2
General Methodology

2.1 The General Model and Overview

Let X be the full data structure for one subject, and it is assumed that the
full data distribution Fx is an element of a model M¥. Let Y = ®(X,C)
be the observed data for one subject, where ® is a known many to one
mapping and C' is a censoring variable. Typically, in most of our applica-
tions we parametrize the data structure such that C' is always observed, but
this is not required; obviously, this is always possible, since one can define
C =Y, in particular. Let G(- | X) be the conditional distribution of C,
given X, which is assumed to satisfy coarsening at random. The set of all
conditional distributions satisfying coarsening at random will be denoted
with G(C AR). Because of the curse of dimensionality, it typically will not
suffice to assume only that Fy € M¥ and G € G(CAR). In this chapter, we
develop estimating functions and corresponding locally efficient estimators
for two models. Firstly, given working models M®* c M¥ for Fx and
G C G(CAR) for G, we consider the following model for the distribution of
Y:

M={Pp,c:Fx e MG € G} U{Pry ¢ : Fx € M™" G € G(CAR)}.

In other words, either Fx needs to be an element of M¥* or G needs to
be an element of G. We will also consider the less nonparametric model

M(G) = {Ppyc: Fx e M",G € G},
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which assumes a correctly specified model for the censoring mechanism.
The data consist of n i.i.d. copies Y1,...,Y, of Y. Let = ®(Fx) € R* be
a k-dimensional Euclidean parameter of interest.

In this chapter, we propose general mappings from full data estimating
functions into observed data estimating functions. In the next section, we
study full data estimating functions for two general classes of full data
models: multivariate generalized linear regression models and multiplica-
tive intensity models. In Section 2.3 we propose methods for constructing
mappings from full data estimating functions into observed data estimat-
ing functions for model M(G) and a doubly robust mapping for model M.
These doubly robust mappings are G-orthogonalized initial mappings in
the sense that they are defined as an initial mapping minus its projection
onto a nuisance tangent space of G corresponding to a convex model G.
In Section 2.4 we define the optimal mapping (based on (1.52) in Theo-
rem 1.3) from full data estimating functions into observed data estimating
functions, which can be used for both models M and M(G). The optimal
mapping is optimal in the sense that it is an G(C AR)-orthogonalized initial
mapping, and by Theorem 1.3 it covers all estimating functions, including
the optimal one.

Since this optimal mapping does not always exist in closed form, the
methods of Section 2.3 can be preferable and are therefore still very im-
portant as well. Section 2.5 defines the corresponding estimating equations
and, in model M(G), we show how to adjust the estimating equation to
obtain an estimator that is guaranteed more efficient than an initial esti-
mator. Section 2.6 proposes confidence intervals, and Section 2.7 presents
two asymptotic theorems for the one-step estimator based on the estimat-
ing equation of Section 2.5 in model M(G) and in model M, respectively,
which provide templates for proving local efficiency of the one-step estima-
tor. Section 2.8 presents representations of the optimal index hop(Fx, G)
of the full data estimating functions. In particular, we prove a theorem
for general censored data that provides a closed-form expression of the
optimal index if the full data model is a multivariate generalized linear
regression model with uncensored covariates. In Section 2.9 we derive a
general reparametrization of h,,: and propose a corresponding substitution
estimator h,. Finally, in Section 2.10 we present a general locally efficient
estimator based on the representation of the efficient influence curve in
terms of score and information operators as presented in Bickel, Klaassen,
Ritov and Wellner (1993).

2.2 Full Data Estimating Functions.

Given a full data model M¥ and parameter y = ®(Fx) € R® of interest,
finding the class of estimating functions requires finding the orthogonal
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complement of the nuisance tangent space at Fx for each Fx € MF. We
refer the reader to Chapter 1 for an overview of the relevant efficiency and
estimating functions theory. Here we will provide a short summary. Subse-
quently, we will derive the orthogonal complement of the nuisance tangent
space in multivariate generalized linear regression models and multiplica-
tive intensity models. These two general models form two of the most
important full data models in the literature and will act as possible full
data models in this book. Finally, we show how one links the orthogonal
complement of the nuisance tangent space to a class of estimating functions.

It is assumed that the parameter u = ®(Fx) € IR® of interest is path-
wise differentiable in the full data model M with canonical gradient
Ssz(- | Fx) € L3(Fx) relative to a class of parametric submodels with
tangent space T (Fx). The canonical gradient is also called the efficient
influence curve. The canonical gradient Szf (X | Fix) is of great importance
since the asymptotic variance of a regular asymptotically linear estimator
of B at Pry ¢ is bounded below by the variance of the canonical gradient
and a regular estimator is efficient at Pp, ¢ if and only if it is asymp-
totically linear with influence curve equal to the canonical gradient (i.e.,
efficient influence curve) at Pp, . Let TF . (Fx) C L3(Fx) be the nui-
sance tangent space in the full data model M¥ (i.e., the closure of the linear
span of all scores of 1-dimensional submodels F, through F at ¢ = 0 for
which d/dep(Fe)|._, = 0). Let T,i”lg(FX) be the orthogonal complement
of T7is(Fx) € L§(Fx).

We will index each element of T, (Fx) with an index h running over

an index set H' (F). Specifically, assume we can represent

Trvis(Fx) = {Dn(X | u(Fx), p(Fx)) : h € H (Fx)}, (2.1)

nuis

where p(Fx) is a parameter defined on M¥. Note that these index sets
HE (Fx) will typically depend on Fy. For example, in the multivariate
generalized linear regression model E(Z | X*) = g(X* | 8) of Lemma 2.1
below, we have T2 (Fx) = {D,(X | 8) = h(X*)e(B) : h € HF (Fx)} with
HE (Fx) = {h(X*) : Ep {h(X*)e(B)}? < oo}. In words, in this case the
index h is allowed to be any function of X* so that h(X*)e(3) has finite
variance w.r.t. Fiy. Let hina ry : LE(Fx) — HE (Fx) be the index mapping
defined by

H(V | Trilzls(FX)) = Dhmd,FX(V)(' | M(FX)a p(FX))' (2'2)

Let hesr(Fx) = hind,Fx (S:ff( | Fx)) be the index of the full data canoni-
cal gradient. In general, the mapping h;nq,Fy is determined by the mapping
(- | T, (Fx)) and the representation (2.1) in the same manner as above.
As an illustration we consider the generalized linear regression example.
Lemma 2.1 teaches us that for D € L3(Fy)
(D | 5 = B(D(X)e" | X*)E(ee” | X*)Le.

nuis
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Thus, we have that the index mapping is given by
hind.ry (D) = E(D(X)e" | X*)E(ee" | X*)71.

In particular, hefr(Fx) = hind,Fx (Sfff), which can be simplified as in
Lemma 2.1 below.

2.2.1 Orthogonal complement of the nuisance tangent space

i the multivariate generalized linear regression model
(MGLM)

The following lemma provides the orthogonal complement of the nui-
sance tangent space in multivariate generalized linear regression models
7Z = g(X* | @) + €, the projection onto this space, and the efficient score.
We allow these models to model a user-supplied location parameter of the
conditional error distribution by requiring that E(K(e) | X*) = 0 for a
user-supplied monotone function K (¢). For example, if K(€) = ¢, then the
regression curve g(X* | &) models the mean, if K(e) = I(e > 0)—1/2, then
it models the median, and, in general, if K(e) = I(e > 0) — (1 — p), then it
models the pth quantile of the conditional error distribution of €, given X*.
Allowing this flexibility is particularly crucial for the censored data models
since estimation of a mean based on censored data might not be possible
due to lack of data in the tails of the distribution, while the median might
not be a smooth enough functional of the observed data (e.g., see Chapter
4). By truncating K (€) = e for | € |> M (i.e., set it equal to M), one obtains
a truncated mean, and by setting K(¢) equal to a smooth approximation
of I(e > 0) — 1/2, one obtains a smooth median.

Lemma 2.1 Let Z be a p-dimensional vector of outcomes. Suppose that we
observe n i.i.d. observations of X = (Z, X*) for some vector of covariates
X*. Consider the multivariate regression model of Z on X*,

Z=g(X* |a)+e, B(K(e)|X*) =0, (2.3)

where g = (g1,...,9p) " is a p-dimensional vector of functions g;(X* | ),
€ is a p-dimensional vector of residuals, K is a given real-valued monotone
increasing function with K(—o00) < 0 and K(o0) > 0, and a = (a1, . .., aq)
is a g-dimensional regression parameter. Here K (¢) = (K(e1), ..., K(ep))"
is a p-dimensional vector.

The orthogonal complement of the nuisance tangent space at Fx is given

by
TE (Fx) = {h(X*)K(€) : h 1 x p vector}.

nuis

The projection IL(V | TX-) onto this subspace of the Hilbert space L3(Fx),

nuis

endowed with inner product (f, g)ry = Ery f(X)g(X), is given by
E{V(X) = B(V | X*)}K(e)" | X*)E(K(e)K(e)T | X*) ' K(e).  (2.4)
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Assume that the conditional distribution of €, given X*, has a Lebesgue
p-variate density f(e | X*). The score for «; is given by

d fe] X7)
Si(X)=——g(X* | ) =——-,
(X)) dozjg( | @) Fle| X*)
where f'(e | X*) is a p-dimensional vector containing the p partial deriva-
tives w.r.t. €1,...,€,. We can represent the g-dimensional score vector
S(X) = (S1(X),...,84(X))" as
d fe] X7)
X)=——g(X* —_
S( ) dOég( |a)qxp f(G | X*)
The efficient score is given by
8 = T(S; | T (Fx))iy
= L (X | )T AKX )y E(K (K ()T | X)L K
= 509X [ a)gpAX )psp E(K () K () T | X7)p 5, K (e),

where A(X*) = FE (J;((:lljg:))l((e)—r |X*) . If we assume that f(e | X*)
pXp

equals zero at the end of its support and K is absolutely continuous w.r.t.
the Lebesgue measure, then by integration by parts it follows that
A(X™) = —diag (E(K'(e) | X7))

pXp?

where diagE (K’ (e) | X*) denotes the pxp diagonal matriz with jth diagonal
element E(K'(¢;) | X*). As a consequence, under this assumption, we have
that the efficient score vector is given by

d -

§* = S-g(X™ | a) ydiag (B () | X)),y BUK(K () | X7t K (e),

pPXp pPXp

For example, if p = 1 and K (e) = (I(e > 0) —1/2), which corresponds with
median regression, then

S5(X) = fex-(0] X*)%Q(X* | o) "E(K?(e) | X*) 1K (e).

Proof. The density of X can be written as
Ix(X) = F(Z | X*) fx+(X7) = fejx-(ela) | X7) fx=(X7).

This density is indexed by the parameter of interest «, fx+ and the condi-
tional distribution of € = €(a), given X*, where the latter ranges over all
conditional distributions with conditional expectation of K(¢), given X*,
equal to zero. Here fx- and f¢x~ are the nuisance parameters.

Let a be fixed. For any uniformly bounded function s(X*) with
E(s(X*)) = 0 and uniformly bounded function s(e | X*) with E(s(e |
X*)| X*) = E(s(e| X*)K(e) | X*) =0, we have that

f6(X) = (14 0s(X7)) e (XT)(1 4 bs(e [ X7)) fepx (€ | X7)
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is a one-dimensional submodel of the full data model with parameter §
going through the truth fx at 6 = 0. Notice that these one-dimensional
models provide a rich class of fluctuations for our nuisance parameter.
The nuisance tangent space is defined by the closure of the linear span of
the scores of this class of one-dimensional submodels in the Hilbert space
L3(Fx) = {s(X) : Es(X) = 0,Es*(X) < oo} endowed with the inner
product (f,g)ry = Ery f(X)g(X). It is given by the orthogonal sum of
the two spaces generated by the s(X*)’s and s(e | X*)’s,

Tnuis(FX) = L(Q)(FX*) 2 H,

where H C L%(Fx) is the Hilbert space of functions s satisfying E(s(e |
X7) | X*) = E(s(e | X*)K(e) | X*) = 0.

We have that II(V | L3(Fx-)) = E(V | X*). Let HT D H be the
Hilbert space of functions s only satisfying E(s(e | X*) | X*) = 0. We
have TI(V | H') = V — E(V | X*). Now note that H consists of the
orthogonal complement of the p-dimensional space (K(e1),..., K(€p)) in
the world where X* is fixed. Thus, the projection operator onto this space
is the identity operator minus the projection onto (K(e1), ..., K(ep)). The
projection onto a p-dimensional space of functions (K(¢;) : 5 =1,...,p) is
given by the formula

E(V(X)K(e) ) E(K()K(e) ) K(e).

Now, we simply need to apply this formula in the world with X* fixed, so
we have for any function n € H

I(y | H) = n(X) — E(X)K(e) | X*) T {E(K(K ()T | X*)} " K(e).
The rest of the proof is straightforward. O

2.2.2  Orthogonal complement of the nuisance tangent space
i the multiplicative intensity model

Suppose that the full data X = X(T) = (X(t) : 0 < ¢t < T) is a stochas-
tic time-dependent process up to a possibly random time 7. In addition,
suppose that X(t) = (N (t), Vi(t), Va(t)), where N(t) is a counting process
of interest and V' (t) = (Vi (¢), Va(t)) is a time-dependent covariate process.
Let R(t) = I(T < t) be a component of N(t) so that observing the process
X (t) up to T includes observing T itself. Let Z(t) = (N (¢), Vi(t)). In these
settings, there is often interest in modeling the intensity of N(¢) w.r.t. his-
tory Z(t—) = (Z(s) : s < t). The following lemmas provide us with the
orthogonal complement of the nuisance tangent space for this multiplicative
intensity model, the projection operator onto this space, and the efficient
score.

Lemma 2.2 Consider the setting above. Consider the model for the dis-
tribution of X = X(T') defined by the multiplicative intensity model (for a
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continuous counting process N (t)) assumption:
A(t)dt = E(dN(t) | Z(t=)) = Y (t)Ao(t) exp(BW (1)),

where Y (t) and the k-dimensional vector W (t) are uniformly bounded func-
tions of Z(t—). Here Y (t) is the indicator that N(t) is still at risk of
jumping right before time t. Here 3 € R* and \g are unspecified. Let (
be the parameter of interest and let (Ao, n) represent the nuisance parame-
ter (so 3, Mo, n identify fx ). Let dM(t) = dN(t) — E(AN(t) | Z(t-)). The
orthogonal complement of the nuisance tangent space in the model in which
Ao s known is given by

Ty = {/H(t, Z(t=))dM(t) : H} N L3 (Fx).

The nuisance tangent space of Ay = fo Ao 1s given by

7y, = { [aart@) o} 0 L),

We have
([ e 2e-parto) |, ) = [ atenoano,
where
_ B{H(t, Z(t-))Y (t) exp(BW (1)) }
D0 = =B @ e (W (1))} (2
Thus, the orthogonal complement of the nuisance tangent space of 3 T,i”lg =

Tnl N TALO is given by

TFL - { [t 26-) - gt an H} N L3(Fx).
We have
1 ( [ Hz6-pan) T“) = [t 2-) - gtnyanco

The score for 3 is given by Sg = [ W (t)dM(t). Thus the efficient score
for B is given by

Sfff —_ / {W(t) _ E{W(f,)Y(t) eXp(QW(t))} } dM(f,)
E{Y (t) exp(BW(¢))}
This efficient score formula is due to Ritov, and Wellner (1988). We want to
have an expression for the projection onto Tf;”lg of any function D(X). The
previous lemma provides the projection of full data functions of the form
[ H(t, Z(t—))dM (t). In the next lemma, we establish the projection in the
case where N(t) can only jump at a given set of points, thereby avoiding
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technical measurability conditions. Since continuous processes can be arbi-
trarily well-approximated by discrete processes, it will also provide us with
a formula for the general projection operator onto TTZJS for the continuous
multiplicative intensity model. Note that the multiplicative intensity model
makes only sense for discrete data on a relatively fine grid of points so that

the modeled probabilities are bounded by 1.

Lemma 2.3 Assume that the counting process N (t) can only jump at given
points t;, j = 1,...,p, and consider the multiplicative discrete intensity
model \(t;) = P(AN(t;) = 1| Z(t;—)) = Y (t;)\o(t;) exp(BW (t;)), where
W (t;) are uniformly bounded functions of Z(t;), j = 1,...,p. Let dM(t) =
AN (t) — A(t) fort € {t1,...,tp}. Then, the statements in Lemma 2.2 hold
and, in addition, we have that for any D € L*(Fy)

(D | T,") :/HD(t,Z(t—))dM(t), (2.6)
where
Hp(t, Z(t—)) = E(D(X) | dN(t) = 1, Z(t—))—E(D(X) | dN(t) = 0, Z(t—)).
Thus

WD | Tk = [{Ho(t 20-) - gtHp)ade),  (27)

where the mapping g(h) is defined in (2.5).

We conjecture that, given appropriate measurability conditions so that the
conditional expectations are properly defined, this projection formula (2.6)
and thereby (2.7) holds in the continuous setting of Lemma 2.2 as well.

A direct proof of the representation T;;”lg given in Lemma 2.2 is
obtained by directly computing the nuisance tangent space from the
likelihood f(X) = f(X | Z)][, f(Z(t) | Z(t—)) which can be further
factorized by f(Z(t) | Z(t—)) = f(AN(t) | Z(t=))f(Z(t) | N(t), Z(t—)).
Here ]Tt FAN@®) | Z(t-)) = ]Tt AN (1 — \(#)1 =4V ®) is the partial
likelihood, where this product integral representation of the likelihood is
formally defined in Andersen, Borgan, Gill and Keiding (1993). The proof
Lemma 2.3 below provides an intuitive non-formal way of understanding
Lemma 2.2 and provides a formal proof of Lemma 2.3 in which N(t) is a
discrete counting process.

Proof of Lemma 2.3. Let M = {Fx : E@W@N(t) | Z(t-)) =
Y(t)ho(t) exp(BW (¢)) all t} be this model. Let (n,Ag) represent
the nuisance parameter of (3. We have that the nuisance tangent
space Ty », equals the sum of the nuisance tangent space 7 in the
model with A¢p known and the nuisance tangent space T), in the
model with n known: T, , = T, +T),.- Thus TT*)\O = Tnl N T)\lo.
It follows directly from differentiating the log-partial-likelihood
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log [T, A®)N® (1 — A®#))179N® along one-dimensional fluctuations
No() + €h(-) of g that Th, = {[ g(t)dM(¢t) : g}.

We will now prove that T~ = { [ H(t, Z(t—))dM(t) : H}. Notice that
M = NP_ My, where My = {Fx : At) = Y(t)\o(t) exp(BW(t))}. In
other words, M can be viewed as an intersection of ¢-specific models only
restricting the intensity A(t) = E(dN(t) | Z(t—)) at a fixed point t. The or-
thogonal complement of the nuisance tangent space of § in model M; equals
{H(Z(t—))dM (t) : H}. This is proved directly from the likelihood repre-
sentation in the same manner as we proved that in the regression model
E(Z | X*) = m(X* | B) the orthogonal complement of the nuisance tan-
gent space equals {H(X*)(Z —m(X* | 3)) : H}. In fact, since N can only
jump at predetermined grid points M; can be viewed as a regression model
of Z = dN(t) on X* = Z(t—) with m(X* | 8) = Y (t) o(t) exp(BW (t)).
The orthogonal complement of the nuisance tangent space of the intersec-
tion of models M; equals the sum (integral) of the orthogonal complements
of the nuisance tangent spaces for the models M, where the nuisance tan-
gent space for M equals the intersection of the nuisance tangent spaces
for model M;. Thus, the orthogonal complement of the nuisance tangent
space in the model with Ay known equals

= {/H(t,Z(t—))dM(t) : H} N L3(Fx).

Therefore, we can conclude that

101 ={ [ 260 - stnnan o 1},

where [ g(H)(t)dM(t) =II([ HdM | Ty, ). It can be directly verified that
g(H)(t) = E{H(t, Z(t ))Y( )exp(BW (t))}/E{Y () exp(BW(¢))}-
We will now prove the projection formula (2.6). Firstly, we note that
={[H(t, Z(t=))dM(t): H} = Hy & ...® Hy, is an orthogonal sum of
subspaces H; = {H(Z(t;—))dM(t;) : H}. Therefore, we have that II(D |
T) = Z i=1 (D | Hj). As explained above, we can apply Lemma 2.4
w1th e=dM(t;), X* = Z(t;—), and K(€) = € to obtain that II(D | H;) is
given by
E{D(X) = E(D(X) | Z(t;=))}M(t;) | Z(t;=))x
sz M ()

We have

E(D(X) | dN(t;), Z(t;—)) — E(D(X) | Z(t;
{E(D(X) | dN(t;) =1, Z(t;—)) — E(D(X)

This proves that II(D | H;) is given by

| dN(t;) =0, Z(t;—))} dM(t;

{E(D(X) | dN(t;) =1, Z(t;—)) — E(D(X) | dN(t;) = 0, Z(t;—))} dM(t,
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which proves Lemma 2.3. O

Suppose now that the counting process is discrete on a sparse set of
points so that one might want to assume the logistic regression intensity
model. The proof of the previous lemma proves, in partlcular a simple rep-
resentation of Tm;z . and the projection operator onto Tm;z . for parametric
discrete intensity models such as the logistic regression intensity model.

The results are stated in the following lemma.

Lemma 2.4 Assume that the counting process N (t) can only jump at given
points t;, j = 1,...,p, and consider a discrete intensity model A(t;) =
PAN(t)) = 1] Z(t;-)) = Y (tym(W (L), ; | B), where m(W (t;),4; | ) is
parametrized by a k-dimensional regression parameter 8 and is uniformly
bounded: For example, m(W (t),t | 3) = 1/(1+exp(—(Bo + B1 xt+ B2 W (t).
Let dM(t) = dN(t) — A(t) for t € {t1,...,tp}. Then, the orthogonal
complement of the nuisance tangent space at Fx is given by

Th (Fx) = {/Ht Z(t—))dM(t) : H} NL2(Fx).
In addition, we have that for any D € L?(Fx)
(o |15 /HD (t, Z(t=))dM(t), (2.8)

where

Hp(t, Z(t-)) = E(D(X) | dAN(t) = 1, Z(t-))—E(D(X) | AN (t) = 0, Z(t—)).

2.2.8 Linking the orthogonal complement of the nuisance
tangent space to estimating functions

Consider the full data structure model M¥ with parameter of interest
= p(Fx). Given representations of TTZJS(FX) ={Dy(- | u(Fx), p(Fx)) :
h € HF(Fx)} at all Fx € MF| the goal is to define a class of full data
estimating functions {(X, u,p) — Dp(X | w,p) : b € HF} for p with a
(possibly different) nuisance parameter p = p(Fx) and an index set H'

independent of F'x so that
{Dn(-| u(Fx), p(Fx)) : h e HF} € TE+ (Fx) for all Fx € MF.  (2.9)

nus

Recall that it yields estimating functions indexed by HF* for p € R* by
defining Dy, = (Dp,, ..., Dp,) for any h = (hy, ..., hg) € HFF.

In this subsection, we provide a template for derlvmg such a class of
estimating functions from these representations of T, s(F 'x). Firstly, let
HE be an index set containing each HY (Fx), Fx € M¥ and (D }L ch e
HE) be a class of estimating functions D} : X x {(u(Fx),p(Fx)): Fx €
MF} — R so that

{DL(- | i(Fx), p(Fx)) : b € H" (Fx)} = Ty (Fx) for all Fx € MF.

nuzs
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For example, HF = Up cprHE (Fx). Since T7(Fx) is defined in
L3(Fx), we mean that for each element in T:;zlg(F 'y ) there exists a func-
tion D} (X | u(Fx), p(Fx)) that is equal to this element in L3(Fx). Now,
D} (- | s p), h € HF | is a class of (biased and unbiased) full data estimating
functions.

Since H(Fx) possibly depends on unknown parameters of Fy, the
membership indicator I(h € H¥ (Fy)), which guarantees the unbiasedness,
represents a nuisance parameter of the estimating function D} (- | p, p). In
order to acknowledge this fact, we reparametrize D} (- | p, p) as follows. Let
(- | HF (Fx)) be a user-supplied mapping from H* into HF (Fx) satisfy-
ing TI(h | HF(Fx)) = h if h € HF (Fx). We now redefine the class of full
data estimating functions {D} (- | p, p) : h € HF'}

{Di(- | 10") = Drugnaer (s ) - L 15 p) = o€ MY, (2.10)
where p’ denotes p augmented with the parameters indexing TI(h |
HE (Fx)). For the sake of notational simplicity, we redefine D2(- | u,p')
as Dp(- | 1, p) again. Note that we can now state

{Du(- | (Fx), p(Fx)) : h € H'} = TEL (Fy),

nuis
If TI(- | HE (Fx)) were not required to be the identity on H¥ (Fx), it might
have a range that is a strict subset of H%' (Fx ). Even so, we still would have

{Du(- | (Fx), p(Fx)) : h € '} € TEL (Fy).

nuis

One might choose such a mapping (- | HF(Fx)) to simplify the
parametrization of the estimating function, where one now takes the risk
of excluding (e.g.) the optimal estimating function.

As a side remark here, we mention that p plays the role of a nuisance
parameter that will be estimated with external (relative to the estimating
function) procedures. For example, in the full data world, we would be
solving 0 = > | Dyp(X; | p,pn) for a given estimator p, of p. Thus,
one wants to choose p as variation-independent of p as possible in order
to maximize efficiency of the estimator of u that solves the estimating
equation. If p = p(u,n) for two variation independent parameters p, 1,
then one redefines the full data estimating functions as Dp(- | u,n) =
Di(- | p, p(1,m)). We conjecture that it essentially will always be possible
to parametrize the estimating function so that p and p are locally variation
independent.

Such a collection {Dy, : h € HF'} represents a set of full data structure
estimating functions. We want to choose the index set as large as possible
in the sense that if p = (p1, p2) with

Ep Dn(X | w(Fx), p1, p2(Fx)) € TE (Fx) for all possible py

nuis

and Fx € M¥, then one should make p; a component of the index h.
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In most full data models, the estimating functions D, and index set H¥
are naturally implied by the representation of F'x — Tf;i(F x) = {Dn( |
w(Fx), p(Fx)) : h € HF (Fx)} and does not require much thinking.

Because it is of interest to be able to map a full data estimating function
into its corresponding index, we also want to extend the index mapping
hind,rx (2.2) to be well-defined on pointwise well-defined functions of X.
Let D = {Dy(- | p,p) : , p, h € HE} be the set of full data functions. Let
L(X) be the space of functions of X with finite supremum norm over a set
K for which we know that P(X € K) = 1 w.r.t. the true Fy. It will be
assumed that D C L(X). Let hina,ry : L(X) — H be an index mapping
satisfying for any D € L(X)

F, 1l
Dhmd,FX (D)( | M(FX)a p(FX)) = H(D | Tn'z;.is(FX))a

where we formally mean that the equality holds in LZ(Fx) (since the right-
hand side is defined in L3(Fx)).

Example 2.1 (Multivariate generalized linear regression; contin-
uation of Example 2.1 ) In our multivariate generalized linear regression

example, a natural candidate for the index set H' is simply all functions
of X*:

HE = {h(X™) : any h}.

A possible mapping into HY (Fx) = {h € HY : Ep, {h(X*)K(e(a))}? <
oo} (here « is the true parameter value corresponding with Flx) is given
by

(A | 1T (Fx))(X*) = min(h(X*), M),

where the truncation constant M is user-supplied. Notice that indeed the
finite supremum norm of this index (say) h* guarantees that h*(X*)e(«)
has finite variance for any Fx € MTF . Note also that the range of this map-
ping does not necessarily cover H¥' (Fx). This mapping has no unknown
nuisance parameters. Thus, the corresponding set of full data estimating
functions (2.10) is given by

{(X,a) = min(h(X™), M)K(e(a)) : h € HF}.

If the full data structure model M¥ assumes that, for a specified %,
X*ke(B) has finite variance, then one can define

I(h | HE (Fx)) = min(h(X™), X**).
For any D € D = {min(h(X*), M)K(e(a)) : h € HF', a}, we define
hind,px (D)(X*) = Epy (D(X)K ()" | X*)Epy (K()K(e)T | X*)71,

where € = e(a(Fx)). O
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2.3 Mapping into Observed Data Estimating
Functions

In this section, we provide a variety of methods to construct mappings from
full data estimating functions to observed data estimating functions. The
first five sections are focused on mappings that one can use to construct
estimators in model M(G), and they can form the basis of an orthogonalized
mapping such as the optimal mapping in the next section. In Subsection
2.3.6, we will show that making a given mapping orthogonal to the tangent
space of G for a convex model containing G yields the double robustness
property so that it can be used to obtain RAL estimators in model M as
well.

2.3.1 Initial mappings and reparametrizing the full data
estimating functions

Let Dy, — ICy(Y | Qo,G, D) be a mapping from full data estimating
functions {Dy, : h € HF'} into observed data estimating functions indexed
by nuisance parameters Qo(Fx,G) and G. Let Qp = {Qo(Fx,G) : Fx €
ME® G € G} be the parameter space of this nuisance parameter Qg, where
Fx ranges over a submodel M % of M¥ . For each possible parameter value
(1, p) € {(u(Fx),p(Fx)) : Fx € M"} and G € G, let H" (1, p, p1,G) C
H¥ be a collection of h for which

Eg(ICo(Y | Q,G, Du(- | 1, p)) | X) = Dn(X | 1, p) Fx-ace. for all Q € Q°
(2.11)
and

VAR P, oICo(Y | Q, G, Du(- | u(Fx), p(Fx))) < oo for all @ € Q°.
(2.12)
Note that the statement Fx-a.e. in (2.11) also creates dependence on
Fx. Since the latter restriction only affects the variance of the estimat-
ing function (it is unbiased by (2.11)) it can often be arranged by a simple
truncation of h (see e.g., Example 2.1). Therefore, we suppressed the pos-
sible dependence of H¥ (i, p, p1, G) on another nuisance parameter needed
to guarantee (2.12). This dependence is expressed by the parameter p; of
Fx.
It is also natural to make (2.12) a model assumption or, equivalently, a
regularity condition in an asymptotics theorem. Note that, if we ignore the
(2.12) constraint, then the maximal set H (u, p, p1, G) is given by

{h & sup | EalIC(Y | Qu.G.Dil: | ) | X) = Du(X ) 1= o},
0€Q0

where the equality needs to hold Fx-a.e.
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It will be convenient to also define the set of allowed full data estimating
functions directly (instead of in terms of the index sets).

Definition 2.1 Let D = {Dy(- | p,p) : h € HY, (1, p)} with (u, p) rang-
ing over the parameter space {u(Fx),p(Fx) : Fx € MF}. Let Qy =
{Qo(Fx,G) : Fx € MF,G € G}. For each G € G and Fx € MF, we
define the set D(p1(Fx),G) as

{DeD:Ez(ICy(Y |Q,G,D)| X)=D(X) Fx-a.e. for all Q € Qy.
(2.13)

Given an initial mapping ICy, the dependence of D(p1, G) on Fx, G typi-
cally has to do with the support of D(X); that is the possible values of X
at which D(X) is non zero relative to the support of G. As a consequence,
under strong conditions on G, one will typically have D(p1, G) = D.

Example 2.2 (Right censored data structure with time-
dependent covariates) Consider the right-censored data structure
Y = (T = min(T,C),A = I(T = T),L(T)). For D(X) we define
A(D) = I(D(X) observed). There exists a real-valued random variable
V(D) < T so that I(D(X)is observed) = I(C > V(D)). We define

oy |G.p) - — DEIAD)  DEAD)

Pa(A(D)=1|X)  GV(D)|X)

where G(t | X) = P(C >t | X). Note that if G(T | X) > 6 > 0 Fx-a.e. for
some & > 0, then one has D(p1,G) = D, but this condition might not be
necessary for identification of a particular parameter y. O

Having identified an appropriate mapping ICj, in many models it is in-
deed the case that Eq(ICo(Y | Q,G, Di(- | p(Fx), p(Fx))) | X) = Dp(X |
w(Fx), p(Fx)) only holds for Dy(- | u(Fx),p(Fx)) ranging over a true
(not even dense) subset of TTZJS(FX) (i.e., HF (u(Fx), p(Fx), p1(Fx),G) C
HT). In this case, there exist many full data structure estimating func-
tions (i.e., full data structure model gradients) that cannot be mapped
into an observed data estimating function (i.e., observed data model M(QG)
gradients).

Typical candidates of the mapping Dy, — ICy(Y | Qo, G, Dy) are so-
called inverse probability of censoring weighted mappings, as we provided
in Chapter 1 and will provide below for various censored data structures.
These mappings involve a censoring probability or density in the denom-
inator. By assuming that this censoring probability is uniformly bounded
away from zero, one will typically have H¥ (i, p, p1, G) = HF (i.e., all full
data structure estimating functions satisfy (2.11)). On the other hand, a
given censoring distribution not satisfying this property can still allow esti-
mation of the particular parameter of interest or, equivalently, there is still
a real subset H% (1, p, p1, G) of HE for which (2.11) holds. For example, in
the current status data location (mean, smooth median, truncated mean)
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regression model covered in Chapter 4, the class of allowed full data struc-
ture estimating functions is a function of the support of the monitoring
mechanism and the support of the location parameter. The next example
illustrates this for linear regression with a right-censored outcome.

Example 2.3 (Linear regression with right-censored outcome)
Suppose that one is interested in estimating a linear regression parame-
ter . = 3 of log-survival on a treatment dose Z. We denote the log survival
and log censoring time by 7" and C. Our model is T = [y + 512 + ¢,
E(e| Z) =0. Let X = (T, Z) be the full data structure. We assume that
the right-censoring time C' is conditionally independent of survival, given
treatment dose Z. We observe n i.i.d. copies of Y = (T = min(7T,C), A =
I(T < (),Z). A rich class of full data structure estimating functions
is {Dp(T,Z | B) = min(h(Z), M)e(8) : h} for a bound M < oo to
guarantee that all of these estimating functions have finite variance. Let
ICo(Y | G,Dp) = min(h(Z), M)e(B)A/G(T | Z) which equals zero if
A =0, regardless of the denominator, where G(t | Z) = P(C >t | Z).
Suppose that T, given Z, has compact support [az, a?]. For example, if
¢ has known support [—7, 7], then we have a? = By + 31 Z + 7. Note that

E (h(Z)e(ﬁ)I(T <0)/G(T|Z)|T, Z) =h(2)e(B)I(G(T | Z) > 0).
Define for some fixed small § > 0
Z(8,G)={z:G(a?| Z) > 6> 0}

as the set of treatment values z for which the conditional probability (given
treatment) G(T | Z = z) that a subject’s survival time is observed is
bounded away from zero. It follows that for all functions h(Z) that are

zero for Z ¢ Z(f3, G)
Ec(ICo(Y | G,Dp(- | B) | X) = Dp(X | B) for all G and 3.
Thus, we can set
HE (1 pop1,G) = H(B,G) = {h(Z): W(Z) = M2)I(Z € Z(8,G))},
DB,G) = {WZ)e(): h(Z) =0 if G(a? | Z) = 0}.

In other words, one can estimate [ by simply throwing away all sub-
jects with a treatment dose outside Z(3, G). This example can be directly
generalized to the general location regression model: T = (y + 1 Z + e,

E(K(e) | Z) = 0 for a monotone function K that has derivative zero
outside an interval, say (—7, 7). O

Reparametrizing the full data structure estimating functions

Since H¥ (i, p, p1,G) possibly depends on the unknown parameters
(14, p, p1, G), this makes the index h essentially a nuisance parameter of
the estimating function ICy(Y | Q, G, Dp(- | i, p)). In other words, to esti-
mate p, we need to estimate the set H¥ (u, p, p1, G) and try to make sure
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that our choice h,, converges to an element in H(u, p, p1, G). In order to ac-
knowledge this fact, we reparametrize Dy, (- | i, p) in the following manner,
which is completely analogous to (2.10).

Let TI(- | H¥(u, p, p1,G)) be a user-supplied mapping from H¥ into
HE (1, p, p1, G) that only depends on the unknown (u,p,p1,G), which
equals the identity on a rich subset (preferably all) of H¥ (1, p, p1, G). We
now redefine the class of full data estimating functions {Dp(- | p, p) : h €
HE'} so that it is guaranteed to satisfy (2.11) for all h € HE":

{D(- | 11,0 = (p,p1. G)) = Drignjer (pprpr.c) (- | 1o p)  h € HE}. (2.14)

For the sake of notational simplicity, we will denote the parameter p’ with
p, again, and we denote Dj (- | u, p’) with Dy (- | , p) again, but we now
need to remind ourselves that p possibly also includes G as a component
and that h — Dy, can be a many-to-one mapping in the sense that many
h € HF are mapped into the same full data structure estimating func-
tion. The reparametrized class of estimating functions are now elements of
TE=+ (Fx) and D(p1(Fx),G) when evaluated at the true parameter values.
Consequently, we now have for all h € HF

Eg(ICo(Y | Q. G, Di(- | 1,p)) | X) = Dp(X |, p) for all @ € Q°.
(2.15)
This and (2.12) imply that

{ICo(Y | Q. G, Di(- | w(Fx), p(Fx. @) : h e H',Q € Q°} C T, (M(G));

that is, ICy maps full data structure estimating functions into observed
data estimating functions that are orthogonal to the nuisance tangent space
in the model with G known. Consequently, the estimating function still
has the property that the first-order asymptotics of the locally (variation-
independent of 1) Fx components of p, will not affect the influence curve
of the estimator p, solving 0 =3, ICo(Y; | Qn, Gn, Dn(- | i1, pn))-

Example 2.4 (Linear regression with right-censored outcome;
continuation of Example 2.3) The class of full data structure esti-
mating functions is {Dy(X | 8) = min(h(Z), M)e(3) : h € HEF}, where
HF denotes all functions of Z. We derived in the previous example a sub-
class HY (u, p, p1,G) = HF(8,G) = {min(h(Z), M) : W(Z) = h(2)I(Z €
Z(B3,@))} so that for all h € HF(8,G) Ec(ICo(Y | G, Du(- | B)) | X) =
Dy (X | B). To reparametrize the estimating functions {ICy(Y | G, Dy (- |
B)) : h € HE(B,G)} in terms of a class of unbiased estimating functions
with an index A running over an index set independent of any unknown pa-
rameters, we define the mapping II(h | HF' (3, Q) = h(2)I(Z € Z(8,Q)).
This yields the reparametrized full data structure estimating functions

Dy(X | = 8,G) = min(h(2), M)I(Z € Z(8,G))e(d).

For notational convenience, we denote this latter full data structure
estimating function with Dy (X | 8,G). O



118 2. General Methodology

This mapping can be viewed as a mapping from full data estimating func-
tions Dy, for p into observed data estimating functions ICy(- | Qo, G, Dp(- |
i, p)) for p indexed by an unknown nuisance parameter G and unknown
(but) protected nuisance parameter Q. Therefore, it can be used to con-
struct an initial estimator in the model M(G) in which we assume that

G € G. For a given h € HFk, an estimator p, of p, G, of G and Qq,, of Qo,
let 12 be the solution of the estimating equation

n
OZZICO(Y; | Q%aGnaDh(' | Mapn))- (2'16)

i=1
Here, the G component of p is estimated with the same G,,. One can solve
the estimating equation with the Newton-Raphson algorithm. Let u0 be an
initial guess or estimator. Set [ = 0. The first step of the Newton—-Raphson
procedure involves estimation of a derivative (matrix) w.r.t. u at p!, of the

estimating equation. This derivative at p = uq is defined by

d
C(/,Ll) = c(halll/lapa QO)G) P) = @PICO(Y | QO)Ga Dh( | /’Lap))

)
H=p1

where we used the notation Pf = [ f(y)dP(y). Note that c(u) is a k x k
matrix with ¢;;(p) = %jPIC’OJ-(Y | Qo, G, Dp, (1, p)). Its estimate at p =
11 is given by

Cn(/,l/l) = C(hmﬂlapnaQOn;GnaPn)

1w d
- - _I YtL mny TL;D y Mn
n;du Co(Y: | Qons Gy D, (11 pn))

H=p1

If ICo(Y | Qon,GnsDn, (- | i, pn)) is not differentiable in p, but the
integral of ICy(Y) w.r.t. Pp, ¢ is differentiable w.r.t. p, then we replace
the analytical derivative d/du by a numerical derivative: for a given function
f IR — R, the numerical derivative w.r.t. z at x = x; is defined as

f(xl + An) - f(xl)
Ap

The (I + 1)th step of the Newton-Raphson procedure is given by

for a sequence A,, = O(n~1/2).

n
P = = eal) S TOW: | Qo G Di L)) (217)

i=1
If 40 is a decent consistent estimator of u (if a second-order Taylor ex-
pansion in p exists, one needs || uO — pu ||= op(n~'/*) and otherwise
|| 42 —p ||= Op(n=1/?) suffices), then further iteration beyond the one-step
estimator pl will not result in first-order improvements (i.e., uO does now
only affects the second-order asymptotics of u1}). Therefore, in this case one
can just use ). If no consistent initial estimator is available, then one can
repeat these updating steps until convergence is established. To guarantee
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convergence, the following modification of the algorithm is often needed.
For a given vector norm || - ||, we can define

) =( > ICo(Yi | Gy Dl | o pn)) || -

i=1

For example, we could use the Euclidean norm or average of absolute value
norm. Now, if I(ubtl) < I(ul), then we accept the update pltt, but other-
wise we take as update eju!, +(1—e)ult! with e chosen to be the minimizer of
€ — I(epl, + (1 —e)ubtl). Tt actually is not necessary to determine the exact
minimizer, but one needs to find an € that improves the update w.r.t. the
criterion [. This minimization problem can be carried out with the S-plus
function nlminb().

In this book, we will not be concerned with the existence of solutions
and or multiple solutions o estimating equations, but we would like to
make the following suggestions. The existence of solutions has been a non
issue in our experience, but we have experienced cases where estimating
equations had multiple solutions. In this case, it is very helpful if either a
consistent initial estimator u is available so that the one-step estimator
suffices or that an initial ad hoc guess is available so that certain solu-
tions can be ruled out right away. A useful idea to deal with multiple
solutions comes from noting that it is unlikely that the same wrong solu-
tion will consistently come up in different estimating equations. Therefore,
solving a number of estimating equations can be a sensible approach to
rule out certain solutions. More formally, a promising method is to solve
a number of estimating equations simultaneously. In other words, let U(/3)
be a stack (i.e., vector) of estimating equations, and we estimate (8 by
minimizing U(3) T E(U(B)U(B)")~U(B) over 3. By incorporating enough
estimating equations, this method will often uniquely identify the true S.
By Hansen (1982), the efficiency of the resulting estimator corresponds
with the estimator solving the optimal k-dimensional linear combination
of the components of U(3), provided the number of components in U(3)
does not increase too quickly with sample size.

Example 2.5 (Linear regression with right-censored outcome;
continuation of Example 2.3) Let (3, be the solution of

0= S min(h(Z,). M)I(Z: € Z(0,G.))ex(B) g

where G, is an estimator of the conditional distribution G(t | Z) = P(C >
t | Z). For example, we could assume the Cox proportional hazards model
for A\c(t | Z) and estimate G accordingly. We have

Z(B,Gn) ={2:Gn(Bo+ Pr1z+7]2)>6 >0}
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Instead of enforcing G, to be larger than § > 0, we could also just require
positivity. In this case,

I(Z € Z2(8,G)) =1(Bo + S1Z + 7 < a?).

We will now verify that, under some smoothness conditions, the
changes of the order ¢ in 3 and o only have an effect of order o2
on E{min(h(Z),M)I(ZE Z(5, G))e(ﬁ)ﬁ}. Let us denote the set
Z(B,G) with Z(8,a?). Define the set A(c) as all elements z € Z(3 +
o,a? +0) that are not an element of Z(3, a?), where £+ o denotes adding
the constant o to each component of Z. By noting that the conditional ex-
pectation, given Z = z € Z(8,G), of the estimating function equals zero,
it follows that

i (WW@ €Z(B+0o,0” +0) - I(Z € (5, az»}e(mM)

G(T|Z)
= /ZGA(U) {/T WZ)(T - BZ)1(G(T|Z) > O)dF(T|Z)} dF,(Z)

= [ a2
ZeA(o)

Now, note that g(Z) = 0 for Z € Z(3,a%). Thus, if g is a smooth function
in Z, then g(Z) = O(o) for Z € Z(B + 0,0 + o) and, in particular,
for Z € A(o). This shows that the last term equals fA(U) O(0)dFz(z) =
Fz(A(0))O(0) = O(c?).

As a consequence of this result, the asymptotics of 3, is not affected by
the first-order behavior of Z(3,,, Gy). Thus, under weak conditions, 3, will
be asymptotically equivalent with the estimator using Z(3, G) as given and
known. This is a helpful insight for derivation of the influence curve of 3,.
O

A general initial mapping only indexed by the censoring distribution.
Firstly, consider a censored data model for which
P(X is observed | X = x) > 0 for almost all z. (2.18)
Given a D(X), define a random variable that is 1 if D(X) is observed and
zero otherwise:
N

Define Ilg p(z) = P(A(D) =1 | X = x). Now, define for D € LE(Fx) the
following inverse probability of censoring weighted mapping
D(X)A(D)

1Co(Y | G, D) = =
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Notice that indeed E(ICy(Y | G, D) | X) = D(X) for all D(X). If (2.18)
only holds on a subset of the support of X, then, as in our linear regression
Example 2.3, Eg(ICo(Y | G,D) | X) = D(X) can still hold for a subset
of D’s covering full data structure estimating functions for a parameter of
interest.

In censored data models in which X is never completely observed, such
as in the current status data example below, it might not be so easy to
find an initial mapping ICy(- | G, D). In this case, the following theorem
provides a general representation of an initial mapping ICj.

Theorem 2.1 Let Ap, : L3(Fx) — L3(Pry ) be the nonparametric score
operator for Fx:

Apy (s)(Y) = E(s(X) | V).
The adjoint AL, : L3(Pry.c) — L3(Fx) of Apy is given by

AL(V)(X) = E(V(Y) | X).
Let Ir, ¢ = ALAp, + LE(Fx) — L3(Fx) which will be referred to as the
nonparametric information operator.

Let Fy be given. Let (L(X),|| - |lco) be the space of all functions of X
defined on set K with P(X € K) = 1 with finite supremum norm over this
set K. We have that Ip, ¢ : (L(X), | - |loo) = (L(X), || - |loo). Assume that
D € L(X); that is, D has finite supremum norm in X, and either (i) D
lies in the range of Ip, ¢ : (L(X), | - |loo) = (L(X), || - ||oo) o7 (i3) in the
range of Ir, ¢ : LE(Fx) — L&(Fx). Then

ICo(Y | G, D) = Ap Ty, o(D)(Y) € Li(Pry )
satisfies E(ICo(Y | G,D) | X) = D(X) for all values of X € K (if (i)
holds) or with probability one (if (ii) holds).

By Theorem 1.8 we also have

AFlI;‘ig(D) =Ur,,c(D) —p, c(Ur,a(D) | Tcar(Pr,,c))
for any Up, (D) satisfying E(Ur, ¢(D)(Y) | X) = D(X).
Proof. Given assumption (i), for each € K we have

E(ApTp, o(D)(Y) | X = 2) = Ip, ¢l o(D)(z) = D(z).

Similarly, given assumption (ii), we prove this statement with probability
one. O

Condition (i) is stronger than condition (ii), but the supremum norm
invertibility condition (i) is needed to prove most asymptotic theorems for
the estimator solving the corresponding estimating equation.

Example 2.6 (Current status data structure) Consider a carcino-
genicity experiment in which the time T until onset of a tumor in a
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mouse is the random variable of interest. Suppose that one collects time-

independent covariates L(0) and possibly time-dependent covariates (such

as the weight of the mouse) L(¢) up to the sacrificing time C. Then, the

full data structure is X = (T, L(-)) and the observed data structure is
=(C,A=I(T <C),L(C)).

To begin with, we will consider the current status data structure (C, A, L)
with time-independent covariates L. In this case, X = (T, L) and CAR is
equivalent with assuming G(- | X) = G(- | L). Below we will derive an
explicit form of ICo (Y | G, D) = Ap, 1, (D) that will provide an ICo(Y" |
G, D) for the general data structure (C, A, L(C)) by simply replacing G(- |
L) by the true G only satisfying CAR w.r.t. the general data structure. We
actuall suggest this as a general method for finding such mappings ICy; that
is, first obtain a mapping for a marginal data structure (e.g., not involving
covariates or not involving time-dependent covariates) and subsequently
simply replace the censoring mechanism for the marginal data structure by
the true censoring mechanism. The latter type of method will be discussed
in more detail in the next subsection.

We have

SR, LyaF (| L) [t L)dFi(t| L)

Ap, (h) = Fi(C|L) 1-F(C|L)

(1 - A)a
and its adjoint is given by

AL(V) = /OT V(c,0,L)dG(c| L) + /Oo V(e,1,L)dG(c| L).

T
Thus

fo tLdFl)t|L) iG(e | L)

<[> h(t, L)dFi(t | L)
. 1- Fi(c| L)

IF17 (

+

G(c| L).

Consider the equation Ir, ¢(h)(t,L) = D(t,L) for a D that is differen-
tiable in the first coordinate. We assume that dG(t | L) = g(t | L)dt.
Differentiation w.r.t. ¢t yields

Jo (s, L)dF\(s| L) [~ h(s, L)dFi(s | L) _ Di(t, L)
Bt L) 1—Fi(t| L) gt L)’

Where Dy(t,L) = d/dtD(t L) Now, we write f(f (s, L)dFl(s | L) =
Jo S h(s, L)dFy(s | L) — [ h(s, L) dFl(s | L). Solving for [,” h(s, L)dFi(s |
L) in terms of Dy and ®,(L) = [;° h(s, L)dFy(s | L) now yields

Dy (¢, L)

mﬂ(l — F)(t| L)+ {1 - Fi(t | L)}®4(L).

/too h(s, L)dFy(s | L) =
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The last equality gives us also

i _ Dy(t, L) B B
—/O (s, L)AFA(s | £) = G SR = R 1) = Pyt | D) (E),
Thus
AnTy, o(D) = l;gé—ﬁ’f;{mc L)~ A} + 0u(D).

Consider now the equation Ip, g(h)(ar,L) = D(ar, L), where ay, is the
most leftmost point of the support of g(- | L). This equation reduces to

®,(L) = D(ay, L) — /Ooo Di(c, L){1 — Fi(c, L)}de.

We conclude that (here [} =1 — F}):

ICo(Y |G.D) = Dgé—ﬁ’f;{m(c L)~ (1-A)
/D1 (¢| L)de+ D(ay,L). (2.19)

Consider now the general data structure (C, A, L(C)). We still assume
the full data estimating functions D to depend only on data (T, W = L(0)).
For this data structure, g(C | X) satisfies CAR if g(C | X) = h(C, L(C))
for some measurable function h. In (2.19), replace g(C | L) by g(C | X),
and we can replace F1(C | L) by any function ¢(C, L(C)). Assume that
Dy(¢, L)I(T > ¢)/g(c | L) < oo for all ¢, Fx-a.e. We will now verify that
ICy(Y | G, D) indeed satisfies the desired property: for any D(T,W =
L(0)), we have

E(ICy(Y |G,D)| X)) = /Dl(c, W)e(e, E(c))dc—l—/ D1 (e, W)de

—/Dl(c, W)é(e, L(c))de + D(ag, W)
= D(T,W).
By setting ¢ = 1, we obtain the mapping
Dy(C,L)(1 - A)
9(C L)

Omne can also treat the conditional distribution Fi(- | L(0)) as a nuisance
parameter of the mapping ICy and thus define
Dy(C, L)

1C(Y | F,G, D) = W{ F(C | L(0) = (1 - A)}

/D1 ¢, LYF(c| L(0))dc + D(ay, L).

ICo(Y | G, D) = + D(az, L).
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Since E(ICy(Y | F1,G, D) | X) = D(X) for all Fy, the resulting estimator
will remain CAN under misspecification of F (- | L(0)). Therefore, the latter
is an example of an initial mapping indexed by the censoring mechanism
and a protected nuisance parameter (Jg. By Theorem 1.3, if there are no
time-dependent covariates (i.e., L = L(0)), and D = D,y is the optimal
full data estimating function choice, then ICy(Y | F, G, D) is the efficient
influence curve. O

2.3.2  Initial mapping indexed by censoring and protected
nuisance parameter

By Theorem 2.1, we have Ipg : (L(X),] - |loo) — (L(X),] - |loo) for all
F,G. Let R*®(Ip) denote its range. Consider as mapping

ICy(Y | Fx, G, D) = Ap Iy o(D)(Y), (2.20)

which can also be represented as ICy(Y | G, D) —I(ICy | Tcar) for any
ICy(Y | G, D) satistying E(ICo(Y | G,D) | X) = D(X) (Theorem 1.3
Chapter 1). Given a working model M¥** suppose that

D(p1,G)={D € D:D € R*(Ip, ) for all F; € M},

is non empty. By Theorem 2.1, for any D € D(p1, G) it satisfies E(ICy (Y |
F,G,D) | X) = D(X) Fx-ae. for all F € M®%. Thus, this map-
ping indeed satisfies (2.11) with Qo(Fx) = Fx for appropriately chosen
HE (w, p, p1, G) (e.g., defined by the conditions of Theorem 2.1 at a fixed
Fx,G).

Again, when applied to full data estimating functions for a particular
parameter of interest, ICy yields a mapping from full data estimating
functions Dp(- | p,p) for p into observed data estimating functions
ICy(- | Qo, G, Di(- | p, p)) for p indexed by unknown nuisance parameter
G € G and Qp. As in the previous subsection, one needs 1) to iden-
tify a subset HE (i, p, p1,G) C HF so that for all h € HF (i, p, p1,G)
Ec(ICo(Y | F,G,Dp(- | 11, 0)) | X) = Dp(X | i, p) Fx-a.e. (for all possible
i, p, G) and 2) to reparametrize this restricted class of full data struc-
ture estimating functions {Dy, : h € HF (u, p, p1,G)} as {D} : h € HF'}
by incorporating the extra nuisance parameters p;, G (needed to map any
h € HY into H¥ (i, p, p1,G)) in the nuisance parameter of Dj. Subse-
quently, we denote this reparametrized class of estimating functions with
{Dn(- | 1, p) : h € HF'} again, where p includes the old p, p1, and G.

This mapping is actually the optimal mapping of the next section, which
can be used to construct locally efficient estimators of 1 in model M. We
highlight this in this section as a special choice that one can use to con-
struct estimators in M(G), where one might even consider extremely small
parametric models M™% since one already assumed correct specification
of G.
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2.3.8 Extending a mapping for a restricted censoring model
to a complete censoring model

The basic goal in this section is to find a mapping ICy (Y | Qo, G, D) such
that for a reasonable set of full data structure functions D (i.e., D(p1, G)
is rich enough) and all G € G

Ec(ICo(Y | Qo,G,D) | X) = D(X) Fx-a.e. for all possible Q. (2.21)

For each particular full data structure model and parameter of interest,
one still needs to specify the actual class D(p;, G) of full data structure
estimating functions for which (2.21) holds (see (2.11)) and specify the cor-
responding index sets H¥ (i1, p, p1, G). Thus, (2.21) is not a formal property,
but we want to separate the construction of sensible (i.e., in principle satis-
fying (2.21)) initial mappings from the verification of (2.21) for a particular
set of full data estimating functions.

The mapping (2.20) is the optimal mapping defined in the next section,
which might not always be easy to calculate. Therefore, we proceed with
discussing various useful approaches for obtaining ad hoc mappings ICo(Y" |
Qo, G, D) satisfying (2.21). Suppose that one has obtained a particular
mapping satisfying (2.21) for G in a restricted censoring model G* C G of
the true model G: for a desired set of full data structure functions D

Ec(ICy(Y | Qo, G, D) | X) = D(X) Fx-a.e. for all Qy, G € G*.

For example, one might develop such a mapping under the assumption
that censoring C' is completely independent of X: in particular, one can set
ICy(Y | Qo, G, D) equal to the influence curve of an ad hoc RAL estima-
tor under such an independent censoring model. In this case, the mapping
ICy(Y | Qo, G, Dy,) straightforwardly extended to all G € G typically sat-
isfies (2.21) at all G. When formulating the extension, one might want to
note that ICo(Y | Qo, G, Dy) depends on (Fx,G) only through the law
Pr..c € M(G*) of the observed data when the conditional distribution
of C, given X, is given by an element of G*. Thus, one needs to extend
this mapping defined on M(G*) to M(G), but a straightforward ad hoc
substitution typically works. This method provides a powerful way of ob-
taining initial mappings from full data estimating functions into observed
data estimating functions since it only requires understanding a strongly
simplified version (e.g., independent censoring) of the true data-generating
experiment.

Example 2.7 (Right censored data structure: continuation of
Example 2.2) Consider the right-censored data structure (T =
min(7T,C), A, X(T)) and suppose that p is a parameter of the marginal
distribution F' of T. Firstly, assume the independent censoring model
G* = {G(- | X) = G(-)}, where C is independent of X under G*. In
this model, one can use the optimal mapping AFI;}G (D) for the marginal
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right-censored data structure (T, A), which is given by
IG(Y | F.G.D) = DID)AJG(T) + [ E(D(T) | T > w)db(u)/Gla),

where dMg(u) = I(T € du,A = 0) — I(T > u)dG(u)/G(u) and G(u) =
P(C > w). Simply replacing the independent censoring G € G* by a G €
G(C AR) now yields an extension ICy(Y | F, G, D) with protected nuisance
parameter F satisfying the desired property (2.21) for all G € G(CAR)
provided D(T)/G(T | X) < oo Fx-a.e. O

Example 2.8 (Multivariate right censored data structure) Let
(T1,T2) be a bivariate survival time of interest, and let p be a param-
eter of the bivariate cumulative distribution function F of (Ty,7T%). Let
C = (C1,Cs) be a bivariate censoring variable. Suppose that we observe
(Tj = min(Tj,C’j),Aj = I(TJ S Cj),ij(Tj)), ] = 1,2, where LJ() are
covariate processes. We have for full data X = (Ty, L1(T1), Tz, L(T3)). The
observed data distribution is indexed by the full data distribution Fx and
the conditional bivariate distribution G of (C, C2), given X. CAR is a com-
plicated concept for this data structure, but nice rich submodels of CAR
are provided in Chapter 6, where we study this data structure in detail.
Firstly, assume the independent censoring model G* = {G : G(- | X) =
G(+)}. In this model, one can use the optimal mapping AFI;}G (D) for the

marginal bivariate right-censored data structure (Tj,A;), j = 1,2. The
inverse Iﬁlc(D) = Y poo(I = Irc)®(D) can be represented by a Neu-
mann series mapping, which has been implemented in (Quale, van der
Laan and Robins, 2001, see also Chapter 5). Replacing the marginal G
by G € G(CAR) now yields a mapping ICo(Y | F,G,D) = AFI;710(D)
from full data estimating functions into observed data estimating functions
with protected nuisance parameter F' (bivariate cumulative distribution
function) satisfying the desired property (2.21) for all G € G(CAR). O

2.3.4  Inverse weighting a mapping developed for a restricted
censoring model

We will now provide an alternative to the previous method. Again, consider
a particular mapping ICo(Y | Q1,G, D) developed under a restricted
censoring model G* C G of the true model G. Thus, it satisfies (2.21) at
G € G* C G. For each G € G, let G* = G*(G) € G* be an approximation
of G defined by a mapping II : G — G*. For example, if G is an element
of a multiplicative intensity model, then II might correspond with setting
some or all of the regression coefficients equal to zero. Alternatively, IT
can be an unknown mapping defined by the Kullback—Leibner projection
of G onto G*: the latter would be estimated by maximizing the likelihood
over the restricted model G*. In addition, suppose that for each G € G it is
known that the Radon-Nykodim derivative dG*/dG exists and is uniformly
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bounded:
G'(-| X) < G(- | X) Fx-a.e.
In this case, the mapping

dG* (Y | X)

ICo(Y | Qo, G, Dy) = ICy(Y | QO,G*,Dh)m

(2.22)

satisfies (2.21) at all G € G.

Example 2.9 (Marginal structural models, continued) Consider the
previously covered example in Section 1.3 of Chapter 1. Thus, for each sub-
ject, we observe a realization (i.e., the data) of vector A = (A(1),..., A(p))
of exposures and treatments, a vector of outcomes Z = (Z(1),..., Z(p)),
and the covariates L(-) (including many time-dependent covariates) of
interest. For observed data we have

Y = (4,2,1),
which in terms of counterfactuals is represented as the missing data
structure:

YV = (A, X5) = (A Z4,La).

It is assumed that the missingness mechanism (i.e., the conditional
distribution of A, given X) satisfies the SRA,

g(A| X) = Hg Hg t=),Xa(t), (2.23)

and we consider a marginal structural repeated measures regression model
as the full data model,

E(Za(t) | V) = g:(a, V' | B),

where g;(a, V| 3;) is some specified regression curve (e.g., linear or logistic
regression) indexed by the unknown regression coefficient vector, 3, and
V is the set of adjustment covariates (i.e., variables not affected by @ by
which one wants to stratify). The goal is to estimate the causal parameter
(3 based on the observed data Y.

Let A be the set of possible sample paths of A, where we assume that
A is finite. In Example 1.3, we showed that the set of full data estimating
functions is given by

{thm Zh h}.

Let G* = {g: g(A(j) | A(j — 1), Xa(j)) = 9(A() | A(j —1),V)} assume
SRA w.r.t. treatment past and V. Thus, for each g € G*, we have g(4 |

X) = g(A | V). We define ICy(Y | G,Dy) = Zégl“;))e,q(ﬁ). Note that,
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indeed, at any G € G* we have
Ec(ICo(Y | G, Dn) | X) =Y h(@,V)ea(B) = Du(X).

Given g € G(SRA), let g* = g*(g) € G* be its projection (in some sense)
of g onto G* satisfying maxazea{h(a,V)g*(@| V)}/g(a | X) < oo Fx-a.e.
Then
_ e p ITATX) (A V)e(B)
ICO(Y|G’Dh)_ICO(Y|G’Dh)g(A|X) WA X)

is the IPTW mapping presented in Example 1.3, which satisfies the de-
sired property Eq(ICo(Y | G,Dy) | X) = Dp(X) Fx-a.e. and at each
G € G(SRA). Note that this condition on h defines the set of allowed
indexes H(u, p, p1,G) and the allowed set of full data functions D(p1, G).
Notice that we would have obtained the same IPTW mapping by simply

extending ICy(Y | G, D) = géél“;)) ea(B) to G(SRA). Thus, the methods

of the previous subsection and this subsection yield identical results for this
example.

In Chapter 6, we also apply this method to obtain the class of all es-
timating functions in marginal structural nested models, another class of
causal inference models that allows one to estimate dynamic treatment-
regime-specific outcome distributions. Other important applications of this
method in causal inference are covered in Murphy, van der Laan and Robins
(2001) and van der Laan, Murphy and Robins (2002). O

2.3.5 Beating a given RAL estimator

We will now show, given an RAL estimator of p, how one can obtain
a mapping D), — ICy(Y | F,G,Dp) from full data estimating func-
tions into observed data estimating functions so that for a specified full
data estimating function Dj, it provides an estimating function that when
evaluated at the true parameter values equals the influence curve of the
given RAL estimator (and thus results in an estimator that is asymp-
totically equivalent with the given RAL estimator). Let u, be a given
RAL estimator, and let IC(Y | Fx,G) be its influence curve. Since
IC(Y | Fx,G) is a gradient of the pathwise derivative of u, we have that
Eq(IC(Y | F,G) | X) € TEL*(F) for all F € MF. Thus, by taking a
conditional expectation, given X, IC(Y | F, G) maps into a particular full
data estimating function for . Let h* = hina r (E(IC(Y | Fx,G) | X))
be the corresponding index of this estimating function:

Dp+ (X | u(Fx), p(Fx)) = EIC(Y | Fx,G) | X).
For a multivariate full data function D = (Dq,..., D), one defines

hind,px (D)= (Rind,rx (D1), ..., hind,px(Dy)). Note that h* = h*(Fx,G).
Let Dy, — ICo(Y | G, D) be an initial mapping from full data estimating
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functions into observed data estimating functions satisfying Eq(ICo(

v
G, Di+(rx.c) (- | p(Fx), p(Fx, G))) | X) = Dp(rx,6) (- | 1(Fx), p(Fx, G))
for all Fx € M and G € G. We now define ICcar(Y | Fx,G) as

IC(Y | Fx,G) ~ ICo(Y | G, (. (- | n(Fx). p(Fx))).

Note that E(ICcar(Y | F,G) | X) =0 for all F € MF.
We now define as mapping from full data estimating functions into
observed data estimating functions

IC(Y | Fx,G, Dh) = ICO(Y | G, Dh,) —|—ICCAR(F)(,G).

Note that it satisfies (2.21) and, in addition, IC(Y | Fx,G, Dp-) = IC(Y |
Fx,G). Consequently, under the regularity conditions of our asymptotic
Theorem 2.4, the estimating equation with index h* (or a consistent esti-
mator thereof) yields an estimator that is asymptotically equivalent with
tn- Other choices of A might result in more efficient estimators than pu,.

In the following example, we combine this method described above with
the extension method of Subsection 2.3.3 into a powerful application for
the bivariate right-censored data structure.

Example 2.10 (Multivariate right-censored data structure; con-
tinuation of Example 2.8) We refer to Example 2.8. Thus, we observe
(Tj = min(Tj,C’j),Aj = I(TJ S Cj),ij(fj)), ] = 1,2, where LJ() are
covariate processes. The parameter of interest is p = S(t1,t2) = P(Ty >
t1,T> > t3). Let F be the bivariate cumulative distribution of (7%, 7%).
For full data, we have X = (Ty, L1(T1), T», L(T%)). The observed data dis-
tribution is indexed by the full data distribution F'x and the conditional
bivariate distribution G of (C1, C3), given X, which is assumed to be mod-
eled with some submodel G of CAR, as provided in Chapter 6. Let the full
data model be nonparametric so that the only full data estimating function
is D(X | 1) = It 00)x (t2,00) (11, T2) — . Firstly, assume the independent
censoring model G* = {G(- | X) = G(-)}.

A well-known estimator of u = S(t1,t2) based on marginal bivariate
right-censored data in the independent censoring model is the Dabrowska
estimator (Dabrowska, 1988,1989). We want to apply the method above to
find an estimating function for p that yields an estimator that is asymptot-
ically equivalent with Dabrowska’s estimator. Subsequently, extending this
mapping to G € G yields an estimating function for our extended bivariate
data structure only assuming our posed model G for G. The influence curve
ICpaw(Y | F,G, (t1,t2)) of Dabrowska’s estimator is derived in Gill, van
der Laan and Wellner (1995) and van der Laan (1990) and is given by

. " (T A =1)—I(Ty > w)A
IC(Y) = F(ti,t2) ‘/ T €du, A =1) = I(T1 2 u)ha(du)
0 Pra(Ti > u)
_/t2 I(Ty € du, Ay = 1) — I(T > u)As(du)
0 PF,G(TQ > u)
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ot (T € du, Ty € dv, Ay =1, Ay = 1)

/ / PFG(T1>’U, T2>v)

2 [(Ty > u, Ty > v)Aq1 (du, dv)

/0 Prg(Ty > u, Ty > v)

bt (T e du, Ty > v, Ay = 1)Ag1(dv, u)
/0 Ppc(T1 > u, T2>v)

bt [Ty > u, Ty > 0)Aqo(du, v) At (dv, u)
/0 Ppc(T1>u Ty > v)

bt [(Ty > u, Ty € dv, Ay = 1)Ayo(du, v)
/0 Ppc(T1 > u, T2>v)

toorte [Ty > u, Ty > 0)Aqo(du, v) Aot (dv, u)
/0 Prg(Ty > u, Ty > v) }

+
c\c\c\c\

+
S~

where Aj(du)

du | T1 Z ’U,,T

VEdu | Ty > w), j =1,2, Ao(du | v) = P(Th €

v), Ao1(dv,u) = P(Ty € dv | Ty > u, Ty > v), and
All(du,dv) = P( 1 € du T5 € dv | T > uTy > ’U) Here PF7G(T1 >
s, Ty, > t) = S(s,t)G(s,t). Firstly, we note that it is straightforward to
Verify that, if G(tl,tg) > 0, then Eg(ICDab(Y | F,G, (tl,tg)) | X) =
D(X | p) for all G € G* satisfying independent censoring. In addition, if
we replace G by any G € G(C AR) satisfying CAR, then we still have

Ec(ICpah(Y | F, G, (t1,t2)) | X) = L(t, 00)x (t2,00) (T1, T2) —

I\/’U

for all bivariate distributions F, as predicted in Subsection 2.3.3.
Let ICQ(Y | G, D) = D(X)AlAQ/G(Tl, T2 | X) We now define

ICcAr(Y | F,G) = ICpap(Y | F,G) = ICo(Y | G, D(- | u(F)))-

Note that Eq(ICcar(Y | F,G) | X) = 0 for all bivariate distributions F'
and all G € G(CAR).

We now define an observed data estimating function for p indexed by
the true censoring mechanism G and a bivariate distribution F":

[C(Y | F,G,D(-| p) = ICo(Y | G, D(- | 1)) + ICcar(F,G).  (2.24)

It follows that this estimating function for u satisfies E¢(IC(Y | F, G, D(- |
1) | X)=D(X | u) forall G € G(CAR) and, at the true p and F, it reduces
to Dabrowska’s influence curve. Given consistent estimators F,, of F and
G, of G according to model G, let u, be the solution of

1 n
==Y IC(Y; | Fo, Gy, D(- | ).
"=
Under the regularity conditions of Theorem 2.4, u,, is asymptotically lin-
ear with influence curve IC(Y) = II(IC(- | F,G,D(- | 1)) | To(Pry.c)),
where T5(Pry,¢) C Tcar is the observed data tangent space of G under
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the posed model G. Firstly, assume that G* is the independent censoring
model. Since IC(Y | F,G,D(- | p)) is already orthogonal to the tangent
space T(G*) of G for the independent censoring model G*, we have that
IC(Y) = ICpa(Y). Secondly, if the tangent space T»(Pry ) contains
scores that are not in T(G*), then it will result in an estimator more effi-
cient than Dabrowska’s estimator, even when (C1, Cs) is independent of X.
In Chapter 5, we provide a simulation study comparing this estimator with
Dabrowska’s estimator and further improve on this estimating function by
orthogonalizing w.r.t. a tangent space of a rich submodel G of G(CAR) for
G.

Note that the method used in this example can be used, in general, to
generalize an estimator for a marginal data structure into an estimator for
an extended data structure. O

2.3.6  Orthogonalizing an initial mapping w.r.t. G: Double
robustness

Consider the following class of parametric submodels through the censoring
mechanism Gy |x:

{1+ eV (y)dG(ylz) : V € L(Pry.c), E(V(Y) | X) = 0}.

It is straightforward to show that the tangent space of G in the model
M(Geoar) generated by this class of parametric submodels is given by

Tear(Pry,c) = N(AL) = {v € L§(Pry.¢) : E((Y) | X) = 0}.

An initial mapping can be orthogonalized w.r.t. Tcar(Pry,c) itself, re-
sulting in the optimal mapping in the next section, or w.r.t. subspaces of
Tcar(Pry,c) as in this subsection.

We will now present a general way of obtaining a mapping of estimating
functions ICy(Y | Qo, G, D) indexed by nuisance parameters Qo, G with
a double robustness property. Let H(Pr, ¢) be a tangent space of G ac-
cording to some submodel of G(CAR). Thus H(Pry.¢) C Tcar(Pry,c)
is a subspace of Tcar(Pry,¢) for all Pr, ¢ € M. For example, one can
set H(Pry.c) equal to the observed data tangent space To(Ppy ) of G in
model M(G).

Since TCAR(PFX,G) = {V(Y) S L(Q)(PFX7g) : Eg(V(Y) | X) = 0} only
depends on F'x to make sure that the elements have finite variance w.r.t.
Pr. ., it is always possible to find a rich common subset of Tcar(Pry.c)
only depending on G. By the same argument, one will also always be able
to choose a rich common subset H(G) of H(Pr, ). Let Qp be an index
set (independent of (Fx,G)) for H(G) so that

H(G) = {ICW( | QQ,G) : QQ S QO} C H(PFX7G) for all G € g,

where ICp,(- | Qo, G) denotes the Qg indexed element of H(G). It will be
possible to define (Qo,G) — (Y — ICL.(Y | Qo,G)) as a mapping from
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Qo X G into pointwise well-defined functions of Y, which we will need in
order to define the estimating function ICy(Y | Qo, G, D) below.

We can now make a mapping ICy(Y | G, D) satisfying (2.21) orthogonal
(at the truth) to H(Ppy ) by introducing another nuisance parameter
Qo = Qo(Fx,G) as follows:

ICy(Y | Qo,G,D) =ICy(Y | G, D) — IC,,(Y | Qo, G),
where the unknown parameter Qo(Fx, G) is defined by
IChu(- | Qo(Fx,G),G) =1lpy.c (ICo(- | G, D) | H(Pry,c))

and the equality holds in LZ(Ppy ).

This mapping D — ICy(Y | Qo,G, D) maps full data estimating
functions Dp(- | p,p) for p into observed data estimating functions
ICy(- | Qo, G, Dp(- | p, p)) for p with unknown nuisance parameters Qo =
Qo(Fx,G) and G. It has the property Eg(ICo(Y | Qo, G, D) | X) = D(X)
for all possible @)y, and thus it remains unbiased when Qo is misspecified.
Therefore, it can be used to construct an initial estimator in the model
M(G) in which we assume that G € G: for a given h € H, an estimator p,
of p, Qon of Qo, Gy, of G, let 1 be the solution of the estimating equation

0= ZICO(Y; | QOna Gna Dh(' | Mapn))- (2'25)

=1

If Qon converges to some Qo not necessarily equal to Qo(Fx,G), then
application of Theorem 2.4 yields, under regularity conditions, that the
estimator is asymptotically linear with influence curve —II(c™'ICy(- |
Qo, G, Dr(- | w,p)) | Ta(Ppyg)t), where c is the derivative matrix
w.r.t. p of the expectation of ICy. In particular, if Qo = Qo(Fx,G)
and H(Ppy c) = To(Ppy ), then this influence curve equals —c™11Cq(- |
Qo(Fx,G), G, D, Dy(- | p, p)).

Finally, we note that the mapping ICo(Y | F,G,D) = AFI;7G(D)
considered in the previous subsection is also of this type since

AFXI;XG(D) =ICy(Y | G,D)—lp, c(ICy(Y | G,D) | Tcar)

for any initial ICy(Y | G, D) satisfying E(ICo(Y | G, D) | X) = D(X). In
other words, if we set H(Pr, ¢) = Tcar(Pry.c), then ICo(Y | Q1,G, D)
reduces to ICo(Y | F,G, D) = Aply (D).

Example 2.11 (Right-censored data structure; continuation of
Example 2.2) Consider the right-censored data structure ¥ = (T =
min(7,C),A = I(T = T),L(T)). Suppose that H(Pr, ) is the tan-
gent space of G in the independent censoring model. We have that
H(Ppy ) = {[ H(u)dMg(u) : H} N L(Ppy ), where dMg(u) = I(T €
du, A = 0) — I(T > u)Ac(du). If [ | dMg(u) |< oo, then one can choose

H(G) = {[ H(uw)dMg(u) :|| H ||oo< o0}. Let ICo(Y | G, D) = %,
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where A(D) is the indicator that D(X) is observed, V(D) is the minimum
time at which D is fully observed, and G(V (D) | X) is the probability that
A(D) =1, given X.

Application of Lemma 3.2, formula (3.17) from the next chapter, yields

D(X)A(D)
avoyx (T2 “))

P(T > u)

E X,
My 6 (ICo | H(Pry ) = — / e dMg (u)

so that, for any function Qo(u), we can define

D(X)A(D)
WH)()+/QO(U)CZMG(U)’

where Qo(Fy, G) (1) = Epy,c(D(X)A(D)I(T > u)/G(V(D) | X))/P(T >
W)= Ery(D(X) | T > u)/G(u).

Let us now consider the special case in which y = F(t) = P(T < t),
D(X) =I(T <t)— F(t), and we assume the independent censoring model
G(-| X) = G(-) for G. Then ICy(Y | Qo(Fx,G), G, D) equals the influence
curve ICk s of the Kaplan—Meier estimator. The corresponding estimating
equation results in an estimator u, that is asymptotically equivalent with
the Kaplan—Meier estimator. If one assumes the Cox proportional hazards
model for G with covariates extracted from the observed past, then ., is
asymptotically linear with influence curve ICkn —II(ICkm | To(Pry.c))s
where T3 (Ppy ) denotes the tangent space of the Cox proportional hazards
model. Thus, in the last case, u, will be more efficient than the Kaplan—
Meier estimator. O

ICy(Y | Qov,G, D) =

Double protection (robustness) when orthogonalizing w.r.t. convex
censoring models

If H(Ppy ¢) is the tangent space of G for a conver model G(conv) C
G(CAR) containing G, then the mapping D — ICo(- | Qo, G, D) from full
data estimating functions to observed data estimating functions satisfies a
double protection property against misspecification of G and Fx defined
by (2.27) below. This follows from Theorem 1.6 and Lemma 1.9. As a con-
sequence, in this case it actually yields estimating functions in model M. A
special case is H(Ppy ¢) = Tcar(Pry,c), where Tcar(Pry.¢) is the tan-
gent space of G for the model G(C AR), which makes ICy corresponded with
the optimal mapping A FI;7G(D) as introduced above. The latter mapping
will actually be the mapping proposed in the next section and applied in all
subsequent chapters, which will allow locally efficient estimation. For some
data structures, the projection on Tcar(Pry,¢) does not exist in closed
form. In that case, the estimating function ICo(- | Qo, G, Dp(- | w1, p))
with H(Pp,.¢) C Tcar(Pry.c) chosen so that the projection operator on
H(Pr, ) exists in closed form provides an interesting alternative. Such a
mapping is used in Chapter 5 to provide estimators for the extended bivari-
ate right-censored data structure and in Chapter 6 to identify causal and
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non causal parameters in complex longitudinal data structures involving
censoring and time-dependent informative treatment assignments.

Let us prove the double protection property (2.27) to make this section
self-contained. By definition, ICy(- | Qo(Fx,G), G, D) is actually orthog-
onal to the tangent space H(Pr, ). By the convexity of G(conv), we
know that for all G; € G(conv) with dG1/dG < oo, aG1 + (1 — )G
is a submodel of G(conv). Consequently, the line dPpy oG +(1-a)c 15 a
submodel of M(G(conv)) that has score (by linearity of G — Ppy ¢)
(dPpy.¢, — dPpy.c)/dPry . Thus, the latter score is an element of
H(Prpy ). Thus, the orthogonality of ICo(Y | Qo(Fx,G),G,D) to
(dPpy ¢, — dPry ¢)/dPry ¢ now yields
dPry.c, —dPpy,

dPFX,G
EPFX c1—Pry, GICO(Y | QO(FXa ) )
= EPFX,Gllco(Y | QQ(F)(, ) ) lfD S D(pl(FX) G)
and Ep, D(X) = 0. Here we used that D € D(p1 (Fx), G) guarantees that
Epp, o 1Co(Y | Q(Fx,G),G, D) = Ep,D(X) = 0. Exchanging the role of
G and G proves the following result: for all pairs G, Gy € G(conv) with
dG/dGy < oo, we have for all D € D(p;(Fx),G1) with Ep, D(X) =0

0= Ep._ICo(Y | Qo(Fx,G1),G1, D).

0 = Ep. ICo(Y|Qo(Fx,G),G,D)

We note that this provides a sufficient, but not necessary condition. For
example, if the identity holds at G; = Gi,, for a sequence at Gy,
m = 1,..., which approximates a G* in the sense that Ep, ICo(Y |
QQ(F)(, Glm); Glm; D) — EPFX,GICO(Y | QQ(F)(, G*), G*, D), then it fol-
lows that the identity also holds at G; = G*. Therefore, it is not surprising
that in many applications the identity also holds for pairs G, G not satisfy-
ing dG/dG1 < co. This identity gives us protection against misspecification
of G when the Q)¢ component of IC' is correctly estimated in the sense that
if Gy, converges to some G1 € G(conv) with dG/dG; < oo, then 1 (2.25)
will still be consistent.

Given D € D(p1(Fx),G), the conditional expectation of ICy(Y |
Qo,G, D), given X, equals D(X), which proves that for any Qo € Qg
Er..cICY | Qo,G,D) = 0. This gives us protection against misspeci-
fication of Qo(Fx,G) when G is correctly estimated. To summarize, our
definition of the mapping ICy(- | Qo, G, D) of full data estimating functions
to observed data estimating function depends on the unknown Qo (Fx, G)
and G, but it is protected by misspecification of either Fx or G in the
following sense.

Theorem 2.2 We have

EFX7GICO(Y | QQ(F)(, Gl), Gl, D) = EFXD(X) fOT D e D(pl (Fx), Gl)
and all Gy € G(conv) with G < Gy. (2.26)
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ErecICo(Y | Qo,G,D) = Ep,D(X)
for all Qo € Qo and D € D(p1(Fx),G). (2.27)

Note that the protection against misspecification of G can be exploited by
estimating Qo and the nuisance parameter p(Fx,G) in Dp(- | u, p) with
substitution estimators Qo (F,,, Gy) and p(F,, G,).

2.3.7 Ignoring information on the censoring mechanism
improves efficiency

Let T5(Pry,c) be the tangent space of G in model M(G). Application of
Theorem 2.4 below shows that, under regularity conditions, u¥ (2.25) is
asymptotically linear with influence curve

(¢ ICo(- | Qo, G, Du(- | 11, p)) | T4 (Pry.c)), (2.28)

where ¢ = d/duEICy(Y | Qo, G, Din(- | 1, p)) and Qg is the limit of Qoy,.
In particular, this teaches us that p2 will become more efficient if one
estimates G more nonparametrically. Thus, if G is known and one sets
G, = G in the estimating equation (2.25), then p2 is asymptotically linear
with influence curve ¢=1ICo(- | G, (i), Dp(- | i, p)), which can have much
larger variance than the influence curve (2.28) for a reasonable size model
g.

To understand this feature of the estimator, we prove the following gen-
eral result. The proof of this theorem actually shows, in general, that
optimal estimation of an orthogonal nuisance parameter leads to an asymp-
totic improvement of the estimator. Application of this theorem with
pn(Gr) = pud and p,(G) being the solution of the estimating equation
(2.25) with G,, = G known explains the result (2.28).

Theorem 2.3 Let M(G) = {Pry.c : Fx € M} be the model M with G
known. Let pu,(G) be a regular asymptotically linear estimator of u in the
model M(G) with G known with influence curve ICy(Y | Fx,G). Assume
now that for an estimator G,

pn(Gn) — b = pn(G) — p+ ©(Gp) — ®(G) + op(1/y/n)

for some functional ® of G,,. Assume that ®(G,,) is an asymptotically effi-
cient estimator of ®(G) for the model M(G) with tangent space generated
by G given by To(Pry.c). Then pun(Gyr) is regular asymptotically linear
with influence curve

ICy(Fx,G) = (ICy(Fx, G) | To(Pry.c)™).

Proof. We decompose L3(Pp, ) orthogonally in Ty (Ppy ¢)+ 1% (Pry.c)+
T+ (Pry ), where T+ (Pry ) is the orthogonal complement of T} +7T%, and
Ty = T1(Pry ) and To(Pry ) are the tangent spaces corresponding to F'x
and G, respectively. The assumptions in the lemma imply that u,(G,,) is



136 2. General Methodology

asymptotically linear with influence curve IC = ICy + IC,,,,, where IC,,
is an influence curve corresponding with an estimator of the nuisance pa-
rameter (@) estimated under the model with nuisance tangent space Ts.
Let ICy = ap+bo+cp and IChy, = ny + bny + Cpo according to the orthog-
onal decomposition of L3(Pr, &) above. From now on, the proof uses the
following two general facts about influence curves of regular asymptotically
linear estimators (see Bickel, Klaassen, Ritov and Wellner, 1993): an influ-
ence curve is orthogonal to the nuisance tangent space, and the efficient
influence curve lies in the tangent space. Since IC},, is an influence curve
of ®(G) in the model where nothing is assumed on Fx it is orthogonal to
Ty; that is, an, = 0. Since ®(G,,) is efficient, IC,,,, lies in the tangent space
T5 and hence ¢, = 0 as well. We also have that ICy + IC,,,, is an influence
curve for an estimator of u and hence is orthogonal to T3, so by + by, = 0.
Consequently, we have that

IC) = ICy 4 ICyy = ag + co = II(ICy | T5b).
This completes the proof. O

Example 2.12 (Marginal right-censored data) Suppose that we ob-
serve n i.i.d. observations of Y = (T =TAC,A=1(T =T) =I1(C > T)).
Let F' be the cumulative distribution function of the full data T, and let G
be the conditional distribution of C', given T', satisfying CAR. In this case,
CAR is equivalent with assuming that the censoring hazard Ac|p(t | T')
only depends on X (t), where X () = I(T < t).

Let us first consider the observed data model with G known. In that
model, we could estimate y = F'(¢) with the inverse probability of censoring
weighted estimator

where G(t) = P(C > t). We have that p,(G) is regular and asymptoti-
cally linear with influence curve ICo(Y | G,u) = I(T < t)A/G(T) — p.
Consider now the model where we only assume CAR on G. Let G,, be
the Kaplan—Meier estimator of G based on the n censored observations
(T,1 — A). Tt is well-known that G,, is an efficient estimator of G in the
model M(CAR). Application of Lemma 2.3 yields that u,(G,) is a regu-
lar and asymptotically linear estimator with influence curve ICy (Y | G, )
minus its projection on the tangent space Tcar(Pry,c) for G when only
assuming CAR.

Let Ap : L3(F) — Li(Pr.c) Ar(h)(Y) = Er(h(T) | Y) be the nonpara-
metric score operator, and let Ag(V)(X) = Eq(V(Y) | X) be its adjoint.
Since the full data model is nonparametric, we actually have that the clo-
sure of the range of A is the tangent space of F' in the model M(CAR).
We have that Tg,p, = N(AL)* = R(Ap). This proves that the influ-

ence curve of p,(G,) is an element of the tangent space R(Ar) and thus
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must equal the efficient influence curve; Here, we use the fact that the effi-
cient influence curve (which equals the canonical gradient of the pathwise
derivative) is the only influence curve which is an element of the tangent
space. This proves that u,(G,) is an efficient estimator of u, while pu, (G)
is far from efficient. In this particular example, we have the remarkable
coincidence that pu,(G,) equals the Kaplan—Meier estimator algebraically,
assuming that we define the Kaplan-Meier estimator to be zero after the
last uncensored observation. O

2.4 Optimal Mapping into Observed Data
Estimating Functions

Let Dy, — ICy(Y | Qo,G, Dp,) be an initial mapping from full data esti-
mating functions into observed data estimating functions satisfying (2.21).
Let ICcar(- | Q,G) with @ ranging over a parameter space Q be pointwise
well defined functions of Y satisfying

{ICcar(- | Q,G): Q € Q} CTcar(Pry,g) for all Ppy g € M. (2.29)

Let ICcar(- | Q(Fx,G),G, D) be a pointwise well-defined function of ¥’
that equals the projection

Opye c(ICo(- | Qo, G, D) | Tcar(Prx,c))

of ICy(- | Qo, G, D) onto Tcar(Pry ) in the Hilbert space L?(Pry ).
Then, for any D € D, Qg € Qp,Q € Q, Fx ¢ MF',G € G,

IC(Y | QO)Q7G7D) = ICO(Y | QO)G; D) _ICCAR(Y | Q)G7D)

is a pointwise well-defined function of Y. Note that if ICo(Y | Qo, G, D) =
ICy(Y | G,D) 4+ IC,(Y | Qo, D) with IC,(Y | Qo, G, D) € Tcag, such
as the orthogonalized mapping of the previous subsection, then IC(Y |
Qo,Q, G, D) does not depend on Qq. For simplicity, let @ include Qg if
needed so that we can denote IC(Y | Qo, Q, G, D) with IC(Y | Q, G, D).
Again, this mapping can be viewed as a mapping from full data estimat-
ing functions Dp(- | p,p) for u into observed data estimating functions
IC(- | Q,G,Dp(- | p,p)) for p, indexed by unknown nuisance param-
eters Q(Fx,G) and G. Theorem 1.3 proves that, if the set {Dj(- |
w(Fx), p(Fx)) : h € HE (u(Fx), p(Fx), p1(Fx),G)} of full data functions
satisfying Ea(IC(Y | Q(Fx,G),G, Da(- | u(Fx). p(Fx))) | X) = Dy(X |
1(Fx), p(Fx)) equals Tk (Fx), then {IC(Y | Q(Fx,G),G,D) : D €

F, 1L
T

muis(Fx)} equals the orthogonal complement of the nuisance tangent
space T+

wis(Prx.c) in model M(CAR), which includes the efficient in-
fluence curve IC(Y | Q(Fx,G),G, Dy, (rx.c)(- | 1(Fx), p(Fx,G))). This
mapping generates a class of estimating functions for the model M because



138 2. General Methodology

of the double protection property proved above:

Er.cICY | Q(Fx,G1),G1,D) = Ep,D(X)
for all D € D(p1(Fx),G1) and Gy € G with dG/dG; < co. (2.30)
Er.cICY |Q,G,D) = Ep D(X)
forall @ € Q, D € D(p1(Fx),G). (2.31)

Implications of protection property (2.30) for estimation of Q and p.

In model M(G), one only needs to rely on (2.31), which allows one to
estimate Q(Fx, G) with any estimator @,,, and one needs to estimate p =
p(Fx,G) with a consistent estimator. However, in model M, one needs to
exploit (2.30). Let F;, be an estimator of F'x according to a working model
MY and assume that we use a substitution estimator @, = Q(F,,Gy),
and p,, = p(F,,Gy) of p(Fx,G). Consider the situation that F,, — Fx but
G, — G for a possibly wrong G1. Then (2.30) teaches us that we need
Qn — Q(Fx,G1), which naturally will hold, and D € D(p; (Fx),G1). We
will now explain why the latter condition can also be expected to hold.
Recall that the nuisance parameter p in the full data structure estimating
function Dp (X | u,p) includes G as a component, which we needed to
make sure that the estimating function at the true parameter values is an
element of D(p1(Fx),G). Since we estimate G with G,,, G, — G4, and
F,, — Fx, we would precisely obtain that

Du(- [ pins pn) = Da(- | p(Fx), p(Fx, G1)) € D(p1(Fx), Gh),

in the limit, as required.

Note also, as stressed in the discussion after Theorem 1.6, one does not
need that Dp(- | p(Fx), p(Fx,G)) € D(p1(Fx),G)) necessarily; that is,
ICy(Y | G,D(- | u(Fx), p(Fx,G))) is allowed to be biased under the true
data generating distribution Pr, ¢, but we do need that ICy(Y | G1, D(- |
w(Fx),p(Fx,G1))) needs to be unbiased under the possibly misspecified
Pr..c,, which holds if Dy, (- | u(Fx), p(Fx,G1)) € D(p1(Fx), G1).

A score operator representation

Let Ap, : L3(Fx) — L3(Ppy,c) be the nonparametric score operator for
Fxl

Apx (s)(Y) = E(s(X) | Y).
The adjoint A : L3 (Ppy ) — L3(Fx) of Ar, is given by
AG(V)(X) = E(V(Y) | X).

Let Iry ¢ = Apy AL 1 LE(Fx) — L3(Fx) which will be referred to as the
nonparametric information operator. As shown in Theorem 1.3 (Chapter
1), for D € R(Ip, ) we have

IC(Y | Q(Fx,G),G, D) = Ap, Iy} (D). (2.32)
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Double protection property

The least squares representation D — IC(- | Q(Fx,G),G,D) = IC(- |
Fx,G,D) = ApIp, (D) from full data estimating functions to observed
data estimating equations indexed by nuisance parameters Fx, G satisfies
the double protection property (see Theorem 1.7 for the fact that we do
not need the condition dG/dGy < o0):

EFX7ng(Y|Fx,G1,D) = EFXD(X) fOFDED(Fx,Gl)
for all G; € G(CAR),
Ep.cIC(Y | Fx1,G,D) = Ep,D(X)

for F'x, € MF, D e 'D(Fx,G),
where
D(Fx,G)={D€D:D € R(Ir, ) for all F; € M}

plays the role of D(p1(Fx),G). Here D € R(Ip, ) denotes that D is an
element of the range of the information operator I, ¢ : L3(Fx) — L3(Fx).
Alternatively, we could require D € Ry (I, ¢) for all Fy € MF | as defined
in Theorem 2.1.

2.4.1 The corresponding estimating equation

Consider the optimal mapping IC(Y | @Q,G, D) from full data structure
estimating functions {Dj, : h € H¥} into observed data estimating func-
tions. As described in detail in the previous section, given such a mapping,
one first needs to identify the index set H (u, p, p1, G) C HF so that

{Dn(- | u(Fx), p(Fx)) : h € HF ((11, p, p1)(Fx), G)} C D(p1(Fx), G).

Subsequently, one reparametrizes the allowed full data structure estimating
functions {Dy, : h € HF (u,p,p1,G)} as {Dy : h € HF} by including
the membership I(Dp (- | u(Fx), p(Fx)) € D(p1(Fx),G)) as an additional
nuisance parameter as in (2.14). In this manner, one obtains a set of full
data estimating functions that satisfy Eq(IC(Y | Q(Fx,G),G,D}) | X) =
D} (X) Fx-a.e. when Dj is evaluated at the true parameter values. As we
mentioned, for notational convenience, this reparametrized set of allowed
full data structure estimating functions is denoted with Dy (- | i, p), where
p now also includes G as a component.

Consider estimators G,, and @,. In model M, we assume that @, =
Q(F,,G,) is a substitution estimator, where F}, is an estimator of Fx that
is consistent at Fx € MP% so that either G, or F, will be consistent.
Assume also that we have available an estimator p,, that is consistent for
p(Fx,G1, where G is the limit of G,,; that is, p, is consistent for p(Fx, G)
in model M(G), and consistent for p(Fx,G1) in model M. Thus, in model
M one should use a substitution estimator p, = p(F,,Gy). In the next
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paragraph we provide a general strategy for providing such a estimator
pn in model M. Note that in essence we require the existence of a doubly
robust estimator of the Fx-parameter p(Fx, G1), which might itself require
the doubly robust estimation methodology we present for estimation of u.

Remark: Doubly robust estimation of nuisance parameter p in model M.

For simplicity, consider the case where the nuisance parameter p = p(Fx)
does not have a G-component. As pointed out above, if p includes a
G-component and G,, converges to a Gy, then we need that p, converges
to p = p(Fx,G1). As a consequence, in this case one just applies the
following to the Fx-parameter p1 (Fx) = p(Fx,G1), where G is estimated
with G,,. We can obtain consistent estimator (i.e. doubly robust estimator)
pn of p under Model M, even when p is a non-regular parameter (i.e.,
a parameter for which the semiparametric information bound is 0) in
model M*. To do so, we express the non-regular parameter p as the limit
of a regular parameter p, as ¢ — 0, where ¢ is a bandwidth or other
regularization parameter. See van der Laan and Robins (1998) for an
example, and van der Laan, van der Vaart (2002). Because p, is a regular
parameter of Fx we can often construct consistent estimators of p(o) in
Model M (i.e., doubly robust estimators of p,). Let o, be an appropriate
bandwidth or regularization parameter corresponding to sample size n and
let p,,, be the corresponding doubly robust estimator of p,,_ . Then, as in
Robins and Rotnitzky (2001), we obtain a doubly robust estimator of u
using the approach discussed above by using p,, as an estimator of p

To achieve higher efficiency, it makes sense to use a data-dependent index
h,. We use as the estimating equation for p

0= L3 100 | Qu, G Da | 11:p0)) (233

=1

Note that h indexes a whole class of estimating functions. In Section 2.8, we
identify the optimal index hopt (Fx, G), which yields the optimal estimating
function, given that we know the true (Fx, G). In model M, one estimates
hopt(Fx, G) with a plug-in estimator hy,, = hopt(Fx n, Gpn), assuming our
working models M and G. This estimator h, will be consistent for
hopt(Fx, G) if both working models M and G are correctly specified.

One can solve the estimating equation (2.33) with the Newton—Raphson
procedure described in Section 2.3. Let u be an initial estimator or guess.
The first step of the Newton—Raphson procedure involves estimation of a
derivative (matrix) w.r.t. uO. This derivative is defined by

d
C(M) = c(h’/’[/7p7 Q) G) P) = @P‘[C(Y | Q) G7 Dh»n(./’[/)p)))
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where we used the notation Pf = [ f(y)dP(y). Let
IC(Y | Q,G, ¢, Dyp(-p, p)) = ¢ HIC(Y | Q,G, Du(-p, p)) (2.34)

be the standardized estimating function in the sense that it has the
derivative minus the identity.
Note that c(u) is a k x k matrix with ¢;(pn) = P%IQ(Y |

Q, G, Dy, (u, p)). Its estimate ¢, (u0) is given by

3|'—‘

= d,
(hnaunapnaQnaGnaP Z d_ Y |QnaGn;Dh (/’Lapn))

=

If IC(Y | Qny Gn, Dp,, (- | 14, pn)) is not differentiable in p, but the integral
of IC(Y) w.r.t. P, ¢ is differentiable w.r.t. u, then the derivative d/du
is defined as a numerical derivative. The first step of the Newton—Raphson
procedure is now defined by

fi, = 1y — ca(p))” ZIC (Yi | Qus Gy Dy (- | s pn))-— (2:35)

=1

If one has a decent initial estimator ;¥ available, then one can use this one-
step estimator u}. Otherwise, one iterates until convergence is established
and we possibly need to use the line-search modification as provided in
Section 2.3.

2.4.2 Discussion of ingredients of a one-step estimator

At this stage, it is appropriate to discuss the ingredients of our proposed
estimator (2.35). To begin with, let us discuss estimation of Q = Q(Fx, G)
and the censoring mechanism G. Under coarsening at random, the likeli-
hood of Y actually factorizes in a likelihood parametrized by Fx and a
likelihood parametrized by G. In model M, one assumes that the user has
supplied a lower-dimensional model M for Fx and a lower-dimensional
model G for G. If these models are of low enough dimension, then one
can estimate Fx and G by maximizing their corresponding likelihoods. In
all applications covered in this book, we can estimate G with maximum
likelihood methods. For example, in the right-censored data structures, we
estimate G with the maximum partial likelihood estimator for the multi-
plicative intensity (i.e., Cox proportional hazards) model. However, since
one does not need to estimate the whole full data distribution Fx but
just the component Q(Fx,G,,), other direct methods for estimation of
Q(Fx,G,) are often available. We provide such methods in Chapters 3
and 6.

In model M(G), one does not need to estimate @ by substituting esti-
mators F, of Fx and G,, of G. Instead, one can often estimate @ directly
with standard software, which will be illustrated in our examples.
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Another issue is the choice h of the full data estimating function.
The efficiency of the proposed estimator depends on this choice. In par-
ticular, in Section 2.8 we provide a choice hopr = hopt(Fx,G), which
makes the estimating function optimal. In model M, one estimates hopt
with hy, = hopt(Fp, Gp), while in model M(G), other direct methods are
often available. In particular, Theorem 2.8 establishes such a direct easy-
to-estimate representation of h,,: for the multivariate generalized linear
regression full data model. If the full data model is locally saturated then
the optimal choice of full data structure estimating function is actually
the optimal estimating function one would use in the full data model. In
that case, Dy, , (X | u(Fx),p(Fx)) equals the efficient score or efficient
influence function Szf (X | Fix) of pu in the full data structure model.

In general, evaluating Dy, ,, requires inverting a linear Hilbert space op-
erator (i.e., a possibly infinite-dimensional system of linear equations). In
Section 2.8, we provide a Neumann series algorithm for evaluating Dy,
for a given (Fx,G) and useful characterizations of the inversion problem
that have resulted in closed-form solutions in many of our examples.

2.5 Guaranteed Improvement Relative to an Initial
Estimating Function

If one assumes model M(G), then it will be possible to construct an esti-
mating function that yields estimators at least as efficient as a given initial
estimator.

Define

IC( | QO)Q7G7CTLUJ D) = ICO( | QO)Ga D>_CnuICnu( | Q)Ga D)a (236)

where ICy, (Y | Q(Fx,G), G, D) parametrizes the projection of ICy(Y |
Qo, G, D) onto a subspace H(Ppy ¢) of Tcar, as in Section 2.3. Given
functions ICy(Y) and IC,,,(Y"), we define cpy = cnu(ICo, IChy, Pry,c) as
the projection matrix

EPFX,G (ICO (Y)IC;Lru (Y))EPFX Ne] {Icnu(Y)ICr—Lru(Y)}_l

so that ¢p ICpy = M(ICy | (ICy,)). Note that the j-th component of
cnul Cny equals the projection of ICy; on the space (ICy, 1,1 =1,..., k;);?:l
spanned by ICy,, | = 1,..., k. Note also that if /C),, equals the pro-
jection of ICy onto a subspace of L3(Ppy ), then cn, = I, where I
denotes the identity matrix. Estimation of ¢,,, only involves taking empir-
ical expectations of the already estimated ICy, IC,,,, and it will guarantee
that the estimating function is more efficient than the estimating function

ICH(- | Qo, G, Di(- | 1, p)), even when @Q,, is an inconsistent estimator of
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Q(Fx,G). We estimate ¢y, with

n n -1

_ T _ _

Crum = |1 /nZICO(Yi)ICm(Yi)] l1 /n Y IC I (Y)IC(Y)T|
i=1 i=1

where I/é'Q(Y) = ICy(Y | Qon,Gn,Dn(u, prn)) and similarly we define

IC,,. With this ¢,, extension, the estimating equation (2.33) for u
becomes

n
0= % Z IC(YL | QOn; Qn; Gn; Cnu,n;, l)h,n ( | s pn)) (237)
i=1
If the parameter Qo(Fx,G) of the initial estimating function ICy(- |
Qo, G, D(- | u,p)) is already easy to estimate in the model M, then we
recommend estimating Qo (Fx, G) consistently. In that case, the proposed
one-step estimator p} corresponding with our estimating function (2.37)
is asymptotically linear with an influence curve with smaller variance than
cHCo(- | Qo(Fx,G),G, Dy(- | u,p)), even when @, is inconsistent. Note
that ICo(- | Qo(Fx,G),G, Dp(- | u,p)) can be chosen to represent the
influence curve of a good initial estimator 1 (e.g., inverse probability of
censoring weighted estimator estimating G according to a model G) so that
pl is guaranteed to be more efficient than pQ. It is also of interest to note
that inspecting cny,, for a number of fits I/é’nu can provide insight into
which fit @Q,, results in the best approximation of H(I/é'o | H(Ppy c)); that
is, one selects the fit which makes ¢y, closest to the identity matrix.
If one assumes the more nonparametric model M, then the ¢, extension
is not a good idea since it will destroy the protection w.r.t. misspecification
of G at correctly specified guessed full data structure model M>w,

Example 2.13 (Multivariate right censored data structure; con-
tinuation of Example 2.8) Let (71,7%) be a bivariate survival time of
interest, and let = S(t1,t2) = P(Ty > t1, T > t2). Let F be the bivariate
cumulative distribution function of (71, T%). Let C' = (C4y, C3) be a bivari-
ate censoring variable. Suppose that we observe (Tj = min(T;,C;), A; =
I(T; < Cy),L;i(T;)), j = 1,2, where L;(-) are covariate processes. We
have for full data X = (11, L1(T}), T2, L(T»)). The observed data distri-
bution is indexed by the full data distribution Fx and the conditional
bivariate distribution G of (C1, C3), given X, which is assumed to be mod-
eled with some submodel of CAR (e.g., see Chapter 6). Let the full data
model be nonparametric so that the only full data estimating function is
D(X | 1) = L(t1,00) % (t2,00) (11, T2) — .

In the previous coverage of this example, we derived an estimating func-
tion IC(Y | F,G,D(- | n)) (2.24) for p indexed by a marginal bivariate
distribution F and the censoring mechanism G, which yields an influence
curve equal to or better than the influence curve of Dabrowska’s estima-
tor. We propose now to use this as the initial influence curve ICjy in the
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estimating function ICy — ¢, I Chyyy, where I1C),,, denotes the projection of
ICy onto a subspace of Toag.

In this multivariate right-censored data model (no common censoring
time), the CAR model G(C'AR) for the censoring mechanism is hard to un-
derstand and, in particular, projections on its tangent space Tcar(Pry )
do not exist in closed form. However, in Chapter 6, we consider an in-
teresting submodel of CAR, only assuming that censoring actions at time
t are sequentially randomized w.r.t. the observed past. This submodel of
G(CAR) has a closed-form observed data tangent space Tsra(Pry,c) C
Tear. In Chapter 6, we also propose a semiparametric multiplicative in-
tensity model G of this SRA model that yields an estimator of G with
standard software. A closed-form representation of its tangent space Tsra
and the projection operator on this tangent space are provided in Chap-
ter 6. Thus IC,,, = I(ICy | Tsra) exists in closed form. The estimating
function ICy — ¢pouIChy now yields an RAL estimator of p based on the
extended bivariate right-censored data structure in model M(G), which is
guaranteed to be more efficient than the Dabrowska estimator under inde-
pendent censoring, even for the marginal data structure in which data on
the covariate processes L;(-) are not available. O

2.6  Construction of Confidence Intervals

Firstly, consider model M(G); that is, we are willing to assume that the cen-
soring mechanism is correctly specified so that G contains the true G. Let
T5(Ppy.c) denote the corresponding tangent space generated by G. Given
an initial estimator u that converges to u at an appropriate rate, we con-
sider the one-step estimator (2.35) that is given by u8 +1/n """, I/é(Yz),
where fa(Y) =IC(Y | Qns G Cuny Cny D, (- | M?La pn)) defined by (2-34)-
Under the conditions of Theorem 2.4, ul is asymptotically linear with influ-
ence curve I1C1(Y) —TI(ICy | Ty), where IC1(Y) = IC(Y | Q*, G, ¢, Dp(- |
i, p)) represents the limit for n — oo of Ic (Y). Thus, estimation of the
influence curve requires computing an expression for the projection for-
mula of IC; onto the tangent space generated by the censoring mechanism
in the observed data model M(G). We provide this projection formula
in Lemma 3.2 for the case where C' is identified with a counting process
and one uses a multiplicative intensity model to model the intensity of
this counting process w.r.t. the observed past. Alternatively, one can note
that this influence curve has variance smaller than or equal to the vari-
ance of IC1(Y) = IC(Y | Q*, G, cnu, ¢, Di(- | 1, p)) and use a conservative
estimate of the asymptotic covariance matrix of pl:

—

(Y)IC(Yy)'.
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This can be used to construct a conservative 95% confidence interval for p,

~

1 X
pn £ 1962,
This confidence interval is asymptotically correct if one consistently esti-
mates Q(Fx,G), and it is asymptotically conservative otherwise. However,
if one uses the ¢y, adjustment and guarantees that Qg is consistent,
then it is always less conservative than using as the influence curve
cHCo(Y | Qo(Fx,G),G, Dp(u, p)); see Section 2.5. This confidence in-
terval (2.38) is practical since one gets it for free after having computed
the estimator p).

Consider now the more nonparametric model M only assuming that ei-
ther the censoring mechanism model G or the M** is correctly specified.
Under the conditions of Theorem 2.5, ul is asymptotically linear with an
influence curve equal to a sum of two components of which one is con-
sistently estimated by IC. The other component of this influence curve
will depend on the linear expansion of the estimators of a smooth func-
tional of the unknown parameters in model M*®. If one wants to avoid
the MFW_specific technical exercise and wants a confidence interval that is
also correct when G is misspecified (and M™% is correctly specified), then
we recommend using the semiparametric or nonparametric bootstrap (e. g.,
Gill, 1989; Efron, 1990; Gine and Zinn, 1990; Efron and Tibshirani, 1993;
van der Vaart and Wellner; 1996).

(2.38)

2.7 Asymptotics of the One-Step Estimator

An estimator p,, of p1 is asymptotically linear at Pr, ¢ with influence curve
IC(Y | Fx,G) if pp —p = ntY " | IC(Y; | Fx,G) 4 op(n~'/?). From
Bickel, Klaassen, Ritov and Wellner (1993), we have that an estimator
is asymptotically efficient if it is asymptotically linear with the influence
curve the so-called efficient influence curve, IC*(Y | Fx, G). The efficient
influence curve is also called the canonical gradient and IC*(Y | Fx,G) =
IC(YY | Q(Fx,G),G, Dy, ,(rx,c)(- | u(Fx),p(Fx))) for a specified (next
section) index hopt (Fx, G).

We prove two asymptotics theorems for the one-step estimator M}L cor-
responding with the estimating equation (2.37), one for model M(QG)
and one for model M. We note that the estimating function IC(Y |
Qo, G, cnu, D) = ICy(Qo, G, Dy) — cnulChnu(Q, G, Dy) captures all pro-
posed estimating functions in the previous sections, where one can set
¢nuw = I and/or ICy,, = 0 and/or ICy equal to the optimal mapping to
obtain the various proposed estimating functions. In particular, in model
M we set ¢py = I. Theorem 2.4 for M(G) below assumes consistent es-
timation of the censoring mechanism. Theorem 2.5 for M assumes either
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consistent estimation of the censoring mechanism or consistent estimation
of Fx. This does not require choosing which of the two quantaties are
consistently estimated. Obviously, the last theorem provides the most non-
parametric consistency and asymptotic normality result, but the price one
has to pay is that one cannot use the conservative confidence interval (2.38).
Because of this and the fact that for many censored data structures it is
easier to estimate the censoring mechanism than it is to estimate the full
data distribution, we feel that the theorem for M(G) deserves a separate
treatment.

We note that Theorem 2.4 can be applied to any one-step estimator
corresponding with the non optimal estimating equations 0 = ", ICo(Y; |
Q1n, Gn, Dy, (- | 1, pn)) provided in Section 2.3. Similarly, Theorem 2.5
can be applied to any ICy that is orthogonalized w.r.t. the tangent space
T5(Ppy.c) of G so that it satisfies (2.30).

2.7.1 Asymptotics assuming consistent estimation of the
censoring mechanism

The following theorem provides a template for proving asymptotic linearity
with specified influence curve of this one-step estimator pl (2.35) (i.e., set
Cnu,n = Cnu = 1) or, if one uses the adjustment constant ¢y, then it is the
one-step estimator corresponding with (2.37). Recall the following Hilbert
space terminology: L3(Pr, ) is the Hilbert space of functions of ¥ with
finite variance and mean zero endowed with the covariance inner product

< V1,V2 >pp o= \/ [v1v2dPry . The tangent space Ty = To(Pry )

for the parameter G is the closure of the linear extension in L3(Ppy ) of
the scores at Pp, ¢ from all correctly specified parametric submodels (i.e.,
submodels of the assumed semiparametric model G) for the distribution G.

Theorem 2.4 Consider the observed data model M(G). Let Y1,...,Y,
be n i.4.d. observations of Y ~ Pp.q € M(G). Consider a one-step
estimator of the parameter ;i € RY of the form pl o=l — PIC( |
Qn» Gy Cruns Cny Dy, (19, pn)) corresponding with (2.37). Assume that the
limit of IC(Qn, Gny Cruns Dn,, (10, pn)) specified in (ii) below satisfies

Eq(IC(Y | Q" G, cnu Di(- | p1,p)) | X) = Dn(X | p,p) Fx-a.e(2.39)
Din(- | p,p) € TEL(Fy). (2.40)

Let fo(p) = P IC(- | Qun, G, Cruns Dh,, (1, pn)). Assume (we write f =
g for f =g +op(1/\/n))

e (1) = ful)} = pl — pe (2.41)
and

EPFX,GIC(Y | Qn, G, Cnu,n, Dy, (M; Pn)) = OP(l/\/ﬁ). (2.42)
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where the G component of p, is set equal to G as well.

In addition, assume
(i) IC(- | Quy Gus Crums Cns Dy, (| 02, pn)) falls in a Pry g-Donsker class
with probability tending to 1.
(ii) Let IC,(-) = IC(- | Qn,Gn,CrumnsCny, Dn, (- | 12, pn)). For some
(h, QY), we have

H ICH() - IC(' | Qla Ga Cnu; G, Dh(' | Map)) HPFX,G_) Oa

where the convergence is in probability. Here (suppressing the dependence of
the estimating functions on parameters) cp, = (ICo, IC,] \(ICp,, IC,, )71
is such that cpIChy equals the projection of 1Cy onto the k-dimensional
space < ICpy j,7=1,....k > in L3(Ppy ).
(iii) Define for a Gy

¢(G1) = PFX7GIC(' | Qla Gla Cnu,y Gy Dh(/'[/) p))
For notational convenience, let

ICn(G) = IC('|Qn;G;Cnu,nacn;Dhn(M;pn));
IC(G) = IC(-]QY,G,cnu c, Dnlp, p)).

Assume
Pr..c{IC,(G,) —IC,(G)} = ®(G,) — ®(G).

(iv) ®(G) is an asymptotically efficient estimator of ®(G) for
the CAR model G containing the true G with tangent space
T>(Pry.c) C Toar(Pry,c)-

Then ul is asymptotically linear with influence curve given by
IC =T(IC(- | Q" G, cpus &, Dul- | 1, 9)) | T3 (Pry.c)-

Ile = Q(FX, G) and IC(Y | Q(FX, G)a G, chus Dh(' | s p)) 1 TQ(PFX7G))
then this influence curve equals IC(- | Q(Fx,G), G, cny = 1,¢, Dp(p, p)).
In particular, if h = hey so that IC(Y | Q(Fx,G),G,Dp,, (- |
w(Fx),p(Fx,Q))) equals the efficient influence curve Se*ff(Y | Fx,G),
then ul is asymptotically efficient.

Discussion of asymptotic linearity Theorem 2./

We will discuss the assumptions of Theorem 2.4 and illustrate that the
assumptions are natural. Firstly, note that the structural conditions (2.39)
and (2.40) hold for our estimating functions by (2.31) and the fact that

we choose the full data estimating functions to be elements of Tf;”lg(F x)

at the true parameter values. Note also that these conditions imply that
the estimating function is orthogonal to all F'x nuisance parameters in the
sense that it is an element of T:- . (M(G)) in the model with G known

nuis
at any Qi. This explains why condition (2.42) is a natural condition; see

Subsection 1.4.3.
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Condition (2.41) is a natural condition as well, which is illustrated as
follows. Define f,, () = P,IC(- | Qn, Gp, Dp, (- | 1t, pn)). By definition, we
have

In this notational setting, condition (2.41) translates to

{0y () = frl)} = = pd + op(1/v/n). (2.43)

Under regularity conditions (e.g., a Taylor expansion of f,,(u) at u), one
expects to have a first-order expansion

Fa() = Fapn) = fr(ud)(po = 1) + o(| = o |).- (2.44)

If the second-order term is op(n~'/2) and the determinant f/ (ul) is
bounded away from zero uniformly in n, then this expansion proves (2.43)
and thus (2.41). If f,,(u) is continuously differentiable in p with bounded
derivative, then the second order term is op (| p2 — p |), while if it is twice
continuously differentiable, then the second-order term is O(] u¥ — u |?).
Consider now the case where f(p1) = Pry,cIC(-| Q, G, Dp(- | i, p)) is con-
tinuously differentiable but f,,(u) is not differentiable. In that case, one still
expects this expansion (2.44) to hold with f! (%) now being a numerical
derivative. In many of our censored data models with a nonparametric full
data model, we actually have that f,(u) is linear in u so that (2.41) holds
with remainder zero. However, in general, we can conclude that condition
(2.41) typically requires a convergence rate of the initial estimator ul).

Condition (i) can often be arranged by choosing truly lower-dimensional
working models G and MEP¥ when estimating G and Fx. This condition
formally represents the “asymptotic curse of dimensionality” since if one
uses as working models MP% = MF and G = G(CAR), then the class
of functions of IC(- | Qn,Gn, Dn, (- | 12, pn)) of Y generated by vary-
ing Q,, G, over all possible parameter values will typically be very large
(meaning that for finite samples the first-order asymptotics is irrelevant)
or not even be a Donsker class. Condition (ii) is a weak consistency condi-
tion requiring that G, be consistent and @), converge to something. This
condition will hold if our model M(G) contains the true Pr, ¢. Regarding
condition (iii), we have

Pr..cICh(G,) — IC,(G) Pr..cICh(G,) by (2.42)

PFX,G—GW,ICn(Gn);

Q

Q

where the latter approximation is expected to hold because of the pro-
tection (2.31) against misspecification of @ with the data-generating
distribution being Pp, ¢, . Thus, condition (iii) requires that second-order
terms involving integrals of differences (G, —G)(Qn—Q'), (G —G)(pn—p)
be op(1/y/n). Thus, if G, converges to G at a rate n~'/2, then this con-
dition typically only requires consistency of the other nuisance parameter
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estimates @, pn, 1), but if G,, converges at a very low rate to G, then
the other nuisance parameter estimates will have to compensate for this by
converging at an appropriate rate.

Condition (iv) just requires that one estimates G with an efficient proce-
dure such as maximum likelihood estimation. Condition (iv) is not needed
to establish that pl is RAL, but it is needed to obtain the elegant formula
of its influence curve.

This finishes our discussion of the assumptions. Let us now consider
the conclusions of Theorem 2.4. It is interesting to consider what the
limit distribution of pl would be when G(- | ) is known and is used
in the one-step estimator. In that case, the nuisance tangent space T is
empty. Thus, by Theorem 2.4, the influence curve of ! is then given by
IC(- | QY, G, cpu, ¢, D(- | i, p)), which has variance greater than or equal
to that of the influence curve IC based on an efficient estimator of G(- | X)
according to a (any) model for G. Lemma 2.3 provides the general under-
standing of the fact that efficient estimation of a known orthogonal nuisance
parameter (such as G) improves efficiency of estimation of a parameter p
of the distribution of the full data structure X.

We also note that, due to the ¢,,-adjustment, IC(- | Q, G, cpu, ¢, Di(- |
i, p)) has variance smaller than or equal to the variance of ICy(- |
Qo, G, ¢, Dp(- | p,p)). Thus, by choosing ICy(- | Qo(Fx,G),G,c, Dp(- |
i, p)) equal to an influence curve of a given estimator, the one-step es-
timator will always be asymptotically more efficient than this estimator.
Therefore, the inclusion of ¢, in the definition of the one-step estimator is
only really useful if one sets ICo(- | Qo, G, ¢, Di(p, p)) equal to a challeng-
ing influence curve. Note that one can always make the choice ICy more
challenging by redefining a new ICy as the old ICy minus the projection
of the old IC\ onto any given subset of scores in Toag.

Finally, we make some comments about the efficiency condition. We have
that hopr = hopt(Fx, G) is a functional of the true (Fx, G). In some exam-
ples, one has available a closed-form representation of A,y that will imply
natural methods of estimation. In general, we provide a Neumann series
algorithm for calculating hope(F'x, G) for a given (Fx,G). Let Fx, and
G, be the estimates of Fx and G assuming the lower dimensional working
models M ¢ MF and G C G(CAR). Then, one can estimate hop; with
the plug-in method:

hn = hopt(FX,n; Gn)

If the working model contains the truth, then (h,,Q,) consistently esti-
mates (hopt, Q(Fx, G)) so that under the “regularity” conditions (i)—(iv) u}
is asymptotically efficient. Otherwise, (hy, @,) will still converge to some
(h, Q") so that pl will still be consistent and asymptotically linear.
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2.7.2  Proof of Theorem 2./

For notational convenience, we give the proof for ¢, , = 1 and use obvious
short-hand notation. We have

= py+ Py {IC(Qn,Gn, Dh, (i, pn)) — IC(Qn, Gy Di, (1, pn)) }
+C;1PnIC(Qn; Gn; l)hn (M; pn))

By condition (2.41), the difference on the right-hand side equals pu — u +
op(1/+/n). Thus, we have

Miz — KB = (Pn - P)CglfC(Qn, Gn, D, (Ma pn))
+C;1PIC(Q7L; Gn, l)hn (M; pn))

For empirical process theory, we refer to van der Vaart and Wellner
(1996). Conditions (i) and (ii) in the theorem imply that the empiri-
cal process term on the right-hand side is asymptotically equivalent with
(P, — Ppy.c)c M IC(- | QY, GY, Dy (u, p)), so it remains to analyze the term

Cglplc(Qna Gna Dhn (/'[/; Pn))

Now, we write this term as a sum of two terms A + B, where

A = Cglp{lc(QnaGnaDhﬂ(Mapn)) _IC(QlaGa Dh(MaP))} ’
B = c;1PIC(Q1,G, Dh(MaP))

By (2.39) and (2.40), we have B = 0. As in the theorem, let

I1C,(G) = IC('|QnaG;Dhn(Mapn(G)))a
IC(G) = IC(-| QY G, Du(u, p)).

We decompose A = A; + Ay as follows:
A = Pp, ¢{IC,(Gy) — IC(G)}
= Pry . c{IC,(G) = IC(G)} + Pry ,c{ICL(G,) — IC,(G)}.
By assumption (2.42), we have A; = op(1/y/n). By assumption (iii),
Ag = B5(Gr) — Bo(G) + op(1/v/n).

By assumption (iv), we can conclude that ul is asymptotically linear with
influence curve IC (- | QY, G, ¢, ¢nus Di(pt, p)) + IChuis, where IC,,,;s is the
influence curve of ®3(G,,). Now, the same argument as given in the proof
of Theorem 2.3 proves that this influence curve of 1l is given by

H(IC( | Qla Ga C, Cnou, Dh(/'[/) p)) | T2l)

This completes the proof. O
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2.7.8 Asymptotics assuming that either the censoring
mechanism or the full data distribution is estimated
consistently

If one is only willing to assume that either the censoring mechanism or the
full data distribution is modeled correctly (but not necessarily both), then
one can apply the following asymptotic theorems.

Theorem 2.5 Consider the observed data model M. Let Y1,...,Y, be
n i.i.d. observations of Y ~ Ppy, o € M. Consider a one-step esti-
mator pi), = p + P IC(Yi | Qn,Gn,cn, D, (1, pn)) (e.g., (2.35) or
the one-step estimator corresponding with estimating equation (2.87) with
cnu = 1) of the parameter € R”. Assume that the limit of IC(- |
Q' G, ¢, Dp(u, p(Fx,GY))) in (ii) satisfies

Pr, cIC(Y | Q', G, ¢, Dy, (1(Fx), p(Fx,G"))) = 0. (2.45)
Let fn(u) = Py {IC(- | Qn, Gn, Dp, (11, pn))}. Assume that
o {fnpn) = fu()} = py, — o+ op(1/3/n). (2.46)

In addition, assume that
(i) IC(- | QnyGn,cn, Dp, (18, pn)) falls in a Pr, g-Donsker class with
probability tending to 1.
(i6) Let 1C,(-) = IC(- | QG e D, - | 101 ). For some (h, Q1 GY)
with either Q* = Q(Fx,GY) or G = G, we have

|| IC"() _IC( | Q15G1567 Dh( | /’Lap(anGl))) ||PFX,G_) 0,

where the convergence is in probability.
(iti) Let p = p(Fx,G) = (p*, G) for a Fx-parameter p*(Fx). Define

(I)l(Q) = PFX,GIC(' | Q7Gla c, Dh( | Hy (p*a Gl)))a
3(G") = PreclC(| QNG e, Dl | 1, (0%, G"))),
‘1)3(,0*) = PFX7GIC(' | Qla Gla G, Dh(' | 122 (p*a Gl)))

Assume that
PFX,G {IC( | Qna Gna Cn, Dhn (/’1/5 pn)) - IO(Qla Gla Cn, Dhn (/’1/5 p*a Gl))}

=31(Qn) — D1(Q") + Da(G) — B2(G1) + B3(pf,) — 3(p*) +op(1/v/n).

(iv) Assume that ©1(Qn) is a regular asymptotically linear estimator at
Pry ¢ of ®1(QY) with influence curve IC1(Y | Fx,G), ®2(G,) is a regular
asymptotically linear estimator at Pr, ¢ of ®2(G') with influence curve
I1Cy(Y | Fx,G), and ®3(p},) is a regular asymptotically linear estimator at
Pr..c of ®3(p*(Fx)) with influence curve IC3(Y | Fx,G).

Then pl is a reqular asymptotically linear estimator with influence curve

IC=1IC(-| QY G ¢, Du(- |, p)) + (IC1 + ICy + IC3)(Y | Fx, G).
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Now, also assume

31(Q) = op(1/v) at G =G, (2.47)
q)Q(Gn) - OP(l/\/ﬁ) at Ql = Q(FX, Gl); (248)
Bs(p) = op(1/vi) at G1 =G, (2.49)

If GY = G, then IC, = IC3 = 0. If Q* = Q(Fx,G), then ICy = 0. If
G' = G and Q' = Q(Fx,QG), then IC = IC(- | Q(Fx,G),G,c, Dp(- |
i, p)). In particular, if also h = hepe so that IC(Y | Q(Fx,G), G, Dy, (- |
w(Fx), p(Fx,G))) = S;;; (Y | Fx,G), then ul is asymptotically efficient.

Note that condition (2.45) relies on the double robustness of the esti-
mating function. One expects (2.47) and (2.48) to hold by the protection
(2.31) against misspecification of @ and protection (2.30) against misspec-
ification of G, respectively. In addition, one often expects (2.49) to hold
since the estimating function at G is orthogonal to all Fy nuisance param-
eters in the sense that it is an element of T . .(M(G)) in the model with G
known at any (. Specifically we would expect (2.49) to hold when regular
estimators of p can be constructed based on full data structure X, and
consistent estimators of p(Fx,G!) can be constructed in model M using
the approach described in the remark in Section 2.4.1. This shows that all
structural conditions in this theorem are natural.

2.7.4  Proof of Theorem 2.5
We have
Mi = Mg + CglpnIC(Qna G, Dp,, (Mga pn)) — 1C(Qn, Gy, D, (11, pn))
+C;1PnIC(Qn; Gn; l)hn (M; pn))

By condition (2.41), the difference on the right-hand side equals pu — u +
op(1/4/n). Thus, we have
Miz —p = (Pn— P)CglfC(Qn, Gn, D, (1, pn))
+C;1PIC(Q7L; G, Dp,, (M; pn))

For empirical process theory, we refer to van der Vaart and Wellner
(1996). Conditions (ii) and (iii) in the theorem imply that the empiri-
cal process term on the right-hand side is asymptotically equivalent with
(P, — Pry.c)IC(- | QY, G, Dy(u, p)), so it remains to analyze the term

C;1PIC(Q,L, Gr, Dhn (Ma pn))
Now, we write this term as a sum of two terms A + B, where

A C;1PIC(Q,L, Gna Dhn (Ma pn)) - IC(Qla Gla Dhn (Ma (p*a Gl)))a
B = c;1PIC(Q1,G1,DhW(M, (p*aGl)))
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We have B = 0 by (2.45). By conditions (iii) and (iv), we have that A equals
in first order (P, — P){IC(Q', G, Dp,(, p(GY))) +IC1 +1C3 + IC3}. The
other statements are true by assumption. O

2.8 The Optimal Index

Consider representations Tnu“(FX) = {Dp(X | u(Fx),p(Fx)) : h €
HE(Fx)} of the orthogonal complement of the full data nuisance tan-
gent space for all Fx € MF. Let hipar, @ L3(Fx) — HE(Fx) be
the index mapping (2.2) from L3(Fx) to the index set H(Fx). Let
herf(Fx) = Rind, ry ( eff( | Fix)) be the index of the full data canonical
gradient.

Consider the optimal mapping D, — IC(Y | Q(Fx,G),G, Dy) char-
acterized by the conditions Eq(IC(Y | Q,G, D) | X) = Dp(X) Fx-a.e.
and IC(Y | Q(Fx,G),G,Dy) L Tcar(Pry ). For simplicity, we will here
assume that this mapping satisfies these conditions for all D € T:;”lg(FX)
Due to its double robustness property, Theorem 2.5 for model M shows,
under regularity conditions, that if both working models are correctly
specified, then our proposed estimator pl is regular and asymptotically
linear at Pp, ¢ € M with influence curve IC(Y | Q(Fx,G),G, Dy(- |
w(Fx),p(Fx))). The following corollary of Theorem 1.3 in Chapter 1
shows that, given any influence curve IC(Y | Fx,G) of a regular asymp-
totically linear estimator of u at Pr, g, we can choose Dppy.q)(- |
W, p) € Tnu“(FX) in such a way that IC(Y | Q(Fx,G), G, Dypy,c)(- |
w,p)) = IC(Y | Fx,G). In particular, it shows that for an appro-
priate choice Dy, ,(ry,c)(- | 1,p) € TTZJS(FX) we have that IC(Y |
Q(Fx,G),G, Dy,,,(Fx,G)(- | 1, p)) equals the efficient influence curve
Sip(Y | Fx,G) of pat Pry G-

Theorem 2.6 Consider the model M(CAR). Let IC(Y |
Q(Fx,G),G, D) 1 TCAR and E(IC(Y | Q(Fx,G),G, D) | X) = D(X)
Fx-a.e. for all D € TEF . Let IC(Y | Fx, Q) be a gradient of p in the

nus”*

model M(CAR). We have that

D(X)=EIC(Y | Fx,G)| X) e T (Fy)

and
In particular, if S} (Y | Fx, G) is the canonical gradient (i.e., the efficient

influence curve) of p at Pry c, then

nus

Dopt(X) = E(S;4 (Y | Fx,G) | X) € T, (Fx)
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and
IC(Y | Q(Fx,G),G, Dopt) = St (Y | Fx,G).

Equivalently, but in terms of indexes, if hN(Fx,G) = hinag,rx(EIC(Y |
Fx,G)| X)), then

IC(Y | Q(Fx,G), G, Dpry,c (- | W(Fx), p(Fx))) = IC(Y | Fx,Q),
and if hopt(Fx,G) = hind,Fx(E(S*ff(Y | Fx,G) | X)), then

IC(Y | Q(Fx,G), G, Dy, (rx,c) (- | 1(Fx), p(Fx))) = Sepp (Y | Fx, G).
Thus, the optimal index hopt (Fx, G) is uniquely identified as the index
h € HF (Fx), for which
Du(X | u(Fx), p(Fx)) = E(St, (Y | Fx,G) | X).  (2.50)

e

If the full data model is locally saturated, then TX =% (Fy) = {Se*ff (X |

nuis

Fx)} so that the right-hand side of (2.50) equals Se*ff (X | Fx) and hopt =
hesg(Fx) is the index of the full data canonical gradient.
Since S7;; is not always trivially computed, we will now provide

algorithms for determining the optimal index hopt(Fx, G).

Theorem 2.7 In this theorem, we will suppress in the motation the de-
pendence on Fx,G of Hilbert space operators, Hilbert spaces, index sets,
and indexes (such as hepy and hop). Let A(s) = E(s(X) | Y) and
AT(V) = E(V(Y) | X). Let 1 = ATA : L3(Fyx) — L3(Fx). Let T* =
Oprl: TF — TF, where pr is the projection operator onto the full data
tangent space TT in the Hilbert space Li(Fx). It is assumed that both opera-
tors I* and 1 are 1-1. Assume that the efficient score Sfff = Dy, € R(I").
Let hina : L3(Fx) — HY (Fx) be the index mapping. Then, we have the
following representations of hopt.

e (Robins and Rotnitzky, 1992) Consider the mapping B : T,I;”lg N
R() — T, defined by

B(D) = (I (D) | 75 1),

nuis

Then
hopt = hindB_theff'

An alternative way to define hop s the following. Define B’
H" (Fx) — H" (Fx) by

Bl(h) = hindI_th-
Then
hopt = Bl_lheff.
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o (van der Vaart, 1991) We have

hopt = h’indII*_theff'

In full notation, this theorem provides us with the following representations
of hopt:

hopt (Fx,G) = hina.p { Bt Doy ro (- | #(Fx), p(Fx)) . (2.51)
hopt(Fx,G) = Bp! g(hess(Fx)), (2.52)
hopt (Fx, G) = hind,pxIrx,6Xrg ¢ Dheyy(rx) (- | 1(Fx), p(Fx))- (2.53)

Thus, we have two mappings, B;; G and Ip, 701};1,6" mapping Dy, (Fy)
into the optimal full data function Dy, ,(ry,q). Although, by definition

F, 1
Tnuis

(Fx) into itself, it might be less obvious to see that
I FX7GI;‘;17G maps Dy, ,, into an element of Tf;”lg We will now give a proof
of this fact. We parametrize the projection operator on the full data tangent

space as

B;; ¢ maps

(D | T*) =I(D | (Dh,,)) + D (D | T,5).

nuis

Note that, for any D € T4 we have

nuis’

D-1(D|TF) eTHt

nuis"®

Define D = Ipy cIp, ¢(Dh.;, ). Now write
D={D-T(D|TH}+1(D | TF),

and note that the second term equals Dp,,, € Tf;jg This proves

that Ipy eIy 'oDn,, (ro( | w(Fx),p(Fx)) € Tavi(Fx). Since
Tf;js(FXB = {Du(- | u(Fx),p(Fx)) : h € HF(Fx)}, we have that
Iy cXpy 6Dy (r) (- | 1(Fx), p(Fx)) = D, (rx.c)(- | p(Fx), p(Fx))
for some hopt(Fx,G) € HE (Fx).
The proof in the preceding paragraph actually shows which arguments
in
Ly 61 aDnoyy () (| (FX), p(FX)) = Dhyyy (6 (| M(FX),p(FX)))
(2.54
determine that the left-hand side of (2.54) is an element of T\ (Fy),

nuis

and which arguments determine hope. The pu(Fx), p(Fx) in Dy, (ry) (- |

u(Fx), p(Fx)) and in T (Fx) = {Da(- | u(Fx), p(Fx)) : b € H" (Fx)}
determine that the left-hand side of (2.54) is an element of Tf;”lg(F 'y ) while
1) (Fx,G) in IFX,G; 2) FX in heff(Fx) and 3) FX in hind,Fx determine
the index of Iy (- | T, (Fx)) and the index hop(Fx, Q).

Proof of Theorem 2.7. If Se*ff € R(I*), then by van der Vaart (1991)

Sipr = AI*_l(Se*ff). This can be written as
opp = AL ATTY(S),
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which proves by Theorem 1.3 that Doy = IT*~(S;f;) and proves the second
expression for hop (Fx, G).

We will now prove the first statement. Since I*~'(Sif) € (Sif; @
TF . (Fx), it follows that TI(I*~1(S*E,) | T5t (Fx)) = S*F,, and thus

eff nuis effr
that Doy = II*_(Se*ff) solves
(D) | Trss) = Sefy- (2.55)
In addition, by definition, it is an element of R(I) and Ilpr D,y = Se*ff
so that it is indeed an element of R(I) N TX>% . We will now show that

nuis®

if D € T,iwlg N R(I) and solves (2.55), then AT"'(D) = S}, and thus
D = Doy

Firstly, if D € TX>1* then it follows that AT~'(D) € T.5%,. Consider the
following representation:

174(D) = (I~ (D) | T¥) =T(I(D) | SL}f) + LA (D) | Tryiy)-
Thus, (2.55) teaches us that I=1(D) € T . Therefore AT™!(D) is an element
of the tangent space T in M(G). It is well known that if a gradient is an
element of the tangent space, then it equals the canonical gradient. This
proves that if D € TF1* and solves (2.55), then AT~'(D) = S ¢» which
proves the first statement. O

We will provide two examples in which we solve for hepi(Fx, G) using

representation (2.51).

Example 2.14 (Current status data structure; continuation of Ex-
ample 2.6) Consider the current status data structure Y = (C, A = I(T <
C), L(C)), where we have for the full data X = (T, L). Assume as the full
data model the univariate linear regression model T = 37 + €, where it
is assumed that, for a given monotone function K, E(K(e(5)) | Z) = 0.
Lemma 2.1 tells us T3 (Fx) = {h(Z) K (e(8)) : h} and
E(Ip, o(D)(X)K(e) | 2) ©

E(K (02| Z) <

By (2.51), we have that hope(Z) is the solution h(Z) of

(15, (D) | Triis(Fx)) =

nuis

E(Ip, (hK)(X)K(e) | Z)
E(K(e)? | 2)

K(€) = heyp(Z)K(e),

where hesp(Z) = Z/E(K(e)? | Z) is the index of the efficient score
SEip of B. Since Z is always observed, we have that I, o(RK)(X) =

MZ)Iy, o(K)(X). Thus, this proves the following representation of fop:

heff(Z) 2
hopt = 1 € .
)= B cwK@ 2 2
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If L is time-independent, then Iy G has a simple closed-form expression
derived in Example 2.6. However, if L is time-dependent, then this in-

verse is very involved. Therefore, the following derivation is very useful.
Let {f,9)z = E(f(X)g(X) | Z). Using that A/, is also the adjoint of Ap,
in the world where one conditions on Z, it follows that

Tpe oK), K)z = (Ip, o(K), Irc clpy o(K))z
= (Ap g, oK), ApcIp, o(K))z
= (IC(|Q(Fx,G),G, K),IC(-| Q(Fx,G),G, K))z
= E{IC(Y |Q(Fx,G),G,K)*| Z}.

This proves the representation of hope

ZE(K(e)* | Z)

hopt(Z) = E{IC(Y |Q(Fx,G),G, K| Z}’

where the denominator is actually straightforward to estimate by regressing
IC(Y: | Qn, G, K) onto Z;,i=1,...,n. O

Example 2.15 (Generalized linear regression with missing co-
variate; continuation of Example 1.1) We refer to Example 1.1 in
Chapter 1 for a description of this example and the optimal mapping (1.24)

C(-|Q(Fx),G,D) = %(();‘E)A —(A— H(W))% Thus, we have for
the observed data Y = (A, AX 4+ (1 — AW)), W C X, and we consider
a univariate generalized linear regression model Z = g(X* | ) + €, where
E(K(e) | X*) = 0. Here Z C W is always observed, while X* C X
has missing components. We have T:;”lg(FX) = {h(X*)K(e) : h} and

(D | T (Fx)) = %K( ). Our first goal is to determine

nus

a closed-form expression for I FX’G : L3(Fx) — L3(Fx). By Theorem 1.3,
we have

AFX Fx, G(D) = ( |Q(FX)aGaD)
D(X)A

By definition of Ag, , we have

ApIpy o(D) =I5 o(D)A + E(Ip, o(D)(X) [ W)(1 - A).

Combining these two identities yields

D(X) (1 1

I, o(D) = o + (1 W) E(D(X) | W).
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Thus I(Ix, (Dh,,.) | T (Fx)) = Dy,,, translates into

nuis

E({Dhop, (X)/TUW) + E(Dh,,,(X) | W) — 1} K(e) | X*)
E(K?(e) | X¥)

K(e)
= hepp(XT)K(e).

Since Dy, (X) = hopt (X ™)K (€), this reduces to

hopt (X*VE(K?(€)/TI(W) | X*) + B (E(hop (X*)K(€) | W)K(€) | X*)
— hegp (X)E(K?(e) | X*) + E(K(e) | X*),

Thus, the function z* — hepe(x*) is the solution of an integral equation,
first derived in Robins, Rotnitzky, Zhao (1994). O

In the current status data example above, we made use of the following
general lemma for any censored data model.

Lemma 2.5 Let Y = ®(X,C), X ~ Fx, C | X ~ G(- | X) and
assume that the conditional distribution G satisfies CAR. Consider the
nonparametric information operator Ip, ¢ : L(Fx) — L%(Fx) defined
by Ipye c(s) = ALARc(3) = EgEry(s(X) | V) | X). Let X* C X and
X* CY (ie., X* is part of the full data structure and is always observed).
Then, for any pair of functions D1, Dy € L3(Fx) in the range of Iry a,
we have

E(Ipg o(D1)Da | X*) = E(Apy Iy o(D1)Apy Iy o(D2) | X¥).
Proof. In the Hilbert space with X* fixed, we need to prove
(I"Y(Dy), D3) = (AT"Y(Dy), AT (Dy)).

Since AT is still the adjoint of A conditional on X*, moving the first A to
the other side and noting that AT AI~' is the identity operator gives the
desired result. O

The closed-form representation of the optimal full data index hgp in
the current status example above can be generalized to general censored
data structures with the full data model being the multivariate generalized
linear regression model with covariates always observed.

Theorem 2.8 Let Y = ®(X,C), X ~ Fx, C | X ~ G(- | X) and assume
that the conditional distribution G satisfies CAR. Let the full data model
be the p-variate generalized regression model Z = g(X* | B) +¢€, B € RE,
E(K(e) | X*) =0, and K(¢) = (K(e1),. .., K(ep)). We refer to Lemma 2.1
for 1) the orthogonal complement of the nuisance tangent space in the full
data model given by {Dp(X) = h(X*)K(€) : h 1 x p vector}, 2) the index
hers (k x p matriz) so that heyr(X*)K(€) is the efficient score of 5, and
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3) the index mapping given, for a function D € LE(Fx)*, by
hina,rx (D) = E{D(X)=E(D(X) | X*)}K(e)" | X*)E(K()K(e)" | X*)~".

Note that hing,ry (D) is an k x p matriz function of X*.

Assume that X* is always observed (i.e., X* is a component of the full
data X, which is also a function of Y ). Consider the nonparametric in-
formation operator Ip, ¢ : LE(Fx) — L3(Fx) defined by Ip, c(s) =
ALA(s) = EgErc(s(X) | Y) | X). Define IC(Y | Fx,G,D) =
AFXI;;G(D). We have that the p X p matriz {hind,FXI;;7GK} is given
by

E(IC(Y | Fx,G,K)IC(Y | Fx,G,K)" | X )E(K(e)K(e)" | X*)~L.

If
—1
hont(X*) = hegp(X%) {hina.icIpt 6K} (2.56)
pXp
where we assume that the inverse exists a.e., then IC(Y | Fx,G,Dy,,,)
equals the efficient influence curve for 3.

This is clearly an important result since it allows us to compute closed
form locally efficient estimators of regression parameters in univariate and
multivariate generalized linear regression models under any type of censor-
ing of the full data structure as long as the covariates X* in the regression
model are always observed.

2.8.1 Finding the optimal estimating function among a given
class of estimating functions

Consider a class of estimating functions IC(Y | Q,G,Dn(- | p,p)),
h € HE. If for all Fx € MF and G € G {IC(Y | Q(Fx,G),G, Dy(- |
w(Fx),p(Fx,G))) : h € HF} c TL,.(Prcg) in model M(G), then
c O | Q(Fx,G),G,Dp(- | p,p)) denotes the influence curve corre-
sponding with the estimating function IC'(Y | Q, G, Di(- | i, p)), assuming
correct specification of the nuisance parameters @@, G. Theorem 2.9 below,
based on Newey and McFadden (1994), provides us with a formula iden-
tifying the estimating function whose corresponding influence curve has
minimal variance among the class of estimating functions.

Theorem 2.9 Consider the censored data structure Y = ®(C, X), X ~
Fx e M andC | X ~G(- | X) € G C G(CAR). Let ju be a k-dimensional
real-valued parameter of Fx. Consider a class of k-dimensional full data
structure estimating functions Dy (- | w, p) for p indexed by h ranging over a
set H* that satisfies for all Fx € MT and all G € G T (Fx) D {Du(- |

nuis

w(Fx),p(Fx,G)) : h € H}. Let (H,(-,-)u) be a Hilbert space defined by
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the closure of the linear span of ‘H, which is assumed to be embedded in a
Hilbert space with inner product (-, ).

Consider a class of k-dimensional observed data estimating functions
IC(Y | Q,G, Dy,) indeved by h € H*, where IC(Y | Q,G, Dy) = (IC(Y |
Q,G,Dp,),...,IC(Y | Q,G,Dy,)). Here Q = Q(Fx,G) and G denote the
true parameter values for Q and G. Define for h € H*

K(h) = — - Bp, JIO(Y | Q(Fx, G).G. Dl | mp(Fx,G))|

H u=p(Fx)
where we assume that this k x k derivative matriz is well-defined. As-
sume that k(-) is bounded and linear, so that (by the Riesz Representation
theorem) there exists h* € H* so that for all h € H*

’%(h)’ij = <h:, hj)Ha (17]) € {15 tey k}Q
For notational convenience, define A : (H,{-,-Yg) — L3(Pry.c) by

A(h) = IC(- | Q(Fx, @), G, Dy). Let AT : L3(Ppy.c) — (H, (-,-Yu) be the

adjoint of A. By applying these operators to each component of a multivari-
ate function, we can also define these operators on multivariate functions
so that A: H* — LE(Pry )* and AT : L3(Ppy ¢)¥ — H*. Define

S(h) = E(r(h) " A(h)(Y) (s(h) "t A(R)(Y)) 7).

Assume that h* is an element of the range of ATA: H* — H* and that
(ATA): H — H is 1-1. Then

hopt = min~ ' e e B(h)e for all ¢ € RF
exists, and is given by
hopt = (AT A)™ (h").
Thus
A(hopt) = A(AT A)~1h*.
Proof. Firstly, note that
k(h) = (h*, hyi = (A(ATA) " (R), A(R)) pey o

where the inner product (hi,he)y is defined as the matrix with (i, j)th
element (hq;, he;)m. Using this notation for inner products of vectors, it
follows that
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where D(A(h)) = (fl(}i—'—fl)_l(h*),A(h));;xyc. By the Cauchy—Schwarz
inequality, this expression in A(h) is minimized by fl(hopt) = A(ATA)"'h*.
O

A special case of Theorem 2.9 is obtained by letting the index set H be
the class of full data estimating functions itself. Application of this theorem
to our T 4p-orthogonalized mapping from full data structure estimating
functions to observed data estimating functions results in the formula for
the efficient influence curve (and efficient score) as presented in Theorem
1.3 and originally derived in Robins, and Rotnitzky (1992). However, note
the next theorem is more general since it can be applied to any mapping
from full-data structure estimating functions to observed data estimating
functions.

Theorem 2.10 Consider the censored data structure Y = ®(C, X), X ~
Fx €¢ MF, and C | X ~ G(- | X) € G C G(CAR). Let pu be a k-
dimensional real-valued parameter of Fx. Consider a class of k-dimensional
full data structure estimating functions Dp(- | w,p) for p indexed by
h ranging over a set H* that satisfies for all Fx € MY and G € G
TFL(Fx) 5 {Dal- | u(Fx), o(Fx,G)) = h € H}. Let (H, (- )py) C
Li(Fx) be the sub-Hilbert space of L3(Fx) defined by the closure of the
linear span of {Dn(- | w(Fx),p(Fx)) : h € H}. Consider a class (not
necessarily Toar-orthogonalized) of k-dimensional observed data estimat-
ing functions IC(Y | Q, G, Dp(- | u, p)) indezed by h € H* with nuisance
parameters Q(Fx,G), G and p(Fx, Q).
Define for h € H*

d
k(Dp) = — —Epp IC(Y | Q(Fx,G),G, Dp(- | s p(Fx, G))) :
dp . u=p(Fx)

where we assume that this k X k derivative matriz is well-defined. Assume
that k : (H,(-,")ry) — R is bounded and linear, so that (by the Riesz
Representation theorem) there exists D* € H* so that for all h € H*

#(Dy) = (D, D*)ry = E(Dp(X)D*' (X)).

For notational convenience, define A : (H,{-,-)g) — L3(Pry.c) by
AD) =1C(- | Q(Fx,G),G, D). Let AT : L(Pry.c) — (H, {-,-)u) be the
adjoint of A. By applying these operators to each component of a multivari-
ate function, we can also define these operators on multivariate functions
so that A : H* — LE(Pry.c)* and AT : LE(Pry.c)* — H*. Define the
covariance matrix

2(D) = E(r(D) " AD)(Y)((D) tAD)(Y)) ).
_ Assume that D* is an element of the range of ATA: H* — H* and that
ATA:H — H is 1-1. Then

Dopt = min " S(D)e for all ¢ € RF
DeH*



162 2. General Methodology

exists, and is given by
Doyt = (AT A)7H(D").
Thus

A(Dopt) = A(AT A7 D*.
Remark:

Suppose that we apply this theorem to the T ag-optimal mapping into
observed data estimating functions satisfying IC(Y | Q(Fx,G), G, Dp(- |
w(Fx), p(Fx,G)) satisfies for all D, Eq(IC(Y | Q(Fx,G),G,Dp) | X) =
Dp(X), IC(Y | Q(Fx,G),G, Du(- | n(Fx), p(Fx,G)) L Toar(Pry.c),
and {Dy,(- | p(Fx), p(Fx,G)) : h € H} = T50 (Fx). Then A(AT A)~1(D*)
has to equal the efficient influence curve S7;, (- | Pry,c) = Apy I};}G(Sff*f)
for p at Ppy @, Off course, this identity is a consequence of (by Theorem
1.3) the fact that in this case A(Dy,) = AI"'D},. It follows that D* = Se*ff
and D, = (AT A)~1(D*) corresponds with the optimal full data function
defined by Doy = IFX7gl};}G(S*ff) or the solution in T~ satisfying

e nuis
— F, 1 *
H(IF;,G(D) | Tyois) = SiF,

nuis eff:
Closed-form optimal estimating functions for MGLM

We will now apply Theorem 2.9 to obtain a closed-form representation of
the optimal estimating function among a general class (not necessarily the
class of all estimating functions including the efficient influence curve as in
Theorem 2.8) of estimating functions in a multivariate generalized linear
regression model with covariates always observed. In such models, classes
of estimating functions obtained by mapping full data estimating functions
h(X*)K(e(8)) into observed data estimating functions IC(Y | @Q, G, Dy)
will have the property that IC(Y | Q,G, Dp) = h(X*)IC(Y | Q,G, Kp),
where Kg(X) = K(e(8)). This special property combined with Theorem
2.9 results in a closed-form representation of the optimal estimating func-
tion. The result is a generalization of Theorem 2.8 since it specifies the
optimal estimating function among any given class of estimating functions,
not necessarily the class including the efficient influence curve and/or a
Tc ar-orthogonalized class of estimating functions. For example, if one uses
non optimal mappings only orthogonalizing w.r.t. a subspace of Toag, as
provided in this chapter, then Theorem 2.11 below can be used to find the
optimal choice.

Theorem 2.11 Let Y = ®(X,C), X ~ Fx, C | X ~ G(- | X), and as-
sume that the conditional distribution G satisfies CAR. Let the full data
model be the p-variate generalized regression model Z = g(X* | B) + e,
B e RF, E(K(e) | X*) =0, and K(¢) = (K(e1),...,K(ep)). Assume
that g(X™ | B) is differentiable in B for each possible X* and that K is
differentiable. Consider the full data estimating functions {Dyp(X | B) =
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h(X*)TK(e(B)) : h € H}, where H is an index set of 1 x p vector-valued
functions of X*. Consider a class of k-dimensional observed data estimat-
ing functions IC(Y | Q,G, Dy (- | i, p)) with unknown nuisance parameters
Q(Fx,Q),G, p(Fx, Q) indexed by h € H*, where h denotes a k x p matriz
valued function of X*. Suppose that for each k X p matriz-valued function
h e HE of X*,

IC(Y | Q,G, Du(- | B)) = W(XH)IC(Y | Q, G, Kp).

Here K3(X) = K(e(8)). For each h € H¥, we define the k x k derivative
matriz k(h):

k(h) = —E(d/dBIC(Y | Q,G, Dy)) = —E(h(X*)d/dBIC(Y | Q,G, Kp)).

For each h € H*, let ©(h) = E(x(h) ' IC(Y | Q,G, Dp)(k(h)~1IC(Y |
Q,G,Dy)") be the covariance matriz of k(h);, L, IC(Y | Q,G, Dy). Let H
be the sub-Hilbert space defined by the closure of the linear span of H w.r.t.
the norm in L3(F%). Consider

B = —B(d/dBIC(Y | Ky) | X" )uxp BUC(Y | K)IC(Y | K5) | X*)7,
where we used shorthand notation IC(Y | Kg) = IC(Y | Q,G, Kg). As-
sume h* is well defined (i.e., derivative and inverse exist) and h* € HF.
Then

=1 T k
hopt = in e S(h)e for allc € R

exists, and is given by hopr = h*.

This theorem is a straightforward consequence of Theorem 2.9. In a typical
application of this theorem one would have that H = L2(F%) so that the
last condition holds.

Example 2.16 (Optimal IPTW estimating function) Let A(t) rep-
resent a time-dependent treatment process that potentially changes value
at a finite prespecified set of points. Let A be the set of possible sample
paths of A, where we assume that A is finite. For each possible treatment
regime @, we define X5 (t) as the data that one would observe on the subject
if, possibly contrary to the fact, the subject had followed treatment regime
a. It is natural to assume that Xg(t) = Xg—) (i.e., the counterfactual
outcome at time t is not affected by treatment given after time t). One
refers to X; = (X5(¢) : t) as counterfactual. Suppose that X; = (Z3, L)
consists of an outcome process Z; and covariate process Lz. The baseline
covariates are included in Lz(0) = L(0). Let X = (X5,a € A) be the full
data structure, and the observed data structure is given by

YV = (A, X)) = (A Z4 La).

Let Y7 be a counterfactual outcome of interest such as Z;(7) at an endpoint
7. Consider a marginal structural generalized linear regression model:

Y. =m(a,V | ) + €z, where E(ez | V) =0,
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where V' is a subset of the baseline covariates and m(a,V | ) denotes a
parametrization of the conditional mean of Y, given V', parametrized by
the parameter of interest 3. Assume that g(a | X) satisfies the SRA (i.e.,
P(A(t) = a(t) | A(t—), X) = P(A(t) = a(t) | A(t—), Xa(t))). Consider the
class of IPTW estimating functions

{my G, Dy) = 7”;*‘(‘[');)@ : h}

indexed by real-valued functions h of A,V , where ¢(3) = Y* —m(A,V | §)
is the observed residual. An interesting choice of h is the h that gives
an optimal covariance matrix E(IC(Y | G, Dy)IC(Y | G,Dy)") when g
is known. In the same way as one proves Theorem 2.11, application of
Theorem 2.9 teaches us that this optimal index is given by

. d

AV = L E(1/g(A] X) | A,V)

(€(8)/g*(A| X) | A, V)

It is interesting to compare this choice with the computationally simple
choice recommended in Robins (1999), given by

AVI9Z

Ly $ ALY | )
S T I

where g*(A | V) is the conditional density of A, given V. Note that both
choices reduce to the optimal weighted least squares estimating function
that is optimal among all estimating functions whose weights only depend
on A,V in the situation where g(A | X) = g(A | V) is only a function of V.
Robins (1999, Section 4.1) provides the efficient choice hopt(A, V) for this
model in the special case where A is time independent. However, hut (A4, V)
is the solution to a Fredholm integral equation of the second kind which
does not admit a closed form solution. Thus an easily computed alternative,
although less efficient, is useful.
O

An algorithm for evaluating the representations of the optimal full data
structure function

Consider the representations Ir, clp o(Dh,,,) and B;;G(Dheff) for
Dy, The following two lemmas prove that under reasonable conditions
these inverses exist and provide general simple algorithms for determining
them.

Lemma 2.6 For notational convenience, in this lemma we suppress the
dependence on (Fx,G) of the Hilbert space operators. Let T* = Tprl :
TF — TF be the information operator. Assume that for all h € T with
| 7 [|Fx> 0 we have || A(h) || pp, o> 0. Then I* is 1-1.
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Suppose that for some § > 0
| A(R) 7y, o> 6 (2.57)

inf
1Rl Py =1,heTF

Then inf ) .=1 || T*(h) [[Fx> 0, (I = I*) has operator norm bounded by
1—9, I* is onto and has bounded inverse with operator norm smaller than
or equal to 1/6, and its inverse is given by

[e )

| Z(I _ I*)i.

i=0
In addition, the following algorithm converges to T*=1(f): Set k =0
h = o,
hk—i—l _ f_I*(hk) +hk,
and iterate until convergence. The convergence rate is bounded by

— 8k
=1 s S

If A = I(X observed) and inf, P(A =1| X = x) > 0, then the condition
for bounded invertibility above holds with § > inf, P(A = 1| X = z).
Finally, we note that

U'(h) = T(U(R) < Spy > OTyz)
= T(I(h) |< Sy >) + {L(h) = TIAR) | Ty}

nuis

The condition inf, P(A =1 | X = x) > 0 is not a necessary condition
for the bounded invertibility of I*. This lemma does not prove that the
Neumann series converges if || A(h) ||> 0 for all h # 0 (thus I* is 1-1),
but infy, =1 || A(R) [|*= 0. We conjecture that if Dy, ,, € R(I*) and I* is
1-1, then the Neumann series applied to Dy, ,, will converge to I*_(Se*f f).
We feel (based on our empirical findings) comfortable recommending this
algorithm in practice.

Proof. This lemma can be found in van der Laan (1998) except the
actual convergence rate. The convergence rate is proved as follows. Firstly,
we have that if || I*(h) [|[F> d || h || F, then

[T (R" =T () 120 [ B* =T (f) | -
This proves that
I h* =T (f) IS /8 || f=T(h") || -
Now, note that f — I*(h¥) = hF+1 — h¥. We have
AU (1T~ ) = (1 - TR - 0) = (1~ T ().
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Since I — I* is a contraction with operator norm 1 — ¢, this shows that
. 1
[ hF =T (f) 1< 5(1—5)’“ | fI-e

Similarly, one proves the following algorithm for inverting Br, .

Lemma 2.7 Consider the operator BFX’G Tt (Fx) — TL. (Fx) de-

nuis nuis

ﬁned by B(D) = II(Ix, (D) | TL . .(Fx)). We have that with D &
T (Fx) and Dy = Ir, o(D),

nuis
_ FL
Bry.c(D) = I (D) |T,.;:(Fx))
= Dy —II(D1 —Ipy c(D1) | Thuis(Fx))
= D1 — Bl7FX7g(D1).

Thus By (f) = Iex.a(I = Bure.c) ' (f). If Ipg o : L3(Fx) — L§(Fx)
s 1-1, then fOT all D1 € L(Q)(Fx) || Bl7FX7g(D1) ||FX<H D4 ||FX' If
Bipe.c @ L(Fx) — L(Fx) has operator norm strictly smaller than 1,
for example (2.57) holds, then

(I_B17FX7 ZBl Fx,G

and (I — B1,py,c)(D1) = f can be solved by successive substitution:
Di*' = f + B,y (DY)

In many examples, it is possible to invert Bp, ¢ : T:;”lg(FX) —

nuis
in integral equations for which particular algorithms are available. Lemma
2.7 above shows, in particular, that the operator Br, ¢ is invertible. There-
fore, another sensible strategy is to approximate By, 5 : :HE — HE (2.53)
by a square matrix mapping index vectors (1dent1fy1ng the index A of the el-
ement in T . (Fy)) into index vectors and invert this matrix using matrix
inversion routines. The advantage of the general algorithm of Lemma 2.6 is
that it never requires more than being able to apply and store one matrix

identifying /7. ;. The same remark holds for the algorithm of Lemma 2.7.

TF~ (Fx) explicitly. In other examples, solving Bpy o(D) = Dy, 4 Tesults

The algorithms for Ipy ¢l (Dh.,,) and B;;7G(Dheff) are of similar
complexity so that there is little reason to prefer one above the other.

2.9 Estimation of the Optimal Index

Given the estimates Qn, Gy, 1), pn, the best estimating function for y is
IC(Y | Qn,Gn, Dy, (rx,c)( | 11, pn)), where we provided representations
of the optimal index hope(Fx, G) in the preceding sections. In this section,
we propose a representation of hop: which naturally provides an estimator
hn of hopt-
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In the previous section, we obtained representations hgp: of the form
hind,rx (the index mapping) applied to the optimal full data estimating
function Doy (X | Fx, G) as a function of Fx and G. However, we know
that Dop(X | Fx,G) = Dy, (Fx.c)(- | #(Fx), p(Fx)). Therefore, we are
now concerned with establishing a parametrization of D, in terms of its
index h and (u, p) so that we can estimate it by substitution.

In general, an estimator A, of hoy: proceeds as follows. Firstly, we con-
struct an estimate D, (X) of the optimal full data function Dy, , (ry,a) (X |
W, p). If Dy, is of the form Dy, (- | 4%, pn), then we also have obtained as
estimate h,, of hope. However, if D,, is based on an implicit representation
of Doyt involving an inverse B~ or I*~, then estimation of this inverse
using a truncated Neumann series representation can result in an estimate
D, & D(u2, pn). In that case we need, as discussed below, to project D,
into D(1, pn) to obtain an estimate h,, of hopt.

To be specific, let L(X) be a subspace of all pointwise well-defined func-
tions of X with finite supremum norm. We call any function h : L(X) —
H” an index mapping, and hina, ry : £(X) — H” is the true index mapping
defined by

F, 1L

Let hina,n be an estimator of hipa, ry . Then, if D,, & D(ul, p,) we estimate
hind,rx (Dy), and we denote the resulting estimator of hop, with hy,:

hn = hind,n (Dn) .

In the next subsections, we reparametrize the representations (2.51) and
(2.53) of Dope(X | Fx,G) in terms of u, p and the parameters identifying
the optimal index hop: and estimate hope, and Dy accordingly.

2.9.1 Reparametrizing the representations of the optimal full
data function

If we state an inverse of an operator applied to a function, then it will
be implicitly assumed that this operator is 1 — 1 and that this function is
in the range of the operator. Firstly, consider the representation (2.51) of
Dopr = B;;G(Sfff). Recall the definition D(u, p) = {Dp(- | p,p) : h €
HEY. For each (hing, i1, p) (hina being an index mapping), let Iy, , .,
L(X) — D(p, p) be an operator such that for all Fy € M and D € L(X)

Hhmd,FX 7H(FX)7P(FX)(D) = (D | Trﬁw’s(FX))
= Dppa e (0)( | 1(Fx), p(Fx)).

. N F,Ll .
Thus IIj,,, , parametrizes the projection operator onto 7,7 in terms of an

index mapping h and the parameter values p, p. Let Iy, ¢, : £L(X) — L(X)
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and denote its range with R (Ip, q,). For any D € Roo(Ip, q,), define

Br, 7Gl7h1‘,nd7u7p(D) = th‘,nmmp:[;‘ll,Gl (D)

Consider now the following representation of Dop;:

Do (F1, G1, hina, hegy, 1, p) = B;117G17h11nd7u7pDheff ([ 1. p)
We can now show the following result.

Lemma 2.8 Let (u,p), (F1,G1),hina(-) be given. Assume D(u,p) C
Reo(Ipy,G,)- We have that Bp, i hiame @ D,p) — Dlp,p). In
particular, for any hery € HE

Dopt(F1, G, hinds Peggs 14 9) = Br, 6y iy Phess (1 1 0) € D, p).
(2.58)

This shows that given (u, p) we end up in D(u, p) regardless of our choice
of F1,G1, hing, and hegy. Thus

Dopt(Fla Gl; hind; heffa 122 p) = Dhopt(F17G17h1‘,nd7h€ff7M7p)(. | s p)

for some mapping (F1, G1, hind, hegrss i, p) —
hopt (F1, G1, hind, heps, i1, p) € HE. Thus, estimation of F, G, hind, he sy only
affects the estimator hop;, of the optimal index hop in Dy, ., (- | K2, pn).
Since we prove a similar lemma for the representation (2.53) below, we
will omit the proof of Lemma 2.8 here.

Consider now the representation (2.53) of Dy (Fx,G) =
I, c {HTFIFX7G}_1 (Sfff). Let us start by parametrizing the projection
operator IIrr onto the full data tangent space. We have

Mpy (D | T¥(Fx)) = Hpy (D |< S5 (- | Fx) >)+D—Tre (D | T (Fx)).

nuis

The first projection operator is given by
gy (D < S54(-| Fx) >) = cry (D)Dh,,; (px) (- | 1(Fx), p(Fx)),

where cp, (D) = (D,SQ;)F)((Sfff,Sff—'}ﬁi, and Sfff = Dn (- |
w(Fx),p(Fx)). Above, we reparametrized the projection operator
onto T,I;”lg as IIp,.up in terms of (hingry, t(Fx), p(Fx)). This
suggests the following parametrization of the projection operator
Op (D | TF(Fx)): suppose that for every (c,Rindg,hefs,ft,p) €
{(crys hind,Fx, heps(Fx), i(Fx), p(Fx)) : Fx € M*}

Hcvhindvheff7ﬂ7p(D) = C(D)Dheff ( | s p) +D - Dhmd(D)(' | s p)
is a well-defined operator from L£(X) — L(X) satisfying
ey hina i hess (Fx)w(Fx)o(Fx) = Wiy (- | TF (Fx)).

The unknown index mapping parameter h;,q ranges over all index
mappings h : L(X) — H”.
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This suggests the following parametrization
Dopt(Fla Gl; ¢, hinda heffa Hy P) of Dopt(FX; G) (2'53):

IF17G1 {Hcvhiw,dvheffvﬂvaFhGl }_1Dhs:ff ( | s p)'

Here, we implicitly assumed that this is an element of £(X"). Notice that in-
deed Dopi(Fx, G, cry, hind,px, hepr(Fx), p(Fx), p(Fx)) = D, , (rx.c) (- |
w(Fx), p(Fx)).

We can now prove the following lemma.

Lemma 2.9 For notational convenience, let Il , , = e p,yn g oip” As-
sume that hing : L(X) — HT. For any Fy, Gy (md heff € HY (so that

Dhs:ff ( | M?p) € D(M p)) satzsfymg {HLM IF17G1} (Dheff) € ‘C( );
have

IF1,G1 {H17H7pIF17G1}_1Dheff ( | M)p) € ID(/%p) (259)

Proof. We will show that for any possible value of the parameters we
have Doyt (F1, G1, ¢, hing, hess, it, p) € D(p, p). The proof is almost a direct
consequence of the fact that for any D € £(X) and hesp € HE

D =Tehinihessnp(D) = Duoy(- | 1t p) = (D) Dy, (- | 1, p) € D(/(L P) :
60

and that

Hc,hind,heff,u,pDopt (Fla Gl) C, hind; heff) /’1/7 p) = Dheff ( | /’1/7 p) (261)

Using short-hand notation Dyp = Dopi (F1, G1, €, Rinds Refry iy p)s I p =
e hipahessopps We have by (2.60) and (2.61)

Dopr = {Dopt - HLu,pDopt} + 11, pDopt
= Du,p) (- | 11, 0) = (Dopt)Dh sy (- | 11, 0) + Dheyy (- | 11, p)-

Since Doy € L(X) and h : L(X) — H”, this proves that D,y € D(u, p).
O

2.9.2 Estimation of the optimal full data structure estimating
function

Consider the representation (2.58) of the optimal full data structure func-
tion Dypi(Fx, G). Estimation of this representation involves estimation of
the components (Fy, G) identifying the nonparametric information opera-
tor, hing,Fy identifying the index mapping of the projection operator onto
the orthogonal complement of the nuisance tangent space, and heys(Fx)
identifying the index of the full data canonical gradient Sff s | Fx) and
(W(Fx), p(Fx)). Substitution of estimators for each of these components
yields an estimator of Dop:

D, = Dopt(Fn; Gn, b, heff,na Mg, pn)

{Hhmuﬂ,,pnI;ﬂ,Gﬂ} Dheff,n(' | M?Lapn)'
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Similarly, an estimator based on representation (2.59) is given by
D, = Dopt(Fn;Gnacn;hn;heff,naﬂgapn)
= Ir 6o Mewhnhes s 0n P Gu Y Dhegrn (| s pr)-

Lemmas 2.8 and 2.9 show that the right-hand side is indeed an element of
D(ul, p,) so that

Dy, = Dy, . (- | u2, py) for some Ry, € HE.

Thus Fy,, G, Cn, hn, heff,n only affect the index estimate hopt,p,. If one uses
approximations D,, of these estimators D,, that are not necessarily elements
of D(u2, pr), then, as mentioned in the previous subsection, one should use

hopt,n = hind,n (Dn) .

If in model M the full data working model M™ is such that it yields an
(e.g., maximum likelihood) estimator F,, of the full data distribution Fx
itself, then one could decide to use a substitution estimator for each of the
full data distribution parameters:

Do+ | 1y pn) = Iry.cu X5 ' Dheyy () (| s ), (2.62)

where

*—1 .
I e = er, ey hers (Fa) o pnLE G-

2.10 Locally Efficient Estimation with
Score-Operator Representation

Recall that at the true Fx, G
IC(- | Q(Fx,G), G, Du(- | 1y p)) = Arx I, oDn(- | 1 p).

Suppose that we actually use this representation in terms of F'x, G to define
our estimating function; that is, just parametrize IC in terms of Fx and

G:
IC(- | Fx,G,Du(- | 1y p)) = Arx I, oDn(- | 1, p)-

Let F, be an estimator of Fx according to the working model MFw and
let G, be an estimator of G according to the working model G. In addition,
assume that we estimate Dy, with Dy, , . = IFn7GnI};71GnDheff(Fn)(. |
i, pr) as defined by (2.62) using F), and G,,. Then, the resulting estimating
function for y is given by

IC(- | Fny Gy Dy (L 1 p0)) = AR X o Dy (7)) (| 1 o).

Since this is just a special application of the one-step estimator (2.35),
we can apply Theorem 2.5, which shows, under regularity conditions, that
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the resulting one-step estimator is consistent and asymptotically normal
if either M is correctly specified or G is correctly specified and that it
is efficient if both are correctly specified. The one-step estimator can be
computed by inverting I}, = with the successive substitution method of
Lemma 2.6. o

Note that, given estimators F;,, G, this provides us with a completely au-
tomated method for locally efficient estimation in any censored data model.
Off course, here one also uses a substitution estimator p,, = p(F,, Gp).
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