Comprehensive
VB .NET Debugging

MARK PEARCE

a’l

Apress”

Comprehensive VB .NET Debugging
Copyright © 2003 by Mark Pearce

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-050-3
Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Pamela Fanstill

Editorial Directors: Dan Appleman, Gary Cornell, Simon Hayes, Martin Streicher, Karen
Watterson, John Zukowski

Assistant Publisher: Grace Wong

Project Managers: Sofia Marchant, Nicole LeClerc

Copy Editor: Nicole LeClerc

Compositor and Proofreader: Impressions Book and Journal Services, Inc.
Indexer: Ann Rogers

Artist and Cover Designer: Kurt Krames

Production Manager: Kari Brooks

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.

Outside the United States: fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Downloads
section.

Debugging Multithreaded
Applications

“MULTITHREADING” 1S A WORD that strikes fear into the hearts of many VB.Classic
developers. Although VB 5.0 introduced a restricted type of multithreading called
apartment threading, VB .NET is the first version of Visual Basic to have proper
freethreading. This means that you've been given a very powerful tool to make
your application faster and more responsive to its users. As with any powerful
technology, it requires that you have a good understanding of the benefits and
drawbacks in order to use it properly and safely.

When I started skydiving many years ago, I never forgot the sign above the
clubhouse door. It read simply “Knowledge dispels fear.” In no area of software
development is this saying more true than multithreading. Most Visual Basic
developers are relatively unfamiliar with the subject, and even those program-
mers who tried VB.Classic development using apartment threading will be
worried when faced with free threading. The key to avoiding threading bugs lies
in a good knowledge of what can go wrong and why it goes wrong.

This chapter looks at how and why multithreading is so difficult, and gives
you some knowledge and tools that will help you to tackle this subject safely. It
starts with a quick look at how multithreading works and why it’s so difficult to
do correctly. Then it examines when multithreading is, and isn’t, useful. Knowing
when notto use multithreading is important because it can save you a lot of time
in testing and debugging.

The next section of this chapter looks in more detail at the sorts of bugs that
can be introduced when writing multithreaded programs. It demonstrates why
it'’s necessary to design your multithreaded applications to avoid bugs rather
than trying to remove the bugs later. The elusive nature of many multithreading
bugs means that the normal code > test > debug cycle doesn’t work well when
writing multithreaded programs.

I'll show you the four main types of threading problems in some detail, using
small example applications to illustrate the issues and some possible solutions.
The final example application shows you how to use multithreading safely in
a typical graphical user interface (GUI) program. It looks at debugging a relatively
simple multithreaded application that uses messages to pass information
between a user interface thread and a background thread, thus avoiding thread

421

Chapter 14

synchronization problems. You'll also learn how to propagate an exception across
thread boundaries, even when using asynchronous threads.

Multithreading Basics

Figure 14-1 shows a simple multithreaded program using two threads that access
a single instance of three separate classes.

. .
= R
S 3
Qo Q.

Class 1 =|> Class 2 T Class 3
Method 1 Method 4
Method 3
Method 2 Method 5

4—Vv pea1y]
«4—4 pea1y]

Figure 14-1. A simple multithreaded application

422

Thread A executes the code in class objects 1 and 2, and thread B runs
through the code in class objects 2 and 3. Both threads access a common
method in the instance of class 2, thereby sharing the code and data that
this method uses.

Why Multithreading Is So Difficult

Of course, on a single-processor machine, the two threads don'’t actually exe-
cute simultaneously. What happens is that the operating system interleaves
instructions from the two threads to give the impression that the threads are

Debugging Multithreaded Applications

executing together. Whenever control is switched from thread A to thread B, the
processor saves the context of thread A, restores the context of thread B, and then
starts running it. As soon as an instruction from thread A is reached, the same
process happens in reverse. Because this all happens so fast, you receive the
impression that both threads are executing simultaneously.

Say that you have two threads containing just ten source code instructions.
How many ways can these ten instructions be interleaved together? The answer,
in case you haven't got a calculator handy, is 184,756! This starts to look worrying.
How can you possibly test 184,756 possible code paths? Unfortunately, the situ-
ation is actually much worse than this. Threads aren’t interleaved together at the
level of source code, or even CIL, but at the assembly code level. When a single
source statement can translate to dozens of native code instructions, you can see
the impossibility of using execution testing to verify that your multithreaded
application is working correctly.

So if you can't test a multithread program using code coverage tools, how
about trying to desk-check it? Is it possible to examine the source code thor-
oughly enough to be able to predict problems resulting from multiple threads?
Well, it’s a nice idea that combining lots of brainpower with lots of multithreading
experience can help you to find and remove the problems. The truth is that hard-
earned evidence gained from very experienced developers has demonstrated
that this doesn’t work. Developers’ brains simply aren’t equipped to cope with
understanding how multiple execution threads can interact with each other.

Because multithreading involves a nonlinear process, and a developer is
unable to establish the exact flow of execution because the interleaving of
threaded code happens at the level of assembly code, many of the bugs occur
rarely and seemingly at random. Even moving a multithreaded program from
a machine with a slow processor to one with a much faster processor can cause
bugs to appear and disappear, because the processor speed can prevent or
cause “racing” between threads.

Before looking at “racing” and other bug types that can be caused by the use
of multiple threads, it’s worth examining when multithreading can be useful to
you, and when it doesn’t give you the benefits that you might think.

Multithreading Advantages

One of the best and most common uses of multithreading is to keep the user
interface of your program responsive to the user while also performing one or
more background tasks. For instance, the end user might ask your application to
calculate the current market value of a sophisticated financial derivative instru-
ment. During this lengthy calculation, you want the user to be able to cancel

the operation if it’s taking too long, perhaps by clicking a Cancel button. This

423

Chapter 14

424

chapter’s last example application shows a very similar scenario to this, and multi-
threading done properly works very well for this type of situation.

Another good use of multithreading is to keep the user interface updated
with the intermediate results of a background task that’s running. For instance, in
the scenario just discussed, you might want to display intermediate results from
the option valuation on the user interface while the calculation continues. If you
don’t use multithreading and the option calculation runs on the same thread as
the user interface, you'll find that the application’s window will go blank and
won't be repainted. This is because the single thread can’t cope with performing
both tasks simultaneously.

An associated advantage of multithreading comes when you have a task
that’s going to take a long time to complete. In this case, you can fire off a back-
ground thread to perform the task and forget about it until the task completes at
some time in the future. In the case of a background thread, this thread will be
terminated automatically if the process that launched it is finished. Some dan-
gers are associated with this automatic termination of a background thread
because the termination is done through the CLR calling Thread.Abort. For a dis-
cussion of the dangers associated with Thread.Abort, please see the section titled
“Terminating a Managed Thread” later in this chapter.

Yet another advantageous use of multithreading is to spawn a new thread for
each user request to a server application. This allows multiple users to be serv-
iced without the delay that might happen if the user requests are serialized and
processed just one at a time. The built-in thread pool supplied by .NET is often
an excellent solution to this situation.

If your application is doing input/output (I/0) work, such as accessing
a disk, a printer, or the network, these resources can have unpredictable delays.
Multiple threads can help to prevent I/O latency affecting other parts of your
application.

You can use threads to isolate critical subsystems of your application from
noncritical subsystems. Because most thread exceptions won't propagate out of
the thread, this prevents an error in, say, the printing subsystem of your appli-
cation affecting the radiation dosage monitoring subsystem.

A final reason for using multithreading is to establish the priority of an appli-
cation’s competing tasks. You can set the priority of a thread when it’s created, so
an important task can be assigned a high priority while less important tasks can
be given a lower priority.

Multithreading Disadvantages

This section presents some of the disadvantages of writing multithreading code.
There’s certainly no need to use multithreading just because it’s there and
it’s cool.

Debugging Multithreaded Applications

Using multithreading on a single-processor machine to process multiple
tasks where each task takes approximately the same time isn’t always very effec-
tive. For example, you might decide to spawn ten threads within your program in
order to process ten separate tasks. If each task takes approximately 1 minute to
process, and you use ten threads to do this processing, you won't have access
to any of the task results for the whole 10 minutes. If instead you processed the
same tasks using just a single thread, you would see the first result in 1 minute,
the next result 1 minute later, and so on. If you can make use of each result with-
out having to rely on all of the results being ready simultaneously, the single
thread might be the better way of implementing the program.

If you launch a large number of threads within a process, the overhead of
thread housekeeping and context switching can become significant. The proces-
sor will spend considerable time in switching between threads, and many of the
threads won'’t be able to make progress. In addition, a single process with a large
number of threads means that threads in other processes will be scheduled less
frequently and won't receive a reasonable share of processor time.

If multiple threads have to share many of the same resources, you're unlikely
to see performance benefits from multithreading your application. Many devel-
opers see multithreading as some sort of magic wand that gives automatic
performance benefits. Unfortunately multithreading isn’t the magic wand that it’s
sometimes perceived to be. If you're using multithreading for performance rea-
sons, you should measure your application’s performance very closely in several
different situations, rather than just relying on some nonexistent magic.

Coordinating thread access to common data can be a big performance killer.
Achieving good performance with multiple threads isn't easy when using a coarse
locking plan, because this leads to low concurrency and threads waiting for
access. Alternatively, a fine-grained locking strategy increases the complexity and
can also slow down performance unless you perform some sophisticated tuning.

Using multiple threads to exploit a machine with multiple processors sounds
like a good idea in theory, but in practice you need to be careful. To gain any sig-
nificant performance benefits, you need to learn about thread balancing. For
instance, imagine an application that receives incoming price information from
the network, aggregates and sorts that information, and then displays the results
on the screen for the end user. With a dual-processor machine, it makes sense to
split the task into, say, three threads. The first thread deals with storing the
incoming price information, the second thread processes the prices, and the final
thread handles the display of the results. After implementing this solution, you
find that the price processing is by far the longest stage, so you decide to rewrite
that thread’s code to improve its performance by a factor of three. Unfortunately,
this performance benefit in a single thread may not be reflected across your
whole application. This is because the other two threads may not be able to keep
pace with the improved thread. If the user interface thread is unable to keep up

425

Chapter 14

with the faster flow of processed information, the other threads now have to wait
around for the new bottleneck in the system.

When you have a bug in multithreading code, it’s really easy to blame the
multiple threads and immediately start looking for data races and deadlocking.
You should remember not to overlook the possibility of bugs in the single-
threaded sequential code.

As I've already discussed, controlling code execution with multiple threads
can be complex and is likely to result in hard-to-find software defects. To avoid
these bugs by the use of good design, you need to understand them in some
detail. The next section looks at typical bug types related to multithreading.

Multithreading Problems

Several bug types are associated with multithreading. The ones that you're most
likely to meet are as follows:

e Data races: A data race occurs when multiple threads are allowed simulta-
neous access to read from and write to the same data area. This is likely to
result in inconsistency or even corruption of that data. Using synchroni-
zation locks to serialize thread access to the common data area is the usual
way of combating this problem.

e Deadlock: A process deadlock happens when two or more threads are
unable to proceed because each is waiting for one of the others to proceed.
The most common type of deadlock involves one thread issuing a synchro-
nization lock on resource A and then trying to access resource B while
another thread locks resource B and then tries to access resource A. The
result is that the two threads are in a deadly embrace and each thread will
wait forever for the opposing thread to relinquish its lock.

* Livelock: Process livelock occurs when two or more threads become caught
in a circular loop. For example, thread A sends an error message to thread
B, which responds by sending an error message back. This can result in
a never-ending stream of error messages from one thread to the other.

e Starvation: Thread starvation happens when a thread grinds almost to
a halt because of lack of processor time or a continuing failure to access

some resource being used by other threads.

The next section looks at each of these problems in more detail and suggests
ways of dealing with each problem.

426

Debugging Multithreaded Applications

Understanding Data Races

A data race happens when two or more threads race each other to read from and
write to common data shared between the threads. The adverse effects of a data
race happen when the reading and writing occur in a sequence not anticipated
by the developer of the multithreaded code, and the common data then becomes
corrupted.

The ThreadSynch console application demonstrates how a data race can
occur. This program uses multiple worker threads to perform the very simple task
of incrementing a shared counter from its starting value to a specified end value.
Listing 14-1 shows the Sub Main of the application and the CountCoordinator
class that launches the worker threads and coordinates the shared count.

Listing 14-1. The CountCoordinator Class

Option Strict On
Imports System.Threading

Module CountMonitor
Sub Main()
Dim CountTest As New CountCoordinator(5s)
Console.ReadlLine()
End Sub
End Module

Class CountCoordinator
Private Const MAX_COUNT As Integer = 99
Private m_Counter As Integer = 0

Public Sub New(ByVal NumberOfCounters As Integer)
Dim EachWorker As Integer, NewThread As Thread, _
Worker As CountWorker
'Show starting conditions
Console.WriteLine(_
"Count started at {0} with max value of {1}.", _
CStr(Me.CurrentCount), CStr(Me.MaxCount))
Console.WritelLine(_
"{0} worker threads are doing the counting.", _
CStr(NumberOfCounters))
'Start specified number of worker threads
For EachWorker = 1 To NumberOfCounters
Worker = New CountWorker(Me, EachWorker)
NewThread = New Thread(AddressOf _
Worker.IncrementCount)

427

Chapter 14

428

NewThread. Start()
Next EachWorker
End Sub

Public Property CurrentCount() As Integer
Get
Return m_Counter
End Get
Set(ByVal Value As Integer)
m_Counter = Value
End Set
End Property

Public ReadOnly Property MaxCount() As Integer
Get
Return MAX_COUNT
End Get
End Property

End Class

The application creates the CountCoordinator class and passes 5 as the
number of worker threads required to the class constructor. The class constructor
starts each of the specified number of threads, and these worker threads then
compete for processor time to increment the shared counter from 0 to its maxi-
mum value, in this case 99. The worker threads are given access to this counter
and its maximum value through the CurrentCount and MaxCount properties of
the CountCoordinator class.

Listing 14-2 shows the CountWorker class, which represents each of the
worker threads. This class stored the reference to the CountCoordinator class
that it receives in its constructor and then uses this to increment the
CountCoordinator.CurrentCount property.

Listing 14-2. The CountWorker Class

Class CountWorker
Private m_Coordinator As CountCoordinator
Private m_WorkerId As Integer

Public Sub New(ByVal Coordinator As CountCoordinator, _
ByVal WorkerId As Integer)
m_Coordinator = Coordinator
m WorkerId = WorkerId
End Sub

Debugging Multithreaded Applications

Public Sub IncrementCount()

'Increment shared counter until equal to maximum allowed
With m_Coordinator

Do While .CurrentCount < .MaxCount
Select Case .CurrentCount
Case Is < (.MaxCount - 10)
Thread.Sleep(0)
.CurrentCount += 10
Case Is < .MaxCount
Thread.Sleep(0)
.CurrentCount += 1
Case Else
End Select
'Show current thread and counter value
Console.WriteLine(_
"Worker {0} current count {1}", _
CStr(m_WorkerId), CStr(.CurrentCount))
Loop

End With
End Sub
End Class

The IncrementCount method takes one of three actions, depending on the
current value of the shared counter. If the counter value is within 10 of the maxi-
mum, it adds 1 to the counter. If the counter value is not within 10 of the
maximum, it adds 10 to the counter. If the counter value is equal to or greater
than the maximum value, the thread simply finishes running, as no more count-
ing is required.

Given this relatively simple code, it’s hard to see what could go wrong. But if
you run the ThreadSynch program, you can see that the counter is always incre-
mented well beyond its maximum value before all of the worker threads cease
working. Figure 14-2 shows an example where the counter starts at 0, has a maxi-
mum value of 99, and five worker threads have been allocated to perform the
counting. The final counter value of 131 is much higher than you might expect
from reading the code.

429

Chapter 14

0 with max value of 99.
threads are doing the counting.
current count 10
current count 20
current count 30
current count 40
current count 50
current count
current count
current count
current count
current count

current count
current count
current count
current count

Figure 14-2. An example run of the ThreadSynch application

430

What’s happening is that in between a thread reading the shared counter
value and incrementing it, another thread has also incremented the value. The
threads aren’t all working with the same value of the counter, and therefore they
race each other to read and increment this value.

The insidious evil is that in a real application, this final counter value could
be almost any number equal to or greater than the maximum, depending on the
number of allocated worker threads and when Windows decides to switch
between each thread. In this example program, I deliberately made each thread
give up its time slice by issuing a Thread.Sleep(0) instruction after reading the
shared counter. This allows me to force a data race problem because sleeping one
thread allows the processor to switch the execution of other threads. In the real
world, where the Thread.Sleep instruction probably wouldn’t be used in this
manner, the code might work fine 99.99% of the time, and you're likely to see an
inconsistent final number only when you’re demonstrating the program to your
boss or an important customer.

The most common way of solving a data race problem is to lock the data
shared between multiple threads so that only one thread can access the shared
data at any one time. One way of locking shared data is with the SyncLock
statement. If you add the lines shown in bold in Listing 14-3 to the
CountWorker.IncrementCount method, you'll find that the data race goes
away completely.

Debugging Multithreaded Applications

Listing 14-3. Adding SyncLock to Synchronize Access to Shared Data

"Increment shared counter until equal to maximum allowed
With m_Coordinator

Do While .CurrentCount < .MaxCount
SyncLock(m_Coordinator)
Select Case .CurrentCount
Case Is < (.MaxCount - 10)
Thread.Sleep(0)
.CurrentCount += 10
Case Is < .MaxCount
Thread.Sleep(0)
.CurrentCount += 1
Case Else
End Select
End SynclLock

'Show current thread and counter value
Console.WritelLine("Worker {0} current count {1}", _
CStr(m WorkerId), CStr(.CurrentCount))

Loop
End With

In this example, SyncLock is used to lock access to the count coordinator
object so that only one thread at a time can run code within this object for the
duration of the lock. For finer synchronization, you can use the Monitor class.
For high-performance addition or subtraction of a value type variable, you can
use the Interlocked class. However, any locking strategy needs to beware of two
potential problems. The first problem is that performance can be adversely
affected if the locking is done too frequently or blocks too big a region of code
from executing. The second problem is that locking exposes you to the classic
deadlock situation, as discussed further in the next section.

Understanding Process Deadlock

A process deadlock happens when two or more threads are unable to proceed
because each is waiting for one of the others to proceed. The most common type
of deadlock occurs when one thread issues a synchronization lock on resource

A and then tries to access resource B while another thread locks resource B and

431

Chapter 14

then tries to access resource A. The result is that the two threads are in a deadly
embrace and each thread will wait forever for the opposing thread to relinquish
its lock. An alternative scenario involves a cyclic chain of dependencies where
multiple threads become gridlocked because they’re queuing up and waiting for
other threads to relinquish one or more shared resources. This is similar to the
way that road traffic can become gridlocked at a very busy intersection.

The ThreadDeadlock console application demonstrates how a process dead-
lock can occur. This program consists of a Bank object that spawns multiple
Cashier threads to randomly debit and credit two Account objects owned by the
Bank object. Listing 14-4 shows the Sub Main of the application and the Bank
class that launches the cashier threads and keeps control over the two bank
accounts.

Listing 14-4. The Bank Class

Option Strict On
Imports System.Threading

Module DeadlockTest

Sub Main()
Dim TransferTest As New Bank(2, 10000)
Console.ReadlLine()

End Sub

End Module

Class Bank
Private m_AccountOne As New Account(1000000)
Private m_AccountTwo As New Account(1000000)

Public Sub New(ByVal NumberOfCashiers As Integer, _
ByVal NumberOfTransfers As Integer)
Dim EachWorker As Integer, NewThread As Thread, _
Worker As Cashier

"Show starting conditions
Console.WriteLine(_
"{0} cashiers are performing {1} transfers each.", _
NumberOfCashiers.ToString, _
NumberOfTransfers.ToString)

432

Debugging Multithreaded Applications

'Start specified number of worker threads

For EachWorker = 1 To NumberOfCashiers
Worker = New Cashier(Me, NumberOfTransfers)
NewThread = New Thread(AddressOf Worker.TransferMoney)
NewThread.Name = "Cashier" & EachWorker.ToString
NewThread.Start()

Next EachWorker

End Sub

Public ReadOnly Property AccountOne() As Account
Get
AccountOne = m_AccountOne
End Get
End Property

Public ReadOnly Property AccountTwo() As Account
Get
AccountTwo = m_AccountTwo
End Get
End Property

End Class

The application creates the Bank class and passes 2 to the class constructor
as the number of cashiers required. It also passes the number of account trans-
fers to be made, in this case 10,000. This relatively large number is used to
demonstrate that a process deadlock can happen infrequently and may require
some extensive execution testing to find. The Bank class has two instances of the
Account class, each given an opening account balance of £1 million. When
the Bank object is created, it then instantiates the specified number of Cashier
objects and starts a worker thread for each of the cashiers. It also passes a refer-
ence to itself to each of the cashiers so that they can transfer money to and from
the bank accounts.

One interesting point is that each of the cashier threads is given a name
when it’s instantiated. This really helps with debugging because the thread name
is shown in the IDE Threads window, which makes each thread easier to identify.
I go into more detail about the Threads window shortly, when you start to run
this application.

Listing 14-5 shows the associated Cashier class. Each cashier is instantiated
with an instruction to perform a certain number of transfers on the bank’s two
accounts, in this case 10,000 transfers. For each transfer, the bank accounts to
credit and debit are chosen randomly from the two available. Before performing

433

Chapter 14

the transfer, the credit account is locked first followed by the debit account. This
synchronization locking (shown in bold) prevents multiple cashiers from inter-
fering with each other’s transfers and causing a data race as seen in the previous
example. Unlike the previous example, no thread sleeping is used. The sheer
number of transfers happening is going to force a deadlock at some point,
although thread sleeping (which allows other threads to run) will usually increase
the speed at which a deadlock happens.

Listing 14-5. The Cashier Class

Class Cashier
Private m_Bank As Bank, m NumberOfTransfers As Integer

Public Sub New(ByVal AnyBank As Bank, _
ByVal NumberOfTransfers As Integer)
m Bank = AnyBank
m_NumberOfTransfers = NumberOfTransfers
End Sub

Public Sub TransferMoney()
Dim CurrentTransfer As Integer

With m Bank
For CurrentTransfer = 1 To m NumberOfTransfers

If TrueOrFalse() = True Then
SyncLock (.AccountOne)

SyncLock (.AccountTwo)
.AccountOne.CreditBalance(100)
.AccountTwo.DebitBalance(100)
Console.WritelLine(_

"{0}: Transfer {1}", _
Thread.CurrentThread.Name, _
CurrentTransfer.ToString)

End SynclLock

End SynclLock
Else
SyncLock (.AccountTwo)

SyncLock (.AccountOne)
.AccountOne.DebitBalance(100)
.AccountTwo.CreditBalance(100)
Console.Writeline(_

434

Debugging Multithreaded Applications

"{0}: Transfer {1}", _
Thread.CurrentThread.Name, _
CurrentTransfer.ToString)
End Synclock
End Synclock
End If
Next CurrentTransfer

End With
End Sub

Private Function TrueOrFalse() As Boolean
Randomize()
Dim Test As Single = (Int((2 * Rnd()) + 1))
Return CBool(Test = 1)

End Function

End Class

Finally, Listing 14-6 shows the Account class. This class offers functions for
debiting and crediting the bank account, and a property for interrogating the
current account balance.

Listing 14-6. The Account Class

Class Account
Private m_AccountBalance As Decimal = 0

Public Sub New(ByVal StartingBalance As Decimal)
m_AccountBalance = StartingBalance
End Sub

Public ReadOnly Property AccountBalance() As Decimal
Get
AccountBalance = m_AccountBalance
End Get
End Property

Public Function DebitBalance _
(ByVal AmountToDebit As Decimal) As Decimal
m_AccountBalance -= AmountToDebit
Return m_AccountBalance
End Function

435

Chapter 14

Public Function CreditBalance _
(Byval AmountToCredit As Decimal) As Decimal
m_AccountBalance += AmountToCredit
Return m_AccountBalance
End Function

End Class

If you load the ThreadDeadlock solution into Visual Studio and run it using
F5, you can see that it prints each transfer made by the two cashiers as it hap-
pens, along with the name of the cashier (thread) doing the transfer. At some
unpredictable number of transfers, the application simply hangs, as shown in
Figure 14-3. If you run the application many times, you should see that it hangs
at a different point each time.

: Transfer
: Transfer
: Transfer
: Transfer
: Transfer
: Transfer
: Transfer
: Transfer
: Transfer
: Transfer
: Transfer
: Transfer

: Transfer
: Transfer
: Transfer
: Transfer
: Transfer

Figure 14-3. Process deadlock in the ThreadDeadlock application

To establish what’s happening and why the program is hanging, press
Ctrl+Break at the point where the application hangs. The debugger should
break into the program at one of the four SyncLock statements. Select Debug
> Windows > Threads to display the Threads window, and you can see the three
managed threads within the program, as shown in Figure 14-4. The first thread is
the main application thread, and the other two are the cashier threads.

436

Debugging Multithreaded Applications

! Thread.Slesp (0
Synclock (. AscountTwa
. AccountOne. CreditBalance (100
. AccountTuo. DebitBalance (100
Console.WriteLine("{0): Tramsfer {1)", _
Thread.CurrentThread. Nawe, CurrentTransfer.ToString)
End Synclock
End SynclLock
Else
SyncLock (. AccountTuo
' Thread.Sleep (0
(=3 Synclock (. AccountOne)
. AccountOne. DebitBalance (100
. hecountTuo. CreditBalance (100
Console.WriteLine ("{0}: Transfer {1}",
Thread. CurrentThread.Nawe, CurrentTransfer.ToString
End SyncLock
End Synclock
End If
Next CurrentTransfer

End With

End Sub

Private Function TrusOrFalse() As Boolean
Randomize i

Threads
D Name Location Prior ity Suspend
1436 <No Name> o

o> 1864 Cashierl ThreadDeadlock. Cashier. Transferioney Mormal [uf
1876 Cashier2 ThreadDeadlock. Cashier. Transfertoney Mormal o

Figure 14-4. Using the Threads windows to investigate a process deadlock

The debugger should be paused on one of the SyncLock statements. The
thread that was active when the program was suspended by the debugger is
shown with a small yellow arrow next to it. If you right-click the nonactive cashier
thread in the Threads window (the cashier thread without a yellow arrow next
to it) and choose Switch to Thread from the context menu, you can see that the
other thread is also paused at a SyncLock statement. If you switch between
the two cashier threads in this manner, you can see that each of the threads is
attempting to lock a different account. One cashier has a lock on the first account
and is trying to lock the second account, and the other cashier has a lock on the
second account and is trying to lock the first account. Hence the process is dead-
locked and can’t go any further, so the application hangs.

Notice that the program is randomly picking the order in which it locks the
accounts. One way of avoiding this type of deadlock situation is always to lock
your resources in exactly the same sequence within each thread. An identical
sequence of synchronization locks ensures that multiple threads won't try to grab
each other’s resources in a nondeterministic order. This is usually easier said than
done, because it’s normally very hard to guarantee that code statements are exe-
cuted in the same order in each thread. Depending upon thread entry, data, and
timing conditions, each thread may follow a quite different execution path to its
siblings. Even if you can guarantee that objects are locked in exactly the same
order, you can still be caught by subtleties, as you'll see in a couple of paragraphs.

In this case, an alert developer would probably anticipate the deadlock
because the synchronization is explicit, out in the open, and clearly happening in
arandom order. A more dangerous situation is when the synchronization locks
that lead to a deadlock are implicit rather than explicit. In this example, the

437

Chapter 14

438

synchronization lock might be placed inside a Transfer method as shown in
Listing 14-7, and you might not have easy access to that method’s source code. If
your threads are calling another component’s methods and those methods per-
form their own synchronization, you may not even be aware that this locking is
taking place and that a potential deadlock is hovering over your program.

Listing 14-7. A Hypothetical Transfer Method

Public Sub Transfer(ByVal AccountToDebit As Account, _
ByVal AccountToCredit As Account, _
ByVal AmountToTransfer As Decimal)
SyncLock (AccountToDebit)
SyncLock (AccountToCredit)
'Transfer happens here

And here’s the subtlety that I talked about a couple of paragraphs ago. In
Listing 14-7, the resources are always locked in the same order, so you might
think that a deadlock can’t occur. However, what happens when the first thread
passes account A as the debit account and account B as the credit account, while
the second thread does the opposite? If both threads enter this method simulta-
neously, and a context switch happens after the first lock, you might well see
a deadlock.

To reduce the amount of time that your application is exposed to a potential
deadlock, you should acquire your synchronization locks as late as possible and
release them as early as possible. You should always try to avoid lengthy oper-
ations inside code that’s locked, especially operations (such as I/0) that can
block indefinitely.

If your code throws an exception in a region of code protected by a SyncLock
statement, the synchronization lock will always be released. The VB .NET com-
piler automatically places any synchronized region of code inside an implicit
Try...Finally block, where the Finally block releases the synchronization lock.
This has one interesting side effect: You can’'t use SyncLock in a method that also
uses unstructured exception handling (On Error...), because structured and
unstructured exception handling can't be combined within the same method.

A final subtlety to remember is that threads can deadlock while waiting on
events as well as while waiting to acquire resources locked by other threads. This
is often overlooked, especially when a developer forgets that code in an event
handler is executed by the thread that raises the event, not by the thread that
owns the object within which the event handler resides.

Debugging Multithreaded Applications

Understanding Process Livelock

Process livelock is similar to process deadlock in its external appearance, in that
both situations result in the process appearing to hang indefinitely. Internally,
however, livelock is quite different from deadlock. A process is considered to be
in a state of livelock when thread code is still executing, but two or more threads
are in a never-ending cycle with each other and no useful work is being done.
One example of this was mentioned earlier, a situation where one thread throws
an error message, to which a second thread, not expecting this error, responds
with an error message of its own. This can result in a continuous cycle of errors
being thrown.

There’s no easy way to prevent process livelock, although it’s often possible to
detect the livelock once it’s happened. In the case of a livelock produced by
a cycle of exception messages, Chapter 6 discusses performance counters that
you can use from Performance Monitor (or from code) to detect an excessive
number of exceptions being thrown within a certain time period. Detecting
a livelock internally is much easier than detecting a deadlock because thread
code can continue to execute even in the presence of a livelock. However, it
requires some careful design to ensure that your detection code can adequately
find and stop livelocks. The best solution is to try to anticipate potential livelock
situations and then design your threads to prevent them or at least make them
highly unlikely to happen.

Understanding Thread Starvation

To understand thread starvation, think about approaching a road tunnel in your
car. The road tunnel has only a single lane, but it has to accommodate traffic
traveling in both directions. The problem is that if the oncoming stream of cars is
steady enough, you won'’t get a chance to go through the tunnel yourself. The
analogy is that each car is a thread and the tunnel is a shared resource.

Just like your car can't get through the tunnel because of the oncoming cars,
a thread can be starved of a resource by multiple other threads and be unable to
execute in a timely fashion. The thread might not die of starvation—it just runs
very slowly. This happens when the thread can get access to the resource, but
only for a limited time before competing threads grab the resource back. Going
back to the car/thread analogy, think of your car managing to enter the tunnel,
but having to swerve into a turnout and stop every time it meets an
oncoming car.

439

Chapter 14

440

There are at least two common reasons for thread starvation. The first reason
is when you assign a lower priority than normal to a specific thread. In this case,
you've explicitly requested that the thread is less important than other threads
with a normal priority, and you can solve the problem by juggling and tuning
thread priorities as required. The second common reason for thread starvation is
sometimes called the writer-reader problem, where a single writer thread tries to
lock some data in order to update it but is repeatedly blocked by multiple reader
threads with their own synchronization locks on the same data. This situation is
common enough that the .NET Framework has constructs specifically designed
to help you to avoid thread starvation when it occurs.

In the writer-reader situation, you need to make sure that a writer thread isn’t
prevented from doing its writing for lengthy periods of time by multiple compet-
ing reader threads. To do this, you can use the Framework’s ReaderWriterLock
synchronization class. This class enforces exclusive access to a region of code for
any writer thread, but it allows nonexclusive access to a code region for any
reader thread. The class also coordinates thread access so that once a writer
thread has requested a lock, all subsequent lock requests by reader threads are
queued until the writer lock has been granted. This prevents starvation of a writer
thread through any inability to grab a shared resource away from multiple
reader threads.

In effect, the ReaderWriterLock class switches between one writer thread
and a group of reader threads. In any situation where the shared resource is being
updated infrequently, this class has been designed to provide better throughput
than a standard one-at-a-time lock such as SyncLock or Monitor.

Listing 14-8 demonstrates this by showing a class designed for reading and
writing of some hypothetical shared data. The class is completely thread-safe in
that multiple reader and writer threads can use it simultaneously. Its use of the
ReaderWriterLock class also prevents starvation of any writer threads, even in
the presence of a larger number of competing reader threads. It’s worth examin-
ing the code closely because, although it looks simple, it has some subtleties that
may not be immediately apparent from a first reading.

Listing 14-8. A Thread-Safe Class for Reading and Writing Shared Data

Option Strict On
Imports System.Threading

Class ReadWrite
'This class is thread-safe in that its methods can
'be called safely from multiple threads simultaneously.
Private m_Lock As New Threading.ReaderhWriterLock()

Debugging Multithreaded Applications

Public Sub ReadData(ByVal MillisecondsToWait As Integer)
'This procedure reads information from some source.
'The read lock prevents data from being written until
"the thread is done reading, while allowing other threads
"to call ReadData.
m_Lock.AcquireReaderLock(MillisecondsTolWait)

'We have a lock, so now try to read the data
Try
'Perform read operation here.
Finally
m_Lock.ReleaseReaderLock()
End Try

End Sub

Public Sub WriteData(ByVal MillisecondsToWait As Integer)
'This procedure writes information to some source.
'The write lock prevents data from being read or
'written until the thread has finished writing.
m_Lock.AcquireWriterLock(MillisecondsTolWait)

'We have a lock, so now try to write the data
Try
'Perform write/update operation here.
Finally
m_Lock.ReleasehWriterLock()
End Try

End Sub

End Class

Acquiring a Reader Lock

When a thread enters the ReadData method shown in Listing 14-8, it

attempts to acquire a reader lock using the AcquireReaderLock method of the
ReaderWriterLock class. The AcquireReaderLock will block if a different thread
has a writer lock or if any thread is waiting to acquire a writer lock. This latter
point is one of the keys to avoiding thread starvation of a writer thread. Any block
on the attempt to acquire a reader lock will last until either the reader lock is
granted or the number of milliseconds specified by the MillisecondsToWait

441

Chapter 14

442

parameter of the ReadData method has expired. If the time-out of the reader
lock attempt does expire, the AcquireReaderLock statement will throw an
ApplicationException exception that can be caught by the code calling the
ReadData method. Using a time-out in this manner prevents any possible
deadlock problems.

If the reader lock is granted, the ReadData method then attempts to read the
data. This read attempt is placed within a Try...End Try block so that read lock
will always be released, even if an error occurs. This is important because the
number of reader locks acquired and reader locks released should always be
matched.

There is one final subtlety of the AcquireReaderLock method of which you
should be aware. If the current thread already has a writer lock and it then
attempts to acquire a reader lock, the reader lock isn't granted. Instead, the writer
lock count is incremented by one and the data read then proceeds as normal.
This nuance has the advantage of preventing a thread from blocking on its own
writer lock. The disadvantage is that instead of calling ReleaseReaderLock when
the data read has completed, you need to call ReleaseWriterLock instead. This is
because every writer lock has to be matched with a writer lock release, even if the
writer lock has been acquired by using the AcquireReaderLock method. Fortu-
nately, you can check if the current thread already has a writer lock by checking
the IsWriterLockHeld property and then releasing the writer lock if necessary.

Acquiring a Writer Lock

When a thread enters the WriteData method shown in Listing 14-8, it

attempts to acquire a writer lock using the AcquireWriterLock method of the
ReaderWriterLock class. This method blocks if a different thread has a reader or
writer lock. If the writer lock attempt is blocked, it’s placed in a queue ahead of
any reader locks that are blocked. This is the final key to avoiding thread star-
vation of a writer thread. Once again, a time-out period is specified on the
attempt to acquire the writer lock to avoid any possibility of deadlocks. If

the time-out expires, the AcquireWriterLock statement will throw an
ApplicationException exception that can be caught by the code calling

the WriteData method.

If the writer lock is granted, the WriteData method then tries to update the
data. As with the ReadData method, this update is placed within a Try...End Try
block so that writer lock will always be released, even if an error occurs. This is
important because the number of writer locks acquired and writer locks released
should always be matched.

As with the AcquireReaderLock method, AcquireWriterLock also has a final
subtlety that can trip you up. If a thread calls AcquireWriterLock while it also has
areader lock, it will block on that reader lock. If an infinite time-out is specified
for the writer lock attempt, the thread will then deadlock with itself. To prevent

Debugging Multithreaded Applications

this, you can use the IsReaderLockHeld property and then upgrade the reader
lock to a writer lock using the UpgradeToWriterLock method if necessary.

Remember, of course, that if you do upgrade a reader lock to a writer lock, you
need to release the writer lock rather than the reader lock.

The ThreadMonitor Application

This section uses the ThreadMonitor application to investigate managed and
unmanaged threads running within a process. If you load the ThreadMonitor
solution into Visual Studio and execute it by pressing F5, you can see the appli-

cation’s user interface as shown in Figure 14-5.

i o [=]]

Processes Win3Z threads in process: ThreadMonitor
SMS3 =l Id | Priority | State ‘Wait reason Time in app Taotal time |
gnNa'\?gaz 1164 MNormal Running 490.7056 761.0944

| 1872 Mormal Wait UserReqguest 0 0
iplorr?asnv ; 1604 Highest Wait UserReqguest 0
Sglser\xrg 1876 Mormal Wait UserReqguest 0 0
SYCHOST nz MNarmal Wiait EwventPairLow 0 0
SYCHOST 768 Marrmal Wait UserReqguest 0 0
SYCHOST 1436 Marmal Wit UserRequest i i
SynTPEnh 1000 BelowMormal — ‘Wait ExecutionDelay 0 0
SynTPLpr
[veaavinicr
WEITION
WNLOGOMN
wlaLCl
ZIFTOA _
zonealarm

Lezuitelh izrais) Id Mame | Friarity | State Background? | Poaoled?
22 Userthread 0 BelowMormal WaitSleepJain True False
‘ 2]

Figure 14-5. The user interface of the ThreadMonitor application

443

Chapter 14

444

The list box on the left side of the form contains a list of the processes that
are currently executing on the local machine. When you click any process, its
managed and unmanaged threads are shown in the form’s top list view. This list
of threads is updated every second and shows details about each thread’s priority,
state, and processor time.

Clicking the command button underneath the list box allows you to launch
a user thread. Each thread sleeps for 5 seconds and then executes a simple loop
30 million times before terminating. You can track the user threads because
they’re shown in the form’s bottom list box as well as in the top list box.

Listing 14-9 shows the code that uses the Process.Threads collection to enu-
merate all of the Win32 threads within the selected process and display each of
them in the top list box. Unfortunately, there’s no direct way of knowing which
of these process threads is managed and which isn’t. There isn’'t even a guarantee
that a single managed thread actually maps to a single Win32 thread, because the
CLR explicitly declines to make any such guarantee. In the future, the use
of thread fibers may allow multiple managed threads to run on a single Win32
thread.

Listing 14-9. Displaying All Win32 Threads Within a Specified Process

Private Sub UpdateWin32ThreadDisplay(_
ByVal SelectedProcessId As Integer)
Dim SelectedProcess As Process
Dim ThisThread As ProcessThread, LV item As ListViewItem

'Get Win32 threads for this process and display them

SelectedProcess = _
Process.GetProcessById(SelectedProcessId)

LabelThreadName.Text = SelectedProcess.ProcessName

With Me.Threadlist
.BeginUpdate()
.Items.Clear()

'Iterate through every Win32 thread in this process
For Each ThisThread In SelectedProcess.Threads

Try
'Add thread id
LV item = _
New ListViewItem(ThisThread.Id.ToString)
'Add thread details
With LV item.SubItems

Debugging Multithreaded Applications

'Thread priority
.Add(ThisThread.PrioritylLevel.ToString)
'Thread state
.Add(ThisThread.ThreadState.ToString)
'Reason for thread wait
If ThisThread.ThreadState = _
Diagnostics.ThreadState.Wait Then
.Add(ThisThread.WaitReason.ToString)
Else
.Add(vbNullString)
End If
'Thread time in app
LAdd
(ThisThread.UserProcessorTime.TotalMilliseconds.ToString)
'Thread time in 0S
JAdd
(ThisThread.TotalProcessorTime.TotalMilliseconds.ToString)

End With

'Display the thread

.Items.Add(LV_item)

Catch Exc As InvalidOperationException
'Thread's disappeared - ignore

End Try
Next ThisThread

.EndUpdate()
End With

End Sub

If you choose the ThreadMonitor process in the list box, you can see that it
contains no less than eight Win32 threads. If, however, you use Ctrl+Break to
break into the program and then examine the Threads window, you’ll see only
two threads displayed. Make a note of the thread ID of each of the two threads
shown, and then resume program execution with F5. You can use the thread
IDs to locate these two managed threads in the top list box. The first thread is
usually the application’s main thread and will normally be the first thread in the
Process.Threads collection, although this is also not guaranteed. The second
thread shown in the Threads window is the thread that runs the message pump
for the Windows Form that’s being displayed.

445

Chapter 14

Listing 14-10 shows the code that uses the collection of managed user
threads to display every user thread in the bottom list box. This collection is
maintained by the code every time a new user thread is launched or terminates.
Keeping this collection solves the problem of trying to figure out which Win32
thread corresponds to which user thread. The reason for keeping track of these
threads is that a managed thread object has some useful information about
the thread that the standard process thread object doesn’'t have. Some of this
extra information is displayed in the list box, including the thread name, whether
it's a foreground or background thread, and whether the thread is running in the
managed thread pool.

Listing 14-10. Displaying All User Threads Within a Specified Process

Private Sub UpdateUserThreadDisplay()
Dim ThisThread As Threading.Thread, _
LV _item As ListViewItem

'Iterate through managed threads for current process
With Me.ManagedThreadlist

.BeginUpdate()

.Items.Clear()

'Iterate through every thread in this process
For Each ThisThread In UserThreads

If ThisThread.IsAlive Then

Try

'Add thread id

LV item = New ListViewItem _
(ThisThread.GetHashCode.ToString)

'Add thread details

With LV_item.SubItems
'Add thread name
.Add(ThisThread.Name)
'Thread priority
.Add(ThisThread.Priority.ToString)
'Thread state
.Add(ThisThread.ThreadState.ToString)
'Thread is alive?
.Add(ThisThread.IsAlive.ToString)
'Background thread?
.Add(ThisThread.IsBackground.ToString)

446

Debugging Multithreaded Applications

'Threadpool thread?
JAdd
(ThisThread.IsThreadPoolThread.ToString)
End With
'Display the thread
.Items.Add(LV_item)

Catch Exc As Threading.ThreadStateException
'Thread's disappeared - ignore
UserThreads.Remove

(ThisThread.GetHashCode.ToString)

End Try
Else

'Thread's dead - remove from collection
UserThreads.Remove _
(ThisThread.GetHashCode.ToString)

End If
Next ThisThread

.EndUpdate()
End With

End Sub

To launch and watch a user thread, click the “Launch thread” button once.
A single managed thread will appear in the bottom list box, with its state set to
WaitSleepJoin. After 5 seconds, the state will move to a state of Running, and
then a few seconds later the thread will terminate and disappear from the
display.

If you launch three threads in quick succession and then quickly press
Ctrl+Break to pause the program, you can use the Threads window to examine
these user threads. The thread name allocated by the code to each thread as it’s
launched is shown in the second column of the window. The active thread is
shown with a yellow arrow next to it. To select another thread as the active
thread, simply double-click it.

One interesting facility that the Threads window gives you is the ability to
“freeze” or “thaw” a thread. To freeze a thread, right-click it in the Threads win-
dow and select the Freeze menu item. This prevents execution of that thread after

447

Chapter 14

448

you resume the program, which can be very useful if you want to examine the
behavior of a single thread without worrying about side effects caused by other
threads. To thaw a thread, right-click the thread again and select the Thaw menu
item. This allows execution of that thread once the program has been resumed.
Two blue bars next to a thread in the Threads window means that the thread has
been frozen. Of course, this thread freezing and thawing is just a debugger arti-
fact, and it doesn't mean anything to Windows itself. If you took away the
debugger from a frozen thread, it would continue execution normally.

Multithreading in Windows Forms

The ThreadGui application examines some of the threading issues that you have
to face in a Windows Forms program. Multithreading can be very useful in this
environment because it lets you keep the user interface responsive to the end
user while you're doing intensive work, and you can also use it to let the end user
cancel a long-running task. The drawback is that you need to respect the single-
threaded nature of a Windows Form.

If you load the ThreadGui solution into Visual Studio and execute it by press-
ing F5, you'll see the application’s user interface, as shown in Figure 14-6.

L= ol x|
Mumber ” I
10000 ccumulate

Display interval
100

Mumber reached: 1300
Accumulated total: 844350

Figure 14-6. The user interface of the ThreadGui application

When you enter a number into the top text box and click the button marked
Accumulate, the program accumulates a running total by adding every number
together between 1 and the number entered in the text box. So if you entered
5 into the top text box, the accumulated total would be 15 (1 + 2 + 3 + 4 + 5). The
Cancel button allows you to interrupt and stop the accumulation calculation
at any time. The label at the bottom of the form displays the results of the calcu-
lation.

The second text box is used to allow the user to monitor progress of the cal-
culation. After the accumulation is performed the number of times specified in
this text box, the current running total is displayed in the label at the bottom of

Debugging Multithreaded Applications

the form and the display is paused for 0.1 second so that the user can glimpse
this intermediate result. Then the calculation continues accumulating until
either the next display interval is reached or the calculation finishes.

The challenge is to run the potentially lengthy calculation while keeping the
user interface responsive so that the user can cancel the calculation and while
displaying the intermediate results of the calculation in a safe manner.

The first major problem to overcome is that you should never, ever, update
a control (in this case, the label at the bottom of the form) from a thread other
than the thread that created the control. If you break this Windows Forms law,
your program will experience strange and difficult multithreading bugs, and you
won'’t be able to fix these bugs except by changing your program to obey the law.
The first approach that many developers experiment with when faced with this
prohibition is to tell the calculation thread to raise an event that the form can
handle and use to update the user interface. Unfortunately, as mentioned earlier
in this chapter, this won’t work. An event handler always runs on the same thread
that raised the event, so the event handler also isn’t allowed to update the user
interface.

The second problem is for the user interface thread to find a way of telling
the calculation thread that the user has canceled the calculation request. Often
a developer will think about setting a class-level variable that can be accessed
and shared by both threads. This is, however, difficult to do without running into
the thread synchronization issues that I discussed in the previous section.

Listing 14-11 shows the code that launches the worker thread to do the
calculation once the user has clicked the Accumulate button. It uses an
asynchronous delegate to spawn a work request that will be handled by the
.NET thread pool. The delegate’s BeginInvoke method is used to start the calcu-
lation thread asynchronously and pass it the specified number to accumulate.

Listing 14-11. Code to Launch the Calculation Thread

Option Strict On
Imports System.Threading

Public Class MainForm : Inherits System.Windows.Forms.Form

Private Delegate Sub CalcDelegate(ByVal AnyNumber As Int32)
Private Delegate Sub _
ProgressDelegate(ByVal CurrentTotal As Decimal, _
ByVal NumberReached As Int32, _
ByRef CancelRequest As Boolean)
Private m_CancelRequested As Boolean = False

449

Chapter 14

450

Private Sub ButtonCalc_Click(ByVal sender As System.Object, _
Byval e As System.EventArgs) _
Handles cmdCalc.Click

'Init calculation
Me.cmdCalc.Enabled = False
Me.cmdCancel.Enabled = True
m_CancelRequested = False

'Use asynch delegate to launch thread from thread pool

Dim CalcAccumulation As CalcDelegate = New _
CalcDelegate(AddressOf CalculateAccumulation)

CalcAccumulation.BeginInvoke(_
Convert.ToInt32(Me.txtNumber.Text), _
AddressOf CalcComplete, Nothing)

End Sub

If you don’t need the control that a manual thread gives you, such as setting
the thread name or priority, using the thread pool spares you from the messy
details of thread management and scales better in many multithreaded environ-
ments. Even better, as you'll see shortly, it’s easy to propagate background thread
exceptions back to the main thread when using the thread pool.

Listing 14-12 shows the method that runs the calculation thread. First place
a breakpoint on line 162 (the line marked in bold in Listing 14-12) and then run
the application by pressing F5. When you click the Accumulate button, the pro-
gram will break as soon as it reaches your breakpoint. If you now look at the
Threads window, you'll see two threads: the user interface thread and the calcu-
lation thread from the thread pool.

Listing 14-12. Performing the Accumulation Calculation

Private Sub CalculateAccumulation(_
ByVal NumberToAccumulate As Int32)
Dim CalcObject As New Calc(NumberToAccumulate),
CurrentTotal As Decimal = 0
Dim CancelRequested As Boolean = False

With CalcObject

Do While .NumberReached <= NumberToAccumulate
CurrentTotal = _
.Accumulate(Convert.ToInt32(Me.txtInterval.Text))
ShowProgress(CurrentTotal, .NumberReached,

Debugging Multithreaded Applications

CancelRequested)
If CancelRequested = True Then
Exit Do
End If
Loop
End With

End Sub

After performing each stage of the accumulation, the calculation thread calls
the ShowProgress method, which is shown in Listing 14-13. This method is
where the clever work happens. Remember that you should never update a user
interface control from any thread except the one that created the control. To ver-
ify whether the user interface thread or the calculation thread is trying to update
the user interface, the ShowProgress method checks Me.InvokeRequired. This
will return True if the current thread isn’t the user interface thread, and it will
return False if it’s the user interface thread. If InvokeRequired is False, then the
thread is allowed to update the user interface directly, and therefore update
the label with information about the progress of the calculation.

The interesting work happens when InvokeRequired is True, and there-
fore the user interface can’t be updated directly. Every control has an Invoke
method, and this is one control method that the CLR guarantees is safe to call
from any thread. The arguments for the Invoke method include a delegate
and a developer-defined set of arguments that are used to call the delegate’s
associated method. So this code calls ShowProgress recursively using the
ProgressDelegate delegate. Using the Invoke method ensures that the recursive
call happens on the user interface thread, where it’s safe to update the user
interface.

Listing 14-13. Updating the User Interface with Intermediate Calculation Results

Private Sub ShowProgress(ByVal CurrentAccumulation As Decimal, _
ByVal NumberReached As Int32, _
ByRef CancelRequest As Boolean)

If Me.InvokeRequired = True Then

'Transfer to GUI thread to show progress
Dim CancelRequested As Object = False
Dim SP As ProgressDelegate = _
New ProgressDelegate(AddressOf ShowProgress)
Dim Arguments() As Object = New Object() _
{CurrentAccumulation, _

451

Chapter 14

452

NumberReached,
CancelRequested}
Me.Invoke(SP, Arguments)
CancelRequest = DirectCast(CancelRequested, Boolean)

Else

'We're on the GUI thread, so just show progress
With Me.lblResult
.Text = "Number reached: " & NumberReached.ToString
.Text += Environment.NewlLine
.Text += "Accumulated total: " _
& CurrentAccumulation.ToString
End With

'Pause for a short time to allow user to read display
Thread.CurrentThread.Sleep(100)

'Return any cancellation request
CancelRequest = m_CancelRequested

End If
End Sub

This technique for updating the user interface with progress information
from the calculation thread works well and avoids any updating of the user inter-
face from a nonuser interface thread. Instead of interacting directly, the user
interface and calculation threads pass messages to each other, which means that
you never have to worry about any thread synchronization or deadlock issues.

So the first problem of updating the user interface is solved, but you still
need to tackle the problem of canceling the thread if the user clicks the Cancel
button. The code behind the Cancel button is shown in Listing 14-14. It sets
a class-level variable signifying that the user has issued a cancellation request.
But how can you give the calculation thread access to this variable without run-
ning into thread synchronization issues?

Listing 14-14. Canceling the Calculation

Private Sub ButtonCancel Click(ByVal sender As System.Object, _
Byval e As System.EventArgs) _
Handles cmdCancel.Click
'Request that calculation thread cancels itself
m_CancelRequested = True
End Sub

Debugging Multithreaded Applications

The key to this puzzle lies in the ShowProgress method shown in Listing 14-13.
This method has a ByRef argument called CancelRequest. When this method
is called on the user interface thread, it sets this argument to the class-level
request cancellation variable. Because the calculation thread regularly calls the
ShowProgress method to update the user interface with its progress, it can read
the cancellation request argument after it’s called the Invoke method. This
allows the request for cancellation to pass safely from the user interface thread to
the calculation thread without having to worry about synchronization issues. Yet
again, a message passing between the two threads prevents any problems that
might arise if the two threads interacted directly.

Finally, once the calculation thread has completed, it invokes the callback
that it was passed when it was started. This is the CalcComplete method shown
in Listing 14-15, which simply resets the user interface so that another request
can be started.

Listing 14-15. Completing the Calculation

Private Sub CalcComplete(ByVal CalcResult As System.IAsyncResult)
'Called when asynch thread completes
Me.cmdCalc.Enabled = True
Me.cmdCancel.Enabled = False

End Sub

Dealing with Thread Failure

So far in this chapter, I've made the assumption that threads don’t throw
exceptions. Back in the real world, you need to be able to trap and deal with
errors in threads launched by your applications.

Handling Thread Exceptions

An exception thrown by any thread that your application launches from its main
thread is not propagated back to the main thread. The CLR simply swallows the
exception and either returns the thread to the thread pool (if it came from thread
pool) or just terminates the thread.

You can trap these thread exceptions by creating an unhandled exception
filter and attaching this filter to the Application.ThreadException event. This
process is described in detail in Chapter 13. An alternative possibility for threads
that run in the thread pool is to add a Try...End Try block on the thread start dele-
gate’s EndInvoke method. EndInvoke on a thread delegate is the method used to
block and wait for the thread to finish.

453

Chapter 14

454

In the case of the ThreadGui application, the calculation thread is launched
asynchronously, so it doesn’'t make sense to use EndInvoke after the thread has
been launched. This would just force the user interface thread to block and wait
for the calculation thread to finish, which defeats the point of using an asynchro-
nous thread. Instead, you can call the EndInvoke method after the calculation
thread has signaled its completion by calling the CalcComplete callback.

Listing 14-16 shows you how you can modify the CalcComplete method shown
in Listing 14-15 to catch any exception thrown by the calculation thread.

Listing 14-16. Trapping Any Calculation Thread Exception

Private Sub CalcComplete(ByVal CalcResult As System.IAsyncResult)
Dim Result As AsyncResult = CType(CalcResult, AsyncResult)
Dim MyDelegate As CalcDelegate = _
CType(Result.AsyncDelegate, CalcDelegate)

'Called when asynch thread completes
Me.cmdCalc.Enabled = True
Me.cmdCancel.Enabled = False

Try
'Find out if anything dodgy happened in the async thread
MyDelegate.EndInvoke(CalcResult)
Catch Exc As Exception
MsgBox (Exc.Message, MsgBoxStyle.OKOnly,
"Async thread exception")
End Try

End Sub

The first two lines in Listing 14-16 are a little confusing. Their job is to extract
the original delegate from the asynchronous result returned by the calculation
thread. Once the original delegate has been extracted, the line shown in bold
calls EndInvoke on the original delegate. This has the effect of marshalling any
exception that occurred in the calculation thread back to the user interface
thread, where the Catch block shown here traps and displays the exception
message.

If you throw a test exception from the CalculateAccumulation method
shown in Listing 14-12, you should now see the displayed exception message. To
throw a test exception, simply add a line such as

Throw ApplicationException("Test exception")

Debugging Multithreaded Applications

Terminating a Managed Thread

Explicitly terminating a managed thread should be done with some care. You can
use the Thread.Abort method to terminate a thread, but when doing this you
should be aware of exactly how the thread is terminated and the issues that this
might cause. This section discusses these issues.

Using Thread.Abort doesn'’t end a thread immediately. It causes an exception
of type ThreadAbortException to be generated in the thread to be aborted,
which in turn unwinds any Try...End Try blocks in that thread’s call stack. Code in
related Catch and Finally blocks will be executed, and theoretically this code
might perform long, or even infinite, calculations. This means that you can’t
guarantee that a thread will end when you call Thread.Abort.

Unlike a normal exception, an exception of type ThreadAbortException
can’t be suppressed by using a Catch block because it’s always rethrown automat-
ically at the end of each Catch block. However, a thread with sufficient privilege
can call Thread.AbortReset to suppress this exception. This is another way in
which a thread might resist being terminated.

To confirm that a thread really has terminated, you need to call Thread.Join.
This joins your invoking thread to the thread that’s been aborted and blocks your
thread until either the joined thread has actually been aborted or the time-out
that you specify in the Thread.Join has been exceeded.

If the ThreadAbortException caused by the call to Thread.Abort interrupts
a thread during execution of a Finally block, that execution of that block of code
won't be completed. This is one of the very few ways in which a Finally block can
be bypassed.

Developers will often use Try...Catch...Finally to protect code where they
anticipate that an exception might be thrown. The problem is that an exception
of type ThreadAbortException can occur at any time and with no warning. This
can complicate the process of writing really safe code that always unwinds itself
when interrupted.

Aborting a thread with Thread.Abort unlocks any synchronization locks that
the thread holds. This means that the data being protected by these locks may
become inconsistent or corrupted, as discussed previously in the section on data
race problems.

In some circumstances, attempting to abort a managed thread that’s sus-
pended by user code (as opposed to one suspended by the garbage collector or
another system process) leads to that thread hanging forever and not terminat-
ing. This appears to be a known CLR bug at the time of this writing.

A better way of terminating a thread is to set a PleaseStop variable that the
thread can check periodically. This allows a thread to terminate itself under
controlled conditions. An example of using this technique safely without
synchronization problems is discussed in the ThreadGui application earlier in
this chapter.

455

Chapter 14

456

The final fact to be aware of is that background threads are always termi-
nated automatically when the process or thread from which they were launched
is terminated. Try...End Try blocks are unwound normally when this happens.

Summary

Debugging a multithreaded application can be very messy and difficult. One
developer memorably compared the difficulty of testing and debugging free-
threaded code with performing a tonsillectomy while entering the patient from
the wrong end. Understanding the common problems that can afflict a multi-
threaded application is key to creating a program design that avoids the need to
perform heavy debugging. The examples of problem behavior discussed in this
chapter are best avoided by designing your thread interactions very carefully. The
ThreadGui example application presents one design pattern that avoids thread
interaction problems.

INTERLUDE

THE 500-MILE E-MAIL BUG

In November 2002, a system administrator named Trey Harris posted the tale of
aremarkable bug that he had diagnosed and fixed. He later posted a clarification
of the bug’s details and a FAQ about the bug, both of which you can find at
http://www.ibiblio.org/harris/500milemail.html.

While working as a system administrator for a campus e-mail system at the
University of North Carolina, Trey received a phone call from the chairman of
the statistics department saying that nobody in the statistics department could
send e-mail farther than 520 miles from the campus! After verifying that the call
wasn't a practical joke, Trey ran some tests of his own on the e-mail system. Sure
enough, when he sent test e-mails to Richmond, Virginia; Atlanta, Georgia;
Washington D.C.; Princeton, New Jersey; and New York City, all of which are
destinations within 520 miles, the e-mails were sent successfully. When he sent
a test e-mail to Memphis, Tennessee, about 600 miles away;, it failed to deliver.
Likewise for Boston, Massachusetts; Detroit, Michigan; and Providence, Rhode
Island, the latter being 580 miles away. A minor comfort was that when he sent
an e-mail to a friend in North Carolina whose ISP was in Seattle, Washington, it
also failed. If the problem had been related to the geographic location of the
e-mail recipient rather than the mail server, there would have been some real
explaining to do.

Debugging Multithreaded Applications

Having duplicated the problem, he now had to figure out what was causing
it. After all, it’s not every day that you find such an unusual bug. He knew that
a consultant had recently patched the mail server to upgrade its SunOS operating
system, but the consultant hadn’t touched the mail system itself. The first
obvious place to look for problems was the configuration file for the sendmail
utility. But the sendmail.cf file on the offending mail server looked perfectly
normal.

To investigate further, Trey telnetted into the SMTP port on the mail server,
and was greeted with a SunOS sendmail banner...for sendmail version 5. At this
point in time, Sun shipped the tried and trusted sendmail version 5 with its oper-
ating system, even though the version of sendmail used by the university had
been standardized at version 8. So when the consultant patched the OS, the
sendmail utility had been downgraded from version 8 to version 5, but
the sendmail.cf configuration file had not been downgraded—this was the
first clue.

Although the sendmail version 5 shipped by Sun had been tweaked to cope
with a version 8 configuration file, it only did so by ignoring the configuration
options that it couldn’t understand. One of these options was the time-out to
connect to the remote SMTP server, which sendmail set to zero because it
couldn’t understand the version 8 setting. Some experimentation revealed that
under the typical load experienced by this particular mail server, and after
accounting for router delays and transmission speeds across optic fiber, a zero
time-out would abort a connect call to a remote mail server in approximately
3 milliseconds.

How far does light travel in 3 milliseconds? Slightly over 500 miles.

457

2 Springer
http://www.springer.com/978-1-59059-050-8

Comprehensive VB .MET Debugging
Fearce, M,

2003, XXV, 528 p., Softcover

ISEM: 978-1-59059-050-8

& product of Apress

