CHAPTER 3
PHYSICAL FUNDAMENTALS OF HYDRAULICS

The purpose of this chapter is to define some physical properties of hydraulic fluids,
and to discuss the fundamental laws and equations of fluid motion, types of flow,
and the flow through orifices and valves. It should be mentioned that the intention of
this chapter is not to present the complete theoretical basics of fluid motion in
hydraulics (or fluid mechanics); it rather summarises those equations and concepts
which will be required in the subsequent chapters. For more details and information
the reader is always referred to the corresponding literature given throughout the
whole chapter.

The writing of this chapter was largely influenced by the extensive discussions
on flow through orifices and valves in the standard textbooks by Merritt (1967), and
more recently the fine work by Beater (1999). Analyses and discussions on the
material of this chapter can also be found, e.g., in Findeisen and Findeisen (1994)
and in the recent work by Will et al. (1999).

3.1 Physical Properties of Fluids

Fluids (liquids and gases) are bodies without their own shape; they can flow, i.e.,
they can undergo great variations of shape under the action of forces; the weaker the
force, the slower the variation (Lencastre, 1987).
The normal tension on the surface element of a fluid is called pressure. It is, at a
given point, identical in all directions. Pressure can be calculated as
__ Force F

= = 3.1
P Area A G-

and thus has the dimensions of force per unit area (N/m?).
3.1.1 Viscosity and Related Quantities

The coefficient of dynamic viscosity, #, is the parameter that represents the
existence of tangential forces in liquids in movement. Suppose two plates (or fluid
layers) are moving at a distance apart of dy, and at a relative velocity dv, (see M
, then the shear stress

Shear Force dv,
T=—=

Newton 3.2
Area dy ( ) (3-2)

arises. Thereby, # is a proportionality factor and is called dynamic viscosity.
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v(y)

Figure 3.1. Couette flow; definition of shear stress

The coefficient of kinematic viscosity, i, is the ratio of the coefficient of dynamic
viscosity to the fluid density, i.e.,

_ Dynamic Viscosity _ 77,

33
Density P (3-3)

The dynamic viscosity of liquids varies considerably with the temperature:
n, =1, e’/i1('9*‘90) (3.4)

where 7y is the dynamic viscosity at reference temperature 6,. The viscosity—
temperature coefficient A; should be determined by experiments for the fluid
considered. For mineral oils, it lies between 0.036 and 0.057 K™' (Ivantysyn and
Ivantysynova, 1993).

The influence of pressure is given by

n=n,e” (3.5)

where a is the viscosity—pressure coefficient that depends on the temperature; see
[Cable 3.1]for the mineral oil HLP 32. For HFC fluids and HFD fluids the values of
a=035Pa"' and a =2.2 Pa”' can be used respectively (Ivantysyn and Ivantysynova,
1993). The effect of pressure on viscosity is not so important in practice.

Table 3.1. Viscosity—pressure coefficient for the mineral oil HLP 32 (Ivantysyn and
Ivantysynova, 1993)

61[°C] a[1072Pa"]
0 3.268
10 2.900
20 2.595
30 2339
40 2.121
50 1.933
60 1.770
70 1.626
80 1.499
90 1.385
100 1.283
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3.1.2 Mass Density, Bulk Modulus and Related Quantities

Mass density, p, or simply density is the mass contained in a unit volume:

_ Mass -1 Am _ dm

= = lim = (3.6)
Volume a4 -0AV dV

The density of hydraulic fluids normally lies between 0.85 and 0.91 kg/dm’. Indeed,
the density of hydraulic fluids is a function of both pressure and temperature, i.e.,
p =p(p,0). The first three terms of a Taylor’s series for two variables may be used as
an approximation (Merritt, 1967):

N V2 P\ g
p’“po"'(apl(l’ po)"'(aejp(e 6,)

=po[1+%(p—l?o)—0!(9—90)} 3.7

where p, p and 0 are respectively the mass density, pressure, and temperature of the
fluid about the initial values p,, py and 6,. Equation is the linearised equation of
state for fluids. In hydraulic phenomena, the usual assumption of constant
temperatures reduces the linearised state Equation of fluids to the simple form
(Merritt, 1967)

p.
pP=ptp (3-8)
where p; is the mass density at zero pressure.
The quantity
9 9
E=p, [a_Pj =-V, [_Pj (3.9)
p 9 aV 4

is the change in pressure divided by the fractional change in volume at a constant
temperature. It is called the modulus of elasticity, also termed the isothermal bulk
modulus or simply bulk modulus of the liquid. It significantly influences the
dynamics of hydraulic servo-systems. For mineral oils, and for common pressures
and temperatures (6 € [-40,120]°C, p <450 bar), one may assume a mean value for
the bulk modulus, typically

Emineral oit = (14-16)x10° bar = (1.4-1.6)x10° N/m* = (1400-1600) MPa  (3.10)

However, from a practical viewpoint, this is a very rough approximation, as the bulk
modulus varies considerably with pressure, for instance, according to

E

isen

=E+K,p (3.11)

Typical values are £=16500 bar and K, =9.558. The influence of temperature is
negligible.
The quantity
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1 (dp 1(aV
—_Ltf(op) _L[fdV 3.12
“ po(aej,, Vo(ael G-12)

is the fractional change in volume due to a change in temperature at constant
pressure. It is called the cubical expansion coefficient of the liquid.

In the literature, there are many formulae for the calculation of the density of
hydraulic fluids as a function of temperature and pressure. For example, the density
at atmospheric pressure (1 bar = 10° N/m?) and variable temperature 6 is given by

Po
=—r0 3.13
1B 0-6,) G4
where py is the density at reference temperature 6, (say 15°C), and S, denotes the
heat expansion factor, e.g., 0.65x10° K™' for mineral oils, 0.7x10° K™' for HFC-

fluids, and 0.75x10~° K" for HFD-fluids (Matthies, 1995). The density of hydraulic
fluids following a change in pressure can be expressed as

o
p, =—" (3.14)
! 1_KP(P_p0)

where &, is the compressibility factor

K, =i[a—Vj (3.15)
Wo\op ),
For variable temperature and variable pressure the density can be calculated by
p=p,(1+x,Ap) (3.16)

Typical values for «, are: 0.7x10* bar" for mineral oils, 0.3x10* bar" for HFC-
fluids, and 0.35x10* bar for HFD-fluids (Matthies, 1995). From these values, it
can be concluded that the effect of pressure on the fluid density is minor, and thus
negligible in practice.

3.1.3 Effective Bulk Modulus

The bulk modulus of a liquid is substantially lowered by entrained gas and
mechanical compliance. According to Merritt (1967), estimates of entrapped air in
hydraulic systems run as high as 20% when the fluid is at atmospheric pressure. As
the pressure is increased, much of this air dissolves into the liquid and does not
affect the bulk modulus. The major source of mechanical compliance may be the
hydraulic lines connecting valves and pumps to actuators.

3.1.3.1 Influence of Entrained Air

Some work has been done on determining the bulk modulus of liquid—air mixtures
and that of containers due to mechanical compliance. Backé und Murrenhoff
(1994:103) proposed the following formulae for the isentropic bulk modulus of
liquid—air mixtures (see also Beater, 1999:26):
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E(p) = Eg, 1+1/FZ j =L (3.17)
1+ (Poj 7 E &
p Kp
with
E. isentropic bulk modulus of the liquid (without entrained air),
Vo volume of gas entrained in the liquid at atmospheric pressure,
Vio volume of the liquid at atmospheric pressure,
Do atmospheric pressure (p, =1 bar),
p liquid pressure, and
K isentropic exponent (x =1.4).

shows traces of the ratio E,, (p)/E,,, for some values of the volume
ration ry. In specific pressure-dependence of bulk modulus is plotted.
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Figure 3.2. Influence of entrained air volume on the isentropic bulk modulus

Especially in low-pressure regions (say, p < 100 bar), the influence of entrained
gas on the bulk modulus is substantial. At a pressure of about 0.6 bar, entrained air
can explode (so-called Diesel effect). This effect cause highly undesired erosion
defects, power losses, pressure peaks, and noise. This phenomenon is better known
as cavitation (sudden implosion of gas bubbles, when fluid pressure decreases under
vapour pressure) (Lemmen, 2002).

Note that the expressions given above require the accurate determination of
many quantities (for example, of the volume of gas entrained in the liquid), and thus
may be difficult to use in practice.
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Figure 3.3. Typical trace of isentropic bulk modulus (= 0.0001)

3.1.3.2 Influence of Mechanical Compliance

The bulk modulus of cylindrical pipelines can be calculated as (Theiflen, 1983)

E :E—l (3.18)
E
1+—w
EP

where £, is the bulk modulus of the (steel) pipeline. For thick-walled pipelines the
coefficient w is given by

2
2(2"} 1+v)+3(1-2v)

e (3.19)

d 2
Do | 4
(dij

with
d, outer diameter,
d inner diameter, and

v Poisson’s number, v =0.3 for steel.
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For thin-walled pipelines with the wall thickness s, (s/d,<0.1), Equation .19
approximates to

w=2 (3.20)

able 3.2|shows some results found by experiment. It can be seen that especially
in the case of high-pressure rubber-based hoses, reinforced with interwoven metal
threads, the influence of elasticity is considerable.

Table 3.2. Values for bulk modulus E' (Viersma, 1980)

T

Nominal pressure [Mpa] | E [MPa] for steel pipeline E [MPa] for high-pressure
R;=6.25 mm; R, = 8§ mm hose R; = 6.25 mm

5 1460 500
9 1510 537
13 1570 568
22.5 1890

3.1.3.3 Empirical Effective Bulk Modulus

Other researchers have derived empirical formulae for the calculation of the effective
bulk modulus E, including the effects of entrained air and mechanical compliance,
based on direct measurements. The commonly used equation for calculation of the
bulk modulus £ for hydraulic cylinders in German literature is that of Lee (1977):

E (p) =afF . log[a2 +a3J (3.21)

max

with the parameters a; = 0.5, a, = 90, a3 = 3, E.x = 18000 bar, and py,.x = 280 bar.
Hoffmann (1981) proposed the formula

E (p)=E,, [1—exp(—0.4—2><10*7p)} (3.22)
with the pressure p in pascals.
According to Eggerth (1980), the effective bulk modulus can be expressed as
1
ki+k(p/ po)”
with the parameters k; and &, in Do is assumed to be 10 bar.
Table 3.3. Parameters of Eggerth’s formula (Beater, 1999)

E(p)= (3.23)

Temperature [°C] ky [10 7 m*/N] k, [1077° m?/N] A

20 4.943 1.9540 1.480
50 5.469 3.2785 1.258
90 5.762 4.7750 1.100

The relations for effective bulk modulus E are plotted in Although
these formulae are approximate, they are sufficient for design purposes. However,
experimental data are always preferable.
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Figure 3.4. Comparison of different formulae for the calculation of £

3.1.4 Section Summary

The most important three physical properties (viscosity, density and bulk modulus)
have been introduced and discussed. The following concluding statements are
important from a practical viewpoint:

e Density can be considered constant.

e Viscosity of fluids varies markedly with temperature (Equation , and to a
much lesser degree with pressure.

e Bulk modulus essentially depends on pressure, entrained air and mechanical
compliance. Empirical formulae, such as Equations B.21] B.22] and B.23] are
recommended for the calculation of the effective bulk modulus. However, some
parameter adjustments may be necessary in practice.

3.2 General Equations of Fluid Motion

In this section, the basic principles of conservation and laws governing fluid flow
and associated phenomena will be briefly summarised. More detailed derivations
can be found in a number of standard textbooks on fluid mechanics (e.g., Slattery,
1972; White, 1986; Lencastre, 1987; Spurk, 1996; Oertel, 1999). Detailed theoretical
development and discussions about the conservation laws in fluid mechanics with a
special “nice” section (4.3) on pipeline hydraulics can be found in the excellent book

by Truckenbrodt (1996).
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Conservation laws can be derived by considering a given quantity of matter,
control mass or control volume, and its extensive properties, such as mass,
momentum and energy. In fluid mechanics, there are several ways to present the
conservation equations, such as the control mass approach, the control volume
approach and the control tube approach.

3.2.1 Continuity Equation and Pressure Transients

Consider a control tube as depicted in The integral form of the mass
conservation (continuity) equation can be formulated as (Truckenbrodt, 1996)

‘j’ A(pA)
ot

)

ds+ v, 4, — pv 4, =0 (control tube) (3.24)

where the density p = p(t,s) is, in general, not constant.

Figure 3.5. Definition of control tube

For incompressible fluids, i.e., p=const. (which is a standard assumption in
hydraulics), Equation can be reduced to

V()4 =v,(t)4, (p =const.) (3.25)
or more generally
0 =v(t)A = const. (volume flow) (3.26)

For steady flow, the continuity equation can be expressed as

P4 = pav 4, (p # const.) 3.27)
or in the general form

m = pvA4 = const. (mass flow rate) (3.28)

Next, the mass conservation equation is written in the differential coordinate-free

form (for a control tube element of length ds; see

%—’;+ div(pv) =0 (3.29)

Again, two special cases can be given:
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divv=0 (p =const.) (3.30)
div(pv) =0 (steady flow) (3.3

Given a coordinate system (Cartesian, cylindrical or spherical), Equation
can take a specific form by providing the expression for the divergence (div)
operator in that coordinate system. The expression of the continuity equation in a
cylindrical coordinate system (»,,x) is given by (Truckenbrodt, 1996)

9p  1[aprv,)  9pve) ) Apv.) _ (3.32)
o r{ or 00 ox ’

Consider again the mass conservation equation for a control volume 7 and let the
accumulated or stored mass of fluid inside be m with a mass density of p. Since all
fluid must be accounted for, as the medium is assumed continuous, the rate at which
mass is stored must equal the incoming mass flow rate minus the outgoing mass
flow rate. Therefore, we can write
_d(p)

dr

DIINED W =pV +Vp (3.33)

Taking into account Equation B.8]and dividing Equation B:33]by p leads to

500 =X 00 =V + b (3.34)
If the volume is fixed (V' = V})), Equation becomes

p=7 (500~ 20u). (339)

This equation is fundamental for the description of the pressure dynamics in
hydraulic compartments.

3.2.2 Navier—Stokes Equation

The momentum conservation equation is known as the Navier—Stokes equation (in
differential form) (Lencastre, 1987)

p% =pg—gradp+n [div(grad v)+ % grad(div v)} (3.36)

where

e pg represents the body forces.

o p dv/dt the inertial forces.

e grad p is the vector of components Op/Ox;. It corresponds to the derivative or
inclination of the pressure in the direction of the flow.

e The term # div (grad v) represents diffusion of the vector v within the flow. It
represents the action of one particle on the others owing to the effect of viscosity.

e The term 1/37x grad(div v) represents the influence of compressibility and
vanishes in the case of incompressible liquids.
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Letting the fluid be incompressible and dividing Equation throughout by p
leads to

v _ g—igradp+,udiv(gradv) (3.37)
dr P

Given the hypothesis of the external forces being derived from a potential &, then
g = grad & Thus, in the case of incompressible liquids, Equation B.37]becomes

—grad& +lgradp = —%+,u div(gradv) (3.38)
Yol

If the potential is that of gravity, i.e., £ = —gz, then dividing throughout by g gives:

grad| 24+ 2 | ==L L 7 Giv(arad ) (3.39)
/4 gdr y

with y = pg. In the case of a perfect or ideal liquid, i.e., # = 0, which does not exist in
reality, Equation B.39]becomes

grad(z + £j = L (3.40)
¥ g dt

For a fluid element along the path line, Equation can be rearranged, taking
into account # = pu and y = pg, to give Euler’s equation

i 2+ 2 :—lﬂ+ﬁdiv(gradv) v=y (3.41)
s ¥ gdt g

Let us now return to the Navier—Stokes Equation and write the system in
cylindrical coordinates (Truckenbrodt, 1996):

1 dp 1 8[ av,j 1 9%, 9%, 29dv, v
=g, ——r +— +
dr por “|rorl or) 1 0p> u* P g i

dvq,_lK w_la_p +,U|:li[ 8v¢j+ 1 82v¢+82v¢+£al_v_¢}

dr o r yo X1 r or r? ” dp> o> g i’

(3.43)
dv 1 dp 1o v 1 9%, 0%
—L =g —— =+ U —— 4 —=——2> 43— 3.44
a & p 0x 'u_r or (r or j r? 9p*  ox? (49

3.2.3 Bernoulli’s Theorem

Considering Equation and bearing in mind that

dv_odv,  ov

oy (substantial acceleration)
dt ot ds
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o(v/2
i oA r2) (3.45)
os os
it follows that
2
Ol 2y | L Giarady) (3.46)
s y 2g gdr g

The first element of the equation has an essentially global energy significance. It
represents the variation in the total energy discharged per unit weight of a particle
along its trajectory.

If the viscosity terms are removed from the equation, i.e., the flow may resemble
a perfect fluid, we have

0 2 1 ov
= / /2)=——2= 3.47
aS(gz+gp y+v ) o ( )

In the case of steady flow, dv/dt =0, energy conservation holds:
2
E=z+2+Y —const. (3.48)
y 2g
this being the expression that represents Bernoulli’s theorem for one-dimensional
steady flows. In the case of an incompressible liquid in steady flow, in which the

friction forces and, consequently, energy losses can be disregarded, the total energy
of a particle is maintained along its trajectory.

3.2.4 Section Summary

From the variety of formulae presented in this section, those most important and
those most often needed in practice are the continuity equations for incompressible
fluids (Equations and Bernoulli’s Equation (or other equivalent
variants of it). Another often-used equation is the fundamental Equation for the
description of the pressure dynamics in hydraulic compartments.

The general continuity equation and Navier—Stokes equations are only
interesting for the analysis of pipeline dynamics, see Section 4.2.5.

3.3 Flow Through Passages

Two distinct types of fluid flow through passages can occur:

e Laminar or viscous flow, in which each fluid particle describes a well-defined
trajectory, with a velocity only in the direction of the flow.

e Turbulent or hydraulic flow (this being the most usual in hydraulic phenomena),
in which each particle, apart from the velocity in the direction of the flow, is
animated by fluctuating cross-current velocities.

The Reynolds number, Re, defined by
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Re =2 _ vy (3.49)
noou

is the characteristic parameter: for lower values of Re, the flow is laminar; for higher
values the flow is turbulent. Thereby, v is the average velocity of flow. dj, represents
the hydraulic diameter, which is defined by

_44

th

(3.50)
where A is the flow section area and S is the flow section perimeter. For each flow
case, the characteristic length is agreed upon and empirical values are obtained for
the Reynolds number which describes transition from that viscosity- to inertia-
dominated flows.

3.3.1 Flow Establishment in Pipelines

One basic element of hydraulic systems is cylindrical pipelines, in which flow may
be laminar or turbulent. The characteristic length to be used for the Reynolds
number is inside pipeline diameter d, i.e.,

_vd
Y7

The transition from laminar to turbulent flow has been observed experimentally to
occur in the range 2000 < Re;; < 4000, typically Re;; = 2300. Below Re = 2300 the
flow is always laminar; above Re=4000 the flow is usually, but not always,
turbulent. It is possible to have laminar flow at Reynolds number considerably
above 4000 if extreme care is taken to avoid disturbances which would lead to
turbulence. However, these instances are exceptional, and the upper limit of 4000 is
a good rule (Viersma, 1980).

Re (3.51)

V.

»|

|‘2V

Figure 3.6. Force equilibrium of fluid elements in cylindrical pipelines

3.3.1.1 Hagen—Poiseuille Law

Consider a cylindrical pipeline of radius » <R and let the flow be steady and
laminar. The starting point is the force equilibrium in the axial direction (
; that means
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rdp __5% T

.
2 dx YT d r R

w

(3.52)

where 7, is the shear stress at the pipeline wall (i.e., at » = R). On the other hand, the
shear stress Equation B.2]can be written as (v = v,, dy = —dr)
dv rdp
T=—N—=—7"— 3.53
7 dr 2 dx (3:53)
Equations B.52]and B.53]can then be combined to obtain
dv r d_p

— 3.54
dr 21 dx ( )

the relationship for calculating the velocity profile for laminar flows in cylindrical
pipelines. In fact, the integration of Equation (with dp/dx = const., and v(R) = 0)
yields the velocity profile (

w(r) = —%(R2 —rz)% (3.55)

and leads to the maximum velocity and the mean velocity
v =v(0)=——— V== (3.56)

respectively.
Finally, the continuity Equation B.26]and Equation B.56]are combined to give the
so-called Hagen—Poiseuille equation

0-av="K & (3.57)

7/

Figure 3.7. Velocity profiles for laminar and turbulent flows in a cylindrical pipeline

3.3.2 Flow Through Orifices

Orifices are sudden restrictions of short length (ideally zero length for a sharp-edged
orifice) in the flow passage and may have a fixed or variable area (see Figure 3.8).
Orifices are generally used to control flow, or to create a pressure differential
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(valves). Two types of flow regime exist, depending on whether inertia or viscous
forces dominate. The flow velocity through an orifice must increase above that in
the upstream region to satisfy the law of continuity. At high Reynolds numbers, the
pressure drop across the orifice is caused by the acceleration of the fluid particles
from the upstream velocity to the higher jet velocity. At low Reynolds numbers, the
pressure drop is caused by the internal shear forces resulting from fluid viscosity.

a)

Round pipe orifice Rectangular slit orifice with Short tube orifice
slit width w and length /
t >>w)

Figure 3.8. Round, slit-type and short tube orifices

3.3.2.1 Orifice Equations for Turbulent Flow

Since most orifice flows occur at high Reynolds numbers, this region is of major

importance. Such flows are often referred to as “turbulent” (), but the
term does not have quite the same meaning as in pipeline flow (Merritt, 1967).
Referring to , the fluid particles are accelerated up to the jet velocity
between sections 1 and 2. The flow between these sections is streamline or potential
flow, and experience justifies the use of Bernoulli’s theorem in this region.

D b

— N\ S22
1 33
L0 s

Figure 3.9. Flow through an orifice: (a) laminar flow; (b) turbulent flow

According to Bernoulli’s theorem (Equation , the total energy losses of the
hydraulic flow are derived from the energy degraded into heat by friction of the
particles against one another and by friction of the particles against the walls of the
conduit. The energy dissipated due to friction between sections 1 and 2 will be equal
to
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Ap, =(pi+pvi 12+ pgz,)—(p. + pvi 12+ pgz, ) (3.58)

It is common to use the dimensionless pressure loss factor ¢, which is defined as

A
£ = pvf s or g = v /2 (3.59)
1

The factor { depends on the geometry of the conduit and on the Reynolds number
which can be approximated by

k

{(Re)=—-+k, (3.60)
Re

Taking into account that at a point far from the orifice

vi=v,=v and 4 =4, zAzgd2 = const. 3.61)

we get the flow as the product of conduit area and the speed, i.e.,

2
O=Av= Aw/z(pl -p) (3.62)

Instead of Equation it is common in the field of hydraulics to use the modified
orifice equation

O=a,4 /iAp (3.63)
Yo,

where a4 is the discharge coefficient. Theoretically, ogq=n/(n+2)=0.611 (von
Mises, 1917). This can be used for all sharp-edged orifices regardless of the
particular geometry, if the flow is turbulent and 4, << 4.

3.3.2.2 Discharge Coefficient for Turbulent Flow

Sharp-edged orifices ( are desirable for their predictable characteristics
and insensitivity to temperature changes. However, cost frequently prohibits their
use, especially as fixed restrictors, and orifices with length ) are often
employed instead. An average discharge coefficient for such short tube orifices can

be expressed as (Metritt, 1967); see

-1/2

o, =| 228+ 642L for % < 5

d,d 2L
-1/2

1/2
d.d
a, {1.5“3.74(%) ] for ;—L>50 (3.64)

0
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Figure 3.10. Discharge coefficient ¢ for short tube orifices according to Equation 3.64

According to Lichtarowicz et al. (1965), the average discharge coefficient can be

estimated using (see

0.005i

L:Jl—p’“ 1 .2 (1+2.25£J— d (3.65)

o wmx Rey dy ) 1+7.5(logRe, —3.824)

where
1_ 4
Re, = |20 g NIZF 5 (3.66)
p MU o d
Clg = 0.827— o.oossdi (3.67)

h

3.3.2.3 Discharge Coefficient for Turbulent-Laminar Flow

The formulae proposed above are only valid if turbulent flow occurs. Turbulence is
ensured only at “large enough” Reynolds numbers:

Y
Y7,
where 4 is the smallest dimension of the (rectangular) orifice. At low temperatures,

low orifice pressure drops, and/or small orifice openings, the Reynolds number may
become sufficiently low to permit laminar flow.

Re (3.68)
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Figure 3.11. Discharge coefficient ¢y for short tube orifices according to Equation

Experiments carried out by Viersma (1980) proved that at very sharp edges in
narrow orifices the critical value Re.; is as low as 20, whereas slightly rounded off
edges increased Re;, to 80 or higher. Thus, at very sharp edges, ay may be assumed
to be constant at Re > Re;; = 20.

Although the analysis leading to Equation is not valid at low Reynolds
numbers, many attempts have been made to extend this equation to the laminar
region by plotting the discharge coefficient as a function of Reynolds number, i.e.,

oy = 6\Re (3.69)

as pointed out by many investigators (Wuest, 1954; Viersma, 1980). The quantity o
depends on geometry and is called the laminar flow coefficient. Viersma (1980)
found that

Q,
5= G 06114103, hypothetical (3.70)
Recrit \/ﬁ
o
o= - 0—21 =0.1366 for sharp edges (3.71)
Vv Recrit 20
Qi 0.611

o= =—=0.0683 for slightly rounded-off edges (3.72)

VReg; 80

The discharge coefficient can then be represented by the asymptotes shown in
in the laminar region and a4 = 0.611 in the turbulent region.
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Figure 3.12. o, = f(\/ Re) according to Viersma (1980)
3.3.2.4 Orifice Equations for Laminar Flow
Expressing the Reynolds number as
A
Re = @/ A)d, (3.73)
U
and substituting Equations and into Equation yields
26°d
0="""14Ap (3.74)

p

for low Reynolds numbers.
Wuest (1954) has theoretically determined expressions for laminar flow through

sharp-edged circular orifices (in an infinite plane, i.e., dy << d in ) as
nd,

50.4up

0= Ap 3.79)

and through sharp-edged rectangular slits (of height b, and width w in an infinite

plane, i.e. , by << B in Figure 3.8b, with w >> by)
by w

= p
32up

Equating Equation B.74]to Equations B.75]and gives 0 = 0.2 for a sharp-edged
round orifice and ¢ = 0.157 for a sharp-edged slit orifice.

0 (3.76)
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3.3.3 Flow Through Valves
Flows through valving orifices (Figure 3.13) are usually described by the orifice

Equation with a linear relationship between the valve spool position x, and the
flow area (critical centre), i.e.,

0=0(x,,Ap)=c,x /P, — P, =¢,x,A/Ap (3.77)

with the flow coefficient

¢, =nd,a, F (3.78)
yo)

for servo-valves (d,: diameter of the valve spool), and

¢, =4x,|tan(ar/ 2)ex, \/Z (3.79)
P

for special proportional valves with triangular valve seats having groove angle o
(see Kockemann et al., 1991).

0y

Figure 3.13. Axial flow force on spool due to unequal jet angles

Note that ¢, is usually given in

3 3
_ dm or equivenlently m (3.80)
min+/bar mm S \/ﬁ
Note also that Equation B.77]can be written using the valve voltage u, as
xV max
0=0u,Ap)=c, T”\/pl — D, =c,u\Ap (3.81)

max

This means that the value and the dimension of ¢, have to be adapted to the signal
used (which can be the valve stroke x,, the valve voltage u,, or the valve current 7,).
In the rest of this book, only the symbol ¢, will be used without regard to the nature
of the valve signal (normalised or not).
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In practice, the flow coefficient may best be determined experimentally, or it
may be calculated using the catalogue data (On, 4pn, and X, m.) of the valve
manufacturer

c __ O U (3.82)

NADPN 12 X

where Qy is the nominal flow, Apy the nominal pressure drop, and Xy . the
maximum stroke of the valve. The corresponding discharge coefficient is

o, = O (3.83)
A('xv,max) ApN / p

Since Equation is not valid for low Reynolds numbers, Feigel (1987a)
derived the following flow equation to be used for laminar—turbulent valve flow
cases

2
O=c,x, [c—‘j +Ap -t (3.84)

It is assumed that A = ndx,, and the introduced laminar—turbulent flow coefficient is
calculated by

duN/pRe,,
— ﬂ p ecm (385)

c —
It 4\/552

where J is the slope of the curve ¢, = f(+/Re) according to Equation @ As
x, — oo Equation B.84] becomes Equation and thus may also be used for

turbulent valve flow. A typical value of ¢y is 0.6 (Saffe, 1986).

Yet another approximation formula for the discharge coefficient that has been
used by many researchers (e.g., Klein, 1993), and which considers the dependence
on the valve spool position x,, is given by

ad = ad(xv) = ad() (I_Kd,corr ‘ xV | J (386)

V,max

where ay is the basic discharge coefficient, K corr @ correction factor, and x, ma the
maximum spool displacement. Typical values are oo = 0.65, and Ky cor = 0.32.
Finally, a generalised expression for the flow through valve orifices reads:

0 =0(x,.0p) =, A(x, )2/ p\[Ap (3.87)

where A(x,) is the area of the valve orifice. 4A(x,) depends on the orifice geometry
(i.e., geometrical form of the orifice and centre type), which varies from one
manufacturer to another, especially for proportional valves.
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3.3.4 Section Summary

Orifice flow is laminar for Re <Re.; with flow rates directly related to pressure
drop as given by Equation In the vicinity of Re,;, both inertia and viscosity are
important. For Re > Re,;;, the flow can be treated as turbulent and is described by
the orifice Equation Commonly, the orifice Equation B.63]is most used for all
situations with a total disregard for the types of flow that can be encountered. This is
justified in the majority of cases, but it can lead to gross errors in certain instances.
Typical and realistic values of ¢ lie between 0.65 and 0.75.

The more practical way is to apply the orifice Equation B.77]with the calculation
of the flow coefficient according to Equation (or equivalently Equation .

3.4 Spool Port Forces

Closely related to the flows through the spool ports is the axial force on the spool.
This flow force is caused by the change of momentum of the flow, due to a
difference in jet angles for the inlet flows and outlet flows, as depicted in Figure
B.13

The steady-state axial flow force on the spool can be calculated by (Merritt,

1967; Lausch, 1990)
F

ax,steady

=20, A(x,) cos8 Ap (3.88)

The jet angle 6 can be assumed constant, namely 6~ 69°, leading to cosf = 0.358,
which corresponds to the theoretical value (if there is no radial clearance between
the valve spool and sleeve) derived by von Mises (1917).

Feigel (1992) proposed the following formulae for the calculation of steady-state
flow forces on uncompensated spool valves:

F;x,steady = KfQ \Y Ap (389)

with K;=0.077 [N min/(dm’ bar)] for one-edge valves, K;=0.054 for two-edge
valves, and Ky=0.109 for tetragonal valves. Equation is combined with
Equation to give

F =K.c Apx, (3.90)

ax,steady

Thus far the discussion has considered only the steady-state flow force. If the
slug of fluid in the valve chamber is accelerated, then a force is produced which
reacts on the face of the spool valve lands. The magnitude of dynamic flow force is
given by Newton’s second law as

Fy gy =ma = plQ (3.91)
With Equation the dynamic flow force becomes

F;x‘dyn = plchijv + plcvxv Ap (392)

2\ap
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Therefore, the dynamic flow force is proportional to spool velocity and pressure
changes. The velocity term is the more significant because it represents a damping
force; the pressure rate term is usually neglected.

In practice, the axial spool forces do not seem to play any significant role for the
valve manufacturers. Although several compensation techniques to reduce or
eliminate these forces have been investigated (see Merritt, 1967, and Feigel, 1992),
none has found wide acceptance by practitioners. The practical solution to this
problem is to use a two-stage servo-valve, in which the pilot stage, usually a flapper-
nozzle valve, provides an appropriate force to stroke the main-stage spool valve.

3.5 Electro-hydraulic Analogy

The principles of electro-hydraulic analogy are summarised in

a) b)

Inductance L Inductance L,

Current Flux Flow

Charge Voltage Volume Pressure
Capacity C Capacity C},

Figure 3.14. Relationships between variables in (a) electrical and (b) hydraulic systems
(Beater, 1999)

3.5.1 Hydraulic Capacitance

Equation can be written as

Vy . .
Q=E—0p=ChP (3.93)

The proportionality factor C,, is referred to as the hydraulic capacitance

514 V,
C,=——| =2 3.94
" (Bp lﬂ E ( )

in analogy to the capacitance of a capacitor in electrical circuits.
3.5.2 Hydraulic Resistance

The hydraulic resistance Ry, for laminar flow can, for instance, be determined from
the Hagen—Poiseuille Equation (
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nR*
0= 81 Ap (3.95)

for cylindrical pipelines of radius R and length /. Equation gives

A 8nl
hL — =L 774 (3.96)
O 1R

Since in this case the pressure drop is directly proportional to the flow, a resistance
given by this equation is called a linear resistance to motion.

In general, however, the hydraulic resistance is non-linear to motion, e.g., due to
the square-root function in Equation which can be rearranged to yield:

Ap P
R, = ? = Py (3.97)
or from Equation
A 1
Ry =2 =— (3.98)
Q cV xV

In practice, it is preferable to work with the Ap vs. O characteristic (or flow—pressure
function) established by measurements on the actual valve in question. The
manufacturers of standardised valves usually present this characteristic in their
catalogues.

3.5.3 Hydraulic Inductance

The combination of Newton's law
F =ma=Alpa (3.99)

the continuity equation

QzAv:azv-z% (3.100)
and

F, = AAp (3.101)
leads to the hydraulic inductance

L= lp (3.102)

0 A4
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