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Calculated Security? 
Mathematical Modelling of Conflict and 
Cooperation 
Jürgen Scheffran*

The pioneering work of Lewis Fry Richardson on modelling the arms race 
raised expectations that mathematics can contribute to peace and conflict reso-
lution. Based upon Richardson’s model, various extensions are discussed, with a 
focus on time-discrete nonlinear models showing chaotic behavior. As a general 
framework for the modelling of conflict and cooperation in international secu-
rity a multi-actor dynamic game is introduced, with mathematical conditions for 
unstable interaction, potentially leading to violent conflict, arms race and war. On 
the other hand, the approach provides a basis for the evolution of cooperation and 
coalition formation. In more detail, the case of instabilities in the offense-defense 
competition is discussed and the role of uncertainties in complex international 
relations. 

1  Conflict Modelling in a Complex World 

While the simple two-player arms race became the paradigm of conflict studies 
during the Cold War [Rapoport 1960], many of the world’s current conflicts are 
more adequately described by complex multi-actor dynamic games. Decisions and 
interactions are shaped by a variety of actors and factors, which could provoke 
instability, rapidly changing security conditions and the outbreak of violence, 
making conflict-resolution more difficult. Not only the arsenals of armament are 
relevant for security, but also economic and technological interconnections as well 
as social and ecological factors, on global and regional levels. Security and sus-
tainability are increasingly linked. 

Understanding the emergence of collective behavior and the evolution of coop-
eration is a dynamic field of current interdisciplinary research, and knowledge 
transfer between the natural and social sciences can be highly fruitful. Mathemati-
cal modelling and its computer-based implementation can contribute to a deeper 
understanding and the development of new instruments for conflict-resolution 
and cooperation, disarmament, security and peace-building. Different mathemati-
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cal methods have been applied to this field (on some see [Neuneck 1995]; a survey 
is given in Figure 1). The theory of dynamical systems determines equilibria and 
stability of differential and difference equations, as well as chaos, self-organization 
and phase transitions [Krabs 1998; for applications see Braun et al. 1983]. Control 
theory helps to determine optimal paths in dynamical systems. Game theory, based 
on the epochal work of von Neumann and Morgenstern 1944, analyzes rational 
choice among different options depending on decisions by other players. 

Dynamic games deal with repeated game situations in which players interac-
tively adapt their behavior to their environment, according to their own incentives, 
preferences and expected outcomes as well as the information sets and decisions 
taken by other players.

Differential games extend Pontryagin’s maximum principle to the optimal con-
trol of dynamical systems by a few number of players, seeking to optimize their 
individual payoff functions for a given time-period (see for instance Dockner et al. 
2000). The repeated prisoners’ dilemma has been used to analyze the evolution of 
cooperation in experimental games [Axelrod 1984, 1997]. Increasing attention is 
focused on the link between cooperative dynamic games and coalition formation. 
Evolutionary games analyze the competition among populations of game-strate-
gies depending on their fitness in the replica equation (for a survey see [Hofbauer/
Sigmund 1998]). In economic oligopoly theory the competition of firms can be rep-
resented by the adaptation towards reaction functions according to Nash-Cournot 
strategies, the so-called “tatonnement process” [Simaan/Cruz 1976, Szidarovsky/

Figure 1. Landscape of mathematical conflict models.
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Li 2000]. Applications of dynamic-game models comprise a large number of natu-
ral and social systems, ranging from warfare to the environment-economy interac-
tion (see for instance [Olsder 1995, Carraro/Filar 1995]). 

Models of artificial life and artificial societies use computer simulation to 
analyze complex interaction between a great number of actors which follow given 
action rules and stimulus-response patterns in virtual environments [see Epstein/
Axtell 1997, Gaylord/D’Andria 1998]. Nonlinear dynamical systems used in phys-
ics (Master equation, Boltzmann equation, Synergetics) can be partly transferred 
to socio-economic interactions, collective phenomena and self-organization 
[Helbing 1995, Weidlich 2000]. Improved computational capabilities facilitate 
the simulation of multi-actor systems in highly complex environments. There is 
a methodological gap between models for a few number of actors which pursue 
optimizing game strategies and models for a large number of actors which interact 
according to deterministic or stochastic rules of behavior. In this article, some 
of the approaches are combined by developing and investigating a mathematical 
framework for a dynamic game with multiple actors which in discrete time act 
upon a system by use of their power resources according to feedback strategies to 
achieve value goals. The actors’ dynamic feedback, adjustment and learning strat-
egies are represented by reaction functions which generate dynamical systems. 
Mathematical conditions are identified under which the dynamic system is stable 
or can be stabilized by parametric control of the interaction matrix. The combina-
tion of cooperative and dynamic game theory with computer-based multi-actor 
modelling provides a basis to further develop instruments of decision-support that 
can be used in international relations and economy as well as in other fields. 

2  Weather, Arms and Mathematics – Richardson’s World 

Lewis Fry Richardson (1881–1953), a british physicist, psychologist and paci-
fist, applied mathematics to better understand arms race and war. He also made 
important contributions to weather forecasting, but the main drawback of his 
mathematical technique was the time necessary to produce a weather forecast. It 
usually took three months to predict the weather of the following day, but with the 
electronic computers after World War II, Richardson’s method of weather predic-
tion became more practical.1 
Less known during his lifetime remained Richardson’s work on mathematical 
conflict modelling [Hess 1995]. He tried to predict and prevent war by finding 
general laws, common to all nations. Being concerned that the arms race between 
the major powers in Europe during the 1930s could lead to another major war, he 
derived a set of differential equations that would describe the arms buildup, using 
empirical data from the First World War to fit the curves [Richardson 1960ab]. He 
was aware of the strengths as well as the weaknesses of applying mathematics to 
social phenomena: 

 1 On Richardson’s life, work and publications see Ashford 1985, 1993.
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To have to translate one’s own verbal statements into mathematical formulae 
compels one carefully to scrutinize the ideas therein expressed. Next the pos-
session of formulae makes it much easier to deduce the consequences. In this 
way absurd implications, which might have passed unnoticed in a verbal state-
ment, are brought clearly into view and stimulate one to amend the formula. 
An additional advantage of a mathematical model is its brevity, which greatly 
diminishes the labor of memorizing the idea expressed. If the statements of an 
individual become the subject of a controversy, this definiteness and brevity lead 
to a speeding up of discussions over disputable points, so that obscurities can be 
cleared away, errors refuted, and truth found and expressed more quickly. [...] 
Mathematical expressions have, however, their special tendencies to pervert 
thought: the definiteness may be spurious, existing in the equations but not in 
the phenomena to be described; and the brevity may be due to the omission 
of the more important things, simply because they cannot be mathematized. 
[Richardson 1960a, p. xvii]

The basic philosophy in Richardson’s model is the assumption that for two arbi-
trary countries each country increases its own armament level xi proportional to 
the armament of an opponent xj and reduces it proportional to its own armament 
(i, j = 1, 2). These three terms drive the increase or decrease of armament in a 
linear and additive way:

                                                                               ,

                                                                                 .

The defense coefficients ki measure the degree to which the ith country reacts to 
the opponent’s armament (military threat) xj, the fatigue coefficients ai > 0 take 
into account the effect of economic constraints, reducing own armament propor-
tional to xi . The grievance term gi measures political and strategic objectives and 

Figure 2. Lewis Fry Richardson (1881–1953).
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perceptions, the “outward attitude of threatening or cooperation” [Richardson 
1960a, p. 13]. gi > 0 represents aggressive intentions, promoting an arms buildup, 
while gi < 0 corresponds to good-will and the tendency to cooperate for an arms 
builddown. 

The equilibrium conditions � �x x1 2 0= = , where the armament levels of both sides 
do not change, leads to straight lines in the (x1, x2)-space of armament levels, 
whose intersection point ( x x1 2

* *, ) is the so-called “balance of power”

                                                                                   ,

provided that a a k k1 2 1 2 0− ≠ . For g1 = g2 = 0 the only equilibrium for all coeffi-
cients is the point (0, 0). Stability of the equilibria is determined by the eigenvalues 
λ of the matrix A of coefficients ai and ki which are the solutions of the charac-
teristic equation |A – λ I| = 0. Asymptotic stability is guaranteed for all eigenvalues 
having negative real parts.2 Stability can be characterized by the stability index 

for positive ai, ki . If the product of the defense coefficients ki exceeds the product 
of the fatigue coefficients ai (σ < 1) the arms race escalates (unstable arms race), 
while for σ > 1 the armament level approaches the equilibrium asymptotically. 

Richardson extended the equations to several nations for the arms races 1909–
1914 and 1933–1939, using military expenditures as armament variables xi . These 
calculations supported his view that “foreign policy had then a rather machine-
like quality” [Richardson 1960a, p. 33] and led him to conclude that increasing 
armaments could lead to war breakout, while a constant level of armament cor-
responds to a steady state without war. 

3  Critique and Extensions of the Richardson Model 

Richardson’s model initiated a flood of publications on the armament dynamics 
and a debate about its applicability to real-world phenomena which raised several 
critical issues. Describing countries as structureless entities by one single “catch 
all variable” xi was seen as questionable. Expenditures are a weak indicator of 
military threat and its security impact which depends on the systems procured. 

x
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 2 The eigenvalues λ describe how the trajectories approach to or escape from the equilibrium 
once they are slightly displaced. The equilibrium is stable if nearby solutions stay nearby for 
all future times. If all eigenvalues have negative real part (Re λ < 0), all nearby solutions will 
be attracted by the equilibrium (asymptotic stability), requiring trace(A) < 0 and det(A) > 0. 
For Re λ > 0 the equilibrium solution is unstable and the trajectory goes off.
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The variables and coefficients of the Richardson model are difficult to measure. 
Expenditures are not easily available, verifiable and reliable for all countries, and 
difficult to compare for different countries. 

An arms race does not only have quantitative aspects, but also qualitative 
aspects, which are important for new strategies and doctrines. Not only objective 
and measurable quantities are relevant, but also subjective and irrational factors, 
like expectations and anticipations, instincts and traditions of political leaders. 
The Richardson model describes “politics without personalities”, where state 
authorities are black boxes and decisions are hidden in the budget. The Richardson 
coefficients are fixed parameters, decoupled from strategy and security interests. 
The armament dynamics is reduced to a mechanistic and deterministic interac-
tion, where by the choice of the initial conditions xi (0) and the coefficients ai, ki, 
gi the future is determined, leaving no room for political decisions or control. In 
reality, the coefficients are time dependent and influenced by strategic objectives. 

Both sides are assumed to have complete knowledge of the armament levels and 
react instantaneously. In reality, each side has limited information about the other 
side’s strength, and worst-case assumptions provoke higher reactions towards 
arms buildup. Additionally, time lags exist for information gathering, decision 
making and weapons acquisition. Another critical time constant is the long lead 
time between technological innovations and deployed weapons systems.  

The linearity and simplicity of the Richardson equations leads to a few types of 
system behavior (oscillations, asymptotic decay, exponential increase). Reactions 
of real systems may be disproportionate and highly nonlinear, showing a variety of 
qualitatively different modes of behavior. To describe the decisionmaking on the 
armament dynamics, time-discrete difference equations may be more adequate 
than continuous differential equations. The arms buildup is not only an action-
reaction process, driven by the mutual stimulation of the opponents’ armament 
(positive ki), but is also stimulated by a bureaucratic and budgetary eigendynamics 
(negative ai), guided by a competition of domestic influences and interests. Mutual 
stimulation and self-stimulation are limiting cases, which are coupled and can 
enforce each other. 

Although an arms race may provoke crisis unstable situations, it does not nec-
essarily lead to war, either because both sides want to avoid warlike situations by 
building more or less weapons or because one side reaches economic, technologi-
cal or political upper limits of armament. In the latter case, which excludes a per-
manent and unlimited arms race, the economic damage to a society by additional 
armament exceeds its security gain. 

Such critical remarks do not only apply to the Richardson model, but to any 
arms race model. Several extensions and adaptations have been proposed to 
improve the deficiencies with regard to the following points: using the number 
of weapons or their lethality as a measure of the armament level; derivation of 
the Richardson coefficients from strategic considerations; nonlinear (economic) 
constraints; the application of optimal control theory and differential games; time-
discretization and difference equations; the influence of the bureaucratic process; 
stochastic Markov processes; decision rules. 
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Michael D. Intriligator developed a framework for the strategic armament 
dynamics, discussing “decision rules with regard to weapons procurement and 
their implications for stability and war initiation in the context of a dynamic 
model of an arms race” [see Intriligator 1975]. Critizing the simple action-reac-
tion scheme, Intriligator included strategic considerations, institutional aspects 
and decision rules [Intriligator/Brito 1985, pp. 133–134]: 

Modelling the arms race as either a mechanistic or an optimizing process, 
however, fails to account for the institutions of defense decision making. To the 
extent that these institutions are large, complex, bureaucratic organizations, as 
indeed they are, they tend to rely on neither passive mechanical responses nor 
on explicit optimization rules but rather on rules of thumb or heuristic deci-
sion rules with regard to weapons procurement.

Both sides build or destroy weapons (missiles) xi based on a model of a strate-
gic missile duel according to decision rules �x F x xi i i j= ( , )  for countries i, j = 1, 2, 
matching the strategic objectives. If the acquisition of missiles is proportional to 
the gap between desired levels xi

* and actual levels xi of missiles, the decision rule 
has the linear form �x k x xi i i i= −( )*  where xi

* depends on the missile duel model and 
the strategic objectives. ki > 0 is the adjustment or reaction coefficient. For x xi i< * 
more weapons will be built in order to reach xi

*; for x xi i> *, country i will reduce 
its missiles (e.g., for cost-saving reasons). The equilibrium lines x xi i

* = , where 
the armament is constant, separate the regions of deterrence and war initiation 
(where one side loses second strike capability) in the (x1, x2)-space. The resulting 
dynamical equations for these decision rules are linear Richardson type equations, 
whose coefficients can be derived from strategic considerations. A specific type of 
decision rules for military expenditures, combining mutual stimulation and self-
stimulation, has been used by Lambelet and Luterbacher 1979.

4  Chaos and Predictability in the Arms Race 

While mathematical models such as the Richardson equations help to structure 
the field of conflict research and international security by identifying fundamental 
relationships among actors and basic system variables, they are often rather simple 
in dealing with the complexity of reality. Here the “fog of war” (as Clausewitz 
named it) comes into play, that is, the lack of knowledge and a chaotic sequence of 
events that occurs in real conflicts. 

Because of the linearity and continuity of the Richardson equations, an analytic 
treatment is quite simple. During the 1980s new mathematical concepts have been 
developed, such as the theory of complexity, chaos and nonlinear dynamics, which 
may be applicable to conflicts and arms race phenomena. Contrary to the well-
ordered world of Newtonian mechanics, symbolized by the predictable swinging 
pendulum or the regular movement of the celestial bodies, is the unpredictability 
of everyday-life experience. Since the 1970s the natural sciences have begun to sys-
tematically explore critical phenomena, such as self organization, discontinuous 
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phase transitions, and catastrophe theory. Methods and results were transferred to 
the social sciences. Chaos became the paradigm for the turbulent transformation 
of the international system after 1989. 

The concept of deterministic chaos was developed to study simple nonlinear 
phenomena with complicated dynamics, in which it is “practically impossible to 
predict the long-term behavior of these systems, because in practice one can only 
fix their initial conditions with finite accuracy, and errors increase exponentially 
fast.”[Schuster 1988, pp. 3–4] 

Many properties of chaos have been studied for the time-discrete logistic map-
ping x f x rx xt r t t t+ = = −1 1( ) ( ), where r ∈ [ , ]0 4  is the reaction coefficient (order 
parameter), whose value determines the transition from predictability to chaos. 
For small r the variable xt converges against the stable fixed point x* = 0, inde-
pendent of the initial conditions. For r > 3 the single fixed point bifurcates into 
periodic cycles. For large times a chaotic region is reached. An attractor is a set of 
system states on which the time evolution accumulates over longer periods. For 
dissipative systems, where phase-space volumes on the attractor are separated 
exponentially, one speaks of strange attractors. 

The concept of chaos as a model for arms race and war outbreak was introduced 
by [Saperstein 1984, 1986], to show that even simple nonlinear deterministic arms 
race models may lead to the breakdown of predictability, which is defined in this 
context as [Saperstein 1984, p. 303] 

a situation in which small perturbations of initial conditions, such as mal-
functions of early-warning radar systems or irrational acts of individuals 
disobeying orders, lead to large unforeseen changes in the solutions to the 
dynamical equations of the model. There is no way then to predict the effect 
of the actions of any participant analyst, planner, statesman or general with 
any certainty.

Saperstein used a pair of nonlinear difference equations with quadratic map-
pings for two variables, denoting the fractions of the available resources which two 
countries pay annually. The problem of chaotic dynamics in arms race models was 
further investigated by Grossmann/Mayer-Kress 1989. The nonlinear difference 
equations have the following Richardson-like form but with discrete time and a 
damping of the fraction of expenditure xt and yt in year t at the upper cost limits 
xm and ym : 

where ∆ ∆x yt t,  is the change in the armament expenditure between the years t and 
t + 1, and kii, kij > 0 are the reaction coefficients corresponding to the defense and 
fatigue coefficients of Richardson. In addition, xs, ys represent self-establishing 
armament levels, comparable to Richardson’s grievance terms and Intriligator’s 
decision rules. 

Factors provoking chaotic behavior are multinational interactions (more than 
two actors), overshooting or underestimation, hectic responses, delay in informa-

∆x x x x x k x x k yt t t m t t s t= − = − − − + ⋅+1 11 12( )( ( ) ),

∆y y y y y k y y k xt t t m t t s t= − = − − − + ⋅+1 22 21( )( ( ) ),
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tion processing or discretization. There is an important distinction between chaos 
and instability: 

In particular, regarding the arms race and international relations, it is 
wrong to identify the general onset of bounded chaos with the outbreak of a 
war or another global crisis. The really dangerous case is instability. By this we 
mean that the xα(t) leave their previously bounded range rapidly and dramati-
cally. [Grossmann/Mayer-Kress 1989, p. 702]

In the asymmetric case 

is a condition for stability of a fixed point, which corresponds to Richardson’s 
stability condition. 

A nonlinear time-discrete model, using decision rules for weapons procure-
ment, was derived in 1988 by Saperstein and Mayer-Kress to simulate the implica-
tions of ballistic missile defense systems (SDI) on the arms race between the USA 
and the former USSR. Two questions have been raised in this context [Saperstein 
1988b, p. 41]: 

– Can we reasonably predict that there will be a transition from the present 
offense-dominated strategic nuclear confrontation to a defensive security 
posture? 

– Can we be reasonably assured that predictions about the transition from 
offense-dominated strategic security postures will actually be fulfilled? 
Or will the resulting world be chaotic, so sensitive to small changes (small 
threats) as to be ‘crisis unstable’? 

To answer these questions, a nonlinear model was formulated, describing the 
dynamical interaction between the number of intercontinental ballistic missiles 
(ICBMs), anti-ballistic missile (ABM) satellites, anti-ABM systems (such as anti-
satellite weapons, ASAT). Each procurement step depends on the anticipated role 
of the weapons in a simple two-strike model of nuclear war and on the immediately 
preceding steps of the opponent. The “weapons builders recursion relations” are 
coupled dynamical difference equations for the deployment of the three weapon 
types, having the form of deterministic decision rules with nonlinear constraints 
due to maximum costs. The time evolution (arms race) is simulated numerically 
under various parameter conditions (scenarios), starting from a set of initial con-
ditions. In most cases, the arms race remains predictable and offense-dominated. 
But if the production rates are increased by a factor of 10, a chaotic transition 
occurs [Saperstein 1988b, p. 43]:

– When the model does not turn chaotic the present offense dominance does 
not evolve to the desired defensive configuration. 

– Conversely, when the situation evolves from offense to defense, the model 
turns chaotic. The model seems to indicate that if SDI evolves to the point 
where the defense can overwhelm the offense, the result is a crisis-unstable 
international system that cannot be mathematically distinguished from a 
system of war.

σ = >k k
k k
11 22

12 21
1
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5  A Dynamic Multi-Actor Conflict Model 

The Richardson and other arms race models can be embedded into a larger frame-
work of conflict modelling based on a multi-actor dynamic game of power-value 
interaction, called the VCX model [Scheffran 2001]. It describes the interaction 
among multiple actors which influence their system environments by using power 
resources to pursue their objectives. For players acting upon the same system, 
conflicts may occur if actions and objectives are incompatible. With such a general 
framework it is possible to study the complexity and instability of multi-actor con-
stellations in more detail. In particular, it is possible to express problems of war 
and peace, of arms race and disarmament as well as environmental conflicts and 
international security problems within the model framework. 

5.1 The representative actor 

In order to understand the interaction among multiple actors, it is important 
first to analyze the actions of an individual or representative actor (see Figure 3) 
which acts in a system environment (context or situation), represented by relevant 
system variables, defining a system state x, which in general is a vector but will be 
treated as a scalar in this section. The system state is observed and evaluated by 
the actor with a problem-specific value function V(x), and compared to a target 
value V*. The actor decides on investing its power resources (costs) C into a par-
ticular action a(x, C) that changes the system state by ∆x g x a= ( , )  to approach the 
state-dependent value function V(x) towards the target value V* in repeated action 
cycles. The flow of power resources is allocated with a priority p to several action 
alternatives. 

In several cases (such as buying goods on a market for a fixed price) the action 
a and the induced system change is not state-dependent and can thus be com-
pletely controlled by the power resources. Then by use of C an actor changes the 
system state ∆x g a C c= =( ) /  (with unit cost or price c), resulting in a value gain 
V v x f C= ⋅ = ⋅∆  where v is the value per unit of system changes and f = v/c is the 
efficiency of resource input with regard to the value output (also called benefit-
cost ratio). If an actor aims at achieving a particular value gain V = V*, this leads 
to the required power resources C* = V*/f . 

If at a given time t the actual resource flow C(t) differs from the required one 
C*(t), this gap can be bridged by an adaptation process among power resources 
according to “decision rules”: 

where α is the reaction strength. The underlying decision rule is to increase power 
resource input as long as V < V* and to decrease it if the goal is exceeded (V > V*). 
In the satisfactory state V = V* the resource input remains constant. The dynami-
cal system describes a single actor who pursues a goal by use of power resources.

∆C t C t C t C t C t f V t V t( ) ( ) ( ) ( ( ) ( )) ( / )( ( ) ( ))* *= + − = − = −1 α α
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The actor has to take into consideration that its resource flow should not exceed 
the upper limit C+ of available power resources, such that 0 ≤ ≤ +C C . In case of 
C C+ ∗<  the resources are insufficient to achieve the objective. In this case the 
actor can try to improve the action efficiency f which implies that the same objec-
tive V* can be achieved at lower cost C*. This may be done by switching to another 
action 2 with higher efficiency f2 > f1 than the first one. This implies that a higher 
share p of the power resources is allocated to this new option, at the cost of a lower 
share 1 – p for the old option. Then the overall efficiency of the mixed action is 
f p p f p f( ) ( )= − + ⋅1 1 2. 

5.2 From action to interaction 

If several representative actors act upon the same system, an interaction evolves 
which is controlled by n actors (in the following called players) according to their 
strategies. During the interaction process each player Pi (i = 1,..., n) invests its 
power resources Ci into m system variables xk (k = 1,..., m), and evaluates the out-
come of the combined actions according to its own value criteria Vi to derive new 
actions in the next time step. The players can adapt the amount Ci and allocation  
of power resources with regard pi

k  to variables xk, leading to an induced change  
∆x p c Ci

k
i
k

i
k

i= ( / ) , where the condition

 pi
k

k

m

=
∑ =

1

1  

is to be satisfied. Important is the learning capability of the players to adapt the 
resource allocation to achieve the value target Vi

∗ . In the linear case the value 
change (i = 1,..., n) 

V f p C Vi ij j i
U

j

= +∑ ( )

Figure 3. 

The representative actor and its basic variables.
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depends on the power resources of all players, weighted by the mutual efficiencies 
fij which describe the value impact of players on each other per resource unit. Vi

U  
includes all other value gains which can be important but are neglected in the 
following analysis. Now the target conditions V Vi i= ∗  cannot be achieved by one 
player alone but depends on the actions and powers of others according to (i = 
1,..., n) 

C
V f C

fi

i ij jj i

ii

∗
∗

≠=
−∑

.

These target conditions correspond to reaction curves (which in general are 
multidimensional hyperplanes) which lead to an adaptation ∆C C Ci i i i= −∗α ( )  in 
the space of power resources (costs) and thus a multi-player dynamical system. 
The intersection of the reaction curves is the cost equilibrium vector C F V� = − ∗1  
(balance of power) where det F is the determinant of the interaction matrix 
F fij i j n= =( ) , , ,1… . The equilibrium coordinates can be determined by Cramer’s Rule, 
which for two players is C f V f V Fi jj i ij j

� = −∗ ∗( )/det .  
Since the interaction efficiencies fij(p) between the players depend on the vector 

of the allocation priorities p = (p1,..., pn) of all players, each of them can control the 
dynamical system by changing their own pi (which themselves can be vectors) to 
achieve the respective target equilibria and stabilize or destabilize it. If the action 
priorities pi are changed towards hostile relations, the equilibrium moves towards 
higher costs, for a cooperative relation towards lower costs (see the stylized sym-
metric cases in Figure 4). In asymmetric cases one player can show cooperative 
attitudes to another player, which in return can show hostile attitudes, and vice 
versa. The players can also negotiate and cooperate on the right choice of their 
own pi which can be expressed as a dynamic game problem. In addition they can 
form coalitions by pooling some of their resources and redistribute the gains (or 
losses) to the individual players. 

Figure 4. 

Cost balance for neutral, hos-

tile, friendly and asymmetric 

relations
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Using the deviations from the equilibrium y C Ci i i= − �  as variables, we obtain a 
system of linear difference equations for the vector y = (y1,..., yn) 

∆y t y t y t F y t( ) ( ) ( ) ( )= + − = − ⋅1

where F  is the modified interaction matrix with elements f f fij i ij ii=α / . The 
dynamical system can be also expressed in the form y(t + 1) = A y(t) with matrix 
A I F= −  where I denotes the n × n unity matrix. 

5.3 Stability conditions for interaction 

From standard linear algebra it follows that as long as the interaction matrix 
F is stable, all players are able to achieve positive values, even for hostile rela-
tions with fij < 0. F also determines the stability of the resource dynamics             
y t I F y t( ) ( ) ( )+ = −1 , i.e., the conditions under which all eigenvalues are within the 
unit circle of the complex plane. For arbitrary fij , a set of sufficient stability condi-
tions is [Scheffran 2001, Murata 1977]

1 1 1− + = − + <
≠ ≠
∑ ∑f f f fii ij
j i

n

i i ij ii
j i

n

α α /    for all i n=1 2, , , .…

For fii > 0 and 0 1< ≤α i , this condition holds for 

f fii ijj i
>

≠∑ ,

i.e., for each player positive self-efficiency should exceed the aggregate impact of 
cross-efficiencies by other players. For an increasing number of players, this con-
dition is more difficult to achieve without cooperation. For fij ≤ 0  (j = 1,..., n), we 
obtain the condition 

fijj
>∑ 0 . 

The stability of the interaction matrix determines whether the players can 
achieve specific value goals unilaterally or need to form coalitions and cooperate. 
A coalition is called stable if all members of the coalition are satisfied and have 
no incentive to leave the coalition. If the interaction matrix of a coalition becomes 
unstable, some players are not satisfied and fail to achieve their target values, i.e., 
the coalition breaks apart into smaller coalitions for which the interaction matrix 
is stable. With an increasing number of players, the number of eigenvalues of F  
increases and thus the chance that some are outside the unit circle and the inter-
action would become unstable. This relationship has been extensively discussed 
in ecology and population dynamics as the “complexity-stability” tradeoff. For an 
initial selection of arbitrary players only those players survive which are powerful 
enough or are part of a stable coalition. 

To clarify the escalating sequence of events it is assumed that a player Pi tries 
to leave the power equilibrium C�  by changing its power use (δCi > 0 ) in order to 
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achieve a unilateral value gain δ δV f Ci ii i= > 0. If its action leads to value losses 
δ δV f Cj ji i= < 0  for other players Pj, it provokes countermeasures δ δC f f Cj ji jj= − /  
to compensate for the loss and keep Vj constant, assuming fji < 0. Then the out-
come of Pi’s action and other players’ reaction after the second time step is

 δ δ δ σ δV f C f C f Ci ii i ij j ii i= + = −∑ ( )1  

where 
σ = ∑ f f f fij jij jj ii/( ).  

Thus, we have δ Vi < 0 for σ > 1. Then, even though player Pi aims for an individual 
value gain, the overall social efficiency f fii ii

σ σ= −( )1  due to the interaction with 
other players is negative and its value is worse than before. If this process contin-
ues, the interaction among the other players evolves, which may further contrib-
ute to instability (similar to an arms race), or stabilize the process by containing 
the first player’s move. The latter can be induced externally by punishments or 
rewards, imposing some kind of “social regulation”.  

6  Striving for Security

6.1 The security-cost dynamics

In the following we apply the multi-actor framework to problems of international 
security. An important precondition for security is the absence of threat, i.e., the 
expectation that no intolerable damage is likely to occur. In mathematical terms 
this would imply that in a situation described by system variables x(t) at time t, 
the expected security value S+(x, t) – S–(x, t), combining gains and losses, is below 
a tolerable security threshold S*(x, t). Provided that the expected security loss 
S– increases with potential damage Y(x, t) and the likelihood p(x, t), we obtain the 
net security function 

S x t S x t p x t Y x t S x t( , ) ( , ) ( , ) ( , ) ( , )= − ⋅ −+ ∗

which is thus an indicator of relative security against threat. For S > 0 an actor 
feels relatively secure, for S < 0 relatively insecure. By use of power resources C 
(such as the defense budget) an actor can change its security state ∆S f C= ⋅ , where 
f = s/c is the efficiency of the power resources with regard to the security impact. 
If an actor aims at achieving a particular security gain ∆S V= ∗ , this translates 
into the required budget C V f∗ ∗= / . One obvious objective would be to reduce a 
negative security gap S < 0 through changes ∆S S V= − = ∗/τ  where τ indicates how 
many time steps are required to bridge the security gap for constant ∆ S. For τ = 
1 the gap shall be bridged in one single time step, for τ > 1 the gap is expected to 
decay over an extended period. If at a given time t the actual budget C(t) differs 
from the required one C t∗ ( ), the gap can be bridged by a budget adaptation process 
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∆C t C t C ti i i i( ) ( ( ) ( ))= −∗α  where the reaction parameter α κi i i i iC C C= −+( ) contains a 
logistic growth factor, reflecting the consideration that for a country with a limited 
budget 0 ≤ ≤ +C Ci i  the dynamics is damped near the boundaries. κi is a constant 
cost reaction parameter (this model variant is called the SCX model, according to 
[Scheffran 1989] and [Jathe/Krabs/Scheffran 1997]). 

6.2 Stability of the offense-defense competition 

Throughout military history the offense-defense competition has been a major 
driver of the arms race, in which offenses increased the potential damage in war 
while defense tried to limit it. With the advent of nuclear-armed ballistic mis-
siles any attempt to protect against this immense threat by defensive measures 
remained economically and technically unfeasible, depite enormous costs and 
efforts in programs such as the Strategic Defense Initiative (SDI) or the current 
Missile Defense programs of the Bush administration. One of the crucial issues 
is the impact of (missile) defense on strategic and international stability (for an 
earlier survey see [Scheffran 1989]). 

The potential damage for a defender Pi grows with the offensive capability Oj 
of an attacker Pj, weighted with its offense efficiency oj (representing the fraction 
of the existing offense units being efficiently launched) and destructive impact yi 
(translating weapons into damage at the target), dimished by its own defense capa-
bility Di, which is weighted with the defense efficiency di. In the simple scenario of 
first and second strike (which dominated Cold War thinking for a long time), each 
country perceives basically three options: being the first striker (index F), being 
the second striker (index S), no attack (index 0). The case of mutual attack (duel) 
in the same period is neglected here for reasons of simplicity. Assume that attacker 
Pi destroys some of Pj’s offense capability before it can be launched in retaliatory 
attack. Then damage for the first and second striker is 

Y y o O e o O d D d Di
F

i
F

j j i i
F

i j j i
F

i= − − −[ ( ( )) ],

Y y o O d Di
S

i j
F

j i i= −[ ],

where oj
F, dj

F  and yi
F  are the respective variables for the first striker while the 

index S for the second striker is neglected to simplify notation. ei is the efficiency 
of the first striker’s offense units in destroying the second striker’s offense units, 
depending on factors such as the attacker’s accuracy or the number of offense 
units per delivery vehicle. Now assume that each of the options is perceived with 
a likelihood q q q qi

F
i i

S
i, ,= 0 , which may also be interpreted as the weight that the 

decisionmakers in a country gives to the damage in a particular scenario. qi
k = 0  

implies that the decisionmakers completely neglect the damage in a scenario 
k. Then net security includes the weighted security impacts for all considered 
options

S q S q Y q Y Si i i i
F

i
F

i
S

i
S

i= − − −+ ∗0 .
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To norm the likelihoods one can make the additional assumption q q qi i
F

i
0 1= − − .

To determine the impact of the military capabilities on security function Si , we use 
the partial derivatives s S xij

x
i j= ∂ ∂/  where xj can be either offensive or defensive 

capabilities of two countries Pi and Pj. For analytic treatment, we now use the spe-
cial case that each country Pi ignores the option of being the first striker ( )qi

F = 0  
but feels threatened by a first strike of an opponent Pj with likelihood qi > 0. Then 
security S q S q Y Si i i i i i= − − −+ ∗( )1  of each player only depends on the weighted 
damage Yi of being attacked and the security gains of no attack. 

A country can change its security situation by applying its power resources 
(military budget) Ci to increase or decrease the offensive and defensive capabilities 
according to ∆ ∆O p c C D p c Ci i

o
i
o

i i i
d

i
d

i= =( / ) , ( / )  where p p pi
d

i
o

i
d, = −1  are the cost 

shares (action priorities) for the respective military capabilities. In this case, and for 
constant likelihoods,3 the overall security efficiencies are f p s c q y d pii i

d
ii
d

i
d

i i i
c

i
d= =/ , 

f p s c q y o pij j
o

ij
o

j
o

i i j
c

j
d= = − −/ (1  (i, j = 1,..., n) with o o c d d cj

c
j j

o
i
c

i i
d= =/ , /  and 

p pj
o

j
d= −1 . According to the analyis in the previous chapter, for fii > 0 and 

f j iij < ≠0 ( ), sufficient conditions for stability are fii + fij > 0 which leads to (for 
ci

d > 0 )

p
o

d
p pi

d j
c

i
c j

d
i
d> − ≡ ∗( ) .1

This defines a defense share which country Pi has to exceed to ensure stabil-
ity. Below this threshold the threat due to offensive weapons is intolerable and 
has to be compensated by increasing defenses. The situation is unstable which 
implies that there are incentives for an arms race. This threshold increases with 
the security-cost efficiency of the offense oj

c  and decreases with the efficiency of 
the defense di

c.  There is an inverse coupling between the defense shares of both 
countries, which implies that the threshold for one country declines the lower the 
offense share for the other country is. For o dj

c
i
c=  the lines connect the corners 

(0, 1) and (1, 0). 
We use a simple example with relative units. Compared to a country P1 another 

country P2 has a higher offense efficiency o oc c
2 12 2= = , which exceeds the defense 

efficiencies d dc c
2 12 1= =  of both sides. Then the two stability conditions are 

p pd d
1 24 1∗ = −( )  and p pd d

2 11∗ = − .  The results are depicted in Figure 5. 
An alternative way of stabilizing the security relationship is the option of mutu-

ally disarming the offense which in the model corresponds to negative unit costs 
ci
o < 0 . In this case we have fij > 0 which always guarantees fii + fij > 0 and thus 

stability. The equilibrium point (balance of power) is given by

det
C

p q y d V q y o V q y o V

Fi
j
d

j j j
c

i i i j
c

j i i j
c

j
=

−



 +∗ ∗ ∗

where Vi
∗  is the given value target for player Pi (e.g., bridging a security gap). 

Assume det F = f11 f22 – f12 f21 > 0, and a negative bracket [...]. Then the budget of 

 3 The assumption of exogenously given likehoods can be revised, making the likelihood of 
being attacked dependent on the force structure. See further [Scheffran 1989].
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Pi can be reduced by increasing the defense share of P pj j
d( );→ 1  if the bracket is 

positive, costs can be reduced by decreasing the defense share ( ).pj
d → 0  The latter 

is the case in particular for disarming the offensive capability ( ).cj
o < 0  The thresh-

old between increasing and decreasing defense is given by 

q q
y d V

y o V
qi j

j j i

j j
c

j
i= =

∗

∗
∗ .

Thus for an attack likelihood q qi i< ∗  there is a tendency to increase the offense 
share for cost reasons which depends on the perceived likelihood qj of the oppo-
nent being attacked. The rule of thumb is that for a low perceived attack likelihood 
the defense share is also low. If both sides cooperate and trust each other, they 
don’t believe in an attack by their partner and have thus less tendency to build 
defenses because they evaluate the other’s offense as less threatening. Stability of 
the interaction matrix depends on the eigenvalues solving the characteristic equa-
tion: 

λ1 2 11 22 11 22
22 4/ ( )/ ( ) / det .= − + ± + −f f f f F

Negative eigenvalues occur for f11 + f22 > 0 and the determinant of the interaction 
matrix

det [ ( )(F f f f f q q y y d d p p o o p pc c d d c c d= − = − − −11 22 12 21 1 2 1 2 1 2 1 2 1 2 11 1 22 0d)] >

which leads to the condition

p
p

do p
pd

d

d2
1

1
2

1

1 1
> −

+ −
= ∗

( )
,

where 
do

d d

o o

c c

c c= 1 2

1 2
.

Figure 5.

Stability regions for defense shares pd
1  and pd

2 .
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Both the points ( , ) ( , )p pd d
1 2 0 1=  and (1, 0) satisfy the equality relation p pd

2 2= *, 
whereas for pd

1 0 5= .  we achieve the threshold 

p
do2

1
1

∗ =
+

.

Our example yields do = 1/4 and a threshold p2 4 5∗ = /  (see Figure 5). 
The competition between offenses and defense can show a very complex and 

unstable dynamics which is difficult to control because of a wide range of uncer-
tainties in the security-relevant variables [Scheffran 1989]. With an increasing 
number of countries whose offense-defense competition is closely linked, the 
potential for instability increases as the number of eigenvalues increases and thus 
the likelihood that the chosen parameter combination represents an unstable 
eigenvalue with positive real parts. With regard to the introduction of missile 
defense, there is the danger of a domino effect, i.e., the possibility, that Russia 
and China build more weapons because of the USA, that India follows China and 
Pakistan responds to India. Such a strong coupling can lead to an international 
escalation, with missile defense as a key trigger.

7  Chaos, Uncertainty, and Instability in International 
Security 

The more variables and relations are included in a model to match the complexity 
of reality, the more does the combined uncertainty in model variables matter, leav-
ing a wide range of possible outcomes. This also can play a role in the SCX conflict 
model outlined in the previous chapter, with the following set of equations for the 
variable changes of actors Pi (i = 1,..., n): 

∆S f C Ui ij j i
S

j

n

= +
=
∑

1

,

∆ ∆C C C C S Si i i i i i i i= − − ++κ τ( )( ) ,

∆x p C ci
k

i
k

i i
k= / .

Here k = 1, ..., mi represents the index of system variables, κi is the cost reaction 
parameter, and Ui

S  comprises all other security impacts (which are again ignored 
here). Each of the parameters can be time-dependent which is neglected to facili-
tate notation. Even in the bilateral case of two actors, chaos can emerge, as the 
following case shows. Here we start with anti-symmetric (antagonistic) security 
conditions S1(0) = – S2(0) = 0.3, which corresponds to a zero-sum situation. Both 
actors adapt their budgets towards achieving their satisfying security objectives 
Si = 0, starting with an initial budget of C Ci i( ) /0 2= ∗ , which is half of the maxi-
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Figure 6. The security bifurcation diagram for two antagonistic actors.
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mum budget Ci
+ = 60  cost units. Relations are hostile, represented by efficiencies 

fii = – fij = 0.01, which are chosen to be at the threshold between stability and 
instability. The cost reaction parameter is κi = 0.04. If we use the memory param-
eter τi as an order parameter and depict the security states to which the trajectory 
is attracted after some time, then we get a bifurcation diagram (Figure 6). For 
very low τ values, security oscillates around S1 = 0, for increasing τ the trajectory 
approaches this state asymptotically (the second player shows inverse behavior). 
At some τ value, the first bifurcation occurs by splitting the equilibrium point into 
two, leading to a whole cascade. For high τ > 11 the security situation is completely 
unpredictable because the overreaction of the actors moves the dynamics into any 
possible security state [Jathe/Scheffran 1995ab]. 

Now consider a large number of actors (in this case 30) whose interaction effi-
ciencies fij as well as the initial conditions for security and costs (marked by +) 
are chosen stochastically around the previous baseline case. This implies that for 
some players the interactions are stable, for others unstable. Figure 7 clearly shows 
that a dichotomy emerges between two groups of actors. Some actors steadily win 
from the dynamics, forming a winning coalition, others lose by moving towards 
high insecurity and high costs. This polarization resembles some aspects that can 
be observed in real-world conflicts, such as the North-South conflict. Here also 
the asymmetry in maximum power resources Ci

+  plays an important role, which 
implies that a strong player (such as the US) can compensate unstable relations 
with much weaker players by use of their overwhelming force (dominance). How-
ever, this can be countered by an increased destruction efficiency fij , e.g., by a 
terror attack against vulnerable spots of the strong player which require only small 
efforts. 

One way to avoid a polarization into blocks and minimize violent conflicts 
between them is to change the interaction efficiencies fij towards positive values, 
e.g., by strengthening of cooperation beyond the blocks and the formation of coali-
tions in order to achieve common aims. This can involve non-military security 

Figure 7.

Dichotomy between 

winners and losers for a 

large number of actors.
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dimensions, such as environmental, economic, cultural and human rights dimen-
sions. The model framework seems appropriate, in particular in the environmental 
sciences, to analyze conflicts between human behavior and ecological limits. Here 
systemic models (from ecology) and actor-based models (economic-social rela-
tions) are directly linked. If central control mechanisms are neither realistic nor 
desirable, the question arises under which conditions a spontaneous, self-orga-
nized transition to ecologically compatible modes of behavior would emerge. 

One example is the cooperation between industrialized and developing coun-
tries in greenhouse gas emission reductions, e.g., via Joint Implementation and 
the Clean Development Mechanism of the Kyoto Protocol (see [Scheffran/Pickl 
2000] and [Ipsen/Rösch/Scheffran 2001]). Another example deals with coopera-
tive and sustainable management of fish resources, minimizing the potential for 
fish scarcity and severe conflict [Scheffran 2000]. In both fields the VCX model 
framework has been applied to identify conditions for cooperation, a task that is 
to be continued in the future. 
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