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Weak Convergence: Introduction

7.0 Outline of Chapter

Up to now, we have concentrated on the convergence of {θn} or of {θn(·)} to
an appropriate limit set with probability one. In this chapter, we work with
a weaker type of convergence. In practical applications, this weaker type
of convergence most often yields the same information about the asymp-
totic behavior as the probability one methods. Yet the methods of proof are
simpler (indeed, often substantially simpler), and the conditions are weaker
and more easily verifiable. The weak convergence methods have consider-
able advantages when dealing with complicated problems, such as those
involving correlated noise, state-dependent noise processes, decentralized
or asynchronous algorithms, and discontinuities in the algorithms. If prob-
ability one convergence is still desired, starting with a weak convergence
argument can allow one to “localize” the probability one proof, thereby
simplifying both the argument and the conditions that are needed. For ex-
ample, the weak convergence proof might tell us that the iterates spend the
great bulk of the time very near some point. Then a “local” method such
as that for the “linearized” algorithm in Theorem 6.1.2 can be used. The
basic ideas have many applications to problems in process approximation
and for getting limit theorems for sequences of random processes.

Mathematically, the basic idea of weak convergence concerns the char-
acterization of the limits of the sequence of measures of the processes θn(·)
on the appropriate path space. In particular, one shows that the limit mea-
sures induce a process (on the path space) supported on some set of limit
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trajectories of the ODE θ̇ = ḡ(θ)+z, z ∈ −C(θ), (or θ̇ = ḡ(θ) for the uncon-
strained case). Despite this abstract formulation, one does not work with
the measures in either the proofs or the applications, but with the iterate
sequence itself, and the entire process of proof and applications is actually
simpler than what probability one methods require. The basic ideas are
applications of only an elementary part of the theory of weak convergence
of probability measures.

The main convergence results for stochastic approximations are in Chap-
ter 8. This chapter provides an introduction to the subject. Section 1 moti-
vates the importance and the role of weak convergence methods. The ideas
and developments in Section 2 are intended to illustrate some of the ideas
that underlie the theory of weak convergence and to provide a kind of “be-
hind the scene” view. They do not require any of the machinery of the
general theory. They need only be skimmed for the general ideas, because
stronger results will be proved in Chapter 8 with the use of the general
theory, without requiring any of the explicit constructions or methods that
are used in the proofs in Section 2. Despite the fact that the statements
of the theorems are more limited and the proofs require more details than
those that use the general theory of Section 3, they are included since they
relate the weak convergence method to what was done in Chapter 5, and
illustrate the role of “tightness” and the minimal requirements on the step
sizes εn and the moments of the martingale difference terms δMn. It was
seen in Section 6.10 that, under broad conditions and even for the constant-
step-size algorithm, if the iterate is close to a stable point or set at time
n, it will stay close to it for a time at least of the order of ec/εn for some
c > 0.

The general theory of weak convergence is introduced in Section 3. The
theorems cited there and in Section 4 are all we will require for the conver-
gence proofs in subsequent chapters. The reader need only understand the
statements and need not know their proofs. Subsection 4.1 gives criteria for
verifying that the “limit” is a martingale; this important idea will be used
in the proofs of Chapter 8. Subsection 4.2 gives “martingale-type” criteria
to verify that a given continuous-time martingale with continuous paths
is a Wiener process. A very useful perturbed test function criterion for
verifying tightness (relative compactness) is stated in Subsection 4.3. The
latter two results will be used in the proofs of the rates of convergence in
Chapter 10. The reference [241] contains a useful intuitive discussion of the
advantages and nature of weak convergence, with many graphs illustrating
the convergence.
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7.1 Introduction

Introductory remarks on weak vs. probability one convergence.
Chapters 5 and 6 were concerned with methods of proving the convergence
of {θn} or of {θn(·)} with probability one to an appropriate limit set. In
the context of the actual way in which stochastic approximation algorithms
are used in applications, an assertion of probability one convergence can be
misleading. For example, there is usually some sort of stopping rule that
tells us when to stop the iteration and to accept as the final value either
the most recent iterate or some function of the iterates that were taken
“shortly” before stopping. The stopping rule might simply be a limit on
the number of iterations allowed, or it might be a more sophisticated rule
based on an estimate of the improvement of the mean performance over
the recent past, or perhaps on the “randomness” of the behavior of the
recent iterations (the more “random,” the more likely that the iterate is
in a neighborhood of a stationary point). Generally, at the stopping time
all we know about the closeness to a limit point or set is information of a
distributional type.

If the application of stochastic approximation is done via a simulation,
then one can control the model so that it does not change over time (but
even then there is a stopping rule). Nevertheless, the situation is different
when the stochastic approximation is used to optimize a system on-line,
since convergence with probability one implies that we can iterate essen-
tially forever, and the system will remain unchanged however long the
procedure is. In practical on-line applications, the step size εn is often not
allowed to decrease to zero, due to considerations concerning robustness
and to allow some tracking of the desired parameter as the system changes
slowly over time. Then probability one convergence does not apply. Indeed,
it is the general practice in signal processing applications to keep the step
size bounded away from zero. In the Kiefer–Wolfowitz procedure for the
minimization of a function via a “noisy” finite difference-based algorithm,
the difference interval is often not allowed to decrease to zero. This creates
a bias in the limit, but this bias might be preferred to the otherwise slower
convergence and “noisier” behavior when the variance of the effective noise
is inversely proportional to the square of a difference interval that goes to
zero. Thus, even under a probability one convergence result, the iterates
might converge to a point close to the minimum, but not to the minimum
itself. Such biases reduce the value of a probability one convergence result.

The proofs of probability one results tend to be quite technical. They
might not be too difficult when the noise terms are martingale differences,
but they can be very hard for multiscale, state-dependent-noise cases or
decentralized/asynchronous algorithms. To handle the technical difficulties
in an application where one wishes to prove probability one convergence,
one might be forced to introduce assumptions that are not called for (such
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as modifications of the algorithm) or that are hard to verify.
These concerns do not eliminate the value of convergence with proba-

bility one. Convergence theorems are a guide to behavior. Although no
algorithm is carried to infinity, it is still comforting to know that if the
iterations are allowed to continue forever in the specified ideal environ-
ment, they will assuredly converge. However, the concerns that have been
raised emphasize that methods for probability one convergence might offer
less than what appears at first sight, and that methods with slightly more
limited convergence goals can be just as useful, particularly if they give a
lot of insight into the entire process, are technically easier, require weaker
conditions, and are no less informative under the conditions that prevail in
applications.

This and the next chapter will focus on convergence in a weak or distri-
butional sense. It will turn out that the proofs are easier and conditions
weaker and that we can learn nearly as much about where the iterate se-
quence spends its time as with probability one methods. For complicated
algorithms, the proofs are substantially simpler. The methods are the nat-
ural ones if the step sizes do not decrease to zero, where probability one
convergence is not pertinent. When the step sizes do go to zero, weak con-
vergence does not preclude convergence with probability one. In fact, first
proving weak convergence can simplify the ultimate proof of probability
one convergence, since it allows a “localization” of the proof. Recall that
the general approach has been to get the mean ODE determined by the
“average dynamics,” show that the solution to the ODE tends to an ap-
propriate limit set (or a set of stationary points if the algorithm is of the
gradient descent type), and then show that the chosen limit points of the
solution to the ODE are the limit points of {θn}. The mean ODE is eas-
ier to derive in that there are weaker conditions and simpler proofs when
weak convergence methods are used. The process {θn} can still be shown to
spend nearly all of its time arbitrarily close to the same limit point or set.
For example, suppose that the limit set is a just a unique asymptotically
stable (in the sense of Liapunov) point θ̄ of the ODE. Then, once we know,
via a weak convergence analysis, how to characterize the path to θ̄ and
that {θn} spends nearly all of its time (asymptotically) in any arbitrarily
small neighborhood of θ̄, one can use a local analysis to get convergence
with probability one, under weaker conditions (due to the local nature of
the proof) than what would be needed by a pure probability one technique.
For example, the methods of Chapters 5 and 6 can be used locally, or the
local large deviations methods of [63] can be used. Whether or not one
follows a weak convergence proof with a probability one convergence proof,
under broad conditions it can be shown that if the error |θn − θ̄| is small,
it stays small afterwards for an average time of at least the order of ec/εn
for some c > 0.

Some basic ideas and facts from the theory of weak convergence will be
discussed in the next section. The theory is a widely used tool for obtain-



7.2 Martingale Difference Noise 217

ing approximation and limit theorems for sequences of stochastic processes.
There is only a small amount of machinery to be learned, and this machin-
ery has applications well beyond the needs of this book. Before discussing
the ideas of the theory of weak convergence in detail, we return to the model
of Chapter 5, where the noise terms are martingale differences and prove a
convergence theorem under weaker conditions than used there. The proof
that will be given is of a “weak convergence nature” and gives some of the
flavor of weak convergence. Owing to the martingale difference property, it
is quite straightforward and does not require any of the general machinery
of weak convergence analysis of Sections 3 and 4. The proofs and the state-
ments of the theorems are intended to be illustrative of some of the ideas
underlying the theory of weak convergence. They are more awkward than
necessary, since the tools of the general theory are avoided. However, the
constructions used are of independent interest and play an important role
in relating the general theory to what has been done for the probability one
case, although they will not be used in applications of that general theory
in the following chapters. Since more general results will be obtained in
Chapter 8, the results and ideas of the next section should be skimmed for
their intuitive content and insights into the types of approximations that
can be used for “distributional-sense” approximation and limit theorems,
and what might be required if the general theory were not available.

7.2 Martingale Difference Noise: Simple
Alternative Approaches

Introductory comments and definitions. Convergence results for two
simple algorithmic forms will be given in this section. The theorems are
quite similar, although different methods are used for the proofs. In the
second problem, there is no constraint set H, and it is assumed that {θn}
is bounded in probability. These models are chosen for illustrative purposes
only. The methods to be used avoid the explicit use of the machinery of
weak convergence theory, but they illustrate some of the concepts. The
explicit constructions used in these theorems are not necessary when the
general theory is used.

The first result (Theorem 2.1 and its corollary) depends on the fact
that if a sequence of random variables converges in probability, there is
always a subsequence that converges with probability one to the same limit.
The second result (Theorem 2.2) depends on the fact that any sequence
of random variables which is bounded in probability has a subsequence
that converges in distribution to some random variable. These basic facts
provide simple connections between the convergence of the sequence {θn(·)}
with probability one and in the weak or distributional sense. In both cases,
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the technique of proof depends on the choice of appropriate subsequences.
In the first case, it is shown that for any sequence {θn(·), Zn(·)}, there is
always a subsequence to which the methods of Theorems 5.2.1 and 5.2.3
can be applied. The second method works with convergence in distribution
directly and leads to a “functional” limit theorem. The reader should keep
in mind that the assumptions are selected for convenience in exposing the
basic ideas and that stronger results are to be obtained in Chapter 8.

Let {Fn} denote a sequence of nondecreasing σ-algebras, where Fn mea-
sures at least {θi, Yi−1, i ≤ n}, and let En denote the expectation condi-
tioned on Fn. Suppose that we can write EnYn = ḡ(θn) + βn, where βn is
a small bias term. First, we work with the constrained algorithm

θn+1 = ΠH(θn + εnYn) = θn + εnYn + εnZn. (2.1)

It will be shown that the mean ODE

θ̇ = ḡ(θ) + z, z(t) ∈ −C(θ(t)) (2.2)

continues to characterize the asymptotic behavior. Recall the definitions
tn =

∑n−1
i=0 εi, θ

0(t) = θn on [tn, tn+1), and θn(t) = θ0(t + tn), where
θn(t) = θ0 for t ≤ −tn. As usual, decompose the interpolated process θn(·)
as

θn(t) = θn + Ḡn(t) +Mn(t) +Bn(t) + Zn(t), (2.3)

where we recall that, for t ≥ 0,

Ḡn(t) =
m(tn+t)−1∑

i=n

εiḡ(θi), Mn(t) =
m(tn+t)−1∑

i=n

εiδMi,

Bn(t) =
m(tn+t)−1∑

i=n

εiβi, Zn(t) =
m(tn+t)−1∑

i=n

εiZi,

where δMn = Yn − EnYn.

Theorem 2.1. Assume the step-size condition (5.1.1), (A5.2.1)–(A5.2.3),
and any of the constraint set conditions (A4.3.1), (A4.3.2), or (A4.3.3).
Suppose that E|βn| → 0. Then, for each subsequence of {θn(·), Zn(·)},
there is a further subsequence (indexed by nk) such that {θnk(·), Znk(·)}
is equicontinuous in the extended sense with probability one (on a sequence
of intervals going to infinity), and whose limits satisfy the ODE (2.2). Let
there be a unique limit point θ̄ of (2.2), which is asymptotically stable in
the sense of Liapunov. Then, for each µ > 0, T > 0,,

lim
n
P

{
sup
t≤T

∣∣θn(t) − θ̄
∣∣ > µ

}
= 0. (2.4a)

More generally, there are µn → 0, Tn → ∞ such that

lim
n
P

{
sup
t≤Tn

distance [θn(t), LH ] ≥ µn

}
= 0. (2.4b)
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In the sense of convergence in probability, the fraction of time θn(·) spends
in a δ neighborhood of LH goes to one as n → ∞.

Remarks on the theorem. According to the estimates in Sections 6.9
and 6.10, under broad conditions one can use Tn = O(ec/εn) in (2.4) for
some c > 0. It will be seen that the behavior proved by both the weak
convergence and the probability one methods are similar. They both show
that the path essentially follows the solution to the ODE, for large n.
Suppose that the path enters the domain of attraction of an asymptotically
stable point θ̄ infinitely often. Then (ignoring some null set of paths), the
probability one methods show that it will eventually converge to θ̄. Under
the weaker conditions used for the weak convergence proofs we might not
be able to prove that it will never escape. But this escape, if it ever occurs,
will be a “large deviations” phenomena; i.e., it will be very rare, perhaps
too rare to be of concern.

Note that we do not need a summability condition of the type
∑
n ε

1+γ
n <

∞ for some γ > 0; only εn → 0 is needed. The corollary given after the
proof shows that uniform square integrability of {Yn} can be replaced by
uniform integrability. Further comments on the nature of the convergence
results appear after Theorems 2.2 and 8.2.1.

Proof. The proof is modeled on that of Theorem 5.2.1. The main idea is
the careful choice of subsequence. By the fact that there is a 0 ≤ K1 < ∞
such that supnE|Yn|2 ≤ K1, the inequality (4.1.4) implies that for T > 0
and µ > 0,

P

{
sup
t≤T

|Mn(t)| ≥ µ

}
≤
E
∣∣∣∑m(tn+T )−1

i=n εiδMi

∣∣∣2
µ2

≤ K1
∑m(tn+T )−1
i=n ε2i
µ2 .

(2.5)

Next, it will be shown that, for any T < ∞ and µ > 0,

lim
n
P

{
sup
t≤T

|yn(t)| ≥ µ

}
= 0 (2.6)

for yn(·) being either Mn(·) or Bn(·). Since εn → 0, we have

lim
n

m(tn+T )∑
i=n

ε2i = 0 (2.7)

for each T > 0, which yields (2.6) for Mn(·). Since E|βn| → 0,

E

m(tn+T )∑
i=n

εi|βi| → 0,
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which implies that (2.6) also holds for Bn(·).
By (2.6), for Mn(·) and Bn(·) (or by the proof of the following corollary

in the case where uniform integrability of {Yn} replaces uniform square
integrability),

θn(t) = θn +
m(tn+t)−1∑

i=n

εiḡ(θi) + Zn(t) + κn(t), (2.8)

where κn(t) = Mn(t) +Bn(t) and for any µ > 0,

lim
n
P

{
sup
t≤T

|κn(t)| ≥ µ

}
= 0.

By the fact that Mn(·) and Bn(·) satisfy (2.6), there are mk → ∞ and
Tk → ∞ such that

P

{
sup
t≤Tk

|κn(t)| ≥ 2−k
}

≤ 2−k, n ≥ mk. (2.9)

Now, (2.9) and the Borel–Cantelli Lemma imply that for any sequence
nk ≥ mk,

lim
k

sup
t≤Tk

|κnk(t)| = 0, (2.10)

with probability one. From this point on, the proof concerning equiconti-
nuity and the mean ODE follows that of Theorems 5.2.1 or 5.2.3.

The proof of (2.4) uses a contradiction argument. Assuming that it is
false, extract a suitable subsequence for which the liminf is positive and
use the previous conclusions to get a contradiction. Proceed as follows. Let
T > 0 and (extracting another subsequence if necessary) work with the left
shifted sequence {θnk(−T + ·), Znk(−T + ·). Then use the fact that for any
δ > 0 the time required for the solution of (2.2) to reach and remain in
Nδ(LH) is bounded in the initial condition in H. Since T is arbitrary, this
yields that the solution to the ODE on [0,∞) is in Nδ(LH) for each δ > 0.
The few remaining details are left to the reader. �

Remark on equicontinuity. In Theorem 5.2.1, the original sequence
{θn(·), Zn(·)} was equicontinuous in the extended sense with probability
one and limn supt≤T |κn(t)| = 0 with probability one. Thus, we were able
to examine the convergent subsequences of {θn(ω, ·), Zn(ω, ·)} for (almost
all) fixed ω, with the “errors” κn(ω, ·) vanishing as n → ∞. In the current
case, we know only that each sequence {θn(·), Zn(·)} has a further subse-
quence that is equicontinuous in the extended sense with probability one
(on a sequence of time intervals increasing to the entire real line), and the
errors vanish (for almost all ω) only along that subsequence. Hence, un-
der only the conditions of Theorem 2.1, we cannot expect that for almost
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all ω, any subsequence of {θn(ω, ·), Zn(ω, ·)} will always have a further
subsequence that converges to a solution to the mean ODE.

Definition. A sequence {Yn} of vector-valued random variables is said to
be uniformly integrable if

sup
n
E|Yn|IB → 0 as P{B} → 0,

where B is a measurable set. This is equivalent to the property

lim
K→∞

sup
n
E|Yn|I{|Yn|≥K} = 0.

Remark on uniform integrability. A nice aspect of the weak conver-
gence approach is that the uniform integrability of {Yn} is enough to assure
that the limit processes are continuous without using the “reflection” char-
acter of the Zn terms, as required in the proof of Theorem 5.2.3.

Corollary. The conclusions of the theorem continue to hold if the square
integrability of {Yn} is replaced by uniform integrability.

Proof of the corollary. Assume the uniform integrability condition in
lieu of square integrability. The only problem is the verification of (2.6)
for yn(·) = Mn(·). For K > 0, let IK(v) denote the indicator function of
the set {v ∈ IRr : |v| ≥ K}. Define the truncated sequence {Yn,K} by
Yn,K = Yn(1 − IK(Yn)). Then Yn = Yn,K + YnIK(Yn). Define δMn,K and
δκn,K by

δMn = (Yn − EnYn) = [Yn,K − EnYn,K ] + [YnIK(Yn) − EnYnIK(Yn)]
≡ δMn,K + δκn,K .

The uniform integrability of {Yn} and Jensen’s inequality (4.1.11) imply
that

lim
K→∞

sup
n
E [|YnIK(Yn)| + |EnYnIK(Yn)|] ≤ 2 lim

K→∞
sup
n
E|Yn|IK(Yn) = 0.

(2.11)
Equation (2.11) and the definition of δκi,K imply that

lim
K→∞

sup
n
E

m(tn+T )∑
i=n

εi|δκi,K | = 0. (2.12)
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For µ > 0 and T > 0, we can write

lim sup
n

P

{
sup
t≤T

|Mn(t)| ≥ µ

}
≤ lim sup

n
P

sup
t≤T

∣∣∣∣∣∣
m(tn+t)−1∑

i=n

εiδMi,K

∣∣∣∣∣∣ ≥ µ/2


+ lim sup

n
P

sup
t≤T

∣∣∣∣∣∣
m(tn+t)−1∑

i=n

εiδκi,K

∣∣∣∣∣∣ ≥ µ/2

 .

(2.13)

Now, given ν > 0, there is a 0 ≤ K < ∞ such that (2.12) implies that the
last term on the right side in (2.13) is less than ν. Next, (2.5) holds with
δMn,K (that is bounded by 2K) replacing δMn, where K1 = 4K2. These
facts imply (2.6) for yn(·) = Mn(·). The rest of the details are as in the
theorem. �

Remarks on extensions to correlated noise. The conditions required
in Theorem 2.1 and its corollary showed some of the possibilities inherent
in the weak convergence method, since we required only εn → 0, uniform
integrability of {Yn}, and E|βn| → 0 (the latter condition will be weakened
in Chapter 8). For more general algorithms, where there are noise processes
such as the sequence {ξn} appearing in Chapter 6, some additional averag-
ing is needed. In Theorem 6.1.1, the condition (A6.1.3) was used to average
out the noise. To use (A6.1.3), it was necessary to show that the paths of
θn(·) were asymptotically continuous with probability one, so that the time
varying θn could be replaced by a fixed value of θ over small time inter-
vals. The analog of that approach in the present weak convergence context
involves showing that for each positive T and µ,

lim
∆→0

lim sup
n

P

{
max
j∆≤T

max
0≤t≤∆

|θn(j∆ + t) − θn(j∆)| ≥ µ

}
= 0. (2.14)

This condition does not imply asymptotic continuity of {θn(·)} with prob-
ability one, and hence it is weaker than what was needed in Chapter 6.
Indeed, (2.14) is implied by the uniform integrability of {Yn}. Thus, for
the correlated noise case and under uniform integrability, one could redo
Theorem 2.1 by replacing condition (A6.1.3) by the weaker condition ob-
tained by deleting the supj≥n inside the probability there. With analogous
adjustments to assumptions (A6.1.4)–(A6.1.7), such an approach can be
carried out. But the method to be used in the next chapter is preferable
in general because it is simpler to use, requires weaker conditions, and is
more versatile.

An alternative approach. In the next theorem, θ̃0(·) denotes the piece-
wise linear interpolation of {θn} with interpolation interval {[tn, tn+1)},
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and θ̃n(·) the left shift by tn. Let Cr[0,∞) denote the space of continuous
IRr-valued functions on the time interval [0,∞) with the local sup norm
metric (i.e., a sequence converges if it converges uniformly on each bounded
time interval). The convergence assertion (2.15) is in terms of the conver-
gence of a sequence of expectations of bounded and continuous functionals.
This is actually equivalent to the types of convergence assertions given in
Theorem 2.1, as can be seen by suitable choices of the function F (·). The
form (2.15) of the convergence assertion is typical of the conclusions of weak
convergence theory. The methods to be used in Chapter 8 work with the
original piecewise constant interpolated processes θn(·) and do not require
the piecewise linear interpolation.

Theorem 2.2. Assume the step-size condition (5.1.1) and that {Yn} is
uniformly integrable. Drop the constraint set H and let {θn} be bounded in
probability. Let EnYn = ḡ(θn) + βn, where E|βn| → 0 and ḡ(·) is bounded
and continuous. Suppose that the solution to the ODE is unique (going
either forward or backward in time) for each initial condition, and that
the limit set L, over all initial conditions, is bounded. Then, for each sub-
sequence of {θ̃n(·)} there is a further subsequence (indexed by nk) and a
process θ(·) that satisfies θ̇ = ḡ(θ) such that {θ̃nk(·)} converges in distrib-
ution to θ(·) in the sense that for any bounded and continuous real-valued
function F (·) on Cr[0,∞)

EF (θ̃nk(·)) k−→ EF (θ(·)). (2.15)

For almost all ω, θ(t, ω) takes values in an invariant set of the ODE. Also,
(2.4b) holds when LH is replaced by the invariant set. If the limit set is
simply a point, θ̄, then EF (θ̃n(·)) → F (θ̄(·)), where θ̄(t) = θ̄.

Remark on the convergence assertion and the limit points. Anal-
ogously to the conclusions of Theorem 2.1, the theorem says that for large
n, the paths of θ̃n(·) are essentially concentrated on the set of limit tra-
jectories of the ODE θ̇ = ḡ(θ). This can be seen as follows. Let L denote
the largest bounded invariant set of the ODE. For y(·) ∈ Cr[0,∞) and any
positive T , define the function

F̃T (y(·)) = sup
t≤T

distance[y(t), L],

where distance[y, L] = minu∈L |y − u|. The function F̃T (·) is continuous
on Cr[0,∞). Then the theorem says that for each subsequence there is a
further subsequence (indexed by nk) such that EF̃T (θ̃nk(·)) → EF̃T (θ(·)) =
0, where the limit is zero since the value of F̃T (·) on the paths of the
limit process is zero with probability one. Thus, the sup over t ∈ [0, T ]
of the distance between the original sequence θ̃n(t) and L goes to zero in
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probability as n → ∞. Indeed, the same result holds if T is replaced by
Tn → ∞ slowly enough. Thus, there are Tn → ∞ such that for any µ > 0,

lim
n
P

{
sup
t≤Tn

distance[θ̃n(t), L] ≥ µ

}
= 0.

We note the key role to be played by the estimate (2.14). This estimate im-
plies the “tightness” condition, which will be basic to the results of Chapter
8 and is guaranteed by the uniform integrability of {Yn}.

Proof. The theorem remains true if, for any T > 0, F (·) depends on the
values of its argument only at times t ≤ T. Both F (·) and T will be fixed
henceforth. Recall that a compact set in Cr[0, T ] is a set of equicontinuous
functions. Let y(·) denote the canonical element of Cr[0, T ]. For any ν >
0 and compact set C0 ⊂ Cr[0, T ], there is a ∆ > 0 and a real-valued
continuous function F∆(·) on Cr[0, T ] that depends on y(·) only at times
{i∆, i∆ ≤ T} such that

|F (y(·)) − F∆(y(·))| ≤ ν, y(·) ∈ C0.

We can write

θ̃n(t) = θn +
m(tn+t)−1∑

i=n

εiḡ(θi) + κn(t), (2.16)

where κn(t) = Mn(t)+Bn(t). Since E|βn| → 0, limnEmaxt≤T |Bn(t)| = 0.
By the martingale property, the uniform integrability, (4.1.5) (applied to
the sums of εiδMi,K in the corollary to Theorem 2.1) and the estimates
(2.13), for each T > 0 we have

lim
n
Emax

t≤T
|Mn(t)| = 0.

Since for each µ > 0,

lim
n
P

{
sup
t≤T

|κn(t)| ≥ µ

}
= 0, (2.17a)

we have

lim
K→∞

sup
n
P

{
sup
t≤T

∣∣∣θ̃n(t)∣∣∣ ≥ K

}
= 0. (2.17b)

Equation (2.17a) and the representation (2.16) imply that (2.14) holds.
Equations (2.14) and (2.17b) imply that for each ν > 0 there is a compact

set Cν ⊂ Cr[0, T ] such that for each n, θ̃n(·) ∈ Cν with probability greater
than 1 − ν. [This is also implied directly by the uniform integrability of
{Yn}.] Thus we need only show that there is a subsequence nk and a process
θ(·) satisfying θ̇ = ḡ(θ) and taking values in the largest bounded invariant
set of this ODE such that for any ∆ > 0,

EF∆(θ̃nk(·)) → EF∆(θ(·)),
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where the bounded and continuous real-valued function F∆(·) depends only
on the values of the argument at times {i∆, i∆ ≤ T}. [We note that a key
point in the general theory is to show that, with a high probability (not
depending on n), the paths of θ̃n(·) are confined to a compact set in the
path space. The general theory also uses limits taken along convergent
subsequences to help characterize the limits of the original sequence.]

By the fact that {θn} is bounded in probability, there is a subsequence
nk and a random variable θ(0) (on some probability space) such that {θnk

}
converges in distribution to θ(0). Let T denote the positive rational num-
bers. By (2.17b) and the diagonal method, we can take a further sub-
sequence {mk} such that {θ̃mk(t), t ∈ T } converges in distribution, and
denote the limit (on some probability space) by {θ(t), t ∈ T }. By the rep-
resentation (2.16), the boundedness of ḡ(·) and the fact that (2.17a) holds
for each T , there is a version of the limit that is continuous on T with
probability one. Hence, we can suppose that θ(·) is defined for all t ≥ 0 and
is continuous.

By (2.14), (2.16), and (2.17a), we can write

θ(nδ) = θ(0) +
n−1∑
i=0

δḡ(θ(iδ)) + κδ(nδ), (2.18)

where limδ P{supt≤T |κδ(t)| ≥ µ} = 0 for each µ > 0, T > 0. By the
continuity of θ(·) we see that it must satisfy the ODE θ̇ = ḡ(θ). By the
uniqueness to the solution of the ODE for each initial condition and the
boundedness of ḡ(·), the limit does not depend on the chosen further subse-
quence {mk} and the original subsequence can be used. Now (2.15) clearly
holds for F∆(·).

We need only show that with probability one the paths of θ(·) take
values in the largest bounded invariant set of the ODE, and we will sketch
the details. We have worked on the time interval [0,∞). Follow the same
procedure on the interval (−∞,∞) by replacing T by T1 = T ∪ (−T ).
Then (extracting a further subsequence {mk} if necessary), {θ̃mk(t), t ∈ T1}
converges in distribution to a process θ(t), t ∈ T1. As above, it can be
assumed that θ(t) is defined and continuous on (−∞,∞) and satisfies the
ODE. Again, by the uniqueness of the solution to the ODE for each initial
condition, the further subsequence indexed by mk is not needed, and one
can use the original subsequence.

Next, note that the boundedness in probability of the sequence {θn}
implies that for any µ > 0, there is a Kµ < ∞ such that if θ is any limit in
distribution of a subsequence of {θn}, then

P {|θ| ≥ Kµ} ≤ µ. (2.19)

Thus, for each µ > 0, we can suppose that |θ(t)| ≤ Kµ for each t with
probability ≥ 1 − µ. Now, this fact and the stability property of the limit
set L implies that the solution is bounded and lies in L for all t. �
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7.3 Weak Convergence

7.3.1 Definitions

Convergence in distribution. Let {An} be a sequence of IRk-valued
random variables on a common probability space (Ω, P,F), with (an,i, i =
1, . . . , k) being the real-valued components of An. Let Pn denote the mea-
sures on the Borel sets of IRk determined by An, and let x = (x1, . . . , xk)
denote the canonical variable in IRk. If there is an IRk-valued random vari-
able A with real-valued components (a1, . . . , ak) such that

P{an,1 < α1, . . . , an,k < αk} → P{a1 < α1, . . . , ak < αk} (3.1)

for each α = (α1, . . . , αk) ∈ IRk at which the right side of (3.1) is continu-
ous, then we say that An converges to A in distribution. Let PA denote the
measure on the Borel sets of IRk determined by A. An equivalent definition
[34] is that

EF (An) =
∫
F (x)dPn(x) → EF (A) =

∫
F (x)dPA(x) (3.2)

for each bounded and continuous real-valued function F (·) on IRk. We say
that the sequence {Pn} is tight or bounded in probability if

lim
K→∞

sup
n
Pn {(−∞,−K] ∪ [K,∞)} = lim

K→∞
sup
n
P {|An| ≥ K} = 0. (3.3a)

For real- or vector-valued random variables, the term mass preserving is
sometimes used in lieu of tight. An equivalent definition of boundedness in
probability is: Let |An| < ∞ with probability one for each n and for each
small µ > 0, let there be finite Mµ and Kµ such that

P {|An| ≥ Kµ} ≤ µ, for n ≥ Mµ. (3.3b)

Given a sequence of random variables {An} with values in IRk (or more
generally, in any complete separable metric space), tightness is a necessary
and sufficient condition that any subsequence has a further subsequence
that converges in distribution [34]. Convergence in distribution is also called
weak convergence.

The notion of convergence in distribution extends, via the general theory
of weak convergence, to sequences of random variables that take values in
more abstract spaces than IRk. The extension provides a powerful method-
ology for the approximation of random processes and for obtaining useful
limit theorems for sequences of random processes, such as our θn(·).

The following example is one of the classical illustrations of weak con-
vergence. Let {ξn} be a sequence of real-valued random variables that are
mutually independent and identically distributed, with mean zero and unit
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variance. Then, by the classical central limit theorem
∑n
i=1 ξi/

√
n con-

verges in distribution to a normally distributed random variable with zero
mean and unit variance. Now, define q(t) = max{i : i/n ≤ t} and define
the process with piecewise constant paths

Wn(t) =
q(t)−1∑
i=0

ξi/
√
n. (3.4)

Then the central limit theorem tells us that Wn(t) converges in distribution
to a normally distributed random variable with mean zero and variance t.
For an integer k, let 0 = t0 < t1, . . . , tk+1 be real numbers, and let W (·) be
a real-valued Wiener process with unit variance parameter. Then, by the
multivariate central limit theorem [34], the set {Wn(ti+1) −Wn(ti), i ≤ k}
converges in distribution to {W (ti+1) − W (ti), i ≤ k}. It is natural to
ask whether Wn(·) converges to W (·) in a stronger sense. For example,
will the distribution of the first passage time for Wn(·) defined by min{t :
Wn(t) ≥ 1} converge in distribution to the first passage time for W (·)
defined by min{t : W (t) ≥ 1}? Will the maximum max{Wn(t) : t ≤ 1}
converge in distribution to max{W (t) : t ≤ 1} and similarly for other
useful functionals? In general, we would like to know the class of functionals
F (·) for which F (Wn(·)) converges in distribution to F (W (·)). Donsker’s
Theorem states that this convergence occurs for a large class of functionals
[25, 68].

Now, let us consider the following extension, where the ξn are as given
above. For given real-valued U(0) and ∆ > 0, define real-valued random
variables U∆

n by U∆
0 = U(0) and for n ≥ 0,

U∆
n+1 = U∆

n + ∆g(U∆
n ) +

√
∆ξn,

where g(·) is a continuous function. Define the interpolated process U∆(·)
by: U∆(t) = U∆

n on [n∆, n∆+∆). Then in what sense will U∆(·) converge
to the process defined by the stochastic differential equation

dU = g(U)dt+ dW?

We expect that this stochastic differential equation is the “natural” limit
of U∆(·).

More challenging questions arise when the random variables ξn are cor-
related. The central limit theorem and the laws of large numbers are very
useful for the approximation of random variables, which are the “sums” of
many small effects whose mutual dependence is “local,” by the simpler nor-
mally distributed random variable or by some constant, respectively. The
theory of weak convergence is concerned with analogous questions when
the random variables are replaced by random processes as in the above
examples. There are two main steps analogous to what is done for proving
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the central limit theorem: First show that there are appropriately conver-
gent subsequences and then identify the limits. The condition (3.3) says
that, neglecting a set of small probability for each n (small, uniformly in
n), the values of random variables An are confined to some compact set.
There will be an analogous condition when random processes replace ran-
dom variables.

The path spaces D(−∞,∞) and D[0,∞). The processes θn(·),Mn(·),
and Zn(·) used in Chapters 5 and 6 and Section 1 were piecewise con-
stant and had small discontinuities (of the order of the step size) at the
“jump times.” However, when using the Arzelà–Ascoli Theorem to justify
the extraction of subsequences that converge uniformly on bounded time
intervals to continuous limits, we checked equicontinuity by looking at the
processes at the jump times. Equivalently, we used the extended definition
of equicontinuity (4.2.2) and the extended Arzelá–Ascoli Theorem 4.2.2.
This procedure is obviously equivalent to working with the piecewise linear
interpolations. We could continue to work with piecewise linear interpola-
tions or the extended definition of equicontinuity. However, from a technical
point of view it turns out to be easier to use a path space that allows dis-
continuities, in particular because the verification of the extension of the
concept of tightness will be simpler.

The statement of Theorem 2.2 used the path space Cr[0,∞) of the piece-
wise linear interpolations of θn. The applications of weak convergence the-
ory commonly use the space of paths that are right continuous and have
limits from the left, with a topology known as the Skorohod topology. This
topology is weaker than the topology of uniform convergence on bounded
time intervals. The key advantage of this weaker topology is that it is easier
to prove the functional analog of the tightness condition (3.3) for the var-
ious processes of interest. This will be more apparent in Chapters 10 and
11, where a more sophisticated form of the theory is used to get the rates
of convergence. Since the limit processes θ(·) will have continuous paths in
our applications, the strength of the assertions of the theorem is the same
no matter which topology is used.

Let D(−∞,∞) (resp., D[0,∞)) denote the space of real-valued functions
on the interval (−∞,∞) (resp., on [0,∞)) that are right continuous and
have left-hand limits, with the Skorohod topology used, and Dk(−∞,∞)
(resp., Dk[0,∞)) its k-fold product. The exact definition of the Skorohod
topology is somewhat technical and not essential for our purposes. It is
given at the end of the chapter, but is not explicitly used in subsequent
chapters. Full descriptions and treatments can be found in [25, 68]. We
note the following properties here. Let fn(·) be a sequence in D(−∞,∞).
Then the convergence of fn(·) to a continuous function f(·) in the Skoro-
hod topology is equivalent to convergence uniformly on each bounded time
interval . Under the Skorohod topology, D(−∞,∞) is a complete and sep-
arable metric space. Since we will later use the Skorohod topology to prove
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rate of convergence results, for consistency we will use it from this point on.
Loosely speaking, the Skorohod topology is an extension of the topology of
uniform convergence on bounded time intervals in the sense that a “local”
small (n, t)-dependent stretching or contraction of the time scale is allowed,
the purpose of which is to facilitate dealing with “nice” discontinuities that
do not disappear in the limit.

Definition of weak convergence. Let B be a metric space. In our appli-
cations, it will be either IRk or one of the product path spaces Dk(−∞,∞)
or Dk[0,∞) for an appropriate integer k. Let B denote the minimal σ-
algebra induced on B by the topology. Let {An, n < ∞} and A be B-valued
random variables defined on a probability space (Ω, P,F), and suppose that
Pn and PA are the probability measures on (B,B) determined by An and
A, respectively. We say that Pn converges weakly to PA if (3.2) holds for all
bounded, real-valued, and continuous functions on B, and write the conver-
gence as Pn ⇒ PA. Equivalently, with a convenient abuse of terminology,
we say that An converges weakly to A or that A is the weak limit or weak
sense limit of {An}, and write An ⇒ A. These ways of expressing weak
convergence will be used interchangeably.

A set {An} of random variables with values in B is said to be tight if for
each δ > 0 there is a compact set Bδ ⊂ B such that

sup
n
P{An �∈ Bδ} ≤ δ. (3.5)

To prove tightness of a sequence of IRk-valued processes, it is enough to
prove tightness of the sequence of each of the k components. A set {An}
of B-valued random variables is said to be relatively compact if each sub-
sequence contains a further subsequence that converges weakly.

7.3.2 Basic Convergence Theorems
A basic result, Prohorov’s Theorem, is given next.

Theorem 3.1. [25, Theorems 6.1 and 6.2]. If {An} is tight, then it is
relatively compact (i.e, it contains a weakly convergent subsequence). If B
is complete and separable, tightness is equivalent to relative compactness.

Theorem 3.2. [25, Theorem 5.1] Let An ⇒ A. Let F (·) be a real-valued
bounded and measurable function on B that is continuous with probability
one under the measure PA. Then EF (An) → EF (A).

Tightness in D(−∞,∞) and D[0,∞). An advantage to working with
the path space D(−∞,∞) in lieu of C(−∞,∞) or C[0,∞) is that it is
easier to prove tightness in D(−∞,∞). Let An(·) be processes with paths
in D(−∞,∞). The following criteria for tightness will be easy to apply to
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our problems. Let Fn
t denote the σ-algebra generated by {An(s), s ≤ t},

and let τ denote an Fn
t -stopping time.

Theorem 3.3. [[68, Theorem 8.6, Chapter 3], [118, Theorem 2.7b]] Let
{An(·)} be a sequence of processes that have paths in D(−∞,∞). Suppose
that for each δ > 0 and each t in a dense set in (−∞,∞), there is a compact
set Kδ,t in IR such that

inf
n
P {An(t) ∈ Kδ,t} ≥ 1 − δ (3.6)

and for each positive T ,

lim
δ↓0

lim sup
n

sup
|τ |≤T

sup
s≤δ

Emin [|An(τ + s) −An(τ)|, 1] = 0. (3.7)

Then {An(·)} is tight in D(−∞,∞). If the interval [0,∞) is used, tightness
holds if |τ | ≤ T is replaced by 0 ≤ τ ≤ T.

Remarks on tightness and the limit process. Let the piecewise con-
stant interpolations θn(·) and Zn(·) be defined on (−∞,∞) until further
notice. Note that representation (2.16) and estimate (2.17) imply the tight-
ness of {θn(·)} in Dr(−∞,∞). If a compact constraint set H is used, then
(3.6) holds. For the problems in Chapters 5 and 6, the fact that the ex-
tended Arzelà–Ascoli Theorem was applicable (with probability one) to
{θn(·), Zn(·)} implies (3.7) for these processes. Thus the tightness criterion
is always satisfied under the conditions used in Chapters 5 and 6. It is clear
that (3.7) does not imply the continuity of the paths of either An(·) or
any weak sense limit A(·). Indeed, (3.7) holds if {An(·)} is a sequence of
continuous-time Markov chains on a compact state space S with uniformly
bounded and time independent transition rates. Then it can be shown that
any weak sense limit process is also a continuous-time Markov chain with
values in S and time independent transition functions.

Suppose that a sequence of processes {An(·)} is tight in Dr(−∞,∞) and
that on each interval [−T, T ] the size of the maximum discontinuity goes
to zero in probability as n → ∞. Then any weak sense limit process must
have continuous paths with probability one.

Suppose that {θn(·), Zn(·)} (or, otherwise said {Pn}) is tight. Let
(θ(·), Z(·)) denote the weak sense limit of a weakly convergent subsequence.
The next question concerns the characterization of the process (θ(·), Z(·)).
It will be shown that the weak sense limit process is characterized as solu-
tions to the mean ODE. In other words, any limit measure is concentrated
on a set of paths that satisfy the ODE, with Z(·) being the reflection term.
In particular, the limit measure is concentrated on a set of paths that are
limit trajectories of the ODE, as t → ∞.

Skorohod representation and “probability one” convergence. In
the general discussion of weak convergence and in Theorems 3.1–3.3, the
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sequence {An} was defined on some given probability space (Ω, P,F). Since
weak convergence works with measures Pn induced on the range space of
the sequence {An}, the actual probability space itself is unimportant, and
one can select it for convenience. For purely analytical purposes, it is often
helpful to be able to suppose that the convergence is with probability one
rather than in the weak sense, since it enables us to work with paths directly
and simplifies parts of the proofs. It turns out that the probability space
can be chosen such that the weak convergence “implies” convergence with
probability one. This basic result is known as the Skorohod representation.

Theorem 3.4. [[68, Chapter 3, Theorem 1.8], [222, Theorem 3.1]] Let B be
a complete and separable metric space with metric d(·, ·), and let An ⇒ A
for B-valued random variables An and A. Then there is a probability space
(Ω̃, B̃, P̃ ) with associated B-valued random variables Ãn and Ã defined on
it such that for each set D ∈ B,

P̃{Ãn ∈ D} = P{An ∈ D}, P̃{Ã ∈ D} = P{A ∈ D}, (3.8)

and
d(Ãn, Ã) → 0 with probability one. (3.9)

The choice of the probability space in the theorem is known as the Sko-
rohod representation. Its use facilitates proofs without changing the dis-
tributions of the quantities of interest. In the rest of the book, it will be
supposed where convenient in the proofs, and without loss of generality,
that the probability space has been selected so that weak convergence is
“equivalent to” convergence with probability one.

Note that we have started with a range space B with a σ-algebra B, and
measures Pn, PA defined on it, but with only weak convergence Pn ⇒ PA.
The Skorohod representation constructs a single probability space with
B-valued random variables Ãn and Ã defined on it, where Ãn (resp., Ã)
determine the measure P̃n (resp., P̃A), on the range space (B,B), and
where the convergence is with probability one. For notational simplicity,
when the Skorohod representation is used in the sequel, the tilde notation
will generally be omitted.

Define An = (θn(·), Zn(·)), which takes values in D2r(−∞,∞). If it
has been shown that the sequence (θn(·), Zn(·)) converges weakly to some
D2r(−∞,∞)-valued random variable (θ(·), Z(·)), where (θ(·), Z(·)) have
continuous paths with probability one, then by the Skorohod representa-
tion (see Theorem 3.4), it can be supposed in the proof of the characteriza-
tion of (θ(·), Z(·)) that the convergence is with probability one uniformly
on bounded time intervals, provided that the conclusions of the theorem
remain in terms of weak convergence. In particular, the use of the Skorohod
representation itself does not imply that the original sequence θn (or θn(·))
converges with probability one.
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A simple example of Skorohod representation. Let {Yn} be a se-
quence of real-valued random variables that converges in distribution to
a random variable Y , and let Fn(·) (resp., F (·)) be the distribution func-
tion of Yn (resp., of Y ). Suppose for simplicity that each of the distribution
functions is strictly monotonically increasing. The sequence {Yn} might not
converge to Y with probability one. In fact, Yn might not even be defined
on the same probability space. But there are random variables Ỹn and Ỹ
such that each of the pairs Yn and Ỹn (as well as Y and Ỹ ) have the same
distribution, and Ỹn converges to Ỹ with probability one.

The construction is as follows. Let the probability space be (Ω̃, B̃, P̃ )
where Ω̃ = [0, 1], B̃ is the collection of Borel sets on [0, 1], and P̃ is the
Lebesgue measure. For ω̃ ∈ [0, 1] define Ỹn(ω̃) = F−1

n (ω̃) and Ỹ (ω̃) =
F−1(ω̃). By the construction and the uniform distribution on [0, 1], P{Ỹn ≤
a} = Fn(a) for all a. Thus Ỹn (resp., Ỹ ) has the distribution function Fn(·)
(resp., F (·)). Furthermore the uniform convergence of Fn(·) to F (·) and the
strict monotonicity imply that F−1

n (·) also converges pointwise to F−1(·).
This is equivalent to the convergence of Ỹn → Ỹ for all ω̃. This is an
easy example. In the more general case, where Yn is replaced by a random
process and {Yn} is tight, the limit of any weakly convergent subsequence
is not so easily characterized. Then the Skorohod representation can be
quite helpful in the analysis.

Return to the central limit theorem discussed in connection with (3.4).
The theory of weak convergence tells us that the process Wn(·) constructed
in (3.4) converges weakly to the Wiener process with unit variance parame-
ter. This result gives us more information on the distributions of real-valued
functionals of the paths of Wn(·) for large n than can be obtained by the
classical central limit theorem alone, which is confined to working with
values at a finite number of fixed points and not with the entire process;
see [25, 68] for the details and a full development of the general theory
and other examples. For the basic background, effective methods for deal-
ing with wide-bandwidth noise-driven processes or discrete time processes
with correlated driving noise, including many applications of the theory to
approximation and limit problems arising in applications to control, com-
munication and signal processing theory, as well as to various stochastic
approximation-type problems, consult [127].

Some auxiliary results. The following theorems will simplify the analy-
sis. Theorem 3.5 shows the fundamental role of uniform integrability in
establishing the Lipschitz continuity of the paths of the weak sense limit
processes and generalizes the corollary to Theorem 2.1. Further details of
the proof are in Theorem 8.2.1. Sometimes one can show that a sequence of
processes can be approximated in some sense by one that can be shown to
be tight and for which the weak sense limit can be exhibited. This is dealt
with in Theorem 3.6. The proof of Theorem 3.6 follows from the definition
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of weak convergence; the details are left to the reader.

Theorem 3.5. Let {Y ni ;n ≥ 0, i ≥ 0} be a sequence of real-valued random
variables that is uniformly integrable, and let εni be non-negative numbers
that satisfy

∞∑
i=0

εni = ∞, for all n and

lim
n

sup
i
εni = 0.

Define τnk =
∑k−1
i=0 ε

n
i and the processes Xn(·) on Dr[0,∞) by

Xn(t) =
k−1∑
i=0

εni Y
n
i on [τnk , τ

n
k+1).

Then {Xn(·)} is tight, and all weak sense limit processes have Lipschitz
continuous paths with probability one. If E|Y ni | → 0 as n and i go to
infinity, then the weak sense limit process is identically zero. The analogous
results hold for Dr(−∞,∞).

Theorem 3.6. Let the processes Xn(·) have paths in Dr[0,∞) with prob-
ability one. Suppose that for each 1 > ρ > 0 and T > 0 there is a process
Xn,ρ,T (·) with paths in Dr[0,∞) with probability one such that

P

{
sup
t≤T

∣∣Xn,ρ,T (t) −Xn(t)
∣∣ ≥ ρ

}
≤ ρ.

If {Xn,ρ,T (·), n ≥ 0} is tight for each ρ and T , then {Xn(·)} is tight. If
{Xn,ρ,T (·), n ≥ 0} converges weakly to a process X(·) that does not depend
on (ρ, T ), then the original sequence converges weakly to X(·). Suppose that
for each 1 > ρ > 0 and T > 0, {Xn,ρ,T (·), n ≥ 0} converges weakly to a
process Xρ,T (·), and that there is a process X(·) such that the measures
of Xρ,T (·) and X(·) on the interval [0, T ] are equal, except on a set whose
probability goes to zero as ρ → 0. Then {Xn(·)} converges weakly to X(·).
The analogous result holds for processes with paths in Dr(−∞,∞).

7.4 Martingale Limit Processes
and the Wiener Process

7.4.1 Verifying that a Process Is a Martingale
The criteria for tightness in Theorem 3.3 will enable us to show that
for any subsequence of the shifted stochastic approximation processes
{θn(·), Zn(·)}, there is always a further subsequence that converges weakly.
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The next step will be to identify the limit process; in particular to show
that it is a solution to the desired mean ODE, and to do this without
excessive effort and under weak conditions. If the noise is not of the mar-
tingale difference type, then this step requires an averaging of the noise
effects so that the “mean dynamics” appear. Suppose that (θ(·), Z(·)) is
the weak sense limit of a weakly convergent subsequence. A particularly
useful way of doing both the averaging under weak conditions and identi-
fying the limit process involves showing that θ(t)−θ(0)−

∫ t
0 ḡ(θ(s))ds−Z(t)

is a martingale with Lipschitz continuous paths. Recall the fact (Section
4.1) that any continuous-time martingale with Lipschitz continuous paths
(with probability one) is a constant (with probability one). The Lipschitz
continuity will be easy to prove. Then the martingale property implies that
the expression is a constant. Since it takes the value zero at t = 0, the limit
process satisfies the desired ODE. A convenient criterion for showing that
a process is a martingale is needed, and a useful approach is suggested by
the definition of a martingale in terms of conditional expectations.

Let Y be a random variable with E|Y | < ∞, and let {V (s), 0 ≤ s < ∞},
be an arbitrary sequence of random variables. Suppose that for fixed real
t > 0, each integer p and each set of real numbers 0 ≤ si ≤ t, i = 1, . . . , p,
and each bounded and continuous real-valued function h(·), we have

Eh(V (si), i ≤ p)Y = 0.

This and the arbitrariness of h(·) imply that E[Y |V (si), i ≤ p] = 0. The
arbitrariness of p and {si, i ≤ p} now imply that

E[Y |V (s), s ≤ t] = 0

with probability one [34]. To extend this idea, let U(·) be a random process
with paths in Dr[0,∞) such that for all p, h(·), si ≤ t, i ≤ p, as given above
and a given real τ > 0,

Eh(U(si), i ≤ p) [U(t+ τ) − U(t)] = 0. (4.1)

Then E[U(t + τ) − U(t)|U(s), s ≤ t] = 0. If this holds for all t and τ > 0
then, by the definition of a martingale, U(·) is a martingale. Sometimes it
is convenient to work with the following more general format whose proof
follows from the preceding argument. The suggested approach is a standard
and effective method for verifying that a process is a martingale.

Theorem 4.1. Let U(·) be a random process with paths in Dr[0,∞), where
U(t) is measurable on the σ-algebra FV

t determined by {V (s), s ≤ t} for
some given process V (·) and let E|U(t)| < ∞ for each t. Suppose that for
each real t ≥ 0 and τ ≥ 0, each integer p and each set of real numbers
si ≤ t, i = 1, . . . , p, and each bounded and continuous real-valued function
h(·),

Eh(V (si), i ≤ p) [U(t+ τ) − U(t)] = 0, (4.2)
then U(t) is an FV

t -martingale.
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7.4.2 The Wiener Process
One of the most important martingales in applications is the Wiener
process. Theorem 4.1.2 gave a criterion for verifying that a process is a
Wiener process, and we now repeat and elaborate it. Let W (·) be an IRr-
valued process with continuous paths such that W (0) = 0, EW (t) = 0,
for any set of increasing real numbers {ti}, the set {W (ti+1) − W (ti)} is
mutually independent, and the distribution of W (t+ s)−W (t), s > 0 does
not depend on t. Then W (·) is called a vector-valued Wiener process or
Brownian motion. There is a matrix Σ, called the covariance, such that
EW (t)W ′(t) = Σt, and the increments are normally distributed [34].

There are other equivalent definitions; one will now be given. Let the IRr-
valued process W (·) have continuous paths and satisfy W (0) = 0 w.p.1.
Let Ft be a sequence of nondecreasing σ-algebras such that W (t) is Ft-
measurable and let EFt

[W (t+s)−W (t)] = 0 with probability one for each
t and each s ≥ 0. Let there be a non-negative definite matrix Σ such that
for each t and each s ≥ 0

EFt [W (t+ s) −W (t)] [W (t+ s) −W (t)]′ = Σs w.p.1.

Then W (·) is a vector-valued Wiener process with covariance Σ, also called
an Ft-Wiener process [163, Volume 1, Theorem 4.1].

The criterion of Theorem 4.1 for verifying that a process is a martingale
can be adapted to verify that it is a vector-valued Ft-Wiener process for
appropriate Ft. Suppose that W (·) is a continuous vector-valued process
with E|W (t)|2 < ∞ for each t. Let V (·) be a random process and let FV

t be
the smallest σ-algebra that measures {V (s),W (s), s ≤ t}. Let h(·), p, t, τ >
0, si ≤ t be arbitrary but satisfy the conditions put on these quantities in
Theorem 4.1. Suppose that

Eh(V (si),W (si), i ≤ p) [W (t+ τ) −W (t)] = 0 (4.3)

and that there is a non-negative definite matrix Σ such that

Eh(V (si),W (si), i ≤ p)
×
[
[W (t+ τ) −W (t)] [W (t+ τ) −W (t)]′ − Στ

]
= 0.

(4.4)

Then W (·) is an FV
t -Wiener process, with covariance Σ.

Proving that (4.4) holds for the weak sense limit of a sequence of
processes {Wn(t)} might require showing that {|Wn(t)|2} is uniformly in-
tegrable. This can be avoided by using the following equivalent characteri-
zation.

For a matrix Σ = {σij}, let AΣ denote the operator acting on twice
continuously differentiable real-valued functions F (·) on IRr:

AΣF (w) =
1
2

∑
i,j

σij
∂2F (w)
∂wi∂wj

. (4.5)
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Theorem 4.2. Let F (·) be an arbitrary continuous real-valued function
on IRr with compact support and whose mixed partial derivatives up to
order three are continuous and bounded. Let V (·) be a random process.
Let the IRr-valued process W (·) have continuous paths with probability one
and Σ = {σij} a non-negative definite symmetric matrix. Suppose that for
each real t ≥ 0 and τ ≥ 0, each integer p and each set of real numbers
si ≤ t, i = 1, . . . ,m, each bounded and continuous real-valued function h(·),

Eh (V (si),W (si), i ≤ p)

×
[
F (W (t+ τ)) − F (W (t)) −

∫ t+τ

t

AΣF (W (u))du
]

= 0.
(4.6)

Then W (·) is an FV
t -Wiener process with covariance Σ, where FV

t is the
smallest σ-algebra that measures {V (s),W (s), s ≤ t}.

7.4.3 A Perturbed Test Function Method for Verifying
Tightness and Verifying the Wiener Process

In Chapters 5 and 6, we have seen the usefulness of perturbed Liapunov
functions and perturbed state methods for proving stability or for av-
eraging correlated noise. Perturbed test function methods are also very
useful for proving tightness or characterizing the limit of a weakly conver-
gent sequence. The original perturbed test function ideas stem from the
work of Blankenship and Papanicolaou [26], Papanicolaou, Stroock, and
Varadhan [187], and Kurtz [117]. Kushner extended them to cover quite
general non-Markovian situations and developed powerful techniques for
their construction, exploitation and applications to diverse problems; see
for example, [127, 132]; see also the remarks on perturbations in Subsection
6.3.1.

In the following perturbed test function theorems, εni are positive real
numbers and τni =

∑i−1
j=0 ε

n
j . The IRr-valued processes Xn(·) are constant

on the intervals [τni , τ
n
i+1) and are right continuous. Define mn(t) = max{i :

τni ≤ t}. For each n, let Fn
i be a sequence of nondecreasing σ-algebras such

that Fn
i measures at least {Xn(τnj ), j ≤ i}, and let Eni denote the expecta-

tion conditioned on Fn
i . Let Dn denote the class of right continuous, real-

valued random functions F (·) that are constant on the intervals [τni , τ
n
i+1),

with bounded expectation for each t, and that F (τni ) is Fn
i -measurable.

Define the operator Ân acting on random functions F (·) in Dn by

ÂnF (τni ) =
Eni F (τni+1) − F (τni )

εni
. (4.7)

The next theorem is an extension of Theorem 3.5.

Theorem 4.3. [127, Theorems 4 and 8; Chapter 3] For each real-valued
function F (·) on IRr with compact support and whose mixed partial deriva-
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tives up to second order are continuous, let there be a sequence of processes
Fn(·) ∈ Dn such that for each α > 0 and T > 0,

lim
n
P

{
sup
s≤T

|Fn(s) − F (Xn(s))| ≥ α

}
= 0, (4.8)

and suppose that

lim
N→∞

sup
n
P

{
sup
t≤T

|Xn(t)| ≥ N

}
= 0. (4.9)

Define γni by

Eni F
n(τni+1) − Fn(τni ) = εni γ

n
i = εni Â

nFn(τni ). (4.10)

If {γni ;n, i : τni ≤ T} is uniformly integrable for each T and F (·), then
{F (Xn(·)} is tight in D[0,∞), and {Xn(·)} is tight in Dr[0,∞). The analo-
gous result holds on Dr(−∞,∞). If, in addition, for each T > 0, E|γni | → 0
uniformly in {i : τni ≤ T} as n → ∞, then the weak sense limit is the “zero”
process.

Theorem 4.4. Let Xn(0) = 0, and suppose that {Xn(·)} is tight in
Dr[0,∞) and that each of the weak sense limit processes has continuous
paths with probability one. Let

lim
n

sup
i
εni = 0. (4.11a)

Suppose that there are integers µni such that limn infi µni = ∞ with the
following properties:

(a)

lim
n

sup
i

i+µn
i −1∑

j=i

εni = 0, lim
n

sup
i+µn

i
≥j≥i

∣∣∣∣εnj − εni
εni

∣∣∣∣ = 0; (4.11b)

(b) for each continuous real-valued function F (·) on IRr with compact
support and whose mixed partial derivatives up to order three are
continuous, and for each T > 0, there is an Fn(·) in Dn such that

lim
n
E |Fn(t) − F (Xn(t))| = 0, t ≤ T, (4.12)

sup
t≤T

E|ÂnFn(t)| < ∞, each n; (4.13)

(c) for the non-negative definite matrix Σ = {σij}

lim
n
E

∣∣∣∣∣∣ 1
µni

i+µn
i −1∑

j=i

Eni

[
ÂnFn(τnj ) −AΣF (Xn(τnj ))

]∣∣∣∣∣∣ = 0, (4.14)

where the limit is taken on uniformly in i for τni ≤ T, and each T > 0,
and AΣ is defined in (4.5).
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Then Xn(·) converges weakly in Dr[0,∞) to the Wiener process with co-
variance Σ.

Let the set {V n(·)} also be tight in Dr[0,∞), where V n(·) is con-
stant on the intervals [τni , τ

n
i+1), and {V n(·), Xn(·)} converges weakly to

(V (·), X(·)). Let (4.12)–(4.14) continue to hold, where Fn
i measures at least

{Xn(τnj ), V n(τnj ), j ≤ i}. If FV
t is the smallest σ-algebra that measures

{V (s), X(s), s ≤ t}, then X(·) is an FV
t -Wiener process. The analogous

result holds on (−∞,∞).
Let there be a continuous function ḡ(·) such that the conditions hold with

AΣF (x) replaced by AΣF (x)+F ′
x(x)ḡ(x). Then the limit X(·) of any weakly

convergent subsequence of {Xn(·)} can be characterized as follows: There
is a Wiener process W (·) with covariance matrix Σ such that X(·) satisfies
the stochastic differential equation

X(t) = X(0) +
∫ t

0
ḡ(X(s))ds+W (t), (4.15)

where for each t, {X(s), s ≤ t} and {W (s) −W (t), s ≥ t} are independent.

Note on the proof. This is actually an adaptation of [127, Theorem 8,
Chapter 5] to the decreasing-step-size case. In the proof, one needs to show
that for each t ≥ 0 and small τ > 0, with t+ τ ≤ T ,

Enmn(t)

mn(t+τ)−1∑
j=mn(t)

εnj

[
ÂnFn(τnj ) −AΣF (Xn(τnj ))

]
→ 0

in mean as n → ∞. By the conditions on εni , this is implied by (4.14).

The Skorohod topology. Let ΛT denote the space of continuous and
strictly increasing functions from the interval [0, T ] onto the interval [0, T ].
The functions in this set will be “allowable time scale distortions” for the
functions in D[0, T ]. Define the metric dT (·) by

dT (f(·), g(·)) = inf
{
µ : sup

0≤s≤T
|s− λ(s)| ≤ µ and

sup
0≤s≤T

|f(s) − g(λ(s))| ≤ µ for some λ(·) ∈ ΛT
}
.

If there are ηn → 0 such that the discontinuities of fn(·) are less than ηn in
magnitude and if fn(·) → f(·) in dT (·), then the convergence is uniform on
[0, T ] and f(·) must be continuous. Because of the “time scale distortion”
involved in the definition of the metric dT (·), we can have (loosely speaking)
convergence of a sequence of discontinuous functions, where there are only
a finite number of discontinuities, where both the locations and the values
of the discontinuities converge, and a type of “equicontinuity” condition
holds between the discontinuities. For example, let T > 1 and define f(·)
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by: f(t) = 1 for t < 1 and f(t) = 0 for t ≥ 1. Define the function fn(·)
by fn(t) = 1 for t < 1 + 1/n and fn(t) = 0 for t ≥ 1 + 1/n. Then fn(·)
converges to f(·) in the Skorohod topology, but not in the sup norm, and
dT (f(·), fn(·)) = 1/n. The minimizing time scale distortion is illustrated in
Figures 4.1 and 4.2.

.
0 1 1 + 1/n t

fn(t)

f(t)

Figure 4.1. The functions f(·) and fn(·).
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$
$
$
$
$
$$
%
%
%

1

1 + 1/n T

T

t

λn(t)

0

Figure 4.2. The time scale distortion λn(·).

Under dT (·), the metric space D[0, T ] is separable but not complete [25, 68].
There is an equivalent metric d̂T (·) under which the space is both complete
and separable. The d̂T (·) weights the “derivative” of the time scale changes
λ(t) and its deviation from t. For λ(·) ∈ ΛT , define

|λ| = sup
s<t<T

∣∣∣∣log
{
λ(t) − λ(s)

t− s

}∣∣∣∣ .
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The metric d̂T (·) is defined by

d̂T (f(·), g(·)) = inf
{
µ : |λ| ≤ µ and sup

0≤s≤T
|f(s) − g(λ(s))| ≤ µ,

for some λ(·) ∈ ΛT
}
.

Both dT (·) and d̂T (·) are referred to as Skorohod metrics. The topology
under d̂T (·) is called the Skorohod topology.

On the space D[0,∞), the metric for the Skorohod topology is defined
by

d̂(f(·), g(·)) =
∫ ∞

0
e−t min(1, d̂t (f(·), g(·)) dt,

and analogously on D(−∞,∞). The metrics on the product spaces
Dr[0,∞) and Dr(−∞,∞) can be taken to be the sum of the metrics on
the component spaces.
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