10
Data Hiding in Text

Today, in the digital age, any type of data, such as text, images, and audio, can be
digitized, stored indefinitely, and transmitted at high speeds. Notwithstanding these
advantages, digital data also have a downside. They are easy to access illegally, tamper
with, and copy for purposes of copyright violation.

There is therefore a need to hide secret identification inside certain types of digital
data. This information can be used to prove copyright ownership, to identify attempts
to tamper with sensitive data, and to embed annotations. Storing, hiding, or embed-
ding secret information in all types of digital data is one of the tasks of the field of
steganography.

Steganography is the art and science of data hiding. In contrast with cryptography,
which secures data by transforming it into another, unreadable format, steganography
makes data invisible by hiding (or embedding) them in another piece of data, known
alternatively as the cover, the host, or the carrier. The modified cover, including the
hidden data, is referred to as a stego object. It can be stored or transmitted as a message.
We can think of cryptography as overt secret writing and of steganography as covert
secret writing.

Secret data can be embedded in various types of cover. If the data are embedded
in a text file (covertext), the result is a stego-text (or stegotext) object. Thus, it is
possible to have coverimage and stegoimage, coveraudio and stegoaudio, covervideo and
stegovideo, etc. This terminology was agreed upon at the First International Workshop
on Information Hiding [Pfitzmann 96].

The word steganography is derived from the Greek oTeyavos ypager, meaning
“covered writing.” The term was coined by Johannes Trithemius, whose Steganographia
[Trithemius 06], the first treatise on this subject, was published in 1606, long after his
death. Another old book on steganography and cryptography is Schola Steganographica
by Gaspari Schotti (1665) [Schotti 65]. Four hundred pages in this book are devoted to

246 10 Data Hiding in Text

steganography.

Notice that the term steganography (spelled with “stega,” meaning “covered”) is
not related to stegosauruses (spelled with “stego,” meaning “roof”), although one may
claim, as a pun, that “roof” and “cover” are semantically related.

Steganography is useful even in cases where cryptographic tools are available and
provide adequate security. The reason is psychological. When a file is examined or
intercepted and is found to be encrypted, it may raise suspicion in the mind of the
interceptor, who may presume that the sender is performing or planning malicious or
illegal acts. Someone who does not want to risk raising suspicion and prefers not to
attract attention, may opt to use steganography to hide sensitive data (perhaps after
encrypting it, to feel even safer) in an innocuous cover.

Embedding data in a cover is a technological challenge. The embedded data should
not increase the size of the cover, because this would be noticeable to an attacker familiar
with the original cover. Secret data should therefore be embedded in “holes” in the cover
(places where the cover data have redundancies). Unfortunately for the steganographer,
lossy compression techniques operate by removing redundancy from the cover, thereby
destroying any data hidden in such holes. Thus, steganography faces the additional
challenge of embedding the secret data in a robust way to make it impervious to lossy
compression and other operations that may modify the cover.

Figure 10.1 shows the main steps in a typical steganographic method. The encoding
algorithm receives three inputs, the secret data to be embedded, the cover data, and
an optional steganographic key. The algorithm then produces a stego cover that can
be stored and/or transmitted. The decoding algorithm receives the stegocover and the
(optional) stego-key, and extracts the secret data. In some algorithms, the decoder
cannot actually extract the data and can only answer the question, “Are these data
really embedded in the file being examined?” This makes sense in cases where the
hidden data are a watermark, originally placed in the cover to prove ownership or
simply for pride of ownership.

Secret Secret
data data

Embe.dding Stegocover ——| Decoder
algorithm
Stego-key Stego-key

Figure 10.1: The Main Steps of Data Hiding and Extracting.

Fabien Petitcolas maintains a data hiding Web page that includes an annotated
bibliography [Petitcolas 01] on the field of information hiding and digital watermarking,.
Some popular steganography programs are available at
ftp://ftp.csua.berkeley.edu/pub/cypherpunks/steganography/.

10.1 Basic Features 247

Watermarking World [WatermarkingWorld 01] is an international meeting point
for scientists, researchers, and organizations active in digital watermarking (one of the
areas of steganography). It is the first nonprofit organization dedicated to digital wa-
termarking. It provides means and services to the digital watermarking community. Its
goal is to facilitate communication among those active in this field and to contribute to
research and implementation efforts.

The organization of this chapter is as follows. Following a discussion of basic fea-
tures, applications of steganography, the concepts of watermarking and fingerprinting,
and intuitive methods, the remainder of the chapter is devoted to text steganography
(data hiding in text files) starting at Section 10.6.

10.1 Basic Features

The many steganographic methods described in this chapter have various strengths and
weaknesses and this short section discusses the main features of a data hiding algorithm.

Embedding Capacity: Data are hidden (or embedded) in a larger volume of
data called a cover or a carrier. The cover is a computer file, such as text, image,
audio, or video. Embedding capacity (also known as payload) is the amount of data
that can be hidden in a cover, compared to the size of the cover. This feature can be
measured numerically in units of bit-per-bit (bpb). A steganographic algorithm with
small embedding capacity may have other good features such as robustness, so it may
be the ideal choice when only a small amount of data, such as a short message, has to
be hidden.

Invisibility: Any data hidden in a cover causes it to be modified. Invisibility (also
termed perceptual transparency, or algorithm quality) is a measure of the amount of
distortion to the cover. A large embedding capacity is useless if it causes large distortions
to the cover. Invisibility is a qualitative feature. It cannot be measured numerically and
the best way to measure it is to present several observers with the cover before and after
the embedding. If no one can tell the difference between the covers, the steganographic
algorithm is judged highly invisible. Invisibility is therefore tied to human visual or
auditory perception.

Undetectability: An attacker may be able to detect the presence of hidden data
in a given file by computing certain statistical properties of the file and comparing them
to what is expected in that type of file. For example, the errors in the predictions of
pixels in a color or grayscale image are many times distributed according to the Laplace
distribution (this is explained in the next paragraph). If a particular image is examined
and is found to have a significantly different pixel distribution, it may raise suspicion
and lead to further scrutiny. Thus, a good steganographic method should not change
the statistical properties of the cover file. This property is termed undetectability and
is different from invisibility because it does not depend on human perception.

(The pixels of an image are not independent. When we select a pixel at random,
we normally find that it is similar in color to its near neighbors. Thus, it makes sense to
predict the value of a pixel by computing an average of its near neighbors. This should
be a weighted average with smaller weights assigned to nonimmediate neighbors. When

248 10 Data Hiding in Text

the prediction is subtracted from the actual value of the pixel, the result is the error
of the prediction. This is normally a small number, but may sometimes be as large
as the maximum pixel value, and may also be negative. The prediction errors in the
entire image are normally distributed according to the well-known Laplace statistical
distribution, whose shape resembles the normal, Gaussian distribution somewhat.)

Robustness: This is a measure of the ability of the algorithm to retain the data
embedded in the cover even after the cover has been subjected to various changes as a
result of lossy compression and decompression or of certain types of processing such as
conversion to analog and back to digital. Most steganographic algorithms embed data
in an image, and images may be subject to image processing operations such as filtering,
color changes, rotating, cropping, resampling, and sharpening. Robustness is especially
important when the hidden data consist of copyright or ownership information (the
so-called watermark). A user may compress such an image with a lossy compression
method, then decompress it in an attempt to destroy any hidden watermarks.

Exercise 10.1: There is a close relationship between compression and steganography.
The two are often mentioned together here and elsewhere. Explain why.

Tamper Resistance: An attacker may try to alter the data embedded in a cover,
rather than destroy them. A tamper resistant steganographic algorithm makes it ex-
tremely hard to alter the hidden data or to erase them and embed a different message.
Especially vulnerable is copyright information embedded in a cover. Such information
should stay intact for years (70 years after the author’s death for text and 50 years for
audio) and should resist attempts to modify it using future technologies.

Long experience in other areas of the computing field has shown that there is always
a tradeoff. Improving a feature of an algorithm normally involves some downgrading of
other features. In steganography, there is a tradeoff between embedding capacity and
robustness (and also tamper resistance). The more robust an algorithm is, the less data
it can embed in a given cover.

Notice that the data should be hidden in the body of the cover, not in a header,
trailer, or footer. The principle is that the hidden data should stay intact even after
the cover is converted to a different file format and its headers changed or removed.

However, long experience shows that anything done by a person may be undone
(if not forbidden by a law of nature) by another person. It is therefore obvious that
even the most sophisticated methods cannot always defeat attacks by knowledgeable,
determined persons. In fact, such a person may regard sophisticated protection as a
personal challenge and spend much time and effort attempting to break it.

Signal-to-Noise Ratio (SNR): This quantity serves as a measure of invisibility
(or its opposite, detectability). In general, high SNR is desirable in communications
systems, but a low SNR is ideal for steganography. This is because in steganography,
the cover is the noise while the embedded data are the signal. As a result, low SNR
corresponds to low perceptibility.

Cover Escrow vs. Blind Cover: In some steganographic methods, the original
cover is needed in order to retrieve the embedded data. Such a method is said to use
escrow cover. Where the embedded data can be extracted without the need for the
original cover, the cover is said to be blind or oblivious.

10.1 Basic Features 249

Some of these requirements conflict, so any specific algorithm can satisfy only one
or two of them. In particular, embedding capacity, robustness, and undetectability are
mutually conflicting and cannot all be achieved by one algorithm. Figure 10.2 is a
graphical description of the relationships between these three requirements. It shows
that naive steganographic methods can achieve large embedding capacity, but at the
expense of robustness and undetectability. Advanced algorithms can achieve a high
degree of undetectability, but offer small embedding capacity and insufficient robustness.
Methods for embedding a watermark are normally designed to be robust, but result in
small embedding capacity and questionable undetectability.

Naive Capacity

methods

Watermarking

Advanced methods

methods

Undetectability Robustness

Figure 10.2: Conflicting Requirements for Data Hiding.

Other Features: Like any other discipline that uses computers, steganography
has many other “digital” features, a few of which are listed here.

1. Much as encryption methods use an encryption key, steganographic algorithms
can use a stego-key to increase security.

Kerckhoffs’ principle, discussed in the Introduction, applies to steganography as
well. When applied to steganography, this principle, due to the Dutch linguist Auguste
Kerckhoffs von Nieuwenhoff [Kerckhoffs 83|, states that the security of a hidden message
must depend on keeping the stego-key secret. It must not depend on keeping the hiding
algorithm secret.

2. The complexity of the algorithm is also an important feature. A computationally
intensive method may result in greater invisibility and robustness, and these may justify
the extra time needed to embed and retrieve the hidden data. The execution time of an
algorithm may often be less important than its other features. An example is a music
CD with copyright information embedded. The copyright has to be embedded into the
music just once, following which the digital information (music plus copyright) can be
recorded on as many CDs as needed without any extra computations.

3. Asymmetric hiding of data may be a desirable feature. A slow encoding algo-
rithm may many times be acceptable if the decoding algorithm is simple and fast.

4. The use of error-correcting codes is an advantage. Many types of processing may
modify the cover and thus corrupt the hidden data. An ideal steganographic algorithm
may be able to detect and even correct the embedded data after such a process.

5. Certain attacks on hidden data may destroy part of the cover. Ideally, it should
be possible to retrieve that part of the embedded data that’s hidden in the remaining
part of the cover.

250 10 Data Hiding in Text

6. A parallel steganographic algorithm is one that can be executed by several
processors simultaneously, each embedding (or retrieving) part of the data. Such an
algorithm may be important to steganalysts trying to break a steganographic algorithm.

10.2 Applications of Data Hiding

The first and most obvious application of data hiding is simply to hide private, sensitive
data in a cover. The data are embedded either in their original, raw format or encrypted
first. Since the amount of data to be hidden may be large, it makes sense to compress
it prior to its encryption and embedding. This enables several parties to exchange
messages without communicating directly. Sender and receiver do not even have to
exchange email, use instant messaging, or log into specific computers or accounts. All
that a sender has to do is post a cover (text, image, or audio file) in a public forum under
a pseudonym known to the receiver. The cover is then downloaded by the receiver (as
well as by any other interested party) and the secret data extracted with the use of a
stego-key. A text file with a hidden message may, for example, be placed in a newsgroup
site. An image file may be placed in an Internet auction site by the sender pretending
to be a seller.

Another important application of data hiding is to place a digital identification or
signature, commonly known as a watermark, in the cover. The watermark is normally
a small amount of data that indicates ownership, authorship, or another kind of rela-
tionship between the cover and a person or an organization. A suitable algorithm for
this application can have low embedding capacity, but has to be immune to removing or
damaging the watermark. A watermark is usually placed in a cover so the owner could
answer the question, “Is this cover mine?” Sometimes the aim is for anyone to be able
to answer the question, “Whose file is this?” A common example is an artist who tries
to sell pictures by placing them in a Web page. The pictures should be watermarked
and part of the watermark should be visible, to deter pirating. The hidden part of the
watermark should not be affected even when the visible part is removed.

Watermarking is an important application for the publishing and broadcasting
industries, because any advance in multimedia technologies brings with it new markets
but also new opportunities for illicit copying and pirating.

Fingerprinting is a variant of watermarking, where each watermark is different.
This is useful in cases where many copies of the same product have to be tagged. When
a fingerprint is hidden in a music CD, any illegal copies discovered and seized can be
traced back to the original from which they were made.

Another variant of watermarking is traitor tracing. Before an important document
is disseminated to those in need to know it, each is fingerprinted differently. If the
document finds its way to the general public, the person responsible for the leak can
easily be identified.

A third application is tamper-proofing the cover. Data can be hidden in such a way
that any modification to the cover would be reflected in the hidden data. The purpose
of this application is to be able to answer the question, “Has this file been modified?” If
the cover is an audio file, tamper-proofing should be able to detect whether some words

10.3 Watermarking 251

Rumor has it that when Margaret Thatcher was the British
prime minister in the 1980s, leaks of secret cabinet meetings to
the press were so rife that she ordered the word processors of
her cabinet ministers reprogrammed such that each generated
slightly different spaces, to identify the origin of a document.
No word as to whether the culprit had been unmasked this way.

have been erased or modified, but should forgive modifications such as stereo left-right
balance. If the cover is an image, tamper-proofing should be able to detect whether an
object has been removed from the image, but should ignore small modifications such as
change of color space or gamma correction.

Sealing a file is a special case of tamper-proofing. A checksum of the file is prepared
and is hidden in the file. The file creator can then easily test the file for a broken seal.

Laws enacted by governments to restrict the encryption capabilities of private citi-
zens are the source of the fourth important application of data hiding. Anyone concerned
with privacy and unable to legally use strong encryption should consider data hiding.
Also, as more lawmakers come to appreciate the power of steganography, they may
relent and remove any useless, unproductive restrictions on cryptography.

Methods of hiding data in audio files may have their own applications. Caller
id information can be embedded in a telephone conversation, enabling the receiver to
identify the caller. A client contracting with a radio station to broadcast commercials
can hide identifying information (a signature) in the commercial. A computer can then
listen to the radio station continuously, looking for the signature. This can tell the client
when, how often, and how many times the commercial had been broadcast. It can also
identify cases where the commercial was only partly broadcast.

The last important application of steganography is feature location (or feature tag-
ging). It may be desirable to hide in the cover items such as captions, annotations,
names of persons or places associated with the cover, and dates (of creation and modi-
fication of parts of the cover). This application may require a large embedding capacity
but not as much robustness as watermarking.

10.3 Watermarking

The term watermarking refers to any technique used to embed ownership information
in important digital data. The watermark can be a signature of the author, placed
in the data for pride of authorship, the same reason that painters sign their work.
The watermark can also be used to mark an important digital creation (mostly image,
video, audio, but even text) before it is released externally (posted on the Web, sent
to a magazine or a museum, or sold to a collector). In such cases, the watermark can
later be used to identify digital data that have been illegally copied, stolen, or altered in
any way. A typical example is a map. It takes time, money, and effort to create a road
map of a city. Once this map is digitized, it becomes easy for someone to copy it, make

252 10 Data Hiding in Text

slight modifications, and sell it as an original product. A watermark hidden in the map
can help the original developer of the map identify any attempts to steal the work. The
watermark itself should not increase the size of the original data significantly, and must
also be robust, so it does not get destroyed by operations such as filtering, compressing,
and cropping.

Watermarking can be achieved by steganographic methods. The watermark may
be a string with, for example, the name of the owner, repeated as many times as needed.
This string is hidden in the original data (image or audio) and can be extracted by the
original owner by means of a secret key.

There is, however, a fundamental difference between steganography and water-
marking. In the former, the hidden data are important, while the cover image is not.
The embedding capacity of the algorithm is important, but the hidden data may be
fragile (they may be destroyed by transforming or compressing the cover image). In wa-
termarking, the cover image is valuable, while the hidden data are not (they can be any
identifying data). The embedding capacity is unimportant, but the hidden data have
to be robust. As a result, watermarking should use special steganographic techniques.

The related concept of fingerprinting should also be mentioned. Fingerprinting
refers to embedding a secret serial number in each copy of some important digital data.
A commercially sold computer program, for example, is easy to copy illegally. By
embedding a secret serial number in each copy of the program sold, the manufacturer
can identify each buyer with a serial number, and so identify pirated copies.

[Cox 02] is a general reference for watermarking.

10.4 Intuitive Methods

We start with a few elementary and tentative methods, most of which are implemented
manually, although some can benefit from a computer. These are mostly of historical
interest.

1. Write a message on a wooden tablet and cover it with a coat of wax on which
another, innocuous message is written. This method is related by Greek historians.
Modern variations include hiding a message in a hollow heel or in a false bottom of a
suitcase.

2. Choose a messenger, shave his head, tattoo the message on his head, wait for
the hair to grow, and send him to his destination, where his head is shaved again. This
method is attributed to Histiaeus.

3. Use invisible ink, made of milk, vinegar, fruit juice, or even urine, and hide the
message between the lines of a seemingly innocent letter. When the paper is heated up,
the text of the hidden message slowly appears.

4. The letters constituting the data are concealed in the second letter of every
word of a specially constructed cover text, or in the third letter of the first word of each
sentence. An example is the data “coverblown” that can be hidden in the specially-
contrived cover text “Accepted you over Neil Brown. About ill Bob Ewing, encountered
difficulties.” A built-in computer dictionary can help in selecting the words, but such

10.4 Intuitive Methods 253

specially-constructed text often looks contrived and may raise suspicion. A variation
on this method starts by writing the words of the secret message vertically. Each word
becomes the first word of a line and the steganographer (writer or originator of the
message) has to complete each line by adding more text. The following is an example
of how the message “Come to our place at midnight” can be hidden in this way.

Come see how the swallows fly

to the south island helped by

our fine weather. They locate the

place in the immense ocean by navigating

at night, following the clouds which form around
midnight above the shore.

5. An ancient method to hide data uses a large piece of text where small dots are
placed under the letters that are to be hidden. For example, this paragraph has dots
placed under certain letters that together spell the message “i am hidden.” A variation
of this method slightly perturps certain letters from their original positions to indicate
the hidden data.

6. A series of lists of alternative phrases from which a paragraph can be built can
be used, where each choice of a phrase from a list conceals one letter of a message. This
method was published in 1518 in Polygraphiae by Johannes Trithemius, and was still
used during World War II.

Exercise 10.2: Show examples of such phrases.

7. Check digits. This idea is used mostly to verify the validity of important data,
such as bank accounts and credit card numbers, but can also be considered a method
for hiding validation information in a number. A simple example is the check digit used
in the well-known international standard book number (ISBN), assigned to every book
published. This number has four parts, a country code, a publisher code, a book number
assigned by the publisher, and a check digit, for a total of 10 digits. For example, [ISBN
0-387-95045-1 has country code 0, publisher code 387, book number 95045, and check
digit 1. The check digit is computed by multiplying the leftmost digit by 10, the next
digit by 9, and so on, up to the ninth digit from the left, which is multiplied by 2. The
products are then added, and the check digit is determined as the smallest integer that
when added to the sum will make it a multiple of 11. The check digit is therefore in the
range [0, 10]. If it happens to be 10, it is replaced by the Roman numeral X in order to
make it a single symbol.

Exercise 10.3: What is the check digit for the 9-digit ISBN 0-387-986827

8. It is possible to assign 3-digit codes to the letters of the alphabet as shown in
Table 10.3. Once this is done, each letter can be converted into three words of cover
text according to its 3-digit code. A code digit of 1 is converted into a word with 1,
4, or 7 syllables, a code digit of 2 is converted into a word with 2 or 5 syllables, and a
code digit of 3 is converted into a word with 3 or 6 syllables. This way, there is a large
selection of words for each word in the cover text.

254 10 Data Hiding in Text

A 111 D121 G 131 J 211 M 221 P 231 S 311 V 321 Y 331
B 112 E 122 H 132 K 212 N 222 Q 232 T 312 W 322 Z 332
C113 F 123 1T 133 L 213 O 223 R 233 U 313 X 323

Table 10.3: Three-Digit Codes for the Letters.

o Exercise 10.4: Convert the two letters MO to innocuous text in this way.

9. Similarly, each of the 26 letters can be assigned a 5-bit code (there are 32 such
codes, so six more symbols can be added to the 26 letters and coded). Thus, any message
to be hidden becomes a binary string. To hide the string, select some innocuous text
and hide each bit in a letter of this text. A bit of zero, for example, may be hidden by
changing the letter to lowercase or to italics. Thus, the bits 011000011 may be hidden
in the text to be or not by changing it to t0 Be or nOT. This type of information
hiding is sometimes referred to as Bacon’s biliteral cipher.

10. Select a keyword, such as blah. Find the serial numbers, 2, 12, 1, and 8 of
its letters. Construct a grid with 12 columns and several rows, and mark columns 1, 2,
8, and 12 of each row. The letters of the message are inserted in those positions, four
letters per row, and are hidden by filling the grid up with other letters, trying to come
up with meaningful text.

11. Assign a letter to each of 26 musical notes, then write your message in the form
of musical notes and hope that no one will try to play the music. This idea is due to
Gaspari Schotti who published it in his Schola Steganographica [Schotti 65].

12. Write or print the data on paper, then photograph it and shrink it to the size of
a dot, like the one at the end of this sentence. Send an innocuous letter to the receiver
and paste the dot at the end of one of the sentences. The receiver can identify the
microdot by holding the letter to the light, looking for a shiny dot.

Microphotography. You see, if there’s anything re-
ally urgent that you can’t put in a telegram, Lon-
don wants us to communicate direct and save all
the time it takes to Kingston. We can send a mi-
crophotograph in an ordinary letter. You stick it
on as a full stop and they float the letter in wa-
ter until the dot comes unstuck. I suppose you do
write letters home sometimes. Business letters. .. ?7

—Graham Greene, Our Man In Havana (1958)

o Exercise 10.5: Try to guess the data hidden in the sentence “I'm feeling really stuffy.
Emily’s medicine wasn’t strong enough without another nembotil.”

10.5 Simple Digital Methods 255

10.5 Simple Digital Methods

Modern steganography methods are more sophisticated than the ones presented so far
and are based on the use of computers and on the binary nature of computer data.
They can be classified into naive steganography (methods where no key is used), secret
steganography (methods where a secret key is used), and public-key steganography
(methods where an asymmetric key is used, similar to public key in cryptography). All
three classes of steganographic methods are based on the fact that every communications
process is accompanied by some natural randomness. A steganographic method replaces
this randomness by the hidden data without changing the nature of the process. The
hidden data end up being embedded in the process.

A modern personal computer may have tens of thousands of files on one hard disk.
Many files are part of the operating system, and are unfamiliar to the computer owner
or even to an expert user. Each time a large application is installed on the computer,
it may install several system files, such as libraries, extensions, and preference files. A
data file may therefore be hidden by making it look like a library or a system extension.
Its name may be changed to something like MsProLibMod.DLL and its icon modified.
When placed in a folder with hundreds of similar-looking files, it may be hard to identify
as something special.

Camouflage is the name of a steganography method that hides a data file D in a
cover file A by scrambling D, then appending it to A. The original file A can be of any
type. The camouflaged A looks and behaves like a normal file, and can be stored or
emailed without attracting attention. Camouflage is not very safe, since the large size
of A may raise suspicion.

When files are written on a disk (floppy, zip, or other types), the operating system
modifies the disk directory, which also includes information about the free space on the
disk. Special software can write a file on the disk, then reset the directory to its previous
state. The file is now hidden in space that’s declared free, and only special software can
read it. This method is risky, because any data written on the disk may destroy the
hidden file. Section 12.10.3 describes an example of such a method.

10.6 Data Hiding in Text

Text has less noise than an image, so hiding data in text normally results in low em-
bedding capacity. Nevertheless, there are several methods, some of them ingenious, for
hiding bits of data in a text file. This section discusses three general approaches and is
followed by several detailed algorithms that hide data in text.

Modifying Spaces: Data can be hidden in a cover text by modifying blank spaces.
A word processor can modify (1) the interword spaces in a sentence, (2) the spaces at the
end of each line, and (3) the spaces following punctuation marks. Normally, spaces are
automatically adjusted by the word processor in order to justify the right margin; they
cannot be explicitly controlled by the user. Such a word processor should be rewritten
to (1) allow the user a certain degree of control over spaces and (2) list the precise sizes
of the blank spaces in a document, so that the hidden bits could be retrieved.

256 10 Data Hiding in Text

In a primitive word processor where spaces have fixed size, a bit can be hidden at
the end of each sentence by appending one or two spaces to the sentence, where one
space indicates a hidden 0 and two spaces indicate a hidden 1. Since a sentence ends
with a period, every period in the text, even those in a context such as “Mr. Smith,”
hides one data bit and must be followed by one or two spaces.

Appending one or two spaces to the end of each line is also a simple data hiding
method. Such spaces do not show up when the text is printed, but can be easily identified
by the word processor. A potential problem may arise when the text is processed by
programs that remove extra blank spaces.

A word processor using fixed-size spaces justifies the right margin of the text by
placing more than one space between certain words, and this can be exploited for hiding
data bits. Either one or two spaces are placed between successive words, to hide a 0 or
a 1, respectively. A potential problem with this method may be a case where the last
two words on a line must have just one space between them (to right-justify the line),
but the current bit to be hidden is a 1, requiring two spaces. A better algorithm hides
bits by interpreting spaces as follows.

1. A single space followed by a word followed by a double space is interpreted as a
bit of 0.

2. A double space followed by a word followed by one space is interpreted as a 1.

3. A single space followed by a word followed by a single space is interpreted as no
data hidden.

4. A double space followed by a word followed by a double space is also interpreted
as no data hidden.

Exercise 10.6: Figure out the bits hidden by this method in the text
happy familiesare all alike every unhappy,family is unhappy
in its, own way_ every, thing was_ in ,confusion in the oblonskys
house the wife , had discovered that the husband was carrying
onyan intrigue with a french girl

The TEX typesetting software [Knuth 84] permits very fine control over the inter-
word spaces and the spaces following certain punctuation marks. The smallest dimen-
sion that TEX can use is called a scaled point (sp). One inch equals 72.27 printers’
points (pt), and one pt equals 65,536 scaled points. Thus, the value of a sp is about the
wavelength of visible light, and changing the normal interword space by 1 sp is invisible.
TEX can also list the precise values of all the components of text (dimensions of letters
and spaces). Because of these features, TEX may be an ideal tool for hiding data in
spaces, although it was originally designed as a high-quality typesetting system for the
production of books.

Syntactic Methods: These methods are based on ambiguous punctuation or on
modifying the text such that its meaning is preserved. The former approach is vulnerable
to attack, because inconsistent use of punctuation is noticeable, especially to an observer
predisposed to being suspicious. The latter approach is safer but harder to implement,
because computers are notoriously bad at “understanding.”

As an example of ambiguous punctuation consider the phrases “a common, boring,
but responsible task” and “a common, boring but responsible task.” The latter phrase

10.6 Data Hiding in Text 257

omits one comma and may be considered syntactically wrong by certain editors and
linguists. The point is that one bit may be hidden in each of the two types of phrases.
This method has low embedding capacity, since only one bit can be hidden for each
phrase of the form “A, B, and/or/but not C” in the cover text.

Another example of applying ambiguous punctuation is slight modification of ab-
breviations. We normally write “see e.g., page 100” but the phrase “see e.g. page 100”
is only slightly different. These two forms of “e.g.” may be used to hide bits.

Modifying text while preserving its meaning is a subtle way to hide data bits in
text. It is easy to hide one bit in each of the phrases “when you finish this, you can go”
and “you can go when you finish this.” Such a method has low embedding capacity and
must involve at least some manual adjustments to the text, but it is reliable, because it
is difficult to detect the two types of phrases mechanically (by computer). An attacker
would have to actually read the message and manually identify the relevant phrases and
extract the data bits.

Semantic Methods: Data are embedded in text by special word usage. The
sender and receiver using such a method may agree on the use of a certain online
thesaurus. This is a data set that contains synonyms for many words. The decoder
reads the cover text word by word and searches the thesaurus for the first occurrence
of each word as a synonym. If a word, such as godchild, is not the synonym of any
other word, the decoder assumes that no data are hidden in it. If a word such as child
is input, whose first occurrence in the thesaurus as a synonym is in the list bud, chick,
child, kid, minor (perhaps five synonyms for youngster), then this list is considered
to hide two bits and child (being the third word in the list, where word count starts
from 0) is interpreted as hiding the 2-bit number 2 (01 in binary).

Encoding is not trivial but can be done mostly mechanically. The encoder inputs
the next word of the cover text. Suppose it is child. It searches the thesaurus and
finds that the first occurrence of child as a synonym is as the third word (i.e., word
number 2) of the list of synonyms for youngster. If the next two bits of data to be
hidden happen to be 01, then child can be used as is. Otherwise, the encoder tries
to replace child with bud. It searches the thesaurus for the first occurrence of bud as
a synonym and proceeds as with child. If bud cannot be used, the encoder tries to
replace child with chick, and so on. If none of the five synonyms in the list can be
used, the encoder may ask for a person’s help in finding a replacement for child.

Another approach to semantic data hiding in text is to define a function that
reduces a sentence to one bit. A possible choice is the parity (odd or even) of all the
ASCII codes of the characters in the sentence. In a practical implementation of this
method, the word processor should be modified as follows.

1. It first inputs the secret data and stores them as a string of bits.

2. Tt computes the function each time a period is typed in the artificial text and
compares its result to the next bit to be hidden.

3. If the parity of all the ASCII codes of the current sentence corresponds to a
bit opposite that to be hidden, the word processor beeps and refuses to take any more
input. The only choice for the user is to back up and rewrite the sentence.

In the future, meaningful artificial text may be generated and revised by computers.
At present, a person should do this task.

258 10 Data Hiding in Text

10.7 Innocuous Text

A government authority such as the NSA that intercepts a huge number of messages
every day must use computers to analyze them and identify a small number of suspect
messages, to be further checked by humans. A computer program looking for suspect
messages checks first for randomness. If the message consists of random data, it may
be enciphered and is therefore potentially suspect, but it may also be innocent and look
random simply because it is compressed. The next test may be for a plain text message.
Such a test starts by computing letter and digram frequencies. If these seem normal,
then the program looks for words that are not in a dictionary (while doing this, the
program may flag suspect words, such as “smuggling,” “FBI,” and “bomb”). If most
of the words are in a dictionary, the program tries to identify invalid syntax (sentence
structure). If a text file passes all these tests, it will be considered “clean” by the
computer. Thus, one approach to steganography is to hide information (binary data)
by creating a text message that has only valid words (i.e., words drawn from some
dictionary) and where the words are generated in a special order so they constitute
syntactically valid sentences. Such a text message contains nonsense text, but may fool
any computer algorithm designed to detect suspicious messages. The method used to
transform pieces of binary data to words must, of course, be reversible, so a receiver
will be able to read any hidden messages received.

This approach to steganography is different from hiding data in an image or an
audio file. The data are not hidden in a cover image. Instead, pieces of data are
replaced by words. Some may consider this approach a form of cryptography rather
than steganography.

This section is based on two actual implementations, the NICETEXT program, by
Mark Chapman and George Davida [Nicetext 01] and Steganosaurus by John Walker
[Steganosaurus 01]. The former reads binary data and uses a dictionary and a style
source to generate an innocuous text file that can later be converted back, with the help
of the dictionary, to the original data. The dictionary contains valid words, classified
according to type. The latter is similar but does not use syntax rules.

The example dictionary shown here has five grammatical types of words.

Article (4): the, a, this, your.
Noun (16): dog, ball, woman, spring, John, Mary, house, man,
car, soil, brush, animal, place, sentence, cup, food.
Verb (16): hit, took, saw, spring, longed, sees, runs, played,
hates, hear, knew, guesses, liked, walked, believes, work.
Adj. (8): big, little, blue, green, long, wide, bright, dull.
Prep. (4): to, in, by, which.

Notice that a word may have more than one meaning and may therefore appear
more than once in the dictionary. To avoid ambiguity, such a word should always appear
in the same position in all its types and those types should have the same sizes. In our
example dictionary, the word spring is both a noun and a verb, but appears in position
3 in both lists (positions are numbered from 0). Also, both lists are 16 words long. The
word long is both a verb and an adjective, but these types have different lengths, so

10.7 Innocuous Text 259

the verb long had to be changed (to longed). Because of this feature, the decoder does
not need the style rules.

Another solution to the problem of multiple dictionary words is to merge types. If
the word spring is a noun and a verb, a new type Noun-Verb may be created, with
spring (and possibly other words) included in it.

The style source provides syntax rules for several types of sentences. A basic
sentence may have the syntax Article, Noun, Verb, Article, Noun, whereas a more
complex sentence may be expressed by the rule

Article, (Adj), Noun, Verb, Article, Noun, (Prep, Article, Noun)
where the parentheses indicate repetition. More complex style rules may include options.
For example, the square brackets in

Article, (Adj), Noun, [Verb, Noun-Verb], Article, Noun, (Prep, Article, Noun)
indicate either a verb or a noun-verb.

Imagine the 17-bit binary data 01011101001010101. The Nicetext encoder ran-
domly selects one of the style rules and uses the input bits to select appropriate words
from the dictionary for a sentence. If the first syntax rule is selected, the first word the
encoder has to generate is of type Article. There are four such words, so the encoder
uses the first two bits 01 of the input as a pointer and selects word 1 (the second word)
of type Article. This is the word a. The next syntactic element of this syntax rule is
Noun. There are 16 nouns, so the encoder uses the next four bits 0111 of the input as
a pointer to select word 7 (man) of this type. The next four input bits 0100 are used to
select longed (in type Verb), the following two bits 10 select the article this, and the
next four bits 1010 select the noun brush. The 16-bit input string 01/0111/0100/10]1010
ends up being encoded as the sentence a man longed this brush. The encoder may
generate a period and a space, then randomly select another style rule and encode more
input bits. The random numbers used to select style rules may be uniformly distributed,
or may have a distribution that prefers certain rules, thereby generating text dominated
by certain types of sentences.

Since fragments of the input are used as pointers, the number of words included in
each dictionary type must be a power of 2 (2" for n > 1).

A problem arises if too few input bits remain, such that no style rule can be used.
In our example, only one input bit remains, namely the bit 1. Our dictionary does not
have a type with just two rules, so this single bit cannot be used as a pointer. A possible
solution is to measure the length of the binary data before the encoding process starts
and to prepare a string consisting of (1) the length of the data as a fixed-size number,
(2) the binary data themselves, and (3) many random bits. In our example, the binary
data are 17 bits long, so we can prepare the string

0000010001]01011101001010101|1100. ..

where the length 17 is written as a 10-bit number and the 17-bit data are followed by
some random bits. When the encoder arrives at the end of the data, it uses as many of
the random bits as needed to select the last word. The decoder starts by decoding the
fixed-size length, so it knows how many bits remain to be decoded.

260 10 Data Hiding in Text

Exercise 10.7: Suggest another solution.

Decoding is simple because the decoder does not need the style rules. When the
decoder inputs the first word a, it searches the dictionary and finds a at position 1
(second position) of type Article. Since this type consists of four words, the a is
decoded to the two bits 01. If the word spring is input by the decoder, it is found
either in the word-list for type Noun or in the list for type Verb. In either case, it is
decoded to the four bits 0011.

The types in the dictionary may be more than just grammatical. There may be,
for example, the types MaleName, FemaleName, and SportVerb. The latter type should
include verbs such as run, kicks, and jumped. If the user wants to generate output
text that seems to discuss sports, then instead of the style rule Article, Noun, Verb,
Article, Noun, there may be the rule Article, MaleName, SportVerb, Article,
Noun.

A syntax rule in the style source may also include punctuation marks, such as
commas and question marks. Those are inserted by the encoder into the text and are
ignored by the decoder. It is also possible to have several dictionaries and style sources
and any compatible pair may be used. A style source and a dictionary are compatible if
every type mentioned in the syntax rules exists in the dictionary and any punctuation
marks in the style are not words in the dictionary.

The syntax rule do-verb name verb article noun prepos name? is an example
of a rule that may generate nonsense but seemingly correct sentences such as will Henry
gave my brush to Janet?.

This basic method may be extended and generalized in various ways to provide
greater security. In one such variant, the encoder and decoder use different dictionaries.
In the encoder’s dictionary, several extra words have been appended to each type. From
time to time, the encoder selects one of those words at random, and embeds it, as an
extra word, in the text being generated. The decoder cannot find those words in its
dictionary, so it simply ignores them and decodes the rest of the words. The advantage
of this variant is that an eavesdropper who has access to the encoder’s dictionary will
not be able to use it to decode messages.

Another variant of the basic method embeds chunks of the innocuous text in real
text. It is relatively easy to embed a few innocuous sentences (identified by special key
words preceding and following them) in every other paragraph of some real text. This
may fool even a person looking for suspicious messages. The decoder reads the text,
looking for the key words to identify the important parts, and ignoring the rest.

We next describe ways to create a large dictionary with types. Collecting words is
very easy because there are large collections on the Internet. One such file of English
words can be found at [FreeBSD Words 01]. Another is the Gutenberg collection of
books, located at [Gutenberg 01]. It is trivial to write a program that will delete all
duplicate words, but the main problem is to associate a type with each word. There are
several approaches.

1. Do it manually (preferably by an experienced user). This should be done as
a last resort, after types have been assigned to most words automatically (i.e., by a
computer program).

10.7 Innocuous Text 261

2. Use an online dictionary that has a type (such as noun, verb, or adjective)
already assigned to each word. A program may be written that goes over the dictionary
word by word and extracts each word and its type.

3. Use morphological analysis on root words. The root word compartment can
be the source of derived forms such as compartmented, compartmentalize, compart-
mentalization, recompartmentalize, noncompartmentalize, and others. This is a
complex process that does not work on many words.

Figure 10.4 shows a possible dictionary organization. Each type is assigned a
number (article, noun, verb, adjective, and prep are assigned the numbers 1-5), so a
syntax rule is a set of numbers (1, 2, 3, 1, 2 in the figure). The numbers point to an
array of five structures (one of each type) where each structure contains the number of
dictionary words for this type and a pointer to the start of the type in the dictionary
array. The dictionary array itself is a dense array of characters, where each word is
terminated by a special ASCII code).

article noun verb adjective prep
|thclalthislyourldoglballl ----- Ihitltookl ----- Ibigllittlcl ----- Itol inI ----- |

I

|
(4] g g |8I'I4I!|
L]

HUBHENONE

Figure 10.4: Dictionary Organization for Nicetext.

A full implementation of this approach to steganography should contain tools to
create custom dictionaries from a variety of sources, to simulate many different writing
styles by example, and to alternatively use context-free grammars to control writing
style.

Data expansion is an inherent problem with this type of steganography. To get an
idea of the numbers involved, we assume a typical word size of four bytes. A typical
grammatical type in a large dictionary should contain at least 1000 words, so a pointer to
such a type is about 10 bits (because 219 = 1024). Thus, the algorithm replaces 10 bits of
original data with about five bytes (a 4-byte word followed by a space, a total of 40 bits),
resulting in an expansion factor of 4, very large. The solution is to use compression.
The original data should be compressed, then enciphered (for added security), encoded
as innocuous text, and the resulting text file (which is nonrandom) compressed again
before being transmitted. As an example, a 1 Mbyte file may be reduced to 500 Kbytes
by compression. Encryption may increase this to, say, 600 Kbytes, and encoding may
multiply this by four, resulting in a 2.4 Mbyte file. After further compression, this may
become a 1.2 Mbyte file, only about 20% bigger than the original.

262 10 Data Hiding in Text

Figure 10.5 lists some innocuous text in the style of Shakespeare, generated by
Nicetext.

Which subtext so cold that is not remounted here? Would import above bran once think it? Hansom,
I will. You lid me mistake it generally and yeah, Gaining to the pension and the rhyme. You may
not, my lord, disguise her inertial jute. HOW, My lord! The ame oneself doeth reek Before equivalent
parody. Hark you, sir. The Formant House Girlish. ZOUNDS, the mud more occurs To rouse a baron
than to sort a mare! INSURGENT Good, i faith! I have referred my father blame him. Precon- tently,
niobium, imaginatively. Thence, pack! Now shine it like a comet above infringe, A packet to the shawl
above all our shows! Sorghum, your Sovereignty istoomuch sad. Good sparrow, groceries. IN Rearming
whichever was furthest, we shall part up another. A background valves! Strut my lace, Lillian, strum!
Vestally, naturedly: Therefore acquiesce thee studiously of thy pin, For to deny each marble ere oath
Cannot re- move nor stoke the prolong permission That I do moan unright. Pester Johnnie. Now remit
down, now omit down; come, margin. Adieu; be happy! While I uoresce mushrooming it by topple.
The raven himself is sparse That wednesdays the managerial entrance of Jamison Neath my. ..

Figure 10.5: A Shakespeare-Like Nicetext.

10.8 Mimic Functions

Hiding data in artificially generated text must result in text that can pass any mechanical
tests. Such text has to satisfy at least the following requirements.

1. The letter frequencies in the text must resemble those of a natural language.
If the text is supposed to resemble English, then E and T should be the most-common
letters and Z and Q should be the rarest.

2. Most words in the text must be found in a good dictionary. Any text may
include some words, such as proper names, slang, and scientific terms, that may not be
found in a given dictionary, but if a computerized check finds too many such words, it
should flag the text as suspicious.

3. The sentences in the text must be syntactically correct. If an automatic syn-
tax checker finds, for example, two consecutive verbs in the text, it should become
suspicious.

Just generating artificial text does not hide any data in it. One way to hide data in
artificial text is to develop a method where a decision has to be made each time a word
or a phrase is added to the newly generated text. Imagine a method where one of two
options has to be chosen each time the next syntactic element is added to a sentence.
The next data bit to be hidden can drive those decisions, resulting in text that can
pass many computerized tests and also contain hidden data. An even better algorithm
would have to select one of four options at each step, thereby hiding two data bits at a
time.

The method described in this section does just that. It uses a context-free grammar
to generate artificial text that mimics real text (i.e., has the same statistical properties),
and uses several bits from the data being hidden in order to select one of several options
at each step. The method is due to Peter Wayner [Wayner 92 and 02], who published
the source code of his implementation, along with many examples, in [Wayner 02]. The
method is based on the concept of context-free grammars, so we start with a short
description of this important technique.

10.8 Mimic Functions 263

When I did him at this advantage take,
An ass’s nole I fixed on his head.

Anon his Thisby must be answered,
And forth my mimic comes.

Puck’s monologue in Shakespeare’s
A Midsummer Night’s Dream,
Act III, Scene ii

A context-free grammar (CFG) is a set of rewriting rules (also referred to as pro-
duction rules or productions) that can be explicit or recursive. The rules are used to
generate strings of various patterns. The set of all strings generated by a particular
CFG is the language generated by the CFG. This set may be finite or (if the rules
are recursive) infinite. The strings are considered sentences in the language. The con-
cept of formal grammars was originated in the 1950s by Noam Chomsky [Chomsky and
Miller 58].

A CFG consists of the following.

1. A set of terminal symbols. These are the characters and words (the alphabet)
that constitute the sentences generated by the grammar.

2. A set of nonterminal symbols. These are placeholders for patterns of terminal
and nonterminal symbols. In our examples, the nonterminals are typeset in boldface.

3. A set of productions. These are rules for replacing (or rewriting) nonterminal
symbols in a string with other nonterminal or terminal symbols. A production has the
form L — R where L is the nonterminal symbol that’s replaced by the string R of
nonterminal or terminal symbols.

4. A start symbol; a special nonterminal. The process of generating a string by the
grammar should start with a production that has this symbol on its left-hand side.

The following rules specify how to generate a string (of terminal symbols) from a
given CFG.

1. Use the start symbol as the initial nonterminal.

2. Select a production that has the start symbol on the left-hand side and use it
to replace the start symbol with the right-hand side of the production. This is the text
generated so far.

3. Select a nonterminal symbol in the text, find a production that has this non-
terminal on the left side, and replace the nonterminal with the right hand side of the
production.

4. Repeat Step 3 until the resulting text consists of just terminal symbols.

Here is a simple example of a CFG where the nonterminal symbols are typeset in
boldface and the terminals are typeset in a Roman font.

Start — noun verb
noun — Alice | Bob
verb — is sending | is receiving

The four rules above can be applied as follows.

264 10 Data Hiding in Text

1. Select Start.

2. Replace with noun verb.

3. Replace noun with “Alice” to obtain “Alice verb.”

4. Replace verb with “is sending” to obtain “Alice is sending.”

This generates the sentence “Alice is sending,” but it is obvious that the three
sentences “Alice is receiving,” “Bob is sending,” and “Bob is receiving” can also be
generated by this CFG if we select the productions and terminals in different orders.
The four sentences that can be generated by this CFG constitute the language generated
by the CFG.

The reason for the name “context-free” is that productions can be selected in any
order. It is also possible to have context-sensitive grammars, where the choice of a
production at each step is limited by certain rules.

Exercise 10.8: Find the language generated by the following CFG.

Start — noun verb

noun — Alice | Bob

verb — is sending what | is receiving what
what — type | data | clothes

type — clean | dirty

The productions can also be recursive, which results in an infinite number of sen-
tences that can be generated. A simple example is a CFG to generate simple arithmetic
expressions. An expression consists of unsigned integers, the two arithmetic operations
“+” and “—,” and parentheses.

Start — expression

expression — number | (expression)

expression — expression + expression | expression — expression

number — digit | number digit

digit - 0]1]...]9

The first rule states that a sentence is an expression. The second production says
that an expression is a number (a nonterminal to be defined later) or any valid ex-
pression in parentheses (a recursive choice). The third production adds two recursive
choices to expression. The fourth production defines number as either a single digit
or (recursively) as any number with a digit appended to it. The last rule defines the
nonterminal digit in terms of 10 terminals. The resulting sentences can have any length
because the depth of the recursion is unlimited.

Once the basic concept of a CFG is clear, it is easy to see how data can be hidden
in the sentences generated by the grammar. The idea is to associate each element
(terminal or nonterminal) in the right-hand side of a production with a binary string.
Thus, the four choices in the production something — A |B| C|D (notice that C is a
nonterminal) correspond to the four bit strings 00, 01, 10, and 11. If the next pair of bits
to be hidden is 01, the encoder should choose “B” at this point. An obvious conclusion
is that each production should have 2™ choices in its right-hand side. If a production
contains five choices, then the fifth one will never be used. Here is an example of a CFG
used to hide the string 0100110.

10.8 Mimic Functions 265

Start — adjective noun tense verb
adjective — the size | a size

size — tiny | small | large | big

noun — saw | ladder | truth | boy
tense — is | was

verb — waiting | standing

The first nonterminal is adjective. The production for this nonterminal has two
choices, so one bit can be hidden by picking the right choice. The first bit to be hidden
is 0, so the first choice (the size) is selected. The terminal “the” is appended to the
text and the nonterminal size is replaced next. There are four choices, so two bits can
be hidden. The next two bits are 10, so the third choice, “large,” is selected. The next
nonterminal is noun. Again, there are four choices and the next bit pair to be hidden
is 01, so “ladder” is selected. The choice for tense is “was” (directed by the next bit,
1), and the choice for verb is “waiting,” since the last bit is 0. The resulting sentence
is “the large ladder was waiting.” It may raise eyebrows if read by a human, but can
easily pass many computerized tests. The encoder can easily end each sentence (i.e.,
follow the choice of verb) with a period and start each sentence with a capital letter,
thereby adding more realism to the artificial text that’s generated.

It is clear that a large CFG with many choices can hide many bits and may produce
realistic-looking sentences. The CFG listed in [Wayner 02] is based on baseball termi-
nology, has hundreds of productions with thousands of choices, and produces mostly
meaningful sentences (although a baseball expert may find the generated text some-
what limited, repetitive, and incomplete).

The decoder starts with the definition of the nonterminal Start. The first symbol
in this definition is the nonterminal adjective, which has two choices. The decoder
uses the input (the word “the”) to decode a zero, since “the size” is the first choice.
The nonterminal size has four choices, so the decoder uses the next input “large” to
generate the two bits 10. This process is called parsing and is straightforward if the CFG
has been carefully constructed. Two principles should be followed when constructing a
CFG for mimicry; it has to be unambiguous and it should be in Greibach normal form.

A CFG is ambiguous if the same sentence can be generated by selecting productions
in different orders. A simple example makes this clear.

Start — name action | who does
name — Alice | Bob

action — is here | was there

who — Alice is | Bob was

does — here | there

The sentence “Alice is here” can be generated by replacing the nonterminals name
action with “Alice” and “is here” but also by replacing who does by “Alice is” and
“here.” Obviously, such a CFG generates text that can be decoded in more than one
way. This CFG is therefore useless for hiding data.

A CFG is in Greibach normal form (GNF) if the nonterminals are always the last
choices in each option of a production. Thus, the production something — A B|C D

266 10 Data Hiding in Text

is in GNF but “blah — the size sum | a size bell” is not. It can, however, be modified
to GNF by adding more productions as follows.

adjective — the sizesum | a sizebell
sizesum — tiny sum | small sum | large sum | big sum

sizebell — tiny bell | small bell | large bell | big bell

Using a CFG in GNF simplifies the parsing which is the main job of the decoder,
as the following example shows.

Start — noun verb

noun — Alice | Bob

verb — sent mail to | sent email to
to — to rel recipient

rel — all | some

recipient — friends | relatives

To hide the binary string 01010, the encoder selects “Alice” for the first bit (0) and
“sent email to” for the second bit (1). Nothing is hidden when the fourth production is
applied (because there are no choices), but the encoder generates the terminal “to,” uses
the production for rel to select “all” for the third bit (0), then uses the production for
recipient to select “relatives” for the fourth bit (1). To hide the fifth bit, the encoder
starts the next sentence. The reader is encouraged to decode the sentence “Alice sent
email to all relatives” manually to see how easy it is for the decoder to identify the
syntactic elements of a sentence and determine the hidden bits.

Those who have followed the examples so far will realize that this steganographic
method is not very efficient. The last example has hidden just four bits in the sentence
Alice sent email to,all relatives that’s 33 characters long (including spaces).
The hiding capacity of this example is 4/(33-8) ~ 0.015 hidden bits per each bit of
text generated. The method can be made much more efficient if each production has
many options on the right. A production with 2™ options can hide n bits. If an option
is a 4-letter (i.e., 32-bit) word and there are 1024 = 210 options in a production, then
10 bits can be hidden in each 32 bits of generated text, leading to a hiding capacity of
10/32 = 0.3125 bits per bit (bpb).

In principle, it is possible to construct a CFG with a hiding ratio of 1 bpb, although
in practice, the text generated by such a CFG may be less convincing than the examples
shown in this section. Here is the main idea.

1. The CFG has 256 terminals, Ty through Thss5, each a single character (i.e., 8
bits).

2. There are n nonterminals Ny through N,,.

3. There are 256 productions for each nonterminal N;. They are of the form
N; — TjNg, ...Ng, for j = 0,1,...,255. Each production replaces the nonterminal
N; by one terminal T; and by k nonterminals (k has different values for the various
productions). The total number of productions is 256mn.

For each nonterminal N; there are 256 productions, so it takes 8 bits to select one
production. The production selected adds one terminal (i.e., 8 bits) to the text being
generated, which leads to a hiding capacity of 1 bpb.

10.8 Mimic Functions 267

This method has been implemented and tested extensively by its creator, Peter
Wayner, who also published its source code in [Wayner 92 and 02] and prepared a
large set of production rules for testing purposes. Compared to other steganographic
algorithms, this method is well documented and tested.

Hiding in the alternating patterns of digits, deep inside
the transcendental number, was a perfect circle, its
form traced out by unities in a field of noughts.

—Carl Sagan, Contact

2 Springer
http://www.springer.com/978-0-387-00311-5

Data Privacy and Security
Salomon, D.

2003, XV, 465 p. 45 illus,, Hardcover
ISBEMN: @78-0-387-00311-5

