
2. The Borsuk–Ulam Theorem

The Borsuk–Ulam theorem is one of the most useful tools offered by elemen-
tary algebraic topology to the outside world. Here are four reasons why this
is such a great theorem: There are

(1) several different equivalent versions,
(2) many different proofs,
(3) a host of extensions and generalizations, and
(4) numerous interesting applications.

As for (1), Borsuk’s original paper [Bor33] already gives three variants. Below
we state six different but equivalent versions, all of them very useful, and
several more are given in the exercises.

As for (2), there are several proofs of the Borsuk–Ulam theorem that can
be labeled as completely elementary, requiring only undergraduate mathe-
matics and no algebraic topology. On the other hand, most of the textbooks
on algebraic topology, even the friendliest ones, usually place a proof of the
Borsuk–Ulam theorem well beyond page 100. Some of them use just basic
homology theory, others rely on properties of the cohomology ring, but in
any case, significant apparatus has to be mastered for really understanding
such proofs. From a “higher” point of view, it can be argued that these proofs
are more conceptual and go to the heart of the matter, and thus they are
preferable to the “ad hoc” elementary proofs. But this point of view can be
appreciated only by someone for whom the necessary machinery is as natural
as breathing.1 Since not everyone, especially in combinatorics and computer
science, belongs to this lucky group, we present some “old-fashioned” ele-
mentary proofs. The one in Section 2.2, called a homotopy extension argu-
ment, is geometric and very intuitive. In Section 2.3 we introduce Tucker’s
lemma, a combinatorial statement equivalent to the Borsuk–Ulam theorem,
and we give a purely combinatorial proof. (This resembles the well-known
proof of Brouwer’s theorem via the Sperner lemma, but Tucker’s lemma is

1 Borsuk’s footnote from [Bor33]: “Mr. H. Hopf, whom I informed about Theo-
rem I, noted for me in a letter three other shorter proofs of this theorem. But
since these proofs are founded on deep results in the theory of the mapping degree
and my proof is in essence completely elementary, I think that its publication is
not superfluous. [. . . ]”
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more demanding.) Next, in Section 2.4, we prove Tucker’s lemma differently,
introducing some of the most elementary notions of simplicial homology.

As for (3), we will examine various generalizations and strengthenings
later; much more can be found in Steinlein’s surveys [Ste85], [Ste93] and in
the sources he quotes.

Finally, as for applications (4), just wait and see.

2.1 The Borsuk–Ulam Theorem in Various Guises

One of the versions of the Borsuk–Ulam theorem, the one that is perhaps the
easiest to remember, states that for every continuous mapping f :Sn → R

n,
there exists a point x ∈ Sn such that f(x) = f(−x). Here is an illustration
for n = 2. Take a rubber ball, deflate and crumple it, and lay it flat:

Then there are two points on the surface of the ball that were diametrically
opposite (antipodal) and now are lying on top of one another!

Another popular interpretation, found in almost every textbook, says that
at any given time there are two antipodal places on Earth that have the same
temperature and, at the same time, identical air pressure (here n = 2).2

It is instructive to compare this with the Brouwer fixed point theorem,
which says that every continuous mapping f :Bn → Bn has a fixed point:
f(x) = x for some x ∈ Bn. The statement of the Borsuk–Ulam theorem
sounds similar (and actually, it easily implies the Brouwer theorem; see be-
low). But it involves an extra ingredient besides the topology of the considered
2 Although anyone who has ever touched a griddle-hot stove knows that the tem-

perature need not be continuous.
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spaces: a certain symmetry of these spaces, namely, the symmetry given by
the mapping x �→ −x (which is often called the antipodality on Sn and on
R

n).
Here are Borsuk’s original formulations of the Borsuk–Ulam theorem:

Here are the promised many equivalent versions, in English.

2.1.1 Theorem (Borsuk–Ulam theorem). For every n ≥ 0, the follow-
ing statements are equivalent, and true:

(BU1a) (Borsuk [Bor33, Satz II]3) For every continuous mapping f :Sn → R
n

there exists a point x ∈ Sn with f(x) = f(−x).
(BU1b) For every antipodal mapping f :Sn → R

n (that is, f is continuous
and f(−x) = −f(x) for all x ∈ Sn) there exists a point x ∈ Sn

satisfying f(x) = 0.

(BU2a) There is no antipodal mapping f :Sn → Sn−1.

(BU2b) There is no continuous mapping f :Bn → Sn−1 that is antipodal on
the boundary, i.e., satisfies f(−x) = −f(x) for all x ∈ Sn−1 = ∂Bn.

(LS-c) (Lyusternik and Shnirel’man [LS30], Borsuk [Bor33, Satz III]) For
any cover F1, . . . , Fn+1 of the sphere Sn by n+1 closed sets, there
is at least one set containing a pair of antipodal points (that is,
Fi ∩ (−Fi) �= ∅).

(LS-o) For any cover U1, . . . , Un+1 of the sphere Sn by n+1 open sets, there
is at least one set containing a pair of antipodal points.

While proving any of the versions of the Borsuk–Ulam theorem is not
easy, at least without some technical apparatus, checking the equivalence of
all the statements is not so hard. Deriving at least some of the equivalences
before reading further is a very good way of getting a feeling for the theorem.
3 Borsuk’s footnote at this theorem reads: “This theorem was posed as a conjecture

by St. Ulam.”
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Equivalence of (BU1a), (BU1b), and (BU2a).
(BU1a)=⇒ (BU1b) is clear.
(BU1b)=⇒ (BU1a) We apply (BU1b) to the antipodal mapping given by
g(x) := f(x) − f(−x).
(BU1b)=⇒ (BU2a) An antipodal mapping Sn → Sn−1 is also a nowhere
zero antipodal mapping Sn → R

n.
(BU2a)=⇒ (BU1b) Assume that f :Sn → R

n is a continuous nowhere zero
antipodal mapping. Then the antipodal mapping g:Sn → Sn−1 given by
g(x) := f(x)/‖f(x)‖ contradicts (BU2a).

Equivalence of (BU2a) with (BU2b). This is easy once we observe that
the projection π: (x1, . . . , xn+1) �→ (x1, . . . , xn) is a homeomorphism of the
upper hemisphere U of Sn with Bn:

Bn

Uπ

An antipodal mapping f :Sn → Sn−1 as in (BU2a) would yield a mapping
g:Bn → Sn−1 antipodal on ∂Bn by g(x) = f(π−1(x)).

Conversely, for g:Bn → Sn−1 as in (BU2b) we can define f(x) = g(π(x))
and f(−x) = −g(π(x)) for x ∈ U . This specifies f on the whole of Sn; it is
consistent because g is antipodal on the equator of Sn; and the resulting f
is continuous, since it is continuous on both of the closed hemispheres (see
Exercise 1.1.2).

Equivalence with (LS-c), (LS-o).
(BU1a)=⇒ (LS-c) For a closed cover F1, . . . , Fn+1 we define a continuous
mapping f :Sn → R

n by f(x) := (dist(x, F1), . . . ,dist(x, Fn)), and we con-
sider a point x ∈ Sn with f(x) = f(−x) = y, which exists by (BU1a). If
the ith coordinate of the point y is 0, then both x and −x are in Fi. If all
coordinates of y are nonzero, then both x and −x lie in Fn+1.
(LS-c)=⇒ (BU2a) We need an auxiliary result: There exists a covering of
Sn−1 by closed sets F1, . . . , Fn+1 such that no Fi contains a pair of antipodal
points (to see this, we consider an n-simplex in R

n containing 0 in its interior,
and we project the facets centrally from 0 on Sn−1). Then if a continuous
antipodal mapping f :Sn → Sn−1 existed, the sets f−1(F1), . . . , f−1(Fn+1)
would contradict (LS-c).
(LS-c)=⇒ (LS-o) follows from the fact that for every open cover U1, . . . , Un+1

there exists a closed cover F1, . . . , Fn+1 satisfying Fi ⊂ Ui for i = 1, . . . , n+1:
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For each point x of the sphere we choose an open neighborhood Vx whose
closure is contained in some Ui, and apply the compactness of the sphere.
(LS-o)=⇒ (LS-c) Given a closed cover F1, . . . , Fn+1, we wrap each Fi in
the open set Uε

i := {x ∈ Sn : dist(x, Fi) < ε}. We let ε → 0 and we use
the compactness of the sphere. We first obtain an infinite sequence of points
x0,x1,x2, . . . in Sn with limj→∞ dist(xj , Fi) = limj→∞ dist(−xj , Fi) = 0
for some fixed i. Then we select a convergent subsequence of the xj . The
limit of this sequence is in Fi, since Fi is closed, and it provides the required
antipodal pair in Fi.

Here is an alternative argument, which strongly uses the geometry of
the sphere. Since each Fi is closed and every two points of it have distance
strictly smaller than 2, there exists ε0 > 0 such that all the Fi have diameter
at most 2−ε0 (by compactness). Then the open sets U

ε0/2
i , i = 1, 2, . . . , n+1,

contradict (LS-o).

Proof of the Brouwer fixed point theorem from (BU2b). Suppose
that f :Bn → Bn is continuous and has no fixed point. By a well-known
construction, we show the existence of a continuous map g:Bn → Sn−1 whose
restriction to Sn−1 is the identity map (such a g is called a retraction of Bn

to Sn−1). We define g(x) as the point in which the ray originating in f(x)
and going through x intersects Sn−1. This g contradicts (BU2b).

Notes. The earliest reference for what is now commonly called the
Borsuk–Ulam theorem is probably Lyusternik and Shnirel’man [LS30]
from 1930 (the covering version (LS-c)). Borsuk’s paper [Bor33] is from
1933. The only written reference concerning Ulam’s role in the matter
seems to be Borsuk’s footnote quoted above. Since then, hundreds of
papers with various new proofs, variations of old proofs, generaliza-
tions, and applications have appeared; the most comprehensive survey
known to me, Steinlein [Ste85] from 1985, lists nearly 500 items in the
bibliography.

Types of proofs. In the numerous published proofs of the Borsuk–Ulam
theorem, one can distinguish several basic approaches (as is done in
[Ste85]). Some of these types will be treated in this book; for the
others, we outline the main ideas here and give references, mostly to
recent textbooks.

Degree-theoretic proofs are discussed in Section 2.4, and another
such proof is outlined in the notes to Section 6.2. A related method uses
the Lefschetz number; such a proof of a result generalizing the Borsuk–
Ulam theorem is given in Section 6.2. A proof using rudimentary Smith
theory can be found in [Bre93, Section 20].

A proof using the cohomology ring considers the map g: RPn →
RPm induced by an antipodal f :Sn → Sm, and shows that the cor-
responding homomorphism g∗:H∗(RPm, Z2) → H∗(RPn, Z2) of the
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cohomology rings carries a generator α of H1(RPm, Z2) to a genera-
tor β of H1(RPn, Z2). This is impossible if m+1 ≤ n, since then αm+1

is trivial, while βn is nontrivial. See, for example, [Mun84, p. 403] or
[Bre93, p. 362].

A proof by a homotopy extension argument will be discussed in
Section 2.2, and a representative of the family of combinatorial proofs
in Section 2.3. An algebraic proof in [Kne82] establishes the theorem
for polynomial mappings, and the general form follows by an approx-
imation argument (for another algebraic proof see [AP83]).

The fact that the Borsuk–Ulam theorem implies Brouwer’s fixed
point theorem seems to be folklore; also see Su [Su97] for an alternative
proof.

As for applications of the Borsuk–Ulam theorem, we will cover
some in the subsequent sections. For a multitude of others, we refer to
the surveys [Ste85], [Ste93]. The papers [Bár93] and [Alo88] give nice
overviews of combinatorial applications; most of these are included in
this book.

Many applications appear in existence results for solutions of non-
linear partial differential equations and integral equations; we will ne-
glect this broad field entirely (see [KZ75], [Ste85], [Ste93]). Borsuk–
Ulam-type results also play an important role in functional analysis
and in the geometry of Banach spaces. A neat algebraic application
will be outlined in the notes to Section 5.3.

A beautiful combinatorial application of the Borsuk–Ulam theo-
rem, which we will not discuss in detail and whose original account
is very nicely readable, concerns linkless embeddings of graphs in R

3.
Any finite graph G, regarded as a 1-dimensional finite simplicial com-
plex, can be realized in R

3. Such a realization is called linkless if any
two vertex-disjoint circuits in G form two unlinked closed curves in
the realization. Here two curves α, β ⊂ R

3 (each homeomorphic to
S1) are unlinked if they are equivalent to two isometric copies α′, β′ of
S1 in R

3 lying far from one another, and the equivalence means that
there is a homeomorphism ϕ: R3 → R

3 such that ϕ(α ∪ β) = α′ ∪ β′

(these are notions from knot theory; see, e.g., Rolfsen [Rol90] for more
information).

linked linked unlinked

Lovász and Schrijver [LS98], building on previous work by Robertson,
Seymour, and Thomas, proved that graphs possessing a linkless em-
bedding into R

3 are exactly those for which a numerical parameter µ,
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called the Colin de Verdière number , is at most 4. The definition of
this parameter, using spectra of certain matrices, is not very intuitive
at first sight (and we do not reproduce it; see [LS98] or other sources).
The graph-theoretic significance of the Colin de Verdière number looks
almost miraculous: Besides the incredible result about linkless embed-
dings, it is also known that µ(G) ≤ 1 iff G is a disjoint union of paths,
µ(G) ≤ 2 iff G is outerplanar, and µ(G) ≤ 3 iff G is planar. In the
Lovász–Schrijver proof, the Borsuk–Ulam theorem is used for estab-
lishing the following: Given any “generic” embedding of the 1-skeleton
of a 5-dimensional convex polytope P into R

3, there are two antipodal
2-dimensional faces F1, F2 of P (here “antipodal” means F1 = P ∩ h1

and F2 = P ∩ h2 for some parallel hyperplanes h1, h2) such that the
images of the boundaries of F1 and F2 are linked (in fact, they have
a nonzero linking number, which is stronger than being linked; the
curves in the left picture above satisfy this, while those in the mid-
dle picture do not). Thus, for example, the complete graph K6 is not
linklessly embeddable. (More generally, a generic embedding of the
(d−1)-skeleton of a (2d+1)-polytope into R

d links the boundaries of
two antipodal d-faces.)

Another nice piece is a theorem of Bárány and Lovász [BL82],
stating that every centrally symmetric convex polytope in R

d has at
least 2d facets; also see [Bár93].

The paper [Bor33] containing the Borsuk–Ulam theorem also states
the so-called Borsuk’s conjecture. The Lyusternik–Shnirel’man theo-
rem (about covering Sn by n+1 closed sets) can be restated as fol-
lows: For every closed cover of Sn−1 by at most n sets, one of the sets
has diameter 2, i.e., the same as the diameter of Sn−1 itself. On the
other hand, there are n+1 sets of diameter < 2 covering Sn−1. Borsuk
asked whether any bounded set X ⊂ R

n can be split into n+1 parts,
each having diameter strictly smaller than X. This was resolved in the
negative by Kahn and Kalai [KK93]. Their spectacular combinator-
ial proof has made Borsuk’s conjecture quite popular in recent years
([Nil94] is a two-page exposition, and the proof has been reproduced
in several books, such as [AZ04]). On the other hand, Borsuk’s conjec-
ture holds for all smooth convex bodies, as was proved by Hadwiger
[Had45], [Had46].

Kakutani-type theorems. Kakutani [Kak43] proved that for any com-
pact convex set in R

3 there exists a cube circumscribed about it and
touching it with all 6 facets. This is an easy consequence of the follow-
ing: For any continuous f :S2 → R, there are 3 mutually perpendicular
vectors x1,x2,x3 ∈ S2 with f(x1) = f(x2) = f(x3). This was gen-
eralized to dimension n (with n+1 mutually orthogonal vectors) by
Yamabe and Yujobô [YY50], and rederived by Yang [Yan54] (in a
greater generality, with a suitable abstract notion of “orthogonality”).
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Yang [Yan54] and Bourgin [Bou63] proved that for any continuous
f :Sn → R, there are n mutually orthogonal x1, . . . ,xn ∈ Sn with
f(x1) = f(−x1) = f(x2) = · · · = f(−xn), generalizing such a result
for S2 due to Dyson [Dys51]. Here is another nice result of Yang of
this type: If f :Smn+m+n → R

m is continuous, then there exists an
antipodally symmetric subset of Smn+m+n of dimension at least n on
which f is constant. Numerous results about circumscribed geometric
shapes and similar problems can be found in works of Makeev, such
as [Mak96].

In this connection, we should also mention a conjecture of Knaster
[Kna47], stating that for any continuous f :Sn → R

m and any con-
figuration K ⊂ Sn of n−m+2 points, there exists a rotation ρ of
Sn such that f(ρ(K)) is a single point. Although this was proved for
some special configurations (for example, Hopf proved the case m = n
in 1944, which motivated Knaster’s conjecture from 1947), the gen-
eral conjecture does not hold. It was first refuted by Makeev [Mak84],
stronger counterexamples were given by Babenko and Bogaty̌ı [BB89],
and then Chen [Che98] showed that Knaster’s conjecture fails for every
n > m > 2. Just before this book went to print, Kashin and Szarek an-
nounced a counterexample to an interesting special case of Knaster’s
conjecture, with m = 1, n sufficiently large, and K consisting of n+1
linearly independent unit vectors in R

n+1. (All the previous counterex-
amples used configurations with linear dependencies; also note that if
K is the standard orthonormal basis in R

n+1, then the conjecture
holds by the Yamabe–Yujobô theorem cited above).

A few of the numerous generalizations of the Borsuk–Ulam theorem
will be discussed later. Here we mention a couple of others, which seem
potentially useful for combinatorial and geometric problems.

Fan’s theorem [Fan52] is the following generalization of (LS-c): Let
A1, A2, . . . , Am be closed sets covering Sn with Ai ∩ (−Ai) = ∅ for all
i (note that m is independent of n, although the theorem implies that
necessarily m ≥ n+2). Then there are indices i1 < i2 < · · · < in+2 and
a point x ∈ Sn such that (−1)jx ∈ Aij

for all j = 1, 2, . . . , n+2. Closed
sets can also be replaced by open ones. This theorem was applied by
Simonyi and Tardos [ST06] in a graph coloring problem; see the notes
to Section 5.9.

Bourgin–Yang-type theorems are generalizations of the Borsuk–Ulam
theorem of the following sort. For any continuous map f :Sn → R

m,
the coincidence set {x ∈ Sn : f(x) = f(−x)} has to be not only
nonempty (as Borsuk–Ulam asserts), but even “large” if m < n. For
example, it has dimension at least n−m; see [Yan54], [Bou55].

Zero sections of vector bundles. This kind of generalization is techni-
cally beyond our scope, but we at least state a particular case (appear-
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ing in Dol’nikov [Dol’92] and, implicitly, Živaljević and Vrećica [ŽV90];
also see Fadell and Husseini [FH88]). Let Gk(Rn) denote the space of
all k-dimensional linear subspaces of R

n (the Grassmann manifold).
The natural topology on Gk(Rn) can be defined using a metric, for
example, by saying that two k-dimensional subspaces L and L′ have
distance at most ε if they possess orthonormal bases v1, v2, . . . , vk and
v′
1, v

′
2, . . . , v

′
k, respectively, such that ‖vi−v′

i‖ ≤ ε for all i = 1, 2, . . . , k.
The theorem asserts that if f1, f2, . . . , fn−k:Gk(Rn) → R

n are contin-
uous maps with fi(L) ∈ L for all L ∈ Gk(Rn) and all i = 1, 2, . . . , n−k
(in other words, the fi are sections of the tautological vector bundle
over Gk(Rn)), then there is a k-dimensional subspace L ∈ Gk(Rn)
with f1(L) = f2(L) = · · · = fn−k(L) = 0.

Exercises

1. Show that the antipodality assumption in (BU2a) can be replaced by
“f(−x) �= f(x) for all x ∈ Sn.”

2. Show that the following statement is equivalent to the Borsuk–Ulam the-
orem: Let f :Bn → R

n be a continuous mapping that satisfies f(−x) =
−f(x) for all x ∈ Sn−1; that is, it is antipodal on the boundary. Then
there is a point x ∈ Bn with f(x) = 0.

3.∗ (A “homotopy” version of the Borsuk–Ulam theorem)
(a) Derive the statement in Exercise 2 (and thus the Borsuk–Ulam theo-
rem) from the following statement ([Bor33, Satz I]): An antipodal map-
ping f :Sn → Sn cannot be nullhomotopic.
(b) Show that the statement in (a) is also implied by the Borsuk–Ulam
theorem.

4. (Another “homotopy” version of the Borsuk–Ulam theorem) Prove that
the following statement is equivalent to the statement in Exercise 3(a):
If f :Sn → Sn is antipodal, then every mapping g:Sn → Sn that is
homotopic to f is surjective (i.e., onto).

5.∗ Prove that the validity of (any of) the statements in the Theorem 2.1.1
for n implies the validity of all the statements for n−1.

6. (Generalized Lyusternik–Shnirel’man theorem [Gre02]) Derive the follow-
ing common generalization of (LS-c) and (LS-o): Whenever Sn is covered
by n+1 sets A1, A2, . . . , An+1, each Ai open or closed, there is an i such
that Ai ∩ (−Ai) �= ∅.

7. Does the Lyusternik–Shnirel’man theorem remain valid for coverings of
Sn by n+1 sets, each of which can be obtained from open sets by finitely
many set-theoretic operations (union, intersection, difference)?

8. In the proof of the implication (LS-o)=⇒ (LS-c) we wrapped the given
closed sets in their ε-neighborhoods and then let ε → 0. Argue directly
that for every closed cover F1, F2, . . . , Fn+1 of Sn such that no Fi contains
a pair of antipodal points there exists ε0 > 0 such that none of the ε0-
neighborhoods of the Fi contain a pair of antipodal points.
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9. Describe a surjective nullhomotopic map Sn → S1 (at least for n = 1
and n = 2).

10. (Borsuk graph) For a positive real number α < 2, let B(n+1, α) be the
(infinite) Borsuk graph with Sn as the vertex set and with two points
connected by an edge iff their distance is at least α. Prove that the
Borsuk–Ulam theorem is equivalent to the following statement: For every
α < 2, we have χ(B(n+1, α)) ≥ n+2 (here χ denotes the usual chromatic
number).

11. Let the torus be represented as T = S1 × S1.
(a) Show that an analogue of (BU1a) for maps T → R

2 (formulate it!) is
false.
(b) Show that it works for maps T → R

1.
12.∗ (a) Let A1, A2, . . . , An be closed subsets of Sn with Ai ∩ (−Ai) = ∅.

Prove, using the Borsuk–Ulam theorem, that
⋃n

i=1(Ai ∪ (−Ai)) �= Sn.
(b) Derive the Borsuk–Ulam theorem from the statement in (a).

13.∗ Consider the Borsuk–Ulam-type theorem for Grassmann manifolds stated
at the end of the notes of this section.
(a) Show that the case k = 1 (with n−1 continuous maps, each assigning
to each line through the origin in R

n a point on that line) is equivalent
to the Borsuk–Ulam theorem.
(b) Prove that the case k = n−1 (a continuous map assigning to each
hyperplane through the origin a point in that hyperplane) is equivalent
to the Borsuk–Ulam theorem as well.

2.2 A Geometric Proof

We prove the version (BU1b) of the Borsuk–Ulam theorem. Let f :Sn → R
n

be a continuous antipodal map. We want to prove that it has a zero. First
we explain the idea of the proof, assuming that f is “sufficiently generic,”
without making the meaning of this quite precise. Then we supply a rigorous
argument, involving a suitable perturbation of f .

The intuition. Let g:Sn → R
n denote the “north–south projection” map;

if Sn = {x ∈ R
n+1 : x2

1 + · · · + x2
n+1 = 1}, then g is given by g(x) =

(x1, x2, . . . , xn). This g has exactly two zeros, namely, the north pole and the
south pole: n = (0, 0, . . . , 0, 1), s = (0, 0, . . . , 0,−1). (The important feature
of g is that, obviously, it has a finite number of zeros; more precisely, the
number of zeros is twice an odd number.)

We consider the (n+1)-dimensional space X := Sn×[0, 1] (a “hollow cylin-
der”) and the mapping F :X → R

n given by F (x, t) := (1−t)g(x) + tf(x).
Geometrically, we take two copies of Sn (we can think of them as placed in
R

n+2), one of them with the mapping g and the other one with f . We connect
the corresponding points of these two spheres by segments, and the mapping



2.2 A Geometric Proof 31

F is defined on each segment by linear interpolation. For n = 1, we get a
cylinder as in the picture:

bottom sphere (t = 0)

top sphere (t = 1)

X

n

s
g

f Z

Z

γ

γ

The antipodality x �→ −x on Sn is extended to the map ν on X by ν: (x, t) �→
(−x, t) (note that t is unchanged). We will call ν the antipodality on X.

We note that F is antipodal with respect to ν; that is, F (ν(x, t)) =
−F (x, t).

For contradiction, let us suppose that f has no zeros. We investigate the
zero set Z := F−1(0). If f is sufficiently generic, then Z is a 1-dimensional
compact manifold, and therefore, its components are cycles and paths (this
is the part to be made precise later). Moreover, the endpoints of the paths
lie on the bottom or top copy of Sn (t = 0 or t = 1) and are zeros of f or g,
while the cycles do not reach into the top and bottom spheres.4

Assuming that f has no zeros and knowing that g has only the two zeros
at the poles, we see that there must be a single path γ connecting n to s.
But at the same time, the set Z is invariant under ν. If we follow γ from n
on, the other part starting from s must behave symmetrically. But then it is
easy to see that the two ends cannot meet: A symmetric path from n to s
does not exist in X. We have reached a contradiction.

Note that the argument actually shows that the number of zeros of a
“generic” antipodal map is twice an odd number. Indeed, the zeros of f on
the top sphere are paired up by paths in Z, except for two that are connected
to the zeros of g on the bottom sphere.
4 To gain some intuition as to why this is the case, one may think of the case

n = 1, and unroll X to obtain a rectangle R in the plane. Then F is a real
function on R, its graph is a “terrain” over R, and Z is the “zero contour.” As
people familiar with topographic maps will know, a typical contour on a smooth
terrain is a smooth curve consisting of disjoint cycles and curve segments with
both ends on the boundary of R. Other possible cases, such as two cycles meeting
at a point (saddle), are exceptional, and they disappear by an arbitrarily small
perturbation.

Imagining the higher-dimensional cases is more demanding. Readers knowing
the implicit function theorem from analysis may want to contemplate what that
theorem gives in the considered situation.

Anyway, we will soon provide a proof using a piecewise linear approximation.
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The real thing. A rigorous proof follows the same ideas but uses a suitable
small perturbation of f . Recall that the �1-norm of a point x ∈ R

n is ‖x‖1 =∑n
i=1 |xi|. Let Ŝn = {x ∈ R

n+1 : ‖x‖1 = 1} denote the unit sphere of
the �1-norm. This is the boundary of a crosspolytope (Definition 1.4.1); for
example, Ŝ2 is the surface of a regular octahedron. This Ŝn is homeomorphic
to Sn, and we will consider Ŝn instead of Sn in the rest of the proof. The
space X := Ŝn × [0, 1] is a union of finitely many convex polytopes (simplicial
prisms). Let us call Ŝn × {0} the bottom sphere and Ŝn × {1} the top sphere
in X.

Now we will talk about various triangulations of X. Throughout this
section, we will always mean geometric triangulations, where X is the poly-
hedron of the triangulation (and it is not only homeomorphic to it, as the
general definition of a triangulation admits). So the simplices are actual geo-
metric simplices contained in X.

We choose a sufficiently fine finite triangulation T of X (just how fine
will be specified later) that respects the symmetry of X given by ν, in the
following sense: Each simplex σ ∈ T is mapped bijectively onto the “opposite”
simplex ν(σ) ∈ T, and σ ∩ ν(σ) = ∅. Moreover, the triangulation T contains
triangulations Tt and Tb of the top and bottom spheres, respectively, as
subcomplexes, and Tt and Tb each refine the natural triangulation of Ŝn.
Concretely, suitable triangulations Tt and Tb can be constructed by iterated
barycentric subdivision of the natural triangulation of Ŝn, and T can then be
obtained by triangulating the simplicial prisms according to Exercise 1.4.3.

We let the mapping g be an orthogonal projection of Ŝn into R
n, but not

in a coordinate direction, but rather in a “generic” direction, such that the
two zeros n and s of g lie in the interior of n-dimensional simplices of the
triangulation Tb, as is indicated in the drawing (where n = 2):

0

R
n

Tb

We again suppose that f : Ŝn → R
n has no zeros. By compactness, there

is an ε > 0 such that ‖f(x)‖ ≥ ε for all x ∈ Ŝn. As in the informal outline,
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let F (x, t) := (1−t)g(x) + tf(x), let T be a fine triangulation of X as above,
and let F̄ :X → R

n be the map that agrees with F on the vertex set V (T)
of T and is affine on each simplex of T (similar to Definition 1.5.3 of the
affine extension of a simplicial map). Since F is uniformly continuous, we can
assume that ‖F (y)− F̄ (y)‖ ≤ ε

2 for all y ∈ X, provided that T is sufficiently
fine. Thus,

F̄ has no zeros on the top sphere. (2.1)

Since our g is already affine, F̄ coincides with g on the bottom sphere, and
we have

F̄ has exactly two zeros on the bottom sphere, lying
in the interiors of n-dimensional (antipodal) simplices
of Tb.

(2.2)

Further, let F̃ be a mapping arising by a sufficiently small antipodal per-
turbation of F̄ . Namely, we choose a suitable map P0:V (T) → R

n satisfying
P0(ν(v)) = −P0(v) for each v ∈ V (T). Further properties required of P0 will
be specified later. We extend P0 affinely on each simplex of T, obtaining a
map P :X → R

n, and we set F̃ = F̄ + P . We note that if all values of P0 lie
sufficiently close to 0, then the perturbed map F̃ still has the two properties
(2.1) and (2.2). Indeed, if F̄ has no zero on some simplex of Tt ∪ Tb, then
clearly, F̃ has no zero there either if the perturbation is sufficiently small.
Moreover, if σ is a simplex of Tb containing one of the two zeros of F̄ on
the bottom sphere, then F̄ restricted to σ maps σ bijectively to some n-
dimensional simplex τ in R

n containing the origin in its interior, and again, a
sufficiently small perturbation of the map (which can be imagined as a small
movement of the vertices of τ) doesn’t change this situation.

Next, we introduce generic maps on T. We begin by noting that if
h: Rn+1 → R

n is an affine map, then h−1(0) either is empty, or it is an
affine subspace of dimension at least 1. Now let σ be an (n+1)-dimensional
simplex and h an affine map σ → R

n. We say that h is generic if h−1(0) in-
tersects no face of σ of dimension smaller than n. In such case, h−1(0) either
is empty, or it is a segment lying in the interior of σ, with endpoints lying in
the interior of two (distinct) n-faces of σ:

h−1(0)
σ

If we represent an affine map h:σ → R
n by the (n+2)-tuple of values at

the vertices of σ, all such maps constitute a real vector space of dimension
n(n+2). One can check that the set of mappings that are not generic is
contained in a proper algebraic subvariety of this space, and so in particular,



34 2. The Borsuk–Ulam Theorem

has measure zero by Sard’s theorem. (Alternatively, one can check that this
set is nowhere dense and use this instead of measure zero; see Exercise 1.)

Let us call a perturbed mapping F̃ :X → R
n generic if it is generic on

each full-dimensional simplex of T. If T has 2N vertices, then the space of
all possible antipodal perturbation maps P0 on V (T) has dimension nN (the
value can be chosen freely on a set of N vertices containing no two antipodal
vertices). The mappings P0 leading to F̃ ’s that are not generic on a particular
full-dimensional simplex σ ∈ T have measure zero in this space (here we need
that v and ν(v) never lie in the same simplex of T). Therefore, arbitrarily
small perturbations P0 exist such that F̃ is generic.

Assuming that F̃ is generic and that its zeros satisfy (2.1) and (2.2), it
follows that F̃−1(0) is a locally polygonal path (consisting of segments, with
no branchings). This is because each n-simplex τ ∈ T is a face of exactly two
(n+1)-simplices σ, σ′ ∈ T, unless τ ∈ Tt ∪ Tb, in which case it is a face of
exactly one (n+1)-simplex σ ∈ T. Hence the components of F̃−1(0) are zero
or more closed polygonal cycles (which do not intersect the top or bottom
spheres) and a polygonal path γ. This γ consists of finitely many segments,
and it connects ñ to s̃ (these are the zeros of F̃ on the bottom sphere).

We choose the unit of length so that γ has length 1, and let γ(z) de-
note the point of γ at distance z from ñ (measured along γ; z ∈ [0, 1]).
Since γ is symmetric under ν, we have ν(γ(z)) = γ(1−z), and in particular,
ν(γ(1

2 )) = γ( 1
2 ). This is impossible, since ν has no fixed points. The Borsuk–

Ulam theorem is proved.

Notes. I learned this proof from Imre Bárány, who published it, in
a slightly different form, in [Bár80]. A very similar proof was given by
Meyerson and Wright [MW79], and Steinlein [Ste85] has several more
references for proofs of this type, all of them published between 1979
and 1981.

Exercises

1.∗ (a) Let p(x1, x2, . . . , xn) = p(x) be a nonzero polynomial in n variables.
Show that the zero set Z(p) := {x ∈ R

n : p(x) = 0} is nowhere dense,
meaning that any open ball B contains an open ball B′ with B′∩Z(p) =
∅.
(b) Check that a finite union of nowhere dense sets is nowhere dense.
(c) Let σ := conv{0,e1, . . . en+1} be an (n+1)-dimensional simplex. Let
h:σ → R

n be an affine map (i.e., a map of the form x �→ AxT + b,
where A is an n× (n+1) matrix and b ∈ R

n). If each h is represented by
(h(0), h(e1), . . . , h(en+1)) ∈ R

(n+2)n, show that the maps that are not
generic in the sense defined in the text above form a nowhere dense set.
Hint: For each possible “cause” of nongenericity, write down a determi-
nant that becomes 0 for all maps that are nongeneric for that cause.
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2.3 A Discrete Version: Tucker’s Lemma

Here we derive the Borsuk–Ulam theorem from a combinatorial statement,
called Tucker’s lemma. It speaks about labelings of the vertices of triangula-
tions of the n-dimensional ball. As it happens, it is also easily implied by the
Borsuk–Ulam theorem: One can say that it is a “discrete version” of (BU2b).

Let T be some (finite) triangulation of the n-dimensional ball Bn. We call
T antipodally symmetric on the boundary if the set of simplices of T contained
in Sn−1 = ∂Bn is an antipodally symmetric triangulation of Sn−1; that is, if
σ ⊂ Sn−1 is a simplex of T, then −σ is also a simplex of T.

2.3.1 Theorem (Tucker’s lemma). Let T be a triangulation of Bn that
is antipodally symmetric on the boundary. Let

λ: V (T) −→ {+1,−1,+2,−2, . . . ,+n,−n}
be a labeling of the vertices of T that satisfies λ(−v) = −λ(v) for every
vertex v ∈ ∂Bn (that is, λ is antipodal on the boundary). Then there exists
a 1-simplex (an edge) in T that is complementary; i.e., its two vertices are
labeled by opposite numbers.

Here is a 2-dimensional illustration:

−1

+1

−1

+1

−2

+2

−2

+2

−1

+2

+2

−2

complementary edge

An explanation. Before we start to prove anything, we reformulate
Tucker’s lemma using simplicial maps into the boundary of the crosspoly-
tope. Let �n−1 denote the (abstract) simplicial complex with vertex set
V (�n−1) = {+1,−1,+2,−2, . . . ,+n,−n}, and with a subset F ⊆ V (�n−1)
forming a simplex whenever there is no i ∈ [n] such that both i ∈ F and
−i ∈ F . By the remark below Definition 1.4.1, one can recognize �n−1 as the
boundary complex of the n-dimensional crosspolytope. The notation should
suggest the case n = 2:

−1 +1

+2

−2
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In particular, ‖�n−1‖ ∼= Sn−1. The reader is invited to check that the fol-
lowing statement is just a rephrasing of Theorem 2.3.1:

2.3.2 Theorem (Tucker’s lemma, a reformulation). Let T be a trian-
gulation of Bn that is antipodally symmetric on the boundary. Then there is
no map λ:V (T) → V (�n−1) that is a simplicial map of T into �n−1 and is
antipodal on the boundary.

Equivalence of (BU2b) with Tucker’s lemma. We recall that (BU2b)
claims the nonexistence of a map Bn → Sn−1 that is antipodal on the bound-
ary.

Deriving Tucker’s lemma, in the form of Theorem 2.3.2, from (BU2b) is
immediate: If there were a simplicial map λ of T into �n−1 antipodal on
the boundary, its canonical affine extension ‖λ‖ would be a continuous map
Bn → Sn−1 antipodal on the boundary, and this would contradict (BU2b).

To prove the reverse implication, which is what we are actually interested
in, we assume that f :Bn → Sn−1 is a (continuous) map that is antipodal on
the boundary, and we construct T and λ contradicting Theorem 2.3.2.

Here T can be chosen as any triangulation of Bn antipodal on the bound-
ary and with simplex diameter at most δ. To specify δ, we first set ε := 1√

n
.

This choice guarantees that for every y ∈ Sn−1, we have ‖y‖∞ ≥ ε; that is,
at least one of the components of y has absolute value at least ε. (If not, we
would get

∑n
i=1 y2

i < 1.)
A continuous function on a compact set is uniformly continuous, and

thus there exists a number δ > 0 such that if the distance of some two points
x,x′ ∈ Bn does not exceed δ, then ‖f(x) − f(x′)‖∞ < 2ε. This is the δ
bounding the diameter of the simplices of T.

Now we can define λ:V (T) → {±1,±2, . . . ,±n}. First we let

k(v) := min{i : |f(v)i| ≥ ε},

and then we set

λ(v) :=
{

+k(v) if f(v)k(v) > 0,
−k(v) if f(v)k(v) < 0.

Since f is antipodal on ∂Bn, we have λ(−v) = −λ(v) for each vertex v on
the boundary. So Tucker’s lemma applies and yields a complementary edge
vv′. Let i = λ(v) = −λ(v′) > 0. Then f(v)i ≥ ε and f(v′)i ≤ −ε, and hence
‖f(v) − f(v′)‖∞ ≥ 2ε; a contradiction.

The definition of λ becomes more intuitive if we consider the formulation
of Tucker’s lemma in Theorem 2.3.2 and we think of f as going into ‖�n−1‖.
Then λ(v) is essentially the vertex of �n−1 nearest to f(v). (We have to
break ties and preserve antipodality, and so the formal definition of λ above
looks somewhat different.)

Special triangulations. Several combinatorial proofs of Tucker’s lemma
are known, but as far as I know, none establishes it in the generality stated
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above. One always assumes some additional properties of the triangulation
T that are not necessary for the validity of the statement but that help with
the proof.

Fortunately, this is no real loss of generality: For the above proof of the
implication “Tucker’s lemma ⇒ Borsuk–Ulam,” it is enough to know that
Tucker’s lemma holds for some particular sequence of triangulations with
simplex diameter tending to 0. (Note that then the general form of Tucker’s
lemma follows from such a special case by the detour via the Borsuk–Ulam
theorem.)

Two proofs of Tucker’s lemma to come. In this section we present
a rather direct and purely combinatorial proof. It is also constructive: It
yields an algorithm for finding the complementary edge, by tracing a certain
sequence of simplices.

In the next section we give another proof, completely independent of the
first one (so either of them can be skipped). The second proof is perhaps more
insightful, better revealing why Tucker’s lemma holds. It uses some of the
machinery related to simplicial homology, such as chains and the boundary
operator, but in an extremely rudimentary form.

The first proof. We begin by specifying the additional requirements on the
triangulation T. We first replace the Euclidean ball Bn by the crosspolytope
B̂n, the unit ball of the �1-norm.

Let �+n be the natural triangulation of B̂n induced by the coordinate
hyperplanes. Explicitly, each simplex σ ∈ �+n either lies in �n−1 (these are
the simplices on the boundary), or equals τ ∪ {0} for some τ ∈ �n−1; that
is, it is a cone with base σ and apex 0. The following picture shows �+2, with
some of the simplices marked by their vertex sets:

{0}{−1} {+1}

{+2}

{−2}

{+1,−2}
{0,−1}

{0,−1,+2}

We will prove Tucker’s lemma for triangulations T of B̂n that are antipo-
dally symmetric on the boundary and refine �+n (that is, for each σ ∈ T there
is τ ∈ �+n with σ ⊆ τ). In other words, the second condition requires that
the sign of each coordinate be constant on the relative interior of σ, for every
σ ∈ T. Let us call such a T a special triangulation of B̂n.

For n = 2, a special triangulation T with a labeling λ as in Tucker’s
lemma is shown below:
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It is not hard to construct arbitrarily fine special triangulations. For ex-
ample, we can start with �+n and repeatedly take the barycentric subdivision,
until we reach a sufficiently small diameter of simplices.

We thus assume that T is a special triangulation of B̂n and λ:V (T) →
{±1,±2, . . . ,±n} is a labeling antipodal on the boundary. The proof is essen-
tially a parity argument, but not a straightforward one; we need to consider
simplices of all possible dimensions. We will single out a class of simplices in
T on which λ behaves in a certain way, the “happy” simplices; we will define
a graph on these simplices; and we will reach a contradiction by showing that
this graph has precisely one vertex of odd degree.

For a simplex σ ∈ T, let us write λ(σ) := {λ(v) : v is a vertex of σ}. We
also define another set S(σ) of labels (unrelated to the values of λ on σ).
Namely, we choose a point x in the relative interior of σ, and set

S(σ) := {+i : xi > 0, i = 1, 2, . . . , n} ∪ {−i : xi < 0, i = 1, 2, . . . , n}.

Since T is a special triangulation, all choices of x give the same S(σ). Geo-
metrically speaking, S(σ) is the vertex set of the simplex of �n−1 where σ is
mapped by the central projection from 0 (and the “exceptional” simplices ∅

and {0} receive ∅).
A simplex σ ∈ T is called happy if S(σ) ⊆ λ(σ). That is, we can regard

S(σ) as the set of “prescribed labels” for σ, and σ is happy if all of these
labels actually occur on its vertices. The happy simplices are emphasized in
the following picture:
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First we examine some properties of the happy simplices. Let σ be a
happy simplex and let us set k = |S(σ)|. Then σ lies in the k-dimensional
linear subspace Lσ spanned by the k coordinate axes xi such that i ∈ S(σ) or
−i ∈ S(σ). Hence dim σ ≤ k. On the other hand, dimσ ≥ k−1, since at least k
vertex labels are needed to make σ happy. We call σ tight if dim σ = k−1, that
is, if all vertex labels are needed to make σ happy. Otherwise, if dimσ = k,
we call σ loose. For a loose happy simplex σ, either some vertex label occurs
twice, or there is an extra label not appearing in S(σ).

A boundary happy simplex is necessarily tight, while a nonboundary
happy simplex may be tight or loose. The simplex {0} is always happy (and
loose).

We define an (undirected) graph G whose vertices are all happy simplices,
and in which vertices σ, τ ∈ T are connected by an edge if

(a) σ and τ are antipodal boundary simplices (σ = −τ ⊂ ∂B̂n); or
(b) σ is a facet of τ (i.e., a (dim τ−1)-dimensional face) with λ(σ) = S(τ);

that is, the labels of σ alone already make τ happy.

The simplex {0} has degree 1 in G, since it is connected exactly to the
edge of the triangulation that is made happy by the label λ(0). We prove that
if there is no complementary edge, then any other vertex σ of the graph G
has degree 2. Since a (finite) graph cannot contain only one vertex of odd
degree, this will establish Tucker’s lemma.

We distinguish several cases.

1. σ is a tight happy simplex. Then any neighbor τ of σ either equals −σ,
or has σ as a facet. We have two subcases:
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1.1. σ lies on the boundary ∂B̂n. Then −σ is one of its neighbors. Any
other neighbor τ has σ as a facet it is made happy by its labels.
Thus, it has to lie in the coordinate subspace Lσ mentioned above, of
dimension k := dimσ+1. The intersection Lσ∩B̂n is a k-dimensional
crosspolytope, and the simplices of T contained in Lσ triangulate it.
If σ is a boundary (k−1)-dimensional simplex in a triangulation of
B̂k, then it is a facet of precisely one k-simplex.

1.2. σ does not lie on the boundary. Arguing in a way similar to the
previous case, we see that σ is a facet of exactly two simplices made
happy by its labels, and these are the two neighbors.

2. σ is a loose happy simplex. The subcases are:
2.1. We have S(σ) = λ(σ), and so one of the labels occurs twice on σ.

Then σ is adjacent to exactly two of its facets (and it cannot be a
facet of a happy simplex).

2.2. There is an extra label i ∈ λ(σ) \ S(σ). We note that −i �∈ S(σ) as
well, for otherwise, we would have a complementary edge. One of the
neighbors of σ is the facet of σ not containing the vertex with the
extra label i. Moreover, σ is a facet of exactly one loose simplex σ′

made happy by the labels of σ, namely, one with S(σ′) = λ(σ) =
S(σ) ∪ {i}. We enter that σ′ if we go from an interior point of σ in
the direction of the x|i|-axis, in the positive direction for i > 0 and
in the negative direction for i < 0.

So for each possibility we have exactly two neighbors, which yields a contra-
diction.

Remark. The above proof proceeds by contradiction, but it can easily be
turned into an algorithm for finding a complementary edge. By the above
argument, a simplex σ has degree 2 in G unless σ = {0} or σ contains a
complementary edge. So we can start at {0} and follow a path in G until we
reach a simplex with a complementary edge. Such a path is indicated in the
next picture:
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Notes. Steinlein’s survey [Ste85] lists over 10 references with com-
binatorial proofs of the Borsuk–Ulam theorem via Tucker’s lemma or
some relatives of it.

Tucker’s lemma is from [Tuc46]. That paper contains a 2-di-
mensional version, and a version for arbitrary dimension appears in
the book [Lef49] (see the next section).

The proof shown above follows Freund and Todd [FT81]. They
were aiming at an algorithmic proof. Such algorithms are of great
interest and have actually been used for numeric computation of zeros
of functions.

Exercises

1.∗ (A quantitative metric version of the Borsuk–Ulam theorem; Dubins and
Schwarz [DS81])
(a) Let δ(n) =

√
2(n+1)/n denote the edge length of a regular simplex

inscribed in the unit ball Bn. Prove that any simplex that contains 0 and
has all vertices on Sn−1 has an edge of length at least δ(n).
(b) Let T be a triangulation of the crosspolytope B̂n that is antipodally
symmetric on the boundary, and let g:V (T) → R

n be a mapping that
satisfies f(−v) = −f(v) ∈ Sn−1 for all vertices v ∈ V (T) lying on
the boundary of B̂n. Prove that there exist vertices u,v ∈ V (T) with
‖g(u) − g(v)‖ ≥ δ(n).
(c) Derive the following theorem from (b): Let f :Bn → Sn−1 be a map
that is antipodal on the boundary of Bn (continuity is not assumed).
Then for every ε > 0 there are points x,y ∈ Bn with ‖x − y‖ ≤ ε and
‖f(x) − f(y)‖ ≥ δ(n).
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This exercise is based on a simplification by Arnold Waßmer of the proof
in [DS81].

2.4 Another Proof of Tucker’s Lemma

Preliminaries on chains and boundaries. We introduce several simple
notions, which will allow us to formulate the forthcoming proof clearly and
concisely. Readers familiar with simplicial homology will recognize them im-
mediately. But since we (implicitly) work with Z2 coefficients, many things
become a little simpler than in the usual introductions to homology.

Let K be a simplicial complex. By a k-chain we mean a set Ck consist-
ing of (some of the) k-dimensional simplices of K, k = 0, 1, . . . ,dim K. (The
dimension will usually be shown by the subscript.) Let us emphasize that a
k-chain contains only simplices of dimension k, and so it is not a simplicial
complex.

The empty k-chain will be denoted by 0, rather than by ∅.
If Ck and Dk are k-chains, their sum Ck + Dk is the k-chain that is the

symmetric difference of Ck and Dk (so this addition corresponds to addition
of the characteristic vectors modulo 2). In particular, Ck + Ck = 0.

If F ∈ K is a k-dimensional simplex, the boundary of F is, for the purposes
of this section, the (k−1)-chain ∂F consisting of the facets of F (so ∂F has
k+1 simplices). For a k-chain Ck = {F1, F2, . . . , Fm}, the boundary is defined
as ∂Ck = ∂F1 + ∂F2 + · · · + ∂Fm. So it consists of the (k−1)-dimensional
simplices that occur an odd number of times as facets of the simplices in Ck:

a 2-chain C2 (gray) ∂C2

Important properties of the boundary operator are:

• It commutes with addition of chains: ∂(Ck + Dk) = ∂Ck + ∂Dk. This is
obvious from the definition.

• We have ∂∂Ck = 0 for any k-chain Ck. It is sufficient to verify this for
Ck consisting of a single k-simplex, and this is straightforward.
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A simplicial map f of a simplicial complex K into a simplicial complex
L induces a mapping f#k sending k-chains of K to k-chains of L. Namely, if
Ck = {F} is a k-chain consisting of a single simplex, we define f#k(Ck) as
{f(F )} if f(F ) is a k-dimensional simplex (of L), and as 0 otherwise (so if F is
“flattened” by f , it contributes nothing). Then we extend linearly to arbitrary
chains: f#k({F1, F2, . . . , Fm}) = f#k({F1}) + f#k({F2}) + · · · + f#k({Fm}).

The last general fact before we take up the proof of Tucker’s lemma is that
these maps of chains commute with the boundary operator, in the following
sense: f#k−1(∂Ck) = ∂f#k(Ck), for any k-chain Ck. It is again enough to
verify this for Ck containing a single simplex.

Requirements on the triangulation. In the forthcoming proof we also
need an additional condition on the triangulation T of Bn in Tucker’s lemma.
For k = 0, 1, 2, . . . , n−1, we define

H+
k = {x ∈ Sn−1 : xk+1 ≥ 0, xk+2 = xk+3 = · · · = xn = 0},

H−
k = {x ∈ Sn−1 : xk+1 ≤ 0, xk+2 = xk+3 = · · · = xn = 0}.

Here is a picture for n = 3:

H+
0

H−
0

H+
1

H−
1

H−
2

H+
2

So H+
n−1 and H−

n−1 are the “northern” and “southern” hemispheres of Sn−1,
H+

n−2 ∪ H−
n−2 is the (n−2)-dimensional “equator,” etc., and finally, H+

0 and
H−

0 are a pair of antipodal points. We assume that T respects this structure:
For each i = 0, 1, . . . , n−1, there are subcomplexes that triangulate H+

i and
H−

i (such triangulations can be constructed, for instance, as refinements of
the triangulation �+n).

We prove Tucker’s lemma in the version with a simplicial map into �n−1

(Theorem 2.3.2). For this proof it doesn’t really matter that the mapping λ
goes into �n−1; it can as well go into any antipodally symmetric triangulation
L of Sn−1. We prove the following three claims.

2.4.1 Proposition. Let T be a triangulation of Bn as described above, let
K be the (antipodally symmetric) part of T triangulating Sn−1, and let L be
another (finite) antipodally symmetric triangulation of Sn−1. Let f :V (K) →
V (L) be a simplicial mapping of K into L. Then we have:
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(i) Let An−1 be the (n−1)-chain consisting of all (n−1)-dimensional sim-
plices of K. Then either the (n−1)-chain Cn−1 := f#n−1(An−1) is empty,
or it consists of all the (n−1)-dimensional simplices of L. In other words,
either each (n−1)-simplex of L has an even number of preimages, or each
has an odd number of preimages.
In the former case (even number of preimages) we say that f has an
even degree and we write deg2(f) = 0, and in the latter case we say
that f has an odd degree, writing deg2(f) = 1.

(ii) If f̄ is any simplicial map of T into L, and f is the restriction of f̄ on
the boundary (i.e., on V (K)), then deg2(f) = 0.

(iii) If f is any antipodal simplicial map of K into L, then deg2(f) = 1.

Hence, a simplicial map λ of T into L that is antipodal on the boundary
cannot exist, since it would have an even degree by (ii) and an odd degree
by (iii), which proves Tucker’s lemma.

Proof of (i). This is geometrically quite intuitive, and the reader can prob-
ably invent a direct geometric proof. Here we start practicing the language
of chains.

If Cn−1 is neither empty nor everything, then there are two (n−1)-
simplices sharing a facet such that one of them is in Cn−1 and the other
isn’t. Then their common facet is in ∂Cn−1. At the same time, we calculate

∂Cn−1 = ∂f#n−1(An−1) = f#n−2(∂An−1) = 0,

since every (n−2)-simplex of K is a facet of exactly two simplices of An−1.
This is a contradiction.

Proof of (ii). This is again intuitive (think of an informal geometric ar-
gument) and easy. Let An be the n-chain consisting of all n-simplices of T.
Then An−1 = ∂An. At the same time, f̄#n(An) = 0, simply because L has
no n-simplices. Thus, Cn−1 = f#n−1(An−1) = ∂f̄#n(An) = ∂0 = 0.

Proof of (iii). This is the challenging part. Let A+
k be the k-chain con-

sisting of all k-simplices of K contained in the k-dimensional “hemisphere”
H+

k introduced in the conditions on T, and similarly for A−
k . We also let

Ak :=A+
k + A−

k .
For k = 1, 2, . . . , n−1, we have

∂A+
k = ∂A−

k = Ak−1

(look at the picture of the decomposition of Sn−1 into the H±
i ). If we set

C+
k := f#k(A+

k ), and similarly for C−
k and Ck, we thus obtain

∂C+
k = ∂C−

k = Ck−1.

Our goal is to prove Cn−1 �= 0. For contradiction, we suppose Cn−1 =
C+

n−1 + C−
n−1 = 0. Then we get C+

n−1 = C−
n−1. Now the antipodality comes
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into play: Since A+
n−1 is antipodal to A−

n−1 and f is an antipodal map,
C+

n−1 is antipodal to C−
n−1 as well, and since they are also equal, the chain

Dn−1 := C+
n−1 = C−

n−1 is antipodally symmetric. Therefore, Cn−2 = ∂C+
n−1 =

∂Dn−1 is the boundary of an antipodally symmetric chain.
This is a good induction hypothesis on which to proceed further. Namely,

we assume for some k > 0 that

Ck = ∂Dk+1

for an antipodally symmetric chain Dk+1, and we infer a similar claim for
Ck−1.

To this end, we note that the antipodally symmetric chain Dk+1 can
be partitioned into two chains, Dk+1 = Ek+1 + Eantip

k+1 , such that Eantip
k+1 is

antipodal to Ek+1 (we divide the simplices of Dk+1 into antipodal pairs and
split each pair between Ek+1 and Eantip

k+1 ). So we have Ck = C+
k + C−

k =
∂(Ek+1 + Eantip

k+1 ). Rearranging gives C+
k + ∂Ek+1 = C−

k + ∂Eantip
k+1 . Since the

left-hand side is antipodal to the right-hand side, Dk :=C+
k + ∂Ek+1 is an

antipodally symmetric chain. Applying the boundary operator yields

∂Dk = ∂C+
k + ∂∂Ek+1 = ∂C+

k = Ck−1,

and the induction step is finished.
Proceeding all the way down to k = 1, we see that C0 should be the

boundary of an antipodally symmetric 1-chain. But C0 consists of two an-
tipodal points (0-simplices), while the boundary of any antipodally symmetric
1-chain consists of an even number of antipodal pairs (Exercise 1). This con-
tradiction concludes the proof.

Notes. Here we have essentially reproduced Tucker’s proof as pre-
sented in Lefschetz [Lef49]. Yet another degree-theoretic proof of the
Borsuk–Ulam theorem is sketched in Section 6.2.

The degree of a map between spheres (or, more generally, between
manifolds) is a quite useful concept. Intuitively, the degree is odd if a
“generic” point in the range of the map has an odd number of preim-
ages. We have defined rigorously the degree modulo 2 of a simplicial
map between two triangulations of Sn−1. To extend the definition to
an arbitrary continuous map f , one first defines a simplicial map f̃
homotopic to f (a simplicial approximation).

A similar method can be used to define the degree as an integer pa-
rameter, but one has to take the orientation of simplices into account.
That is, we consider Sn−1 as the boundary of Bn, which defines an ori-
entation of its (n−1)-simplices (roughly speaking, all (n−1)-simplices
are oriented “inwards”). To obtain the degree of f , we count the num-
ber of preimages of (any) (n−1)-simplex σ, where each preimage τ
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such that f(τ) has the same orientation as σ is counted as +1, while
the preimages τ with f(τ) oriented oppositely are counted as −1.

Defining the degree rigorously and establishing its basic proper-
ties (e.g., homotopy invariance) takes a nontrivial amount of work. If
elementary homology theory has already been covered, a convenient
definition is homological: Since the nth homology group Hn(Sn, Z) is
isomorphic to Z, the homomorphism f∗:Hn(Sn, Z) → Hn(Sn, Z) in-
duced by f can be regarded as a homomorphism Z → Z; thus it acts
as the multiplication by some integer d, and this d is defined to be
the degree of f . Dodson and Parker [DP97, Section 4.3.2] prove the
Borsuk–Ulam theorem using this definition.

Another, more universal, definition of degree uses algebraic count-
ing of the roots x of f(x) = y at a “generic” image point y. The
orientation of the preimages is defined using the sign of the Jacobian
of the map. A proof of the Borsuk–Ulam theorem using the degree of
a smooth map is sketched in [Bre93, p. 253].

Exercises

1. Check the claim made at the end of the proof of Proposition 2.4.1(iii):
The boundary of any antipodally symmetric 1-chain consists of an even
number of antipodal pairs. Try to find a simple proof (but rigorous, of
course).
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