatic level splittings that look as if they are magnetic in
origin (see §6.2). Second, also in 1926, Born used Schrédinger’s equation to solve
the first scattering problem, a phenomenon that the Old Theory could not even
formulate, and in doing so introduced the interpretation of [¢)(r)|? as a probability
distribution. And third, in 1927, Dirac devised second quantization to quantize the
radiation field and showed how that accounted for photons and radiative transitions.

Although Heisenberg set out to restrict the new theory to observable quantities,
this proved to be elusive and the physical meaning of the mathematical formalism
has been controversial to this day. The “Copenhagen interpretation” of quantum
mechanics was developed in that city by Bohr and Heisenberg working both in col-
laboration and independently. The famous outcome was Bohr’s principle of comple-
mentarity and Heisenberg’s uncertainty principle, both published in 1927. Another
and related early landmark was J. von Neumann’s Mathematische Grundlagen der
Quantenmechanik, Springer (1932). Einstein’s critique of the Copenhagen interpre-

!That Bose and Fermi statistics require, respectively, symmetric and antisymmetric wave func-
tions was discovered at the same time by Dirac.
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tation culminated in the 1935 paper with Boris Podolsky and Nathan Rosen (see
§12.1).

In the period 1927-1934 relativistic quantum theory was developed, and this will
be sketched in chapter 13.

Enrico Fermi, Werner Heisenberg and Wolfgan Pauli
Photograph by F.D. Rasetti

James Franck and Max Born (with Born’s son Gustav)
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P.A.M. Dirac

Arthur H. Compton Photo by A. Bortzells Tryckeri

Erwin Schrédinger
Photo by Francis Simon Otto Stern
All pictures courtesy of the AIP Emilio Segré Visual Archives

1.4 Problems

1. Derive Eq. 39 for the two-particle interference pattern produced by finite apertures.

Endnotes

For an instructive discussion of various neutron interference experiments, see D.M. Green-
berger, Rev. Mod. Phys. 55, 875 (1983). Remarkable coherence phenomena also arise in
one-particle states describing particles possessing “internal” quantum numbers that have
no classical counterpart. The most famous and extensively explored examples arise from
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neutral K mesons, and in particular, the phenomenon of “regeneration.” In this case there
is, however, an clear analogy with coherence phenomena in classical optics — for example,
the propagation of polarized light through a magnetized medium. Neutral K meson phe-
nomena are discussed in all books on particle physics; the analogy with propagation in a
magnetized medium is in K. Gottlried and V.F. Weisskopf, Concepts of Particle Physics,
Vol. I, Oxford University Press (1984); p. 152.

§1.2 is drawn from D.M Greenberger, M.A. Horne and A Zeilinger, Physics Today, pp.
22-29, August 1993, and from K. Gottfried, Am. J. Phys. 68, 143 (2000). These articles
cite additional literature.

The key original papers by Heisenberg, Born, Jordan, Dirac and Pauli, translated
into English as necessary, on what began as matrix mechanics, together with invalu-
able comments, appear in B.L. van der Waerden (ed.), Sources of Quantum Mechanics,
North-Holland (1967), Dover (1968). English translations of Schrédinger’s papers are in
E. Schrédinger, Collected Papers on Wave Mechanics, Blackie and. Son (1928). Dirac’s
paper on the quantization of the electromagnetic field is reproduced in J. Schwinger (ed.),
Quantum Electrodynamics, Dover (1958). English translations of Bohr’s and Heisenberg’s
first papers on complementarity and uncertainty appear in J.A. Wheeler and W.H. Zurek
(eds.), Quantum Theory and Measurement, Princeton University Press (1983), and so does
the article by Bohr and Rosenfeld on the measurement of electromagnetic field strengths.
The English translation of von Neumann’s book was published by Princeton University
Press in 1955,

For technical historical monographs, see E.T. Whittaker, A History of the Theories of
Aether and Electricity, Vol. 2, Thomas Nelson and Sons (1953); M. Jammer, The Concep-
tual Development of Quantum Mechanics, McGraw-Hill (1966); and S.5. Schweber, QED
and the Men who Made it, Princeton University Press (1994). For summaries more detailed
than given here see A. Pais, Inward Bound, Oxford University Press (1986); S. Weinberg,
The Quantum Theory of Fields, Vol. 1, chapter 1, Cambridge University Press (1995); and
H.A. Bethe in More Things in Heaven and Earth, B. Bederson (ed.), Springer (1999), or
Rev. Mod. Phys. T1, S1 (1999). The historical development of quantum mechanics can
also be inferred from the extensive citations in W. Pauli, Die allgemeine Prinzipien der
Wellenmechanik, Encyclopedia of Physics, Vol. 5, Springer (1955), which is identical to
Handbuch der Physik, Vol. 24, Part 1, Springer (1933). For the best eyewitness account
see W. Pauli, Scientific Correspondence, Vol. 1, A. Hermann, K. v. Meyenn and V.F.
Weisskopf (eds.), Springer-Verlag (1979).

Original papers on the Old Quantum Theory appear in D. ter Haar, The Old Quantum
Theory, Pergamon (1967); those most directly relevant to the discovery of matrix mechan-
ics are in van der Waerden (loc. cit.). A collection of excerpts from landmark papers, with
commentaries, appear in 100 Years of Planck’s Quantum, 1. Duck and E.C.G. Sudarshan,
World Scientific (2000). For the role of black body radiation see T. Kuhn, Blackbody The-
ory and the Quantum Discontinuity, Oxford University Press (1978); A. Pais, Subtle is
the Lord ..., Oxford University Press (1982); and Einstein’s Miraculous Year, J. Stechel
(ed.), Princeton University Press (1998), pp. 165-177. A recent discussion of developments
at the turn of the last century, with references, appears in R.D. Purrington, Physics in
the Nineteenth Century, Rutgers University Press (1997), chapter 8.
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use in the propagator, that is, in terms of specified initial and final coordinates and

the elapsed time, not in terms of the initial coordinates and velocities.
The Lagrangian of interest is

L= 3@ - -10Q, (166)

where Q(t) is the classical coordinate in dimensionless form, the equation of motion
being Q@ + Q + f = 0. Then

tp ity . | . -
o = / QL= /t at (% [%(QQ) —Q0 - Q2] - fQ) (167)

(@)~ (@) 5 [ de s . (168)

N =

In the unforced case, the solution of the equations of motion is
Q(t) = Qacos(t — tg) + Qqusin(t —t,) , (169)

where Q(tq) = Qu, Q(ta) = (), . The propagator requires the action for specified
initial and final coordinates given the elapsed time (¢, —t,) = 7. Hence the initial
and final velocities are

Qo= (Qp — QucosT)/sinT ; Qb= (—Qu + QucosT)/sinT . (170)
Equation (168) then gives the following result for the unforced case:

1

sin(ts —1a) [1(Q2 + Q) cos(ts — ta) — Q@) - (171)

D (b,a) =

The rather long calculation for the driven oscillator is outlined in Prob. 9. The
result is

mw

Scl(b, a) =

12 2
- Lz 4+ x)coswT — zaxp
Slan{z( @ b) @

+ % /ttb dt f(t)sinw(ty, —t) + % /ttb dt J{8)sinw(t = to) : (172)

a o

% /tbdt/t ds f(t)f(s) sinw(tb—t)sinw(s—ta)} ,

miw

where the mass and frequency have been restored, with f(t) now redefined by the
Lagrangian im(2? —w?z?) — z f(t). .
The complete result for-the propagator then follows from (165):

/ mw )
K(b,a) = W exp <ﬁ501(b, 0,)> . (173)

In the unforced case, the energy eigenfunctions in the coordinate representation can
be found from this propagator; see Prob. 11.
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4.3 Motion in a Magnetic Field

The motion of charged particles in electromagnetic fields is a central feature of many
phenomena. In classical physics the problem of finding the trajectories can only be
solved analytically for a very restricted set of field configurations, and it does not
become easier in quantum mechanics. Here only the most important soluble situa-
tion will be treated, that of a spatially uniform static magnetic field. Nevertheless,
this is a rich problem with many practical applications, especially in condensed
matter physics. While classical physics offers an intuitive understanding of what
quantum mechanics has to say about motion in a magnetic field, quantum mechan-
ics predicts a startling effect that has no classical counterpart: under appropriate
circumstances a charged particle can display interference phenomena produced by
a magnetic field that it never encounters. This is the Aharonov-Bohm effect, which
will also be described in this section.

(a) Equations of Motion and Energy Spectrum
The Hamiltonian for a particle of charge e and mass m in a static inagnetic field

described by the vector potential A is

=" (p- EA(q)>2 . (174)

T o2m ¢

Here p is the canonical momentum; the velocity is not p/m, but rather

'u:i(pff ) (175)

m C

That is, from (174) and the canonical commutation rules, it follows that the velocity
and coordinate are related as claimed in (175):

o(t) = [g(t), H]/ih . (176)
Consequently, the Hamiltonian is also

H=1iml?. (1)
Despite appearances, this is not the energy of a free particle as v does not obey
the commutation rules of p/m. The fundamental commutation rule of this problem
follows from [p;, A;] = (A/9)0A;/0q;:

. eh
[vi, v;] = 'Lm—z‘fijkBk ; (178)

where By, is a component of the magnetic field.

The velocity commutation rule (178) is gauge-independent — it contains only B.
Equation (177) is a gauge-invariant expression for the energy, and it is best to work
with explicitly gauge invariant expressions when possible.

Equation (178) leads directly to the equation of motion for v:

) e
v—%[va—va]. (179)
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When B is not uniform,

ih 9B,

1
B. = ~[B. =_—— 1
[ J:pk] m[ Japk]_ m 8(]k 3 ( 80)
and the equation of motion in the general case is therefore
dv e eh
— = B)+i B. 181
dt mc(v>< )+Z2cmzvx (181)

The last term is absent in the classical case, but when the field is uniform Heisen-
berg’s equation is identical to the classical equation of motion.
Consider now the case of a uniform field, namely, B = (0,0, B), where B > 0.
The only nonzero commutator among the velocity components is then
.ehB
[’U:c, ’Uy] == Zﬁ . (182)
In the light of this, it is best to write the Hamiltonian in terms of the Cartesian

components of velocity:
H = §m(vy +vy +v7) . (183)

Now v, = p,/m , and commutes with v, and vy: the momentum parallel to the field
is a constant of motion, just as in classical physics. The motion along B is simply
that of a free particle and can be set aside until needed.

For that reason we only concern ourselves with motion in the z-y plane perpen-
dicular to B, for which the Hamiltonian is

H = tm(v2 +'u§) . (184)

‘The velocity components v, and v, do not commute with each other or with H. But
according to (182), their commutator is a c-number. Consequently, the Hamiltonian
(184) for motion perpendicular to B is that of a simple harmonic oscillator! To
see this explicitly, define the operators

0= ) (vg +ivy), af = (vg — ivy) , (185)

2w,

where w, is the cyclotron frequency:

eB
We = —

== (186)

A short calculation leads to the same commutation rule as for the operators of the
same name in the theory of the harmonic oscillator, i.e.,

la,al] =1. (187)
In terms of them, the Hamiltonian for motion in the plane transverse to B is
H = hwe(ala +1). (188)

The energy spectrum for motion of a charged particle in a uniform magnetic field

is therefore
E, =hwe(n+3), n=0,1,.... (189)
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These are the Landau levels.
From the theory of the oscillator (see Eq.59) it follows that the characteristic
length in the problem is

Ip = /h/mw. = \/hic/eB . (190)
This is called the magnetic length. For the electron’
hiw, = 1.158 x 107*eV(B/T), lg/ap = 4.85 x 10*(B/T) , (191)

where ag = 4wh?/me? is the Bohr radius and B/T means the magnetic field in
units of tesla (T), or 10* gauss. The characteristic velocity of the state with energy
E, is therefore (v/c)? ~ 5 x 1071%(B/T)n.

When the field is uniform, the equation of motion (181) simplifies to

Vg = Wely , Uy = —Wely . (192)

The solution has the same appearance as in the classical case, i.e., for ¢ > 0,
clockwise circular motion with angular frequency w,:

2(t) = 30 — wivy(t) () = o+ wivm(t) . (193)

[ [ .

The putative coordinates of the center, (zg,¥o), are not c-numbers, however, be-
cause of the nonzero velocity commutator:

[IBo,yo] = —’LZZB . (194)
Another short calculation will confirm that zg and yy are constants of motion,
[H7 J;O] = [H7 yO] =0 > (195)

but because of (194), only one can be diagonalized simultaneously with the energy.
In classical mechanics, the radius of the orbit is proportional to the energy. The
same relation holds for the operators, namely

R? = [z(t) — mo)? t) —yol® = . 196
() ol + ylt) ~ wol” = (196)

Hence R? has a sharp value (r?),, in an energy eigenstate,
(rH)n = 2n + 1% ; (197)

the radii of the stationary states therefore grow like 1/n.

(b) Eigenstates of Energy and Angular Momentum

It is clear that the Landau levels must be highly degenerate. The system is two-
dimensional, and the Hilbert space must go over to that of a free particle in two

"In comparing this section with the literature, note that for the electron e = —le| in our
expressions, whereas some authors set e —+ —e from the outset. Of course, in the numerical values
p b
for hw. and Ip, e means |e|!
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dimensions when B — 0, which they would not if the states were really just those
of a one-dimensional oscillator. The same conclusion can be drawn from the more
intuitive remark that in the classical case the orbits for a given energy F are the
circles of radius 1/2F /mw? with centers anywhere in the transverse plane. Indeed,
this implies that the Landau levels must be infinitely degenerate. As we shall see,
there are several distinct ways in which the these states can be differentiated. One
is in terms of angular momentum, which will be developed now. It should be men--
tioned here that this richness of descriptions of the Landau levels plays a central
role in the theory of the quantum Hall effect.’

To specify states uniquely, one quantum number beyond energy must be given.
This quantum number, and the corresponding wave functions, are gauge-dependent
to an astonishing degree. One can, as we shall do, choose a gauge in which L,,
the angular momentum along B, and the energy commute. In this description the
subspace for a given energy is spanned by a discrete infinity of angular momentum
eigenstates all centered about the point used to define the angular momentum. In
another popular choice (see Prob. 17), the energy and one linear combination of zq
and yg is diagonalized simultaneously, and this leads to a continuum of states of a
definite energy localized about all the points on a line in the z-y plane. Both of these
descriptions make a subspace of the z-y plane exceptional, and then compensate
for this by means of wave functions which are rather weird. Neither has a direct
connection to the circular orbits of the classical theory, and for that reason they
do not provide an easily visualizable description of the motion. To get a basis that
does one must abandon the energy eigenstates in favor of time-dependent coherent
states, which will be done in the next subsection.

A description in terms of angular momentum states requires. the gauge to be
symmetric about B. Choose A = J(BXr), or

Ay = —5yB, Ay =1zB; (198)
the velocity components are then

1 w 1 We
Vo = —py + iy , vy =Py~ T (199)

The angular momentum along B (as always in units of A) is
L, = (zpy, —ypz)/1 . (200)

A bit of zﬂgebra‘ then gives the Hamiltonian

1 1
H= %(pi +p2) + gmwﬁ(xQ +4?) — Lhw.L, . (201)
As expected L, is a constant of motion.

The expression H + Lhw.L, is the Hamiltonian of an isotropic two-dimensional
oscillator of frequency iw.. The spectrum of this oscillator is Lhwe(ng +ny + 1),
where n, and n, are 0,1, .... But n,; and n, cannot be specified in a representation

1For an introduction to this topic, see R. Shankar, Quantum Mechanics, 2nd ed., Plenum
(1994), pp. 587-592.
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in which L, is diagonal, though n,; +n, = n, can be specified together with p, the
eigenvalue of L,. This then gives the following formula for the energies:

B, ) = Jhse(ns — p+ 1) (202)

On the other hand, we know that the energies are given by the Landau formula
(189), and furthermore, that the energy .cannot depend on p because all axes of
rotation perpendicular to the z-y plane are physically equivalent when the field is
uniform. Hence (202), while correct, is awkward.

In short, what is desired is a basis |n, ) where n is the quantum number in
Landau’s formula. Motivated by the theory of the harmonic oscillator, we seek
operators that manufacture all these eigenstates from just one, the state with lowest
energy (n = 0) and zero angular momentum, p = 0.

The operator af raises n by one. What is still needed are operators that change
¢ while leaving n fixed. Now recall from §3.5(d) that for any vector operator V,
the combination V; 4 4V, raises the eigenvalue of L, by one, while V;, — 4V, lowers
it by one. As the sought-for vector operators are not to change the energy, they
must be constants of motion. Two such operators have already been identified: the
center-of-the-circle coordinates (g, o). In the gauge (198),

1 1 1 1

T e WY

s - (203)

Define the dimensionless operators

1

1 . z 41y ,pmztipy)
= —— (g £ iy) = ) . 204
G = U, (0 E ) @3( 2 ' e (204)
When acting on the eigenstates of H and L,, they therefore produce
Qj:|n, p,> = Ci|n, H + 1> . (205)
The coeflicients are determined by requiring the states to have norm 1,
1Cy1? = (n, plQ-Qln, ) = |C_|* + 1, (206)
where the last relation follows from (194), or equivalently,
Q@ =1. (207)
From (203), (201) and (194),
0.0, L Hir.+t (208)
T we T2

and therefore |C |2 = n+ u+ 1. With an appropriate choice of the arbitrary phases
we thus conclude that

Q+ln,p)y =v/n+p+1in,p+1), (209)

The last equation determines the angular momentum spectrum for every Landau
level, because Q_|n, —n) = 0 implies

p=-n—n+1l,—n+2,... . (211)
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In words, the angular momentum spectrum in the degenerate subspace of energy E,

18 bounded from below, and takes on the integer values y = —n,—n +1,.... This

statement pertaing to particles with positive charge;: for a particle with negative

charge, like the electron, the angular momentum is bounded from above at y = n.
The energy raising operator a! is proportional to

. 1 . W .
Vg — Uy = E(pm —ipy) + TC(x —1y), (212)

and it therefore lowers the eigenvalue of L, by one.' The action of a and a' on the
basis is therefore )

aT|n,/~L>=vn+1|”+1,ﬂ—1>> a|naﬂ>:\/ﬁ|n—1,ﬂ+1>, (213)

where the coefficients are the same as for the ordinary oscillator because the com-
mutation rule is the same. Consequently,

\/—171_!(aT)"‘0,0) — |n,—n) . (214)

1)
41T © o e o o o o o o
3 1 e o e o & o o o
2 1 e o o o o o o
1+ e o o o o o
01 e e o o o
— 1= >

-4 -3 2 1 0 1 2 3 4

F1c. 4.2. The energy and angular momentum spectra for the motion of a charged particle
in a uniform magnetic field; En = lw.(n + }), where w, is the cyclotron frequency.

The operators that produce the whole spectrum (see Fig. 4.2) from the state
|0, 0) are then the direct extensions of those for the one-dimensional oscillator:

I, ) = m@g”ﬂ(a*)”m,ow (215)

1Observe that vy — ivy is a lowering operator for L, even though v, and vy are linear com-
binations of canonical coordinates and momenta along different directions. For further discussion
of this issue, see Prob. 15.
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The wave functions can be found by the technique used for the oscillator (see Prob.
16). The one forn = =0 is

-
Poo(p) = \/T_we o (216)

where plp is the radial distance in cylindrical coordinates. The other wave functions
can then be generated from this one by differentiation. As already mentioned, all
these states single out the point p = 0, whereas there is no preferred point in the
x-y plane. The coherent states that will now be constructed do not suffer from this
defect.

(¢) Coherent States

As in the case of the one-dimensional oscillator, in this problem the coherent states:
are a complete but non-orthogonal set of time-dependent states, each of which de-
scribes the wave packet (216) moving along a classical trajectory without distortion.
Four real parameters are needed to describe such a trajectory: the radius of the cir-
cle, or equivalently, the energy; the point on the circle where the particle is at ¢t = 0;
and the coordinates of the circle’s center.

We have already identified the operators related to motion on the circle, @ and af;
and those related to the circle’s position, (1. Because each of these pairs satisfies
the algebra of creation and destruction operators, and [a, @4] = 0, we can simply
copy the theory of the oscillator coherent states for each pair. That is, we introduce
two complex numbers, z and w, as the eigenvalues of the destruction operators:

(@ 2lmw) =0,  (Q- —w)|zw)=0. (217)

By analogy with the theory of the oscillator, we can anticipate that |z|> will be
proportional to the mean energy, and that w will specify the mean coordinates of
the circle’s center.

Now there will be two unitary shift operators, one for each pair of creation and
destruction operators:

D(z) = exp[za’ — 2], F(w) = exp[wQy —w*Q-]; (218)

they commute with each other. The coherent states |z, w) are built from the energy
and angular momentum eigenstate |0,0) with eigenvalues n = u = 0 by replaying
Eq.123:

|w, z) = F(w)D(z)]0,0) . (219)

The time development of these states is almost identical to that of the oscillator;
namely, z — ze~ %<t as before, but w does not change because (J+ are constants of
motion. Hence,

—iwct

e "z, w) = [ze™ w) (220)

where an overall and irrelevant phase e"f“’ct/ 2 has again been dropped by defining
zero to be the ground-state energy. Let A denote the expectation value of A in the
state (220). According to (217) and (185),

at) = ze ot = \/m/2hw, [U(t) + i5,(t)] . (221)
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Setting z = |z|e‘®, we have
Ua(t) = V/2hwe/m |2 cos(wet — §) , By () = —/2hwe/m |2]sin(wet — p) . (222)
The exbectation value of the energy then follows from (184),
H = hw|2|? (223)
and the mean square radius from (196),
(R?y = 21%|2)? . ' (224)

The expectation value of the circle’s center is found from

= 1
_=w= To — i%o) - 225
Q w = NoTe (Zo — o) (225)
Combining this with (193) then gives
Z(t) = V2ip[Re w + |z| sinw,t] (226)
y(t) = vV21p[~Im w + |z| coswet] , (227)

where the origin of ¢ was chosen to eliminate the phase ¢. As promised, this is
clockwise motion on a circle whose radius is proportional to |z|, and whose central
coordinates are proportional to the real and imaginary parts of w (see Fig. 4.3).

§(t)/v2lp

/\/e/

&

:ﬁ(t)/\/ilB

F1G. 4.3. The coherent state description of motion in a homogeneous magnetic field. These
states are wave packets that move with constant angular frequency w, and without distor-
tion on fixed circles. The complex parameter w specifies the position of the center of the
circle, while ze™*“¢ gives the instantaneous mean position of the packet on such a circle.
As intuition would indicate, the mean energy is proportional to |z|2

In the discussion of the time-energy uncertainty relation in §2.4(d), we used mo-
tion in a uniform magnetic field to illustrate how a system can serve as a clock.
The coherent states form the ideal clock in this instance, because they always
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keep the minimum size [p of the lowest state (216). Their angular uncertainty is
thus Af ~ Ig/((R2)% ~ (hw./H)%. The energy uncertainty in a coherent state is
~ (hw.H)?%, and the time uncertainty, defined as before, is AT = Af/w.. Conse-
quently for the coherent states AT AE ~ £, i.e, the time-energy uncertainty is also
minimal for all of these states.

The scalar product and completeness relation satisfied by the coherent states in
a magnetic field are the obvious extensions of those in §4.2(c):

|<Z/’IU,|Z, w>[2 — 6~|z—z]2 eflw—wllz ’ (228)

1
1= — dzz/d2w |z, w){z, w] . (229)

(d) The Aharonov-Bohm Effect

In classical electrodynamics, the motion of a charged particle is ultimately de-
termined by the Lorentz force which is only a function of the field strengths at
the instantaneous position of the particle, with the potentials being irrelevant. In
quantum mechanics the behavior of the particle is determined by its wave function,
which is the solution of a Schrédinger equation, and in it the potentials do appear.
One might suppose that the gauge invariance of Schrodinger’s equation must mean
that the potentials themselves are merely a mathematical intermediary, and as in
classical physics all observable effects only depend on field strengths “actually ex-
perienced” by the particle. That turns out to be false: if the paths that combine
to form the quantum mechanical amplitude do not cross any region in which there
is a magnetic field, but surround a region in which there is a field, there are ob-
servable phenomena which depend on the magnetic flur enclosed by these paths.
The Aharonov-Bohm effect is the original and best known example of such a phe-
nomenon.

Consider the setup shown in Fig. 4.4, in which a charged particle can reach
a detection screen by traversing one or another of two paths on which it cannot
encounter a magnetic field, but between which there is a field B confined to a region
between these paths. This field could, for example, be produced by a solenoid
carrying a current j surrounded by an impenetrable cylinder so that the wave
function vanishes in the region where B # 0. The vector potential, being the

“solution of V2A = —7, is non-vanishing everywhere, and therefore alters the wave
function relative to what it would be when there is no current.

The path integral gives the best insight into the effect. When the magnetic field
vanishes everywhere, the Lagrangian in the path integral is that for a free particle,
and it will produce the amplitude for detecting a particle at D as the sum of two
distinct terms,

U(D) = VUp (D) +¥p,(D), (230)
where Wp, is the contribution from the classical path P; and its immediate neigh-
bors. When the field is turned on, the Lagrangian changes by

ALz%v-A. (231)

Each path then acquires an extra factor

i [t ie [  dr e
- A = — — A = JR— . .
exp{h/ta dt L} exp{hc /ta dt o } exp{hc /Pi dr A} ‘ (232)
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such states. One example of such a state is Eq. 203, which could model the radiation
by a classical current of fixed amplitude but random phase.

The last expression for p,, shows that the function p(z) is not a probability distri- .
bution in general, for were it to always satisfy the condition p > 0, it would follow
that in all states p, # 0 for all n. Hence any state with a finite number of photons
does not have a positive semi-definite p, and for such states - cannot be inter-
preted as a probability distribution. This is not too surprising, because in §4.2(d)
we learned that the integration over the z-plane corresponds to an integration over
phase space, and it is not possible; in general, to define a quantum mechanical
phase space distribution. In fact, there is a relationship between p and the Wigner
phase space distribution (§2.2(f)); recall that the latter is also not positive definite
in general.

There are, however, important states of the field for . which p is a probability
distribution. For example, the field produced by a source whose amplitude A is
definite but phase is random can be represented in the form of (199) with

p() = 5 S(A— ) (203)

Another very important example is black body radiation, for which the density
matrix of the field will be derived in §11.3. The modes are uncoupled, and the
complete density matrix is a direct product over all modes of

pr= (1= ) Y e fn(n (204)
n=0

where w = |k|, 8 = 1/kpT, and kp is Boltzmann’s constant. The mean occupation
number is given by the Planck distribution law,

= 1
Ny = 2
k= gbo 1 (205)
and therefore the probability of finding n photons in the mode k is
(Ng)™ L <
=y N> 1. 206
The dispersion in IV, whose evaluation is left as an exercise, is
ANy = Nk(Nk + 1) — Nk R ]\_]k >1. (207)

This is to be compared with the result for the coherent state (Eq. 198); briefly put,
thermal radiation has a far broader distribution than does the radiation from an

ideal laser.
As a consequence of (202), thermal radiation has a Gaussian coherent state dis-

tribution,

1 .
— = o |zel®/Ns
o(2k) A ; (208)

as can be confirmed by substituting into (202). Such a Gaussian distribution is
characteristic of a chaotic system, and holds for a large variety of light sources.
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(¢) Photon Coincidences

We return to the beam splitter, and first consider the case where an arbitrary beam
is incident in channel 1, channel 0 is empty, and coincidences between the exit
channels 2 and 3 are counted. In the notation of (186),

Ny =|TPPNi +X, N3=|R’N,+Y, (XY)=—r*(V), (209)

where the latter follows from (188), and (- - -} is the expectation value in the incident
state. Then the number of coincidences is

(N2Ng) = r2{(N7) — (N1)} . (210)
The fluctuation in coincidences is
ANy ANz = ((Ng — (N2))(N3 — (N3))) = (NaNs) = (Na)(N3) . (211)

From Eq. 209, (N2)(N3) = r?{N;)?, and therefore

ANy ANs = r*{(N7) — (N1)? — (N1)} , (212)
=r?{(AN;)* — (N7)} (213)
=r?Q. (214)

This simple result is remarkable, for it shows that this correlations of fluctuations
distinguishes between the most important categories of states:

1. When the state incident is chaotic, like black body radiation, Q = (Nl)z, ie.,
(Q is positive. That @) is positive for an ordinary light beam is responsible for
the famous Hanbury Brown-Twiss effect.

2. When it is a coherent state, like that produced by an ideal laser, Q@ = 0.
3. When it is a Fock state, which has no fluctuations in Ny, then @ is negative.

In the quantum optics literature states of the electromagnetic field for which Q
is positive, and more generally for which p(z) is non-negative, are called classical,
which is a bit confusing as the Planck distribution is hardly classical.

The last state we will consider here has one photon incident in both channels 0
and 1, ng = ny = 1. According to (181), in this case No =14 X, N3 =14 Y, and
(XY) = —4r? Using |T|? + |R|? = 1 gives

(NyN3) = (IT1? — |R]?)?. (215)

Thus for a 50:50 beam splitter, there are no coincidences — in all events one photon
1s reflected and the other is transmitted, so that both go to the same counter.

This astonishing result actually illustrates, yet again, that when a quantum state
has two paths for reaching an outcome, and no step is taken to ascertain the path,
the amplitudes for these alternatives must be added coherently. To have a coinci-
dence, both photons have to be either reflected or transmitted, and the amplitudes
for these two options must be added coherently. Now T = e¥1/4/2, R = 2 //2
when |T'|*> — |R[> = 0, and (185) requires ¢1 — @5 = }m. Apart from a common
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Fic. 10.4. Above, a cartoon version of the experiment by P.G. Kwiat, A.M. Steinberg and
R.Y. Chiao, Phys. Rev. A 45, 7729 (1992). The nonlinear crystal X produces two photons
polarized in the plane of the page; R rotates the polarization through ¢; and -L is an optical
“trombone” that provides a difference [ in the length of the two paths. The coincidence
rates as a function of I for ¢ =0 (&), 37 (¢), 4w (M) are shown, demonstrating that the
rate vanishes, within experimental errors, at [ = ¢ = 0 and grows as the distinguishability
of the paths grows.

phase, the amplitude for the case where both photons are reflected or transmitted
is therefore

Xt H=0, (216)

whereas when one is reflected and the other transmitted the amplitude is

X X

LXHEtEXHp=t0. (217)

An experiment confirming this effect is summarized in Fig. 10.4. It is, of course,
no simple matter to produce a state in which one photon in each channel 0 and
1 is incident on the beam splitter in essence simultaneously. The trick is to use a
nonlinear crystal, illuminated by a laser, which converts one photon into two having
the same polarization. The experiment also allows the polarization of one of the
incident photons to be rotated through an angle ¢, so when ¢ = i it becomes
possible to unambiguously determine the path taken by the photons by measuring
their polarization after passage through the beam splitter. In short, as ¢ grows from
0 to $, the coherence of the amplitudes for the two paths shrinks to zero, and the

coincidence rate is expected to increase correspondingly, which it does.
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10.6 The Photoeffect in Hydrogen

The photoeffect — the ejection of an electron from an atom, is the basic process
underlying most, though not all, means for detecting photons. It therefore offers
an instructive and important example of a radiative transition. As we do not yet
have a relativistic theory at our disposal for electrons, we are restricted to photon
energies well below mc?. In addition, we will only treat the photoeffect in hydrogen,
but that suffices to bring out some of the most important features of the process.
Energy conservation relates the momenta of the electron and the photon, p and
k:
k— Ey = p*/2m, (218)

where Ey is the ground state binding energy, and proton recoil has been ignored
(i.e., its mass relative to that of the electron is taken to be infinite). There are two
rather distinct energy regimes:

1. k > Fy. For k well above the threshold at Ey = %azm, the velocity of the
ejected electron is v ~ a/k/Ey — i.e., large compared to the velocity o
of bound electrons, and for that reason the interaction between the ejected
electron and the proton can be ignored.

2. k — Ey S Ey. The ejected electron’s velocity is too low to permit neglect of
the Coulomb interaction. To be more precise, the parameter v = a/v that
appears in the Coulomb wave functions (recall §8.4(a}) is large in this regime,

because
1 k
S pap =4/ 1. 219
= Pao T (219)

Nevertheless, the problem is tractable because in the threshold region the
photon wavelength A is of order ag/a, i.e., enormous compared to the atom’s
dimension, so only the lowest photon partial wave, with j = 1, interacts. That
is, in this regime the photoelectron only emerges in a p wave. Furthermore,
the low-energy calculation is valid up to kag ~ 1, or k ~ Ey/c > FEy, which
overlaps the high-energy regime, and therefore the two calculations give a
complete description of the process for all k < m.

In this whole nonrelativistic regime, the electron’s spin can be ignored to leading
order in v (see Eq. 137). :

(a) High Energies

In the high-energy regime, the photon wavelength is not large compared to the size
ag of the absorber, and the multipole expansion is not valid. Therefore the phase
factor in the vector potential must be retained, and the matrix element for the
process is to be taken from (156):

1
V2Vk

- where advantage was taken of the fact that the state |p) of the photoelectron is
a momentum eigenstate. The final factor in (220) is essentially the ground state

(p; 0| Hy|1s; Lpa) = — (p-er) (ple™ " |1s) (220)

Sle
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correlations if the particles are identical and the temperature is low. As we already
know from the example of the ideal gas, this requirement imposes correlations even
in the absence of forces. ‘

It is intuitively clear that if the inter-particle forces are strong, there must be
much stronger correlations than those imposed by symmetry or antisymmetry. For
example, if the interaction has a very strong repulsion for separations smaller than
Ty, the pair correlation function must nearly vanish for such separations. The re-
pulsive correlations imposed by the exclusion principle in an ideal Fermi gas do not
meet this requirement, while those in an ideal Bose gas have the opposite effect.
Thus it is evident that the mean field approximation can only hope to be accurate
if the interactions are, in some sense, weak; what is meant here by “in some sense”
will be discussed presently. '

The assumption that the force on a particle is to be approximated by the mean
field implies that each particle is to move as if it were in an external potential.
Therefore it has its “own” wave function, so to say, with the many-body wave
function a product of these, though symmetrized or antisymmetrized.

Two many-body systems will be treated here: the dilute Bose-Einstein conden-
sate, and the low-lying states of many electron atoms. By dilute we mean a density
low enough so as to make the interaction in effect weak. In the case of atoms, the
weak interaction restriction is not met, in fact, but the mean field (or Hartree-
Fock) approximation is nevertheless important, for both pedagogical and practical
reasons.

(a) The Dilute Bose-Einstein Condensate

Even an arbitrarily weak interaction is of crucial importance in a Bose gas. If the
interaction is attractive, and has a range rg, then the lowest state is one where
all particles are collapsed into a microscopic volume of order 7§, giving a negative
interaction energy proportional to N2 that dominates the kinetic energy which is
of order N.!

A weak repulsion also plays a crucial role, as shown by the following argument.
Assume the gas is in a rigid enclosure, say a sphere of radius R, with B3 & N. The
ground-state wave function of one particle in this enclosure is

o(r) = \/#—R % sin (%) . (141)

The .grbund state wave function of the ideal gas is then
N

U= HQO(W) . (142) '
i=1

But this is a preposterous wave function: it states that the gas density is
N 1 9 [TT
= —— — si — 14
n(r) 97R 72 O ( R) ’ (143)

rather than being uniform except near the boundary.

Mn this section N is the number of particles, and not the number operator.
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The function ¥ is only correct when the interaction between particles vanishes
identically. It minimizes the kinetic energy K o [ ¢V2p; according to (141), K ~
N/R?> ~ N 3 ~ O3, which is vastly smaller than an energy that is proportional to
the system’s volume. Properties proportional to the volume are called exiensive,
and most systems in nature have energies that are extensive. By contrast, a two
body interaction of finite range will, in an extensive system, produce a potential
energy proportional to n?{2, which is enormous compared to K. Thus if there is
any interaction between the particles, the wave function (142) ceases to bear any
resemblance to reality; the correct wave function must produce a density that is
uniform except near the walls of an enclosure.!

This enormous sensitivity to interactions of the free-particle wave function shown
by the Bose gas does not occur in the Fermi case. Because of the exclusion principle,
the free particle ground state is made up of wave function with wavelengths down
to 1/kp, which is a distance of order the mean inter-particle spacing, and as a result
the density produced by the naive many-body wave function is spatially uniform.

To find a realistic description of the Bose gas, the interaction must be taken into
account ab initio. We do so for the case of a dilute system, such as the atomic Bose-
Einstein gases that have been studied extensively in recent years. The important
case of superfluid He* is far more difficult because in this system the interaction is
far too strong to be handled by the mean field approximation. »

In the condensate, the particles move very slowly, so the collisions between them
«can be described by the S-wave scattering length a. The true interaction can then
be replaced by the pseudo-potential (Eq.8.313),

dma
Vg = m 5(7‘1 TQ) y (144)
bearing in mind that the reduced mass is m/2 in this case. The scattering length
must be positive if the system is not to collapse.

The interaction is, in effect, weak if ¢ is small compared to the mean interparticle
distance d, where d* = n is the mean density. Nevertheless, the true force can have
both strong repulsive and attractive components as long as they result in a positive
scattering length that is short compared to d. Thus the precise meaning of the
term dilute is d > a. In the second-quantized form (Fq.44), and the dilute gas
approximation, the interaction between the particles is therefore

2ra

V=== [ de gt @)y () (e)p() (145)

The mean field approximation assumes that the state of the system can be ad-
equately described by assigning the constituents to one-body states moving in a
mean field. In the case of a condensed Bose gas, a finite fraction of all particles
occupy the lowest of these states, and at T = 0 all are in this state. Let ¢(x) be
this lowest one-body wave function; together with the functions {u, (x)} it forms a
complete orthonormal set that vanishes on the walls of the enclosure. Further, let ¢
and b, be the destruction operators for the corresponding one-body states, so that
the whole Bose field operator is

() =d(@) c+ Y u(@) by . (146)

1In this connection, see Problem 3.
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By hypothesis, the ground state is
|0) . (147)

The objective is the expectation value of H in this state. The kinetic and potential
energies involve the expressions ¥(x)|G) and ¥(x)¢(z)|G), and in both only the
term ¢ c of ¢ gives a nonzero contribution because the operators b, acting on |G)
give zero. When the destruction operator ¢ acts on any function of ¢ it can be
represented by '

' c=0/dc, (148)

and therefore (c'c)o = N, and (ccfec), = N(N — 1) =~ N? when N > 1. In view
of this, we define what is called the condensate wave function

U(z) = VN¢(z), (149)

even though V¥ is not normalized to unity, but to N. In term of ¥ the ground-state
energy is thus

E[v] :/dm {—ﬁ \y*(w)vlef(cc)Jr% |\I/(:c)|4+U(ac)l\Il(a:)|2} . (150)

where U is an external potential that represents the enclosure or an optical trap
holding the gas. ’

The equation satisfied by ¥ is found by varying the functional £[W]. Two points
must now be borne in mind: (i) the variation must keep |¥|? normalized to N,
which is done by varying

£ ~ e/d:c (), (151)

where ¢ is a Lagrange multiplier; and (ii) that in general ¥ is complex, and therefore
(151) is to be stationary under variations of ¥ and ¥* independently. Varying with
respect to W* then gives the Gross-Pitaevskii equation,

1 4
— V2T LGP 4 U = T (152)
2m m

This equation, and even more so its time-dependent generalization, has many
interesting solutions beyond the ground state of the condensate.! We confine our-
selves to the latter, and assume there is no applied force beyond the rigid walls of
an enclosure, i.e., U = 0 in (152). As in the Schrédinger equation, this ground-state
wave function is real. We anticipate, and will shortly confirm, that ¥ is a constant
C except near the walls, and that the distance [ in which ¥ rises from ¥ = 0 at the
walls is microscopic. -Hence the normalization integral is C2, aside from a negli-
gible surface term, and as the integral must equal N we have C' = /n, where n is
the number density. On the other hand, when W is a constant and U = 0, (152)
reduces to

[T (2)|? = me/dna . (153)

"1F. Dalfovo, S. Giorgini, L.P. Pitaevskii and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).
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When integrated over space, (153) becomes N = (me/4na)$2, and therefore
e =dman/m. (154)

If the surface layer is microscopic, the behavior of ¥ near the walls cannot depend
on the shape of the enclosure, and it suffices to consider a large box with a wall
at the yz-plane, the interior being = > 0. The behavior of ¥ near this wall is then
given by the one-dimensional Gross-Pitaevskii equation

U’ + 8raW(n — V) =0. (155)
The boundary conditions are
v(0)=0, V(z) = vn, z—o0. (156)
It is left to the reader to confirm that the desired solution of (155) is
U(z) = +/n tanh(z/l), 1= 1/V4nan = d\/d/4ra . (157)

As expected the condensate density rises to its constant value in a microscopic
distance that is large compared to the interparticle spacing when the system is di-
lute. Also as expected, this distance shrinks as the effect of the interaction increases,
whether due to an increasing scattering length or density.

(b) The Hartree-Fock Equations

In the mean field approximation, the actual many body interaction is mimicked
by a one-body “potential,” and by the same token, the actual wave function of
a system of identical fermions is approximated by an antisymmetrized product
of N one particle wave functions. The approximation is made self-consistent by
requiring the potential acting on a given particle to be the average field produced
by all other particles. This averaging is done with the sought-for wave functions,
and therefore the self-consistency requirement will lead to non-linear equations for
the one-particle wave functions.

Let ¢1(1),...,¢n(N) be these one-particle wave functions; in atomic physics
they are often called spin-orbitals. They are assumed to be orthonormal. Here the
suffix stands for a set of four quantum numbers, e.g., the (n1l;j1m1) of atomic spec-
troscopy, and the argument stands for the eigenvalues of four one-particle degrees
of freedom, e.g., (r1,51), where s = £} is the spin projection. The ¢; are not a
complete set, of course, but can be augmented with other functions that will play
no more than a brief and purely formal role to make the set complete. Let aI be
the creation operator for the one-particle state whose wave function is ¢;. Then the
N-body state we are working with is

N
@) = [all0). (158)

That is, the states ¢ = 1,..., N have occupation numbers one, and all others are
unoccupied.

The mean field approximation amounts to finding the best wave function of this
-type, where “best” is to be understood in the sense of the variational principle.
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Now f — coincidences between what we call the object and apparatus states have
the rate

R(fl7) = 1n*[1 + 2T cos(¢ — 8) + T2] . (105)

This coincidence rate R(f|y) displays coherence because identifying the states
|o) and [|v) affects the experiment’s ability to distinguish whether an incident pho-
ton took a path through one crystal as compared to the other, i.e., whether the
initial photon occupied |1) or |2). When |T| = 1 the two paths are equally likely,
and the interference pattern has maximal visibility. On the other hand, if 7' = 0 the
beam splitter B.S; has been turned into a mirror and it becomes possible, by de-
tecting |3), to know with full confidence which path was taken; hence there can be
no interference pattern. In short, therefore, this experiment illustrates the general
conclusions drawn at the end of the preceding subsection.

"The singles rate at the detector D; also displays coherence when the two “appa-
ratus” states are identified:

R(f) = R(£18) + R(£l7) = n*[1 + T cos(¢ — 8)] . (106)

That this is to be expected can be seen in (103). When 7' = 1, and thus R = 0,
there is no entanglement between the apparatus state |y) and object state, so that
[3) and |4) are fully coherent and interfere maximally in forming the detected state
| /). In this case, therefore, the experiment is in essence reversible — it has an output
that is in essence identical with the input, but of course it does not produce any
knowledge about the incident photon. As T' decreases (and thus R increases) there
is growing entanglement and growing knowledge as to whether a incident photon
was |1) or |2), and decreasing coherence.

The experimental results are shown in Fig. 12.6, and are in excellent agreement
with (106). The variation of the visibility with |T| illustrates that the degree of
confidence regarding the state of the apparatus is complementary to the coherence
between states of the object.
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F1a. 12.6. The plot on the left shows the singles rate R(f) as a function of the phase ¢,
which is varied by moving the beam splitter BSa; the curve A is for [T| = 0.91, and B for
|7] = 0. The right-hand plot shows the visibility (i.e., amplitude) of the interference effect
seen in R(f) as a function of the transmission amplitude |T|. In both plots the statistical
errors are smaller than the dot size.
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This experiment also bears on a famous dictum by. Dirac,® which reads “[eJach
photon then interferes only with itself. Interference between two different photons
never occurs.” The interference between the photons in the channels f and v demon-
strates that this statement only applies to one-photon states, not to multiphoton
states, and shows that the superposition principle, whose profound importance was
first emphasized by Dirac, has consequences even he may not have fully appreciated.

(d) A Delayed Choice Experiment

Quantum mechanics does not assign values to observables prior to measurement,
a feature of the theory that is confirmed by the experiments that violate the Bell-
Clauser-Horne inequalities. That measurement does not reveal pre-existing values
is also demonstrated by the possibility of leaving the decision “until the last mo-
ment” as to which one of two or more incompatible observables is to be measured.
The Aspect experiment is such a delayed choice experiment. Another is the two-
particle interferometer of §1.2, but that is only a Gedanken experiment. An elegant
laboratory experiment that is essentially equivalent has been performed by Scully
and collaborators. The delayed choice is between determining the path of a photon
(in effect its momentum), or foregoing this path information in favor of displaying
a two-photon interference pattern.

In this experiment a light beam impinges on a non-linear crystal, in which a
single pair of photons is created coherently at one of two spots (see Fig. 12.7). One
of these photons triggers the nearby detector Dy, whereas the other photon passes
through an array of 50-50 beam splitters to one of four more distant detectors
Dy 4. Nothing is altered while the photons are in flight, but as we will see this is,
in effect, a delayed choice experiment.

Let |g;) be the ground state of detector 4, with ¢ =0,...,4, and define

12) =10) @1g0) ® -+ ® |g4) (107)

where |0) is the electromagnetic vacuum state. Schematically, the interaction of the
photons with the detectors is

[
V=(a1+a)m0+ Y au7u + he., (108)

p=c

where a,L creates a photon in one of the modes «, etc., shown in Fig. 12.5, and 7,
produces the excitation |f) of the corresponding detector: 7,|g) = |f).

Call |W(t)) the state of the system at time ¢, where the times of special interest
are defined in Fig. 12.7. At ¢t; photon 1 or 2 has triggered the detector Dy while
another is still in flight; so that

(1) = 5 (af +ePal)mlS) (109)
where the phase ¢ accounts for the path difference due to the adjustable position of
Dy. A calculation like the one that led to (101) shows that after the second photon

I The most recent appearance is on p. 9 of P.A.M. Dirac, The Principles of Quantum Mechanics,
41 ed., Oxford (1958).
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F1G. 12.7. The arrangement of the experiment by Y-Ho. Kim, R. Yu, S.P. Kulik, Y. Shih

and M.O. Scully, Phys. Rev. Lett, 84, 1 (2000) is sketched on the left. The rates Ry, and
Rz for detecting one photon in Do and another in D, or Dy are shown on the right.

has disappeared the state is
(W (ta)) = § {3+ €¥ru + Li(1+7ie )1y — 2 (1 - ie™)r } 7]2) . (110)

Thus the rates for events in which one photon triggers Dy, and the other photon
subsequently triggers either Dy or Ds, are proportional to |1 4 4e*?|?, i.e.,

Ro1 = (1 +sin¢), Roz= (1 —sing). (111)

These are interference patterns between points separated in both space and time.
The other two rates show no such interference: Rys = Ros = 1. The data in Fig.
12.5(b) is consistent with Eq. 111, bearing in mind that the sensitivity of Dy depends
on-¢, a complication that is ignored in the derivation of (110).

The absence of interference in Rog (Ro4) reflects the fact that in such events it
is unambiguous from which spot in the crystal the photon originated that subse-
quently struck the detector D3 (D4). On the other hand, both spots can be the
source when Dy or Dy is struck, so the two possible paths add coherently.

That the setup in Fig. 12.7 is equivalent to a delayed choice experiment can be
seen by considering a somewhat different arrangement.! Namely, replace the beam
splitters BS; and BSy by mirrors, and let BS3 be removed at random. Of course
D3 and Dy are then decoupled and irrelevant. If “in” and “out” designate the cases
where BSj5 is in or out of place, the final states in these two circumstances are

[Win(ta)) = 3 {(1 + ") o + (i + )7 } 10|Z) (112)
[Wout(ta)) = L (2 + €P71)7|E) . (113)

Thus when BS3 is in place, the amplitudes for triggering D; and D, are, apart
from a common factor, the same as in (110), and therefore the rates Ry and Ry
show the same interference patterns as those in (111). On the other hand, when
B S5 is removed, the rates Rg; and Ryo show no intereference because the paths are
now determined.

IThis is the delayed choice experiment originally proposed by Wheeler (W2Z, p. 183).
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As in the experiments that test Bell’s inequality, the time ordering of events
merits comment. In the laboratory frame, Dy is struck before the other detectors
Dy... Dy, but the former is at a spacelike separation from the latter. Hence there
is no absolute significance to this time sequence; there are frames in which Dy is
struck after the others. An equivalent way of seeing this is to consider a different
arrangement in which Dy, in the frame of Fig. 12.7, is moved far to the right so
that it is struck after the others; the rates Ry; are unaffected.

(e) Summation

Consider an object O that possesses an observable A with eigenvalues );. The goal
is to determine the frequency with which distinct, individual specimens of @ in a
state |¥) display the eigenvalue )\;, that is, are “found” to be in the state |A;). For
this purpose there must be an interaction H, between O and an apparatus A that
forces the eigenvalues A; to be uniquely correlated to the final states of A. In the
input @ and A are isolated from each other and H, is inoperative, so that the whole
system O + A is in an uncorrelated state,

|Oin) = [Pin) ® |V) ch i) (1)

where |®i,) is a state of A. The unitary transformation generated by such an
interaction H. produces the entangled output state

out Zczlq) ®|)\ (115)

where the |®,) are orthogonal states of A.

An ideal measurement experiment is one whose output provides an unambiguous
macroscopic distinction between these apparatus states |®;), so that the determi-
nation that A is in the state |®;) in a particular trial guarantees that the object O
is in the state |);) in this trial. Consequently, such a specimen of O is assigned to
the normalized post-measurement state |A;).

All results of observations on the apparatus can be expressed in terms of its
reduced density matrix p(A),

p(A) = " (AilOout) (Oout|As) Z |eil? P (116)
%
where P(®;) is the projection operator onto |®;). Although |©,.;) is a pure state,
p(A) is not — it has positive entropy (unless there is just one term in Eq. 114). This
is true of reduced density matrices quite generally. However, a “good” measurement
setup manufactures an output whose complete (repeat, complete) density matrix
Pout 15, to all intents and purposes, indistinguishable from an effective density matrix
pett which gives the impression that the entropy has increased even though the
evolution is unitary.
To see how this comes about, write the complete density matrix in the form

Pout = Z |cz|2 ® P(A ) + Pint » (117)

Pint = Zcz l) (I)‘l><>‘1|) . (118)

i#]
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