
216

Warfare Can Be Calculated
Svend Clausen*

Combat Modelling (CM) is calculating of combat outcomes based on mathemat-
ical models. During the cold war a lot of research was spent to develop CM, but still 
CM can hardly be considered a scientific undertaking. CM is rather a kind of prac-
tical tool for support to military decision makers. CM may be based on different 
types of mathematical models, traditionally deterministic models of the Lanchester 
type. These models are often used without due regard to underlying assumptions, 
and the outcomes may differ from the “true” mean outcomes usually wanted. CM 
based on stochastic models, especially time continuous and state discrete Markov-
ian processes is in principle better than deterministic models. Stochastic CM has 
an innate potential for determining the “true” mean outcome usually wanted, but 
unfortunately stochastic CM often leads to very complex models.

The Danish Defence Research Establishment (DDRE) has developed a sto-
chastic combat model, Defence Dynamics (DD) intended to describe tri-service 
combat. DD overcomes many of the weaknesses of the Lanchester type of models. 
DD is based on a universal combat model for a duel between two arbitrary military 
units. This model is a stochastic model able to describe almost any kind of duel. 
By use of a new concept: “A representative pair” the model has been generalized 
to arbitrary homogeneous and heterogeneous combat situations. Unfortunately the 
generalization requires an approximation, but it seems to be tolerable. DD deter-
mines outcomes much closer to the “true” mean outcomes than is possible with 
traditional CM. DD has supported practical problem solving both for the Danish 
defence and for NATO. 

1  Introduction

Combat modelling is a kind of mathematical modelling intended to calculate 
combat outcomes. During the cold war combat modelling became a major tool to 
support NATO military decision makers. In those times very few people wondered 
if warfare might be calculated. The important problem was how warfare should 
be calculated. Generally speaking it was agreed that combat modelling is of no 
practical value with regard to reliable prediction of real life combat outcomes. 
The uncertainty related to this kind of prediction was considered too high. This 
conclusion is in no way surprising, because real life combat is influenced by a huge 
number of both qualitative and quantitative factors, e.g.,
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– Personnel
– Leadership
– Moral
– Training and education
– Weapon- and sensor systems
– Command, control and information systems
– Strategies and tactics
– Terrain
– Weather
– Light conditions

which may only be known to a limited and uncertain extent. 

Nevertheless combat modelling was during the cold war still considered a useful 
tool, when military decision makers had to deal with problems like:
– Long term planning with regard to structuring of military forces
– Acquisition of weapon- and sensor systems
– Acquisition of CCIS systems
– Development of new military concepts and doctrines
– Optimisation of logistic systems

In relation to this kind of problems it was generally believed that it would be 
sufficient to consider mean combat outcomes. It was furthermore believed that 
combat modelling based on the Lanchester tradition would be sufficient for pro-
viding combat outcomes close to or equal to the “true” mean combat outcomes 
wanted.

But despite all the research and despite all the resources spent, combat model-
ling can hardly be considered a fully scientific undertaking. The reason for this 
statement is that combat models can hardly be exposed to empirical testing. Cer-
tainly it is not physicaly impossible to carry out adequate empirical testing on 
combat models, but in practice it will usually be considered unacceptable both for 
economic and moral reasons. Some scattered pieces of empirical evidence may be 
obtained from studies of war history, but this will hardly be sufficient to establish 
combat modelling as scientific. 

Nevertheless combat modelling is generally accepted as a practical tool for 
military decision makers. Combat modelling may be useful for military decision 
makers to support summarizing, processing and reaching conclusions from rel-
evant and available information. This information may be quite overwhelming and 
almost impossible to treat in any other way. Combat modelling may be considered 
a kind of thinking device enabling the military decision maker to a better under-
standing and solution of problems. 
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2  Possible Types of Combat Models

In fact there is a broad spectrum of possible types of mathematical models, which 
might provide the theoretical basis for combat modelling. Underlying each of these 
types of models is a set of specific assumptions, limitations and possibilities. Dif-
ferent mathematical criteria with regard to classification of combat models may 
be established. Based on a classification it might be easier to discuss, criticize and 
select a type of combat model relevant for a specific application.

The following set of mathematical criteria is considered sufficient for the pres-
ent purpose:
– Descriptive models / optimisation models
– Deterministic models / stochastic models
– Time continuous models / time discrete models
– State continuous models / state discrete models.

In fact most military problems suited for combat modelling are decision prob-
lems. Consequently it should be obvious to select optimisation models (i.e., mathe-
matical models, which include both a decision function and an objective function) 
as a basis for combat modelling. But unfortunately optimisation models will in 
most cases become overwhelming in mathematical complexity when applied to 
traditional military problems, so they will not be considered any further at this 
occasion. The only possibility left is descriptive models, i.e., mathematical models, 
which do not include any explicit decision function.

Combat model

Optimisation modelDescriptive model

Deterministic Stochastic

Time- Continuous Discrete Continuous Discrete

State- Cont. Discr. Cont. Discr. Cont. Discr. Cont. Discr.
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differential-
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Figure 1. Possible mathematical types of combat models.
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To keep it simple only two options are open to determine a combat outcome, 
especially a mean combat outcome by use of descriptive models: Deterministic and 
stochastic descriptive models. A deterministic model can usually only be justified 
if it is able to produce a combat outcome close to or equal to some “true” mean out-
come. But this is meaningless because a mean outcome usually is not even defined 
in relation to a deterministic model. With a stochastic model it will be meaningful 
and in principle possible to determine a mean combat outcome, which is “true” at 
least within the framework specified by the stochastic model. 

Of course time is a major factor for combat modelling and it has to be portrayed 
within the model. Again only two simple options need to be considered: Time dis-
crete – and time continuous models. It is a basic fact of war that events relevant 
for combat modelling may occur at any time, so for that reason it should be obvi-
ous to apply time continuous models. Nevertheless time discrete models are quite 
frequently used in practice because they are especially well suited for discrete 
numerical computations. But in principle use of time discrete models introduces 
an error, because the events are forced within the model to occur only at the dis-
crete points of time allowed by the model. This error will be reduced if the time 
steps chosen are diminished, but then the amount of work for solving the model 
and the cumulated numerical errors will increase. Time discrete models exclude 
the use of strong analytical tools such as differentiation and integration.

In combat modelling the number of operational military units at an arbitrary 
point of time is usually considered the state of the relevant military system. This 
state factor may also be portrayed in two different ways: Discrete or continuous. 
A state discrete model is the natural choice, because the real life number of units 
is usually considered an integer. But unfortunately a state discrete model may be 
too demanding to operate if the number of units on each side is high. With a state 
continuous model the real life number of units will be considered a real number 
and this may be a gross approximation, especially when the number of units are 
small, especially smaller than one. 

Based on this kind of considerations it should in principle be obvious to choose 
descriptive, stochastic, time continuous and state discrete types of models as the 
best-suited type of mathematical model with regard to combat modelling. It might 
for instance be a time continuous and state discrete Markovian process model. 
Unfortunately this type of combat model has only been implemented a few times, 
because it has a tendency to become unacceptably complex. 

In common practice combat modelling is quite often based on descriptive, 
deterministic, time continuous and state continuous types of models. Usually it 
is a set of ordinary differential equations of the Lanchester type. The argument 
for using differential equations is that they are sufficient to determine the mean 
combat outcome. But this argument is doubtful, when the mean outcome is not 
defined within a deterministic model. 
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3  NATO Combat Modelling

Today combat modelling within NATO is considered to be a fairly well established 
and almost concluded research area. But this assessment is highly doubtful. Most 
combat modelling within NATO is still to a high extent based on determinis-
tic descriptive models, i.e., ordinary differential or difference equations of the 
Lanchester type often used without due respect to underlying assumptions and 
limitations.

To exemplify this criticism a few combat models of the Lanchester type based 
on ordinary differential equations are considered. The simplicity of the examples 
chosen is necessary for purposes of presentation and computation, but the criti-
cism will also be valid with regard to more advanced models of the Lanchester 
type.

3.1 Lanchester square model

The Lanchester square model is the best known of the classical Lanchester models. 
Lanchester considered this model especially relevant for modern warfare (1917):

                                                                                b(0) = B

                                                                                r(0) = R

B initial number of blue units
b(t) number of operational blue units at time t
κb kill rate for one operational blue unit against operational red units

R initial number of red units
r(t) number of operational red units at time t
κr kill rate for one operational red unit against operational blue units

This model describes combat between two homogeneous forces (a homogeneous 
force is a force including only one type of military units, e.g., tanks), both fighting 
under the assumption about full tactical information. 

Full tactical information means that an arbitrary operational unit is at any time 
able to detect at least that many hostile operational units as it is capable of killing. 
Furthermore it is assumed that all operational units on each side are able to fully 
share their information and coordinate their firepower among the operational 
hostile units. In fact firepower is the only limiting factor. The capabilities for detec-
tion and coordination are assumed sufficient for firing.

This assumption may be quite unrealistic, because it is difficult to identify many 
modern combat situations, where the assumption is fulfilled on both sides. For 
example very few army operations are carried out with full tactical information 
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on both sides. Within NATO the square model is often used without sufficient 
consideration to this assumption.

The square model is simple and it may be solved by analytical means. From the 
analytical solution it is possible to derive the following criterion for victory:

                                                                    red victory

                                                                    blue victory

                                                                    mutual destruction

The saying, that “Quantity is more important than quality”, presumably origi-
nated from this criterion.

Numerical example:
B  = 200,  R = 400
κb = 0.40,  κr =0.15

R Br b
2 2⋅ > ⋅ ⇒κ κ

R Br b
2 2⋅ < ⋅ ⇒κ κ

R Br b
2 2⋅ = ⋅ ⇒κ κ

0 2.5 5 7.5 10

–200

–100

100

200

300

400

b

r

t 0 50 100 150 200

100

200

300

400

R

B

Equality

line

Red

victory

Blue

victory

unreal

The Lanchester square model is a time and state continuous model in practice 
often assumed to be a kind of mean value model. The logic behind the model dete-
riorates with diminishing numbers of operational units and it certainly collapses 
when the number of operational units becomes less than one or even negative. The 
model is a pair of ordinary non-linear differential equations and it exhibits chaotic 
behaviour in combat situations close to the equality line (equality leads to mutual 
destruction).

3.2 Guerrilla model

Another quite popular combat model of the Lanchester type is a model that might 
be called “the guerrilla model”:

Figure 2. Combat outcomes derived from the Lanchester square model.
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                                                                           ;   r(0) = R

                                                                           ;   b(0) = B

R   initial number of red units
r(t) number of operational red units at time t
δr  detection rate for one operational red unit against an arbitrary operational 

blue unit

B    initial number of blue units
b(t) number of operational blue units at time t
δb  detection rate for one operational blue unit against an arbitrary operational 

red unit

This model also describes combat between two homogeneous forces. One 
possible interpretation of the model is that each force is able to kill all hostile 
operational units that have been detected. In fact this model describes a combat 
situation in which the saying “If you are seen, you are dead” will be true. This 
might be valid for combat between two guerrilla forces searching for each other 
in a wilderness. The detection rate is the only limiting factor. Firepower and the 
capability for coordination are sufficient for killing all detected hostile units. This 
assumption may also be unrealistic, because it is difficult to identify many regular 
combat situations, where detection is the only crucial factor on both sides. 

The guerrilla model is simple and it may be solved by analytical means. From 
the analytical solution it is possible to derive the following criterion for victory:

                                                                     red victory

                                                                     blue victory

                                                                     mutual destruction

With the assumption valid for “the guerrilla model” quality and quantity obvi-
ously are of equal importance.

This type of model has also been used to describe outcomes resulting from 
indirect fire combat, i.e., outcomes relevant when each of two artillery forces at 
random shoot against the territory occupied by the other.
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Numerical example:
B  = 200,  R = 400
δb = 0.40,  δr =0.15

Figure 3. Combat outcomes derived from the Guerilla model.

“The guerrilla model” also is a time and state continuous model in practice 
often assumed to be a kind of mean value model. The logic behind the model dete-
riorates with diminishing numbers of operational units and it certainly collapses 
when the number of operational units becomes less than one. With this model the 
number of operational units cannot become negative.

This model is a pair of ordinary non-linear differential equations, but it does not 
exhibit any chaotic behaviour.

3.3 Mixed combat model

The last example of a combat model of the Lanchester type treated here is a mixed 
combat model (a mixture of the square model and “the guerrilla model”):

                                                                     r(0) = R

                                                                    b(0) = B

R initial number of red units
r(t) number of operational red units at time t
δr detection rate for one operational red unit against an arbitrary operational 

blue unit 

B initial number of blue units
b(t) number of operational blue units at time t
κb kill rate for one operational blue unit against operational red units
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The model describes combat between two homogeneous forces. The interpreta-
tion might be that red is advancing over an open terrain looking for and fighting 
against blue. Blue is fighting back from concealed and camouflaged positions. The 
detection rate is the only limiting factor for red. The firepower is the only limiting 
factor for blue. 

The model may be solved by analytical means. From the analytical solution it is 
possible to derive the following criterion for victory:

                                                                     red victory

                                                                     blue victory

                                                                     mutual destruction

With the assumptions valid for the mixed model quality is more important than 
quantity for red, while quality and quantity are equally important to blue. 

Numerical example:
B  = 200,  R = 400
κb = 0.40,  δr =0.15

R Br b
2 2⋅ > ⋅ ⋅ ⇒δ κ

R Br b
2 2⋅ < ⋅ ⋅ ⇒δ κ

R Br b
2 2⋅ = ⋅ ⋅ ⇒δ κ
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Figure 4. Combat outcomes derived from the mixed combat model.

This is a time and state continuous model, in practice often assumed to be a 
kind of mean value model. The logic behind the model deteriorates with diminish-
ing numbers of operational units and it certainly collapses when the number of 
operational units becomes less than one or even negative.

The model is a pair of ordinary non-linear differential equations, but it does not 
exhibit any chaotic behaviour.

The three simple combat models presented and discussed exemplify determin-
istic combat models of the Lanchester type, which are frequently used within 
NATO. The examples have demonstrated that the models are based on certain cru-
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cial assumptions embedded within the models. Quite often these types of models 
are used without sufficient awareness of and regard to the assumptions. 

3.4 Comparisons of deterministic and stochastic combat models

Another point of criticism against deterministic combat models of the Lanchester 
type is that the concept of a mean combat outcome is not even defined within these 
models. To define and determine a mean combat outcome it is necessary to use a 
stochastic model.

To illustrate this point the three deterministic combat models already consid-
ered are compared to three corresponding continuous and state discrete Markov-
ian process models. The stochastic models are based on the same assumptions and 
parameters as the deterministic models. For each of the three relevant situations 
a numerical comparison between the combat outcome determined with the deter-
ministic model of the Lanchester type and the “true” mean outcome determined 
by the corresponding Markovian model has been carried out. To keep it simple and 
manageable the initial numbers of the two military forces considered have been 
kept low: 1 blue and 2 red military units. (Note that in the figure below “EB” and 
“ER” signify the “true” mean outcomes determined by Markovian models for blue 
and red respectively. “B” and “R” are the outcomes determined by deterministic 
models.)

Numerical example:
Comparison between the outcome determined by the square Lanchester model 
and the “true” mean outcome determined by a corresponding time continuous and 
state discrete Markovian process combat model.

B  = 1,  R = 2
κb = 0.40,  κr =0.15
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Figure 5.

Comparison between combat outcomes 

derived from the Lanchester square 

model and mean outcomes derived from a 

corresponding stochastic model.
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Numerical example:
Comparison between the outcome determined by “the Guerrilla model” and a 
“true” mean outcome determined by a corresponding time continuous and state 
discrete Markovian process combat model.

B  = 1,  R = 2
δb = 0.40,  δr =0.15
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B

R EB

ER

Figure 6.

Comparison between combat outcomes 

derived from the Guerilla model and mean 

outcomes derived from a corresponding 

stochastic model.

Numerical example:
Comparison between the outcome determined by the mixed model and a “true” 
mean outcome determined by a corresponding time continuous and state discrete 
Markovian process combat model.

    B  = 1,  R = 2
κb = 0.40,  δr =0.15
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Figure 7.

Comparison between combat outcomes 

derived from the mixed model and mean 

outcomes derived from a corresponding 

stochastic model.
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The three comparisons reveal considerable differences between the combat 
outcome determined by a deterministic model of the Lanchester type and the 
“true” mean combat outcome determined by a corresponding Markovian process 
model. The differences will not be large for high numbers of units, but they will 
increase with diminishing numbers of units left. So with regard to determining the 
“true” mean outcome of a combat a stochastic model obviously is preferable to a 
deterministic model especially for small numbers of units. In fact the mean combat 
outcome is only defined in relation to a stochastic model.

Furthermore this stochastic combat model does have other advantages. A state 
discrete Markovian model only operates with integer numbers of operational 
units. The integer number can never become negative and the “smaller than one” 
problem has completely disappeared. 

For all these reasons stochastic models are more attractive than corresponding 
deterministic models. But unfortunately stochastic models also suffer from serious 
drawbacks compared to the deterministic models. These drawbacks may be most 
prohibitive in practice:
– The mathematical complexity has increased dramatically.
– The number of equations blows up with factors of maybe millions.
– The time for solution of the models becomes unacceptably lengthy.

4  Defence Dynamics

In 1980 The Danish Defence Command asked the Danish Defence Establishment 
(DDRE) to develop a tri-service combat model as a tool for long term defence plan-
ning. Later this model became known as Defence Dynamics (DD). The idea was 
that DD should be able to predict a mean combat outcome if a possible Danish tri-
service defence structure was attacked by WAPA. The Danish Defence Command 
had set up a list with 10 - 20 possible Danish defence structures and 5 - 10 possible 
WAPA attack structures against Denmark. 

After prolonged and difficult discussions concerning combat modelling DDRE 
decided to base DD on a so-called “Universal combat model”. This model was 
intended to predict stochastic outcomes for a duel between two military units 
independent of their types and services. Furthermore this model was intended to 
be most flexible with regard to different kinds of relevant assumptions concerning 
the actual combat situation. It was decided to apply time continuous and state dis-
crete Markovian processes as the relevant mathematical framework. This type of 
mathematical model was chosen to ensure that it would be possible to determine 
the “true” mean combat outcome defined within the model framework. As exem-
plified earlier this type of mathematical model would avoid both the “smaller than 
zero” and “smaller than one” problem, which otherwise might be most frustrating 
in combat situations involving only a few military units. The universal combat 
model was intended to serve as a basis for development of a full-scale tri-service 
model.

Gut-zu-Druck: 5.8.2003



228 Svend Clausen

DDRE succeeded in developing the so-called “universal combat model”, which 
with very few exceptions is applicable to duel situations in general. One exception 
is a duel between a sea mine and a landing ship. For the few exceptional cases it 
was necessary to develop specific models.

4.1 One-on-one combat

The “Universal Combat Model” was originally based on a quite limited number of 
basic factors, which it was considered important to take into consideration:

– Tactical manoeuvres
 During combat a military unit can usually change between a passive and an 

active state. Within the passive state the unit is not able to detect and fight the 
hostile unit and the hostile unit is not able to detect and fight the unit. Within 
the active state the unit may be able to detect and fight the hostile unit and the 
hostile unit may be able to detect and fight the unit.

– Stand off advantage
 If the unit has a stand off advantage due to long-range sensor- and weapon sys-

tems it is able to detect and fire upon the hostile unit without any risk of retalia-
tion. 

– Detection
 Detection of the hostile unit depends on the unit’s sensor systems and the sig-

nature of the hostile unit compared to its background. Detection may be highly 
influenced by weather, light conditions, decoys and means of concealment and 
camouflage.

– Firing
 Conditioned by detection of the hostile unit the unit is able to fire upon it. Firing 

depends on the actual weapon systems and types of ammunition available to the 
unit.

– Kill
 Conditioned by detection of and firing the unit may be able to kill the hostile 

unit. Kill depends on the actual weapon systems, the types of ammunition avail-
able to the unit and the physical protection of the hostile unit.

Later on further features have been added to “the universal combat model”, for 
example:
– coordination among units within a group, 
– decoy effects due to killed hostile units,
– limited ammunition supplies,
– limited sensor- and weapon ranges (front sections),
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– initial detection, when the unit first appears from the passive state,
– Suppression. 

To keep the presentation simple these further features will not be considered 
here.

The basic factors are reflected within the universal combat model partly by the 
following possible states for a military unit:
s The unit is passive. 
k The unit has a stand off advantage compared to the hostile unit.
n The unit is active, but it has not been detected by the hostile unit.
d The unit is active and it has been detected by the hostile unit.
e The unit is active (and the hostile unit is passive). Note “e = n + d”.
u The unit is killed. 

Of course the hostile unit may independently of the unit occupy the same kind 
of states with a single exception; it is not possible for both units simultaneously to 
have a stand off advantage (state k).

Taken together a pair of two opposing units may consequently occupy and 
change between the following 16 combined states: ss, se, su, ks, kn, kd, ku, es, 
nn, nd, dn, dd, eu, us, ue and uu. Note the combined states where the hostile unit 
is in state k have been omitted. The 16 combined states are considered to be the 
possible states for the universal combat model, i.e., a time continuous and state 
discrete Markovian process.

To make this mathematical model operational the possible transitions between 
the states are characterized by the following (transition) rates:
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Table 1.

Transition rates relevant for one-on-one 

combat.

The information necessary for setting up a time continuous and state discrete 
Markovian process may be summarized within the transition rate matrix charac-
teristic for this type of stochastic model (Table 2).

The diagonal elements within the matrix are, as a consequence of mathematical 
technicalities, defined as the negative sum of all other elements within the relevant 
row. Note furthermore the state uu will be impossible with this type of model, 
because it does not allow two events (two killings) to occur simultaneously.

The corresponding Chapman-Kolmogorov equation for determination of the 
time dependent probability distribution for the actual combined state of the 
two units is described by 14 first order linear differential equations, which may 
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be solved relatively easily by use of either analytical or numerical methods. The 
information included in the transition rate matrix may also be demonstrated in 
a more conspicuous graphical way by use of a transition diagram. The combined 
states are represented by nodes and the possible transitions between the states are 
represented by arrows connecting the relevant nodes.
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Figure 8. Transition diagram for one-on-one combat.
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4.2 Many-on-many homogeneous combat

To generalize one-on-one combat to many-on-many homogeneous combat it is 
necessary to introduce further military units on each side:

B Initial number of blue homogeneous units
R Initial number of red homogeneous units.

But first and foremost it is necessary to have an idea that makes it possible to avoid 
the overwhelming number of combined states due to possible combinations of 
blue and red operational units. Note, that already 200 blue units and 400 red units 
immediately imply (200 + 1) · (400 + 1) = 80 601 possible combined states, when 
the only states allowed for a unit is operational or killed. This might be considered 
an immediate threat of a set of 80 600 ordinary differential equations.

To escape from this major complication the idea of a representative pair of 
opposing units has been introduced:

In principle all units on each side fight under identical conditions. For that 
reason it should be sufficient for modelling purposes to select an arbitrary pair of 
opposing representative units fighting a one-on-one combat and then superimpose 
the influences from all the other non-representative units.

Homogeneous

blue units

Homogeneous

red units

Representative

pair

Figure 9. The concept of a representative pair.

Based on this idea it might be sufficient to elaborate on the Markovian model 
for one-on-one combat, hoping to avoid a dramatic increase in the number of pos-
sible states. Of course a number of conditions related to the original one-on-one 
universal combat model has to be reconsidered to develop a model for a represen-
tative pair within a many-on-many homogeneous combat situation.

States/transitions related to detection/non-detection of a representative unit 
have to be subjective, i.e., only relevant to the opposing unit within the represen-
tative pair. Other opposing units may have a different point of view with regard 
to detection/non-detection of the representative unit. It means for instance that a 
unit may be detected by the opposing unit within the representative pair, but not 
by any other opposing unit and vice versa. 

Gut-zu-Druck: 5.8.2003



232 Svend Clausen

States/transitions related to everything else are (in most cases) considered 
objective, i.e., all opposing units have the same point of view concerning the rep-
resentative unit. It means for instance that if a unit is killed, it is killed from the 
point of view of all opposing units.

If the representative pair is in state kd, it means that the representative blue unit 
has a stand off advantage (state k) with regard to all opposing units. Furthermore 
the representative blue unit has detected the representative red unit (state d) with 
certainty and an arbitrary non-representative red unit with a probability pk:

                                                           ;

The expected kill rate from the representative blue unit in state k against an 
arbitrary detected red unit becomes:

X is the stochastic number of non-representative red units detected by the rep-
resentative blue unit in state k. X is binomially distributed with the parameters R 
– 1 and pk.

Something quite similar is valid for the representative pair in state ed. The rep-
resentative blue unit is active and exposed (state e) with regard to opposing units. 
Furthermore the representative blue unit has detected the representative red unit 
(state d) with certainty and an arbitrary non-representative red unit with a prob-
ability pe.

                                                           ; 

The expected kill rate from the representative blue unit in state e against an 
arbitrary detected red unit becomes:

Here X is the stochastic number of non-representative red units detected by the 
representative blue unit in state e. X is binomially distributed with the parameters 
R – 1 and pe.

Now the total expected kill rate from all non-representative blue units against 
the representative red unit in state e may be determined by:

p
p
pk
kd

k
= p p p p pk ks kn kd kui = + + +

α κ κ κ
bk

b b

x

R

k
x

k
R x bE

X x

R

x
p p=

+








=
+

−







 −( ) =

=

−
− −∑1 1

1
1

0

1
1

RRp
p

k
k

R1 1− −



( )

p
p
pe
ed

e
=

i
p p p p p p pe es nn nd dn dd eui = + + + + +

α κ κ κ
be

b b

x

R

e
x

e
R x bE

X x

R

x
p p=

+








=
+

−







 −( ) =

=

−
− −∑1 1

1
1

0

1
1

RRp
p

e
e

R1 1− −



( )

K B
p
p

p
pb

kd

e
bk

ed

e
be= − +









( )1

i i
α α

Gut-zu-Druck: 5.8.2003



Warfare Can Be Calculated 233

αbk, αbe and Kb is state dependent kill rates, which shall be introduced into the 
transition rate matrix for one-on-one combat to describe the full threat of a kill on 
the representative red unit due to all blue units.

Corresponding αre and Kr are state dependent transition rates, which shall be 
introduced into the transition rate matrix for one-on-one combat to describe the 
full threat of a kill on the representative blue unit due to all red units. But unfor-
tunately this derivation required an approximation. The kill rates αbk, αbe and αre 
for a representative unit against an arbitrary opposing unit are determined by aver-
aging over all non-representative opposing units instead of using the actual (but 
unknown) number of detected non-representative opposing units.

The great advantage with this approximation is that it reduces the number of 
possible states within the relevant Markovian process from maybe millions to 16, 
but never the less it still is an approximation. A number of sensitivity analyses have 
been carried out for modest combat situations. The mean number of operational 
units determined based on this approximation deviated in no case more than 9% 
from the “true” mean number of operational units determined with a correct Mar-
kovian process model.

  Based on this approximation the transition rate matrix valid for the represen-
tative pair within a many-on-many homogeneous combat becomes:
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Table 3. Transition rate matrix relevant for one-on-many homogenerous combat.

So in this way many-on-many homogeneous combat is still represented by a 
time continuous and state discrete Markovian process with only 16 possible states. 
It means that the corresponding Chapman-Kolmogorov equation for determina-
tion of the probability distribution for the actual state of the representative pair is 
described by 15 first order non-linear differential equations, which may be solved 
relatively easily by numerical methods of integration.
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Note the representative pair is now allowed to be in the state uu due to the influ-
ence from the non-representative units. Note furthermore all the transition rates, 
which have been modified or added because of the influence from the non-repre-
sentative units. The diagonal elements within the matrix are, as a consequence of 
mathematical technicalities, still defined as the negative sum of all other elements 
within the relevant row.

The information included in the transition rate matrix for many-on-many 
homogeneous combat may be demonstrated in a more conspicuous graphical way 
by use of a corresponding transition diagram. Note, the dashed arrows indicate 
rates, which have been modified or added compared to the transition rate matrix 
for one-on-one combat.

ss ks kn kd nn dd

es ue

us

dn

nd

se ku
eu

su

uu

Figure 10. Transition diagram for many-on-many homogeneous combat.

4.3 Many-on-many heterogeneous combat

A heterogeneous battle may be split into a number of parallel and serial hetero-
geneous sub battles. To describe a heterogeneous sub battle the many-on-many 
homogeneous combat model has to be generalized to a many-on-many heteroge-
neous combat model. To achieve this it is necessary to take into account both the 
type and the size of each blue and red homogeneous group participating within the 
heterogeneous sub battle.

It will be necessary to define a representative pair of opposing units for each 
relevant combination of homogeneous forces fighting each other within each het-
erogeneous sub battle.
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The principles and the approximation necessary for this generalization are quite 
similar to those applied for generalization from one-on-one combat to many-on-
many homogeneous combat. For each relevant representative pair of opposing 
units it is now necessary to superimpose not only the influence from all non-rep-
resentative units within their own homogeneous force. Now it is also necessary to 
superimpose the influence from all units within all the other homogeneous forces 
taking part in the heterogeneous sub battle.

When DD was first applied to support long term planning for the Danish 
Defence Command a few thousands of representative pairs were defined. The 
maximum number of non-linear differential equations, which were set up and inte-
grated simultaneously, amounted to approximately 20.000, when a heterogeneous 
sub battle going on in Schleswig-Holstein was really intense.

Within the heterogeneous battle each sub heterogeneous battle is described 
with a many - on - many heterogeneous combat model, which determines the time 
dependent probability distributions for each relevant representative pair. From 
these probability distributions the mean number of blue and red units surviving 
the sub battle may easily be determined 

Due to the averaging approximation it has not up till now been possible to deter-
mine the “true” outcome of a heterogeneous battle exactly. But the battle outcome 
determined by Defence Dynamics is still considered to be a magnitude of size 
closer to the “true” battle outcome than outcomes generated with deterministic 
combat models of the Lanchester type.

For the time being DDRE hopes to avoid introducing the basic approximation 
into Defence Dynamics by use of a special blending of numerical and Monte Carlo 
simulation methods for solving the model. In this way it should be possible to gen-
erate combat outcomes very close to or identical to “true” mean combat outcomes. 
But this still requires a lot of research to be seen.

4.4 Practical considerations to use of Defence Dynamics

DD is considered a tool for summarizing, processing and reaching conclusions 
with relevant and available information. This tool is intended to provide support 
to decision makers operating within a broad spectrum of military problems. In any 
case use of DD requires the following type of input information:
– A blue force structure, including types and numbers of weapon systems, ammu-

nition and sensor systems
– A red force structure, including types and numbers of weapon systems, ammuni-

tion and sensor systems
– Strategies and concepts for both blue and red force
– CCIS, Command, Control and Information Systems
– The weather situation
– Light conditions
– Topographical information
– A technological database concerning weapon- and sensor systems and param-

eters for all relevant one-on-one combat models.
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It certainly is a most demanding job to provide and maintain all this informa-
tion necessary for using DD. 

Based on the input information DD generates a combat outcome. This combat 
outcome is an approximation to the “true” mean outcome. Based on this outcome 
the decision maker may find support to make one or another decision.

Blue force Red force

War scriptMilitary panel

Database
Defence

Dynamics

Output:

Graphical display

War statistics

Combat

outcome

Military panel Acceptance
Stop

yes

no

Figure 12. Practical procedure for using Defence Dynamics.

The practical procedure for using DD may be illustrated by the following flow 
chart:

CCIS

Weather, light

conditions

Strategy/concepts

Blue structure

Red structure

Combat outcom

Sensor systems

Weapon systems

Topography

DD

Figure 11.

Defence Dynamics generates 

a combat outcome based on 

the type of information speci-

fied.
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A military panel defines the relevant blue and red force. Afterwards the mili-
tary panel works out a so-called war script for the heterogeneous battle situation 
considered. The war script specifies all movements and engagements for blue and 
red forces based on actual strategies and concepts. DD exploits the war script to 
control the setting up and removal of the relevant many-on-many heterogeneous 
combat models necessary to describe parallel and serial sub battle situations. A 
team of military and analytical people has prepared the database with informa-
tion concerning all relevant weapon-sensor systems. This team furthermore has 
to analyze all relevant representative one-on one combat situations to provide the 
parameters necessary. DD draws the relevant parameters directly from the data-
base when it establishes the combat models. Based on all this input information 
an approximated mean battle outcome is determined. This outcome is presented to 
the military panel by use of graphical displays and war statistics. The panel decides 
if the outcome is in agreement with the strategies and concepts intended. If so the 
outcome is accepted, otherwise the war script is revised and a new computer run 
is implemented. This will continue until the panel finally accepts the combat out-
come. From the concluding outcome the conclusions relevant to the actual practi-
cal application will be drawn. 

The total process is time consuming and difficult to carry out. Furthermore the 
process will quite often provoke disagreements among the members of the military 
panel. Such disagreements may delay the process further.

Despite the problems and the heavy amount of work involved DD has been used 
on a number of occasions. The most important applications have been:

1982 “The October War”. The Danish Long Term Planning Group. The Danish
 Defence Command. 

1989 Evaluation of possible new Air Defence Systems. The Danish Advisory 
 and Analysis Group. The Danish Defence Ministry.

1989 Division Jutland defensive combat in Schleswig-Holstein. The Danish Advi-
sory and Analysis Group. The Danish Ministry of Defence.

1989 Comparison of the TOW system and Leopard tanks used for defensive pur-
poses. (European disarmament negotiations.) ACAG/NATO.

1992 Development of a new doctrine for the Danish army mobile combat. The 
Danish Defence College.

1994 Analyses intended to investigate the concept of Stable Defence. Defence 
Research Group, NATO.

1994 Development of an optimal structure and size for a Danish armoured bat-
talion. The Danish Advisory and Analysis Group. The Danish Ministry of 
Defence.
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