
2
The Formal Framework

The concepts described impressionistically in chapter 1 must be cast into a well-
defined mathematical formalism if one is to do theoretical physics. This chapter is
devoted to a first cut at this task. Much of the material, such as that on symmetries
and on the interpretation of quantum mechanics, will be reconsidered in greater
depth in later chapters.

As in chapter 1, we assume that this is not the reader’s first encounter with
this material. Hence the presentation is occasionally terse, but as readers will have
various levels of prior knowledge, it also seeks to be reasonably self-contained. One
important point should be made at the outset. The level of mathematical rigor will
be typical of the bulk of the theoretical physics literature — slovenly. Mathemati-
cians view sloppy rigor as an oxymoron. Readers who share this view should consult
the bibliography at the end of this chapter.

Any physical theory employs concepts more primitive than those on which the
theory sheds light. In classical mechanics these primitive concepts are time, and
points in three-dimensional Euclidean space. In terms of these, Newton’s equations
give unequivocal definitions of such concepts as momentum and force, which had
only been qualitative and ambiguous notions before then. Maxwell’s equations and
the Lorentz force law, in conjunction with Newton’s equations, define the concepts
of electric and magnetic fields in terms of the motion of test charges.

There is no corresponding clearcut path from classical to quantum mechanics.
In many circumstances, though certainly not all, classical physics tells us how to
construct the appropriate Schrödinger equation that describes a particular phe-
nomenon. But the statistical interpretation of quantum mechanics is not implied
by the Schrödinger equation itself.1 For this and other reasons the interpretation of
quantum mechanics is still controversial despite its unblemished empirical success.
In this chapter we therefore adopt a brashly pragmatic attitude to many issues
concerning the interpretation of quantum mechanics, in the belief these matters
are best pondered at length after combat experience, as they will be in chapter 12.

2.1 The Formal Language: Hilbert Space

The quantum state is a fundamentally abstract concept. For brevity, name it Ψ.
Abstract concepts are also important in classical physics, but as mathematical and
intuitive idealizations of concrete things. That is not so of the quantum state.

1This can be put as a fable. If Newton were to be shown Maxwell’s equations and the Lorentz
force law, he could figure out what is meant by the unfamiliar symbols E and B, but if Maxwell
was handed Schrödinger’s equation he could not decipher the meaning of ψ. For an elaboration,
see K. Gottfried, Nature 405, 533 (2000).
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The fact that any Ψ pertaining to an N -particle system can be given a numerical
representation as a Schrödinger wave function ψ(r1 . . . rN ), whose variables are in
good old configuration space, should not be read as implying that ψ is any more
concrete than is Ψ. This warning is not just an ideological prejudice; if it is ignored
one is led to seemingly plausible conceptions of reality that must be abandoned, as
we will see in chapter 12.

In classical mechanics, the state of an N -particle system is specified by a point
X = (q1 . . . q3N ; p1 . . . p3N ) in 6N dimensional phase space Ωqp, where the qj and pj

are the canonical coordinates and momenta. The equations of motion then specify
how X moves about in Ωqp. The states of all systems with 3N degrees of freedom
inhabit this same space Ωqp, with systems that have different forces and masses
moving along different families of trajectories. Given X, all properties of the system
are completely specified.

The quantum state Ψ differs from X in two ways: (i) it “lives” in an abstract space
(Hilbert space) that has no connection to the “real” world; (ii) given a mathematical
expression for Ψ, quantum mechanics provides unambiguous statistical predictions
about the outcomes of all observations on the system that Ψ describes. There are
analogies, on the other hand. The quantum states of all systems having the same
degrees of freedom live in the same Hilbert space. And just as X gives a complete
description in classical mechanics, so does Ψ in quantum mechanics, though of
course the meaning of “complete” is very different.

Because quantum mechanics makes only statistical predictions in most circum-
stances, there is a tendency to overstate quantum mechanical uncertainty. In im-
portant ways, quantum mechanics provides more knowledge than does classical
mechanics, a point that is often given short shrift. For example, if a monoatomic
gas is in an environment that cannot impart enough energy to lift its atoms out
of their ground state, we know all about it, so to say, no matter whether it is in a
laboratory or in intergalactic space. That all these atoms have precisely the same
ground state cannot be understood in classical mechanics.

The quantum state can be given a numerical form in an infinity of ways —
by functions in the configuration space C, or in momentum space, to name just
two. There is an analogy here to classical mechanics, where a description in terms
of intuitively appealing variables can be translated into an infinity of others by
canonical transformations. But phase space as a whole cannot be used to describe
quantum mechanical probability distributions, because the uncertainty principle
rules out simultaneous precise knowledge of coordinates and conjugate momenta.

Furthermore, wave-particle duality implies that Ψ cannot, over time, be strictly
confined to any subspace C. At some instant it may be so confined, but thereafter it
will spread, with finite speed in a quantum theory that complies with relativity, but
instantaneously in nonrelativistic quantum mechanics. The whole setting in which
the system can exist, in principle, is involved in defining Ψ. Restated with poetic
license, a classical golfer whose ball leaves the tee flying toward a gap between two
trees cares not one whit about their size, or about other trees that it will never
encounter, whereas a quantum golfer does — “will never encounter” has no clear
meaning for the quantum golfer.
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(a) Hilbert Space

The elements of the language appropriate for describing quantum states in the con-
figuration space C are complex “wave” functions ψ(q1 . . . q3N ). Any such function
— whether or not it is a solution of some Schrödinger equation — can be specified
uniquely in terms of a complete orthonormal set of functions. For the moment, let’s
restrict the range of all the coordinates to be finite, − 1

2L ≤ qj ≤ 1
2L, with L larger

than any physical dimension of interest, so that the volume of configuration space is
L3N . In this case such complete sets are denumerable: ua(q1 . . . q3N ), a = 1, 2, . . ..
The term complete means that any ψ can be expressed as a linear combination of
the ua,

ψ(q1 . . . q3N ) =
∞∑

a=1

caua(q1 . . . q3N ) . (1)

The term orthonormal means that∫
dq1 . . . dq3N u∗

a(q1 . . . q3N )ua′(q1 . . . q3N ) ≡
∫

(dq) u∗
a(q)ua′(q) = δaa′ , (2)

which also defines a convenient shorthand. As a consequence, the expansion coeffi-
cients ca are

ca =
∫

(dq) u∗
a(q)ψ(q) . (3)

Substitution into the original expansion for ψ then produces the completeness re-
lation for the set {ua}: ∑

a

ua(q)u∗
a(q′) = δ3N (q − q′) , (4)

where now the shorthand means

δ3N (q − q′) ≡
3N∏
j=1

δ(qj − q′
j) . (5)

In these equations δaa′ is the Kronecker delta, i.e., 1 or 0 according to whether a
and a′ are equal or not, and δ(x − x′) the one-dimensional Dirac delta function,
defined by the property

f(x) =
∫

δ(x − x′)f(x′)dx′

for any function f that is continuous at x.
The set of square integrable functions {ua(q)} constitute a basis in an infinite-

dimensional complex vector space, called a Hilbert space H. It is the space that
plays a role akin to that of phase space in classical mechanics — the stage on which
quantum mechanics performs.

The functions ua(q) on the configuration space C do not form a unique description
of this particular basis. Consider, for example, the Fourier transform of ua:

va(p1 . . . p3N ) ≡ va(p) =
3N∏
j=1

∫ 1
2L

− 1
2L

dqj√
L

e−ipjqj/� ua(q1 . . . q3N ) , (6)
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where
pj/� = 2njπ/L, nj = 0,±1,±2, . . . . (7)

so that the functions Πj exp(ipjqj/�) satisfy periodic boundary conditions on the
surface of C. At the moment, � is merely any constant having the dimension of action
so as to make p/� an inverse length and to give p the dimension of momentum.
The physical content required to make it Planck’s constant has not yet entered the
story.

Eq. 6 says that the set of functions {va(p)} in momentum space provides a “rep-
resentation” of the same basis in H as does the set {ua(q)} in configuration space.
This statement can be rephrased in a fruitful manner by noting that the plane
waves form a complete orthonormal basis which is distinct from the one formed by
the ua (or equivalently, the va). That is, define

φp1...p3N
(q1 . . . q3N ) ≡ φp(q) =

3N∏
j=1

eiqjpj/�

√
L

; (8)

then, as just claimed, ∫
(dq) φ∗

p(q)φp′(q) =
∏
j

δpjp′
j

≡ δ3N
pp′ , (9)

∑
p1...p3N

φp(q)φ∗
p(q

′) = δ3N (q − q′) . (10)

In terms of this notation, Eq. 6 is

va(p) =
∫

(dq) φ∗
p(q)ua(q) , (11)

and conversely, because of (9),

ua(q) =
∑
{p}

φp(q)va(p) . (12)

(b) Dirac’s Notation

These somewhat unsightly expressions follow with seductive ease from a notation
of great power due to Dirac. Notation is no laughing matter as Newton learned
from his competitor Leibniz.

The basic idea, long familiar to mathematicians, is borrowed from vector algebra.
Consider a real three-dimensional Euclidean space E3. Any two vectors (v, w) can
be described by an infinity of bases, and in particular, by any one of an infinity of
distinct triads of mutually perpendicular unit vectors. Given such a basis, v and
w can be specified by two triplets of real numbers, their projections onto the basis
triad. However — and this is the crux of the matter, the geometrical meaning of v
and w, and of their scalar and vector product, are basis-independent: in all bases
v · w is the same real number, and v × w is a vector perpendicular to both v and
w and of a length that is basis-independent.

The generalization of these concepts appropriate to quantum mechanics is a d-
dimensional complex vectors space — a Hilbert space if d is infinite; usually the
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space will be denoted by H in either case. In Dirac’s nomenclature, the vectors in
this space are called kets, and denoted by the symbol | 〉. The kets are not numerical
functions, just as v is not a triplet of real numbers. As in Euclidean vector algebra,
the kets are defined by their formal properties.

Let (α, β, . . .) be complex numbers and (|ξ〉, |η〉, . . .) be kets. By the definition of
a complex vector space, the product α|ξ〉 is again a vector in the space, and so is
the sum

|ζ〉 = α|ξ〉 + β|η〉 . (13)

Because the scalars in the space (i.e., the ‘field’ over which it is defined, in mathe-
matical parlance) are complex numbers, scalar products cannot be defined directly
between pairs of kets, however. It is necessary, first, to associate a dual vector to
every ket in a one-to-one manner, called a bra, denoted by the symbol 〈 |; and
second, to define the scalar products as being between bras and kets.1 Let 〈ξ| and
〈η| be the bras dual to the indicated kets. Their scalar product is then denoted by
the bra-ket 〈ξ|η〉, a complex number having the property

〈ξ|η〉 = 〈η|ξ〉∗ , (14)

so that the norm 〈ξ|ξ〉 of any ket is real, and by definition positive.2

In view of (14), the bra corresponding to |ζ〉 as defined in (13) is

〈ζ| = α∗〈ξ| + β∗〈η| . (15)

Furthermore, if |ω〉 is any ket, then the scalar product between |ω〉 and |ζ〉 satisfies
the linear relationship

〈ω|ζ〉 = α〈ω|ξ〉 + β〈ω|η〉 . (16)

Ordinary Euclidean vectors satisfy the inequality |v · w| ≤ vw. There is a gener-
alization of this property in H, the Schwarz inequality,

|〈ξ|η〉|2 ≤ 〈ξ|ξ〉〈η|η〉 , (17)

with equality being attained only if |ξ〉 and |η〉 are proportional to each other, or
collinear. The proof of Eq. 17 is left for a problem.

A basis in H is a set of kets {|k〉}, k = 1, 2, . . . , that spans the space in the sense
that any ket can be expressed as a linear combination of the basis kets. With but
few exceptions, we will use orthonormal bases, that is, bases such that

〈k|k′〉 = δkk′ . (18)

If |ω〉 is an arbitrary ket, it can be expressed as a linear combination of basis kets:

|ω〉 =
∑

k

ck|k〉 . (19)

Because of (18),
ck = 〈k|ω〉 , (20)

and therefore
|ω〉 =

∑
k

|k〉〈k|ω〉 . (21)

1There is an analogy here to covariant and contravariant vectors in a non-Euclidean space,
such as Minkowski space, where both types of vectors are needed to form Lorentz invariants.

2In the mathematics literature the norm is often defined as the positive square root of 〈ξ|ξ〉.
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(c) Operators

This last expression gives the first hint of the power of Dirac’s notation. To bring
this out, consider the concept of a subspace of H, spanned by a subset of the basis
vectors, and denoted by HS . This subspace may be finite or infinite dimensional.
Its complement HC is the remainder of H, so that

H = HS ⊕ HC . (22)

Take, in particular, the 1-dimensional subspace Hk spanned by the single basis ket
|k〉, and define the projection operator Pk onto Hk by

Pk|ω〉 = ck|k〉 = |k〉〈k|ω〉 . (23)

In this book we shall only indicate that an object P is an operator by the special
notation P̂ when this is not obvious from the context.

The next step is motivated by (23), namely, the introduction of what could be
called an outer product between bras and kets as the definition of a linear operator,
i.e., as an object that maps kets into linear combination of other kets (and of course
bras into bras). To that end, write the right-hand side of (23) as (|k〉〈k|)|ω〉, and
the projection operator as

Pk ≡ |k〉〈k| . (24)

The sum of the projection operators on all the basis kets is a projection on the entire
space H, and when acting on any ket will leave it unchanged. This sum, therefore,
is just the identity operator, which we simply call 1. (When it seems necessary to
emphasize that it is an operator, it will be denoted by 1.) That is,

1 =
∑

k

Pk =
∑

k

|k〉〈k| . (25)

This is the statement that the basis spans the whole space, and is called the com-
pleteness relation. By judicious use of this form of 1, a considerable portion of what
in the wave-mechanical formalism is often time and thought consuming “arithmetic”
is reduced to flying by autopilot.

To see that this is so, consider

|ω〉 = 1|ω〉 =

(∑
k

|k〉〈k|
)

· |ω〉 =
∑

k

|k〉〈k|ω〉 , (26)

demonstrating how effortlessly Eq. 21 emerges. So does the basic identity satisfied
by the projection operators on an orthonormal set:

PkPk′ = δkk′Pk , (27)

because PkPk′ = |k〉〈k|k′〉〈k′|.
Projection operators onto multi-dimensional subspaces can also be defined by

generalizing (24). Let K designate a set of kets |ki〉, i = 1, . . . , n, which span the
subspace HK. The projection operator onto this subspace is then

PK =
n∑

i=1

|ki〉〈ki| , P 2
K = PK . (28)



2.1 The Formal Language: Hilbert Space 33

Let K′ be some other subspace orthogonal to K, i.e., having no basis kets in common
with K, and define PK′ as in (28). Then

PKPK′ = 0 , (29)

in obvious generalization of (27).
Next, define two operators X = |a〉〈b| and Y = |c〉〈d|, where the bras and kets

are arbitrary. The product of an operator with with any ket or bra are then defined
by generalizing the foregoing:

X|ξ〉 = (|a〉〈b|)|ξ〉 = |a〉〈b|ξ〉 , (30)

〈ξ|X = 〈ξ|(|a〉〈b|) = 〈ξ|a〉〈b| . (31)

The product of X and Y is defined as

XY = (|a〉〈b|)(|c〉〈d|) = |a〉(〈b|c〉)〈d| , (32)

i.e., the operator |a〉〈d| multiplied by the number 〈b|c〉, and best written without
the parentheses as

XY = |a〉〈b|c〉〈d| . (33)

Properties of operators and their representation in a particular basis now follow
easily. Thus if A is a linear operator, its action on a basis ket |k〉, i.e., A|k〉, is first
written as 1 · A|k〉, and therefore

A|k〉 =
∑
k′

|k′〉〈k′|A|k〉 . (34)

The complex numbers 〈k′|A|k〉 in this linear combination of kets are called the ma-
trix elements of A in the k representation. The term matrix is appropriate because
it describes the linear combination of kets that is produced by the application of
two operators in succession:

BA|k〉 =
∑

k

|k′〉〈k′|B · 1 · A|k〉 =
∑
k′k′′

|k′〉〈k′|B|k′′〉〈k′′|A|k〉 . (35)

This is the law for matrix multiplication:

〈k|BA|k′〉 =
∑
k′′

〈k|B|k′′〉〈k′′|A|k′〉 . (36)

Furthermore, any operator can be written in terms of its matrix elements by writing
A = 1 · A · 1 and using Eq. 25:

A =
∑
kk′

|k〉〈k|A|k′〉〈k′| . (37)

The diagonal matrix element 〈k|A|k〉 is called the expectation value of A in |k〉, for
reasons to be explained in §2.2(b).

Two numbers that are global characteristics of operators appear frequently. The
first is the trace, defined as the sum of the diagonal matrix elements, the second is
the determinant of the matrix elements,

Tr A =
∑

k

〈k|A|k〉, det A = det {〈k|A|k′〉} . (38)
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These numbers would be of limited value were they dependent on the basis used to
define the matrix elements. That they are not will emerge shortly. A caution: the
trace and determinant of many operators important in quantum mechanics do not
exist because the expressions that define them fail to converge when the Hilbert
space in question is infinite dimensional.

From any operator A we can construct two other operators which may, or may
not, differ from A. The first is the transpose, the second the complex conjugate:

AT =
∑
kk′

|k〉〈k′|A|k〉〈k′|, A∗ =
∑
kk′

|k〉〈k|A|k′〉∗〈k′| . (39)

When A = AT , the operator is called symmetric. Transposition combined with
complex conjugation produces the Hermitian adjoint A† of A:

A† = (A∗)T =
∑
kk′

|k〉〈k′|A|k〉∗〈k′| . (40)

If A = A†, it is an Hermitian operator. Such operators play a central role in quantum
mechanics. Note that

〈k|A|k′〉∗ = 〈k′|A†|k〉 . (41)

Hence if A|ψ〉 = |ψ′〉,
〈ψ′| = 〈ψ|A† . (42)

It follows from these definitions that

(AB)† = B†A† . (43)

Hence if A and B are Hermitian, their product is only Hermitian if they commute.
The commutator is defined as

[A, B] = AB − BA ; (44)

if A and B are Hermitian, and the commutator is not zero, it is anti-Hermitian,
the latter meaning an operator C with the property C† = −C. By the same token,
the anticommutator, defined as

{A, B} = AB + BA , (45)

is Hermitian if A and B are. Operators of any type satisfy the Jacobi identity

[[A, B], C] + [[C, A], B] + [[B, C], A] = 0 . (46)

Any operator A can be decomposed into its Hermitian and anti-Hermitian com-
ponents, A1 and A2:

A1 = 1
2 (A + A†) , A2 = 1

2 (A − A†) . (47)

A positive operator is defined by the requirement that its expectation value in
any ket be real and positive. Hence any positive operator is Hermitian. If A is an
arbitrary operator, then both AA† and A†A are positive operators, but they are
only identical if A1 commutes with A2 because

AA† − A†A = 2[A2, A1] . (48)



2.1 The Formal Language: Hilbert Space 35

(d) Unitary Transformations

If an operator U satisfies
U†U = UU† = 1 , (49)

it is said to be unitary. In terms of the k basis, this reads∑
k′

〈k|U |k′〉〈k′′|U |k′〉∗ = δkk′′ , or
∑
k′

Ukk′U∗
k′′k′ = δkk′′ , (50)

which is the familiar definition of a unitary matrix in the notation Ukk′ = 〈k|U |k′〉.
Unitary operators are of great importance in quantum mechanics because they

describe symmetry operations and time evolution. This is intimately connected
with the fact that they describe the relationship between distinct bases in H. Let
|r〉, |r′〉, . . . be another orthonormal basis that differs from the k basis. The relations
between them are

|r〉 =
∑

k

|k〉〈k|r〉, |k〉 =
∑

r

|r〉〈r|k〉 . (51)

The scalar products 〈k|r〉 are often called transformation functions because they
specify how one basis is transformed into the other. They are the elements of a
unitary matrix because∑

k

〈r|k〉〈k|r′〉 = δrr′ ,
∑

r

〈k|r〉〈r|k′〉 = δkk′ , (52)

which has the same form as (50) with Urk = 〈r|k〉.
When the bases related by a unitary transformation are denumerable, the unitary

operator can be written explicitly in terms of the two sets of basis vectors. Let
|a1〉 . . . |ai〉 . . . be one basis ordered in a specific manner, and |b1〉 . . . |bi〉 . . . be the
other basis ordered so that |ai〉 is mapped into |bi〉; define

Uba|ai〉 = |bi〉 . (53)

Then
Uba =

∑
i

|bi〉〈ai| , (54)

and
U†

ba = Uab. (55)

Furthermore, if {|ci〉} is a third basis, then

UbcUca = Uba . (56)

This known as the group property of sequential unitary transformation.
The combination of operators UAU†, where U is unitary, is called a unitary

transformation of A. For any pair of operators, the trace and determinant of their
product satisfy the following identities:

Tr AB = Tr BA, det AB = (det A)(det B) . (57)

Hence
Tr UAU† = Tr A, det UAU† = det A . (58)
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The latter follows from (57) and

|det U | = 1 , (59)

because det U† = (det U)∗, so that

det UAU† = (det U)(det A)(det U†) = |det U |2det A = det A . (60)

Hence the trace and determinant of any operator are invariant under unitary trans-
formations, or as stated earlier, under a change of basis.

The projection operator PK onto a subspace HK, defined in (28), is also invariant
under unitary transformations of the basis in HK. This is self-evident because PK
is the unit operator in HK.

There are many ways of expressing a unitary operator U in terms of a Hermitian
operator. The most common by far is

U = eiQ =
∞∑

n=0

(iQ)n

n!
, (61)

where Q is Hermitian, so that U† = e−iQ and UU† = 1. This power series arises in
a multitude of situations, especially in perturbation theory and in the description
of continuous symmetries. Another useful form can be

U =
1 + iK

1 − iK
, (62)

where now K is Hermitian.
The abstract language of kets and bras can now be related to the concrete lan-

guage with which we started — that of the basis functions ua(q) in configuration
space, their counterparts va(p) in momentum space, and the Fourier transform
involving φp(q) that relates these functions. To that end, recall first Eq. 1, and
introduce the arbitrary ket |ψ〉, and a complete orthonormal set |a〉, |a′〉, . . . , so
that

|ψ〉 =
∑

a

|a〉〈a|ψ〉 . (63)

On comparing with (1), we have ca = 〈a|ψ〉.
Next, introduce a nondenumerable set of kets |q1 . . . q3N 〉, where all the labels

take on all values on the real interval (1
2L,− 1

2L), which is orthonormal in the sense
that

〈q1 . . . q3N |q′
1 . . . q′

3N 〉 = δ3N (q − q′) , (64)

and complete

1 =
∫ 1

2L

− 1
2L

dq1 . . .

∫ 1
2L

− 1
2L

dq3N |q1 . . . q3N 〉〈q1 . . . q3N | , (65)

where δ3N was defined in (5). Obviously, deep issues of convergence and the like
are being ignored, in keeping with our rough-and-ready attitudes. That being said,
the linear relation between complex functions (Eq. 1) is simply the scalar product
of (63) with the bra 〈q1 . . . q3N |:

〈q1 . . . q3N |ψ〉 =
∑

a

〈q1 . . . q3N |a〉〈a|ψ〉 . (66)
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In short, ordinary functions such as ua(q) are scalar products 〈q|a〉 in the shorthand
defined in Eq. 2, and in particular

ua(q1 . . . q3N ) = 〈q1 . . . q3N |a〉 . (67)

The representation of these same relationships in momentum space follows in the
same way, by means of momentum space bras and kets satisfying

〈p1 . . . p3N |p′
1 . . . p′

3N 〉 = δ3N
pp′ , (68)

1 =
∑
{p}

|p1 . . . p3N 〉〈p1 . . . p3N | . (69)

Here the p’s take on the discrete set of values (7), so the basis is denumerable,
and Kronecker as compared to Dirac deltas appear in the orthogonality relation.
Equations (11) and (12) are then simply

〈p|a〉 =
∫

(dq)〈p|q〉q〈a〉, 〈q|a〉 =
∑

p

〈q|p〉〈p|a〉 , (70)

which identify the product of plane waves φp(q) of Eq. 8 as the elements of the
unitary transformation from the q to the p basis:

〈q1 . . . q3N |p1 . . . p3N 〉 =
3N∏
j=1

eiqjpj/�

√
L

. (71)

This last expression brings out an important if rather obvious point: the Hilbert
spaces for the separate degrees of freedom are independent, and the space for the
whole system is a direct product of such spaces:

H = H1 ⊗ H2 . . . ⊗ H3N . (72)

The kets in the q and p bases are also products, e.g.,

|p1p2 . . . p3N 〉 = |p1〉 ⊗ |p2〉 . . . ⊗ |p3N 〉 . (73)

Not all kets in H are of this product form, however! An arbitrary ket |ψ〉 will be
such a product only if just one term appears in the sum of Eq. 1, and the function
ua is itself a product.

There is an asymmetry in the preceding definitions of the p and q bases: the for-
mer is denumerable and the latter is not. The q basis can also be made denumerable
by replacing the spatial continuum (− 1

2L, 1
2L) by a discrete lattice with a spacing

much smaller than any dimension of physical interest. That is often done in numer-
ical work, and sometimes in purely theoretical discussions. Conversely, the discrete
momentum space can be replaced by a continuum by taking the limit L → ∞. That
we will often do. To see how, it suffices to look at just one degree of freedom, i.e.,
one factor in (72), and to replace the plane wave in (71) as follows:

eiqp/�

√
L

−→ eiqp/�

√
2π�

≡ ϕp(q) . (74)
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These functions are normalized to delta functions:∫ ∞

−∞
dp ϕp(q)ϕ∗

p(q
′) = δ(q − q′),

∫ ∞

−∞
dq ϕ∗

p(q)ϕp′(q) = δ(p − p′) , (75)

so that with these definitions the q − p transformation function is

〈q|p〉∞ = ϕp(q) , (76)

and
1 =

∫ ∞

−∞
dp |p〉∞〈p|, 〈p|p′〉∞ = δ(p − p′) . (77)

The suffix ∞ will not be shown again because it should be obvious whether the
discrete or continuous basis is in use.

(e) Eigenvalues and Eigenvectors

Finally, we summarize crucial properties of Hermitian operators. The following are
well-known facts about d-dimensional complex vector spaces Cd, provided d is finite:

1. Any single Hermitian operator A on Cd can be diagonalized by a unitary
transformation.

2. The elements of this diagonalized form are real and are called the eigenvalues
of A, designated by a1, . . . ad. They need not all be different; sets having
the same value are called degenerate. The set of all eigenvalues is called the
spectrum of A.

3. The eigenvalues are the roots of the secular equation

det (A − a1) = 0 , (78)

i.e., the roots of an algebraic equation of degree d.

4. The basis vectors |1〉 . . . |d〉 that diagonalize A are called its eigenvectors or
eigenkets, and satisfy

A|n〉 = an|n〉 . (79)

Hence
A =

∑
n

|n〉an〈n| . (80)

This is called the spectral decomposition of the Hermitian operator A. If there
are degeneracies, all eigenvectors within degenerate subspaces must be in-
cluded in the sum for (80) to be valid.

5. Eigenvectors with different eigenvalues are orthogonal. Those that belong to
a degenerate subspace will not be orthogonal automatically, but orthogonal
linear combinations can always be built from them.

6. If Ai, where i = 1, . . . , K, is a set of K commuting Hermitian operators, these
operators can be diagonalized simultaneously, with eigenvalues {a

(i)
n }. The

eigenvectors satisfy

(Ai − a(i)
n )|a(1)

n a(2)
n . . . a(K)

n 〉 = 0 , (81)
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where the eigenvectors are now designated by the simultaneous eigenvalues.
Any two eigenvectors are orthogonal if any of their eigenvalues differ.

7. If a pair of Hermitian matrices do not commute, they cannot be diagonalized
simultaneously.

8. If |a〉 is an eigenket of A with eigenvalue a, and B is any operator (in general,
not Hermitian) such that

[A, B] = λB , then B|a〉 = const.|λ + a〉 . (82)

It is no small matter to establish under what circumstances these statements hold
in an infinite-dimensional Hilbert space H, especially when the space is spanned by
a nondenumerable basis, as is assumed in writing Eq. 77. For example, a force law
that is singular at zero separation may produce no difficulty in classical mechanics
because only a subset of classical orbits can reach the singularity, whereas in quan-
tum mechanics it may be impossible to elude the singularity. In that case some of
the statements just listed are false. While bearing this in mind, we shall assume
that they are correct until disaster strikes, and march into the jungle like a naive
tourist.

2.2 States and Probabilities

In the phenomena to which quantum mechanics applies, only statistical data are
experimentally reproducible in most, thought not all, circumstances. It is fitting,
therefore, that quantum mechanics only makes statistical predictions about most,
though not all, experimental outcomes.

It is a central claim of quantum mechanics that the statistical character
of quantum mechanics is irreducible — that there are no underlying
“hidden variables” which behave in a deterministic manner, and that
this statistical character is not an expression of ignorance about such
hidden substructure.

Here the word “claim” is not to be read as hypothesis. At one time it was possible
to leave it for the future to decide whether the existence of such hidden substructure
is a plausible hypothesis, but that option only survives now in a non-local form we
find unacceptable. It must be stressed that here “hidden substructure” does not
mean further degrees of freedom that are still invisible at presently available ener-
gies, but degrees of freedom that are at work in familiar phenomena but not seen,
and which supposedly account for the properties of quantum states that are per-
plexing from a classical perspective.1 Hidden variable embellishments of quantum
mechanics, as we shall see in chapter 12, are in conflict with experiment unless the
additional variables interact instantaneously over arbitrary distances and thereby
violate the relativistic principle of causality. As we learned from two-particle in-
terferometry in §1.2, the quantum state can have both wave-like and particle-like

1Further quantum degrees of freedom, such as nucleons “inside” nuclei but ignored in atomic
physics, or speculative constituents of leptons, are irrelevant to this issue.
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correlations between distant non-interacting subsystems, and it has this property
without violating causality, an amazing performance that classically motivated de-
pictions cannot duplicate.

(a) Quantum States

The quantum state, as represented by the Schrödinger wave function Ψ(rarb),
already appeared in our treatment of two-particle interferometry. Whether Ψ refers
to an individual pair, or to an ensemble of such pairs, is a question that was not
raised. Given the statistical nature of phenomena in the quantum realm, it seems
natural to associate the quantum state with an ensemble of identical systems S, with
the probabilities the frequencies with which various specific properties of S occur.
That is a widely held view, which we shared for many years, though as believers in
the ensemble interpretation we were in the habit of speaking and thinking in the
singular — the atom, the electron, etc.

Consider, however, the statement which closed §1.2: Ψ must be able to display
itself in a wave-like or particle-like guise, or in various combinations of these guises,
depending, so to say, on what question will be asked of it in the future. Recall,
furthermore, that the EPR feature arises when the choice is made, on an event-by-
event basis and at random, between determining the position or the momentum of
one or the other particle belonging to a single pair. Thus an individual pair displays
a richness of distinct properties which makes it rather contrived to think of the
quantum state as being nothing beyond a description of an ensemble of pairs. Of
course, this is not a proof that the ensemble interpretation is invalid. That said, we
will assume that the quantum state is associated with individual systems. We should
emphasize, moreover, that the predictions of observable effects are not contingent
on whether one adheres to one or the other of these interpretations of the quantum
state.

What then is meant by probability? In this interpretation, the quantum state
of an individual system is endowed with potentiality, a term due to Heisenberg.1

Potentiality has no numerical attribute; it is a primitive concept that quantum
mechanics does not define, just as Euclidean geometry does not define the concept
of point. Potentiality stands for the various properties that an individual system S
has the potential for displaying in response to experimental tests, with probability
being a property associated with the frequency of outcomes of tests on copies of S.

We can now posit the three basic postulates of quantum kinematics; dynamics
will be formulated in the following sections.

1. The most complete possible description of the state of any physical
system S at any instant is provided by some particular vector |ψ〉 in the
Hilbert space H appropriate to the system. Every linear combination of
such state vectors represents a possible physical state of S.

The last sentence is the superposition principle. If S is a system composed of N
constituents which have no spin, and whose internal degrees of freedom cannot be
excited in the energy regime of interest, then H is the space defined in Eq. 72.

When S can be described by one vector, it is in a pure state. Should no single
ket suffice, S is in a mixed state, or mixture. Introductory expositions of quantum

1Some authors use the term propensity in place of potentiality.
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mechanics tend to focus almost exclusively on pure states, with the rationale that
any mixed state can be expressed in terms of sets of pure states. While true, this
does not do justice to the importance of mixtures.

The space H specific to the system in question describes the full variety of pure
states of S. Properties that distinguish between states are needed, and this is pro-
vided by:

2. The physically meaningful entities of classical mechanics, such as
momentum, energy, position and the like, are represented by Hermitian
operators.

Following Dirac, such operators will be called observables.1 Observables that have
no classical counterpart must also be anticipated, of course.

Let A be an observable. As it is Hermitian, it can be diagonalized and expressed
by its spectral decomposition:

A =
∑

a

|a〉a〈a| . (83)

Here (a, a′, . . .) are the real eigenvalues of A, and |a〉, . . . the corresponding eigen-
kets.2

The last postulate defines how probabilities make their appearance:

3. A set of N identically prepared replicas of a system S described by the
pure state |ψ〉, when subjected to a measurement designed to display the
physical quantity represented by the observable A, will in each individual
case display one of the values (a, a′, . . .), and as N → ∞ will do so with
the probabilities pψ(a), pψ(a′), . . . , where

pψ(a) = |〈a|ψ〉|2 . (84)

This is the definition of probability in terms of the frequency of specific outcomes
in a sequence of identical tests on copies of S.

Eq. 84 is a consistent definition of a probability distribution: the real positive
numbers |〈a|ψ〉|2 obey the sum rule

∑
a

|〈a|ψ〉|2 = 〈ψ|ψ〉 = 1 , (85)

where by convention all kets have unit norm; that is,

pψ(a) ≥ 0,
∑

a

pψ(a) = 1 . (86)

1Dirac also used the terms c-number for ordinary numbers (in allusion to classical quanti-
ties), though possibly complex, and q-numbers for operators. Though not much used today, we
sometimes return to this usage.

2As written, (83) refers to a discrete spectrum; should the spectrum be partially or wholly
continuous, the sum is to be understood as including the appropriate integral, and some Kronecker
deltas may be Dirac delta functions. This is a trivial complication at the formal level of this
discussion, and will be ignored by writing all formulas as if the spectra in question are discrete.
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The mean value 〈A〉ψ of the measurement results on a set of replicas of S in the
state |ψ〉 is, by definition,

〈A〉ψ =
∑

a

a pψ(a) , (87)

which is the following diagonal matrix element of the observable A:

〈ψ|A|ψ〉 =
∑

a

a|〈a|ψ〉|2 . (88)

Such mean values are called expectation values in quantum mechanics. Should |ψ〉
actually be the eigenket |a〉, then

〈a|A|a〉 = a . (89)

Note well that (87) implies that the only values that an observable can display are
its eigenvalues.

The probability pψ(a) can also be expressed as an expectation value, and in
that form it generalizes readily to mixed states. This is so because p = 〈ψ|a〉〈a|ψ〉,
whence

pψ(a) = 〈ψ|Pa|ψ〉 , (90)

where Pa = |a〉〈a| is the projection operator onto |a〉.
In (87) the state |ψ〉 is arbitrary. Should |ψ〉 actually be one of the eigenkets of

A, say |a0〉, the distribution is sharp, pa0(a) = δa0a, i.e., there is no dispersion in
the values displayed when the state is one of the eigenstates of A; in this case the
state is guaranteed to always display one particular eigenvalue.

Thus far the probabilities associated with a pure state |ψ〉 have been expressed
in terms of the eigenvalues of an observable — presumably an observable having a
useful physical significance. But the definition (84) generalizes as follows. Let |φ〉 be
an arbitrary state, which together with |φ′〉, |φ′′〉, . . . forms a complete orthonormal
set, but which may not diagonalize any operator that has a useful physical signif-
icance. Then by the argument that led to (86), the probability that a system S in
the state |ψ〉 will be found to be in the arbitrary state |φ〉 is

pψ(φ) = |〈φ|ψ〉|2 . (91)

For this reason, the scalar product between states is called a probability amplitude.
It is natural to take it for granted that a particular value a displayed by a partic-

ular measurement of an observable A simply reveals a pre-existing value possessed
by that individual specimen S, just as your head has a definite circumference before
the tape measure is unfurled in a statistical study of the egos of physicists. This
entirely sensible supposition is not valid, however:

Values cannot be ascribed to observables prior to measurement; such
values are only the outcomes of measurement.

The common-sense inference that measurements reveal pre-existing values leads to
implications that are contradicted by experiment, and are also incompatible with
the Hilbert space structure of quantum mechanics. This conclusion is not obvious,
and was not established firmly until some three decades after the discovery of
quantum mechanics. The reasoning and experiments that lead to it will be given in
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chapter 12, but the conclusion is stated here to abort seductive misconceptions. One
further point should, however, be made here. Because observables have no values
prior to measurement, in the ensemble interpretation of the state it is illegitimate to
distinguish between the ensemble’s members, for doing so would be tantamount to
introducing hidden variables. This can be taken as another motivation for defining
the quantum state to be a description of an individual system as compared to an
ensemble.

(b) Measurement Outcomes

From what has just been said, it is clear that measurement plays a central role
in relating the mathematical formalism to observable facts. If quantum mechanics
purports to be a complete description of physical phenomena, it had better also
describe the measurement process itself. It turns out, however, that the quantum
theory of measurement is far from straightforward. For that reason we also postpone
its discussion to chapter 12. Until then we take a lowbrow approach, and offer the
following example as a general purpose measurement paradigm.

Let |ψ〉 be the state of a photon of a particular frequency emitted in the direction
k from an atom that is in a magnetic field pointing along n. Imagine a measurement
apparatus Mcirc that deflects any such photon into one of two directions qR,L

depending on whether its circular polarization is right or left-handed, and two
photomultipliers that determine which of the two deflections a particular photon
experienced. For arbitrary directions k and n, it is impossible to predict what the
next photon does, all that can be predicted is the probability for one as compared
to the other deflection.

The application of the rule (91) is then as follows. Let |kR,L〉 be the states of
a right- or left-circularly polarized photon propagating in the direction k. Then
|〈kR,L|ψ〉|2 are the probabilities that individual photons will be deflected in the
directions qR,L. But any number of other questions can be addressed to |ψ〉. For
example, the apparatus Mcirc can be replaced by another, Mlin, that measures
linear polarization along two orthogonal directions u1,2. If |k1,2〉 are photon states
with these polarizations, the corresponding probabilities are |〈k1,2|ψ〉|2.

Thus Eq. 91 for the probability takes for granted the existence in principle of an
apparatus Mφ that is able, when presented with a system S in the state |ψ〉, to
assign it to the category that is in the state |φ〉.

In general, a system will have several observables that all commute with each
other; such observables are said to be compatible. It suffices to consider the case
of two, A and B. There then exist simultaneous eigenkets {|ab〉} of A and B with
eigenvalues (a, a′, . . . ; b, b′, . . .). Let f(x, y) be a function of two variables. Because
A and B commute, the action of f(A, B) on the simultaneous eigenkets is then

f(A, B)|ab〉 = f(a, b)|ab〉 . (92)

Hence the expectation value of the operator f is

〈ψ|f(A, B)|ψ〉 =
∑
ab

f(a, b)|〈ab|ψ〉|2 , (93)

and by the preceding argument

pψ(ab) = |〈ab|ψ〉|2 (94)
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is the joint probability distribution that the observables A and B will display the
two values a and b.

Note that |〈ab|ψ〉|2 is not a conditional probability, i.e., it is not the probability
for the occurrence of b given that a has definitely occurred. Rather, it gives the
probabilities for the occurrence of both a and b, conditional only on the state being
|ψ〉. The conditional probability for b given a is

pψ(a|b) =
pψ(ab)
pψ(a)

. (95)

Its distinction from the joint distribution pψ(ab) is underscored by the identities∑
b

pψ(a|b) = 1,
∑

b

pψ(ab) = pψ(a) . (96)

The most famous and familiar example of what has just been said is provided by
the Schrödinger wave function. In Dirac’s language it is the scalar product of |ψ〉
with a simultaneous eigenket |q1 . . . q3N 〉 of all the coordinate operators,

ψ(q1 . . . q3N ) ≡ 〈q1 . . . q3N |ψ〉 . (97)

The Born interpretation of |ψ(q1 . . . q3N )|2 as a joint probability distribution of the
coordinates in an N -particle state is a special case of the meaning ascribed to scalar
products quite generally.

Now to a situation that has no classical counterpart, the case of incompatible
observables, i.e., observables that do not commute. Call such a pair P and Q, where
these names are merely suggestive; they need not be momentum or coordinate.
There are then eigenkets of P and Q, satisfying

P |p〉 = p|p〉, Q|q〉 = q|q〉 , (98)

but simultaneous eigenkets of P and Q do not exist. While probability distributions
for the eigenvalues of P or of Q are of the same form as before, namely

pψ(p) = |〈p|ψ〉|2, pψ(q) = |〈q|ψ〉|2 , (99)

it is not possible to define a joint distribution for the two eigenvalue sets {p} and
{q}.

To see why, try the following: calculate the probability that |ψ〉 will display a
particular eigenvalue p of P , then the probability that this eigenstate of P will
display the eigenvalue q of Q, and sum over all values of p in the expectation that
this will give the probability pψ(q) that |ψ〉 will display the value q when there is
no knowledge about p. That is, form∑

p

pp(q)pψ(p) =
∑

p

[
|〈q|p〉|2 × |〈p|ψ〉|2

]
. (100)

Compare this to

pψ(q) = |〈q|ψ〉|2 =
∣∣∣∑

p

〈q|p〉〈p|ψ〉
∣∣∣2 . (101)

The naive, or classical, way of composing probabilities (Eq. 100) disagrees with
that of quantum mechanics (Eq. 101). In the latter the two probability amplitudes
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for ψ → p and p → q — both complex numbers — are first multiplied, then
summed over the intermediate variable p, and it is the absolute square of this sum
that gives the probability for q in the state |ψ〉, — a far cry from “common-sense”
multiplication of probabilities! When the probabilities are combined as in (100),
the phases of the probability amplitudes do not matter, whereas in the coherent
superposition (101) these phases are crucial.

What is the reason for this striking difference? It is not that the familiar composi-
tion law of Eq. 100 is wrong, but that it corresponds to a sequence of measurements
that differs from the one that determines pψ(q).

In the situation summarized by (100), there is first a measurement apparatus MP

that assigns each specimen in the state |ψ〉 to the set that possess the eigenvalue p
of P , as a consequence of which these individuals are known to be in the state |p〉;
subsequently, each system that is in the state |p〉 is passed into a second apparatus
MQ which is able to ask “do you belong in |q〉,” with the answer being “perhaps,
with probability |〈q|p〉|2.” The first segregation produces a set with the property p
having the fractional population pψ(p), so that the fraction of the systems that were
in |ψ〉 that survive both filtrations is pp(q)pψ(p). The sum on p in (100) only results
in a recoverable loss of knowledge, as in a demographic study that sums over cities
when stating what fraction of a country’s urban population ponders the meaning
of quantum mechanics. That is to say, the same result

∑
p pp(q)pψ(p) is found by

discarding all but one of the sets produced by MP in the first measurement, then
using this set of individuals as the input for MQ, and repeating this experiment for
all the other sets produced by MP . The resemblance to demography is very poor,
of course: as P and Q are incompatible, the second measurement MQ produces
individuals |q〉 which no longer have a definite value of p. This is confirmed by
passing a set of outputs |q〉 from MQ through the device MP , because the latter
will have as its output sets |p〉 with a variety of values p.

The measurement that gives the result (101) is one in which a system in the
state |ψ〉 is sent directly to MQ; the states |p〉 that appear in this equation are in
essence a mathematical artifact, for any complete set gives the same result. The
probability pψ(q) determined in this way cannot be diagnosed or dissected to find
pp(ψ). In contrast, if some other complete set |a〉 is used in (100), it will give a
different result.

To summarize, both probability calculations make perfectly good sense, but they
correspond to very different physical processes if P and Q are incompatible observ-
ables.

A final point must still be made about pure states. Probabilities involve only
the absolute values of scalar products between vectors in a Hilbert space, while
expectation values are bilinear in them. Therefore, replacing any ket |ψ〉 by eiα|ψ〉,
where α is real, does not alter expectation values or probabilities. Thus it is not
really correct to say that pure physical states corresponds to a single ket in a Hilbert
space. Rather, the set of kets eiα|ψ〉 describes one physical state. Such a set is called
a ray, and therefore the state space of quantum mechanics is really a ray space, not
a Hilbert space.

It therefore seems unjustified to require various statements in quantum mechanics
to be invariant under unitary transformations, because it is not relations between
kets but between rays that have physical significance. Thanks to a theorem by
Wigner (§7.1), this headache rarely arises, because the theorem proves that the
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only physically significant transformations that cannot be represented by unitary
transformations on kets is time reversal.

(c) Mixtures and the Density Matrix

Although pure states abound in text books and research papers, systems in the real
world are rarely in pure states. For example, the beam produced by an accelerator
is hardly a coherent superposition of momentum eigenstates, as it would have to
be if it were to be represented by a pure state. A more common example is that of
a collection of atoms in thermodynamic equilibrium.

Consider the latter. Here the key observable is the Hamiltonian H with energy
eigenvalues {E}. There will, in general, be other observables compatible with H,
e.g., angular momentum, designated collectively by A, that together specify a basis
{|Ea〉} in H. At temperature T these states are populated in accordance with the
Boltzmann probability distribution,

pT (E) = e−E/kT /Z , (102)

where k is Boltzmann’s constant and Z a normalization factor called the partition
function. Requiring the probabilities to sum to one then fixes Z:

Z =
∑
E,a

e−E/kT . (103)

In this and similar sums, all states belonging to a given energy eigenvalue must be
included.

The expectation value of some observable Q, which need not be compatible with
the the Hamiltonian, is then its expectation value in the various states |Ea〉 weighted
by the thermal probability distribution,

〈Q〉T =
∑
E,a

pT (E) 〈Ea|Q|Ea〉 . (104)

This expectation value is thus the result of two very different averages: that due to
the statistical distribution of eigenvalues of Q in the pure states |Ea〉, and that due
to the probability that such a pure state occurs in the thermal ensemble:

〈Q〉T =
∑
E,a

∑
q

q pT (E) |〈q|Ea〉|2 . (105)

By introducing an operator ρ called the density matrix, expectation values such
as 〈Q〉T can be written in a form that at first sight is opaque but which turns out to
be very powerful.1 The nomenclature “matrix” is somewhat unfortunate, because
ρ is an operator, and many authors call it the statistical or density operator. But
the more common usage is so long established that, as with many other terms in
physics, it is best to accept it as an indelible part of our cultural heritage, and to
not balk at phrases like “the matrix elements of the density matrix are . . . .”

1The density matrix was introduced by Landau and developed into its prominent role by von
Neumann.
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The density matrix describing a thermal equilibrium ensemble is defined as

ρT =
∑
E,a

|Ea〉pT (E)〈Ea| =
∑
E,a

pT (E) PEa , (106)

i.e., a sum of projection operators onto the basis {|Ea〉} weighted by the Boltzmann
distribution. Because the probabilities pT (E) are normalized to 1,

Tr ρT = 1 . (107)

In terms of ρT , the expectation value of Q then has the compact and very useful
form

〈Q〉T = Tr ρT Q ; (108)

This formulation allows us to give a basis-independent distinction between pure
states and mixtures. Again, let |ψ〉 be some pure state, and

Pψ = |ψ〉〈ψ| (109)

its associated projection operator. Then the expectation value in the pure state |ψ〉
is

〈ψ|Q|ψ〉 =
∑
a,a′

〈a|ψ〉〈ψ|a′〉〈a′|Q|a〉 = Tr PψQ ≡ Tr ρψQ . (110)

That is to say, in the case of a pure state, the density matrix is a projection operator
onto the state. Consequently, the density matrix of a pure state is characterized by

(ρψ)2 = ρψ , Tr (ρψ)2 = 1 . (111)

The latter, as promised, is a statement that does not depend on the basis because
the trace is invariant under unitary transformations.

Consider now the square of the thermal density matrix (Eq. 106):

(ρT )2 =
∑
E,a

[pT (E)]2PEa . (112)

Hence
Tr (ρT )2 =

∑
E,a

[pT (E)]2 < 1 . (113)

The sum is only one if the temperature is strictly zero, so that only the ground
state is occupied, i.e., the case of a pure state.

The example of the thermal distribution is illustrative, but holds for any set of
probabilities. The general situation is summarized as follows:

A state is pure if its density matrix ρ is a projection operator, and it is
a mixture if it is not. The two cases are characterized by the invariant
condition

Tr ρ2 ≤ 1 , (114)

with the equality only holding if the state is pure.
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Thus far the density matrix has been written in terms of projection operators.
Like all operators, it can be written in any basis, and defined without reference to
a particular basis — namely, as an observable whose eigenvalues (p1, p2, . . .) satisfy

0 ≤ pi ≤ 1,
∑

i

pi = 1 . (115)

The state is pure if, and only if, all eigenvalues pi of ρ but one vanish.
Let |ai〉 be the orthonormal basis that diagonalizes ρ, so that

ρ =
∑

i

|ai〉pi〈ai| . (116)

The expectation value of an observable Q is then given by (104),

〈Q〉 =
∑

i

pi〈ai|Q|ai〉 . (117)

in general, therefore, the expectation value of an observable Q in a state ρ, whether
pure or mixed, can be written in the invariant form

〈Q〉 = Tr ρ Q . (118)

The expression that gives the probability of a finding a state |φ〉 in a pure state
(Eq. 90) can be extended to the case of a mixture, namely,

pφ(ρ) = Tr ρ Pφ = 〈φ|ρ|φ〉 . (119)

In terms of the basis of (116), this reads

pφ(ρ) =
∑

i

pi|〈φ|ai〉|2 , (120)

as it must.
The most important measure of the departure from purity is provided by the von

Neumann entropy S. For any state ρ, it is defined as

S = −k Tr ρ ln ρ , (121)

where k is Boltzmann’s constant. When ρ is the Boltzmann distribution, S is the
entropy of statistical thermodynamics (see Prob. 3); in terms of the probabilities
pi it has the familiar form

S = −k
∑

i

pi ln pi . (122)

For a pure state, where only one pi = 1 and the others vanish, S = 0. Furthermore
S ≥ 0 because 0 ≤ pi ≤ 1. This leads to the question of whether S has a maximum
value. To answer this, one varies the probabilities in S under the constraint that
they sum to 1. This is done by introducing a Lagrange multiplier λ,

δ
∑

i

pi (ln pi + λ) = 0 , (123)
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or ∑
i

δpi (ln pi + 1 + λ) = 0 . (124)

The variations δpi in (124) are now independent, and therefore ln pi + 1 + λ = 0,
i.e., the pi that maximize S do not depend on i. But they must sum to 1, hence
this whole argument only makes sense as it stands if the Hilbert space Hd has a
finite dimension d, so that pi = 1/d.

The entropy therefore satisfies the inequalities

0 ≤ S ≤ k ln d , (125)

and the density matrix that maximizes S is

ρmax =
1
d

∑
i

|ai〉〈ai| . (126)

At first sight, {|ai〉} is a particular basis that diagonalizes ρ. But the sum in (126)
is just the unit operator, so

ρmax =
1
d

. (127)

In short, the mixture in which the entropy is maximal is the one in which all states,
in any basis, are populated with equal probability. Put another way, S = 0 when
there is maximal knowledge in that the state is pure, and S = Smax when the
available states are populated at random.

We must still address the following basic question: Given an unlimited set of
replicas of a system S in an unknown state ρ, known to reside in a d-dimensional
Hilbert space Hd, what measurements must be carried out to determine this state?
The unknown density matrix (whether pure or mixed) is a d-dimensional Hermitian
matrix of unit trace is specified by d2 − 1 real parameters. According to Eq. 37 and
Eq. 41, in terms of an the arbitrary basis {|ai〉} in Hd, the operator ρ has the form

ρ =
∑
ij

|ai〉rij〈aj | , rij = r∗
ji . (128)

An arbitrary observable in Hd is a linear combination, with real coefficients, of the
d2 Hermitian operators

Xij = 1
2{|ai〉〈aj | + |aj〉〈ai|} , Yij = 1

2 i{|ai〉〈aj | − |aj〉〈ai|} . (129)

Of these, the combination
∑

i Xii = 1 is trivial. Because Tr ρ |ai〉〈aj | = rji,

Tr ρ Xij = Re rij , Tr ρ Yij = Im rij . (130)

In consequence, when faced with an arbitrary unknown state in Hd, to identify
the state unambiguously the expectation values of a complete set of observables
must be measured, where by ‘complete’ is meant a set that allows the evaluation of
all the (d2−1) nontrivial expectation values appearing in (130). A concrete example
should help to make this inscrutable enumeration understandable. Take the case
where S is an atom with angular momentum 1, whose states live in a 3-dimensional
Hilbert space. According to what has just been learned, the expectation values of
eight observables must be measured. As shown in §3.3, they are the three indepen-
dent components of the atom’s magnetic moment vector and the five independent
components of its quadrupole tensor (a Cartesian tensor of rank 2).
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(d) Entangled States

There is a common and serious misconception that mixtures only arise when pure
states are “mixed” by the environment, such as a temperature bath, or by some
apparatus, such as an accelerator. Not so: If a composite system is in a pure state,
its subsystems are in general in mixed states. This is the context in which mixtures
are often important in discussions of the interpretation of quantum mechanics, and
also in many other contexts.

To see how mixtures arise from pure states, consider a system composed of two
subsystems with coordinates q1 and q2. Let |Ψ〉 be an arbitrary pure state of the
system, with wave function Ψ(q1q2), so that its density matrix is

〈q1q2|ρ|q′
1q

′
2〉 = Ψ(q1q2)Ψ∗(q′

1q
′
2) . (131)

Let A1 be an observable of the subsystem 1; that is, insofar as subsystem 2 is
concerned it is the unit operator:

〈q1q2|A1|q′
1q

′
2〉 = 〈q1|A1|q′

1〉 δ(q2 − q′
2) , (132)

where, to make contact with the wave-function language clearer the spectra are
taken to be continuous. Hence the expectation value of A1 in Ψ is

〈A1〉Ψ =
∫

dq1 dq′
1 dq2 Ψ∗(q1q2)〈q1|A1|q′

1〉Ψ(q′
1q2) . (133)

This expectation value can be written in terms of a reduced density matrix ρ1
describing only the first subsystem, and defined as

〈q1|ρ1|q′
1〉 =

∫
dq2 〈q1q2|Ψ〉〈Ψ|q′

1q2〉 =
∫

dq2 〈q1q2|ρ|q′
1q2〉 . (134)

Then Eq. 133 is

〈A1〉Ψ =
∫

dq1 dq′
1 〈q1|A1|q′

1〉〈q′
1|ρ1|q1〉 = Tr A1ρ1 . (135)

That is to say, for all expectation values pertaining only to subsystem 1, the density
matrix is ρ1.

We will now show that a subsystem is not in a pure state when the whole system
that contains it is in a pure state Ψ unless Ψ has the form of a product. In terms
of our example, consider

Ψ(q1q2) = c1u1(q1)v1(q2) + c2u2(q1)v2(q2) , |c1|2 + |c2|2 = 1 (136)

where ui and vj are orthonormal,∫
dq1 u∗

i (q1)uj(q1) = δij ,

∫
dq2 v∗

i (q2)vj(q2) = δij . (137)

When neither coefficient in (136) vanishes, Ψ is called an entangled state,1 i.e., one
that cannot be written as a simple product

Ψ(q1q2) = ϕ(q1)χ(q2) . (138)

1Entangled states first appeared in Heisenberg’s theory of He (see §6.2), but their full signifi-
cance was first recognized by Schrödinger, and the term is due to him.



2.2 States and Probabilities 51

That (136) cannot be written in the form (138) will now be proven.
Thanks to (137), it follows from (136) that

〈q1|ρ1|q′
1〉 = |c1|2u1(q1)u∗

1(q
′
1) + |c2|2u2(q1)u∗

2(q
′
1) , (139)

i.e., a density matrix for system 1 with probabilities |ci|2 for being in the state with
wave function ui(q1). That ρ1 does not describe a pure state of subsystem 1 is clear,
because

〈q1|(ρ1)2|q′
1〉 = |c1|4u1(q1)u∗

1(q
′
1) + |c2|4u1(q1)u∗

1(q
′
1) , (140)

so that
Tr (ρ1)2 = |c1|4 + |c2|4 < 1 . (141)

Thus ρ1 is not pure, and therefore cannot be represented by any single state in the
Hilbert space of system 1, unless one of the coefficients c1,2 vanishes, in which case
Ψ has the product form, i.e., is not entangled, QED.

This result generalizes to composites of more than two subsystems and to more
complicated states than Eq. 136. Namely, the density matrix of a subsystem ρs can
only be that of a pure state if the density matrix ρ of the whole system is of the
form ρs ⊗ ρR, where ρs is itself pure and ρR is the density matrix of the remainder.
If ρ has this product form all joint distributions will be products with one factor
pertaining to the subsystem s and the other factor pertaining to the remainder.

Entangled states have correlations which are very weird from any classical per-
spective. This property is of crucial importance in such disparate topics as the
spectrum of He and magnetism (§6.2), and in Bell’s theorem (§12.3). The two-body
probability distribution associated with the state (136) is

p(q1q2) = |c1|2|u1(q1)|2|v1(q2)|2 + |c2|2|u2(q1)|2|v2(q2)|2 + I2(q1q2) , (142)
I2(q1q2) = 2 Re {c1c

∗
2 u1(q1)u∗

2(q1)v1(q2)v∗
2(q2)} . (143)

The first two terms are mundane, but the interference term I2 is very strange. For
example, if the wave functions ui and vi are free particle wave packets describing
particles that are running off to large distances in various directions, the interference
term describes correlations even though the particles do not interact and are far
apart.

The strange two-body interference term I2 does not survive in the probability
distribution for one subsystem, e.g., in 〈q1|ρ1|q1〉, but this is only the case when
the entangled state is composed of orthogonal wave functions. And even when they
are orthogonal, the two-body interference term is crucial in situations such as those
just mentioned.

Finally, we ask how and whether two pure states can be distinguished. For this
purpose, consider a pure entangled state for a two-body system (a, b) of the type
provided by the interferometer in §1.2:

Φ(qaqb) = N [ϕ1(qa)χ1(qb) + ϕ2(qa)χ2(qb)] . (144)

Here ϕn and χn are arbitrary wave functions for a and b, respectively, which in gen-
eral are not orthogonal; N is the normalization factor. The probability distribution
associated with Φ has the two-body interference term

I2(qaqb) = 2N2Re {ϕ1(qa)ϕ∗
2(qa)χ1(qb)χ∗

2(qb)} . (145)
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The correlations between a and b when they are widely separated are contained
in I2. If, however, no measurement whatever is performed on b, the probability
distribution for a is that of a mixture, with the one-body interference term

I1(qa) = 2N2Re {V ϕ1(qa)ϕ∗
2(qa)} , (146)

where
V =

∫
dqb χ1(qb)χ∗

2(qb) . (147)

Hence a by itself will only show an interference pattern if the states χ1,2 of the other
body b are not orthogonal. This last statement is illustrated by the interferometer of
§1.2: the two states of b that arrive at the detector Db are orthogonal because they
have differing momenta along the y direction, so in accordance with the preceding
statement a does not display an interference pattern.

A somewhat different experimental setup than the one of §1.2 will elucidate the
condition required for V not to vanish (see Fig. 2.1). Assume that the particles a

A

c

d

V1

V2

Fig. 2.1. A modification of the two particle interferometer of §1.2, in which the parent A
decays into charged daughters (e.g., K0 → π+ + π−), with one decay product captured
into somewhat overlapping traps on the left, while the other passes through one of two
holes on the right on its way to the detector.

and b are charged, as in the decay K → π+ + π−, and that the interferometer is
replaced by an apparatus in which the left-hand screen and detector are replaced
by magnetic traps that capture b into one of the states χ1,2(qb) when a has passed
through either the upper or lower right-hand hole. Then a will show an interference
pattern provided there is a spatial overlap between the two trapped states of b, i.e.,
provided they are not orthogonal. The significance of this overlap can be stated
in two, at first sight quite different, ways: (i) on the mathematical side, that the
states of b are not orthogonal; (ii) on the physical side, that the states of b do not
unambiguously determine the path of a.

The general lesson to be drawn from these examples is that a pair of states,
if they are orthogonal, can give a yes-no answer as to whether an observable has
a particular value, whereas the answer becomes increasingly ambiguous as their
overlap increases. For that reason, the visibility |V |2 of the interference pattern
displayed by a alone is a measure of the confidence with which an observation on b
determines the state of a.

(e) The Wigner Distribution

Quantum states, whether pure or mixed, can be cast into a form that is aston-
ishingly reminiscent of phase space distributions in classical statistical mechanics.
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Consider a one-dimensional system with density matrix 〈q|ρ|q′〉 in the coordinate
representation; the generalization to more degrees of freedom is trivial and will be
stated at the end. The Wigner distribution is then defined by

f(q, p) =
∫ ∞

−∞
ds e−ips/� 〈q + 1

2s|ρ|q − 1
2s〉 . (148)

Wigner’s function f(q, p) has three properties that coincide with those of a clas-
sical phase space distribution. First, as ρ is Hermitian, f is real. Second, integration
of f over momentum gives the probability distribution of the coordinate:∫

dp

2π�
f(q, p) = 〈q|ρ|q〉 . (149)

And third, integration over the coordinate gives the probability distribution of the
momentum: ∫

dq

2π�
f(q, p) = 〈p|ρ|p〉 . (150)

Despite these marvelous properties, f(q, p) is not a probability distribution be-
cause it is not positive definite for arbitrary states. This is hardly astonishing be-
cause the incompatibility of coordinate and momentum, or put equivalently, the
uncertainty principle, implies that joint probability distributions of q and p cannot
exist except under special circumstances. For example, as we will learn in §4.2, the
ground state is the only energy eigenstate of the harmonic oscillator that has a
positive definite Wigner distribution.

Observables can also be cast into a form due to Weyl that give them the appear-
ance of functions in phase space. Let A be any observable, and define a function
A(q, p) by requiring that it produce the correct expectation value when averaged
over the Wigner distribution:∫

dq dp

2π�
A(q, p) f(q, p) = Tr Aρ . (151)

It is left to the reader to show that A has precisely the same relationship to A as
does f to ρ:

A(q, p) =
∫

ds e−ips/� 〈q + 1
2s|A|q − 1

2s〉 . (152)

Two important special cases are observables which are diagonal in the coordi-
nate or momentum representation, such as a potential V or a kinetic energy K,
respectively. That is, define

〈q|V |q′〉 = δ(q − q′) V (q) , 〈p|K|p′〉 = δ(p − p′) K(p) . (153)

Then, according to (152), their “phase space” counterparts are

V(q, p) = V (q) , K(q, p) = K(p) . (154)

This, of course, is required by (149) and (150).
The generalization to a N particles is simply

dq → dq1 . . . dq3N ,
dp

2π�
→ dp1

2π�
. . .

dp3N

2π�
, (155)

and so forth. The element of integration in phase space for degree of freedom i is
therefore dqidpi/h, where h = 2π� is Planck’s original constant.
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2.3 Canonical Quantization

The first route from classical to quantum mechanics, discovered by Heisenberg,
Born, Jordan and Dirac in 1925, is not the only one, but it is the most direct and
succinct, and will now be summarized. Its point of departure is classical mechan-
ics in the Hamiltonian format, that is, using canonical coordinates and momenta
satisfying first order equations of motion. The leap to quantum mechanics is the
replacement of these numbers by Hermitian operators acting on the infinite di-
mensional Hilbert space H of the preceding discussion, and the specification of
commutation rules between these operators.

(a) The Canonical Commutation Rules

The system of interest will, to begin with, again be that of N particles in three
spatial dimensions treated as if they had no internal structure, i.e., a system with
3N degrees of freedom. For each degree of freedom Hermitian coordinate and mo-
mentum operators qi and pi (i = 1, . . . , 3N) are introduced. Eigenvalues of these
operators will be designated by primes: q′

i and p′
i.

These operators are postulated to obey the following canonical commutation
rules:

[qi, pj ] = i� δij , (156)

[qi, qj ] = 0, [pi, pj ] = 0 . (157)

The q-p commutator is the heart of the matter, and is the point of entry for �.
Shortly we will see that symmetry considerations almost suffice to determine the

commutation rules, though of course not �. For now, we take (156) and (157) for
granted and analyze their consequences.

Because all the q’s commute, they can be diagonalized simultaneously; the same
goes for the p’s. On the other hand, qi and pj cannot be diagonalized simultaneously
if i = j. Two sets of simultaneous eigenkets are thus

|q′
1 . . . q′

3N 〉 ≡ |q′
1〉 ⊗ |q′

2〉 . . . ⊗ |q′
3N 〉 ,

|p′
1 . . . p′

3N 〉 ≡ |p′
1〉 ⊗ |p′

2〉 . . . ⊗ |p′
3N 〉 .

(158)

In view of this factorization, it suffices to examine just one degree of freedom, with
coordinate and momentum operators q and p satisfying

[q, p] = i� . (159)

Repeated use of the commutation rule (159) shows that

[q, pn] = in�pn−1, [p, qn] = −in�qn−1 ; (160)

apart from a factor, these right-hand sides have the form of derivatives of pn and qn.
Motivated by this observation, consider any function G(p) of the operator p that has
a power series expansion, such as an exponential of p, and F (q) any function of the
operator q of the same type. Eq. 160 then generalizes to the important commutation
rules

[q, G(p)] = i�
∂G(p)

∂p
, [p, F (q)] =

�

i

∂F (q)
∂q

. (161)
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For functions of all the coordinates or momenta, these rules clearly are

[qi, G(p1 . . . p3N )] = i�
∂G

∂pi
, [pi, F (q1 . . . q3N )] =

�

i

∂F

∂qi
. (162)

The commutation rules Eq. 161, which are direct consequences of the canoni-
cal commutators, lead to an expected conclusion, which is nonetheless important:
the spectra of q and p are both continuous from −∞ to ∞. To demonstrate this,
introduce the unitary operator

T (a) = e−iap/� , (163)

where a is any real number having the dimension of length. T (a) is unitary because
p is Hermitian. Then, because of (161),

qT (a) = T (a)q + i�∂T/∂p = T (a)(q + a) . (164)

Let |q′〉 be some eigenket of q
q|q′〉 = q′|q′〉 , (165)

and consider qT (a)|q′〉, which is

qT (a)|q′〉 = (q′ + a)T (a)|q′〉 , (166)

due to (164). Hence T (a)|q′〉 is an eigenket of q with eigenvalue q′ + a. But a was
arbitrary, and therefore all real numbers are eigenvalues of q.

This argument shows that the unitary operator T (a) produces a spatial transla-
tion through the distance a. That is, by multiplying (164) by T †,

T †(a)qT (a) = q + a , (167)

which is the unitary transformation of the coordinate operator corresponding to a
spatial translation. Because T is unitary, it preserves norms, and therefore (166)
implies

T (a)|q′〉 = |q′ + a〉 . (168)

This recognition that T (a) produces a translation of the coordinate operators
qi and their eigenkets implies that symmetry considerations largely determine the
canonical commutation rules: first, the fact that translations along different direc-
tions commute requires [pi, pj ] = 0; and second, requiring the coordinates to obey
(167) requires [qi, pj ] = iδijC. The last commutation rule, [qi, qj ] = 0, is based
on the separate assumption that all coordinate components can be simultaneously
specified. While C has the dimension of action, experiment is needed to confirm that
C agrees with, for example, the value of � found from fitting the cosmic background
radiation with the Planck distribution.

The same argument can be applied to p by use of the unitary operator

K(k) = eiqk/� , (169)

where k is now any real number having the dimension of momentum. The result is
that if |p′〉 is an eigenket of p with the indicated eigenvalue, so is |p′ + k〉 for all k.
The unitary operator K(k) produces a translation in momentum space by k:

K†(k)pK(k) = p + k , K(k)|p′〉 = |p′ + k〉 . (170)
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Translations in momentum space are often referred to as boosts.
Because of their continuous spectra, the coordinate and momentum eigenkets are

normalized to delta functions:

〈q′|q′′〉 = δ(q′ − q′′) , 〈p′|p′′〉 = δ(p′ − p′′) . (171)

An important observation regarding the role of time, due to Pauli, is a conse-
quence of the continuous spectra for coordinates and momenta. Were the goal to
extend what has been said thus far to a relativistic theory, a first attempt might
be to put time on the same footing as the spatial coordinates by generalizing the
commutation rule to one between 4-vectors for position and momentum. This would
imply the time-energy commutator

[t̂, H] = −i� , (172)

where t̂ is a Hermitian operator whose eigenvalues are time, H is the energy operator
(the Hamiltonian), and the sign is chosen on the supposition that the coordinates
and momenta are 4-vectors. But as we just saw, if t̂ is to have a continuous spectrum
like the coordinates, then so must H; i.e., there could be no lower bound to energies
and no bound states with discrete energies! So this path to a relativistic theory is
a disaster at the start. Indeed, what is done in relativistic quantum mechanics is
to demote the spatial coordinates from operators to the same status as time, as 4-
vector parameters that label observables such as the electromagnetic field operators
to be discussed in chapter 10. That the coordinates are not eigenvalues of operators
in relativistic quantum mechanics is consistent with the fact, pointed out in §1.1,
that the position of a particle of mass m cannot be determined to an accuracy
better than the Compton wave length �/mc.

(b) Schrödinger Wave Functions

Schrödinger’s originally distinct formulation of quantum mechanics in terms of wave
functions and differential operators follows from canonical quantization by writing
all operator and kets in the coordinate representation. In particular, the Schrödinger
wave function is the scalar product 〈q′

1 . . . |ψ〉.
The key is the transformation function between the coordinate and momentum

representations for one degree of freedom, 〈q′|p′〉, that is to say, the wave function
when |ψ〉 is actually |p′〉. Let |0q〉 and |0p〉 be the eigenkets of q and p with eigenvalue
0. Then by use of the unitary operators T and K,

〈q′|p′〉 = 〈0q|T †(q′)|p′〉 = eiq′p′/�〈0q|p′〉
= eiq′p′/�〈0q|K(p′)|0p〉 = eiq′p′/�〈0q|0p〉 . (173)

The constant 〈0q|0p〉 is determined, up to an arbitrary phase, by requiring∫
dp′ 〈q′|p′〉〈p′|q′′〉 = δ(q′ − q′′) , (174)

and by recalling the Fourier representation of the delta function:∫
dq′

2π�
eip′q′/� = δ(p′) . (175)
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The phase is then chosen so as to produce

〈q′|p′〉 =
1√
2π�

eip′q′/� = ϕp′(q′) , (176)

to return to the notation of Eq. 74. Hence for the N -particle system the wave
function when all particles are in momentum eigenstates is a product of plane
waves:

〈q′
1 . . . |p′

1 . . .〉 = (2π�)−3N/2
3N∏
i=1

eipiqi/� . (177)

Configuration and momentum space wave functions are defined as scalar products
of |ψ〉 with coordinate and momentum eigenkets:

ψ(q′) = 〈q′|ψ〉, φ(p′) = 〈p′|ψ〉 . (178)

Hence
φ(p′) =

∫
dq′ 〈p′|q′〉〈q′|ψ〉 , (179)

which is just the Fourier transform of ψ(q′) because of (176):

φ(p′) =
∫

dq′
√

2π�
e−ip′q′/� ψ(q′) ; (180)

its inverse is

ψ(q′) =
∫

dp′
√

2π�
eip′q′/� φ(p′) . (181)

The probability distributions in configuration and momentum space are then
|ψ(q′)|2 and |φ(p′)|2. Given one it is not possible to construct the other. This is so
because the probabilities only depend on the modulus of the wave functions, and
phases that depend on either q′ or p′ must be known for the transformation from
one representation to the other. The density matrix in any one representation does,
of course, suffice, to determine that in any the other. In this context,

〈q′|ρ|q′′〉 = ψ(q′)ψ∗(q′′) , 〈p′|ρ|p′′〉 = φ(p′)φ∗(p′′) , (182)

and therefore

〈p′|ρ|p′′〉 =
∫

dq′dq′′

2π�
e−i(p′q′−p′′q′′)/� 〈q′|ρ|q′′〉 . (183)

In short, to compute the momentum distribution 〈p′|ρ|p′〉 one must know the off-
diagonal elements of ρ in the coordinate representation.

This example illustrates a general property of quantum mechanical probability
distributions: the probability distribution for a complete set of compatible observables
does not determine the probability distribution for an incompatible observable.

To determine the action of the momentum operator on configuration space wave
functions the matrix elements of p in the q-representation is needed:

〈q′|pn|q′′〉 =
∫

dp′ 〈q′|p′〉(p′)n〈p′|q′′〉 =
∫

dq′

2π�
(p′)n eip′(q′−q′′)/� . (184)
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This is the nth derivative of a delta function:

δ(n)(x) =
dn

dxn
δ(x) =

∫
dk (ik)n eikx , (185)

which has the property

dnf(x)
dxn

=
∫

dx′ δ(n)(x − x′)f(x′) (186)

for a function that is sufficiently continuous at x. Hence (184) is

〈q′|pn|q′′〉 = (�/i)n δ(n)(q′ − q′′) , (187)

and therefore

〈q′|pn|ψ〉 =
(

�

i

∂

∂q′

)n

ψ(q′) . (188)

The same argument gives the corresponding result for the action of coordinate
operators on wave functions in momentum space:

〈p′|qn|ψ〉 =
(

i�
∂

∂p′

)n

φ(p′) . (189)

The generalization of these formulas to more than one degree of freedom is
straightforward and will not be spelled out. There is, however, one aspect of the
extension to many degrees of freedom that merits attention: the displacement of
all the coordinates. To construct the unitary operator that does this, we must
group the three coordinates and momenta of each particle into vector operators:
x1 = (q1, q2, q3), x2 = (q4, q5, q6), etc., and similarly with the momenta, which we
now enumerate as xn, pn, with n = 1, . . . , N. The displacement by the 3-vector
a is to be produced by a unitary operator T (a) that generalizes T (a), as given by
(163), so that (167) is replaced by

T †(a)xnT (a) = xn + a , (190)

with a the same for all n. Because all individual momentum components commute
with each other, T is simply a product of the operators T for each degree of freedom
with the component of a appropriate to the momentum component in question, i.e.,

T (a) =
N∏

n=1

exp(−ipn · a/�) . (191)

But

P =
N∑

n=1

pn (192)

is the total momentum. Thus the spatial displacement operator for the whole system
can written in terms of the total momentum as

T (a) = e−iP ·a/� . (193)
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(c) Uncertainty Relations

The Heisenberg uncertainty relation for coordinates and momenta is but one ex-
ample of such relations that hold for all pairs of incompatible observables.

To derive such relations, a precise definition of the uncertainty ∆A of an observ-
able A is needed. The convenient and physically reasonable choice is the root-mean-
square (rms) dispersion ∆A, defined as

∆A =
√

〈(A − 〈A〉)2〉 =
√

〈A2〉 − 〈A〉2 , (194)

where 〈. . .〉 is the expectation value in an arbitrary ket |φ〉, i.e.,

(∆A)2 =
∑

a

(a − 〈A〉)2 |〈a|φ〉|2 , (195)

which is the second moment of the probability distribution |〈a|φ〉|2.
Let B be an observable that does not commute with A. The goal is to find a

lower bound for ∆A ∆B as the precise statement of the uncertainty principle for
arbitrary observables. For that purpose it proves to be convenient to define

Ā = A − 〈A〉, B̄ = B − 〈B〉 , (196)

Ā|φ〉 = |φA〉, B̄|φ〉 = |φB〉 . (197)

Then
(∆A ∆B)2 = 〈φA|φA〉〈φB |φB〉 , (198)

which, due to the Schwarz inequality (Eq. 17) gives

(∆A ∆B)2 ≥ |〈ĀB̄〉|2 . (199)

Now
ĀB̄ = 1

2 [A, B] + 1
2{Ā, B̄} = 1

2 iC + 1
2{Ā, B̄} , (200)

where C and the anticommutator are both Hermitian. Hence

(∆A ∆B〉)2 ≥ 1
4 |〈{Ā, B̄}〉 + i〈C〉|2 , (201)

and as both expectation values are real,

(∆A ∆B〉)2 ≥ 1
4 〈{Ā, B̄}〉2 + 1

4 〈C〉2 , (202)

As shown by Prob. 6, when |φ〉 is chosen to make |φA〉 proportional to |φB〉, the
first term in (202) vanishes; therefore

∆A ∆B ≥ 1
2 |〈[A, B]〉| . (203)

This is the general form of Heisenberg’s uncertainty relation. For the canonical
variables, it reads

∆pi ∆qj ≥ 1
2� δij , (204)

which now gives a precise lower bound in place of the order-of-magnitude estimate
of §1.1.

Because time cannot be the eigenvalue of an operator, it is now clear that the
time-energy uncertainty relation has a quite different meaning from that for quan-
tities represented by operators. It will, therefore, be discussed separately in §2.4.
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2.4 The Equations of Motion

What might be called kinematics is all that has been considered thus far. How
states evolve in time will now be addressed.

(a) The Schrödinger Picture

The basic assumption will be that time evolution is represented by a unitary trans-
formation parametrized by a continuous parameter t . If the superposition principle
is taken to be fundamental, this assumption is almost inescapable, because super-
position requires time evolution to be a linear transformation of vectors in the
Hilbert space, i.e., if |ψ; 0〉 is some state of a system at t = 0, then at a later time
|ψ; t〉 = Lt|ψ; 0〉, where Lt is a linear operator.

Consider some time-independent observable, A, with the spectrum (a, a′, . . .). Its
expectation value as a function of time will be

〈ψ; t|A|ψ; t〉 =
∑

a

a|〈ψ; t|a〉|2 . (205)

In general, the probabilities |〈ψ; t|a〉|2 for the various eigenvalues will change with
time, but by hypothesis, not the eigenvalues themselves. On the other hand, rewrit-
ing (205) in terms of the operator Lt gives

〈ψ; 0|L†
tALt|ψ; 0〉 =

∑
at

at|〈ψ; 0|at〉|2 , (206)

where {|at〉} are the eigenkets of L†
tALt and {at} its eigenvalues. As just said,

however, the spectrum must not change with time, whereas the probabilities can.
But any unitary transformation of a Hermitian operator leave its spectrum invari-
ant, and it is this fact that justifies the assumption that Lt is a unitary operator.
Accepting this assumption means that there is a unitary operator U(t′, t) that
manufactures |ψ; t′〉 from the state at time t:

|ψ; t′〉 = U(t′, t)|ψ; t〉 . (207)

Consider first a system that is isolated from external disturbances, so that the
origin of time has no physical significance. When this is so, U simplifies greatly
because it can only depend on time differences:

|ψ; t′〉 = U(t′ − t)|ψ; t〉 . (208)

These unitary operators must satisfy the following composition law:

U(t2)U(t1) = U(t2 + t1) . (209)

The crucial point here is that the composite is a function of the sum t1 + t2, and
therefore

U(t) = [U(t/N)]N . (210)

Now as δt → 0, U(δt) → 1, and therefore U(δt) = 1 − i∆(δt), where ∆(δt) must
be an infinitesimal Hermitian operator so as to make U unitary to first order in ∆.
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The composition law (209) implies that ∆(δt1) + ∆(δt2) = ∆(δt1 + δt2), i.e., that
∆(δt) is proportional to δt. This fact is expressed by

U(δt) = 1 − iδtH/� , (211)

where � is introduced so that the operator H has the dimension of energy. It is the
Hamiltonian of the system in question.

For finite time differences, (210) gives

U(t) = [U(t/N)]N = lim
N→∞

(
1 − 1

N

itH

�

)N

, (212)

and therefore
U(t) = e−iHt/� . (213)

An equivalent derivation is

U(t + δt) − U(t) = [U(δt) − 1]U(t) = −i(δtH/�)U(t) , (214)

so that
i�

∂

∂t
U(t) = H U(t) , (215)

which has the solution (213) because of the initial condition U(0) = 1. Because
of its role in the unitary operator U(t), the Hamiltonian is called the generator of
translations in time.

The Schrödinger equation then follows from (207) and (215):

i�
∂

∂t
|ψ; t〉 = H|ψ; t〉 . (216)

The case of an eigenstate of H is of particular importance, i.e., a ket |ψE ; t〉 that
satisfies the time-independent Schrödinger equation

(H − E)|ψE ; t〉 = 0 . (217)

The solution of (216) is then trivial:

|ψE ; t〉 = e−iEt/�|ψE ; 0〉 . (218)

Energy eigenstates are called stationary states because they do not change in
time, aside from a phase factor. Furthermore, the matrix elements of any time-
independent observable A between stationary states also have a time dependence
that is merely a phase:

〈ψE ; t|A|ψE′ ; t〉 = ei(E−E′)t/� 〈ψE ; 0|A|ψE′ ; 0〉 . (219)

It is a mathematically trivial, but nonetheless important fact that for any operator
A

〈ψE |[A, H]|ψE〉 = 0 ; (220)

in words, that the commutator of any observable with the Hamiltonian has zero
expectation value in all stationary states.
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Consider an N -particle system with a Hamiltonian that has the form familiar
from classical mechanics when the forces are velocity-independent:

H =
N∑

n=1

p2
n

2mn
+ V (x1 . . .xN ) . (221)

Here xn is the coordinate operator for particle n; its eigenvalues will be designated
by rn. To put (216) into the coordinate representation, one takes the scalar product
with a coordinate eigenket |r1 . . . rN 〉. For this purpose recall Eq. 188, which in the
present notation is

〈r1 . . . |pn|ψ; t〉 =
�

i

∂

∂rn
ψ(r1 . . . ; t) . (222)

This then gives the Schrödinger equation in the coordinate representation:

i�
∂

∂t
ψ(t) =

(∑
n

1
2mn

(
�

i

∂

∂rn

)2

+ V (r1 . . . rN )

)
ψ(t) . (223)

If the classical Hamiltonian does not have the simple form (221), and contains
expressions like qp, there is no unique recipe for turning it into a Hermitian operator.
One obvious possibility is qp → 1

2 (qp + pq), but there are others. This ambiguity
vanishes as � → 0, and by the same token classical mechanics does not always
provide a clearcut rule for the move to quantum mechanics because anything that
vanishes as � → 0 is invisible in the classical limit. It is remarkable that in so much
of physics the unmodified classical Hamiltonian can be taken over successfully into
quantum mechanics.

The unitary nature of time evolution leads to conservation laws and continuity
equations involving the probability. These all stem from the following immediate
consequence of Eq. 207: the scalar product of any two solutions of the time-dependent
Schrödinger equation is independent of time.

The constancy in time of the norm 〈ψ; t|ψ; t〉 is perhaps the most important
example. In terms of the coordinate space probability distribution,

w(r1, . . . ; t) ≡ |ψ(r1, . . . ; t)|2 , (224)

the constancy of the norm is

∂

∂t

∫
d3r1 . . . d3rN w(r1, . . . ; t) = 0 . (225)

If the interactions are diagonal in the coordinate representation, a much stronger
statement holds in any infinitesimal region of configuration space, namely,

∂

∂t
w(r1 . . . ; t) +

N∑
n=1

∂

∂rn
· in(r1 . . . ; t) = 0 , (226)

where

in(r1 . . .) =
�

2imn

(
ψ∗ ∂ψ

∂rn
− ψ

∂ψ∗

∂rn

)
. (227)
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This is a continuity equation in the 3N -dimensional configuration space, not in
everyday 3-space, E3; the N -tuple of 3-vectors in is needed to describe flow across
a hypersurface in configuration space, and reflects the fact that the Schrödinger
equation is a wave equation in configuration space, and only a conventional wave
equation in the case of one particle. The global conservation law (Eq. 225) follows
from the local law (226), if the wave function falls off sufficiently at large distances
to have a finite norm.

In the important case of a stationary state, i.e., when ∂w/∂t = 0, the continuity
equation reduces to the condition that the current is divergence free:

∑
n

∂

∂rn
· in = 0 . (228)

To derive (226), note that (216) implies

−i�∂t〈ψ; t| = 〈ψ; t|H (229)

because H must be Hermitian if probability is to be conserved. Using the shorthand
i�∂t〈r|ψ〉 = 〈r|H|ψ〉, etc.,

i�∂t|ψ(r)|2 = 〈ψ|r〉〈r|H|ψ〉 − 〈ψ|H|r〉〈r|ψ〉 . (230)

The potential energy V does not contribute to the right-hand side because it is
assumed to be diagonal in the coordinate representation; the kinetic energy K
gives:

ψ∗(r)〈r|K|ψ〉 − 〈ψ|K|r〉ψ(r) = −
∑

n

�
2

2mn

∂

∂rn
·
(

ψ∗ ∂

∂rn
ψ − ψ

∂

∂rn
ψ∗
)

, (231)

which establishes (226).
If the particles in question are electrically charged, expressions for conventional

charge and current densities, ρ and j, are often needed. These are

ρ(r, t) =
∑

n

en

∫
d3r1 . . . d3rN δ(r − rn) |ψ(r1 . . . ; t)|2 , (232)

j(r, t) =
∑

n

en

∫
d3r1 . . . d3rN δ(r − rn) in(r1 . . . ; t) . (233)

The proof that this density and current satisfy the conventional continuity equation
in E3 is left as an exercise.

The constancy of the scalar product 〈ψ1; t|ψ2; t〉 for two solutions of one Schrödin-
ger equation is also accompanied by a continuity equation when the interaction is
local:

∂

∂t
ψ∗

1ψ2 +
∑

n

�

2imn

∂

∂rn
·
(

ψ∗
1

∂ψ2

∂rn
− ψ2

∂ψ∗
1

∂rn

)
= 0 . (234)

The proof is again left as an exercise.
Thus far we have dealt with the time development of pure states. Let {|a〉} be a

basis that diagonalizes the density matrix at t = 0:

ρ(0) =
∑

a

|a〉pa〈a| . (235)
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At later times, |a〉 → exp(−iHt/�)|a〉, and therefore,

ρ(t) = e−iHt/�ρ(0) eiHt/� . (236)

Note that the probabilities pa do not change with time. The equation of motion for
the density matrix follows by differentiating (236):

i�
d

dt
ρ(t) = [H, ρ(t)] . (237)

This is an important equation, especially in statistical physics. Loosely speaking, it
is the counterpart of Liouville’s equation in classical mechanics, though of course
the latter pertains to phase space.

Finally, consider a system exposed to time-dependent applied forces. The origin
of time is then no longer arbitrary, and the unitary time evolution operator U(t′, t)
depends on both of its arguments, not just the interval t′ − t. These operators now
have the composition law

U(t′′, t′)U(t′, t) = U(t′′, t) , (238)

which states that evolving to t′ followed by evolving to t′′ is the same as evolving
directly from t to t′′. The first question is whether infinitesimal transformations
can still be written in the form of Eq. 211. To answer this, specialize (238) to two
infinitesimal time increments:

U(t + δ2 + δ1, t + δ1)U(t + δ1, t) = U(t + δ2 + δ1, t) . (239)

But U(t + δ, t) = 1 − iF (t, δ) for an infinitesimal δ, with F being an infinitesimal
Hermitian operator, and so (239) requires F (t, δ2) + F (t, δ1) = F (t, δ2 + δ1), i.e.,
that F (t, δ) be proportional to δ. Hence in this case

U(t + δt, t) = 1 − iδt H(t)/� , (240)

where H(t) is the time-dependent Hamiltonian. Therefore

U(t + δt, t′) = U(t, t′) − iδtH(t)U(t, t′)/� , (241)

and so the differential equation (215) holds in the following form

i�
∂

∂t
U(t, t′) = H(t)U(t, t′) . (242)

Hence the Schrödinger equation for a time-dependent Hamiltonian still has the form
of Eq. 216, and the scalar product of any two of its solutions is time-independent.

While the differential equation for U(t, t′) seems to be identical to the one for
a time-independent Hamiltonian, that would be a misperception: in general, it
is no longer possible to integrate the equation even in the formal manner that
previously led to exp(−iHt/�) to obtain U(t, t′) for finite time differences because,
in most situations of physical interest, H(t) does not commute with H(t′) when
t �= t′. (Recall that what made the integration possible (indeed, trivial) in the time-
independent case was that H then behaved like a number.) A major industry has
been devoted for decades to grappling with this time-dependent situation, because
even when the system is isolated and the complete Hamiltonian is time-independent
the perverse notion of turning the problem into a time-dependent one proves to be
very fruitful, as we will see in subsection (e).
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(b) The Heisenberg Picture

In the preceding discussion of time dependence, the state vector or density matrix
changed with time, while the observables did not (unless, of course, they are explic-
itly time-dependent like the Hamiltonian H(t) in Eq. 242.) Because time evolution
is unitary, another equivalent formulation, in which the observables move while the
state stays put, is also available. The former, where the states move is called the the
Schrödinger picture, and the latter where they do not but the observables move, the
Heisenberg picture. The Heisenberg picture is better suited to bringing out funda-
mental features, such as symmetries and conservation laws, and it is indispensable
in systems with many degrees of freedom, like those dealt with in quantum field
theory and statistical physics.

Assume a time-independent Hamiltonian, so that U(t) = exp(−iHt/�). The case
where H depends on t is not different in principle, but of course more complicated.
Let {|ψb; t〉} be a complete set of solutions of the Schrödinger equation, and call
their t = 0 values |ψb〉. The matrix elements of a time-independent observable A in
this moving basis are

〈ψb; t|A|ψb′ ; t〉 = 〈ψb|eiHt/�Ae−iHt/�|ψb′〉 . (243)

This tells us how to put the burden of carrying the time-dependence on the observ-
ables:

• In the Heisenberg picture, kets that describe the time evolution of pure states
are fixed in the Hilbert space, and observables A that are time-independent
in the Schrödinger picture are replaced by operators A(t) that evolve with the
unitary transformation

A(t) = eiHt/� A e−iHt/� . (244)

Observables in the Heisenberg picture therefore obey the equation of motion

i�
d

dt
A(t) = [A(t), H] . (245)

This equation has two immediate consequences of great importance:

• Observables that commute with the Hamiltonian are constants of motion.

• Any one constant of motion can be diagonalized simultaneously with the Ha-
miltonian, i.e, they possess simultaneous eigenstates. The Hamiltonian and a
set of constants of motion can be diagonalized simultaneously provided that
all these constants of motion commute with each other.

One should not be misled by the superficial similarity between the equation
of motion for ρ in the Schrödinger picture (Eq. 237) and the Heisenberg picture
equation (245). The density matrix does not move in the Heisenberg picture, because
the kets that describe the pure states that define ρ (e.g., as in Eq. 235) are fixed in
this picture.

When the Hamiltonian has the familiar form of Eq. 221, the commutation rules
(162) immediately yield the following equations of motion for the canonical coordi-
nates and momenta in the Heisenberg picture:

dqi(t)
dt

=
∂H

∂pi
,

dpi(t)
dt

= −∂H

∂qi
. (246)
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These have exactly the same form as Hamilton’s classical equations of motion.
Of course, integration of the quantum mechanical equations is, in general, a far

more difficult proposition because the dynamical variables do not commute with
each other. This complication is partially absent, however, if the Hamiltonian has
the conventional form (221) and V has only linear and quadratic terms in the
coordinates, for then the equations of motion are linear:

q̇i = pi/mi, ṗi = ai +
∑

j

ωijqj . (247)

Hence the expectation values of qi and pi in any state, whether pure or mixed,
evolve exactly like those of classical mechanics for the important cases of no forces,
a constant force, and harmonic motion. Of course, this does not mean that there
is then no difference between classical and quantum mechanics.

It should be noted that a ket |α〉S that is stationary in the Schrödinger picture will
become the moving ket |α(t)〉H = U†(t)|α〉S in the Heisenberg picture. Furthermore,
if an observable BS(t) is explicitly time-dependent in the Schrödinger picture, its
counterpart in the Heisenberg picture is still given by (244) but obeys the equation
of motion

i�
d

dt
BH(t) = i�

∂

∂t
BH(t) + [BH(t), H] . (248)

Finally, should the Hamiltonian HS(t) itself be time-dependent in the Schrödinger
picture, the transformation (244) is replaced by

AH(t, t′) = U†(t, t′)ASU(t, t′) , (249)

and this also applies to the Hamiltonian. Consequently the equation of motion (245)
becomes

i�
d

dt
AH(t, t′) = [AH(t, t′), HH(t, t′)] . (250)

This situation is illustrated by the interaction picture, which is to be treated in
§2.4(e).

(c) Time Development of Expectation Values

The Heisenberg picture is well suited to addressing the question of how expectation
values evolve in time quite generally. For the Hamiltonian (221), the Heisenberg
equations of motion are

dqi(t)
dt

=
1

mi
pi(t) ,

dpi(t)
dt

= −∂V

∂qi
≡ Fi , (251)

where Fi is the force operator.
Let q̄i(t), etc., denote the expectation values 〈qi(t)〉 in an arbitrary state. Then

dp̄i(t)
dt

= 〈F (q1(t) . . . , qf (t))〉 ,
dq̄i(t)

dt
=

1
mi

p̄i(t) . (252)

These would be Newton’s equations for the expectation values if the following
replacement were valid:

〈F 〉 −→ F (q̄1, . . . , q̄f ) , (253)
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where it is to be understood that the q̄i are time-dependent. To see what this
approximation would entail, expand the force operator about the expectation values
of the coordinates:

Fi(q) = Fi(q̄)+
∑

j

(qj − q̄j)
∂Fi

∂qj

∣∣∣∣
q̄

+
1
2

∑
jk

(qj − q̄j)(qk − q̄k)
∂2Fi

∂qj∂qk

∣∣∣∣
q̄

+ . . . . (254)

The linear term in the deviation from q̄i drop out when the expectation value is
taken, which then results in approximate equations for the expectation values of
the momenta:

dp̄i

dt
� Fi(q̄) +

1
2

∑
jk

∆jk(t)
∂2Fi

∂qj∂qk

∣∣∣∣
q̄

, (255)

where
∆ij(t) = 〈qi(t)qj(t)〉 − q̄i(t)q̄j(t) . (256)

Once again, we see that there are no corrections unless the forces are nonlinear.
The size of the correction term in (256) depends both on the state and the forces.

No generally valid statement about its magnitude can be made. This can already
be seen in the simplest case, that of a free particle. In this case (see Prob. 8)

〈q2
i (t)〉 − 〈q2

i (0)〉 =
t

mi
〈qi(0)pi + piqi(0)〉 +

t2

m2
i

〈p2
i 〉 , (257)

where there is no sum over the index i, and the coordinate system is chosen so as
to make p̄i = q̄i(0) = 0. Hence for large values of t,

∆qi(t) −→ t
∆pi

mi
� t

�

mi∆qi(0)
, (258)

where the latter is based on the uncertainty principle. The rate at which the quan-
tum mechanical spreading grows is therefore inversely proportional to both the
mass and the initial spread. It should be noted, however, that in this force-free
case, the spreading is just that of a set of classical free particle trajectories with ini-
tial spreads ∆qi(0), ∆pi(0). In this case, the appearance of � in (258) is due entirely
to the requirement that the initial spreads satisfy the uncertainty principle.

(d) Time-Energy Uncertainty

Because it is not possible to define a sensible operator that has time as its spectrum,
the time-energy uncertainty relationship is not expressible as one unambiguous
theorem to which all must agree, as is the case for uncertainty relationships between
the canonical variables and other pairs of dynamical observables.

Nevertheless, given a dynamical system it is usually possible to define one or
more operators that play the role of a clock. A vivid and instructive example is
the motion of a particle of charge e and mass m in a uniform magnetic field B, a
problem that will be solved in detail in §4.3. The classical Hamiltonian for motion
in the x − y plane perpendicular to the field is

H = 1
2 (ẋ2 + ẏ2) . (259)
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This is a quadratic form, and the detailed quantum mechanical solutions are not
needed for our purpose: by the theorem stated following Eq. 247, the mean values
of the dynamical variables in any wave packet move classically, i.e., with constant
angular velocity ωc on circles, where ωc = eB/mc is the cyclotron frequency. This
system will therefore toll time with an accuracy ∆T proportional to the sharpness of
the clock hand, which is the angular width ∆θ of the packet. The natural definition
is ∆T = ∆θ/ωc, so that ∆T equals the period when ∆θ = 2π.

y

x

R̄

Fig. 2.2. A quantum clock formed by a charged particle wave packet moving in a homo-
geneous magnetic field perpendicular to the plane of the page.

A definition of ∆θ in terms of the dynamical variables is needed which does not
suffer from the singularities that afflict trigonometry, such as θ = arctan y/x. For
that reason, we choose a coordinate system whose origin is at the center of the
circle, and such that at the instant t of interest the packet is then passing across
the x-axis (see Fig. 2.2). Angular positions within a packet are at that instant given
by y/R̄, where R̄ is the r.m.s. radius of the circular orbit. We therefore define a
“time” operator T , whose dispersion will be a measure of the clock’s precision, by

T = y/R̄ωc . (260)

The general uncertainty relation for non-commuting observables (Eq. 203) when
applied to such a non-stationary state, then gives

∆T ∆E ≥ 1
2R̄ωc

|〈[y, H]〉| ≥ �

2R̄ωc
〈ẏ〉 (261)

because of (245). Continuing to take advantage of the classical solution, we have
〈ẏ〉 � R̄ωc, where we have refrained from an equal sign because we are glossing over
any difference between the mean and the r.m.s. radius. With this caveat, we have

∆T ∆E � 1
2 � . (262)

This is the time-energy uncertainty relation for this particular system with this rea-
sonable, but neither unique nor perfectly precise, definition of the time uncertainty.

An arbitrary wave packet will change in angular size, and so the right-hand side
of (261) is, in general, a function of time, a fact that is not reflected in the rough
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inequality (262). As we shall learn in §4.3(c), in the case of motion in a uniform
magnetic field, there is a special set of packets, called coherent states, which do
not change in shape, for which the uncertainty product is therefore constant, and
which, furthermore, have the minimal time-energy uncertainty product ∼ �. This
too is a special property of quadratic Hamiltonians.

To generalize from this example, consider an observable Y (t) built from the
dynamical variables of the system, which is to serve as the pointer of a dynamical
“clock.” Then, as in (261),

∆Y (t) ∆E ≥ 1
2 |〈[Y (t), H]〉| ≥ 1

2� 〈Ẏ (t)〉 . (263)

Now define

∆T (t) ≡ ∆Y (t)
〈Ẏ (t)〉

. (264)

Then
∆T (t) ∆E ≥ 1

2 � . (265)

This is a quite general time-energy uncertainty relationship; the quantity ∆T (t) is
a time characteristic both of the system and the state in question, and ∆E is the
spread in energy of the stationary states that are superposed to form the state. We
have emphasized that, in general, both the numerator and denominator in Eq. 264
are functions of t, so ∆T is only a constant under special conditions. On the other
hand, ∆E is time-independent if H is.

Instead of using some observable of the system to act as a clock, the issue can
also be phrased as follows. We start at t = 0 with a system in a non-stationary
state |Φ〉, and ask for the probability that the evolving system is still in |Φ〉 at a
later time t:

P (t) = |〈Φ|e−iHt/�|Φ〉|2 =
∣∣∣∣
∫ ∞

0
dE e−iEt/� wΦ(E)

∣∣∣∣
2

, (266)

where
wΦ(E) =

∑
a

|〈Ea|Φ〉|2 , (267)

a being the eigenvalues of the observables other than H. There are various ways
in which one can characterize the time dependence of P (t), and for general energy
distributions wΦ the analysis involved is a subtle matter.1 In analogy with (264),
we can define the function

τ(t) =
P (t)

dP (t)/dt
. (268)

It can then be shown that
〈τ〉 ∆E � γ � , (269)

where 〈τ〉 is some useful time average of (268), (∆E)2 = 〈(H − 〈H〉)2〉, and γ is a
number of order 1 that depends somewhat on wΦ.

Clearly, there is only one circumstance under which the definition (268) gives a
function τ(t) that is time-independent: P (t) = e−t/τ , the exponential decay law,
with τ called the lifetime (not the half life τ1/2 = τ ln 2). This form of P (t) applies

1P. Pfeifer and J. Fröhlich, Rev. Mod. Phys. 67, 759 (1995).
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to very high accuracy in many phenomena, and we shall study some examples later
in this volume. The spectral density wΦ(E) that leads from (266) to the exponential
decay law is

wΦ(E) =
1
π

1
2Γ

(E − E0)2 + 1
4Γ2 . (270)

When Γ � E0, the integral in (266) is readily evaluated (Prob. 7), and gives

P (t) = e−Γt/� , (271)

or
τ = �/Γ . (272)

Γ is a measure of the spread in energies of the distribution (270), and for that
reason is called the width of the decaying state. Thus we see that the time-energy
uncertainty relation is obeyed by the exponential decay law.

It should be noted that the exponential law is not a rigorous consequence of the
distribution (270), and it is generally true that for times very short and very long
compared to the lifetime there are departures from exponential decay. However, in
the very important phenomena where the lifetime is far longer than the character-
istic periods of the decaying system, such as beta decay or the radiative decay of
excited states, the corrections to exponential decay are usually far too small to be
observed.

(e) The Interaction Picture

Because the evolution of a system can be described either with stationary observ-
ables and moving state vectors, or the other way around, it is clear that descriptions
in which both move are also available. Consider the case of a system whose Hamil-
tonian has the form H0 +V , where both operators are time-independent, and H0 is
simple enough so that the time evolution it alone generates is known, but not that
of the full Hamiltonian. An important example is scattering, with H0 being the
Hamiltonian of the free projectile and target, and V the interaction between them,
without which there is no scattering. In this case the initial state, well before the
collision, is a solution of the Schrödinger equation governed by H0, but once the two
objects come within range the evolution of the state is governed by H0 + V. It can
then be useful to remove the “trivial” time dependence due to H0. The description
that does this is called the interaction picture.

Let |ψ; t〉S be a state in the Schrödinger picture. Its counterpart in the interaction
picture is then

|ψ; t〉I = eiH0t/�|ψ; t〉S ; (273)

were there no interaction V , the left-hand side would be time-independent, i.e., in
the Heisenberg picture. To obtain the equation of motion for |ψ; t〉I , one substitutes
|ψ; t〉S from (273) into the Schrödinger equation, and multiplies from the left by
eiH0t/�:

eiH0t/� (i�∂t − H0 − V ) e−iH0t/� |ψ; t〉I = 0 . (274)

This then yields the sought-for equation:(
i�

∂

∂t
− VI(t)

)
|ψ; t〉I = 0 , (275)
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where
VI(t) = eiH0t/� V e−iH0t/� (276)

is V in the interaction picture.
We have already learned how, at least in principle, to find the time evolution

when the Hamiltonian is time-dependent: namely, by solving Eq. 242. That is to
say, in the interaction picture the movement of states is given by

|ψ; t〉I = UI(t, t′)|ψ; t′〉I , (277)

where UI is the solution of(
i�

∂

∂t
− VI(t)

)
UI(t, t′) = 0 , (278)

with the initial condition UI(t, t) = 1. This equation can only be solved directly if
[VI(t), VI(t′)] = 0 when t �= t′. In this case, VI(t) is in effect a c-number, and

UI(t, t′) = exp
(

− i

�

∫ t

t′
dτ VI(τ)

)
. (279)

A complete solution is also known if the commutator [VI(t), VI(t′)] is a c-number.1

In all but such exceptional cases, indeed, in almost all situations of real interest, no
closed form solution is known. On the other hand, the solution in powers of V has
been of enormous value. It is most easily derived form the integral equation that
contains both the differential equation (278) and the initial condition:

UI(t, t′) = 1 − i

�

∫ t

t′
dτ VI(τ) UI(τ, t′) . (280)

By iteration this gives the Dyson expansion for the time evolution in the interaction
picture:

UI(t, t′) = 1 − i

�

∫ t

t′
dτ VI(τ) +

(
i

�

)2 ∫ t

t′
dτ

∫ τ

t′
dτ ′ VI(τ) VI(τ ′) + · · · . (281)

2.5 Symmetries and Conservation Laws

Symmetries and conservation laws have a familiar relationship in classical phys-
ics. For a system whose Hamiltonian is invariant under both spatial translations
and rotations, the linear and angular momenta are all constants of motion. This
connection holds also in quantum mechanics, as will be shown shortly, though it
has a somewhat different meaning because these six constants of motion do not all
commute with each other. The other symmetry that plays a major role in classical
physics concerns the relationship between inertial frames in relative motion, im-
plemented by Galileo or Lorentz transformations, which are taken up in §7.3 and
13.2.

1J. Schwinger, Phys. Rev. 75, 651 (1949).
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The symmetries just mentioned are continuous. The discrete symmetries of space
reflection and time reversal are also important in classical mechanics and electrody-
namics, but in quantum mechanics their implications are stronger. Finally, while it
is a common thing in classical mechanics to consider systems of particles that have
identical masses and other attributes, their indistinguishability has no particular
consequence in the classical framework, whereas in quantum mechanics indistin-
guishability has enormous ramifications, as we will learn in chapters 6 and 12.

(a) Symmetries and Unitary Transformations

It is important to have a clear understanding of what is, and is not, meant by a
symmetry. Let F and F ′ be two inertial frames related by one or more of the fol-
lowing: a translation in space or time, a spatial rotation, a uniform relative motion,
a reflection in space, a reversal in time. Consider a system S prepared in arbitrary
states |Ψα〉, |Ψβ〉, . . . to certain specifications by observables attached to F, and the
states |Ψ′

α〉, |Ψ′
β〉, . . . of S satisfying precisely the same specifications by observ-

ables attached to F ′. On the assumption that these frames are equivalent, all the
probabilities relating the states prepared in F must be equal to the corresponding
relations in F ′:

|〈Ψα|Ψβ〉|2 = |〈Ψ′
α|Ψ′

β〉|2 . (282)

Were this not so, the probabilities could be used to distinguish between F and F ′.
To carry this home, think of (282) as it applies to a one particle system, a state

|Ψp〉 of momentum p along the x-axis of F , another state |Ψlm〉 of total angular
momentum l and projection m along the z-axis of F , the probability |〈Ψp|Ψlm〉|2,
and of the states having exactly these properties but with respect to a frame F ′

which is obtained by a rotation about the y-axis of F .
Note that according to the definitions used in (282), the condition of S described

by the state |Ψ′
α〉 differs from the condition described by |Ψα〉 in that in the former

S has been moved in some manner with respect to the latter as seen from the
frame F ; this is called the active description. There is another, equivalent, way of
describing the situation: leaving the object fixed and defining |Ψ′

α〉 to be state of
this fixed object as observed from F ′; this is called the passive description. In this
book we always use the active description.

We stress that (282) is not a statement about interactions or dynamics — only
about the properties of space and time. Eq. 282 must hold whatever the forces
internal to or acting on the system S may be.

The probabilities in (282) will be equal if the corresponding probability ampli-
tudes are equal apart from a phase factor,1

〈Ψα|Ψβ〉 = eiλ〈Ψ′
α|Ψ′

β〉 . (283)

The indifference of the physical consequences to the phase factor is a restatement
of the fact that quantum mechanics lives, so to say, in a ray space and not a Hilbert
space. If the physically relevant space were a Hilbert space, and an arbitrary phase
were inadmissible, then demanding that (282) hold for all Hilbert space vectors
would require the kets |Ψ′

α〉 to be related to the kets |Ψα〉 by a unitary transfor-

1The case of time reversal is more complicated; see §7.2.
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mation, for it is unitary transformations that leave scalar products invariant in
complex vector spaces.

One might well fear that the admissibility of the phase factor would greatly
complicate matters, but that is not so. The previously mentioned theorem due to
Wigner states that there is just one physically important symmetry, time reversal,
that cannot be implemented with a unitary transformation. Until chapter 7 we
will, therefore, always resort directly to unitary transformations without mentioning
these complications.

(b) Spatial Translations

Spatial translations were discussed in §2.3(a), but they merit a closer look because,
while being especially simple, they introduce concepts that are important in more
complicated symmetries.

Recall, first, that the unitary operator for a spatial translation a is

T (a) = e−iP · a/� , (284)

where P is the total momentum operator for the system in question, and a is a
numerical 3-vector. From geometry we know that spatial translations along different
directions commute with each other, and therefore we demand that

[Pi, Pj ] = 0 . (285)

Let xn be the coordinate operator of particle n. By its very definition, a coordinate
operator must have the following behavior under translation:

T †(a)xnT (a) = xn + a . (286)

If |ψ〉 is any state, then
T (a)|ψ〉 = |ψ; a〉 (287)

is that state displaced through the distance a. (In this connection, recall Eq. 167
and Eq. 168.)

The eigenvalues of xn will, as before, be called rn. Then the coordinate eigenkets
are transformed as follows:

T (a)|r1, . . .〉 = |rn + a, . . .〉 , T †(a)|r1, . . .〉 = |rn − a, . . .〉 . (288)

The original and spatially transformed wave function are, by definition,

ψ(r1, . . .) = 〈r1, . . . |ψ〉 , ψ′(r1, . . .) = 〈r1, . . . |T (a)|ψ〉 (289)

Hence
ψ′(r1 . . .) = ψ(r1 − a, . . .) . (290)

Note carefully that the coordinates on the right-hand side of this relationship have
been translated in the direction opposite to that of the state |ψ〉. Furthermore, from
T †T = 1 it follows immediately that

ψ′(r1 + a . . .) = ψ(r1 . . .) . (291)
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Equations (291) and (290) are special cases of general results that holds for
all unitary transformation. Namely, if P ′ is the image of the point P under any
transformation τ , i.e., if P ′ = τP , and |ψ〉 and |ψ′〉 any state and its image under
τ produced by the unitary operator U(τ), then the transformation laws for wave
functions are

ψ′(P ′) = ψ(P ) , (292)

and
ψ′(P ) = ψ(τ−1P ) . (293)

The geometrical explanation for this important and generic fact is illustrated be-
low for the case of rotations. Now let F (xn) be any observable constructed from
coordinates. Then

T †(a)F (xn)T (a) = F (xn + a) . (294)

In particular, for an infinitesimal translation,

F (xn + δa) = F (xn) +
i

�

∑
i

δai[Pi, F (xn)] . (295)

Hence if a function of the coordinates is invariant under a translation along the ith
direction, it commutes with that component of the total momentum.

The connection between the momentum conservation law and invariance un-
der spatial translation now follows in close analogy to that of classical mechanics.
Namely, if the Hamiltonian is invariant under spatial translations, the total momen-
tum commutes with the Hamiltonian and is therefore a constant of motion. The last
part of this statement is a special case of the general theorem that observables that
commute with H are constants of motion. Equation (294) also tells us that if H
is only invariant under translations along one direction (or in one plane), only the
momentum along that direction (or in that plane) is a constant of motion.

(c) Symmetry Groups

By considering a sequence of translations, one is led quite naturally to the concept
of a group of symmetries. Take the translation through a followed by b:

T (b)T (a) = T (a + b) . (296)

Because the argument of the composite translation is the sum of a and b, the
order in which these translations are carried out does not matter; they commute.
Of course, we already knew that because the various components of P commute
with each other, but this tells us that [Pi, Pj ] = 0 is a requirement set by Euclidean
geometry itself, not dynamics. The special case b = −a, which just undoes the first
translation, is also of interest:

T (a)T (−a) = T (a)T †(a) = T (0) = 1 , (297)

where 1 expresses the fact that no change is produced.
The relations (296) and (297) show that the operators T (a) form an Abelian Lie

group of unitary operators standing in one-to-one correspondence with the group of
translation in the Euclidean 3-space E3.

This wallop of jargon will now be explained because it plays so large a role in
the discussion of symmetries in quantum mechanics.
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• A group G is a finite or infinite set of elements (g1, g2, . . .) having a compo-
sition law for every pair of elements such that g1g2 is again an element of G;
which is associative, i.e., (g1g2)g3 = g1(g2g3); and with every element gi hav-
ing an inverse g−1

i such that gig
−1
i is the identity element I, i.e., Igi = giI = gi

for all i.

• A group is Abelian if all its elements commute, i.e., g1g2 = g2g1 .

• A group with an infinite set of elements is a Lie group if its elements can be
uniquely specified by a set of continuous parameters (z1 . . . zr).

Two distinct but closely related groups are in play in the case of translations:
both are Abelian Lie groups, parametrized by the components of a 3-vector a.
One is the group of translations in every-day Euclidean 3-space, E3; it is Abelian
because translations along different directions commute. The second is a group of
unitary operators in Hilbert space; it is Abelian because the components of the total
momentum P operator commute with each other. Their one-to-one correspondence
is implemented by giving the elements of both groups the same parametrization
and the same composition laws.

It would, therefore, be natural to say that the unitary operators T form a repre-
sentation of the translation group in Hilbert space. But the term “representation”
is, by tradition, reserved for matrices whose multiplication law stands in one-to-one
correspondence with the algebra of the group. That is, if {|ξ〉} is any basis in H,
the matrices with elements 〈ξ|T |ξ′〉 form a representation of this group in that∑

ξ′′
〈ξ|T (a)|ξ′′〉〈ξ′′|T (b)|ξ′〉 = 〈ξ|T (a + b)|ξ′〉 , (298)

which is true by virtue of (296).
In equating sequences of transformation to products of unitary transformations,

as we have done starting with (296), we have ignored the fact that multiplying the
product by an arbitrary phase would not have any physical consequence because
physical states are rays and not vectors. That is to say, if τi stands for the parameters
specifying some particular transformation (such as a in the case of a translation),
τ2τ1 for the parameters that specify the indicated sequence of transformations, and
U(τi) the corresponding unitary operators, then in contrast to (296) or (298), we
are free to write

U(τ2)U(τ1) = eiλ U(τ2τ1) . (299)

Once again, one could worry that ignoring the phase factor is illegitimate. However,
it is only for Galileo transformations that this issue matters, as we shall see in §7.3;
in all other cases the phases of the states can be chosen so that there is no phase
factor in the product of unitary transformations.

Next, consider the generalization of the infinitesimal translation δa,

T = 1 − iδa · P /� . (300)

Quite generally, if a unitary operator U(z1 . . . zr) carries out a transformation be-
longing to a Lie group, then if the transformation is infinitesimal it has the form

U = 1 − i

r∑
l=1

δzl Gl , (301)
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where the operators Gl, which must be Hermitian for U to be unitary, are called
the generators of the group G. In the case of the spatial translation group, the
generators are the three components of the total momentum P (for convenience
divided by � to give them the dimension of momentum). The algebra obeyed by
the generators as defined by their commutators is called the Lie algebra of G. It is
called Abelian if the generators commute, as they do for the translation group.

Because it is just Euclidean geometry that defines the properties of the transla-
tion group, the Lie algebra associated with this group cannot depend on quantum
mechanics for its construction. To see this, let f(x1x2x3) be any function of the
coordinates in E3, taken now to be real numbers and not operators, and consider
the infinitesimal translation xi → xi + δai. Then

δf = f(xi + δai) − f(xi) =
∑

i

δai
∂f

∂xi
; (302)

in this formulation the differential operators ∂/∂xi are the commuting infinitesimal
generators. Putting this into the form

δf =
i

�

∑
i

δai
�

i

∂f

xi
, (303)

shows how the momentum in the Schrödinger representation is related to translation
in space.

Equation (302) is actually (295) in another guise, which can be seen by recalling
Eq. 162 rewritten in the notation being used here:

[pn, F (x1 . . .xN )] =
�

i

∂F

∂xn
, [xn, G(p1 . . .pN )] = i�

∂G

∂pn

; (304)

thus
δF =

∑
n

δa · ∂F

∂xn
=

i

�

∑
n

[δa · pn, F ] , (305)

which is (295).
If the Lie algebra is non-Abelian, it is not straightforward to construct the unitary

transformations for finite values of all the parameters. However, for the subgroup
defined by setting all but one parameter, which we call z, to zero, it is straightfor-
ward to construct a finite transformation because only one generator, G, is involved,
so that it behaves like a number as nothing with which it does not commute is
involved. Then the argument that led to the time translation operator (Eq. 213)
carries through as it stands, and so for this subgroup

U(z) = e−izG . (306)

(d) Rotations

Many of the systems of interest in quantum mechanics are either exactly or approx-
imately invariant under rotations. However, rotations about different axes do not
commute, and therefore the rotation group is non-Abelian, which makes its analy-
sis quite complicated. For these reasons a significant portion of this volume will be
devoted to developing this analysis and applying it to various physical problems.
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The parametrization of rotations in E3 can be done in a variety of ways. Here
we will specify a rotation R by the unit vector n along an axis of rotation, and
an angle of rotation θ about that axis, with the convention that the rotation is
counterclockwise when looking along n towards the origin, and 0 ≤ θ ≤ 2π.

As with translations, a great deal can be learned from infinitesimal transforma-
tions. An infinitesimal rotation will be parametrized by

δω = n δθ . (307)

Under this rotation, a vector K in E3 transforms as follows:

K → K + δω×K ≡ K + δK , (308)

or in terms of Cartesian components,

δKi = εijkδωjKk , (309)

where εijk is the totally antisymmetric Levi-Civita tensor, with ε123 = 1.
If K is written as a column 3-vector, rotations through any angle can be carried

out with the help of the following 3 × 3 matrices:

I1 =


 0 0 0

0 0 −i
0 i 0


 , I2 =


 0 0 i

0 0 0
−i 0 0


 , I3 =


 0 −i 0

i 0 0
0 0 0


 . (310)

A finite rotation of K about a single axis, say, about the axis 1 through the angle
φ1, is accomplished by

K → K ′ = e−iφ1I1 K . (311)

Successive rotations of K about distinct axes do not commute, a fact that is cap-
tured in the commutation rule

[Ii, Ij ] = iεijk Ik . (312)

Quantum mechanics enters by assigning, to every rotation R in E3, a unitary
transformation D(R) on the Hilbert space H of the system of interest. To be con-
crete, one can think of K as a vector in everyday E3 that identifies some point in an
apparatus that is used to prepare or measure states of the system. Consistency re-
quires the correspondence between rotations in E3 and the unitary transformations
in H to be maintained when two (or more) rotations are carried out in succession.
Let R2R1 be the rotation in E3 that results from carrying out R1 followed by R2.
The consistency requirement is then

D(R2R1) = D(R2) D(R1) . (313)

As rotations in E3 do not commute, it is clear that in general

D(R1)D(R2) �= D(R2)D(R1) . (314)

The exception is the set of successive rotations about one, and only one axis n.
The argument that led to the general result (306) implies that such rotations can
be written in the form

D(R) = exp(−iθn · J) , (315)
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where the Hermitian generator n · J is, by definition, the component of angular
momentum along the direction n.

The implications of the requirement (313) emerge from considering two successive
infinitesimal rotations about two distinct axes, say, through (δφ1, δφ2) about the
axes 1 and 2, in both possible orders:

K ′ = (1 − iδφ2I2 + . . .)(1 − iδφ1I1 + . . .) K , (316)
K ′′ = (1 − iδφ1I1 + . . .)(1 − iδφ2I2 + . . .) K . (317)

These two rotated vectors are not identical:1

K ′′ − K ′ = {−δφ1δφ2(I1I2 − I2I1) + . . .}K = {−iδφ1δφ2 I3 + O(δφ3)}K . (318)

The correspondence to the unitary operators D(R) must maintain this difference.
In view of (315), they must thus satisfy

lim
δφi→0

(
e−iδφ1J1 e−iδφ2J2 − e−iδφ2J2 e−iδφ1J1

)
= −iδφ1δφ2 J3 + O(δφ3) . (319)

Hence [J1, J2] = iJ3, and in general,

[Ji, Jj ] = iεijk Jk . (320)

This is the angular momentum commutation rule.
This derivation of the angular momentum commutation rule relied on no as-

sumption concerning the dynamical variables of some system.2 It therefore applies
to all systems, whether they be composed of structureless particles with no inter-
nal degrees of freedom; or particles that have an intrinsic angular momentum, or
spin, which is not a function of canonical coordinates and momenta; or the quan-
tized electromagnetic field. Whatever the system may be, we have been speaking
of rotating the system as a whole, and J is therefore the system’s total angular
momentum. (One can, of course, imagine rotations of some component of a system,
and the same geometrical argument will then lead to the same commutation rule
for the angular momentum of that component.)

Let A be any observable. Under the rotation R it undergoes the unitary trans-
formation

A → D†(R) A D(R) . (321)

If R is infinitesimal,

A → A + δA , δA = iδθ [n · J , A] . (322)

Hence if an observable is invariant under rotations about n, it commutes with the
corresponding component of angular momentum. An observable that is invariant
under rotations about all directions is called a scalar under rotations.

1The generalization of this result to arbitrary infinitesimal rotations is the subject of Prob. 10.
2While (320) follows from (312) by Ii → Ji , this is only a mnemonic; Ii is a 3×3 matrix acting

on garden variety 3-vectors whereas Ji is an operator in a Hilbert space that is only specified when
the system in question is identified. As we shall see in §3.3, the Ii are the angular momentum
operators in the 3-dimensional (or j = 1) representation, though not in the conventional form in
which the 3-component is diagonal.
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The angular momentum conservation law now follows as it does for linear momen-
tum: If the Hamiltonian is invariant under rotations about an axis, the component
of the total angular momentum along that axis is a constant of motion.

All sorts of quantities that are not scalars play important roles in physics. A
general classification of non-invariant observables will be given in §7.6; here we
only treat the most important and simplest class — vector operators. By definition,
a set of three observables (V1, V2, V3) = V is called a vector operator if it transforms
under rotations in the same way as does the c-number vector K in (308):

δV = iδθ [n · J ,V ] = δθ n×V . (323)

In short, the definitions (308) and (323) are completely general — whether the
vector is the line from this word to your nose, or the momentum operator of a
neutron in some nucleus. Or put another way, anything that transforms in this way
is a vector.

The coefficients of ni in (323) must be equal, and V must therefore obey the
commutation rule1

[Vi, Jj ] = iεijk Vk . (324)

Any set of three observables that satisfy this commutation rule with the angular
momentum constitute a vector operator. In particular, the angular momentum J is
itself a vector operator, as comparison of (324) to (320) shows, and common sense
requires.

It is instructive to verify that the unitary transformation (321) does properly
transform a vector operator under finite rotations. For this purpose it suffices to
consider a rotation about any one axis. Define

Vi(θ) = eiθJ3Vie
−iθJ3 . (325)

Then
dVi(θ)

dθ
≡ V̇ (θ) = ieiθJ3 [J3, Vi]e−iθJ3 , (326)

so V̇1 = −V2, V̇2 = V1, V̇3 = 0. Therefore V̈i = −Vi for i = 1, 2, which after
integration gives the proper answer:

eiθJ3V1e
−iθJ3 = V1 cos θ − V2 sin θ , eiθJ3V2e

−iθJ3 = V2 cos θ + V1 sin θ . (327)

The total momentum P of a system, being a vector, does not commute with the
total angular momentum; only components of P and J along the same direction
commute.

The scalar product of two vector operators is invariant under rotation, and must
therefore commute with J , as is easily confirmed by applying (324) to V 1 · V 2 . In
particular, therefore, J2 and P 2 both commute with J , and also each other.

While all components of P and J are constants of motion if the Hamiltonian is
invariant under translations and rotations, they cannot all be diagonalized simulta-
neously. Hence it is not possible to construct simultaneous eigenstates of all these
six constants of motion. In addition to the rotational scalars P 2, J2 and P · J , one
component of angular momentum, traditionally defined to be J3, can be diagonal-
ized simultaneously, and states can be designated by the associated eigenvalues.

1In the older literature this commutation rule is often written as V ×J = iV .
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As an illustration of this totally general discussion, consider a single particle
with position and momentum operators x and p. The orbital angular momentum
operator L for this particle is then defined as

L = (x×p)/� , (328)

or
Li = εijkxjpk/� . (329)

The factor 1/� in the definition of L, and the absence of � in (320), have the
consequence that all angular momenta are dimensionless, a convention that will be
adhered to throughout. It should also be mentioned that the order of xj and pk in
(329) does not matter because only commuting factors appear in Li.

The commutation rule for the orbital angular momentum now follow from (329)
when the canonical commutation rule [xi, pj ] = iδij� is used:

[Li, Lj ] = iεijk Lk . (330)

That this is identical in form to the general rule (320) is simply a consequence of
the requirement that the rotations in E3 are to be translated into unitary operators
in one and the same way no matter what the system may be. Furthermore, from
the canonical commutation rules

[xi, Lj ] = iεijk xk , [pi, Lj ] = iεijk pk . (331)

Hence x and p are vector operators, again as common sense requires.
The role of the orbital angular momentum operator in rotations can also be seen

in a slightly different light as follows. Let ψ(r) be some wave function, where r =
(r1, r2, r3) is the eigenvalue of x. Under a infinitesimal rotation about n = (0, 0, 1),
the change in ψ is

δψ(r) = ψ(r1 − r2δθ, r2 + r1δθ, r3) − ψ(r1, r2, r3)

= −δθ

(
r2

∂

∂r1
− r1

∂

∂r2

)
ψ(r)

= δθ
i

�
(x1p2 − x2p1)ψ(r) = iδθ L3 ψ(r) ,

(332)

where in the last expressions the pi and Li have become differential operators. This
too is required by consistency, because under a rotation R, the state |ψ〉 and the
eigenket |r〉 of x undergo the transformations

|ψ〉 → D(R)|ψ〉 ≡ |ψ′〉 , |r〉 → D(R)|r〉 = |Rr〉 , (333)

where Rr is the rotated image of r. The wave function therefore transforms as
follows:

〈r|ψ〉 → 〈r|D(R)|ψ〉 = 〈R−1r|ψ〉 , (334)

and therefore
ψ′(r) = ψ(R−1r) . (335)

This illustrates the general relationship Eq. 293.
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When R is the infinitesimal rotation of (332), this last equation becomes

ψ(r) → ψ′(r) = (1 + iδθL3) ψ(r) , (336)

where L3 is again the differential representation of the operator. The sign difference
between (336) and D = 1 − iδθL3 results from the fact that when an object (here
the state |ψ〉) is rotated through R, the point that is then on the object at r was
originally located at R−1r in the fixed coordinate frame (see Fig. 2.3). Note that
this last statement, and our whole treatment of rotations, has been in the active
mode.

ψ

ψ′

r

R−1r

R

Fig. 2.3. The relationship between rotated states (Eq. 334) as an example of the general
case (Eq. 293). The curves are contours of ψ = const.

(e) Space Reflection and Parity

Vectors that change sign under a reflection through the origin are called polar
vectors, and those that do not change sign are called axial vectors. Coordinates,
momenta and electric fields E are polar vectors, whereas angular momenta and
magnetic fields B are axial vectors. A quantity like E · B, which is invariant under
rotations but changes sign under reflection, is called a pseudoscalar. It is sometimes
convenient to reflect through a plane instead of the origin, but there is no funda-
mental distinction between these as they are related by a rotation of π about the
normal to the reflection plane. Unless stated otherwise, the term “reflection” will
mean through the origin.

Space reflection is implemented by a unitary operator Is. By definition, it has
the following effect on positions and momenta:1

I†
sxnIs = −xn, I†

spnIs = −pn , (337)

and therefore the opposite effect on angular momenta:

I†
sJIs = J . (338)

1The canonical commutation rule is, therefore, invariant under space reflection. Time reversal
only changes the sign of p, but not of x, and therefore it would not leave the canonical commutation
rule invariant if it were implemented by a unitary transformation. For this, and other related
reasons, a non-unitary transformation is involved in time reversal, as will be discussed in §7.2.
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Let |ψ〉 be some state. It may or may not be an eigenstate of Is. However, if it
is, and has eigenvalue is, i.e., if

Is|ψ〉 = is|ψ〉 , (339)

then because (Is)2 = 1, it follows that

is = ±1 . (340)

This eigenvalue (or quantum number) is called the parity. It has no counterpart in
classical mechanics, but plays a crucial role in quantum mechanics.

If the Hamiltonian is invariant under reflection, parity is a constant of motion
and energy eigenstates can be assigned a definite parity — even or odd. The words
“can be” appear here because it does happen (e.g., in hydrogen!) that even though
the Hamiltonian is reflection invariant energy eigenstates of different parity are
degenerate, and when that is so linear combinations of states of differing parity are
also energy eigenstates.

Linear and angular momentum are additive constants of motion. This statement
has the following simple meaning: If {Si} is a set of N non-interacting systems,
then this set has states of the form

|Ψ〉 = |ψ(S1)〉 ⊗ . . . ⊗ |ψ(SN )〉 , (341)

and if |ψ(Si)〉 are eigenstates of, say, momentum with eigenvalue P i, then |Ψ〉 is
an eigenstate of momentum with an eigenvalue that is the sum of those of the con-
stituents. This statement holds also for any one component of angular momentum,
and for the energy.

By contrast, parity is a multiplicative quantum number. For the state defined in
(341), in an obvious notation

is =
∏
k

is(Sk) . (342)

(f) Gauge Invariance

Gauge invariance is a symmetry that arises in classical electrodynamics, but it has
flowered into a theme of central importance in the generalizations of electrodynam-
ics to the other fundamental interactions of physics.

In electrodynamics it is often advantageous to replace the electric and magnetic
field strengths by the scalar and vector potentials φ(r, t) and A(r, t):

E(r, t) = −∇φ(r, t) − 1
c

∂

∂t
A(r, t) , (343)

B(r, t) = ∇ × A(r, t) . (344)

The field strengths are left invariant under the gauge transformation

A(r, t) → A′(r, t) = A(r, t) + ∇χ(r, t) , (345)

φ(r, t) → φ′(r, t) = φ(r, t) − 1
c

∂

∂t
χ(r, t) , (346)
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where χ(r, t) is an arbitrary (smooth) function. In short, the field strengths have
an invariant physical meaning, whereas potentials that differ only by gauge trans-
formations represent the same physical situation in classical physics.

The classical Hamiltonian for a system of charged particles is turned into the
operator H in Schrödinger’s equation by the standard recipe

pn → �

i

∂

∂rn
, (347)

so that

H =
N∑

n=1

{
1

2mn

(
�

i

∂

∂rn
− en

c
A(rn, t)

)2

+ enφ(rn, t)

}
+ V , (348)

where V is the electrostatic energy due to the interaction between these particles,
and φ(r, t) the potential describing the applied electric field. To make Schrödinger’s
equation invariant under the gauge transformation on the potentials, the wave
function must also change to compensate. Because of the spatial derivatives in H,
and the time derivative in Schrödinger’s equation, this is accomplished by changing
the phase of the wave function as follows:

ψ(r1, . . . , rN , t) → ψ′(r1, . . . , rN , t) =
N∏

n=1

exp
(

ien

�c
χ(rn, t)

)
ψ(r1, . . . , rN , t) .

(349)
In quantum mechanics, therefore, the term gauge transformation refers to the

combined transformations on φ, A and ψ. There is a fundamental difference be-
tween classical and quantum physics, however: in the quantum case, the potentials
themselves can be of physical significance in situations where the electromagnetic
field is in a topologically non-trivial space, such as the region outside a tube (see
§4.3(d)).

The change of phase (349) is a unitary transformation in the Hilbert space,
but the change of the potentials, which are not operators here, is not a unitary
transformation. Nevertheless, the gauge transformation form an Abelian group:
two successive transformations are again a gauge transformation, their order does
not matter, and every transformation has an inverse.

The operator

vn =
1

mn

(
�

i

∂

∂rn
− en

c
A(rn, t)

)
(350)

represents the velocity of particle n; this is confirmed by computing the time deriva-
tive of the coordinate operator. For that reason it is to be expected that the proba-
bility current is not (227) when the system interacts with an electromagnetic field,
but is rather

in(r1, . . . ; t) =
1
2

{ψ∗vnψ + ψ(vnψ)∗} . (351)

The probability density remains |ψ|2. That (351) is correct is confirmed by showing
that it satisfies the continuity equation (226) as a consequence of the Schrödinger
equation when (348) is the Hamiltonian.
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2.6 Propagators and Green’s Functions

The two initial formulations of quantum mechanics, stemming from Heisenberg
and Schrödinger, have now been described. The path integral, a later equivalent
formulation due to Feynman, can be motivated by the insights revealed by the
interference experiments discussed in chapter 1. For that reason, the path integral
can be viewed as having a more intimate connection to the conceptual essentials of
quantum mechanics. One can therefore take the position that quantum mechanics is
defined by the path integral, which is how it was introduced originally by Feynman.
We, however, will derive it from Schrödinger’s equation in the following section. This
section prepares the ground for this task, and in so doing it develops some powerful
tools that are important in their own right.

The Schrödinger equation, like any linear partial differential equation, can be
turned into an integral equation that states the boundary conditions up front.
For the time-dependent equation, the kernel of the integral equation will be called
the propagator, while for the time-independent equation it will be called Green’s
function. Readers should however note that many authors use the latter name for
both. As is to be expected, these two kernels are each others Fourier transforms.

(a) Propagators

Schrödinger’s differential equation is of first order in time, so an initial condition
must be specified if it is to manufacture a definite solution. The initial condition
can be made organic to the formulation if the differential equation is recast as an
integral equation. For this purpose recall Eq. 207,

|ψ; t〉 = U(t, t′)|ψ; t′〉 . (352)

In terms of this unitary operator, the Schrödinger equation is

[i�∂t − H(t)]U(t, t′) = 0 , (353)

which holds also for a time-dependent Hamiltonian. Let r ≡ (r1, . . . , rN ) be a point
in the configuration space C of the system, and |r〉 be a simultaneous eigenket of
all the coordinate operators. Then

ψ(r; t) =
∫

dr′ 〈r|U(t, t′)|r′〉 ψ(r′; t′) , (354)

where dr ≡ d3r1 . . . d3rN . This equation moves the state both into the future and
the past.

An equation that singles out the future is obtained by introducing the propagator
K, defined as the function

K(rt, r′t′) = 〈r|U(t, t′)|r′〉 θ(t − t′) , (355)

where θ(x) is the unit step (or Heaviside) function:

θ(x) =
{

1 x > 0
0 x < 0 ;

d

dx
θ(x) = δ(x) . (356)
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Because U(t, t′) → 1 as t → t′ from above,

lim
t→t′

K(rt, r′t′) = δ(r − r′) , (357)

where the right-hand side is the 3N -fold delta function.
As is clear from its definition, the propagator is a probability amplitude — the

amplitude for finding the system at some point r in configuration space at time t
given that it was originally at r′ at time t′. For that reason the following notation
is also often used:

K(rt, r′t′) = 〈r; t|r′; t′〉 , (t ≥ t′) . (358)

The propagator satisfies an inhomogeneous counterpart of the Schrödinger equa-
tion:

[i�∂t − H(t)]K(rt, r′t′) = i�δ(t − t′) δ(r − r′) , (359)

where HK is shorthand for the operator H acting on the variables r, e.g., by
differentiation in the case of the kinetic energy. Equation (359) follows from (353),
(355), and (356):

i�∂tK(rt; r′t′) = HK(rt; r′t′) + 〈r|U(t, t′)|r′〉 i�δ(t − t′) , (360)

and δ(t − t′)U(t, t′) = δ(t − t′). As K satisfies the inhomogeneous equation (359)
with a unit source, it is frequently called Green’s function for the time-dependent
Schrödinger equation, but to avoid confusion the term Green’s function will be
reserved here for a closely related time-independent object to be defined shortly.

The group property U(t3, t2)U(t2, t1) = U(t3, t1) implies the following important
composition law for the propagator:

K(rt, rt′) =
∫

dr′′ K(rt, r′′t′′) K(r′′t′′, r′t′) , (t > t′′ > t′) . (361)

Another property of K is important — its dimension. Let [Q] be the dimension
of the quantity Q. A one-dimensional delta function δ(x) has dimension [1/x], so
the right side of (359) has dimension L−dT−1

�, where d is the dimension of C; the
dimension of the left side is (energy)·[K], and therefore

[K] = L−d . (362)

(b) Green’s Functions

When the Hamiltonian is time-independent, U = e−iH(t−t′)/�, and the propagator
then depends only on the interval t − t′. The preceding equations then simplify
considerably. The propagator is now written as

K(r, r′; t) = 〈r|e−iHt/�|r′〉 θ(t) . (363)

Let {ψnν(r)} be a complete set of eigenfunctions of H, with energy eigenvalues En,
and ν the additional quantum numbers beyond energy in the case of degeneracy:∑

nν

ψnν(r)ψ∗
nν(r′) = δ(r − r′) . (364)
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Then
K(r, r′; t) = θ(t)

∑
n,ν

e−iEnt/�ψnν(r)ψ∗
nν(r′) . (365)

Equation (365) says that the propagator for a time-independent Hamiltonian is
a Fourier series in time with the frequency spectrum {En/�}. For this and other
reasons, the Fourier transform of the propagator often plays an important role. To
construct this transform, consider, first, the function defined by

f(E) =
∫

C

dz
e−izt/�

z − E
, (366)

where E is real, z = ξ + iη, and the contour C traverses −∞ < ξ < ∞ just above
the real axis. The integrand has a simple pole on the real axis at z = E, and is
evaluated with Cauchy’s theorem by closing the contour in the half-plane in which
the exponential vanishes as z → ∞. Let

e(z) = e−izt/� = e−iξt/�eηt/� . (367)

If t < 0, e(z) → 0 in the upper half-plane, and after being closed the contour
contains no singularities so the integral vanishes. But if t > 0, e(z) → 0 in the lower
half-plane, in which case the closed contour includes the pole at z = E and the
integral equals −2πie−iEt/�. In short,

f(E) = −2πie−iEt/�θ(t) . (368)

When applied to (365),

K(r, r′; t) =
i

2π

∫
C

dz e−izt/�
∑
n,ν

ψnν(r)ψ∗
nν(r′)

z − En
. (369)

Green’s function for the time-independent Schrödinger equation is now defined as
the integrand of this Fourier integral when z = E + iε:

G(r, r′; E) =
∑
n,ν

ψnν(r)ψ∗
nν(r′)

E − En + iε
, (370)

where ε is a positive infinitesimal. G has this name because it satisfies the inhomo-
geneous Schrödinger equation with a unit source term,

(E − H)G(r, r′; E) = δ(r − r′) , (371)

which follows by applying (E−H) to (370). According to (370), when E is extended
to the complex plane, Green’s function has simple poles at the eigenvalues of the
Hamiltonian,1 with residues Rn whose spatial dependence give the corresponding
eigenfunctions:

Rn =
∑

ν

ψnν(r)ψ∗
nν(r′) . (372)

1If the Hamiltonian has a spectrum that is partially or wholly continuous, then the poles
coalesce into branch cuts. This will be elucidated in §4.4 and 8.2.



2.6 Propagators and Green’s Functions 87

The inverse to (369) gives Green’s function in terms of the propagator:

G(r, r′; E) =
1
i�

∫ ∞

0
dt eizt/� K(r, r; t) , z = E + iε . (373)

The integral runs only over positive times because, by definition, this propagator K
vanishes for t < 0, and for that reason is called “causal” or “retarded.” Propagators
with other boundary conditions in time can also be defined.

The expressions (365) and (370) tell us that once the propagator, or equivalently,
Green’s function, is known, the energy spectrum and stationary state wave func-
tions are also known, at least implicitly. In that sense, the propagator (or Green’s
function) provides a complete solution to the quantum mechanics of a system gov-
erned by a time-independent Hamiltonian. It should, therefore, come as no surprise
that exact analytic expressions for these quantities are only known for a very small
number of systems. On the other hand, because the propagator and Green’s func-
tion are so rich in content, approximate expressions for them are often of much
greater use than approximations to individual states.

(c) The Free Particle Propagator and Green’s Function

The propagator and Green’s function for free particles are important in their own
right, and their evaluation is instructive.

The Hamiltonian of a free particle system is a sum of commuting terms, so the
unitary operator U is a product of terms not only for each particle but also for each
component of momentum. Hence it suffices to evaluate K for one particle moving
in one dimension:

K(x, x′; t) = 〈x| exp(−ip̂2t/2m�)|x′〉 , (374)

where p̂ is the momentum operator. The description of a free particle must be
translation invariant, so K can only depend on x − x′, and x′ can be set to zero.
Introducing the complete set of momentum eigenfunction of (176) gives

K(x; t) = θ(t)
∫ ∞

−∞

dp

2π�
exp[i(px − p2t/2m)/�] . (375)

As always, it pays to use dimensionless variables. Specific values of t and p define
the classical characteristic distance l = pt/m, but in view of the de Broglie relation
p = �/l, this translates into a relation between length and time alone:

l =
√

�t/m . (376)

This prompts the introduction of the dimensionless length and momentum variables
ξ = x/l and η = lp/�, in terms of which (375) is

K(x; t) = θ(t)
1

2πl

∫ ∞

−∞
dη ei(ξη− 1

2η2) = θ(t)
1

2πl
eiξ2/2

∫ ∞

−∞
dη e−iη2/2 , (377)

where a shift in η gave the last result. The dependence on x and t is now explicit,
and the dimension is as expected from (362).

Integrals of the type appearing in (377) are called Gaussian integrals. Define

I(a) =
∫ ∞

−∞
dx e−ax2/2 =

√
2π

a
(378)



88 2. The Formal Framework

for a real and positive. For complex a = |a|eiθ, the integral is defined by analytic
continuation provided − 1

2π ≤ θ ≤ 1
2π:

I(a) =
√

2π/|a| e−iθ/2 . (379)

In (377), a is pure imaginary; integrals of this type are called Fresnel integrals,
but we will use the name Gaussian for all integrals of this type. When a = ±iλ,
θ = ± 1

2π, ∫ ∞

−∞
dx e∓iλx2/2 =

√
2π

|λ|

{
1/

√
i√

i
. (380)

This dependence on the sign of Im a must not be forgotten when the phase of the
quantity being calculated matters.

The final result for the free particle propagator in one dimension is therefore

K(x; t) = θ(t)
√

m

2πi�t
eix2m/2�t . (381)

As already stated, for N particles of various masses in three dimensions, the prop-
agator is just a product of such factors:

K(r; t) = θ(t) (2πi�t)−3N/2
N∏

n=1

(mn)3/2 exp
(

i
r2
nmn

2�t

)
. (382)

The form of the free particle Green’s function does not have such a trivial depen-
dence on the dimension d of the configuration space C. The reason is that Green’s
function is a wave emanating from a point source with the symmetry of the Lapla-
cian in a Euclidean space of dimension d: it is a cylindrical wave when d = 2, a
spherical wave when d = 3, etc.1

Consider the important case of a single particle in three dimensions. It turns out
to be most convenient to not use the general definition (371), but rather Green’s
function for the Helmholtz equation,

(∇2 + k2)G0(r − r′; k) = δ(r − r′) . (383)

Here translation invariance is exploited, and the energy is written as �
2k2/2m.

Define the Fourier representation of G0 as

G0(r; k) =
∫

d3q

(2π)3
gk(q) eiq · r . (384)

Then (383) requires
(k2 − q2)gk(q) = 1 . (385)

Without thought one might put g = (k2−q2)−1, but what then happens at k2 = q2 ?
The answer is provided by (370): the singularity is to be averted by k2 → k2 + iε,
where ε is a positive infinitesimal. Hence

G0(r; k) =
∫

d3q

(2π)3
eiq · r

k2 − q2 + iε
. (386)

1Green’s functions for the Helmholtz equation in an arbitrary number of dimensions are derived
in A. Sommerfeld, Partial Differential Equations in Physics, Academic Press (1964), pp. 232–234.
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Integrating over the orientation of q, and defining k as positive, gives

G0(r; k) =
1

2π2

∫ ∞

0
q2dq

sin qr

qr

1
k2 − q2 + iε

=
1

8π2ri

∫ ∞

−∞
q dq

eiqr − e−iqr

(k + iε − q)(k + iε + q)
,

(387)

where r = |r| ≥ 0. Now extend q to the complex plane; then e±iqr → 0 in the
upper/lower half-planes of q, and the integral can, for the separate terms, be closed
in these half-planes. The poles at q = k ± iε then give the final result

G0(r; k) = − 1
4π

eikr

r
, (d = 3) . (388)

As expected, this is a spherically symmetric wave centered at the origin. That the
result could only depend on |r| was, of course, evident at the outset because the
Laplacian is spherically symmetric. For the same reason gk depends only on |q|.

The fact that G0(r; k) is an outgoing wave merits some discussion. If the evalua-
tion of (387) is repeated with ε → −ε, the result is

Gadv
0 (r; k) = − 1

4π

e−ikr

r
, (389)

which is a spherical wave converging onto the origin. This change in the sign of ε,
when traced back to (366), there amounts to z → ξ−iε, and in (368) to θ(t) → θ(−t) !
In short, the incoming wave Green’s function (389) is related to propagation into
the past, not the future, and for that reason this is called the advanced Green’s
function.

Green’s function for a free particle in one dimension will also be useful:

G0(x, x′; k) =
1

2ki
[θ(x − x′)eik(x−x′) + θ(x′ − x)eik(x′−x)] (390)

=
1

2ik
eik|x−x′| , (d = 1) . (391)

The derivation is left as an exercise.

(d) Perturbation Theory

One of the most important applications of propagators is to the development of
perturbation theory. Consider the situation in which the Hamiltonian H has the
form H0 + V , with the problem defined by H0 being solvable, and V is in some
sense small. Then it is natural to seek expressions for various quantities that depend
on the “perturbation” V in terms of what is already known about H0 by expanding
in powers of V. What conditions H0 and V must satisfy for such an expansion to be
valid is often, indeed almost always, a sophisticated question, but for now assume
that ignorance is bliss.

For the purpose of treating V as a perturbation, write1 (359) as

[i�∂t1 − H0]K(r1t1, r2t2) = V (r1t1)K(r1t1, r2t2) + i�δ(r1 − r2)δ(t1 − t2) . (392)

1If V is not diagonal in the coordinate representation, there is an obvious generalization re-
quiring a further integration on the right-hand side.
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Let K0 be the propagator for the unperturbed problem:

[i�∂t1 − H0]K0(r1t1, r2t2) = i�δ(r1 − r2)δ(t1 − t2) . (393)

Then Eq. 392 implies

K(r1t, r2t2) = K0(r1t1, r2t2) +
1
i�

∫
dr3dt3 K0(r1t1, r3t3)V (r3t3)K(r3t3, r2t2) ,

(394)
or in an obvious and convenient shorthand,

K(1, 2) = K0(1, 2) +
1
i�

∫
d3 K0(1, 3)V (3)K(3, 2) . (395)

To confirm this, apply (i�∂t1 − H0) to (394) and use (393).
Equation (395) can be iterated by substituting the full expression for K into the

integral:

K(1, 2) = K0(1, 2) +
1
i�

∫
d3 K0(1, 3)V (3)K0(3, 2)

+
1

(i�)2

∫
d3 d4 K0(1, 3)V (3)K0(3; 4)V (4)K(4, 2) .

(396)

This is still exact. The iteration can be repeated until the desired power of V is
reached. The expansion in powers of V is thus

K(1, 2) = K0(1, 2) +
1
i�

∫
d3 K0(1, 3)V (3)K0(3, 2)

+
1

(i�)2

∫
d3 d4 K0(1, 3)V (3)K0(3, 4)V (4)K0(4, 2) . . . ,

(397)

or in a still more compact notation:

K = K0

(
1 +

∞∑
n=1

(i�)−n(V K0)n

)
. (398)

This series is basic to time-dependent perturbation theory, and is used in a broad
range of phenomena in many branches of physics. Here and as in quantum field
theory, it leads to the famous Feynman diagrams, which are graphical mnemonics
that greatly simplify the evaluation of the terms in the series.

A very important perturbation expansion in powers of V also exists for Green’s
function. This expansion will now be developed without paying heed to whether it
is legitimate, for that is a complicated issue which will be taken up in the context
of specific problems. One point can be made right now, however. Replace V by λV ,
where λ is a parameter that can be set to 1 in the end. The naive perturbation
expansions assume that the quantities of interest, such as Green’s function, the
energy, the wave function, etc., are analytic functions of the complex variable λ
inside the unit circle. Often a simple physical argument demonstrates that this
condition is not met, and sometimes a sophisticated consideration will lead to such
a conclusion. But in a host of important problems it is simply not known whether
a power series expansion is valid, and it is still used because it seems to work, or
nothing more sophisticated is practical.
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The derivation of the perturbation series is facilitated by introducing an operator
G called the resolvent. It is motivated by Eq. 370:

G(z) =
∑
nν

|nν〉 1
z − En

〈nν| =
∑

n

Pn

z − En
≡ 1

z − H
. (399)

Here Pn is the projection operator onto all states of energy En, and the last expres-
sion is a very convenient form, as we shall soon see. The resolvent is well-defined as
long as z is not on the real axis because the spectrum of the Hermitian operator H
is real. As is clear from (370), Green’s function is just the set of all matrix elements
of the resolvent in the coordinate representation when z = E + iε:

G(r, r′; E) = 〈r|G(E + iε)|r′〉 . (400)

In terms of G, the inhomogeneous Schrödinger equation (371) is simply

(z − H)G(z) = 1 . (401)

The perturbation expansion follows from an identity whose derivation is left as
an exercise. For any two operators A and B,

1
A − B

=
1
A

+
1
A

B
1

A − B
=

1
A

+
1

A − B
B

1
A

. (402)

These expressions only make sense, of course, if the denominators have no vanishing
matrix elements; as before, this is accomplished by generalizing the energy to a
complex variable. Now define G0, the “unperturbed” counterpart of G, by

G0(z) =
1

z − H0
. (403)

The matrix elements of this resolvent form Green’s function for the Schrödinger
equation belonging to the unperturbed Hamiltonian H0. Setting A = z − H0 and
B = V in (402) thus gives

G = G0 + G0V G , (404)

which is shorthand for the integral equation

G(r, r′) = G0(r, r′) +
∫

ds G0(r, s)V (s)G(s, r′) , (405)

where E has been suppressed, and all the coordinates range over the whole of con-
figuration space. The expansion of the exact resolvent in powers of the perturbation
V again ensues by iteration:

G = G0 + G0V (G0 + G0V G) , (406)

which is exact. Repeated iteration, and the assumption that terms beyond some
given order are negligible, then yields the perturbation series:

G = G0 + G0V G0 + G0V G0V G0 + . . . . (407)

The expansion of Green’s function in powers of the perturbation is often called
the Born series. Only the first term in the expansion was used by Born in the paper
that gave both the first treatment of a scattering problem in quantum mechanics,
and (in a footnote) the Born interpretation of the wave function as a probability
amplitude.
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2.7 The Path Integral

The path integral is widely used in quantum field theory and statistical mechanics,
and has also proven to be a powerful tool in numerical computations. On the other
hand, in the simpler problems with which we deal in this volume, it must be said
that the path integral is rarely a more powerful computational tool than those that
emerge from the older formulations of quantum mechanics, or even competitive
with them. (It should also be said that when ambiguities arise in the path integral
formulation, and they do, these are ultimately resolved by comparing with canonical
quantization or the Schrödinger equation.) Nevertheless, because of the powerful
concepts on which it is based, and the widespread use just mentioned, acquaintance
with the path integral is indispensable.

(a) The Feynman Path Integral

For systems composed of particles (as compared to dynamical fields), Feynman’s
path integral expresses the propagator as a coherent sum of an infinite number of
amplitudes over all paths in configuration space, and not just those dictated by the
classical equations of motion. As the classical limit is approached, the paths in the
immediate neighborhood of a true classical path become ever more dominant. The
path integral thus yield important insights into the connection between classical
and quantum mechanics, quite apart from its other virtues. This connection will be
developed in detail in §2.8.

This formulation of quantum mechanics has the remarkable feature of not using
operators in Hilbert space. Rather, it constructs probability amplitudes ab initio
from the classical concept of paths in configuration space, albeit paths that are
not constrained by classical mechanics. As we will be deriving the path integral
from the older versions of quantum mechanics, we will start from the Hilbert space
formulation.

Consider, first, the simplest situation, a single particle in one dimension, with
the Hamiltonian

H =
p̂2

2m
+ V (x̂, t) ≡ T (p̂) + V (x̂) , (408)

where the notation p̂, etc., emphasizes that these objects are operators. The gen-
eralization to interacting particles in three dimensions is straightforward, though
velocity-dependent interactions, such as those with electromagnetic fields, involve
some complications.

The object of interest is the propagator,

K(b, a) = 〈xb|U(tb, ta)|xa〉 θ(tb − ta) ; a ≡ (xata) , b ≡ (xbtb) . (409)

The path integral representation for K is obtained by:

1. breaking the evolution from a to b into a large sequence of κ small forward
steps in time of duration τ by means of the composition law (238) for U ;

2. evaluating each small step explicitly;

3. showing that these steps sum to the form
∑

P exp(iS/�), where S is the
classical action for some path P composed of linear segments from a to b;
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4. taking the limit, to be called Lim, defined by

Lim : τ → 0, κ → ∞, κτ = tb − ta , (410)

with tb − ta held fixed.

The sequence of steps is a product of κ unitary transformations:

K(b, a) = 〈xb|U(tb, tb − τ) . . . U(ta + 2τ, ta + τ)U(ta + τ, ta)|xa〉 . (411)

Define

ta ≡ t0, tk = t0 + kτ, tb ≡ tκ; xa ≡ x0, xb ≡ xκ . (412)

On introducing κ − 1 sets of intermediate states {|xk〉}, (411) becomes

K(b, a) =
∫ ∞

−∞
dxκ−1 . . . dx2dx1 〈xκ|e−iH(tκ−1)τ/�|xκ−1〉 . . .

. . . 〈x2|e−iH(t1)τ/�|x1〉〈x1|e−iH(t0)τ/�|x0〉 .

(413)

With τ → 0 anticipated, the time argument of H in any step can be taken anywhere
in the interval, and the lower end was chosen. Unless V has a discontinuous time
dependence, this is legitimate, but not when V is velocity-dependent.

It is tempting to replace e−iHτ/� by 1 − iHτ/�. This would, however, spoil the
unitary property as expressed in the composition law (238), and thereby abandon
the superposition principle. An approximation valid as τ → 0 is thus needed which
maintains unitarity. In addition, as T and V are diagonal in the momentum and
coordinate representations, respectively, this approximation should, ideally, replace
e−iHτ/� by a product of unitary operators that are diagonal in these incompati-
ble representations. This wish list is met by the Baker-Campbell-Hausdorff (BCH)
theorem1

eAeB = exp
(

A + B +
1
2
[A, B] +

1
12

([A, [A, B] − [B, [A, B]]) . . .

)
, (414)

where A and B are operators in Hilbert space, and . . . alludes to multiple commu-
tators of ever higher order. In our case, both A and B are proportional to τ , so the
terms beyond A + B are of order τ2 or smaller, and permit the approximation

e−iHτ/� � e−iTτ/� e−iV τ/� . (415)

Hence

〈xk+1|e−iH(tk)τ/�|xk〉 = 〈xk+1|e−iTτ/�|xk〉 e−iV (xktk)τ/�

=
√

m

2πi�τ
exp

[
i

�

(
(xk+1 − xk)2m

2τ
− τV (xktk)

)]
,

(416)

1The simplest special case is when [A, B] commutes with both A and B, so that all terms
beyond [A, B] vanish. It has many applications, and the proof is the subject of Prob. 13.
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where the free particle propagator (381) was used in the second step. Returning to
(413) gives

K(b, a) = Lim
( m

2πi�τ

) 1
2κ
∫ ∞

−∞
dxκ−1 . . . dx1

× exp

[
iτ

�

κ−1∑
k=0

(
(xk+1 − xk)2m

2τ2 − V (xktk)
)]

. (417)

Imagine now a path x(t) composed of linear segments from a to b passing through
(x1, . . . , xκ−1) at (t1, . . . , tκ−1), as in the integrand of (417), and depicted in Fig.
2.4. The ratio (xk+1 − xk)/τ , as τ → 0, is the velocity ẋ(tk) in this step. Therefore

ta

t1

t2

tb
tb − τ

xa

x1

x2

xb

xκ−1

Fig. 2.4. Coordinates involved in the path integral (Eq. 417).

lim
τ→0

(
(xk+1 − xk)2m

2τ2 − V (xktk)
)

=
1
2
m[ẋ(tk)]2 − V (x(tk)tk)

= L(x(tk), ẋ(tk), tk) , (418)

i.e., the Lagrangian of the system at (xk, tk). The sum on k in (417) is therefore a
discrete approximation to the time integral of the Lagrangian from a to b over the
particular path x(t) ≡ (xata; . . . ; xktk; . . . ; xbtb),

Lim
κ−1∑
k=0

L(t0 + kτ) =
∫ tb

ta

dt′L(x(t′), ẋ(t′), t′) ≡ Sba[x(t)] , (419)

where F [x(t)] denotes a functional of x(t). The functional Sba[x(t)] is the classical
action for motion along the arbitrary path x(t). Hence (417) is

K(b, a) = Lim
( m

2πi�τ

) 1
2κ
∫ ∞

−∞
dxκ−1 . . .

∫ ∞

−∞

∫ ∞

−∞
dx1 exp

(
i

�
Sba[x(t)]

)
. (420)

In this expression the path x(t) is unrestricted except at the and points, and
is not just one selected by the classical equation of motion, i.e., not just a path
that minimizes the action. In the limit τ → 0, the integrals over the intermediate
points (x1, . . . , xκ−1) therefore include all paths from a to b. The last two sentences,
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and Eq. 420, define what is meant by the path integral. Following Feynman, it is
customary to write this last equation as

K(b, a) =
∫ b

a

D(x(t)) exp
(

i

�
Sba[x(t)]

)
, (421)

where the meaning of the differential, or measure, D(x(t)), and the integration
symbol, are to be understood by referring back to (420).

The argument just given pays even less heed to mathematical discipline than is
customary in theoretical physics, for it is reasonable to fear that here there could
be fatal booby-traps because the set of all paths surely contains exotica that will
not submit to routine integration. One is banking on the hope that that such paths
will produce sufficiently rapid oscillations in eiS/� to not contribute in the limit.
This is not unreasonable, because the phase in (417) oscillates rapidly if the path
is sufficiently erratic to violate

|xk+1 − xk| �
√

�τ/m . (422)

For a fixed time-slice parameter τ , a sufficiently large mass will suppress paths
that are far from the differentiable classical path. (Indeed, the formal classical limit
� → 0 forces the path to be smooth, a fact that will be explored in more detail in the
following section.) And for any mass, there is a τ sufficiently small to suppress paths
that jump about in space by an amount that violates (422). This argument does
not pretend to be mathematically satisfactory; readers seeking such a treatment
should consult the literature cited at the end of this chapter.

The generalization to more particles in three dimensions in the absence of velo-
city-dependent forces is straightforward; x(t) is simply replaced by a path in the
configuration space of the system. The evaluation of such path integrals is anything
but straightforward, of course.

When there are velocity-dependent forces, the discretization of the evolution
a → b involves a subtle point. This is illustrated by the important example of a
particle of charge e in the presence of a magnetic field with vector potential A(r).
(Time-dependent magnetic and electric fields do not produce any further problems.)
The classical Lagrangian for this system is

L =
1
2
m[ṙ(t)]2 − V (r) +

e

c
ṙ · A(r) . (423)

The propagator K(b, a) must satisfy a condition imposed by gauge invariance. Be-
cause of the definition (354) and (355) of the propagator, and the gauge transfor-
mation (349) of wave function, this condition is

K(rt, r′t′) → eieχ(r)/�cK(rt, r′t′) e−ieχ(r′)/�c . (424)

The generalization of (420) when the Lagrangian is (423) must conform with this. It
turns out that in slicing the time evolution the vector potential must be evaluated
at the midpoint between rk and rk+1 to meet this requirement.

(b) The Free-Particle Path Integral

Although we already know the propagator for free particles (recall Eq. 381), it is
instructive to go through the much more demanding task of finding it by means of
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the path integral. For that matter, two separate derivations will be given, the first
of which actually avoids doing the path integral.

As we already learned, when there are no interactions nothing is gained by treat-
ing more than one particle in more than one dimension. Let x(t) be an arbitrary
path, Q(t) the classical path from (xa, ta) to (xb, tb), and

y(t) = x(t) − Q(t) (425)

be the deviation from the classical path. In the variable y, all paths start and end
at y = 0 because all paths x(t) start at a and end at b.

First-order deviations from the classical path leave the action unchanged, and
therefore the action for the arbitrary path x(t) is

S[Q(t) + y(t)] = 1
2m

∫ tb

ta

dt [Q̇2(t) + ẏ2(t)] . (426)

The first term is the classical action,

Scl(b, a) =
∫ tb

ta

dt 1
2mQ̇2(t) =

m

2
(xb − xa)2

tb − ta
. (427)

This action could also be expressed as 1
2p(xb − xa), but this would not make sense

in this quantum mechanical context because the momentum and position cannot
be specified simultaneously. The action must be expressed in terms of the initial
and final coordinates and the elapsed time, as required by the definition of the
propagator.

The separation of arbitrary paths into the classical path and the departure there-
from thus results in

K(b, a) = F (tb − ta) exp
(

i

�
Scl(b, a)

)
, (428)

where F (tb − ta) is the integral over all paths from y = 0 back to y = 0 during the
interval tb − ta:

F (tb − ta) =
∫ tb,y=0

ta,y=0
D(y(t)) exp

(
i

�

∫ tb

ta

dt 1
2mẏ2(t)

)
. (429)

Evaluation of the path integral can in this case (and some others) be evaded by
a trick due to Feynman. It exploits the composition law (361), the fact that F is
the propagator from the origin to the origin, and (428):

F (t) =
∫ ∞

−∞
dy K(0, t; y, t′)K(y, t′; 0, 0) (430)

= F (t − t′)F (t′)
∫ ∞

−∞
dy exp

[
iy2
(

1
t − t′

+
1
t′

)
m

2�

]

= F (t − t′)F (t′) (2πi�/m)
1
2
√

t′(t − t′)/t . (431)

Therefore
F (tb − ta) =

√
m

2πi�(tb − ta)
. (432)
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When combined with (428) the known result, Eq. 381, is recovered:

K(b, a) =
√

m

2πi�(tb − ta)
exp

(
im(xb − xa)2

2�(tb − ta)

)
. (433)

A brute-force evaluation of the free-particle path integral is more instructive,
however, because it hints at what must be done in more difficult problems, or when
the path integral is computed numerically in problems where no analytic approach
is known or practical.

From the definition (417) et seq. of the path integral, (429) is

F (tb − ta) = Lim
( m

2πi�τ

) 1
2κ
∫ ∞

−∞
dyκ−1 . . . dy1

× exp

(
im

2�τ

κ−1∑
k=0

(yk+1 − yk)2
)

. (434)

Introduce dimensionless variables, i.e.,

ηκ = yk

√
m/�τ , (435)

so that

F (tb − ta) = Lim
(m

�τ

) 1
2
(

1
2πi

) 1
2κ ∫ ∞

−∞
dηκ−1 . . . dη1

× exp

(
i

2

κ−1∑
k=0

(ηk+1 − ηk)2
)

. (436)

The integral is now a pure number — the complete dependence on � and m is in
the factor

√
m/�, a fact that will be important when we examine the classical limit

in the next section.
The argument of the exponential in (436) is a quadratic form, which, after it is

diagonalized, reduces F to a product of Gaussian integrals. In detail,

κ−1∑
k=0

(ηk+1 − ηk)2 = 2(η2
1 + η2

2 + . . . + η2
κ−1 − η1η2 − η2η3 − . . . ηκ−2ηκ−1) (437)

because y0 = yκ = 0. Next, define the symmetric matrix

Λ =




2 −1 0 . . .
−1 2 −1

0 −1 2
. . .

2 −1
−1 2




, (438)

in terms of which
κ−1∑
k=0

(ηk+1 − ηk)2 =
∑

k

ζ2
kλk , (439)
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where {ζk} and {λk} are the eigenvectors and eigenvalues of Λ. The new element
of integration is dζ1 . . . dζκ−1 because the transformation from {ηk} to {ζk} is or-
thogonal. All λk are positive, and therefore (380) gives

F (t) = Lim
√

m

2πi�τ

κ−1∏
k=1

∫ ∞

−∞

dζk√
2πi

e
1
2 iζ2

kλk (440)

= Lim
√

m

2πi�τ det Λ
, (441)

where
det Λ =

∏
k

λk (442)

is the determinant of Λ. By computing det Λ for small values of κ, one quickly
concludes that1

det Λ = κ + 1 , (443)

and Eq. 432 reappears when Lim is taken because κτ = tb − ta.
The heuristic argument made about the paths that dominate when there is a

potential [recall Eq. 422, etc.] is manifestly correct in the free-particle case. From
(440), and the fact that the eigenvalues λk are of order one, it follows that the
spatial dispersion of the paths about the classical straight line is of order |ζ| � 1,
or |δy| �

√
�τ/m, in agreement with (422).

2.8 Semiclassical Quantum Mechanics

Quantum mechanics must somehow incorporate classical mechanics in the limit
� → 0. Other examples of such relationships are common in physics. For example,
Newton’s equations of motion arise directly from their relativistic generalization by
taking the limit c → ∞ in the latter. The relation between classical and quantum
mechanics is far less straightforward, however. At the formal level, the classical
equations of motion do not arise out of Schrödinger’s or Heisenberg’s equations
by simply setting � → 0. The mathematical reason is that that the probability
amplitudes of quantum mechanics are highly singular as � → 0, as is evident in the
form

∑
[exp(iS/�)] of the path integral, which reveals an essential singularity at

� = 0. From a conceptual viewpoint there is a much deeper chasm between classical
and quantum mechanics than that between relativistic and nonrelativistic classical
mechanics. The complexity of the mathematical connection between classical and
quantum mechanics seems to reflect this profound conceptual separation.

The link to classical mechanics is more direct in the path integral than in the
Hilbert space formulation, because the former is based on the classical concept
of paths in configuration space. This link relies on the formulation of classical
mechanics due to Hamilton and Jacobi, and for that reason we begin, in subsection
(a), with a sketch of Hamilton-Jacobi theory.2 As the derivation of the semiclassical

1For a proof of (443) that generalizes to more difficult cases, see Prob. 14.
2Indeed, Schrödinger’s discovery of his wave equation stemmed from this connection; the

Hamilton-Jacobi equation is the first equation in his first paper.
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propagator involves some intricate analysis, we then present, in subsection (b),
a heuristic semiclassical approximation to the Schrödinger wave function which
is intuitively attractive but of limited validity. A description of the semiclassical
propagator is then given in subsection (c), with detailed derivations postponed to
subsection (d).

(a) Hamilton-Jacobi Theory

In classical mechanics, all possible motions of a system are determined by its La-
grangian, L(q(t), q̇(t), t). Here q(t) is a shorthand for a point (q1(t), . . . , qf (t)) in
the configuration space Cf , and f the number of degrees of freedom. For an N -
particle system, the relation to the notation of the earlier sections is (q1, q2, q3) =
r1, m1,2,3 = m1, etc. In this section qi and the conjugate momenta pi are always
c-numbers, never operators, whether classical or quantum mechanics is under dis-
cussion.

The classical action is the integral of L along a trajectory allowed by the
equations of motion, from a configuration qa = (q1(ta), . . . , qf (ta)) at time ta to
another point qb in Cf at time tb :

S(qbtb; qata) ≡ S(b, a) =
∫ tb

ta

dt L(q(t), q̇(t), t) . (444)

This is not to be confused with the action appearing in the path integral, which
includes all paths, whether or not permitted classically.

The most familiar way of selecting a particular classical trajectory is to specify the
initial qi and pi , but this does not translate into quantum mechanics because of the
uncertainty principle. A classical formulation does exist which evades this problem,
namely, that based on S(b, a), for it selects a particular trajectory by specifying
the initial and final configurations (qa, ta) and (qb, tb), which corresponds to the
specification of a particular propagator K(b, a).

As S(b, a) is only a function of the initial and final coordinates, it remains to find
the corresponding momenta. For that purpose, consider arbitrary variations δq:

δS(b, a) =
∫ tb

ta

dt

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
δqi +

∂L

∂q̇i
δqi

∣∣∣∣
tb

ta

. (445)

The integral vanishes thanks to Lagrange’s equations. Because pi = ∂L/∂q̇i, the
end points contribute

δS(b, a) = pb,i δqi(tb) − pa,i δqi(ta) , (446)

and therefore

pb,i =
∂

∂qb,i
S(b, a) = pb,i(qbtb; qata) , (447)

pa,i = − ∂

∂qa,i
S(b, a) = pa,i(qbtb; qata) . (448)

Note that these momenta are functions of the initial and final configurations.
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The change of the action when the time at end point b varies is

dS

dtb
= L(tb) =

∂S

∂tb
+

∂S

∂qb,i
q̇b,i =

∂S

∂tb
+ pb,iq̇b,i ; (449)

at b, the relation between the Hamiltonian and Lagrangian is

H(tb) = pb,i q̇b,i − L(tb) . (450)

Therefore
∂S

∂tb
+ H(tb) = 0 . (451)

For now, we fix the initial configuration (qa, ta), and concentrate on the variation
with the variables (qb, tb), called simply (q, t). The Hamilton-Jacobi equation is
nothing but (451) after the momenta in H(q, p, t) are eliminated by use of (447):

∂S

∂t
+ H

(
q1, . . . , qf ;

∂S

∂q1
, . . . ,

∂S

∂qf
; t
)

= 0 . (452)

As an important example, consider a system of charged particles exposed to
an electromagnetic field, and having mutual interactions that are not velocity-
dependent. The Hamiltonian and Lagrangian are

H =
∑

i

1
2mi

[pi − Φi(t)]
2 + V (qi, . . . , qf ; t) , Φi(t) ≡ ei

c
Ai(t) , (453)

L =
∑

i

(
1
2mi q̇2

i + q̇iΦi(t)
)

− V , (454)

where Ai(t) is a component of the vector potential evaluated at the position particle
i. The potential V describes the interactions between the particles, and any applied
electric field. According to (452), for this system the Hamilton-Jacobi equation is

∂S

∂t
+
∑

i

1
2mi

(
∂S

∂qi
− Φi

)2

+ V = 0 . (455)

The velocities are found from q̇i = ∂H/∂pi and (447):

q̇i =
1

mi

(
∂S

∂qi
− Φi

)
. (456)

The Hamilton-Jacobi equation thus offers a description of dynamics that is very
different from those given by Hamilton’s or Lagrange’s equations of motion. The
latters’ multitudes of ordinary differential equations are replaced by just one partial
differential equation. This equation is of first order in time, has f + 1 independent
variables, (q1, . . . , qf ) and t, and one dependent variable S. This does smell like
Schrödinger’s equation in configuration space: the same order in time, the same
independent variables, and one dependent variable, the wave function ψ. Of course,
there is one obvious and crucial difference: Schrödinger’s equation is linear in ψ
(the superposition principle!), whereas the Hamilton-Jacobi equation is nonlinear
in S.
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There is also a remarkable analogy between the solution S(b, a) of the Hamilton-
Jacobi equation and the propagator K(b, a): both handle whole families of trajecto-
ries in one fell swoop. Given initial data at time t0 as a continuous function S(q, t0)
in Cf , the partial differential equation (452) will manufacture S(q, t) in the future.

Hamilton gave an elegant geometrical depiction of how the trajectories of particles
emerge from this continuum formulation of point mechanics by drawing an analogy
to the way in which the rays of geometrical optics emerge from wave optics. For
our purpose, it suffices to consider a time-independent Hamiltonian, equal masses
and no vector potential. Then

S(q, t) = W (q) − Et , (457)

where E is the energy, and (455) simplifies to

|∇S| = |∇W | =
√

2m(E − V ) , (458)

where ∇ is the gradient in f -dimensional Euclidean space, i.e., the configuration
space Cf .

Consider, first, the family of surfaces W (q) = const., which coincide with the
surfaces of constant S(q, t) at t = 0. As time increases, the surfaces of constant S
move in obedience to (457). Take a particular surface W (q) = W0; the surface of S
that originally satisfied S = W0 must move by time t to coincide with the surface
W (q) = W0 + Et. In short, to visualize the motion of S it suffices to visualize the
family F of surfaces of constant W (q) (see Fig. 2.5).

Furthermore, given one member F0 (say W (q) = W0) of F , all others can be
constructed from it as follows. Eq. 458 specifies the gradient of W throughout Cf ;
erect a vector u normal to F0 of length ds at each point, where

ds =
dW√

2m[E − V (q)]
. (459)

Then the locus of the end points of these vectors u is the surface on which W (q) =
W0 + dW . The continuation of this process constructs the whole family F .

The motion of a surface of constant S(q, t) is found from dW = Edt; such a
surface therefore moves normal to itself in the direction given by the sign of E and
with a velocity of magnitude

ds

dt
=

E√
2m[E − V (q)]

. (460)

If we think of the surfaces S = const. as wave-fronts, then ds/dt is analogous to
the phase velocity.

Finally, because
pi = ∂W (q)/∂qi , (461)

the family of curves normal to the family of surfaces F are the trajectories; i.e., the
set of paths in Cf along any one of which a system point q(t) moves in accordance
with the laws of mechanics. The magnitude of the velocity of any particular motion
as it passes through q is not ds/dt, however, but

√
2(E − V )/m according to (461)

and (458). Therefore, in its motion along a trajectory, a moving point q(t) does not
stay on one surface S= const.
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Fig. 2.5. Solution of the Hamilton-Jacobi equation in two dimensions for the potential
V (x, y) = −(1 + x2 + y2)−1, on the dashed circle V = − 1

2 . The dots are the positions
of particles at t = T, 2T, 3T, 4T, which started at t = 0 with equal velocities in the
y-direction at y = −2.5, and form trajectories that are everywhere normal to the surfaces
of constant W , as shown. Note that these positions at any time after t = 0 do not stay on
a single surface of constant W (see discussion following Eq. 460). The surfaces W = const.
develop cusps when trajectories cross, which is of importance in the construction of the
semiclassical propagator (see Eq. 480 et seq.).

(b) The Semiclassical Wave Function

The earliest papers by de Broglie and Schrödinger made it evident that � appears
explicitly in quantum mechanical amplitudes in the form exp(iΘ/�). This raises the
question of whether there are circumstances under which Θ does not depend on �,
and if so, whether Θ then has a meaning in classical mechanics. This question is
answered by the Ansatz due to Brillouin and Wentzel,

ψ(q, t) = eiΘ(q,t)/� . (462)

For the Hamiltonian (453), the Schrödinger equation is(∑
i

1
2mi

(
�

i

∂

∂qi
− Φi

)2

+ V (q)

)
ψ = i�

∂ψ

∂t
. (463)

A short calculation shows that(
�

i

∂

∂qi
− Φi

)2

eiΘ/� =

[(
∂Θ
∂qi

− Φi

)2

+
�

i

(
∂2Θ
∂q2

i

− ∂Φi

∂qi

)]
eiΘ/� . (464)

In the gauge ∇ · A = 0, ∂Φi/∂qi = 0. Having made no approximation, the Schrödin-
ger equation thus requires Θ to satisfy

∂Θ
∂t

+
∑

i

1
2mi

(
∂Θ
∂qi

− Φi

)2

+ V (q) = −�

i

∑
i

1
2mi

∂2Θ
∂q2

i

. (465)
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The right- and left-hand sides of (465) are very different: �, i, and the second
derivative of Θ appear only on the right. If the right side is dropped, (465) becomes
the Hamilton-Jacobi equation (455). Roughly speaking, therefore,

ψ ∼ exp
(

i

�
× classical action

)
� → 0 , (466)

which is the idea underlying the path integral.
It is now natural to consider a systematic expansion of Θ in powers of �:

Θ = S +
�

i
S1 +

(
�

i

)2

S2 + . . . , (467)

where S(q, t) is a solution of the Hamilton-Jacobi equation. According to (465), S
will be a good approximation to Θ provided

|∂S/∂qi|2 � � |∂2S/∂q2
j | . (468)

This inequality can be stated in a more meaningful way by considering the one-
dimensional case, and defining the local de Broglie wavelength λ̄(q) as

�

λ̄(q)
≡ p(q) =

∂S

∂q
. (469)

Then (468) becomes ∣∣∣∣∂ λ̄

∂q

∣∣∣∣ � 1 . (470)

That is, the phase of the wave function is given by the classical action if the local
wavelength λ̄(q) changes but little in a distance of order the wavelength.

An equation for the next term, S1, is found by substituting (467) into the
Schrödinger equation, and equating powers of �:

∂S1

∂t
+
∑

k

1
2mk

[
2
(

∂S

∂qk
− Φk

)
∂S1

∂qk
+

∂2S

∂q2
k

]
= 0 . (471)

This will produce a real function S1 from the real action S in the regions of config-
uration space available to classical motions. When the higher-order terms, S2, etc.,
are dropped, ψ is approximated by the semiclassical wave function1

Ψsc(q, t) = eS1(q,t) eiS(q,t)/� =
√

D(q, t) eiS(q,t)/� . (472)

In this approximation, the spatial probability distribution is

D(q, t) = |Ψsc(q, t)|2 = e2S1(q,t) , (473)

which is independent of �. The remarkable fact that the next-to-leading order term,
D(q, t), is �-independent would seem to imply that it too is determined by classical
mechanics. As we shall in the next subsection, that is indeed so.

1Many authors refer to (472), and even the propagator Ksc, as the WKB approximation. This
is historically incorrect; we will only apply the name WKB to the stationary state one-dimensional
case (see §4.5).
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The relationship between D(q, t) and S(q, t) is opaque when expressed by (471),
but will become clear when it is rewritten as follows:

∂

∂t
e2S1 +

∑
k

∂

∂qk

[
1

mk

(
∂S

∂qk
− Φk

)
e2S1

]
= 0 . (474)

The Schrödinger current ik belonging to the wave function Ψsc is

ik =
1

2mk
Ψ∗

sc

(
�

i

∂

∂qk
− Φk

)
Ψsc + c.c. =

D

mk

(
∂S

∂qk
− Φk

)
. (475)

Recalling (456) then gives the following intuitively appealing expression for the
current,

ik(q, t) = D(q, t) q̇k(t) , (476)

where q̇k is the velocity of a particle at the position qk(t) as it moves in accordance
with the classical equations of motion. Eq. 474 is therefore

∂D

∂t
+
∑

k

∂

∂qk
(D q̇k) = 0 , (477)

i.e., the continuity equation for a classical fluid of density D(q, t) and local velocity
q̇(t) moving through configuration space. In short, (477) is the approximation to the
quantum mechanical continuity equation for the flow of probability when a solution
of the Schrödinger equation is replaced by the semiclassical wave function Ψsc.

(c) The Semiclassical Propagator

The semiclassical wave function Ψsc(q, t) has intuitively pleasing properties. Nev-
ertheless, given a wave function ψ(q) at t = 0, it is not clear what conditions this
initial data must satisfy if it is to be evolved in time in the form of Ψsc. For example,
if ψ(q) is real, then the implication that S(q, t = 0) = 0 renders the Hamilton-Jacobi
equation useless, and yet that is the equation that should supposedly be solved to
evolve the semiclassical wave function. In this example, some more or less ad hoc
method for assigning phases to such a real input would have to be devised.

This question does not arise, and compliance with the superposition principle is
assured, if the the wave function is evolved with a properly constructed semiclassical
propagator Ksc(b, a), so that time development is given by

Ψ(q; t) =
∫

dfq′ Ksc(q, t; q′, t′) Ψ(q′; t′) . (478)

The derivation of this approximate propagator is quite intricate, and therefore we
first give the expression for Ksc and discuss its properties.

In §2.7(b) we found that the propagator for a free particle in one dimension is

K0(b, a) =
√

m

2πi�(tb − ta)
exp

(
i

�
S0(b, a)

)
, (479)

where S0 is the classical action for a free particle. Eq. 479 is exact. It turns out that
this is a special case of a general but approximate result:
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• In the limit � → 0, the propagator for an arbitrary system of particles has
the form

Ksc(b, a) =
∑
Pr

Ar(b, a) exp
{

i

(
1
�
Sr(b, a) − βrπ

2

)}
, (480)

where Sr(b, a) is the classical action for the system in question when it follows
the classically allowed path Pr. In general, more than one classical path may
connect b to a.

• The amplitude factor is known once the classical action Sr(b, a) is known:1

Ar(b, a) =
(

i

2π�

)f/2
√

det
∂2Sr(b, a)
∂qa,i∂qb,j

. (481)

The determinant in (481) is called the Van Vleck determinant Dr(b, a). For
each path, Dr and Sr satisfy the continuity equation (477).

• The integer βr is called the Maslov index. It too is determined by the classical
trajectories, and in particular, by the number of trajectory crossings encoun-
tered on the various paths. The �-independent phase factor exp(−iβrπ/2) is
essential, for if it is overlooked the wave function generated by (478) will not
be continuous. (In this connection, recall Fig. 2.5.)

As it stands, Ksc can only produce an approximate wave function in classically
allowed regions, so it cannot describe quantum tunneling. Techniques for analyt-
ically continuing the propagator into classically forbidden regions exist, but this
is a difficult topic which we will not treat. A semiclassical technique for handling
tunneling problems in one dimension is presented in §4.5, however.

The amplitude factor (481) is a classical quantity, so it should have a classical
meaning. Indeed it does: |A(b, a)|2 is the probability Pcl(qbtb; qata) for finding the
configuration qb at tb for an ensemble of systems moving classically and known
to have been in the configuration qa at ta. When an initial configuration (qata) is
specified, the uncertainty principle demands all momenta to be equally probable at
that time. The normalization of this white momentum spectrum is given by (177):

|〈pa(ta)|qa(t)〉|2dfpa =
∏

i

∣∣∣∣eipa,iqa,i/�

(2π�)1/2

∣∣∣∣
2

dpa,i =
dfpa

(2π�)f
. (482)

By assumption, each member of the ensemble moves classically from the initial
condition (qapa), and will be in the interval dfqb at tb with a probability

Pcl(qbtb; qata)dfqb =
dfpa

(2π�)f
. (483)

In computing dfpa/dfqb, bear in mind that when the initial and final coordinates
are specified, as they are here, the pa,i are functions of these coordinates and times.
The ratio of differentials is therefore the Jacobian

dfpa

dfqb
=

∂(pa,1(b, a), . . . , pa,f (b, a))
∂(qb,1, . . . , qb,f )

, (484)

1Note that because of (427) this agrees with (479).
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where pa,i(b, a) = pa,i(qbtb; qata). Using (448) for these initial momenta gives

∂(pa,1(b, a), . . . , pa,f (b, a))
∂(qbb,1, . . . , qb,f )

= (−1)f det
∂2S(b, a)
∂qb,i ∂qa,j

. (485)

The quantum and classical probabilities, |K(b, a)|2 and Pcl(b, a), therefore agree
when the propagator is approximated by Ksc and there is only one path connect-
ing b to a. If there is more than one, quantum mechanical interference terms will
survive as � → 0 unless an average over rapidly oscillating terms is imposed by the
resolution of an experiment.

The following subsection describes the steps that lead to Ksc(b, a) from the path
integral: (i) The action for arbitrary paths is expanded about the classical path,
and it is shown that only quadratic departures survive in the limit � → 0. The path
integrals containing these quadratic terms form the factor Ar(b, a). (ii) If the paths
connecting a to b do not cross, an evaluation of the path integral expressing Ar can
be sidestepped by requiring Ksc to satisfy the composition law for unitary trans-
formations. (iii) If there are paths that cross, the path integral for the amplitude
factors must be evaluated, which yields the phase shifts shown in (480).

Because only quadratic departures from the classical path survive the limit � → 0,
the semiclassical approximation Ksc(b, a) is the exact propagator for all Hamiltoni-
ans that do not contain terms higher than quadratic in the canonical coordinates and
momenta. Consequently, the classical action determines the propagators exactly for
systems of arbitrary many harmonically coupled degrees of freedom; for particles
subjected to constant forces; and for charged particles in a uniform magnetic field.

(d) Derivations

Our first objective is to find the � → 0 behavior of the path integral representing
the propagator. The essential features can be seen in one dimension. As in §2.7(b),
let x(t) be an arbitrary path, Q(t) the path prescribed by classical mechanics,
x(t) = Q(t) + y(t), and S[x(t)] the action for the arbitrary path. Assume also that
only one classical path exists for this particular case a → b. As Q(t) minimizes S,

S[Q(t) + y(t)] = S[Q(t)] +
∫ tb

ta

dt

(
1
2y2 δ2S

δx2 + 1
2 ẏ2 δ2S

δẏ2 + yẏ
δ2S

δyδẏ

)
+ . . . (486)

= S(b, a) +
∫ tb

ta

dt [a(t)ẏ2 + b(t)y2 + c(t)yẏ] + . . . , (487)

where + . . . stands for terms of order y3 and higher. In the free-particle case, a = 1
2m

and all the other terms vanish, which is why the approximate answer is exact in
this instance.

In consequence of (487), the propagator is

K(b, a) = A(b, a) eiS(b,a)/� , (488)

where S(b, a) is the action for the classical trajectory, and A is the path integral

A(b, a) =
∫ tb,y=0

ta,y=0
D(y(t)) exp

(
i

�

∫ tb

ta

dt [a(t)ẏ2 + b(t)y2 + c(t)yẏ] + . . .

)
. (489)
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This should be compared to the corresponding expression for the free particle
(Eq. 429). If the classical equation of motion allows several paths Qr(t) from a
to b, then a sum on r is required, and the departures from each Qr(t) must be
treated as in (489).

When the path integral is first approximated by κ steps of duration τ , as in
Eq. 434, and dimensionless coordinates ηκ = yκ

√
m/�τ are introduced, it takes the

form

A(b, a) = Lim
√

m/�τ

∫ ∞

−∞
dκ−1η

× exp
(
f2(η) + (�τ/m)

1
2 f3(η) + (�τ/m)f4(η) + . . .

)
, (490)

where fn(η) comes from the terms of order yn in (487), and is a polynomial of
degree n in the variables (η1, . . . , ηκ−1). Hence all terms in the Lagrangian that are
of higher order than quadratic are removed by the limit � → 0:

A(b, a) =
√

m/� Lim τ− 1
2

∫ ∞

−∞
dκ−1η exp[f2(η)] . (491)

The evaluation of the path integral (491) can be sidestepped when there is only
one path connecting (a, b) by requiring the propagator to satisfy

Ksc(x′t′; xt) =
∫

dx̄ Ksc(x′t′; x̄t̄)Ksc(x̄t̄; xt) (492)

=
∫

dx̄ A(x′; x̄)A(x̄; x) exp
(

i

�
[S(x′; x̄) + S(x̄; x)]

)
, (493)

which must hold for all t < t̄ < t′. (In Eq. 493 the time arguments have been
suppressed.) The amplitude factors have a spatial variation that does not depend
on �. In contrast, the actions in the exponent are very large compared to � in the
semiclassical limit, so the exponential varies rapidly as a function of x̄. The integral
can therefore be evaluated by the stationary phase method. The relevant formula
is ∫

dx g(x)eif(x)/� �
∑
α

eif(xα)/�

∫
dx g(x) exp [12 i(x − xα)2f ′′(xα)/�]

�
∑
α

g(xα)

√
2πi�

f ′′(xα)
eif(xα)/� , (494)

where xα are the stationary phase points, f ′(xα) = 0. According to (447) and (448),
the stationary phase condition is

∂

∂x̄
[S(x′; x̄) + S(x̄; x)] = −p0(x′; x̄) + p0(x̄; x) = 0 , (495)

where p0 are momenta at the intermediate time t̄. Eq. 495 has a simple meaning: a
stationary phase point x0(t̄) is one where the momentum arriving and leaving that
point are equal, so that the whole trajectory from (xt) to (x′t′) is continuous at t̄
(see Fig. 2.6).
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t′

t̄

t

x′

x0(t̄)

x

Fig. 2.6. The semiclassical propagators will only satisfy the composition law required by
unitarity if the two trajectories join smoothly, which occurs at the stationary phase point
x0(t̄).

This is required to permit the statement

S(x′t; x0t̄) + S(x0t̄; xt) = S(x′t′; xt) , (496)

which must hold if (492) is to hold. In one dimension and for one given path there
is only one point at any t̄ at which the entering and leaving momenta are equal,
and thus only one stationary phase point. Equation (493), in view of (494), requires
the amplitude factors to satisfy

A(x′; x) =
√

2πi� A(x′; x0)A(x0; x)
(

∂2

∂x̄2 [S(x′; x̄) + S(x̄; x)]x̄=x0

)− 1
2

. (497)

If (481) is to satisfy (497), the following must hold:

∂2S(x′; x)
∂x′∂x

= −∂2S(x′; x0)
∂x′∂x0

∂2S(x0; x)
∂x0∂x

(
∂2

∂x2
0
[S(x′; x0) + S(x0; x)]

)−1

. (498)

Now (495) is a relationship between (x, x′, x0) for given values of (t, t′, t̄ ). Differen-
tiation of this relationship with respect to x with x′ held fixed gives

(
∂

∂x

)
x′

[p0(x0; x) − p0(x′; x0)]

=
∂p0(x0; x)

∂x
+

∂x0

∂x

∂

∂x0
[p0(x0; x) − p0(x′; x0)] , (499)

because p0(x′; x0) does not depend explicitly on x. Therefore the last factor in (498)
is

∂

∂x0
[p0(x′; x0) − p0(x0; x)] =

∂p0(x0; x)
∂x

∂x

∂x0
. (500)
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Furthermore, because of (496),

∂2S(x′; x0)
∂x′∂x0

=
∂2S(x′; x)

∂x′∂x

∂x

∂x0
, (501)

which with (500) establishes (498).
Two questions now arise: (i) How are more degrees of freedom to be handled?

(ii) How are the phases of the propagators to be computed? The first question is
answered by an exercise in Jacobian gymnastics, which can be found in the review
by Berry and Mount.

The second question is much deeper, and we only offer a hint as to how it was first
answered by Gutzwiller. Basically, the propagators for distinct classically allowed
paths must be sown together to form a continuous function. If there are no paths
between a and b that cross each other, the phases are those of the free particle
propagator. Consider, however, the one-dimensional case where two paths connect-
ing a to b cross at an intermediate point (xc, tc), which is called a point conjugate
to a. The convolution (492) must hold for all times between ta and tb, and must,
therefore, properly continue the phases generated by the two paths that converge
on (xc, tc) from tc − ε to tc + ε. This is done by returning to the path integral,
in which only quadratic departures from classical paths survive when � → 0. The
evaluation is then similar to that for free particles (see Eq. 436, etc.), though with
a more complicated quadratic form in the fluctuations ηk, and hence a product of
Gaussian integrals with different eigenvalues λk. In the free particle case, all the
eigenvalues are positive, and give the same root of i; in the present case that is no
longer true when there are conjugate points, and the Maslov index counts the num-
ber of eigenvalues that have the “wrong” sign and the extra phase factor as given
by Eq. 380. An example of such a calculation can be found in §17 of Schulman’s
monograph. A powerful theory exists for multidimensional problems because the
indices characterize the topology of the manifolds of orbits in configuration space.1

The proof that the Van Vleck determinant satisfies the continuity equation is
sketched in Prob. 15.

2.9 Problems

1. Let A be a positive definite Hermitian operator. Show that for all |u〉 and |v〉,

|〈u|A|v〉|2 ≥ 〈u|A|u〉〈v|A|v〉 .

Under what conditions does the equality hold?

2. Let A(x) be an operator that depends on a continuous variable x. Define its derivative
by

dA

dx
≡ A′(x) = lim

ε→0

A(x + ε) − A(x)
ε

.

If A has an inverse, show that

d

dx
A−1 = −A−1A′ A−1 ;

and finally, if A and B both depend on x, that d(AB)/dx = A′B + AB′ .

1V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer (1980), pp. 442–445.
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3. The object is to derive the density matrix ρT = e−βH/Z for a system in thermal
equilibrium, where β = 1/kT . Show it results from maximizing the entropy for a fixed
value of the internal energy U = Tr ρT H.

4. Consider a system composed of two parts s and R, and let ρ be the density matrix for
some state of the combined system. Show that for the subsystem to be in a pure state, ρ

must have the form Ps ⊗ ρR, where Ps is some projection operator onto the Hilbert space
of s.

5. Confirm that Eq. 150 follows from Eq. 148. Show that the phase space representation
of an arbitrary observable A(q, p) is given by Eq. 152.

6. Show that the uncertainty relation Eq. 203 becomes an equality when |φ〉 is such that
|φA〉 and |φB〉 are collinear, i.e., |φA〉 = λ|φB〉, and λ = 〈C〉/2i(∆B)2 .

7. Show that the electrical charge and current densities, as given by (232) and (233),
satisfy the continuity equation.

8. (a) By integrating the Heisenberg equations of motion for a free particle, derive Eq. 257.
Show that this equation agrees with the evolution of the momentum distribution of a
system of non-interacting particles in classical mechanics. Was this to be expected?

(b) Use Eq. 258 to compute the spreading of the following free particle wave packets
confined at t = 0 to volumes of dimension R: (i) an electron with R the Bohr radius in
hydrogen, and R the electron’s Compton wavelength; (ii) an alpha particle for the same
values of R, and the radius of the Pb nucleus; and (iii) and a golf ball with R = 1 µm.

9. Show that the energy distribution of Eq. 270 leads to the exponential decay law if
Γ � E0.

10. Define ∆K = (R − 1)K for the rotation R of any 3-vector K, and let R1 and R2 be
two infinitesimal rotations parametrized with δω1 and δω2. If ∆K is the change induced
in K by R = R−1

2 R−1
1 R2R1, show that to leading order

∆K = −(δω1×δω2)×K .

11. (a) Let exp(iΞ) be the phase factor in Eq. 349. Show that under a gauge transforma-
tion (

pn − en

c
An

)
ψ → eiΞ

(
pn − en

c
An

)
ψ ,

where An = A(rn, t), and A′
n is given by (345). Show that the current as defined in (351)

is gauge invariant, whereas (227) is not.
(b) Let xn be the coordinate operator for a particle whose motion is governed by the

Hamiltonian (348). Show that vn = ẋn, where vn is given by (350).
(c) Show that the probability current of Eq. 351 satisfies the continuity equation in

configuration space (Eq. 226).

12. Derive Green’s function for a free particle in one dimension (Eq. 390) by (i) evaluating
the d = 1 counterpart of (386); and (ii) by directly solving the inhomogeneous Schrödinger
equation.

13. This problem concerns the following important special case of the BCH theorem: If A
and B are two operators that do not commute with each other but which both commute
with [A, B], they satisfy

eA+B = eA eB e− 1
2 [A,B] .
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(a) To prove this, first show that [B, exA] = exA[B, A]x. Next, define G(x) = exAexB ,
and show that

dG

dx
= (A + B + [A, B]x)G .

Integrate this to obtain the desired result.
(b) More generally, show that for arbitrary A and B

lim
α,β→0

eαA eβB = eαA+βB+1
2 αβ[A,B]+X ,

where X is of higher order in α, β.

14. Let Dκ be the determinant of the κ-dimensional matrix (438). Show that Dκ =
2Dκ−1 − Dκ−2, and that (443) is the solution of this recursion relation.

15. To prove that the Van Vleck determinant D satisfies the continuity equation, show
first that for any non-singular matrix A with elements aij that depend on the parameter
z,

∂D

∂z
= D

∑
ij

(A−1)ji
∂aij

∂z
.

Calling aij = ∂2S/∂qi∂q′
j , show that the continuity equation follows in virtue of the

Hamilton-Jacobi equation.
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