
Creating Web Portals
with BEA WebLogic

HOWARD BLOCK, ROB CASTLE, AND DAVID HRITZ

0694fmat.qxp 1/28/03 3:35 PM Page i

Creating Web Portals with BEA WebLogic

Copyright © 2003 by Howard Block, Rob Castle, and David Hritz

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-069-4

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Gregory Smith
Editorial Directors: Dan Appleman, Gary Cornell, Jason Gilmore, Simon Hayes, Martin Streicher,
Karen Watterson, John Zukowski
Managing Editor: Grace Wong
Project Manager and Development Editor: Tracy Brown Collins
Copy Editor: Ami Knox
Compositor: Susan Glinert
Artist and Cover Designer: Kurt Krames
Indexer: Valerie Robbins
Production Manager: Kari Brooks
Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.

Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 9th Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax: 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads
section.

0694fmat.qxp 1/28/03 3:35 PM Page ii

CHAPTER 2

Building a Portal
from Scratch

“WHAT IS AN ENTERPRISE APPLICATION? What is a portal? How do I build all the config-
uration files that are required for enterprise applications? How do I put all the
pieces together?” These may be some of the questions that you are asking your-
self. If so, rest assured—WebLogic has gone a long way to make this process
easier and more manageable.

This chapter is the starting point for putting it all together. By the end of this
chapter, you will have a working enterprise application running in the WebLogic
Portal Server. Although this application will be an admittedly simple one, it will
feature many of the common components that your Web applications require.

This chapter is meant to give you the big picture. Here we explain the archi-
tecture of WebLogic Portal applications. We review key portal concepts and the
physical implementation of these concepts including directory structures and
configuration files used in a WebLogic Portal application. We also discuss the
steps to creating a portal application.

WebLogic Portal Architecture

In this section, we discuss several key concepts that will enable you to under-
stand the context in which a WebLogic Portal application will run. Each portal
Web application may have one or more components used to implement the
functionality for the portal. These components may include portlets, Java classes,
Enterprise JavaBeans (EJBs), etc.

An enterprise application is the highest-level component that can be con-
tained within a portal domain. A portal Web application must be deployed within
an enterprise application. One or more portal Web applications may be deployed
in the context of an enterprise application. In turn, one or more enterprise appli-
cations may be deployed in a portal domain.

As we mentioned in the previous chapter, a portlet is the component of
a portal Web application that is used to build functionality into your application.
In this chapter, we show you how to build your first portlet and deploy it in the
sample portal application.

31

0694ch02.qxp 1/28/03 8:32 AM Page 31

Figure 2-1 illustrates the relationships between portal domains, enterprise
applications, portal Web applications, and application components.

WebLogic Domains

Any discussion of the architecture of a WebLogic Portal must include the concept
of domains. A portal domain is one implementation of a WebLogic Domain.
A WebLogic Domain is a grouping of applications, application components, JDBC
connection pools, servers, and other objects. What items or objects are placed
under the umbrella of a portal domain is a matter to be determined by the portal
architect; however, certain items must be considered when designing a domain
implementation:

32

Chapter 2

Figure 2-1. The portal domain

0694ch02.qxp 1/28/03 8:32 AM Page 32

• If an application is deployed within a certain domain, all objects or com-
ponents used by that application must also be deployed in the same
domain.

• If you configure a cluster within a portal domain, all servers in the cluster
must be configured as a part of the portal domain.

WebLogic Domain configurations are managed and monitored using
a WebLogic Administration Server. You may run your applications on the
Administration Server, and for the purposes of the examples in this book that is
what we will do. For production environments, however, it is recommended that
you run your Administration Server on a separate machine. WebLogic
Administration Servers are the central point for managing and monitoring
a WebLogic Domain configuration.

The physical implementation of a WebLogic Portal Domain is constructed in
the following way.

WebLogic Portal Domain configuration information and other required files
are stored in the root directory for the portal domain on the Administration
Server.

Table 2-1 shows the required files for a WebLogic Portal Domain.

33

Building a Portal from Scratch

0694ch02.qxp 1/28/03 8:32 AM Page 33

34

Chapter 2

Table 2-1. Required Files for a WebLogic Portal Domain

FILE OR DIRECTORY COMMENT

portal domain root/config.xml The config.xml file is the persistent configuration

repository for the domain. When the Adminis-

tration Server starts up, it reads the configuration

information for the domain from the config.xml

file. When a managed server within the domain

starts up, it retrieves the domain configuration

information from the Administration Server for the

domain.

portal domain root/fileRealm.properties This file stores the security information for the

default security realm, as well as storing users,

passwords, groups, and Access Control List (ACL)

information for the file realm. In particular, this file

stores information about the system user, which is

the user required to boot the server.

portal domain root/SerializedSystemIni.dat This file is used in conjunction with the

fileRealm.properties file by the file realm. If you

copy the fileRealm.properties file from one of the

“reference” domains to create a new domain,

the SerializedSystemIni.dat file should be copied

along with it.

portal domain root/logs directory This directory is used to output portal server log

files, such as weblogic.log, which is a log of server

activity.

Enterprise Application

An enterprise application, which is a Java 2 Platform, Enterprise Edition (J2EE)
concept, consists of a grouping of Web applications and EJBs. In a WebLogic
Portal Server, an enterprise application may be deployed in its expanded form
or as a J2EE enterprise application archive (.ear file). The expanded directory
structure for an enterprise application mimics exactly the structure of an .ear file.
We recommend that during development you deploy your applications in
expanded form, and when you are ready to go to production, deploy your appli-
cation as an .ear file.

Multiple enterprise applications may be deployed within a WebLogic
Portal Domain. While enterprise applications may be placed anywhere in your
server’s directory structure by default, enterprise applications that you create are
deployed in the BEA_HOME/user_projects directory. Figure 2-2 illustrates the
default installation along with the sample applications that are installed by
the WebLogic Portal installation.

0694ch02.qxp 1/28/03 8:32 AM Page 34

Notice that each enterprise application directory contains a META-INF
directory. This directory contains the enterprise application deployment descrip-
tor files, application.xml and application-config.xml. The application.xml
enterprise application deployment descriptor specifies the Web applications and
EJB applications that are deployed within the enterprise application and defines
security roles for the enterprise application. The application-config.xml enter-
prise application deployment descriptor file specifies general configuration

35

Building a Portal from Scratch

Figure 2-2. Default enterprise application installation

0694ch02.qxp 1/28/03 8:32 AM Page 35

information for the enterprise application that is used by the Administration
Server. Most of the settings in these files can be configured through the server
console, therefore it is not recommended that you edit these files manually.
However, an understanding of these files will give you better comprehension of
how an enterprise application is deployed and configured.

Listing 2-1 shows the default application.xml configuration when WebLogic
Portal is installed.

Listing 2-1. Default application.xml Configuration

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE application PUBLIC

‘-//Sun Microsystems, Inc.//DTD J2EE Application 1.3//EN’

‘http://java.sun.com/dtd/application_1_3.dtd’>

<application>

<display-name>Sample Portal</display-name>

<description>BEA Sample Portal Application</description>

<module>

<web>

<web-uri>defaultWebApp</web-uri>

<context-root>defaultWebApp</context-root>

</web>

</module>

<!-- Portals -->

<module>

<web>

<web-uri>sampleportal</web-uri>

<context-root>sampleportal</context-root>

</web>

</module>

<!-- Tool Stuff -->

<module>

<web>

<web-uri>tools</web-uri>

<context-root>sampleportalTools</context-root>

</web>

</module>

<module>

36

Chapter 2

0694ch02.qxp 1/28/03 8:32 AM Page 36

<web>

<web-uri>datasync</web-uri>

<context-root>sampleportalDataSync</context-root>

</web>

</module>

<module>

<web>

<web-uri>toolSupport</web-uri>

<context-root>sampleportalTool</context-root>

</web>

</module>

<!-- P13N Modules -->

<module>

<ejb>document.jar</ejb>

</module>

<module>

<ejb>ejbadvisor.jar</ejb>

</module>

<module>

<ejb>events.jar</ejb>

</module>

<module>

<ejb>mail.jar</ejb>

</module>

<module>

<ejb>pipeline.jar</ejb>

</module>

<module>

<ejb>placeholder.jar</ejb>

</module>

<module>

<ejb>property.jar</ejb>

</module>

<module>

<ejb>rules.jar</ejb>

</module>

<module>

<ejb>usermgmt.jar</ejb>

</module>

37

Building a Portal from Scratch

0694ch02.qxp 1/28/03 8:32 AM Page 37

<!-- Commerce Modules -->

<module>

<ejb>catalogws.jar</ejb>

</module>

<module>

<ejb>customer.jar</ejb>

</module>

<module>

<ejb>ebusiness.jar</ejb>

</module>

<!-- Campaign Modules -->

<module>

<ejb>campaign.jar</ejb>

</module>

<!-- Portal Modules -->

<module>

<ejb>portal.jar</ejb>

</module>

<!-- Modules used by portals -->

<module>

<ejb>sampleportal.jar</ejb>

</module>

<module>

<connector>BlackBoxNoTx.rar</connector>

</module>

<!-- wlcs and ebusiness -->

<security-role>

<description>Registered customers with role CustomerRole</description>

<role-name>CustomerRole</role-name>

</security-role>

<!-- tools -->

<security-role>

<description>Portal Administrators</description>

<role-name>SystemAdminRole</role-name>

</security-role>

38

Chapter 2

0694ch02.qxp 1/28/03 8:32 AM Page 38

<security-role>

<description>Portal Administrators</description>

<role-name>DelegatedAdminRole</role-name>

</security-role>

<!-- ebusiness -->

<security-role>

<description>Anonymous access</description>

<role-name>AnonymousRole</role-name>

</security-role>

<security-role>

<description>Administrative role for ebusiness</description>

<role-name>AdministrativeRole</role-name>

</security-role>

</application>

Four types of modules can be specified under the application element:
<web>, <ejb>, <connector>, and <java>.

The <connector> descriptor element specifies a J2EE Connector Architecture
(JCA) component within the enterprise application. JCA is a J2EE 1.3 standard for
allowing enterprise information systems to be integrated into a J2EE environ-
ment. The <java> descriptor element specifies a Java client application. The
<web> descriptor element specifies a Web application component. The <ejb>
descriptor element specifies an Enterprise JavaBean component. For our pur-
poses, we will focus on the Web and EJB enterprise application components.

Module descriptions for an enterprise application require <web-uri> and
<context-root> elements to describe them. The <web-uri> element specifies the
location of the module relative to the enterprise application root within the
server’s directory structure. The <context-root> describes the base URL path that
the server will accept to access the functionality of the deployed Web application.
For example, <context-root>myportal</context-root > would correspond to
a URL of http://<server>:<port>/myportal/... .

39

Building a Portal from Scratch

NOTE In the sample application.xml, the Web modules
are described with a <web-uri> of a directory (see
<web-uri>sampleportal</web-uri>). As with enterprise
applications, WebLogic allows you to deploy enterprise application
modules in either exploded form or archived form. To deploy a Web
module in archived form, simply specify the archive name for the
<context-root> node.

0694ch02.qxp 1/28/03 8:32 AM Page 39

The <security-role> element defines security roles that are applicable to the
enterprise application. Security roles defined here are WebLogic users or groups
that are required for authorization in the enterprise application.

Enterprise Java Bean

Enterprise JavaBeans are a J2EE standard for deploying distributed business
functionality. Notice the entry for describing EJB modules in the deployment
descriptor in the previous section:

<module>

<ejb>document.jar</ejb>

</module>

Coding an EJB and creating an EJB jar is a bit involved. For that reason we
discuss EJBs further in Chapter 10; however, describing and deploying an EJB
that is already built is as easy as deploying any other enterprise application mod-
ule. For now, it is important to know that an EJB is another module that may be
deployed within an enterprise application.

Portal Web Application

A portal Web application is what could be considered a child application to an
enterprise application. Each enterprise application may have many portal Web
applications. A portal Web application is a grouping of related business function-
ality. The WebLogic Portal provides several supporting Web applications that you
can deploy in your enterprise application along with your portal Web application
to provide enhanced functionality to your application. We discuss these appli-
cations and the functionality that they provide later.

A WebLogic Portal application has a deployment structure that follows the
structure identified by the J2EE specification. Like an enterprise application,
a WebLogic Portal Web application may be deployed in either exploded form or
in archived form. An archive for a Web application is called a Web application
archive, or .war file.

Each Web application, whether in exploded form or in archived form, has
a WEB-INF directory as shown in Figure 2-3.

40

Chapter 2

0694ch02.qxp 1/28/03 8:32 AM Page 40

41

Building a Portal from Scratch

Figure 2-3. WEB-INF directory

0694ch02.qxp 1/28/03 8:32 AM Page 41

The following four directories appear under the WEB-INF directory (these
are covered in more detail in the upcoming sections):

• _tmp_war...

• classes

• lib

• src

In addition, WEB-INF contains the application descriptor files.

_tmp_war... Directory

Remember that we said a Web application could be deployed in either exploded
format or in archived format. However, when WebLogic runs the Web application,
it employs this directory to format and store temporary application files in
a structure that it uses for running applications.

classes Directory

The WEB-INF directory also includes a classes directory containing classes
required for the Web application. The classes directory is where the compiled
Java classes for the Web application are deployed. The class files under this direc-
tory must be deployed in a directory structure that corresponds to the package
structure for the class.

For example, say your application uses class Foo, as illustrated here:

package com.mycompany.myportal;

public class Foo{

.

.

}

42

Chapter 2

0694ch02.qxp 1/28/03 8:32 AM Page 42

The compiled class file for the Foo class should be deployed in the WEB-INF
directory, as illustrated by the following:

- WEB-INF

- classes

- com

- mycompany

- myportal

- Foo.class

lib Directory

The WEB-INF directory also may have a lib directory. In the lib directory, you can
place jar files to be used by the Web application. For example, any tag library jars
that are used in your Web application should be placed in this directory.

src Directory

The WEB-INF directory also may have a src directory. In the src directory, you can
place your Java source code that you compile to classes that are located in the
classes directory.

Application Descriptor Files

The WEB-INF directory also contains the web.xml or Web application descriptor
file and a WebLogic-specific descriptor file, weblogic.xml.

The following is an empty Web application descriptor file from the WebLogic
sampleportal Web application. Notice that as with the enterprise application
descriptor file, a Web application descriptor file also has <display-name> and
<description> elements.

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE web-app PUBLIC

“-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”

“http://java.sun.com/dtd/web-app_2_3.dtd”>

<web-app>

<display-name>sampleportal</display-name>

<description>Sample Portal WebApp</description>

43

Building a Portal from Scratch

0694ch02.qxp 1/28/03 8:32 AM Page 43

<servlet-mapping>

The <servlet-mapping> node allows you to map a servlet described under the
<servlet> node with a URL that may be used to access the servlet after deploy-
ment. Following is an example <servlet-mapping> descriptor for the ShowDoc
servlet. The <url-pattern> node specifies the URL relative to the root of the Web
application for the servlet being described.

<servlet-mapping>

<servlet-name>ShowDocServlet</servlet-name>

<url-pattern>/ShowDoc/*</url-pattern>

</servlet-mapping>

<taglib>

The <taglib> node describes any Java Server Page (JSP) tag libraries that will be
used in the deployed Web application. Following is an example <taglib> descrip-
tor. The <taglib-uri> node specifies the filename for the tag library that is being
described. The <taglib-location> node describes the location of the tag library
relative to the root of the Web application.

<taglib>

<taglib-uri>dam.tld</taglib-uri>

<taglib-location>/WEB-INF/lib/dam_taglib.jar</taglib-location>

</taglib>

<ejb-ref>

The <ejb-ref> element describes Enterprise JavaBeans that the Web application
references, and is demonstrated here:

<ejb-ref>

<description>

The EjbAdvisor for this webapp

</description>

<ejb-ref-name>ejb/EjbAdvisor</ejb-ref-name>

<ejb-ref-type>Session</ejb-ref-type>

<home>com.bea.p13n.advisor.EjbAdvisorHome</home>

<remote>com.bea.p13n.advisor.EjbAdvisor</remote>

</ejb-ref>

44

Chapter 2

0694ch02.qxp 1/28/03 8:32 AM Page 44

<context-parm>

The <context-parm> element allows you to define parameters that are available
throughout the Web application. These parameters can be accessed via the fol-
lowing methods:

javax.servlet.ServletContext.getInitParameter()

javax.servlet.ServletContext.getInitParameterNames()

Class Loaders and Scoping

It is important to understand how class loaders work with enterprise appli-
cations. A class loader is a Java mechanism that turns a class that is referenced in
a Java application into an instantiated class in the Java virtual machine. The rela-
tionships between class loaders that operate in enterprise applications indicate
the visibility among classes and modules in enterprise applications.

All classes, including the enterprise application classes, the Web application
classes, and utility classes that the Web applications use, could be loaded from
the class path at server startup using the server’s class loader. However, this
would mean that there would be no ability to load and unload classes without
restarting the server.

The WebLogic Server uses a separate class loader to load each enterprise
application. The enterprise application class loader also loads any EJBs within
the enterprise application. Each Web application within the enterprise appli-
cation is loaded by a child class loader of the enterprise application class loader.
Figure 2-4 illustrates these relationships between class loaders. Using a separate
class loader for different modules or components within the server allows the
server to control the loading and unloading of classes within the server.

45

Building a Portal from Scratch

0694ch02.qxp 1/28/03 8:32 AM Page 45

Though the relationships between class loaders are not class inheritance
relationships but more like conceptual parent-child relationships between class
loaders, they do indicate visibility among classes loaded by each class loader.

A class will have visibility to other classes loaded by its class loader or its class
loader’s parent class loader. For example, a Web application will have visibility to
any classes loaded by the enterprise application. If you have defined a Web appli-
cation A and an EJB application B in the enterprise application descriptor, classes
running in Web application A will be able to see all EJB classes, home interfaces,
and utility classes defined in EJB application B that are loaded by the enterprise
application class loader.

46

Chapter 2

Figure 2-4. Class loader relationships

0694ch02.qxp 1/28/03 8:32 AM Page 46

In fact, this is a good way to make utility classes that are required by multiple
Web applications available to all Web applications within an enterprise appli-
cation. Even if you don’t have any EJBs, you can create a dummy EJB and load it
as an EJB application within the enterprise application. All Web applications
within the enterprise application will then have access to the utility classes
within this dummy EJB application.

Portal Metadata

The WebLogic Portal Server uses metadata stored in a database to support the
functionality of the portal framework. The portal metadata stores the definition
of portal pages, portlets, and other portal objects and the relationships between
these objects. This allows the portal framework to put these objects together
dynamically at run time instead of hard coding application data, like application
content and navigation.

Though at run time the metadata is stored in the metadata database,
this data is initially configured using files in the native file system. Once the
metadata is configured and ready for deployment, it is then transferred to
the metadata database via a process called synchronization.

The WebLogic Portal includes an application called the E-Business Control
Center (EBCC) for configuring metadata. We discuss the E-Business
Control Center more thoroughly in later chapters. In this section, we simply
describe the underlying files used by the E-Business Control Center. Figure 2-5
illustrates the directory and file structure provided by the default installation of
the WebLogic Portal.

47

Building a Portal from Scratch

0694ch02.qxp 1/28/03 8:32 AM Page 47

As illustrated in Figure 2-5, the EBCC application is installed in the
BEA_HOME/weblogic700/ebcc directory. By default, the metadata
information for each enterprise application is stored in
domain root directory\beaApps\application name-project/application-sync.
The EBCC stores all of the metadata configured for the enterprise application in
XML files in this directory.

For example, the portlets directory stores metadata for portlets defined for
the enterprise application. Listing 2-2 is the XML from the Dictionary.portlet file,
which is a sample portlet installed with the WebLogic Portal.

48

Chapter 2

Figure 2-5. WebLogic Portal directory and file structure

0694ch02.qxp 1/28/03 8:32 AM Page 48

Listing 2-2. Dictionary.portlet File XML

<?xml version=”1.0” encoding=”UTF-8”?>

<portlet

xmlns= http://www.bea.com/servers/portal/xsd/portlet/1.0.1

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=

“http://www.bea.com/servers/portal/xsd/portlet/1.0.1 portlet-1_0_1.xsd”>

<portlet-name>Dictionary</portlet-name>

<is-complete>true</is-complete>

<description>A Dictionary portlet</description>

<content-url>/portlets/dictionary/dictionary.jsp</content-url>

<header-url/>

<alternate-header-url/>

<footer-url/>

<alternate-footer-url/>

<titlebar-url>/framework/titlebar.jsp</titlebar-url>

<banner-url/>

<editable>false</editable>

<edit-url/>

<helpable>false</helpable>

<help-url/>

<icon-url>/portlets/dictionary/images/pt_dictionary.gif</icon-url>

<minimizable>true</minimizable>

<maximizable>true</maximizable>

<maximize-url/>

<mandatory>false</mandatory>

<movable>true</movable>

<floatable>false</floatable>

<default-minimized>false</default-minimized>

<login-required>false</login-required>

</portlet>

Portlets are one of many metadata items that can be configured via the
EBCC. Once the metadata for the object is modified on the native file system and
synchronized, this configuration change is, in most cases, immediately visible in
the deployed application. This powerful feature of the WebLogic Portal allows you
to make high-level changes to applications without code changes.

49

Building a Portal from Scratch

0694ch02.qxp 1/28/03 8:32 AM Page 49

Creating a New Portal Application

The BEA WebLogic Portal provides several reference or sample enterprise appli-
cations that may be used as a starting point for new applications. You should
review these sample applications to determine which application most closely
represents the type of application that you want to create. Once you have
determined which reference application you would like to use as a starting point
for your new enterprise application, you can begin the process of creating your
own application.

The BEA WebLogic Portal provides a large amount of functionality out of the
box, from e-commerce functionality to content management to basic portal
necessities. In the text that follows, we walk you through starting and modifying
a sample portal application as a quick start. This section outlines the process of
starting the sample portal and creating a new page and a new portlet as a means
of building a new application.

Review/Modify Server Startup Files

You could create a new domain to run your portal enterprise application and
your new portal Web application. However, here you learn how to use the sample
portal, which already has an enterprise application; this enterprise application is
already deployed by default in the sampleportalDomain. You will use the
sampleportalDomain configuration and startup files to deploy and run a new
Web application.

Earlier in this chapter we discussed WebLogic domains. Now let’s look specif-
ically at the sampleportalDomain’s files and directory structure. Figure 2-6 shows
the sampleportalDomain directory structure that is installed by default with the
BEA WebLogic Portal.

50

Chapter 2

0694ch02.qxp 1/28/03 8:32 AM Page 50

startSamplePortal.bat

We’ve already discussed many of the files that reside under the domain directory.
Now we want to look at the startPortal.bat file. This file is the main batch file
that is used to start the WebLogic Portal Server. Listing 2-3 shows the default
sampleportalDomain startSamplePortal.bat file. We have included comments
in this listing to point out several items that you may need to modify for your
application.

51

Building a Portal from Scratch

Figure 2-6. The sampleportalDomain directory structure

0694ch02.qxp 1/28/03 8:32 AM Page 51

Listing 2-3. Default sampleportalDomain startSamplePortal.bat File

@ECHO OFF

SETLOCAL

REM ###

REM (c) 2002 BEA SYSTEMS INC. All rights reserved

REM

REM BEA WebLogic Portal Server startup script.

REM This script can also install/uninstall a Portal Window Service. Use the

REM -installService or -uninstallService command-line arguments.

REM ###

REM ###

REM The WLP installation directory

REM ###

SET WLP_HOME=C:\bea\weblogic700\portal

REM ###

REM Set the WebLogic server name

REM ###

REM This line sets the name of the server that we are starting:

SET SERVER_NAME=sampleportalServer

REM ###

REM Set the database type

REM Valid values are: POINTBASE, ORACLE_THIN, MSSQL, SYBASE_JCONNECT, DB2_TYPE2

REM Set set-environment.bat for more details

REM ###

SET DATABASE=POINTBASE

REM Try to get it from the db_settings.properties file

IF not exist .\db_settings.properties goto _setenv

SET DB_SETTINGS=.\db_settings.properties

FOR /F “eol=# tokens=1,2 delims==” %%i in (%DB_SETTINGS%) do (

if %%i == database SET DATABASE=%%j

)

:_setenv

REM ###

REM Set the environment

REM See set-environment.bat for more details on the available parameters

REM ###

REM Notice the call to set-environment .bat--this file sets environment variables

52

Chapter 2

0694ch02.qxp 1/28/03 8:32 AM Page 52

REM that are used to set the class path for the server and used by the start

server

REM command. You modify this file to set JDBC drivers and other items that are

REM required at server startup.

CALL “%WLP_HOME%\bin\win32\set-environment.bat”

REM ###

REM Set any additional CLASSPATH information

REM ###

REM If you introduced new environment variables in the set-environment.bat file

REM that need to be added to the class path, these variables should be appended

REM to this line:

SET CLASSPATH=%CLASSPATH%;%P13N_DIR%\lib\commerce_system.jar;

%P13N_DIR%\lib\campaign_system.jar

REM ###

REM Start WebLogic with the above parameters.

REM See startWebLogic.cmd for more details on the available parameters.

REM ###

set MEM_ARGS=-Xms128m -Xmx128m -XX:MaxPermSize=128m

set JAVA_OPTIONS=-Dcommerce.properties=”%WLP_HOME%/weblogiccommerce.properties”

if “%1” == “-installService” goto _installService

if “%1” == “-uninstallService” goto _uninstallService

:_startWebLogic

call “%P13N_DIR%\bin\win32\startWebLogic.cmd”

goto _the_end

:_installService

call “%P13N_DIR%\bin\win32\installWebLogicService.cmd”

goto _the_end

:_uninstallService

call “%P13N_DIR%\bin\win32\uninstallWebLogicService.cmd”

goto _the_end

:_the_end

ENDLOCAL

53

Building a Portal from Scratch

0694ch02.qxp 1/28/03 8:32 AM Page 53

Set-environment.bat

Carefully review the set-environment.bat file shown in Listing 2-4. In the
Windows environment this file is located in the PORTAL_HOME/bin/win32
directory. The main item that you need to modify is the specification of the data-
base that will be used for your application. Notice in this file that the commands
already exist to specify Cloudscape, Oracle, or Sybase as the database server. It is
just a matter of commenting and uncommenting the appropriate lines to set up
this file for your application.

However, if you need to use a JDBC driver other than the ones that are
already set up in this file (e.g., Oracle thin driver), you must modify this file with
commands that set up the class path and other items required for your driver.

Listing 2-4. set-environment.bat

@ECHO OFF

REM ##

REM #\ (c) 2001-2002 BEA SYSTEMS INC. All rights reserved

REM #

REM #\ BEA Portal Server variable setup script.

REM #

REM ##

REM ----------- Set the following variables appropriately -----------

REM ----------- or define them as environment variables -----------

REM ----------- in your system properties and comment out -----------

REM ----------- the next 4 lines. -----------

SET PORTAL_HOME=C:\bea\weblogic700\portal

SET WL_COMMERCE_HOME=C:\bea\weblogic700\portal

SET PORTAL_LIB=%PORTAL_HOME%\lib

SET JDK_HOME=C:\bea\jdk131

SET WLCS_ORACLE_HOME=

SET SYBASE_HOME=not set

SET SYBASE_OCS=@SYBASE_OCS@

SET DB2_HOME=@DB2_HOME_BACK_SLASH@

SET BEA_HOME=C:\bea

SET WEBLOGIC_HOME=C:\bea\weblogic700\server

SET OI_HOME=not set

54

Chapter 2

0694ch02.qxp 1/28/03 8:32 AM Page 54

REM Location of the P13N platform

SET P13N_DIR=C:\bea\weblogic700\portal

REM ----------- Specify which Database Driver to use -----------

REM Valid values are: POINTBASE, ORACLE_THIN, MSSQL, SYBASE_JCONNECT,

REM DB2_TYPE2

IF “%DATABASE%” == “” SET DATABASE=POINTBASE

REM -- Add WebLogic bin directories to the path --

SET PATH=%WEBLOGIC_HOME%\bin;%JDK_HOME%\bin;%PATH%

if %DATABASE% == POINTBASE GOTO POINTBASE

if %DATABASE% == ORACLE_THIN GOTO ORACLE_THIN

if %DATABASE% == MSSQL GOTO MSSQL

if %DATABASE% == SYBASE_JCONNECT GOTO SYBASE_JCONNECT

if %DATABASE% == DB2_TYPE2 GOTO DB2_TYPE2

:POINTBASE

REM ----------- POINTBASE classes -----------

REM ---------

REM NOTE: POINTBASE_HOME should be set to BEA_HOME when we move to WLS 7.0

REM ---------

SET DB_CLASSPATH=C:\bea\weblogic700\samples\server\eval\pointbase\

lib\pbserver42ECF172.jar

SET DB_CLASSPATH=%DB_CLASSPATH%;

C:\bea\weblogic700\samples\server\eval\pointbase\lib\pbclient42ECF172.jar

SET DB_CLASSPATH=%DB_CLASSPATH%;

C:\bea\weblogic700\samples\server\eval\pointbase\lib\pbtools42ECF172.jar

GOTO continue

:ORACLE_THIN

REM

REM version 8.1.7 of the Oracle thin driver (classes12.zip) in the manifest for

REM weblogic.jar. weblogic.jar is added to the CLASSPATH below.

REM

GOTO continue

55

Building a Portal from Scratch

0694ch02.qxp 1/28/03 8:32 AM Page 55

:SYBASE_JCONNECT

REM

REM The Sybase jConnect driver is a type 4 driver that is supplied with WLS and

REM included in the manifest for weblogic.jar.

REM weblogic.jar is added to the CLASSPATH below.

REM

GOTO continue

:DB2_TYPE2

call @DB2_HOME_BACK_SLASH@\java12\usejdbc2.bat

SET DB_CLASSPATH=%DB2_HOME%\java\db2java.zip

SET PATH=%DB2_HOME%\bin;%PATH%

GOTO continue

:MSSQL

REM

REM The Microsoft SQL Server driver (Weblogic jDriver for SQL Server) is a type 4

REM driver that is supplied with WLS and included in the manifest for weblogic.jar.

REM weblogic.jar is added to the CLASSPATH below.

REM

:continue

REM ----------- JDK classes and executables -----------

SET JDK_TOOLS=%JDK_HOME%\lib\tools.jar

SET JAVA_CLASSPATH=%JDK_TOOLS%

SET WLS_CLASSPATH=%WEBLOGIC_HOME%\lib\weblogic.jar;

%WEBLOGIC_HOME%\lib\webservices.jar

REM ----------- BEA WebLogic Personalization Server classes ------------

SET WLPS_CLASSPATH=%P13N_DIR%\lib\p13n_system.jar;

%PORTAL_LIB%\portal_system.jar;

%P13N_DIR%\lib\ext\jdom.jar;

%P13N_DIR%\lib\ext\HTTPClient.jar;

%P13N_DIR%\lib\ext\wlcsparsers.jar

56

Chapter 2

0694ch02.qxp 1/28/03 8:32 AM Page 56

REM ----------- WebLogic CLASSPATH -----------

SET CLASSPATH=%WLS_CLASSPATH%;

%WLPS_CLASSPATH%;

%JAVA_CLASSPATH%;

%DB_CLASSPATh%

startWebLogic.cmd

Listing 2-5 shows the startWebLogic.cmd batch file. Notice that the environment
variables in this file are ones that have been set by the scripts discussed previ-
ously.

Listing 2-5. startWebLogic.cmd Batch File

@rem ***

@rem This script is used to start WebLogic Server

@rem

@rem To create your own start script for your domain, all you need to set is

@rem SERVER_NAME, then call this script from the domain

@rem directory.

@rem If you set DOMAIN_NAME, then this will assume WLS6.1 compability -- it

@rem pass in -Dweblogic.domain and you should invoke it from the parent

@rem directory of config\%DOMAIN_NAME%

@rem

@rem Other variables that startWebLogic takes are:

@rem

@rem DB_SETTINGS - the db_settings.properties to use pass to

@rem startPBServer.bat, if DATABASE==POINTBASE

@rem WLS_USER - admin username for server startup

@rem WLS_PW - cleartext password for server startup

@rem ADMIN_URL - if this variable is set, the server started will be a

@rem managed server, and will look to the url specified (i.e.

@rem http://localhost:7001) as the admin server.

@rem WLS_PROD_MODE- set to true for production mode servers, false for

@rem development mode

@rem WLS_MGMT_DISC- set to true for production mode servers, false for

@rem development mode

@rem JAVA_OPTIONS - Java command-line options for running the server. (These

@rem will be tagged on to the end of the JAVA_VM and MEM_ARGS)

@rem JAVA_VM - The java arg specifying the VM to run. (i.e. -server,

@rem -client, etc.)

@rem MEM_ARGS - The variable to override the standard memory arguments

@rem passed to java

57

Building a Portal from Scratch

0694ch02.qxp 1/28/03 8:32 AM Page 57

@rem JAVA_SEC_POLICY - The Java Security policy file to use (defaults to

@rem weblogic.policy)

@rem

@rem This assumes that your PATH and CLASSPATH are configured for

@rem the various native libraries and system classes required by the server.

@rem This also supports starting up a Pointbase server

@rem

@rem ***

@echo off

setlocal

@rem Invoke set-environment.bat if we haven’t already

if “%WL_COMMERCE_HOME%”==””

call “C:\bea\weblogic700\portal\bin\win32\set-environment.bat”

@rem Now BEA_HOME, WEBLOGIC_HOME, WL_COMMERCE_HOME, and JDK_HOME should be set

@rem Check that the WebLogic classes are where we expect them to be

:checkWLS

if exist “%WEBLOGIC_HOME%\lib\weblogic.jar” goto checkJava

echo The WebLogic Server wasn’t found in directory %WEBLOGIC_HOME%.

echo Please edit your set-environment script so that the WEBLOGIC_HOME variable

echo points to the WebLogic Server installation directory.

goto finish

@rem Check that java is where we expect it to be

:checkJava

if exist “%JDK_HOME%\bin\java.exe” goto runWebLogic

echo The JDK wasn’t found in directory %JDK_HOME%.

echo Please edit your set-environment script so that the JDK_HOME variable

echo points to the location of your JDK.

goto finish

:runWebLogic

@rem set defaults for these, if they weren’t set in either the invoker or

@rem set-environment

@rem By default the server will start with the Java hotspot setting turned on.

@rem If you have code that will not run correctly using the Java hotspot, you

@rem may want to change this by setting JAVA_VM to something different

@rem in the server’s start script; however, in most cases you should use the

@rem hotspot engine to enhance the performance of the server.

58

Chapter 2

0694ch02.qxp 1/28/03 8:32 AM Page 58

if “%JAVA_VM%”==”” set JAVA_VM=-hotspot

if “%MEM_ARGS%”==”” set MEM_ARGS=-Xms200m -Xmx200m

if “%WLS_PROD_MODE%”==”” set WLS_PROD_MODE=true

if “%WLS_MGMT_DISC%”==”” set WLS_MGMT_DISC=false

if “%JAVA_SEC_POLICY%”==”” set JAVA_SEC_POLICY=%WEBLOGIC_HOME%\lib\weblogic.policy

if not “%DOMAIN_NAME%”==”” set JAVA_OPTIONS=%JAVA_OPTIONS% -

Dweblogic.Domain=%DOMAIN_NAME%

set SAVED_CLASSPATH=%CLASSPATH%

set CLASSPATH=%CLASSPATH%;%WL_COMMERCE_HOME%\lib\p13n\ejb\p13n_util.jar

@rem Start PointBase, if needed

set PBOWNER=

if not “%DATABASE%”==”POINTBASE” goto NOT_PB1

set PB_HOST=localhost

set PB_PORT=9092

set PB_DB=wlportal

@rem Get the PointBase host, port, and database name from db_settings.properties

if “%DB_SETTINGS%”==”” goto _NO_DB_SETTINGS

FOR /F “eol=# tokens=1,2 delims==” %%i in (%DB_SETTINGS%) do (

if %%i == host SET PB_HOST=%%j

)

FOR /F “eol=# tokens=1,2 delims==” %%i in (%DB_SETTINGS%) do (

if %%i == port SET PB_PORT=%%j

)

FOR /F “eol=# tokens=1,2 delims==” %%i in (%DB_SETTINGS%) do (

if %%i == db_name SET PB_DB=%%j

)

:_NO_DB_SETTINGS

@rem Check if PointBase is up (sets errorlevel)

“%JDK_HOME%\bin\java”

com.bea.p13n.db.internal.PointBasePing

-host %PB_HOST%

-port %PB_PORT%

-database %PB_DB%

@rem PointBase already running

IF NOT ERRORLEVEL 1 GOTO NOT_PB1

59

Building a Portal from Scratch

0694ch02.qxp 1/28/03 8:32 AM Page 59

IF “%DB_SETTINGS%”==”” START /I /B “PointBase Server”

“%WL_COMMERCE_HOME%\bin\win32\startPBServer.bat”

IF NOT “%DB_SETTINGS%”==”” START /I /B “PointBase Server”

“%WL_COMMERCE_HOME%\bin\win32\startPBServer.bat”

%DB_SETTINGS%

@rem set PBOWNER so that we will shutdown down PB at the end

set PBOWNER=THIS_SCRIPT

@rem if not using PointBase or already started, continue on...

:NOT_PB1

set CLASSPATH=%SAVED_CLASSPATH%

@rem Start Server

echo ***

echo * To start WebLogic Server, use a username and *

echo * password assigned to an admin-level user. By *

echo * default, this is user: weblogic *

echo * and password: weblogic *

echo * These should both be changed using the *

echo * WebLogic Server console at *

echo * http://[hostname]:[port]/console *

echo ***

@rem This is the line of the file that actually starts the WebLogic Portal Server.

@rem Notice that based on the disposition of the ADMIN_URL environment

@rem variable the server will either start as an Administration Server or a

@rem Managed Server.

@rem If you are restarting an Administration Server and you already have Managed

@rem Servers running, set the -Dweblogic.management.discover argument to true by

@rem setting the WLS_MGMT_DISC environment variable to true in the server’s start

@rem script. The default startup mode for the server, if this parameter is not

@rem set, is to automatically try to discover Managed Servers that are running.

@rem So if you only have one server in your domain or if you are starting

@rem a Managed Server, you should explicitly set this argument to false to

@rem improve startup speed.

60

Chapter 2

0694ch02.qxp 1/28/03 8:32 AM Page 60

echo on

@if “%ADMIN_URL%” == “” goto runAdmin

“%JDK_HOME%\bin\java”

%JAVA_VM% %MEM_ARGS% %JAVA_OPTIONS%

-Dweblogic.Name=%SERVER_NAME%

-Dbea.home=”%BEA_HOME%”

-Dweblogic.management.username=%WLS_USER%

-Dweblogic.management.password=%WLS_PW%

-Dweblogic.management.server=%ADMIN_URL%

-Dweblogic.ProductionModeEnabled=%WLS_PROD_MODE%

-Djava.security.policy==”%JAVA_SEC_POLICY%” weblogic.Server

@goto finish

@:runAdmin

“%JDK_HOME%\bin\java”

%JAVA_VM% %MEM_ARGS% %JAVA_OPTIONS%

-Dweblogic.Name=%SERVER_NAME%

-Dbea.home=”%BEA_HOME%”

-Dweblogic.management.username=%WLS_USER%

-Dweblogic.management.password=%WLS_PW%

-Dweblogic.ProductionModeEnabled=%WLS_PROD_MODE%

-Dweblogic.management.discover=%WLS_MGMT_DISC%

-Djava.security.policy==”%JAVA_SEC_POLICY%” weblogic.Server

@goto finish

:finish

@echo off

@rem ###

@rem if PointBase was launched by this script then shut it down

@rem ###

if not “%PBOWNER%”==”THIS_SCRIPT” goto _the_end

if “%DB_SETTINGS%”==”” call

“%WL_COMMERCE_HOME%\bin\win32\stopPBServer.bat”

if not “%DB_SETTINGS%”==”” call

“%WL_COMMERCE_HOME%\bin\win32\stopPBServer.bat”

%DB_SETTINGS%

:_the_end

endlocal

61

Building a Portal from Scratch

0694ch02.qxp 1/28/03 8:32 AM Page 61

Start the Sample Portal

To start the sample portal, click Start ➢ Programs ➢ BEA WebLogic Platform 7.0
➢ WebLogic Portal 7.0 ➢ Portal Examples ➢ Portal Example ➢ Launch Portal
Server.

The server will start in a command window. Figure 2-7 shows the messages
you will see as the server is starting. You will know that the server has finished the
startup process when you see the following message:

<Server started in RUNNING mode>

62

Chapter 2

Figure 2-7. Server console

0694ch02.qxp 1/28/03 8:32 AM Page 62

Open the Sample Portal Project

You are now ready to create and deploy the metadata for your Web application
and run a test. To do this you use the E-Business Control Center. We go into more
detail about the EBCC in a later chapter. For now, we walk you through some
simple steps that allow you to deploy some very simple metadata for your appli-
cation.

1. Open the EBCC by clicking Start ➢ Programs ➢ BEA WebLogic
Platform 7.0 ➢ WebLogic Portal 7.0 ➢ E-Business Control Center.

2. Open the sample portal project by clicking File ➢ Open Project (see
Figure 2-8).

3. Using the Open Project dialog box (see Figure 2-9), navigate to the sam-
ple portal project file (sampleportal-project.eaprj), located at
BEA_HOME\weblogic700\samples\portal\sampleportalDomain\
beaApps\sampleportal-project.

63

Building a Portal from Scratch

Figure 2-8. Selecting the Open Project menu item

0694ch02.qxp 1/28/03 8:32 AM Page 63

Create the Portlet Functionality

The following steps show how to create the functionality for your portlet:

1. Create a new portlet directory called helloworld in the sample portal (see
Figure 2-10).

2. Create a new JSP file in the helloworld directory that you just created.

3. Enter the following code into the helloworld.jsp file:

<table>

<tr>

<td class=contentheading>

Hello World this is my first portlet!

</td>

</tr>

</table>

64

Chapter 2

Figure 2-9. Open Project dialog box

0694ch02.qxp 1/28/03 8:32 AM Page 64

65

Building a Portal from Scratch

Figure 2-10. Creating the helloworld portlet directory

0694ch02.qxp 1/28/03 8:32 AM Page 65

Create the Portlet Definition (Metadata)

The following steps show how to create the portal definition or metadata for your
portlet:

1. Select the Portlet menu item in the toolbar as shown in Figure 2-11.

66

Chapter 2

Figure 2-11. Selecting the Portlet menu item

0694ch02.qxp 1/28/03 8:32 AM Page 66

2. Choose the “Use the Portlet Editor to create a new portlet with existing
resources” radio button option in the New Portlet dialog box (see
Figure 2-12).

3. Enter the following items in the Portlet Editor (see Figure 2-13):

Description: Hello World

Content URL: /portlets/helloworld/helloworld.jsp

Icon URL: (blank)

67

Building a Portal from Scratch

Figure 2-12. New Portlet dialog box

0694ch02.qxp 1/28/03 8:32 AM Page 67

4. Save the new portlet definition by clicking the File ➢ Save menu item.

5. Enter helloworld in the File name field in the Save dialog box (see
Figure 2-14).

68

Chapter 2

NOTE The Icon URL is initially populated with a value of
“/portlets/images”. Remove this value and leave this field blank.

Figure 2-13. Portlet Editor

0694ch02.qxp 1/28/03 8:32 AM Page 68

6. Select the Portals icon from the EBCC explorer panel.

7. Double-click sampleportal in the list of portals. The Portal Editor will
display in the right panel.

8. Open the General section of the Portal Editor.

9. From the Portlets tab in the Portal Editor, add the helloworld portlet to
the selected portlets for this portal (see Figure 2-15).

69

Building a Portal from Scratch

Figure 2-14. Saving your new portlet

0694ch02.qxp 1/28/03 8:32 AM Page 69

10. Open the Pages section of the Portal Editor.

11. Select the home page from the list and click the Edit button.

12. Add the helloworld portlet to the Selected portlets list in the Page defi-
nition dialog box, and then click the OK button to close the dialog box
(see Figure 2-16).

70

Chapter 2

Figure 2-15. Portlets tab in the General section of the Portal Editor

0694ch02.qxp 1/28/03 8:32 AM Page 70

13. Save the portal definition by choosing Save from the File menu.

14. Select Tools ➢ Synchronize. When the synchronization process is com-
pleted, close the dialog box (see Figure 2-17). In the password dialog box,
enter a valid datasync user name/password combo; from a fresh instal-
lation, the valid combos are system/weblogic, weblogic/weblogic,
administrator/password.

71

Building a Portal from Scratch

Figure 2-16. Page Definition dialog box

0694ch02.qxp 1/28/03 8:32 AM Page 71

15. Click Cancel to close the Reset Campaigns State dialog box, which
appears after the synchronization process is complete.

Make the New Portlet Available to the Home Page

Follow these steps to make your new portlet accessible from the home page:

1. Open the Portal Tools application in your browser by navigating to the
following URL: http://server:port/sampleportalTools/index.jsp. Log
in using administrator/password as the user/password combination.

2. Click the Portal Management link as shown in Figure 2-18.

72

Chapter 2

Figure 2-17. Synchronizing the sampleportal application

0694ch02.qxp 1/28/03 8:32 AM Page 72

3. Click the Avitek Portal link from the Portal Management window (see
Figure 2-19).

73

Building a Portal from Scratch

Figure 2-18. Portal Management link on the Administration Tools home page

0694ch02.qxp 1/28/03 8:32 AM Page 73

4. Click the Manage Pages and Portlets link from the Group Portal
Management page as shown in Figure 2-20.

74

Chapter 2

Figure 2-19. Avitek Portal link on the Portal Management page

0694ch02.qxp 1/28/03 8:32 AM Page 74

5. Click the Edit Portlets button next to the home page on the Pages and
Portlets page as shown in Figure 2-21.

75

Building a Portal from Scratch

Figure 2-20. Manage Pages and Portlets link on the Group Portal Management page

0694ch02.qxp 1/28/03 8:32 AM Page 75

6. Select the helloworld portlet and click Set Attributes.

7. Select the Available and Visible check boxes and click the Save button as
shown in Figure 2-22.

76

Chapter 2

Figure 2-21. Edit Portlets button on the Pages and Portlets page

0694ch02.qxp 1/28/03 8:32 AM Page 76

Test the New Functionality

You have now completed the steps required to add new functionality to
the sample portal. You can test your application by browsing to
http://server:port/sampleportal in your Web browser as shown in Figure 2-23.
You should now have a very simple working portal Web application.

77

Building a Portal from Scratch

Figure 2-22. Setting portlet attributes

0694ch02.qxp 1/28/03 8:32 AM Page 77

Summary

This chapter explained some important portal concepts that you need to under-
stand before moving forward. It also gave you step-by-step instructions for
creating a new portal application based on the existing sample portal application
supplied by the WebLogic Portal. We cover creating portal applications in more
detail in later chapters, but you should now have a foundation on which you can
build. At this point you should have created your own sample portal functionality
following the instructions in this chapter. You now have the base knowledge that
is required to create more advanced functionality and build your own portal
application from scratch.

78

Chapter 2

Figure 2-23. Testing your portal

0694ch02.qxp 1/28/03 8:32 AM Page 78

http://www.springer.com/978-1-59059-069-0

