
1
Introduction to Computer Algebra

The goal of this chapter is to briefly describe what computer algebra is
about, present a little history of computer algebra systems, give some
examples of computer algebra usage, and discuss some advantages and
limitations of this technological tool. We end with a sketch of the design of
the Maple system.

The examples in this first chapter are sometimes of a rather advanced
mathematical level. Starting with the second chapter, we give a detailed,
step-by-step exposition of Maple as a symbolic calculator. The rest of the
book does not depend much on this chapter. Thus, anyone who is so eager
to learn Maple that he or she cannot wait any longer may skip this chapter
and turn to it at any moment.

1.1 What is Computer Algebra?

Historically the verb “compute” has mostly been used in the sense of “com-
puting with numbers.” Numerical computation is not only involved with
basic arithmetic operations such as addition and multiplication of numbers,
but also with more sophisticated calculations like computing numerical val-
ues of mathematical functions, finding roots of polynomials, solving systems
of equations, and computing with matrices. It is essential in this type of
computation that arithmetic operations are carried out on numbers and on
numbers only. Furthermore, computations with numbers are in most cases
not exact because in applications one is almost always dealing with floating-
point numbers. Simple computations can be done with pencil and paper
or with a pocket calculator; for large numerical computations, mainframes

2 1. Introduction to Computer Algebra

serve as “number crunchers.” In the last fifty years numerical computa-
tion on computers flourished to such an extent that for many scientists
mathematical computation on computers and numerical computation have
become synonymous.

But mathematical computation has another important component,
which we shall call symbolic and algebraic computation. In short, it can
be defined as computation with symbols representing mathematical ob-
jects. These symbols may represent numbers like integers, rational numbers,
real and complex numbers, and algebraic numbers, but they may also be
used for mathematical objects like polynomials and rational functions, sys-
tems of equations, and even more abstractly for algebraic structures like
groups, rings, and algebras, and elements thereof. Moreover, the adjective
symbolic emphasizes that in many cases the ultimate goal of mathemati-
cal problem solving is expressing the answer in a closed formula or finding
a symbolic approximation. By algebraic we mean that computations are
carried out exactly, according to the rules of algebra, instead of using the
approximate floating-point arithmetic. Examples of symbolic and algebraic
computations are factorization of polynomials, differentiation, integration,
and series expansion of functions, analytic solution of differential equations,
exact solution of systems of equations, and simplification of mathematical
expressions.

In the last thirty-five years great progress has been made regarding the
theoretical background of symbolic and algebraic algorithms; moreover,
tools have been developed to carry out mathematical computations on
computers [26, 60, 91, 103, 154, 237]. This has lead to a new discipline,
which is referred to by various names: symbolic and algebraic computation,
symbolic computation, symbolic manipulation, formula manipulation, and
computer algebra, to name a few. Tools for mathematical computation on
a computer are given as many names as the discipline itself: symbolic com-
putation programs, symbol crunchers, symbolic manipulation programs,
symbolic calculators, and computer algebra systems. Unfortunately, the
term “symbolic computation” is used in many different contexts, like logic
programming and artificial intelligence in its broadest sense, which have
very little to do with mathematical computation. To avoid misunderstand-
ing, we shall henceforth adopt the term computer algebra and we shall
speak of computer algebra systems.

1.2 Computer Algebra Systems

In this section, we shall give a very short, incomplete, and subjective
overview of present-day computer algebra systems. For a more thorough
overview we refer to [56, 108, 234] and to WWW-servers dedicated towards
computer algebra [242]. Computer algebra systems can be conveniently

1.2. Computer Algebra Systems 3

divided into two categories: special purpose systems and general purpose
systems.

Special purpose systems are designed to solve problems in one spe-
cific branch of physics and mathematics. Some of the best-known special
purpose systems used in physics are SCHOONSCHIP ([218] high-energy
physics), CAMAL ([12] celestial mechanics), and SHEEP and STENSOR
([86, 133, 170] general relativity). Examples of special purpose systems
in the mathematical arena are Cayley and GAP ([39, 42, 90] group the-
ory), PARI, SIMATH, and KANT ([67, 132, 190, 196] number theory),
CoCoA ([45, 101, 156] commutative algebra), Macaulay and SINGULAR
([110, 111, 112] algebraic geometry and commutative algebra), and LiE
([59] Lie theory). Our interest will be in the general purpose system Maple
[173, 180, 181], but the importance of special purpose systems should
not be underestimated: they have played a crucial role in many scientific
areas [26, 41, 135]. Often they are more handsome and efficient than general
purpose systems because of their use of special notations and data struc-
tures, and because of their implementation of algorithms in a low-level
programming language.

General purpose systems please their users with a great variety of data
structures and mathematical functions, trying to cover as many different
application areas as possible (q.v., [122]). The oldest general purpose com-
puter algebra systems still in use are MACSYMA [172] and REDUCE [124].
Both systems were born in the late sixties and were implemented in the
programming language LISP. MACSYMA is a full-featured computer al-
gebra system with a wide range of auxiliary packages, but its demands
on computer resources are rather high and it is only available on a lim-
ited number of platforms. The release of the PC version of MACSYMA
in 1992 has caused a revival of this system. REDUCE began as a special
purpose program for use in high-energy physics, but gradually transformed
into a general purpose system. Compared to MACSYMA the number of
user-ready facilities in REDUCE is modest, but on the other hand it is a
very open system (the complete source code is distributed!) making it eas-
ily extensible and modifiable. REDUCE is still under active development:
REDUCE 3.7 is from 1999. It runs on a very wide range of computers and
is well-documented.

In the eighties, MuMATH [239] and its successor DERIVE [157, 216]
were the first examples of compact non-programmable symbolic calculators,
designed for use on PC-type computers. DERIVE has a friendly menu-
driven interface with graphical and numerical features. Considering its
compactness and the limitations of DOS computers, DERIVE offers an
amazing amount of user-ready facilities. Version 5 of 2000 also has lim-
ited programming facilities. Many of DERIVE’s features have been built
into the TI-92 calculator (Texas Instruments, 1995) and other high-end

4 1. Introduction to Computer Algebra

calculators, thus making computer algebra available at small size compu-
ters. It also forms the computer algebra kernel of the computer learning
environment called ‘TI Interactive!’ (Texas Instruments, 2000).

Most modern computer algebra systems are implemented in the pro-
gramming language C. This language allows developers to write efficient,
portable computer programs that really exploit the platforms for which
they are designed. Many of these computer algebra systems work on a
variety of computers, from supercomputers down to desktop computers.

In §1.6 we shall sketch the design of Maple [173, 180, 181]. Another no-
table modern general purpose system is Mathematica [238]. Mathematica
was the first system in which symbolics, numerics, and graphics were in-
corporated in such a way that it could serve as a user-friendly environment
for doing mathematics. There exists on most platforms the notebook in-
terface, which is a tool (comparable with Maple worksheets) to create a
structured text in which ordinary text is interwoven with formulas, pro-
grams, computations, and graphics. Another feature of Mathematica is the
well-structured user-level programming language. With the publicity and
marketing strategy that went into the production of Mathematica, com-
merce has definitely made its entry into the field of computer algebra,
accompanied by less realistic claims about capabilities (q.v., [215]). On
the positive side, the attention of many scientists has now been drawn to
computer algebra and to the use of computer algebra tools in research and
education. Another advantage has been the growing interest of developers of
computer algebra systems in friendly user interfaces, good documentation,
and ample user support. A wealth of information and user’s contributions
can be found at the WWW server of Wolfram Research, Inc., and more
specifically at the electronic library MathSource [174]. Version 4 of the
system, launched in 1999, came with a new front end and with many
new mathematical features. Later releases of Mathematica offer Internet
facilities and connectivity with other programming languages.

The aforementioned general purpose systems manipulate formulae if the
entire formula can be stored inside the main memory of the computer.
This is the only limit to the size of formulae. The symbolic manipulation
program FORM [128, 188, 225, 227] has been designed to deal with formulae
of virtually infinite size (q.v., [226]). On the other hand, the size of the set
of instructions in FORM is somewhat limited.

Magma [23, 24, 25, 43] is the successor of Cayley [39, 42], released in 1994,
and designed around the algebraic notions of structure and morphism. Its
aim is to support computation in algebra, number theory, geometry and
algebraic combinatorics. This is achieved through the provision of extensive
machinery for groups, rings, modules, algebras, geometric structures and
finite incidence structures (designs, codes, graphs). Two basic design prin-
ciples are the strong typing scheme derived from modern algebra whereby

1.3. Some Properties of Computer Algebra Systems 5

types correspond to algebraic structures and the integration of algorithmic
and database knowledge.

MuPAD [88, 100] stands for Multi Processing Algebra Data Tool. It
is a system for symbolic and numeric computation, parallel mathematical
programming and mathematical visualization. MuPAD is freely distributed
for educational and non-commercial use from the website www.mupad.de. It
is still in active development at the University of Paderborn in cooperation
with SciFace Software GmbH & Co. KG and its mathematical contents is
growing.

A portable system for parallel symbolic computation through Maple
exists as well: it is called ‖MAPLE‖ (speak: parallel MAPLE) [209]. The
system is built as an interface between the parallel declarative language
Strand [84] and the sequential computer algebra system Maple, thus pro-
viding the elegance of Strand and the powerfulness of the existing sequential
algorithms in Maple. More recently, a Java-based package for writing
parallel programs in Maple and executing them on networks of computers
has been developed at RISC Linz. It is called ‘Distributed Maple’ [208].

Last (but not least) in the row is AXIOM [70, 71, 140, 219]. It is a
powerful general purpose system developed in the eighties at the IBM
Thomas J. Watson Research Laboratory under the name of “Scratchpad.”
In contrast to most other general purpose systems, which only allow calcu-
lations in a specific algebraic domain, e.g., the field of rational numbers or
the ring of polynomials over the integers, AXIOM allows its users to define
and handle distinct types of algebraic structures. But alas, this computer
algebra system died in 2001, when NAG released the last version 2.3 to
existing customers.

1.3 Some Properties of Computer Algebra Systems

Computer algebra systems differ from one another, but they share many
properties. We shall illustrate common properties with examples from
Maple.

Computer algebra systems are interactive programs that, in contrast
to numerical computer programs, allow mathematical computations with
symbolic expressions. Typically, the user enters a mathematical expression
or an instruction, which the computer algebra system subsequently tries
to execute. Given the result of the computation the user may enter a new
instruction. This may lead to a fruitful computer algebra session. As an
easy example of the use of Maple, we shall compute the stationary point
of the real function

x �→ arctan
(

2x2 − 1
2x2 + 1

)
,

6 1. Introduction to Computer Algebra

as well as the value of the function at this point. As we shall see later on
in this section, Maple can compute the minimum on its own. Here, we only
use the example to show some of the characteristics of computer algebra
systems. Below is a screen dump of a complete work session with Maple 8,
on a PC running the worksheet interface.

Let us take a closer look at this example. When Maple is started by choos-
ing the Maple command from the appropriate menu or by double-clicking
the corresponding icon on the desktop, an empty worksheet appears,
except that the system prints the greater-than symbol “>” on the first
line in order to prompt the user to enter an instruction. The symbol “>”
is called the Maple prompt.

Figure 1.1. The Maple environment with a worksheet.

In the first command we enter the formula f , ending the input line
with a semicolon, and pressing the Return key. The last two key strokes
signal Maple to start to work. In this case, the formula is shown in two-
dimensional mathematical notation of textbook quality. What strikes one
most is that the system allows the use of symbols like x. In most numerical
programming languages this would immediately cause an error; but not in
systems for symbolic computations!

1.3. Some Properties of Computer Algebra Systems 7

Each time Maple has executed an instruction, it prints the prompt and
waits for another command. We decide to consider f as a function, differen-
tiate it, and assign the result to the variable called derivative. Maple’s
answer is a rather complicated expression. So, we normalize the ratio-
nal function. The answer is a simple expression of which the sign can be
plotted. From this plot we immediately conclude that the original func-
tion has a minimum at x = 0. The minimum value − 1

4π is obtained by
substitution of x = 0 in f. We obtain an approximate floating-point result
by use of the procedure evalf. The name evalf — short for “evaluate
using floating-point arithmetic” — is already the fourth example that
shows Maple’s general philosophy in choosing names: Use a short, easy-
to-remember name for a procedure that describes its functionality. In
addition to this, we have given meaningful names to variables, which
describe their use.

We see that Maple leaves it to us to find our way through the compu-
tation. We must decide, on the basis of the second result, to try and find
a less complicated formula for the derivative. One may wonder why the
system itself does not perform this more or less obvious simplification. But
remember, it is not always clear when and how to simplify. In many cases
more than one simplification is possible and it is the mathematical context
that actually determines which simplification is appropriate. For example,
the rational expression

(x2 − 1)(x2 − x+ 1)(x2 + x+ 1)
(x− 1)6

can be transformed into the compact expression

x6 − 1
(x− 1)6

,

but also into a form suitable for integration, viz.,

1 +
6

(x− 1)5
+

15
(x− 1)4

+
20

(x− 1)3
+

15
(x− 1)2

+
6

x− 1
.

Another problem with automatic simplification is that in many computa-
tions one cannot predict the size and shape of the results and therefore
must be able to intervene at any time. A procedure that works fine in one
case might be a bad choice in another case. For example, one might think
that it is always a good idea to factorize an expression. For example, the
factorization of

x8 + 8x7 + 28x6 + 56x5 + 70x4 + 56x3 + 28x2 + 8x+ 1

is

(x+ 1)8 .

8 1. Introduction to Computer Algebra

However (surprise!) apart from being expensive, the factorization of the
relatively simple

x26 + x13 + 1

yields

(x24−x23 +x21−x20 +x18−x17 +x15−x14 +x12−x10 +x9−x7 +
x6 − x4 + x3 − x+ 1)(x2 + x+ 1).

For these reasons, Maple only applies automatic simplification rules when
there is no doubt about which expression is simpler: x+ 0 should be sim-
plified to x, 3x is simpler than x + x + x, x3 is better than x × x × x,
and sin(π) should be simplified to 0. Any other simplification is left to the
user’s control; Maple only provides the tools for such jobs.

Automatic simplification sometimes introduces loss of mathematical cor-
rectness. For example, the automatic simplification of 0× f(1) to 0 is not
always correct. An exception is the case f(1) is undefined or infinity. The
automatic simplification is only wanted if f(1) is finite but difficult to
compute. In cases like this, designers of computer algebra systems have to
choose between rigorous mathematical correctness and usability/efficiency
of their systems (q.v., [77]). In Maple and many other systems the scales
sometimes tip to simplifications that are not 100% safe in every case.

Another remarkable fact in the first example is that Maple computes the
exact value − 1

4π for the function in the origin and does not return an
approximate value like 0.785398. This is a second aspect of computer
algebra systems: the emphasis on exact arithmetic. In addition, computer
algebra systems can carry out floating-point arithmetic in a user-defined
precision. For example, in Maple the square tan2(π/12) can be com-
puted exactly, but the numerical approximation in 25-digits floating-point
notation can also be obtained.

> real_number := tan(Pi/12)ˆ2;

real number := tan(
π

12
)2

> real_number := convert(real_number, radical);

real number := (2−
√

3)2

> real_number := expand(real_number);

real number := 7− 4
√

3
> approximation := evalf[25](real_number);

approximation := .071796769724490825890216

Computer algebra systems like Maple contain a substantial amount of
built-in mathematical knowledge. This makes them good mathematical
assistants. In calculus they differentiate functions, compute limits, and

1.3. Some Properties of Computer Algebra Systems 9

compute series expansions. Integration (both definite and indefinite), is
one of the highlights in computer calculus. Maple uses non-classical al-
gorithms such as the Risch algorithm for integrating elementary functions
[31, 98, 203], instead of the heuristic integration methods that are described
in most mathematics textbooks.

With the available calculus tools, one can easily explore mathemati-
cal functions. In the Maple session below we shall explore the previously
defined function f . The sharp symbol # followed by text is one of Maple’s
ways of allowing comments during a session; in combination with the
names of variables and Maple procedures, this should explain the script
sufficiently. If an input line is ended by a colon instead of a semicolon,
then Maple does not print its results. Spaces in input commands are op-
tional, but at several places we have inserted them to make the input more
readable.

> f := arctan((2*xˆ2-1)/(2*xˆ2+1)); # enter formula

f := arctan(
2x2 − 1
2x2 + 1

)

> df := normal(diff(f, x)); # differentiate f

df := 4
x

4x4 + 1
> F := integrate(df, x); # integrate derivative

F := arctan(2x2)
> normal(diff(F-f, x)); # verify F = f + Pi/4

0
> eval(F-f, x=0);

π

4
> extrema(f, {}, x, stationary_points);

{arctan(−1)}
> %; # extra evaluation

{π
4
}

> stationary_points;

{{x = 0}}
> # this value was assigned by the call of ‘extrema’
> solve(f=0, x); # compute the zero’s of f

√
2

2
, −
√

2
2

> series(f, x=0, 15);

10 1. Introduction to Computer Algebra

−π
4

+ 2x2 − 8
3
x6 +

32
5
x10 − 128

7
x14 + O(x15)

> with(numapprox):
> pade(f, x, [6,4]);

−15π + 120x2 − 36π x4 + 128x6

12 (5 + 12x4)
> chebpade(f, x, [2,2]);

−.007904471007 T(0, x) + .4715125862 T(2, x)
T(0, x) + .4089934686 T(2, x)

> subs(simplify({T(0,x)=ChebyshevT(0,x),
> T(2,x)=ChebyshevT(2,x)}), %);

−.4794170572 + .9430251724x2

.5910065314 + .8179869372x2

> limit(f, x=infinity);

π

4
> series(f, x=infinity);

π

4
− 1

2x2 + O(
1
x6)

> plot([f, df], x=-5..5, linestyle=[0, 4], color=black,
> legend=["f", "f’"], title="graph of f and f’");

The graph is shown in Figure 1.2.

f
f’

graph of f and f’

–1.5

–1

–0.5

0.5

1

1.5

–4 –2 2 4x

Figure 1.2. Graph of (x, y) �→ arctan
(

2x2−1
2x2+1

)
and its derivative.

Other impressive areas of computer algebra are polynomial calculus,
the solution of systems of linear and nonlinear equations, the solution
of recurrence equations and differential equations, calculations on matri-
ces with numerical and symbolic coefficients, and tensor calculus. Various
tools for manipulation of formulae are present: selection and substitution of

1.4. Advantages of Computer Algebra 11

parts of expressions, restricted simplification, simplification rules, pattern
matching, and so on. We may call computer algebra systems mathematical
expert systems with which mathematical problems can be solved in a more
productive and accurate way than with pencil and paper.

In addition to functioning as symbolic and algebraic calculators, most
computer algebra systems can be used as programming languages for im-
plementing new mathematical algorithms. By way of illustration we write
a Maple program that computes the Bessel polynomials yn(x). Recall [116]
that they can be recursively defined by

y0(x) = 1,
y1(x) = x+ 1,
yn(x) = (2n− 1)x yn−1(x) + yn−2(x), for n > 1.

> Y := proc(n::nonnegint, x::name)
> if n=0 then 1
> elif n = 1 then x+1
> else Y(n,x) := expand((2*n-1)*x*Y(n-1,x) + Y(n-2,x))
> end if
> end proc:
> Y(5,z);

945 z5 + 945 z4 + 420 z3 + 105 z2 + 15 z + 1

The Maple programming language is reminiscent of Algol68 without
declarations, but also includes several functional programming paradigms.

1.4 Advantages of Computer Algebra

The long-term goal of computer algebra is to automate as much as possi-
ble the mathematical problem solving process. Although present computer
algebra systems are far from being automatic problem solvers, they are
already useful, if not indispensable, tools in research and education. Of
course, it takes time to familiarize oneself with a computer algebra system,
but this time is well-spent. In this section, some of the more important rea-
sons for learning and using a computer algebra system will be illustrated
with Maple examples, a few of which are rather advanced mathematically.
All computations will be carried out with Maple 8, on a PC running Win-
dows 2000, with a 1.7 Ghz Pentium 4 processor having 512 MB main
memory. This does not imply that the same results could not have been
obtained on a much smaller machine, but the timings would be different.

The main advantage of a computer algebra system is its ability to carry
out large algebraic computations. Although many calculations are straight-
forward standard manipulations that can be calculated with pencil and
paper, the larger the formulae, the harder the work and the less the chance

12 1. Introduction to Computer Algebra

of success. For this kind of computation a computer algebra system is an
excellent tool. The next three examples demonstrate this.

The first example is one of the problems posed by R. Pavelle [194] as a
challenge for computer algebra systems. The object is to prove that

sin

(
nz
√
x2 + y2 + z2√
y2 + z2

)
√
x2 + y2 + z2

is a solution of the fourth order partial differential equation(
∂2

∂x2

(∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
+ n2

(∂2

∂x2 +
∂2

∂y2

))
f = 0.

The simplification procedures of Maple are powerful enough to solve this
problem within a second. We shall use the procedure radnormal (radical
normalization) to simplify the expression, which contains radicals.

> settime := time(): # start timing
> f := sin(n*z*sqrt(xˆ2+yˆ2+zˆ2)/sqrt(yˆ2+zˆ2)) /
> sqrt(xˆ2+yˆ2+zˆ2);

f :=
sin(

n z
√
x2 + y2 + z2√
y2 + z2

)√
x2 + y2 + z2

> radnormal(diff(diff(f,x$2) + diff(f,y$2) + diff(f,z$2),
> x$2) + nˆ2*(diff(f,x$2) + diff(f,y$2)));

0
> cpu_time = (time()-settime)*second; # computing time

cpu time = 0.671 second

In the second example, the objective is find the generating function for
dimensions of representations of the Lie group of type G2 (q.v., [57, 58]).
So, the attempt is made to find a rational function F (x, y) such that

F (x, y) =
∑

k,l≥0

G2(k, l)xkyl ,

where G2(k, l) is the following polynomial expression.
> G2 := (k,l) -> 1/5!*(k+1)*(l+1)*(k+l+2)*(k+2*l+3)*
> (k+3*l+4)*(2*k+3*l+5);

G2 := (k, l)→
(k + 1) (l + 1) (k + l + 2) (k + 2 l + 3) (k + 3 l + 4) (2 k + 3 l + 5)

5!
Here, we have used Maple’s arrow notation for functional operators. In this
way G2 is a function with values defined in terms of its arguments instead

1.4. Advantages of Computer Algebra 13

of just a formula. Maple has a package called genfunc for manipulating
rational generating functions. We use it to solve our problem.

> with(genfunc): # load genfunc package
> settime := time(): # start timing
> F := rgf_encode(rgf_encode(G2(k,l), k, x), l, y):
> F := sort(factor(F));

F := (x4 y4 + 8x4 y3 + x3 y4 + 8x4 y2 − 26x3 y3 + x4 y

− 41x3 y2 + 15x2 y3 − 6x3 y + 78x2 y2 − 6x y3 + 15x2 y − 41x y2

+ y3 − 26x y + 8 y2 + x+ 8 y + 1)/((x− 1)6 (y − 1)6)
> cpu_time = (time()-settime)*second; # computing time

cpu time = .501 second

An example taken from scientific life where Maple could have played
the role of mathematical assistant can be found in [240]. In this paper the
Laplace-Beltrami operator ∆ in hyperspherical coordinates is wanted. To
this end, the Jacobian of the coordinate mapping, the metric tensor, and
its inverse are calculated. Following are quotations from the paper:

“It is not difficult to compute ∂Y
∂qi

, and it is not difficult, but

tedious, to compute the traces in Eq.(32B). After quite some
algebra we find, . . .”

“It is also tedious to invert g. After several pages of computation
of minors we find, . . .”

These remarks are indeed true when one carries out these calculations
with pencil and paper; but not if one lets Maple carry out the computations!
Below is the Maple calculation, as much as possible in the notation of [240].
Don’t worry if you do not fully understand individual commands: details
will be provided later in this book.

The first step in the computation is to define the coordinate mapping
Y and to build the metric tensor G. This turns out to be the most time-
consuming step in the computation.

> settime := time(): # start timing
> with(LinearAlgebra): # load the linear algebra package
> R[z] := x -> <<cos(x)| -sin(x)| 0>,
> <sin(x)| cos(x)| 0>, <0| 0| 1>>:
> ’R[z](phi)’ = R[z](phi);

Rz(φ) =


 cos(φ) −sin(φ) 0

sin(φ) cos(φ) 0
0 0 1




> R[y] := x -> <<cos(x)| 0| -sin(x)>, <0| 1| 0>,
> <sin(x)| 0| cos(x)>>:
> ’R[y](phi)’ = R[y](phi);

14 1. Introduction to Computer Algebra

Ry(φ) =


 cos(φ) 0 −sin(φ)

0 1 0
sin(φ) 0 cos(φ)




> T := x -> <<cos(x)+sin(x)| 0| 0>,
> <0| cos(x)-sin(x)| 0>, <0| 0| 0>>:
> ’T(phi)’ = T(phi);

T(φ) =


 cos(φ) + sin(φ) 0 0

0 cos(φ)− sin(φ) 0
0 0 0




> macro(a=alpha, b=beta, c=gamma, f=phi, t=theta):
> Y := ScalarMultiply(R[z](a) . R[y](b) . R[z](c/2)
> . T(t/2) . R[z](f/2), r/sqrt(2))
> Y1 := map(diff, Y, r): Y2 := map(diff, Y, a):
> Y3 := map(diff, Y, b): Y4 := map(diff, Y, c):
> Y5 := map(diff, Y, t): Y6 := map(diff, Y, f):
> G := Matrix(6, 6, shape=symmetric):
> for i to 6 do for j from i to 6 do
> G[i,j] := simplify(Trace(Transpose(Y||i) . Y||j))
> end do end do:
> intermediate_cpu_time = (time() - settime)*seconds;

intermediate cpu time = 2.394 seconds

Now, we apply some simplification procedures to obtain the formulae in
[240]. To shorten the output of the session, we continue to suppress most
results. We also show a slightly polished session, admittedly not the first
interactive session when the problem was solved.

> G := subs(cos(t/2)ˆ2=1/2+1/2*cos(t),
> cos(c/2)ˆ2=1/2+1/2*cos(c), sin(t/2)=sin(t)/(2*cos(t/2))
> sin(c/2)=sin(c)/(2*cos(c/2)), G):
> G[2,2] := normal(subs(cos(c)*sin(t)=(cos(b)ˆ2+sin(b)ˆ2)
> *cos(c)*sin(t), normal(G[2,2]))):
> G[3,3] := normal(G[3,3]):
> G; # this the formula in the paper!

[1 , 0 , 0 , 0 , 0 , 0][
0 ,

1
2
r2 (1− sin(θ) cos(γ) sin(β)2 + cos(β)2) ,

1
2
r2 sin(β) sin(γ) sin(θ) ,

1
2
r2 cos(β) , 0 ,

1
2
r2 cos(β) cos(θ)

]
[
0 ,

1
2
r2 sin(β) sin(γ) sin(θ) ,

1
2
r2 (cos(γ) sin(θ) + 1) , 0 , 0 , 0

]
[
0 ,

1
2
r2 cos(β) , 0 ,

r2

4
, 0 ,

1
4
r2 cos(θ)

]
[
0 , 0 , 0 , 0 ,

r2

4
, 0
]

1.4. Advantages of Computer Algebra 15

[
0 ,

1
2
r2 cos(β) cos(θ) , 0 ,

1
4
r2 cos(θ) , 0 ,

r2

4

]
Due to the screen width and the length of expressions Maple was not able
to produce a nice layout, but it can translate the formulae automatically
into a format suitable for text processing programs like LaTEX [159].

> latex(G, "metric_tensor"):

The LaTEX code is not shown, but the result after typesetting is


1 0 0 0 0 0

0
r2(cos(β)2+1−sin(θ) cos(γ) sin(β)2)

2
r2 sin(γ) sin(β) sin(θ)

2
r2 cos(β)

2 0
r2 cos(β) cos(θ)

2

0
r2 sin(γ) sin(β) sin(θ)

2
r2(1+sin(θ) cos(γ))

2 0 0 0

0
r2 cos(β)

2 0 r2

4 0
r2 cos(θ)

4

0 0 0 0 r2

4 0

0
r2 cos(β) cos(θ)

2 0
r2 cos(θ)

4 0 r2

4




Let us compute the Jacobian.
> determinant := simplify(Determinant(G)):
> determinant := normal(subs(cos(b)ˆ2=1-sin(b)ˆ2,
> determinant)):
> determinant := normal(subs(cos(t)ˆ2-1=-sin(t)ˆ2,
> cos(t)=sin(2*t)/(2*sin(t)), determinant)):
> Jacobian := sqrt(determinant) assuming 0<=r, 0<=t,
> t<=Pi/2, 0<=b, b<=Pi;

Jacobian :=
1
32
r5 sin(2 θ) sin(β)

This is formula (33) in the paper. The assumptions on the hyperspherical
coordinates were necessary to have the square root expression automatically
simplified by Maple.

Next, we compute the inverse of the metric tensor.
> GINV := map(simplify, MatrixInverse(G)):
> GINV := subs(cos(t)ˆ2=1-sin(t)ˆ2,
> cos(b)ˆ2=1-sin(b)ˆ2, GINV):
> cpu_time = (time()-settime)*seconds; # computing time

cpu time = 3.425 seconds

We do not show the inverse metric tensor, but all entries except GINV[4,4]
are in the shape of formula (34) in the paper. Casting GINV[4,4] into good
shape is not difficult; we skip this last part of the computation. Anyway,
the calculation can easily be done in about 4 seconds of computing time
and paper-ready formulae are obtained too!

Another example from science where computer algebra enables the re-
searcher to finish off a proof of a mathematical result that requires a lot
of straightforward but tedious computations can be found in [59]. There, a

16 1. Introduction to Computer Algebra

purely algebraic problem, related to proving the existence of a certain finite
subgroup of a Lie group, could be reduced to the problem of solving a set
of linear equations in 240 variables with coefficients from the field of 1831
elements. This system of linear equations was easily shown to have a unique
solution by computer. By pencil and paper this is almost impossible, but
by computer this is quite feasible. The role of Maple in this computation
is described in [167].

In the last two worked-out examples we have used Maple to determine a
generating function and to compute a metric tensor and its inverse, respec-
tively. Now, one may not think much of mathematical results obtained by
a computer program, but remember that there are many independent ways
to check the answers. One may even use Maple itself to check the answers
or to enlarge one’s confidence in the results: e.g., one can compute the first
terms of the Taylor series and compare them with the original coefficients,
and one can multiply the metric tensor and its inverse as an extra check
on the answers.

Symbolic and algebraic computation often precedes numerical computa-
tion. Mathematical formulae are first manipulated to cast them into good
shape for final numerical computation. For this reason, it is important that
a computer algebra system provides a good interface between these two
types of computation. Maple can generate C, FORTRAN, and Java ex-
pressions from Maple expressions. Double precision arithmetic and code
optimization are optional. For example, the submatrix of the metric tensor
G in the previous example consisting of the first two rows can be converted
into FORTRAN as shown below. Two technicalities play a role: You have
to get rid of the link between Euler’s constant and the Greek character γ
in Maple, e.g., by using the name Gamma, and you must use (named) arrays
instead of nested lists for matrices.

> # recognition of Euler’s constant
> CodeGeneration[Fortran](gamma);

cg = 0.5772156649D0

> H := SubMatrix(G, 2..3, 1..6):
> H := eval(%, gamma=Gamma); # replace gamma by Gamma

H :=[
0 ,

1
2
r2 (1− sin(θ) cos(Γ) sin(β)2 + cos(β)2) ,

1
2
r2 sin(β) sin(Γ) sin(θ) ,

1
2
r2 cos(β) , 0 ,

1
2
r2 cos(β) cos(θ)

]
[
0 ,

1
2
r2 sin(β) sin(Γ) sin(θ) ,

1
2
r2 (cos(Γ) sin(θ) + 1) , 0 , 0 , 0

]
> CodeGeneration[Fortran](H, optimize=true,
> functionprecision=double, coercetypes=false);

1.4. Advantages of Computer Algebra 17

t1 = r ** 2
t2 = dsin(theta)
t3 = dcos(Gamma)
t4 = t2 * t3
t5 = dsin(beta)
t6 = t5 ** 2
t8 = dcos(beta)
t9 = t8 ** 2
t14 = dsin(Gamma)
t17 = t1 * t5 * t14 * t2 / 2
t18 = t1 * t8
t20 = dcos(theta)
cg(1,1) = 0
cg(1,2) = t1 * (1 - t4 * t6 + t9) / 2
cg(1,3) = t17
cg(1,4) = t18 / 2
cg(1,5) = 0
cg(1,6) = t18 * t20 / 2
cg(2,1) = 0
cg(2,2) = t17
cg(2,3) = t1 * (t4 + 1) / 2
cg(2,4) = 0
cg(2,5) = 0
cg(2,6) = 0

The answers obtained with a computer algebra system are either exact
or in a user-defined precision. They can be more accurate than hand cal-
culations [146]; and they can lead to many corrections to integral tables.
Below, we give two examples of integrals incorrectly tabulated in one of
the most popular tables, viz., Gradshteyn–Ryzhik [109]:

1. Formula 2.269∫
1

x
√

(bx+ cx2)3
dx =

2
3

(
− 1
bx

+
4c
b2
− 8c2x

b3

)
1√

bx+ cx2
.

2. Formula 3.828(19)∫ ∞

0

sin2(ax) sin2(bx) sin(2cx)
x

dx =

π

16
(
1 + sgn(c− a+ b) + sgn(c− b+ a)− 2sgn(c− a)− 2sgn(c− b)

)
,

where a, b, c > 0.

As shown below Maple does not only give correct answers but also more
information on conditions of the parameters. In the example we shall use
the percentage symbol to refer to the previous result.

> Integrate(1/(x*sqrt((b*x+c*xˆ2)ˆ3)), x);∫
1

x
√

(b x+ c x2)3
dx

18 1. Introduction to Computer Algebra

> value(%);

2(−
√
b x+ c x2 b2 + 4

√
b x+ c x2 b c x+ 5

√
b x+ c x2 c2 x2

+ 3 c2
√
x (b+ c x)x2)

√
x (b+ c x)

/
(3x b3

√
x3 (b+ c x)3)

> factor(%);

2 (b+ c x) (−b2 + 4 b c x+ 8 c2 x2)
3 b3
√
x3 (b+ c x)3

Assume that all variables are positive and simplify the above result under
this condition.

> simplify(%) assuming positive;

2 (−b2 + 4 b c x+ 8 c2 x2)
3 b3 x(3/2)

√
b+ c x

It is a bit more work to get a look-alike of the tabulated result.
> subs(b+c*x=y/x, %);

2 (−b2 + 4 b c x+ 8 c2 x2)

3 b3 x(3/2)

√
y

x

> simplify(%) assuming positive;

2 (−b2 + 4 b c x+ 8 c2 x2)
3 b3 x

√
y

> expand(%);

− 2
3 b x

√
y

+
8 c

3 b2
√
y

+
16x c2

3 b3
√
y

> collect(3/2*%, sqrt(y));

− 1
b x

+
4 c
b2

+
8x c2

b3√
y

> subs(y=b*x+c*xˆ2, 2/3*%);

2 (− 1
b x

+
4 c
b2

+
8x c2

b3
)

3
√
b x+ c x2

The mistake in the tabulated result is an incorrect minus sign. In the fourth
edition of Gradshteyn–Ryzhik [109] in 1980 this has been corrected. Any-
way, the result in an integral table you can only believe or not; in Maple
you can verify the result by differentiation.

> simplify(diff(%,x) - 1/(x*sqrt((b*x+c*xˆ2)ˆ3)))
> assuming positive;

1.4. Advantages of Computer Algebra 19

0

The second example is more intriguing: the tabulated result is wrong and
Maple finds a more general answer.

> Integrate(sin(a*x)ˆ2*sin(b*x)ˆ2*sin(2*c*x)/x,
> x=0..infinity);∫ ∞

0

sin(a x)2 sin(b x)2 sin(2 c x)
x

dx

> value(%);

1
8

csgn(c)π +
1
16

csgn(−2 c+ 2 b)π − 1
16

csgn(2 c+ 2 b)π

+
1
16

csgn(−2 c+ 2 a)π − 1
16

csgn(2 c+ 2 a)π

+
1
32

csgn(−2 b+ 2 c+ 2 a)π +
1
32

csgn(2 b+ 2 c+ 2 a)π

− 1
32

csgn(−2 b− 2 c+ 2 a)π − 1
32

csgn(2 b− 2 c+ 2 a)π

Here, Maple gives the solution for general a, b, and c. You can specialize
to the case of positive variables, which is the only case tabulated in [109].

> % assuming positive; # all variables > 0

π

32
+

1
16

signum(−2 c+ 2 b)π +
1
16

signum(−2 c+ 2 a)π

+
1
32

signum(−2 b+ 2 c+ 2 a)π − 1
32

signum(−2 b− 2 c+ 2 a)π

− 1
32

signum(2 b− 2 c+ 2 a)π

Let us get rid of the 2’s in the signs and factorize.

> factor(eval(%, signum=(signum@primpart)));

1
32
π(1 + 2 signum(b− c) + 2 signum(−c+ a) + signum(−b+ c+ a)

− signum(−b− c+ a)− signum(b− c+ a))

So, a constant was wrong and a term was missing in the tabulated result.
In many cases of integration, conditions on parameters are important to

obtain an exact result. Below is the example of the definite integral∫ ∞

0

t1/3 ln(at)
(b+ 2t2)2

dx, a, b > 0.

> assume(a>0, b>0):
> normal(integrate(tˆ(1/3)*ln(a*t)/(b+2*tˆ2)ˆ2,
> t=0..infinity));

20 1. Introduction to Computer Algebra

1
36

π 2(1/3) (2 ln(a˜)
√

3 + π − 3
√

3−
√

3 ln(2) +
√

3 ln(b˜))

b˜(4/3)

The tildes after a and b in the above result indicate that these variables
have certain assumed properties. Maple can inform its user about these
properties.

> about(a);

Originally a, renamed a˜:
is assumed to be: RealRange(Open(0),infinity)

Integration is also a good illustration of another advantage of computer
algebra: it provides easy access to advanced mathematical techniques and
algorithms. When input in Maple, the following two integrals∫

x2 exp(x3) dx and
∫
x exp(x3) dx

give different kinds of response:
1
3

exp(x3) and
∫
x exp(x3) dx.

This means more than just the system’s incompetence to deal with the
latter integral. Maple can decide, via the Risch algorithm [31, 98, 203],
that for this integral no closed form in terms of elementary functions exists.
This contrasts with the heuristic methods usually applied when one tries to
find an answer in closed form. In the heuristic approach one is never sure
whether indeed no closed form exists or that it is just one’s mathematical
incompetence. The Risch algorithm however is a complicated algorithm
that is based on rather deep mathematical results and algorithms and that
involves many steps that cannot be done so easily by pencil and paper.
Computer algebra enables its user to apply such advanced mathematical
results and methods without knowing all details.

Using a computer algebra system, one can concentrate on the analy-
sis of a mathematical problem, leaving the computational details to the
computer. Computer algebra systems also invite one to do “mathematical
experiments”. They make it easy to test mathematical conjectures and
to propose new ones on the basis of calculations (q.v., [20, 165]). As an
example of such a mathematical experiment, we shall conjecture a formula
for the determinant of the n× n matrix An defined by

An(i, j) := xgcd(i,j).

The first thing to do is to compute a few determinants, and look and see.
> numex := 7: # number of experiments
> dets := Vector(numex):
> macro(det=LinearAlgebra[Determinant]):
> for n to numex do
> A[n] := Matrix(n, n, shape=symmetric):

1.4. Advantages of Computer Algebra 21

> for i to n do
> for j to i do
> A[n][i,j] := xˆigcd(i,j)
> end do
> end do:
> dets[n] := factor(det(A[n])):
> print(dets[n])
> end do:

x

x2 (x− 1)

x3 (x+ 1) (x− 1)2

x5 (x+ 1)2 (x− 1)3

x6 (x2 + 1) (x+ 1)3 (x− 1)4

x7 (x2 + 1) (x3 + x− 1) (x+ 1)4 (x− 1)5

x8 (x2 + x+ 1) (x2 − x+ 1) (x2 + 1) (x3 + x− 1) (x+ 1)5 (x− 1)6

At first sight, it has not been a success. But, look at the quotients of
successive determinants.

> for i from 2 to numex do
> quo(dets[i], dets[i-1], x)
> end do;

x2 − x

x3 − x

x4 − x2

x5 − x

x6 − x3 − x2 + x

x7 − x
In the nth polynomial only powers of x appear that have divisors of n as
exponents. Thinking of Möbius-like formulae and playing a little more with
Maple, the following conjecture comes readily to mind.

Conjecture. det An =
n∏

j=1

φj(x), where the polynomials φj(x) are

defined by xn =
∑
d|n

φd(x).

Some Properties.

(i) If p is a prime number, then

φp(x) = xp − x,

22 1. Introduction to Computer Algebra

and for any natural number r,

φpr (x) = φp(xpr−1
).

(ii) If p is a prime number, not dividing n, then

φpn(x) = φn(xp)− φn(x).

(iii) Let n = pr1
1 . . . prs

s be a natural number with its prime factorization,
then

φn(x) = φp1...ps
(xp

r1−1
1 ...prs−1

s).

(iv) We have

φn(x) =
∑
d|n

µ
(n
d

)
xd =

∑
d|n

µ(d)x(n
d),

where µ is the Möbius function such that µ(1) = 1, µ(p1 . . . ps) =
(−1)s if p1, . . . , ps are distinct primes, and µ(m) = 0 if m is divisible
by the square of some prime number.

For the interested reader: 1
dφd(q) is equal to the number of monic irreducible

polynomials of degree d in one variable and with coefficients in a finite field
with q elements [176].

However much mathematical knowledge has been included in a computer
algebra system, it is still important that an experienced user can enhance
the system by writing procedures for personal interest. The author imple-
mented in Maple several algorithms for inversion of polynomial mappings
according to the methods developed in [76]. With these programs it is pos-
sible to determine whether a polynomial mapping has an inverse that is
itself a polynomial mapping, and if so, to compute the inverse. We show
an example of an invertible mapping in three unknowns.

> read "invpol.m"; # load user-defined package
> P := [xˆ4 + 2*(y+z)*xˆ3 + (y+z)ˆ2*xˆ2 + (y+1)*x
> + yˆ2 + y*z, xˆ3 + (y+z)*xˆ2 + y, x + y + z];

P := [x4 + 2 (y + z)x3 + (y + z)2 x2 + (y + 1)x+ y2 + y z,

x3 + (y + z)x2 + y, x+ y + z]
> settime := time(): # start timing
> invpol(P, [x,y,z]); # compute inverse mapping

[x− y z, y − x2 z + 2 y z2 x− y2 z3, z − x− y + y z + x2 z − 2 y z2 x+ y2 z3]
> cpu_time = (time()-settime)*second; # computing time

cpu time = .110 second

Computing the inverse of a polynomial mapping with pencil and paper is
almost impossible; one needs a computer algebra system for the symbol

1.5. Limitations of Computer Algebra 23

crunching. However, one cannot expect designers of computer algebra sys-
tems to anticipate all of the needs of their users. One can expect good
programming facilities to implement new algorithms oneself.

1.5 Limitations of Computer Algebra

What has been said about computer algebra systems so far may have given
the impression that these systems offer unlimited opportunities, and that
they are a universal remedy for solving mathematical problems. But this
impression is too rosy. A few warnings beforehand are not out of place.

Computer algebra systems often make great demands on computers be-
cause of their tendency to use up much memory space and computing time.
The price one pays for exact arithmetic is often the exponential increase
in size of expressions and the appearance of huge numbers. This may even
happen in cases where the final answer is simply “yes” or “no.” For exam-
ple, it is well-known that Euclid’s algorithm yields the greatest common
divisor (gcd) of two polynomials. However, this “naive” algorithm does not
perform very well. Look at the polynomials

> f[1] := 7*xˆ7 + 2*xˆ6 - 3*xˆ5 - 3*xˆ3 + x + 5;

f1 := 7x7 + 2x6 − 3x5 − 3x3 + x+ 5

> f[2] := 9*xˆ5 - 3*xˆ4 - 4*xˆ2 + 7*x + 7;

f2 := 9x5 − 3x4 − 4x2 + 7x+ 7

We want to compute the gcd(f1, f2) over the rational numbers by Euclid’s
algorithm. In the first division step we construct polynomials q2 and f3,
such that f1 = q2f2 + f3, where degree(f3) < degree(f2) or f3 = 0. This is
done by long division.

> f[3] := sort(rem(f[1], f[2], x, q[2]));

f3 :=
70
27
x4 − 176

27
x3 − 770

81
x2 − 94

81
x+

503
81

> q[2];

7
9
x2 +

13
27
x− 14

81
Next, polynomial q3 and f4 are computed such that f2 = q3f3 + f4, where
degree(f4) < degree(f3) or f3 = 0, etc. until fn = 0; then gcd(f1, f2) =
fn−1. The following Maple program computes the polynomial remainder
sequence.

24 1. Introduction to Computer Algebra

> Euclid_gcd := proc(f::polynom, g::polynom, x::name)
> local r:
> if g = 0 then sort(f)
> else
> r := sort(rem(f, g, x));
> if r <> 0 then print(r) end if;
> Euclid_gcd(g, r, x)
> end if
> end proc:
> Euclid_gcd(f[1], f[2], x):

70
27
x4 − 176

27
x3 − 770

81
x2 − 94

81
x+

503
81

100881
1225

x3 + 72x2 − 14139
2450

x− 98037
2450

−16726864175
10176976161

x2 − 5255280625
10176976161

x+
19754564375
10176976161

35171085032244648729
456796710414528050

x+
6605604895087335357
456796710414528050

240681431042721245661011901925
121549387831506345564025862481

The conclusion is that the polynomials f1 and f2 are relatively prime, be-
cause their greatest common divisor is a unit. But look at the tremendous
growth in the size of the coefficients from 1-digit integers to rational num-
bers with thirty digits (even though the rational coefficients are always
simplified). In [98, 148] one can read about more sophisticated algo-
rithms for gcd computations that avoid blowup of coefficients as much as
possible.

The phenomenon of tremendous growth of expressions in intermediate
calculations turns up frequently in computer algebra calculations and is
known as intermediate expression swell. Although it is usually difficult to
estimate the computer time and memory space required for a computation,
one should always do one’s very best to optimize calculations, both by using
good mathematical models and by efficient programming. It is worth the
effort. For example, with the LinearAlgebra package, Maple computes the
inverse of the 9 × 9 matrix with (i, j) -entry equal to (iu + x + y + z)j in
535 seconds requiring memory allocation of 6 Mbytes on a PC running
Windows 2000, with a 1.7 Ghz Pentium 4 processor having 512 MB main
memory. The obvious substitution x + y + z → v reduces the computer
time to 1 second and the memory requirements to about 0.5 Mbyte.

A second problem in using a computer algebra system is psychological:
how many lines of computer output can one grasp? And when one is faced
with large expressions, how can one get enough insight to simplify them?
For example, merely watching the computer screen it would be difficult to

1.5. Limitations of Computer Algebra 25

recover the polynomial composition

f(x, y) = g
(
u(x, y), v(x, y)

)
,

where

g(u, v) = u3v + uv2 + uv + 5,
u(x, y) = x3y + xy2 + x2 + y + 1,
v(x, y) = y3 + x2y + x,

from its expanded form.

While it is true that one can do numerical computations with a com-
puter algebra system in any precision one likes, there is also a negative
side of this feature. Because one uses software floating-point arithmetic
instead of hardware arithmetic, numerical computation with a computer
algebra system is 100 to 1000 times slower than numerical computation in
a programming language like FORTRAN. Hence, for numerical problems,
one must always ask oneself “Is exact arithmetic with rational numbers
or high-precision floating-point arithmetic really needed, or is a numerical
programming language preferable?”

In an enthusiastic mood we characterized computer algebra systems
as mathematical expert systems. How impressive the amount of built-in
mathematical knowledge may be, it is only a small fraction of mathemat-
ics known today. There are many mathematical areas where computer
algebra is not of much help yet, and where more research is required:
partial differential equations, indefinite and definite integration involv-
ing non-elementary functions like Bessel functions, contour integration,
surface integration, calculus of special functions, and non-commutative
algebra are just a few examples.

Another serious problem and perhaps the trickiest, is the wish to specify
at an abstract level the number domain in which one wants to calculate.
For example, there are an infinite number of fields, and one may want
to write algorithms in a computer algebra system using the arithmetic
operations of a field, without the need to say what particular field you work
with. Moreover, one may want to define one’s own mathematical structures.
AXIOM [70, 71, 140, 219] was the first computer algebra system making
steps in this direction. In Maple, the Domains package allows its user to
create domains in a similar way as AXIOM does.

As far as the syntax and the semantics are concerned, the use of a com-
puter algebra system as a programming language is more complicated than
programming in a numerical language like FORTRAN. In a computer al-
gebra system one is faced with many built-in functions that may lead to
unexpected results. One must have an idea of how the system works, how
data are represented, how to keep data of manageable size, and so on.

26 1. Introduction to Computer Algebra

Efficiency of algorithms, both with respect to computing time and mem-
ory space, requires a thorough analysis of mathematical problems and a
careful implementation of algorithms. For example, if we had forgotten to
expand intermediate results in the procedure for calculating Bessel poly-
nomials as defined in §1.3, it would have resulted in unnecessarily large
expressions. The rather unsuccessful implementation of Y would compute
Y5(z) as follows.

> Y := proc(n::nonnegint, x::name)
> if n=0 then 1
> elif n=1 then x+1
> else Y(n,x) := (2*n-1)*x*Y(n-1,x) + Y(n-2,x)
> end if
> end proc:
> Y(5,z);

9 z (7 z (5 z (3 z (z + 1) + 1) + z + 1) + 3 z (z + 1) + 1) + 5 z (3 z (z + 1) + 1)
+ z + 1
Familiarity with the basic features of a computer algebra system, such as
elementary data structures and built-in facilities, makes it easier to pro-
gram efficiently and to foresee some of the many pitfalls in symbolical
computation. A good understanding of the computer algebra systems that
one has at one’s disposal is also prerequisite to making the right choice
for the system to use when studying a particular problem. For example,
the formula manipulation system FORM [225] is better suited than Maple
for doing computations in most non-commutative algebras because, in this
system, non-commutative objects are of basic type and pattern matching
is an amply supported basic operation. See [60] for a comparison of Maple
and FORM in computing with quaternions.

Finally, we mention the technical difficulties in using computer algebra
systems. Sometimes, input and output formats and the reuse of expressions
are confusing and too far removed from standard mathematical notation.
In comparison to global manipulations, local manipulations in formulae are
often difficult to carry out. Interfaces with other programming languages
are frequently absent or inadequate. And last but not least, bugs are a
major issue. See [215] for an entertaining discussion on this issue. It is
hoped that some of these remarks will soon be outdated. But systems like
Maple will always surprise you, for the good or the bad. We end this section
with two surprising results in Maple calculations where you have to assist
the system a bit.

The first example: an easy integral that can be done without using a
computer algebra system.

> Integrate(2*x*(xˆ2+1)ˆ24, x);∫
2x (x2 + 1)24 dx

1.5. Limitations of Computer Algebra 27

The answer is clear, but what does Maple give?
> value(%);

92x6 + 12x4 + x2 +
653752

5
x30 + 178296x28 + 81719x18 + 178296x22

+
653752

5
x20 + 208012x24 + 208012x26 + 506x42 +

10626
5

x40

+
10626

5
x10 + 506x8 + 7084x12 + 19228x14 + 43263x16 +

1
25
x50

+ x48 + 12x46 + 92x44 + 7084x38 + 19228x36 + 43263x34 + 81719x32

Surprise! You may think that factorization helps.
> factor(%);

x2 (x8 + 5x6 + 10x4 + 10x2 + 5)(x40 + 20x38 + 190x36 + 1140x34

+ 4845x32 + 15505x30 + 38775x28 + 77625x26 + 126425x24

+ 169325x22 + 187760x20 + 172975x18 + 132450x16 + 84075x14

+ 43975x12 + 18760x10 + 6425x8 + 1725x6 + 350x4 + 50x2 + 5)/25
The problem is, as you may have guessed, in the choice of the integration
constant.

> factor(% + 1/25);

(x2 + 1)25

25
You are expecting too much if you think that such problems can always be
avoided.

The second example comes from a study in optics [19] and is about
integrating expressions consisting only of terms

xn sini x cosj x coshk x sinhl x ,

where i, j, k, l, n ∈ N. It can easily be shown that any such integral can
be expressed completely in the same kind of terms. An example of what
Maple does:

> Integrate(x*sin(x)ˆ2*cos(x)*sinh(x)ˆ2*cosh(x), x);∫
x sin(x)2 cos(x) sinh(x)2 cosh(x) dx

> value(%);

1
32

(
3x
10
− 2

25
) e(3 x) cos(x)− 1

32
(− x

10
+

3
50

) e(3 x) sin(x)

− 1
192

x e(3 x) cos(3x) +
1
32

(−x
6

+
1
18

) e(3 x) sin(3x)− 1
64
x ex cos(x)

+
1
32

(−x
2

+
1
2
) ex sin(x) +

1
32

(
x

10
+

2
25

) ex cos(3x)

28 1. Introduction to Computer Algebra

− 1
32

(−3x
10

+
3
50

) ex sin(3x) +
1
64
x e(−x) cos(x)

+
1
32

(−x
2
− 1

2
) e(−x) sin(x) +

1
32

(− x

10
+

2
25

) e(−x) cos(3x)

− 1
32

(−3x
10
− 3

50
) e(−x) sin(3x) +

1
32

(−3x
10
− 2

25
) e(−3 x) cos(x)

− 1
32

(− x

10
− 3

50
) e(−3 x) sin(x) +

1
192

x e(−3 x) cos(3x)

+
1
32

(−x
6
− 1

18
) e(−3 x) sin(3x)

To get the formula in the requested form you have to write the exponentials
in terms of hyperbolic sines and cosines and work out the intermediate
expression.

> convert(%, ’trig’): # exp -> trigonometric function
> expand(%);

1
5

cos(x)x sinh(x) cosh(x)2 − 1
6
x sinh(x) cosh(x)2 cos(x)3

− 1
6
x cosh(x)3 sin(x) cos(x)2 +

1
5
x cosh(x) sin(x) cos(x)2

+
1
18

sinh(x) cosh(x)2 sin(x) cos(x)2 − 1
10

cos(x)x sinh(x)

− 13
450

sin(x) sinh(x) cosh(x)2 − 1
50

cos(x) cosh(x)3

− 1
10

sin(x)x cosh(x) +
1
15

sin(x)x cosh(x)3 +
1
15
x sinh(x) cos(x)3

− 13
450

sinh(x) sin(x) cos(x)2 +
19
450

sin(x) sinh(x) +
1
50

cosh(x) cos(x)3

The final step might be to combine the commands into a procedure for
further usage.

> trigint := proc()
> integrate(args);
> convert(%, ’trig’);
> expand(%)
> end proc:
> trigint(x*sin(x)ˆ2*cos(x)ˆ3, x);

1
15
x sin(x) cos(x)2 +

2
15
x sin(x) +

1
45

cos(x)3 +
2
15

cos(x)

− 1
5
x cos(x)4 sin(x)− 1

25
cos(x)5

> trigint(x*sin(x)*cos(x)ˆ2, x=0..Pi);

π

3

1.6. Design of Maple 29

This kind of adapting Maple to one’s needs happens fairly often. There-
fore, this book contains many examples of how to assist the system. Some
of them are of a rather sophisticated level. They have been added because
merely explaining Maple commands and showing elementary examples does
not make you proficient enough at the system for when it comes to real
work.

1.6 Design of Maple

The name Maple is not an acronym of mathematical pleasure — great
fun as it is to use a computer algebra system — but was chosen to draw
attention to its Canadian origin. Since 1980 a lot of work has gone into the
development of the Maple system by the Symbolic Computation Group
of the University of Waterloo and at ETH Zürich. Since 1992 it has been
further developed and marketed by Waterloo Maple Software (since 1995,
Waterloo Maple Inc.) in collaboration with the original developers.

Maple is a computer algebra system open to the public and fit to run
on a variety of computers, from a mainframe computer down to desktop
computers like Macintosh and PC. The user accessibility shows up best
on a mainframe with a time-sharing operating system, where several users
of Maple can work simultaneously without being a nuisance to each other
or other software users, and without excessive load put on the computer.
This is possible because of the modular design of Maple. It consists of
several parts: the user interface called the Iris, the basic algebraic engine
or kernel, the external library, and optionally the so-called share library
with contributions of Maple users or other private libraries.

The Iris and the kernel form the smaller part of the system, which has
been written in the programming language C; they are loaded when a Maple
session is started. The Iris handles input of mathematical expressions (pars-
ing and notification of errors), display of expressions (“prettyprinting”),
plotting of functions, and support of other user communication with the
system. There are special user interfaces called worksheets for the X Win-
dow System, Macintosh, and MS-Windows. Maplets, which are launched
from a Maple session, provide customized graphical user interfaces, e.g., for
setting kernel options or for building plots in an interactive way.

In a Maple worksheet you can combine Maple input and output, graphics,
and text in one document. Further features of the worksheet interface are
that it provides hypertext facilities inside and between documents, that it
allows embedding of multi-media objects (on some platforms), that it uses
typeset mathematics, and that subexpressions of mathematical output can
be selected for further processing. A Maple worksheet consists of a hierarchy

30 1. Introduction to Computer Algebra

of regions. Regions can be grouped into sections and subsections. Sections
and subsections can be “closed” to hide regions inside. A worksheet can
be exported as RTF (Rich Text format), HTML (with MathML), XML,
or LaTEX format. You are referred to the Maple documentation for precise
details about the worksheet interface.

The Maple kernel interprets the user input and carries out the basic
algebraic operations such as rational arithmetic and elementary polyno-
mial arithmetic. It also contains certain algebraic routines that are so often
used that they must be present in the lower-level systems language, for
efficiency reasons. To the latter category belong routines for manipulation
of polynomials like degree, coeff, and expand. The kernel also deals with
storage management. A very important feature of Maple is that the system
keeps only one copy of each expression or subexpression within an entire
session. In this way testing for equality of expressions is an extremely inex-
pensive operation, viz., one machine instruction. Subexpressions are reused
instead of being recomputed over and over again.

Most of the mathematical knowledge of Maple has been coded in the
Maple programming language and resides as functions in the external
library. When a user needs a library function, Maple is smart enough to
load the routine itself. Maple must be informed about the use of separate
packages like the linear algebra, number theory, and statistics packages,
to name a few. All this makes Maple a compact, easy-to-use system. But
what is more important, in this setting Maple uses memory space only
for essential things and not for facilities in which a user is not interested.
This is why many people can use Maple on one computer simultaneously,
and why Maple runs on computers with rather limited memory. Table 1.1
summarizes the design of the Maple system as just described.

Part Function

Iris parser
display of expressions (“prettyprinting”)
graphics
special user interfaces

Kernel interpreter
memory management
basic & time-critical procedures for
computations in Z, Q, R, C, Zn, Q[x], etc.

Library library functions
application packages
on-line help

Private Libraries contributions of Maple users

Table 1.1. Components of the Maple system.

1.6. Design of Maple 31

The Maple language is a well-structured, comprehensible, high-level
programming language. It supports a large collection of data structures:
functions, sequences, sets, lists, arrays, tables, etc. There are also plenty of
easy-to-use operations on these data structures like type-testing, selection
and composition of data structures, and so on. These are the ingredients of
the programming language in which almost all mathematical algorithms
of Maple are implemented, and which is the same language users will
employ in interactive calculator mode. Furthermore, anyone who is in-
terested in the algorithms that Maple uses and who is interested in the
way these algorithms are implemented can look at the Maple code in
the library; the procedures are available in readable form or can be re-
produced as such inside a Maple session. If desired, a user can enlarge
the library with self-written programs and packages. The Maple Applica-
tion Center (URL: www.mapleapps.com) contains many user contributions,
sample worksheets, and documentation. Maple also provides its users with
facilities to keep track of the execution of programs, whether self-made or
not.

The last advantage of Maple we shall mention is its user-friendly design.
Many computer algebra systems require a long apprenticeship or knowledge
of a low-level systems language if one really wants to understand what
is going on in computations. In many systems one has to leaf through
the manual to find the right settings of programming flags and keywords.
Nothing of the kind in Maple. First, there is the help facility, which is
basically the on-line manual for Maple procedures. Secondly, the secret to
why Maple is so easy to use is the hybrid algorithmic structure of the com-
puter algebra system, where the system itself can decide which algorithm
is favorable. As an example we look at some invocations of the Maple
procedure simplify, which does what its name suggests.

> trig_formula := cos(x)ˆ6 + sin(x)ˆ6
> + 3*sin(x)ˆ2*cos(x)ˆ2:
> exp_ln_formula := exp(a+1/2*ln(b)):
> radical_formula := (x-2)ˆ(3/2)/(xˆ2-4*x+4)ˆ(1/4):
> trig_formula = simplify(trig_formula);

cos(x)6 + sin(x)6 + 3 sin(x)2 cos(x)2 = 1
> exp_ln_formula = simplify(exp_ln_formula);

e(a+1/2 ln(b)) = ea
√
b

> radical_formula = simplify(radical_formula);

(x− 2)(3/2)

(x2 − 4x+ 4)(1/4) =
(x− 2)(3/2)

((x− 2)2)(1/4)

Here, Maple does not assume that x >= 2 and cannot simplify the square
root. The generic simplification of the square root can be forced by adding
the keyword symbolic.

32 1. Introduction to Computer Algebra

> radical_formula = simplify(radical_formula, symbolic);

(x− 2)(3/2)

(x2 − 4x+ 4)(1/4) = x− 2

But the key point is that just one procedure, viz., simplify, carries out dis-
tinct types of simplifications: trigonometric simplification, simplifications
of logarithms and exponential functions, and simplification of powers with
rational exponentials. On the other hand, the concept of pattern match-
ing and transformation rules (rewrite rules) is underdeveloped in Maple.
It is rather difficult to program mathematical transformations that can be
applied globally.

At many places Maple makes decisions which way to go; we mention
four examples. Computation of the determinant of a matrix is done by
the method of minor expansion for a small matrix, otherwise Gaussian
elimination is used. Maple has essentially six numerical methods at its
disposal to compute definite integrals over a finite interval: In the de-
fault case (no particular method specified), the integration problem is
first passed to NAG integration routines if Digits is not too large. If
the NAG routines cannot perform the integration, then some singular-
ity handling may be performed and control may pass back to the NAG
routines with a modified problem. The default hybrid numeric-symbolic
integration method is Clenshaw-Curtis quadrature, but when convergence
is slow (due to nearby singularities) the system tries to remove the singu-
larities or switches to an adaptive double-exponential quadrature method.
An adaptive Newton-Cotes method is available when low precision (e.g.,
Digits <= 15) suffices. Other numerical integration methods are the adap-
tive Gaussian quadrature method and the sinc quadrature method. By the
way, generalized series expansions and variable transformations are two of
the techniques used in the Maple procedure evalf/int to deal with sin-
gularities in an analytic integrand. The interested reader is referred to
[93, 97]. At present, there are six algorithms coded into the Maple proce-
dure fsolve: Newton, Secant, Dichotomic, inverse parabolic interpolation, a
method based on approximating the Jacobian (for systems), and a method
of partial substitutions (for systems again). As a user of Maple you nor-
mally do not need to know about or act on these details; the system finds its
own way. This approach turns Maple into an easy-to-learn and easy-to-use
system for mathematical computations on computers.

http://www.springer.com/978-0-387-00230-9

