2

Applications to Learning, Repeated
Games, State Dependent Noise, and
Queue Optimization

2.0 Outline of Chapter

This chapter deals with more specific classes of examples, which are of in-
creasing importance in current applications in many areas of technology
and operations research. They are described in somewhat more detail than
those of Chapter 1. Each example should be taken as one illustration of a
class of problems in a rapidly expanding literature. They demonstrate some
of the great variety of ways that recursive stochastic algorithms arise. Sec-
tion 1 deals with a problem in learning theory; in particular, the learning of
an optimal hunting strategy by an animal, based on the history of successes
and failures in repeated attempts to feed itself efficiently, and is typical of
many “adaptive” models in biology. Section 2 concerns the “learning” or
“training” of a neural network. In the training phase, a random series of
inputs is presented to the network, and there is a desirable response to each
input. The problem is to adjust the weights in the network to minimize the
average distance between the actual and desired responses. This is done
by a training procedure, where the weights are adjusted after each (input,
output) pair is observed. Loosely speaking, the increments in the weights
are proportional to stochastic estimates of the derivative of the error with
respect to the weights.

Many problems in applications are of interest over a long time period.
One observes a process driven by correlated noise and wishes to recur-
sively adjust a parameter of the process so that some quantity is optimized.
Suppose that for each parameter value, there is an associated stationary

30 2. Applications

probability, and one wishes to minimize a criterion that depends on these
stationary probabilities. This is to be done recursively. One observes the
process over a (perhaps not very long) period of time at the current para-
meter value, appropriately adjusts the parameter value based on the mea-
surements, and then continues to observe the same system over the next
period of time, etc. For such problems, the current measurements are af-
fected by the “state memory in the system,” as well as by the external
driving forces appearing during the current observational period. This in-
volves the concept of Markov state-dependent noise. A versatile model for
such a process is introduced in Section 3, and it is illustrated by a simple
routing example.

Section 4 concerns recursive procedures for optimizing control systems
or approximating their value functions. First, we consider the so-called Q-
learning, where we have a controlled Markov chain model whose transition
probabilities are not known and one wishes to learn the optimal strategy
in the course of the system’s operation. Then we consider the problem
of approximating a value function by a linear combination of some basis
functions. The process might be only partially observable and its law is un-
known. It need not be Markov. In the next example, we are given a Markov
control problem whose law is known, and whose control is parameterized.
The problem is to find the optimal parameter value by working with a
single long sample path. Although there are serious practical issues in the
implementation of such algorithms, they are being actively investigated and
are of interest since the law of the process is often not completely known
or analytical computation is much too hard. All the noise types appear,
including martingale difference, correlated, and Markov state-dependent
noise.

The theme of optimization of an average cost over a long time interval is
continued in Section 5, which concerns the optimization of the stationary
performance of a queue with respect to a parameter of the service time
distribution. The IPA (infinitesimal perturbation analysis) method is used
to get the sample derivatives. Notice that the effective “memory” of the
system at the start of each new iteration needs to be taken into account
in the convergence analysis. Analogous models and issues arise in many
problems in the optimization of queueing type networks and manufacturing
systems.

The example in Section 6, called “passive stochastic approximation,” is
a type of nonlinear regression algorithm. One is given a sequence of “noisy”
observations at parameter values that are determined ezogenously (not sub-
ject to the control of the experimenter), and one seeks the parameter value
at which the mean value of the observation is zero. The stochastic approx-
imation algorithm is a useful nonparametric alternative to the classical
method of fitting a nonlinear function (say in the mean square sense) and
then locating the roots of that function. An interesting application of this
idea to the problem of determining the concentration of a product in a

2.1 An Animal Learning Model 31

chemical reactor subject to randomly varying inputs is in [274, 275]. Other
interesting examples can be found in [16, 225, 250] and in Chapter 3.

Section 7 concerns learning in two-player repeated games. Each player
has a choice of actions, knows its own payoffs, but not those of the other
player. The player tries to learn its optimal strategy via repeated games
and observations of the opponents strategies. Such problems have arisen in
the economics literature. The results illustrate new ways in which complex
recursive stochastic algorithms arise, as well as some of the phenomena to
be expected.

2.1 An Animal Learning Model

This example concerns the purported learning behavior of an animal (say, a
lizard) as it tries to maximize its reward per unit time in its food gathering
activities. There are many variations of the problem that are covered by
the basic results of convergence of stochastic approximation algorithms, and
they illustrate the value of the general theory for the analysis of recursive
algorithms arising in diverse fields. The basic model is taken from [177, 218].
The lizard has a fixed home location and can hunt in an arbitrary finite
region. In the references, the region is restricted to a circle, but this is not
needed.

Insects appear at random moments. Their weights are random and will
be considered surrogates for the food value they contain. If an insect ap-
pears when the lizard is prepared to hunt (i.e., the lizard is at its home
location), then the lizard makes a decision whether or not to pursue, with
the (implicit) goal of maximizing its long-run return per unit time. We
suppose that when the lizard is active (either pursuing or returning from
a pursuit), no insect will land within the hunting range. It is not claimed
that the model reflects conscious processes, but it is of interest to observe
whether the learning behavior is consistent with some sort of optimization
via a “return for effort” principle.

Next, we define the basic sequence of intervals between decision times
for the lizard. At time zero, the lizard is at its home base, and the process
starts. Let 7; denote the time elapsed until the appearance of the first
insect. If the lizard pursues, let r; denote the time required to pursue and
return to the home base and 7 the time elapsed after return until the next
insect appears. If the lizard decides not to pursue, then 75 denotes the time
elapsed until the appearance of the next insect. In general, let 7,, denote the
time interval until the next appearance of an insect from either the time
of appearance of the (n — 1)st, if it was not pursued, or from the time of
return from pursuing the (n — 1)st, if it was pursued. If the lizard pursues,
let r,, denote the time to pursue and return to the home base ready to hunt
again. Let w, denote the weight of the nth insect, and let J, denote the
indicator function of that insect being caught if pursued. Let I,, denote the

32 2. Applications

indicator function of the event that the lizard decides to pursue at the nth
opportunity. Let the time of completion of action on the (n — 1)st decision
be T,,. The pair (w,,r,) is known to the lizard when the insect appears.
Define

n—1
Wy, = Z wil; J;,
i=1

and let 0,, = T,,/W,,, which is the inverse of the sample consumption rate
per unit time.

Suppose that the random variables (wy, T, s, Jn) for n > 1 are mu-
tually independent in n and identically distributed, with bounded second
moments, and w,, > 0,7, > 0 with probability one. The four components
can be correlated with each other. [In fact, the independence (in n) as-
sumption can be weakened considerably without affecting the convergence
of the learning algorithm.] Let there be a continuous function p(-) such
that E[J,|rn, w,] = p(rn,w,) > 0 with probability one, which is known
to the lizard. The learning algorithm to be discussed performs as follows.
Let § = liminf,, ET},/W,,, where the infimum is over all (non-anticipative)
strategies. The algorithm produces a sequence of estimates #,, such that
(Section 5.7) 6,, — 0 with probability one. The threshold @ gives the opti-
mal long-term decision rule: Pursue only if r,, < 0w, p(r,,w,). Thus, the
optimal policy is to pursue only if the ratio of the required pursuit time
to the expected gain is no greater than the threshold, and this policy is
approximated asymptotically by the learning procedure.

The model can be generalized further by supposing that the estimates
of p(wn,r,) and of r, are subject to “error.” One introduces additional
random variables to account for the errors.

Let n > 1, and let 6, be an arbitrary real number. If the lizard does not
pursue at the nth opportunity, then

To+7 Tht+Ta

Opiq = = 1.1
+1 Wi w, (1.1a)
If the insect is pursued and captured, then
Tn+mn+rn Tht+Tn+m
Oty = = . 1.1b
+ Wn+1 Wn + wy, ()
If the insect is pursued but not captured, then
Lo+ 7o+ 10
Ony1 = W, (1.1c)

Thus, if the insect is pursued,

T, +Tn+r To+7n+r
Opyg = —"2 g, + 22 (1 —J,). 1.1d
= T S (U=). (1)

2.1 An Animal Learning Model 33

The lizard compares the conditional expectations, given (r,, wy, 6,) of the
right sides in (1.1a) and (1.1d) and chooses the action that gives the mini-
muin.

Define €, = 1/W,,. Then ¢, decreases only after a successful pursuit.
Either (1.2a) or (1.2b) will hold, according to the choice of nonpursuit or
pursuit:

Oni1 =0, + enTh, (1.2a)

Ont1 = 0n + €n(Tn +70n) — €x0nwn J, + O(ei)Jn. (1.2b)

Under the conditions to be imposed, €, — 0 with probability one and
the term O(e2) in (1.2b) can be shown to be asymptotically unimportant
relative to the other terms. It does not contribute to the limit, and for
notational simplicity, it will be ignored henceforth. Thus, if the insect is
pursued, neglecting the “small” O(e2) term, we have

9n+1 = 9n + En(Tn + Tn) - enenwnp(Tru wn) + Enenwn(p(Tru wn) - Jn)
Finally, with K,, = 1{7'n—9nwnp(7‘mwn)<0}’

Ont1 = 0 +enTn + €, min{r, — O, wnp(ry, wy),0} (1.3)

+entnwy (p(T’n, wn) - Jn) K. '

The problem is interesting partly because the step sizes decrease randomly.
For fixed nonrandom 6, define the mean value

g(0) = ET, + Emin{r, — w,p(r,,w,),0},
and define the noise term
gn = Tn + min{rn - enwnp(Tru wn)7 0} - g(an) + enwn (P(Tm wn) - Jn) Kn

For nondegenerate cases, g(-) is Lipschitz continuous, positive for § = 0,
approximately proportional to —6 for large 6, and there is a unique value
6 = 0 at which g(f) = 0. Rewrite the algorithm as

Ont1 =0, + eng(an) + endn. (1'4)

The mean ODE that determines the asymptotic behavior is § = g(0).

The value of €, and the final form of the algorithm are simply con-
sequences of the representation used for the iteration; in particular, the
definition €, = 1/W,, This representation allows us to put the iteration
into the familiar form of stochastic approximation, so that a well-known
theory can be applied.

34 2. Applications

2.2 A Neural Network

In the decision problem of Example 3 in Subsection 1.1.3, a sequence of
patterns appeared, with the nth pattern denoted by y,,. The patterns them-
selves were not observable, but at each time n, one could observe random
¢ that is correlated with the y,,. We sought an affine decision rule (an
affine function of the observables) that is best in the mean square sense.
The statistics of the pairs (yy,¢,) were not known. However, during a
training period many samples of the pairs (y,, ¢,) were available, and a
recursive linear least squares algorithm was used to sequentially get the
optimal weights for the affine decision function. Thus, during the training
period, we used a sequence of inputs {¢,, } and chose 6 so that the outputs
vp, = 0'¢, matches the sequence of correct decisions y, as closely as pos-
sible in the mean square sense. Neural networks serve a similar purpose,
but the output v, can be a fairly general nonlinear function of the input
[8, 97, 193, 205, 253]. The issue of large dimensionality is discussed in [171]
via the random directions Kiefer—Wolfowitz procedure (see Chapters 5 and
10). A related “Kohonen” algorithm is treated in [73].

In this model, there are two layers of “neurons,” the first layer having K
neurons and the second (output layer) having only one neuron. The input
at time n to each of the K neurons in the first layer is a linear combination
of the observable random variables at that time. The output of each of
these neurons is some nonlinear function of the input. The input to the
neuron in the output layer is a linear combination of the outputs of the
first layer, and the network output is some nonlinear function of the input
to that output neuron. For a suitable choice of the nonlinear function (say
the sigmoid), any continuous vector-valued map between input and output
can be approximated by appropriate choices of the number of neurons and
the weights in the linear combinations [97, 253]. In practice, the number
of neurons needed for a good approximation can be very large, and much
insight into the actual problem of concern might be required to get an
effective network of reasonable size. Some more critical discussion from a
statistical perspective is in [51, 205].

The training of the network can be described in terms of its input, output,
and the desired and actual relationships between them. The definitions are
illustrated in Figure 2.1.

2.2 A Neural Network 35

p1(*)
p1(*)
b1

L B
i (5] (Ck, ﬁv ¢n)
Un
; —| p2(")|—
' B

p1(*)

Input ¢, Layer 1 Nonlinearity Layer 2

Figure 2.1. A two-layer neural network.

First we describe the network with fixed weights. There is a sequence of M-
dimensional input vectors, the one at time n being ¢, = (¢n1,..., Pn M),
with associated actual network outputs v, (that can be observed) and
desired outputs y, (that are not generally observable in applications, at
least after the training period). If the network is well designed, then v, is
a “good approximation” to y,. There are weights o;; such that the input
at time n to “neuron” j in the first layer is

M
uyj(, ¢n) = Zaij¢n,ia j=1,....K.
i—1

The output of this neuron is pq(u1;(a, ¢r)), where p;(-) is a real-valued
antisymmetric nondecreasing and continuously differentiable function of a
real variable, which is positive for positive arguments and is often chosen to
be the sigmoid function. Denote the derivative by p;(-). There are weights
B; such that the input to the single second layer or “output” neuron is the
linear combination of the outputs of the first layer

K
us(e, B,6n) = > _ Bipr(uj(e, én)).
j=1

The output of the second layer neuron is u(a, 8, ¢n) = pa(ua(e, B8, ¢n)),
where po(-) has the properties of p;(-). Denote the derivative of ps(-) by

36 2. Applications

p2(+). One wishes to “train” the network to minimize the error between the
desired and the actual outputs.

Suppose that there is a “training” period in which the set of pairs (input,
desired output) {(¢n,yn),n = 1,...}, as well as the actual outputs {v, } are
available. For simplicity, let us suppose that the input-output pairs (y,, ¢»)
are mutually independent and that its distribution does not depend on n.
The actual situations that can be handled are far more general and can be
seen from the convergence proofs in the following chapters. Let 8 = («,)
denote the r-vector of weights that is to be chosen, and let 6, denote
the value used for the nth training session. Define v, = u(6,, ¢,). The
weights are to be recursively adjusted to minimize the mean square error
Ely—u(0, ¢)]?. Of course, the results are not confined to this error function.
Define the sample mean square error e(6, ¢,y) = (1/2)[y—u(6, ¢)]? and the
sample error e,, = [y, — v,].

The basic adaptive algorithm has the form

_ 9e(On; b yn) ou(bn, pn) . _
9n+1’l_9n’l_€nT —Qnﬂ—I—enenT, 2—17...,7".

Using the formula

K
v =u(a, B,9) = pa(uz(a, 8,9)) = p2 Zﬁjpl(ulj(aa¢)))

j=1

the derivatives are evaluated from the formulas for repeated differentiation

W — palus(a, B, 6))pr (u; (0, 6)),
aua(j;j@ =]52(1@(04, ﬁa ¢))/ij1 (ulj(a, Qﬁ))qﬁl,

where ¢* denotes the ith component of the canonical input vector ¢.
Under appropriate conditions, the ODE that characterizes the asymp-
totic behavior is

Ede(0,¢,y)
o0 ’
Being a gradient procedure, 8,, converges to a stationary point of this ODE.
In applications there are usually many local minima. If it appears that the
iteration is “hung up” at a local minimum, then several training runs might
be needed, each with a different initial condition. The time required for
training can be very long if there are many weights to be adjusted.

The neurons in the first layer can be connected to one another, and
feedback can be incorporated from the output back to the first layer. An
interesting application of this “interconnected” form to a problem in non-
linear filtering for processes defined by stochastic difference equations is
in [170]. Interesting stochastic approximation algorithms motivated by the
training of neural networks are in [7, 13].

1=1,...,7

0" =7'(0) =

2.3 State-Dependent Noise 37

2.3 State-Dependent Noise:
A Motivational Example

Most of the noise processes that have appeared in the stochastic approxi-
mation algorithms up to this point in the book have been martingale differ-
ences, where E[Y,,|00,Y;,7 < n] depended on 6,, but not otherwise random.
More complicated noise processes are common occurrences. For example,
suppose that the sequence of patterns in Example 3 of Section 1.1 is cor-
related or that the training data in the neural network example of Section
2 is correlated, but that the distributions do not depend on the stochastic
approximation algorithm. Such noise processes are called ezogenous. Exam-
ple 4 of Section 1.1 provides a similar example, if the {x™} in (1.1.20) are
correlated, but determined purely by effects “external” to the algorithm.
In many important applications, the evolution of the effective noise process
depends more intimately on the iterate (also to be called the state), and
there is a reasonably long-term “memory” in this dependence. The follow-
ing adaptive “routing” example taken from [136] illustrates the point in
a simple way. The adaptive queueing problem discussed in Section 5 and
the other references listed there show that such models are of considerable
interest. Indeed, they are current canonical forms used in the optimiza-
tion of queueing and manufacturing systems where the cost criterion is an
average performance over the infinite time interval. The time-varying para-
meter tracking problem in [150] (see also Chapter 3) is another example of
a complicated model in stochastic approximation that can be treated with
this type of noise model. The example and the specific assumptions given
in this section are for motivational purposes only.

To proceed, let us consider the following example. Suppose that calls
arrive at a switch randomly, but at discrete instants n = 1,2,... No more
than a single call can arrive at a time and

P {arrival at time n | data to but not including time n} = u > 0.

The assumptions concerning single calls and discrete time make the for-
mulation simpler, but the analogous models in continuous time are treated
in essentially the same manner. To have a clear sequencing of the events,
suppose that the calls are completed “just before” the discrete instants, so
that if a call is completed at time n~, then that circuit is available for use
by a new call that arrives at time n. There are two possible routes for each
call. The ith route has N; lines and can handle IV, calls simultaneously. The
sets of call lengths and interarrival times are mutually independent, and
A; > 0 is the probability that a call is completed at the (n + 1)st instant,
given that it is in the system at time n and handled by route ¢, and the
rest of the past data. The system is illustrated in Figure 3.1.

38 2. Applications

Prob =6 Channel 1 E——

Channel 2 - 5

Prob=1-10

Figure 3.1. The routing system.

The routing law is “random,” and it is updated by a stochastic approxi-
mation procedure with constant step size e. Let £, = (&, 1, &5,) denote the
occupancies of the two routes at time n. If a call arrives at time n + 1 then
it is sent first to route 1 with probability 65, and to route 2 with probability
1 —6;,. If all lines of the selected route are occupied at that time, the call
is redirected to the other route. If the alternative route is also full, the call
is lost from the system. Let J; ; be the indicator function of the event that
a call arrives at time n + 1, is sent to route 4, and is accepted there. Our
updating rule for 6, is

Orp1 = Mo, 107, + en Y] = My [0, + € (1= 07)J5 1 — 05,77 5)], (3.1)

where 0 < a < b < 1 are truncation levels and I, 3; denotes the truncation.
One could also use decreasing step sizes €, — 0, but in such problems
one normally wishes to allow tracking of the optimal value of 6 when the
statistics change, in which case we cannot have €, — 0.

An examination of the right-hand side g() of the mean ODE in (3.4)
shows that g(f) = 0 is equivalent to (under stationarity) the statement
that there is equal probability that each route is full at the time of a call’s
arrival. Thus, the adaptive algorithm (3.3) given below serves to equate
the probabilities of being full in the long run. This might be called a “fair-
ness to the user” criterion. Many other design goals can be realized with
appropriate forms of the algorithm.

The occupancies & (and the random acceptances and routing choices)
determine the effective noise in the system, and the evolution of {&£} de-
pends on {65} in a complicated way and with significant memory. The
dependence is of Markovian type in that

Plan =gl nisn=Pla,=¢lo.al. (62

Define v; = (1 — \;)™Vi. If a call is assigned to route 1 at time n + 1 and
is not accepted there then (a) the call arrives at (n + 1); (b) it is assigned
to route 1; (¢) route 1 is full at time n and there are no departures on the

2.3 State-Dependent Noise 39

interval [n,n 4+ 1). Thus, we have the conditional expectations

B (50 05,650 <n] = by [1=vilge vy | =005,),
B[l 05600 <n] =n(1=05) [1 = valiey ony | = 72005, €50).

Define
9(076) = (1 - 6)’71(976) - 972(675)7
M, = [(1=65)J5 1 — 055 5] — 905, €5)-

Thus, for the Y,, defined in (3.1),
EY7105,& .1 < n] = g(0,, &)
Rewrite the algorithm as
1 = i [0, + € (9005, 6,) + M) - (3-3)

The §M,, are martingale differences, but the conditional mean g(6g,&5) is
not simple, since the time evolution of the sequence {££} depends heavily
on the time evolution of the iterate sequence {0¢ }. Nevertheless, as will be
seen in Chapter 8, effective methods are available to show that the effects
of the noise disappear in the limit as ¢ — 0 and n — co.

To study the asymptotic properties of 65, it is useful to introduce the
“fixed-6” process as follows. Let {£,(0)} denote the Markov chain for the
occupancy levels that would result if the parameter 6, were held constant
at the value 6. The {£,(0)} is an ergodic Markov chain; we use E? to
denote the expectations of functionals with respect to its unique stationary
measure.

If € is small, then 6, varies slowly and, loosely speaking, the “local” evo-
lution of the g(65,£5) can be treated as if the 6¢ were essentially constant.
That is, for small € and A and 05, = 6, a law of large numbers suggests that
we have approximately

n+A/e

e Y g(05,&) ~ AE g(0,6.(0)).

i=n

Then the mean ODE that characterizes the limit behavior for small € and
large time is)
0 =g(0), for 0 € [a,], (3.4)

where
9(0) = E°9(6,6.(0))

is a continuous function of §. This will be established in Chapter 8. If the
solution of (3.4) tries to exit the interval [a,b], then it is stopped on the
boundary.

40 2. Applications

Comment. In this example, the ultimate goal of the algorithm is equating
the stationary probabilities that the routes will be full on arrival of a call.
Yet the iteration proceeds in real time using the history of the rejections
for the updating, and each update uses a different value of the parame-
ter #. So, the observations are not unbiased estimates of the “mean error
function” g(f) at any value of 0. The process {&,} is analogous to a suffi-
cient statistic in that it encapsulates the effects of the past on the future
performance of the algorithm. The heuristic discussion shows that because
0, varies slowly for small €, the stationary averages at the current para-
meter values are actually being estimated increasingly well as ¢ decreases
and time increases. This idea will be formalized in Chapters 8 and 9, in
which the Markov property (3.2) will play an important role. An increas-
ing number of applications of stochastic approximation concern long-term
averages, and use observations on a single sample path taken at instants
of time going to infinity, each observation being taken at a new parameter
value. In these cases, the “effective memory” process &, and their fixed-6
versions &, () will play a crucial role. The examples in the next two sec-
tions illustrate various applications of the state-dependent noise model to
the optimization of discrete event systems.

2.4 Learning Optimal Controls and Value
Functions

In this section, three classes of learning algorithms for controlled processes
will be discussed. They concern problems of estimating a cost function or an
optimal control when analytical methods cannot be used effectively. They
are all based on simulation. Such methods are called for if the transition
probabilities are not known, but the processes can be simulated or physical
samples observed under chosen controls. Even if the transition probabilities
are known, the problem of analytic computation might be too hard, and
one might seek an approximation method that exploits the possibilities
of simulation. The intention in each case is to introduce the subject by
focusing on one basic approach. The entire area is under active study,
and much remains to be done to get broadly useful algorithms. There is
a growing literature on these topics and a recent survey and additional
references are in [208].

The problem of Subsection 4.1 concerns finding an optimal feedback
control and value function for a Markov chain by the method of @-learning.
It involves martingale difference noise. If the number of (state, control) pairs
is large, as it usually is, then this procedure will converge slowly.

The problem of Subsection 4.2 concerns the approximation of a value
function for a fixed control, and involves correlated “exogenous” noise. Such
approximation methods for the value function can be used as the basis of

2.4 Learning Optimal Controls 41

recursive algorithms which approximate an optimal control by following
the logic of the approximation in policy space procedure [22] or some other
gradient-type procedure to get a sequence of controls which (hopefully)
approximate the optimal one. Consider the following sequential approach.
For a given control, get a good approximation to the value function via
the method of Subsection 4.2. Then, assuming that this approximation is
the true value function, apply the approximation in policy space method
to get an improved control, then approximate the value function under the
new control by a method such as that in Subsection 4.2, etc. Such methods
go by the generic name of actor-critic [208]. Obviously, one cannot actu-
ally compute the approximation of Subsection 4.2 of the value function for
each control. References [112, 113] concern a two-time-scale stochastic ap-
proximation approach to this problem. Here, the control is parameterized
and the iteration on the control occurs relatively infrequently, which allows
the algorithm for computing the approximation to the value function to
nearly converge between control updates. The method essentially approx-
imates the cost function for the current parameter value via a procedure
like that in Subsection 4.2, and then uses that approximation to get the
next value by a scheme such as approximation in policy space. One expects
such two-time-scale methods to be slow, unless a lot of attention is given to
the details concerning the time between control updates and the nature of
the update itself. The paper [221] is concerned with various efficient adap-
tations of the actor-critic method and successfully illustrates the ideas on
several “balancing” type problems.

The problem of Subsection 4.3 concerns the optimization of a stationary
cost for a controlled Markov chain, and involves Markov state-dependent
noise of the type introduced in Section 3. The paper [174] concerns getting
the optimal parameter value for a parameterized control for the average cost
per unit time problem. It uses the behavior of the process between returns
to some fixed state to estimate the derivatives of the stationary cost with
respect to the parameter. The control parameter is updated at the start
of each such cycle. If the state space is large, then the return times and
the variances of the estimators will generally be large as well. The paper
[172] applies the approximation methods to a problem in communications
and presents data showing the convergence. The book [232] contains an
interesting historical perspective on the origin of the various methods.

2.4.1 Q-Learning

This example concerns the adaptive optimization of a control system gov-
erned by a Markov chain, a problem that is of increasing interest in robotic
learning and artificial intelligence. Let p(i, j|d) be transition probabilities
for a controlled finite-state Markov chain, where d denotes the control vari-
able and it takes values in a finite set U(i) for each i. Let u, denote the
control action taken at time n and 1),, the state of the chain at time n. Let

42 2. Applications

F, denote the minimal o-algebra generated by {¢;,u;,j < n,9,}. The
control action taken at each time n might simply be a function of the state
1, at that time. More generally, it can be a random function of the past
history. In the latter case, it is assumed to be admissible in the sense that it
is chosen according to a probability law depending on the history up to the
present. That is, it is selected by specifying the conditional probabilities

P{u, =d| Fn}.

We use 7 to denote an admissible control policy.
Given initial state ¢, admissible control policy 7, and discount factor
0 < B < 1, the cost criterion is

W(i,m) = Ef Y _ B cn,
n=0

where ¢, is the real-valued cost realized at time n and E] denotes the
expectation under initial state ¢ and policy 7. It is supposed that the current
cost depends only on the current state and control action in that for all ¢

P{Cn:d'(/)jvuj)j <n7'¢n:i7un :d}:P{cn:C‘wn :iaun:d}a

where the right side does not depend on n. Henceforth, for notational con-
venience, ¢y ;q is used to denote the random cost realized at time n when
(state, control)=(i,d). Conditioned on the current state being ¢ and the
current control action being d, we suppose that the current cost ¢, ;s has
a finite mean ¢;4 and a uniformly bounded variance.

Then there is an optimal control that depends only on the current state.
Define V(i) = inf, W(i,w). Then the Bellman (dynamic programming)
equation for the minimal cost is

V@) = min |G+ ﬁzj:p(i,jld)V(j) : (4.1)
The minimizing controls in (4.1) are an optimal policy. In other words,
when in state ¢, the optimal control is the (or any, if nonunique) minimizer
in (4.1) (see [18, 198]).

The so-called Q-learning algorithm, to be described next, was motivated
by the problem of adaptive optimization of the Markov chain control prob-
lem, when the transition probabilities are not known, but the system can
be simulated or observed under any choice of control actions. The idea
originated in [251], and proofs of convergence are in [234, 252]; the former
is quite general; see also [5]. The analogous algorithm for the average cost
per unit time problem is discussed in [1, 173].

The algorithm involves recursively estimating the so-called @-functions
Qid, where Q;q is the cost given that we start at state i, action d € U(7)

2.4 Learning Optimal Controls 43

is taken, and then the optimal policy is used henceforth. This is to be
distinguished from the definition of V' (¢), which is the value given that we
start at state ¢ and use the optimal policy at all times. One must estimate
the quantity Q;q for each state and control action, but this is easier than
estimating the transition probabilities for each i, j, d. Since minger(;) Qiq =
V'(4), an application of the principle of optimality of dynamic programming
yields the relationship

Qia =g+ B8 _p(i,jld) min Q. (4.2)
i

vel(7)

A stochastic approximation algorithm is to be used to recursively esti-
mate the @-values. The dimension of the problem is thus the total num-
ber of (state, action) pairs. The algorithm can use either a single simu-
lated process, an actual physical control process, or multiple simultaneous
processes. For simplicity, suppose that only a single control process is sim-
ulated. At each step, one observes the value ¢ of the current state of the
Markov chain and then selects a control action d. Then the value of the
state at the next time is observed. At that time, the Q-value for only that
particular (state, action) pair (¢, d) is updated. Thus the algorithm is asyn-
chronous.

Suppose that the pair (i, d) occurred at time n, and the next state ¥,41
is observed. Let @y, = {Qn.zd;%,d : d € U(z)} be the current estimator of

Q. Then we update as

Qn—i—l,id = Qn,id + gn,id Cnid B min Qn,wnJrlv - Qn,id , (43)
UEU(wn+1)

where €, ;4 is the step size and is chosen as follows. Let €, be a sequence
of positive real numbers such that > e, = oo, and let w;q be positive real
numbers. Define €, ;4 = wiq€,. The step size used at the current iteration
depends on the number of times that the particular current (state, action)
pair has been seen before. If the current (state, action) pair is (¢,d), and
this pair has been seen (k — 1) times previously in the simulation, then the
step size used in the current updating of the estimate of Q;q is €nid = €k,id-
More formally, let k(i,d, n) denote the number of times the pair (i, d) has
been seen before or at time n, and define €,q = €x(ian),ia- If (4,d) is
the (state, action) pair seen at time n, then for (j,v) # (¢, d), there is no
update at n and we have Qn+1,j0 = @n,jo- In Chapter 12, where the proof
of convergence will be given, the values of the estimators of the Q;q will be
truncated at +B for some suitably large B. As will be seen, this simplifies
the proofs and causes no loss of generality. In fact |Q;q| < max; q |G q/(1—
B). Constant step sizes can also be used, and this is done in the convergence
proof in Chapter 12. The proof for the decreasing step size case is virtually
the same.

44 2. Applications

For a vector Q = {Q;4;i,d : d € U(3)}, define

E (Q) =F |:Cn,id + ﬂ min Q'l/JnJrlv fna Up = d7 wn =1

vEU (Y1)

By the Markov property,
Ti =Cja+ i, ild) min v
(@ = a8 Y pli i) i €,
With the definition of the “noise”

6Mn = .0 i n v _Ti n)s
[c ,d+ﬁv€[§r(111br:+l)62 i } a(Qn)

we can write

Qn+1,id = Qn,id + gn,id [Tzd(Qn) - Qn,id + 5Mn] . (44)

Note that E[0My|F,,u, = d] = 0, and that the conditional variance
E[§M2|F,,u, = d] is bounded uniformly in n,w.

The map T(-) is a Lipschitz continuous contraction with respect to the
sup norm and @ is the unique fixed point [18, 190]. Suppose that each (state,
action) pair is visited infinitely often with probability one. Then one can
show that @, converges to QQ with probability one. Let N;g(n,n + m) be
the number of times that the pair (¢,d) is returned to in the time interval
[n,n + m]. Suppose that for any pairs (i,d) and (4, v), the ratios

Nig(n,n+m)/Nj,(n,n+m)

are bounded away from both zero and infinity as n and m go to infinity.
Then, it is shown in Chapter 12 that for the constrained algorithm, there
is a diagonal matrix D(t) whose diagonal components D;4(t) are bounded
and strictly positive such that the mean ODE that characterizes the limit
points is

Qida = Dia(t) (T:a(Q) — Qia) + Zia, (4.5)

where the z;4(t) term is zero if —B < Q;4(t) < B; otherwise it serves only
to keep Q;q(-) from leaving the interval [~ B, BJ if the dynamics try to force
it out. If B is large enough, then the limit point is Q.

2.4.2 Approzimating a Value Function

In this subsection, we will illustrate a class of algorithms that is of cur-
rent interest for recursively approximating a discounted cost function for
a stochastic process, as a function of the initial condition. If the process is
controlled, then the control is fixed. The class of approximating algorithms
is known as TD(X),0 < A <1 [235] (TD standing for temporal difference).

2.4 Learning Optimal Controls 45

We will concentrate on the class TD(1), and discuss some of the basic ideas.
The classes A < 1 will only be commented on briefly.

We will start with a Markov model. This Markov assumption can be
weakened considerably, which is an advantage of the approach. Let {X,,}
denote a Markov chain with values in some compact topological space, a
time-invariant transition function, and a unique invariant measure p(-). Let
E,, denote the expectation with respect to the measure of the stationary
process. For a bounded and continuous real-valued function k(-), the cost
is

W(z)=E, Y Bk(Xp, Xnt1), 0<B<1.
n=0

We wish to approximate W(x) by a finite sum W(x, w) =
Y wigi(x) = w'd(x), where the real-valued functions ¢;(-) are bounded
and continuous and the optimal weight w is to be determined by an adap-
tive algorithm. The approximation is in the sense of

mui)n e(w), where e(w)=E,[W(Xy)— w’¢(X0)]2 /2, (4.6)
where X denotes the canonical “stationary random variable.” It is always
supposed that E,,¢(Xo)¢'(Xo) is positive definite. A simulation based re-
cursive algorithm of the gradient descent type will be used to get the opti-
mal value of w. Whenever possible, one constructs such adaptive algorithms
so that they are of the gradient descent type. Such simulation-based adap-
tive methods are motivated by the difficulty of computing cost functions
for large or continuous state spaces.

Following the usual method [235], define the sequence

Cn+l = ﬁ)\Cn + ¢(XTL+1)7 0 < A < 1a (47)
and the difference

dy = k(Xp, Xpi1) + BW (Xng1, wn) — W(Xn, wn). (4.8)

Until further notice, set A = 1. The difference d,, is a “noisy” estimate of
an approximation error in that

W(Xy) — Ex, BW (Xpn41) = Ex, k(Xp, Xni1).-
The adaptive algorithm is (which defines Y},)
Wpt1 = Wy + €,dnCr = Wy + €, Y0, (4.9)

where €, > 0,)" €, = co. We will now heuristically justify the gradient
descent assertion and motivate the convergence by deriving the mean ODE.

46 2. Applications

For large n, (4.9) can be well approximated by

Wnp+4+1 = Wp + €n |:k(XnaXn+1) + ﬁW(XnJrhwn) - W(Xnawn)

x Y MIMT(X).

l=—o0c0

(4.10)

The mean ODE is determined by the stationary mean value of the terms
n (4.10), with w, held fixed. Suppose that the iterates are bounded. Then,
by Theorem 8.2.1 or 8.2.2 and the uniqueness of the stationary measure,
the mean ODE is

i = gw) .

= B, [K(Xp, Xps1) + AW (Xpp1, w) — W(Xn,w)} 3 ().
l=—00
(4.11)
For the probability one convergence case, use Theorem 6.1.1.

To see why this limit form is correct, first note that w, varies slowly
for large n, Supposing that w, is fixed at w for many iterates, the law of
large numbers for Markov chains implies that the sample average of a large
number of the terms Y,, in (4.10) is approximated by its stationary mean.
Now, fixing w,, = w and computing the stationary expectation of the terms
in the coeflicient of ¢, on right side of (4.10) yields

n

E, [ﬁVNV(XnH,w) —W(Xn,w)} 3 ()

[(4.12)
- [w/Ed)(Xn)] ¢(Xn)~
Since k(+) is real-valued,
B k(Xo, Xnt1) Z AB]" ' Z "BLé(Xo0)Ex k(X1, Xi41).
l=—00 1=
’ (4.13)

Thus, for A\ = 1, we see that the stationary mean of Y,,, with w,, fixed at
w, is
gradient, e(w) = —E, | Ex, Y _ 8"k(Xp, Xp41) — w'd(Xo) | ¢(Xo).

n=0
(4.14)
Hence the mean ODE is

w = —gradient, e(w) = g(w), (4.15)

and the algorithm is of the gradient descent type. If there is a concern that
the iterates might not be bounded, then use the constrained algorithm

Wp+1 = IIH [wn + Gndncn] 5

2.4 Learning Optimal Controls 47

where H is a constraint set, perhaps a hyperrectangle. The mean ODE is
just the projected form of (4.11). If H is a hyperrectangle, and the optimal
point is inside H, then the solution to the ODE converges to it; otherwise,
it converges to the closest point in H.

If the algorithm is not constrained, then the gradient descent characteri-
zation can be used to prove stability of the algorithm by using a perturbed
Liapunov function, based on the Liapunov function e(w) for (4.15). This is
covered by Theorem 6.7.3.

An alternative formulation: less memory. In lieu of (4.6), consider
the problem

min eg(w), where eg(w) = E, [Ex,k(Xo, X1) — w'¢(Xo)]* /2. (4.16)

Here the cost to be approximated is simply Ex,k(Xo,X1), which takes
only one step of the future into account. A convergent recursive algorithm
for computing the minimizer is

which is also of the gradient descent form, since (with w,, fixed at w) the
stationary mean of the right side of (4.17) is just the gradient of eg(w).

One can interpolate between the criteria (4.6) and (4.16), by constructing
minimization problems where the cost takes more and more of the future
into account in a discounted way. This is a motivation for the algorithm
TD(M), A < 1; see [232, 235].

Comments and extensions. The evaluations of the mean values in (4.12)
and (4.13) involve a lot of cancellations, using the fact that the stationary
means of various different random variables that appeared are of opposite
sign. Although many of the stationary means cancel, the associated random
variables do not. This suggests a high noise level and slow convergence. The
algorithm (4.9) could be constrained: For example, we could restrict w,, ; to
a finite interval [a;, b;] or subject to other constraints. The time invariance
of the transition function could be replaced by periodicity.

For a particularly useful extension, the chain needs to be only partly ob-
servable. For example, let X,, = (X,,, X,,), where only X,, together with the
costs k(X,,, X, +1) are observable. Then, with gb()?n) used in (4.7) in lieu of

12

#(X,), the algorithm (4.9) finds the minimizer of E,, [W(Xo) - w’qS(X)} .
The process need not be Markov, provided that some stationarity and mix-
ing conditions hold. Then p is replaced by the steady state probability and
the E, in the definition of W (z) is replaced by conditioning on the data to
the initial time. Such robustness is very useful, since “practical” processes
often have “hidden states” or are not Markov. This is also covered by either
Theorem 8.2.1 or 8.2.2 for the weak convergence case and Theorem 6.1.1
for the probability one convergence case.

48 2. Applications

2.4.8 Parametric Optimization of a Markov Chain Control
Problem

Problem formulation. In this subsection, we are concerned with a con-
trolled Markov chain and average cost per unit time problem, where the
control is parameterized. We seek the optimal parameter value and do not
use value function approximations of the type of Subsection 4.2. The ap-
proach is based on an estimate of the derivative of the invariant measure
with respect to the parameter. This is an example of an optimization prob-
lem over an infinite time interval. The procedure attempts to approximate
the gradient of the stationary cost with respect to the parameter. It is
not a priori obvious how to estimate this gradient when the times between
updates of the parameter must be bounded. We will exploit a useful rep-
resentation of this derivative. The problem of minimizing a stationary cost
is continued in the next section, for a queueing model, where an analog of
the pathwise derivative of Example 4 of Subsection 1.1.4 will be used.

The process is a finite-state Markov chain {X,,} with time-invariant and
known transition probabilities p(z, y|6) that depend continuously and dif-
ferentiably on a parameter 6 that takes values in some compact set. We
will suppose that 6 is real-valued and confined to some interval [a, b]. The
general vector-valued case is treated simply by using the same type of es-
timate for each component of 6. Write py(x,y|@) for the #-derivative. Let
the chain be ergodic for each 6, and denote the unique invariant measure
by (). Let E,g) denote expectation under the stationary probability and
EY the expectation, given parameter value § and initial condition z. The
objective is to obtain

Inaine(e)v 6(9) = E/L(Q)k(X07X179) = Zﬂ($,9)p(l’,y‘a)k($,y,0)7
z,y

(4.18)
where k(x,y,-) is continuously differentiable in 6 for each value of z and
y, and p(x,) is the stationary probability of the point x. Our aim is the
illustration of a useful general approach to optimization of an average cost
per unit time criterion. The best approach is not clear at this time. But any
algorithm must have some way of estimating the derivative of the stationary
cost.

The invariant measures are hard to compute, so the minimization is to
be done via simulation. Suppose that we try to minimize (4.18) by formally
differentiating with respect to 6, and use the formal derivative as the basis
of a gradient procedure. The gradient of e(-) at 0 is T1(0) 4+ T5(0) + T5(6),
where (the subscript 6 denotes derivative with respect to 6)

Ty(0) = > plz, 0)p(x, y|0)ko(x, y.),

T,y

2.4 Learning Optimal Controls 49

To(0) = plx, 0)po(, yl0)k(x,y,),

z,y

TS(G) = ZM@(‘% 9)p(m,y|9)k;(x, yve)

For a gradient descent procedure the mean ODE would be

b = —[T1(0) + To(0) + T5(0)]. (4.19)

Write the stochastic algorithm as 6,41 = 0,, + €,Y,, where Y, is to
be determined. Then, if ,, is fixed at an arbitrary value 6, we need at
least that the long term average of the Y, is the right side of (4.19). The
actual stochastic algorithm will be constructed with this in mind. If 6,, is
held fixed at €, then T7(f) is easy to estimate since, by the law of large
numbers for a Markov chain, it is just the asymptotic average of the samples
ko(Xn, Xnt1,0).

If k(z,y,0) does not depend on the second variable y, then T5(0) does
not appear. A naive approach to approximating T5() for the algorithm
would be to simulate pg(X,,, Xn+1|0n)k(Xn, Xnt1,0n). If 6, = 0, then by
the law of large numbers for Markov chains, the sample average of many
such terms will be close to the stationary expectation

ZM(‘I’ 9)p(m,y|9)p9(x,y|9)k(a:,y, 9)

But this is not T5(0) owing to the presence of the term p(z,y|d). Thus,
the correct form to simulate is L(X,, Xn+1,0n)k(Xn, Xnt1,0,), where
L(z,y,0) = po(z,y|0)/p(x,y|0) (which are assumed to be bounded). The
stationary average of L(X,,, X,t1,0))k(Xy, Xni1,0) is To(0), as desired.

The term T3(f) cannot normally be computed explicitly and even its
existence needs to be established for more general chains. A useful method
of approximation by simulation is not at all obvious. The existence, char-
acterization, and approximation, of this derivative were the subjects of
[136, 148, 242, 262]. The method to be employed will be based on the
results of [136], which covers the particular case of interest here. For a
real-valued function ¢(-) of the chain and 6, define the stationary mean
Ag(0) =3, p(x,0)q(x,8). Then a useful representation of the derivative of
Ag(+) with respect to 6 is: (see [136, Theorem 3])

Lr0) =Y W OPOP O [Q0) - N(0)e], (420

where e is the vector whose components are all unity and Q(#) denotes the
vector {¢g(x,0)}. Note that the component of (4.20) that involves A,(0) is
zero. The sum (4.20) converges since P (f) — 0 at a geometric rate.

In order to use the representation (4.20) as a basis for estimating T5(8),
we need to simulate a sequence whose asymptotic expectation is (4.20).

50 2. Applications

Define q(z,0) = E%k(z, X1,0). Before stating the algorithm, let us note
that for n > [,

ELq(Xp41,0)L(X1, X141, 6)
=> pW(@,2100) > plar, 2141]0) Lz, 2141, 0)
Zy

Ti4+1

X Zp(nil) (xl+17 ww)Q(wa 0)’

(4.21)

where p(™ () denotes the n-step transition probability. Averaging (4.21)
with respect to the invariant measure yields

> (@, 0)pe(z, yl0)p" "V (y, w|0)q(w, 0), (4.22)

z,y,w

which is the (n — I)th summand of (4.20).

The above comments suggest one way of approximating (4.20) and a
possible algorithm. Let 0 < 3 < 1, but be close to unity. Consider the
algorithm for approximating the optimal value of 6:

9n+1 = 077, _enkH(Xn7Xn+179n>
_EnL(XnaXTH-l)Hn)k(XnaXTH-l?en)

—€n k X'IL7X7L ,Qn _)‘n C?u
(k(+1,0)) (4.23)

)\n+1 =)\n + 6;1 [k(Xn; XnJrla gn) -)\n} 5
Cn+1 = ﬁCn + L(XnaXn+17 977,)7

where we use €, = ge,, for some ¢ > 0. The update is done when X, is
observed.

Comments on the algorithm (4.23). The variable \,, is intended to be
an estimate of the optimal stationary cost. For large n, 6, varies slowly.
Suppose that it is fixed at a value 6. Then A,, will converge to the stationary
value E,,9)k(Xo, X1,0). This suggests that the), in the first line of (4.23)
would not affect the mean values, asymptotically, since £,) L(Xo, X1,0) =
0. However, the “centering” role of A, in (4.23) is important in that it serves
to reduce the variance of the estimates. The first coefficient of ¢, in the
first equation in (4.23) is used to estimate Tj(6), the second to estimate
T5(6), and the third to estimate T5(6). Using (4.21) and the “discounted”
definition of C,,, assuming that 6, ~ 6 and A, =~ A\;(6), the stationary
average of the third term is a discounted form of (4.20), namely,

o0

S 871 (6)P(6)P" (6) [Q(6) — Ay (O)e].

n=0

2.5 Optimization of a GI/G/1 Queue 51

Thus for § close to unity, we have an approximation to (4.20) and T5(9).
The noise in the algorithm (4.23) is state-dependent in the sense introduced
in Section 3. For the constrained form of the algorithm any of the methods
in the state-dependent-noise Section 8.4 can be used to justify the mean
ODE and the convergence to a point close to the optimum for § close to
unity.

Notes: Extension to diffusions or discretized diffusions. Represen-
tations analogous to (4.20) exist for Markov processes on more general state
spaces [242], and this can be used as the basis of a recursive algorithm, just
as (4.20) was. An alternative approach, based on Girsanov transforma-
tion techniques, is in [262]. It uses estimates computed over finite intervals
[nA, nA+A). Reference [262] contains an extensive discussion of derivative
estimators for jump-diffusions, where the drift function is subject to con-
trol. The method also works for reflected jump diffusions if the reflection
direction and jumps are not controlled. In such “continuous state space”
problems, one must usually approximate in the simulations, since the actual
continuous-time trajectory cannot usually be simulated. The reference and
[148] discusses discrete-time and Markov chain approximations and show
that the derivative estimators will converge as the discretization parameter
goes to zero.

2.5 Optimization of a GI/G/1 Queue

We now consider another approach to the optimization of a stationary cost
function. The example concerns the optimization of the performance of a
single server queue. The times of customer arrivals is a renewal process
with bounded mean. For fixed 6, let X;(0) denote the time that the ith
customer spends in the system, and let K(6) be a known bounded real-
valued function with a continuous and bounded gradient. The service time
distribution is controlled by a real-valued parameter ¢, which is chosen to
minimize the sum of the average waiting time per customer and a cost
associated with the use of 6. This is the cost function

L) = 111{711%2]5&(9) + K(0) = L(0) + K(0), (5.1)

The aim is to get the minimizing € in the finite interval [a,b]. Generally,
the values of E(G) are very hard to compute. A viable alternative to the
direct optimization of the unavailable (5.1) uses stochastic approximation.
One would observe the queue over a long time period, and use the obser-
vational data (which are the times of arrival, departure, and service for
each customer, up to the present). The data would be used to estimate
the derivative of the cost function with respect to 6 at the current value of

52 2. Applications

0, yielding a stochastic approximation analog of the deterministic gradient
descent procedure. We use “estimates of the derivative” in a loose sense,
since each so-called estimate will be (perhaps strongly) biased. However,
their cumulative effect yields the correct result.

This problem has attracted much attention (see [52, 78, 145, 160, 161],
among others) and is typical of many current efforts to apply stochastic
approximation to queueing and manufacturing systems and networks.

2.5.1 Deriwative Estimation and Infinitesimal Perturbation
Analysis: A Brief Review

The parameter 6 is assumed to be real-valued throughout this section. A
basic issue is that we can only update the estimators at finite times, al-
though the cost function is of the “ergodic” type. Before proceeding further,
let us review Example 4 of Section 1.1, where we were able to compute the
“pathwise derivative” U™ (). The derivative is said to be pathwise, because
for each w, the sample value U (0, w) is the derivative of the sample value
XN (6, w) with respect to 0. Let 6 be a “small” perturbation of 6. To get
the formula (1.1.21) for the derivative at 6,, = 6, one implicitly solves for
XN (9) and XN (6+66), using the same vector of driving noise Y, computes
the ratio [X™ (0+00) — XV (0)]/560, and then lets 66 go to zero. By the rules
of calculus, this procedure is what yields the final explicit formula (1.1.21).
For the method to work, it is essential that the driving forces x be the
same in the computations of XV () and the X ™ (6 + §6) for all small 66. If
explicit pathwise differentiation were not possible, then one might have to
resort to a finite difference estimator, which suffers from the fact that its
variance is inversely proportional to the square of the finite difference in-
terval. As an aside, recall that under appropriate smoothness assumptions,
finite differences with “common” random variables used for the simulations
for the parameters 0,, and 6,, + 66 are often almost as good as the pathwise
derivative, as shown in the discussion connected with (1.2.6).

There is an analogy to this pathwise derivative approach that yields a
very useful method for getting good estimates of derivatives of the desired
functional of the queue. The approach for the queueing problem is not
obvious, because the optimization is to be done via observations on one
sample path (i.e., done “on line” using data from the physical process),
and there are no “natural driving forces” analogous to the Y that would
allow the computation of the path for a perturbed value of #. It turns out
that one can construct suitable “driving forces” from the observations and
then get a direct analog of what was done in Example 4 of Section 1.1 by a
clever choice of the probability space. This is the subject of the important
field infinitesimal perturbation analysis, initiated by Y.-C. Ho. The subject
of IPA has rapidly grown, and there is a large amount of literature; see, for
example, [84, 99, 101] and the references therein.

A few introductory comments on IPA will be made in the next paragraph,

2.5 Optimization of a GI/G/1 Queue 53

and then the results needed for the queueing problem at hand will be
cited. The reader is referred to the literature for further reading. See also
[145, 262, 148] for other results concerning pathwise derivatives that are
useful in stochastic approximation.

Introduction to IPA: Computation of a pathwise derivative. Let 0
be fixed until further notice. In this application, one observes a sample path
of the physical process over a long time interval and seeks to construct an
estimate of the derivative Ly(0) from the sample data. Suppose, as a pure
thought experiment, that one could observe simultaneously paths of the
process corresponding to parameter values 6 and 6 + §6, for all arbitrarily
small 06, where the sequences {X;(6), X;(8 + 06),j < oo} are defined on
the same sample space. Suppose also that the path derivative exists for
almost all realizations. In other words, the limit

X,6+00) - X,0) _
500 50 o

exists with probability one for each j. Suppose also that

OEX,(6) _ ,0X,(0)
o0 o0

Then Dj is an unbiased estimator of OEX;(6)/06.

The idea is to estimate 0X;(0)/00 at the given value of 6 from a single
sample path, with the parameter value 6 used, analogously to what was
done in Example 4 of Section 1.1. There are two substantial parts of the
work. The first is to get the derivative of the sample path, and the second
is to verify the validity of the interchange of differentiation and expecta-
tion in (5.2). The reward of success is that one has a useful estimator, a
pathwise derivative, which is based only on the observed data and does not
involve finite differences. In applications, each of these steps might involve
a great deal of work. When these pathwise derivatives can be calculated,
it is frequently found that their variance is smaller (often much smaller)
than what one would obtain under alternative approaches. From the point
of view of stochastic approximation, the smaller the variance of the esti-
mator, the better the procedure. In view of these remarks, it is clear that
IPA and related methods are important for applications to stochastic ap-
proximation.

Since we are only concerned with expectations, the precise nature of
the probability space that is used to compute the pathwise derivative is
unimportant to the final result. Any convenient space can be used, provided
that the limit formulas depend only on the observations. We will now give a
simple example to illustrate this, where we compute the sample 6-derivative
of a random variable T" with parameterized distribution function F'(-|6).

For illustrative purposes, suppose that the distribution functions cor-
responding to parameter values 6 and (for small 66) 6 + 50 are strictly

— ED;. (5.2)

54 2. Applications

monotone increasing. To compute a pathwise derivative, the same proba-
bility space must be used for all parameter values and this can be done in
the following way. By the definition of a distribution function, the random
variable x defined by x = F(T'|0) has a uniform distribution on the inter-
val [0, 1], and under our assumption on strict monotonicity, the values of
x and T can be computed uniquely one from the other and we can write
T = F~1(x|9).

Now, with x defined by x = F(T|#), we can define the random variable
T(0 + 00) = F~1(x|0 + 60), which has the distribution F(-|6 + 66). The
random variable x serves as the “driving force,” common to all values
of 66, and it is constructed directly from the observed value of T. Thus,
if the inverse function F~1(-|0) is smooth enough in 6, we can get the
representation of the pathwise derivative

-1 -1
fo P9 +00) = P (0)

560—0 50 D.

Consider the simplest example, where F(T'|f) = 1 —e~7/? the exponential
distribution with mean 6. Then

F~1(x]0) = —0log(1 — x),

and the derivative is simply — log(1 — x).

In the problem under consideration, the derivative of the distribution
of the sojourn time is not easily obtainable, but the values of the sojourn
time of the ith customer depend on the service times of the customers that
were in the queue and on the residual service time for the customer in
service (if any) at the moment when that ith customer arrived. Let {T,,}
denote the sequence of (assumed mutually independent) service times, each
of which has the distribution F(-|@). Define x,, = F(T3,|0). Then x,, are
mutually independent and uniformly distributed on the unit interval, and
they are independent of the interarrival intervals and the initial condition.
The pathwise derivative 97),(6)/060 can be used to get suitable estimators
of the f-derivative of the mean customer sojourn times. The derivation is
involved; we simply copy the estimators for our problem from the references,
because we are more concerned with their use than their derivation.

2.5.2 The Derivative Estimate for the Queueing Problem

Some of the conditions that we will state will be used when the convergence
is proved in Chapter 9. First, the sequence of service times will be defined
in terms of “driving noises” that do not depend on 6. Then the formula for
the pathwise derivative at parameter value 6 will be stated and adapted
for use in the stochastic approximation procedure. Let the parameterized
service time distribution F'(:|§) be weakly continuous in #: That is for

2.5 Optimization of a GI/G/1 Queue 55

each bounded and continuous real-valued function f(-), [f(z)F(dz|0) i
continuous in 6. Define the inverse function F~1(-|0) by

~H(x|0) = inf{¢ : F(¢10) = x}, x € [0,1],

and, for each value of y, let the inverse have a 6-derivative that is con-
tinuous in # (uniformly in x). We denote the f-derivative by F, ' (x|6).
Let {¢:i(0),i < oo} denote the sequence of service times, and define
Xn(0) = F(¢,(0)]0) and the derivative Z,(0) = Fgl(xn(9)|9). Define the
cost for the first m customers, initialized at an arbitrary initial queue oc-
cupancy o as

L (0, 20) = Ly (0, 20) + K (6) ZEX K(6). (5.3)

Suppose that the supremum over 6 € [a, b] of the mean service times is less
than the mean interarrival time. Then the busy periods have finite mean
length for each 6 € [a, b]. Suppose that:

the distribution function of the interarrival times is continuous. (5.4)

Consider the estimator
~ 1 &
Zm(0) = — > Z;(0), (5.5)

where v;(0) is the index of the first arrival in the busy period in which
customer ¢ arrives. The index of a customer is defined to be n if that
customer is the nth to arrive from time zero on. If the initial occupancy of
the queue is zero, then (5.5) is the pathwise 6-derivative of

Under broad conditions, it is an unbiased estimator of the #-derivative of
the mean value L,, (6, z), and for each initial condition

Zm(0) = Lo(0) (5.6)

with probability one and in mean as m — oo. The proof of this fact is one
of the major issues in IPA. Proofs under various conditions and further
references are in [84, 161, 231].

Henceforth, in this section, to simplify notation and not to worry about
the possibly separate indices for arrivals and departures, we suppose that
the queue starts empty. The conditions and results are the same in general.

The reader should keep in mind that we assume that the service time
distribution is known for each 6 of interest, and this will rarely be the case.

56 2. Applications

One needs to know that the derivative estimators are robust enough so that
they either approximate the derivatives of the true distributions without
serious error or their use will still lead to an improved system. Limited
simulations have shown that one can often use simple approximations and
still improve the system, but more work needs to be done on this issue. The
references [148, 262] use a system model that is a parameterized stochastic
differential equation and show that the pathwise derivatives of a “numer-
ical” approximation converge to the pathwise derivatives of the original
process as the approximation parameter goes to its limit.

The stochastic approximation algorithm. When we use stochastic ap-
proximation to minimize the cost (5.1) via the use of the IPA estimator,
we update the parameter after the departure of each successive group of
N customers. Other choices of updating times can be used, for example,
update at the end of successive busy periods or at the end of the first
busy period following the departure of the next N customers, or a random
mixture of all of these methods, and so forth. Every reasonable choice of
updating times has the same limit properties [145]. We use the “customer
group number” instead of real time as the index of the stochastic approxi-
mation. For fixed 6, define the estimator on the nth interval (this contains
the departures [nN +1,...,nN + NJ)

nN+N %

?n(a):—% S Y 20 (5.7)

i=nN+1 j=v,;(0)

Recall that v, (6) is the index of the first arrival in the busy period in
which arrival (equivalently, departure) nN occurs. Then, by (5.6)

lim % > 3 Z6) = Loo). (5.8)

with probability one and in expectation for each initial condition.

The step size in the algorithm will be a small constant €. Hence, the 6,
depend on €, and so do the service times and queue lengths. In the physical
system, 6§ is used up to the time of departure of the Nth customer, then 65
is used up to the time of departure of the 2Nth customer, and so forth. For
the actual physical system with the time varying parameter, let ¢ denote
the actual service time of the ith customer and Z{ the derivative of the
inverse function at ¢f. Let v{ be the index of the first arrival in the busy
period in which customer ¢ arrives. To update 65, we use the estimator

nN+N i

e _ 1 €
Vi=—+ S >z (5.9)

i=nN+1 j=ve

2.5 Optimization of a GI/G/1 Queue 57

A reasonable stochastic approximation algorithm for updating 6 is
£ =y [9; eV - ng(ag)} . (5.10)

One could use a decreasing sequence €, — 0 in place of ¢, but in such
applications one generally uses a small and constant value, which would
allow tracking of slow changes in the parameter.

The statistical structure of {Y,¢} is complicated. We know something
about the unbiasedness and consistency properties for large N when the
parameter does not change, but Y,¢ is not an unbiased estimator of the
derivative of —E() at 0 = 0,,. It might be close to an unbiased estimator
for large NV, but N should not and need not be too large in a practical
algorithm. Letting N be too large simply slows down the rate at which the
new data is absorbed into the overall averaging, and the convergence holds
for any N. It is not a priori clear that the algorithm will converge to the
correct limit. However, the general methods to be developed in Chapter
8 will allow us to prove (in Chapter 9) the convergence under reasonably
weak conditions. Again, the key is the slow rate of change of 6, when €
is small, which allows us to effectively combine many successive Y,; with
essentially the same parameter value. Indeed, if 6,, varies slowly, as it would
when € is small, then (5.8) suggests that for large /e and small € and d,
the sum of (e/é)?f for i € [n,n + 6/¢) would be a good estimator of
the derivative at § = 6. This will be formalized in Chapters 8 and 9.
An important variation is the decentralized algorithm (Chapter 12), where
there are several processors, each taking its own measurements, updating its
own subset of parameters at intervals that are not necessarily synchronized
between the processors, and passing information on the updates to other
processors from time to time [145, 154, 239).

Other examples using IPA. Reference [241] contains a detailed discus-
sion of stochastic approximation with various forms of IPA estimators, to-
gether with simulation data that both justifies the approach and illustrates
the qualitative properties of the convergence.

There is a large literature on IPA-type estimators, sometimes in con-
junction with a stochastic approximation-type procedure. From the point
of view of stochastic approximation, the structure of many of these prob-
lems is similar, and the same proof (say those of Chapters 8 and 9) can
be used. Typical applications are single queues, queueing networks, and
various production scheduling problems. We only list a few references to
give some flavor of the developments. In most cases, the results of this
book simplify and extend the stochastic approximation parts of the devel-
opment and allow the use of more flexible algorithms. Additionally, one can
treat the multiclass problem [186], admission control [243], flow control in
a closed network [244], routing in an open network [239], and routing in a
network [100], as well as balancing the noise and bias and allocating total

58 2. Applications

computational budget in optimization of steady state simulation models
with likelihood ratio, IPA, or finite difference estimators [162].

Reference [46] concerns the optimization of the performance of an un-
reliable machine. The machine has a capacity constraint and is used to
produce several types of parts, each with a given demand rate. The con-
trol problem is the decision concerning what to produce at any given time.
The decision rule is determined by thresholds in the space of available in-
ventory, and these thresholds are to be optimized. An appropriate cost
function is given, and IPA-type estimators for the desired pathwise deriv-
atives are constructed. A related problem, where there are two unreliable
machines working in tandem, is treated in [260, 272]. The formulation of
the stochastic approximation part is dealt with by the more efficient meth-
ods of this book in [145]. Optimization of an inventory system is discussed
in [86]. Reference [245] concerns the optimization of a high-speed commu-
nications network. Messages may appear at any node and are to be routed
through the network to the appropriate destination. Traffic is managed by
a “token” system. With this method, each message moving through the
system must be accompanied by a token. When the message arrives at the
destination, the token is sent back to some input node to be reused. The
control parameters are the probabilities p;; that a token arriving with a
message at destination ¢ will be sent to arrival node j. If an arriving mes-
sage finds a token waiting at the arrival node, then the message is routed
to the appropriate destination. Otherwise, the message is queued at the
arrival node pending the appearance of a free token there. A common per-
formance criterion is the average time for the transmissions. One wants to
choose p;; to minimize this quantity. The optimizing probabilities satisfy
the Kuhn—Tucker condition for a certain constrained optimization problem.
An algorithm of the stochastic approximation type is constructed in [245]
such that the stationary points of the mean ODE are just the Kuhn—Tucker
points. Reference [4] obtains IPA estimators of first and second derivatives
with respect to service time parameters for a closed queueing network.

2.6 Passive Stochastic Approximation

Let 6 and Y;, be IR"-valued. In a basic form of the Robbins—-Monro algo-
rithm, one observes Y;, = ¢g(6,&,) at values of the parameter 6 selected by
the experimenter and seeks the value @ such that g() = Eg(6,&,) = 0.
In some applications, the values of 6,, are externally generated and can-
not be chosen by the experimenter. Suppose that {0,} is a random se-
quence, not selected by the experimenter, who still wishes to find the root
(assumed unique for simplicity) of the function g(-) using measurements
Y, = g(0,) + &, where , is a “noise” sequence.

In [95], Hardle and Nixdorf suggested an approach to the problem and
termed it passive stochastic approrimation. The approach can be traced

2.7 Learning in Repeated Stochastic Games 59

back to an early work of Révész [202]. Problems with real-valued 6 are
treated in [95], and multivariate cases are handled in [181]. The main idea
is to combine the stochastic approximation methods with nonparametric
estimation procedures. Now let 6 and Y,, be IR"-valued and g(-) an IR"-
valued function on IR". Let K(-) be a real-valued kernel function on IR";
it is non-negative, symmetric about the origin, and it takes its maximum
value at § = 0 and decreases monotonically to zero as any component of
the argument increases to infinity. The root of the equation g(d) = 0 is
approximated by the sequence {w,,} defined by

Fpi1 = T + ;—ZK (anhwn> Yy, (6.1)
n n

where h,, represents the “window” width. The kernel function K(-) plays

a crucial role. If w,, and 6,, are far apart, K((6,, — w,)/h,) will be very

small, and the measurement Y;, has little effect on the iteration.

For robustness purposes, one may use the constant step size and constant
window width (see [275]) algorithm

€ €
o =+ 5%[((‘9"5“") Y,, forn>0. (6.2)
The rate of convergence of w¢ to @ is slower than that for the classical
Robbins—Monro method and depends on the smoothness of g(-) in 6. As the
number of continuous #-derivatives increases to infinity, the rate approaches
that of the Robbins-Monro process [275]. A similar result holds when the
constant step size is replaced by decreasing step sizes.

An alternative approach is to fit a nonlinear curve to the data and then
use the fitted function to estimate the root. Nevertheless, this approach
can be quite costly in its data requirements.

See [95, 202] for applications to nonlinear regression problems. An appli-
cation to chemical process control is in [275], and [274] contains the results
of numerical experiments on a binary distillation column model.

2.7 Learning in Repeated Stochastic Games

The theory of learning optimal strategies in repeated stochastic games leads
to recursive stochastic algorithms whose mean ODEs can have quite inter-
esting behavior. Many such algorithms have a special structure (e.g., they
often satisfy the Kamke condition, which is defined above Theorem 4.4.1)
and implies properties of the ODE that can be exploited to either prove
convergence or to get insight into the asymptotic behavior. We will discuss
only one relatively simple class of such problems. Many recursive algorithms
that are based on either explicit or implicit competitive behavior have prop-
erties similar to those of repeated stochastic games; see, for example, the

60 2. Applications

proportional-fair sharing recursive algorithm in Chapter 3, which is used
to allocate resources in time-varying wireless systems. The reference [38]
concerns learning in another type of (implicit) game that arises in decen-
tralized access control in communications. It has the characteristics of a
game owing to the way that the various users affect each other’s perfor-
mance. Such problems have arisen in the economics literature [79]. There
is a large literature concerning other uses of recursive algorithms to study
“learning” phenomena in economics; for example, see [69, 175].

A game model. Consider a cooperative game with two players, each hav-
ing two possible actions. Each player knows only its own payoff matrix at
each time but keeps a record of the actions used by the other player. The
hope is that each player will learn its optimal strategy, if there is one. Let
0,,; denote the fraction of the first n plays in which player ¢ used its first
action, called a;1. Then 6,, can be written recursively as
1

Ont1,i = Oni + m I{ailused at time n+1} — gnﬂ} . (7.1)
At each time, player i first observes the payoff that it would receive under
each of its actions, supposes that the other player chooses its action at ran-
dom according to the historical record to date, and then chooses the action
that maximizes its conditional average return. This scenario has been called
fictitious play [11, 79]. Although the game is called cooperative, the players
do not coordinate their actions. The following format and assumptions are
taken from [11].

The actual payoffs to each player depend on the strategies of both players
Let {vgi; k,1 = 1,2} be given real numbers. Suppose that player 1 uses a1k
and player 2 uses action ag; at time n. Then the deterministic part of
the payoff to each player is vg;. A small random perturbation is added to
this deterministic payoff. For small 6 > 0, the actual payoff to player 1 is
u® | w = Ukl + 0Mpax and that to player 2 is ul , ,; = Vg + 07y 21, Where
(nnlk,z =1,2k=1,2),n = 1,2..., are sequén}:es of random variables
which are identically distributed, have zero mean, and are independent in n.
Thus, the part vg; of the payoff is common to both players, but the random
part is not: It plays the role of the effect of “private information.” One of
the interesting issues concerns the effect of such small “noisy” perturbations
on the asymptotic behavior. Each player knows its own possible payoffs,
but not those of the other player.!

Define the mean payoff to each player under each of its possible actions,
given that the other player acts at random according to its historical record:

—0 _ .0 o
Up 11,5 (On2) = up i1 1 p1n2 + Upyg g pe(l = On2).
In [11], The difference 7;,n, = Mn,i1 — Nni2 is assumed to have a density that is

continuous and positive on the entire real line, with the density at value n going
to zero fast enough so that it is as o(1/|7)).

2.7 Learning in Repeated Stochastic Games 61

\/

S

Figure 7.1. Phase plot for the perturbed game.

=0 4 4
Up 1,90 (0n,1) = Up 121001 + Upiq29/(1 = On1).
Define the conditional probability that ai; is better for player 1 than is

ai12: B
hy(On2) = P {ﬂi+1,1,1(9n72) > 71fwr171,2(9n,2)}

and define h3 (6, 1) for player 2 analogously.
The mean ODE for (1.1) is

01 = 5.(6) = B(6%) — 0", 6% = ga(6) = (6% — 0%, (T2)

Following [11], we say that 0 is a Nash distribution equilibrium if hS(6?) =
01, h3(0%) = 0.

Discussion. The paper [11] contains additional references, a detailed dis-
cussion of convergence and nonconvergence, as well as of many other is-
sues that arise, interpretations of the results in terms of the “information
patterns,” and of the differences between the perturbed and unperturbed
repeated games. As 6 — 0, the Nash distribution equilibria for (7.2) con-
verge to those for the system with § = 0. If there are more than two possible
actions for each player or if there are more than two players, the behav-
ior can be quite complicated, even chaotic. For example, there are three
player, 2-action games whose sample average frequencies #,, converge to a
non-degenerate limit cycle.

Example. This example is taken from [11]. Let v11 > wva1, V22 > v12,
v11 > v12. Then, as 6 — 0 there are three Nash distribution equilibria;
0 = (1,1),0 = (0,0) and 0 = (p*,p*), where p* = K/(1 4+ K) for K =
(va2 — v12)/(v11 — v21). The points § = (0,0) and 6§ = (1,1) are stable.
The mixed equilibrium at (p*,p*) is unstable. Then 6,, converges (with
probability one) to one of the pure strategies. [The noise in (7.1) destabilizes

62 2. Applications

the mixed strategy, as can be shown by using Theorem 5.8.1.] Let K > 1.
Then, as § — 0, the domain of attraction of (0,0) is much larger than that
of (1, 1). This suggests that convergence is “more likely” to the point (0, 0),
the “risk dominating strategy.” The phase plot for the ODE is given in
Figure 7.1.

2 Springer
http://www.springer.com/978-0-387-00894-3

Stochastic Approximation and Recursive Algorithms and
Applications

Kushner, H.; ¥in, G.

2003, XXIl, 478 p., Hardcowver

ISBEN: @78-0-387-00894-3

