Chapter 2
Some Mathematical Preliminaries

2.1 Probability Spaces, Random Variables and
Stochastic Processes

Having stated the problems we would like to solve, we now proceed to find
reasonable mathematical notions corresponding to the quantities mentioned
and mathematical models for the problems. In short, here is a first list of the
notions that need a mathematical interpretation:

) A random quantity

) Independence

) Parametrized (discrete or continuous) families of random quantities

) What is meant by a “best” estimate in the filtering problem (Problem 3)
) What is meant by an estimate “based on” some observations (Problem 3)?
) What is the mathematical interpretation of the “noise” terms?

) What is the mathematical interpretation of the stochastic differential
equations?

(1

(2
(3
(4
(5
(6
(7

In this chapter we will discuss (1)—(3) briefly. In the next chapter we will
consider (6), which leads to the notion of an It6 stochastic integral (7). In
Chapter 6 we will consider (4)—(5).

The mathematical model for a random quantity is a random variable.
Before we define this, we recall some concepts from general probability theory.
The reader is referred to e.g. Williams (1991) for more information.

Definition 2.1.1 If 2 is a given set, then a o-algebra F on (2 is a family
F of subsets of £2 with the following properties:

(i) OerF
i) FeF=FCeF, where FC = Q\ F is the complement of F in 02
(iii) A1, Aoy .. e F= A= UAiEJ:

i=1
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The pair (2, F) is called a measurable space. A probability measure P on
a measurable space (£2,F) is a function P: F — [0,1] such that

(a) PO)=0, P(2)=1
(b) if A1, As,... € F and {A;}5°, is disjoint (i.e. A, NA; =0 ifi # j)

then
P (U AZ-) =Y P(A;).

The triple (£2,F, P) is called a probability space. It is called a complete
probability space if F contains all subsets G of £2 with P-outer measure zero,
i.e. with

P (G):=inf{P(F);Fe F,GCF} =0.

Any probability space can be made complete simply by adding to F all
sets of outer measure 0 and by extending P accordingly. From now on we
will assume that all our probability spaces are complete.

The subsets F' of {2 which belong to F are called F-measurable sets. In a
probability context these sets are called events and we use the interpretation

P(F) = “the probability that the event F occurs” .

In particular, if P(F) = 1 we say that “F occurs with probability 1”7, or
“almost surely (a.s.)”.

Given any family U of subsets of {2 there is a smallest o-algebra Hy,
containing U, namely

Hu = ﬂ{H;H o-algebra of 2, U C H} .

(See Exercise 2.3.)

We call Hy, the o-algebra generated by U.

For example, if U is the collection of all open subsets of a topological space
2 (e.g. 2 =1R"), then B = Hy is called the Borel o-algebra on {2 and the
elements B € B are called Borel sets. B contains all open sets, all closed
sets, all countable unions of closed sets, all countable intersections of such
countable unions etc.

If (2, F,P) is a given probability space, then a function Y:2 — R"™ is
called F-measurable if

YN U):={we)Y(w)eU}eF

for all open sets U € R™ (or, equivalently, for all Borel sets U C R").
If X:2 — R" is any function, then the o-algebra Hx generated by X is
the smallest o-algebra on 2 containing all the sets

X HU); U CR" open.
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It is not hard to show that
Hx ={X"(B); Be B},

where B is the Borel o-algebra on R". Clearly, X will then be H x-measurable
and Hx is the smallest o-algebra with this property.

The following result is useful. It is a special case of a result sometimes
called the Doob-Dynkin lemma. See e.g. M. M. Rao (1984), Prop. 3, p. 7.

Lemma 2.1.2 If X,Y: — R" are two giwven functions,then Y is Hx-
measurable if and only if there exists a Borel measurable function g: R™ — R"
such that

Y =9(X).

In the following we let ({2, F, P) denote a given complete probability space.
A random wvariable X is an F-measurable function X: {2 — R"™. Every ran-
dom variable induces a probability measure px on R”, defined by

wx is called the distribution of X.
If [|X(w)|dP(w) < oo then the number
%)

BIX)i= [ X(@)dP(w) = [ sdux(z)
0

R”

is called the expectation of X (w.r.t. P).

More generally, if f:R™ — R is Borel measurable and
J1f(X(w))|dP(w) < oo then we have
Q

BU(Ok= [ F(X@)aPw) = [ fadux ().

The LP-spaces
If X : 2 — R"is a random variable and p € [1,00) is a constant we define
the LP-norm of X, || X||,, by

1
P

Xl = 1Xlze = ([ 1X(@)PaP))".
(e}

If p = 0o we set
1X oo = [1X | e (p) = inf{N € R; [X(w)] < N a. s.}.

The corresponding LP-spaces are defined by



10 2 Some Mathematical Preliminaries
LP(P)=LP(2) ={X : 2 - R™"; || X]||, < co}.

With this norm the LP-spaces are Banach spaces, i.e. complete (see Exercise
2.19), normed linear spaces. If p = 2 the space L?(P) is even a Hilbert space,
i.e. a complete inner product space, with inner product

(X,Y)r2py := E[X - Y]; X,Y € L*(P).
The mathematical model for independence is the following:

Definition 2.1.3 Two subsets A, B € F are called independent if
P(ANB)=P(A)-P(B).

A collection A = {H;;i € I} of families H; of measurable sets is independent

if
P(H;, N---NH,;,)=P(H,;,) - P(H;,)

for all choices of H;, € Hy,, -+, H;, € H;, with different indices i1, ..., 0.
A collection of random variables { X;;4 € I} is independent if the collection
of generated o-algebras Hx, is independent.

If two random variables X,Y: 2 — R are independent then
E[XY] = E[X]E[Y],
provided that E[|X|] < co and E[|Y|] < oc. (See Exercise 2.5.)

Definition 2.1.4 A stochastic process is a parametrized collection of ran-
dom variables

{Xi}eer
defined on a probability space (£2,F, P) and assuming values in R™.

The parameter space T is usually (as in this book) the halfline [0, o), but
it may also be an interval [a, b], the non-negative integers and even subsets
of R™ for n > 1. Note that for each t € T fixed we have a random variable

w— Xi(w); wel.
On the other hand, fixing w € {2 we can consider the function
t— Xy(w); teT

which is called a path of X;.

It may be useful for the intuition to think of ¢ as “time” and each w
as an individual “particle” or “experiment”. With this picture X;(w) would
represent the position (or result) at time ¢ of the particle (experiment) w.
Sometimes it is convenient to write X (¢,w) instead of X;(w). Thus we may
also regard the process as a function of two variables



2.1 Probability Spaces, Random Variables and Stochastic Processes 11
(t,w) — X(t,w)

from T x {2 into R™. This is often a natural point of view in stochastic
analysis, because (as we shall see) there it is crucial to have X (¢,w) jointly
measurable in (¢,w).

Finally we note that we may identify each w with the function t — X;(w)
from T into R™. Thus we may regard {2 as a subset of the space 2= (R™)T of
all functions from 7" into R™. Then the o-algebra F will contain the o-algebra
B generated by sets of the form

{wyw(t1) € F1,--,w(ty) € F}, F; C R™ Borel sets

Therefore one may also adopt the point of view that a stochastic process is
a probability measure P on the measurable space (R™)T, B).

The (finite-dimensional) distributions of the process X = {X;}ter are the
measures [, ..+, defined on R k=1,2,..., by

Pty,otn(F1 X Fy X --- X Fy) = P[Xy, € Fr,---, Xy, € Fi]; t,eT.

Here F1, ..., I} denote Borel sets in R"™.

The family of all finite-dimensional distributions determines many (but
not all) important properties of the process X.

Conversely, given a family {v;, . ..;k € N,t; € T} of probability mea-
sures on R it is important to be able to construct a stochastic process
Y = {Yi}ier having vy, . 4 as its finite-dimensional distributions. One
of Kolmogorov’s famous theorems states that this can be done provided
{vi,,...1,, } satisfies two natural consistency conditions: (See Lamperti (1977).)

Theorem 2.1.5 (Kolmogorov’s extension theorem)
For allty,...,tx, €T, k € N let vy, .. 4, be probability measures on R s.t.

I/ta(1>’...7ta(k) (F1 X oo X Fk) = th,---,tk(Fo'*l(l) X oo X Fo-—l(k)) (Kl)
for all permutations o on {1,2,...,k} and
Vig oot (F1X - XEFR) = iyttt (FDXC X Ep X R XR™) - (K2)

for all m € N, where (of course) the set on the right hand side has a total of
k +m factors.

Then there exists a probability space (£2,F,P) and a stochastic process
{X:} on 2, X:: 2 — R", s.t.

Uit (F1 X oo X Fy) = P[Xy, € Fr,---, Xy, € Fy],

forallt; € T, k € N and all Borel sets F;.
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2.2 An Important Example: Brownian Motion

In 1828 the Scottish botanist Robert Brown observed that pollen grains sus-
pended in liquid performed an irregular motion. The motion was later ex-
plained by the random collisions with the molecules of the liquid. To describe
the motion mathematically it is natural to use the concept of a stochastic
process Bi(w), interpreted as the position at time ¢ of the pollen grain w. We
will generalize slightly and consider an n-dimensional analog.

To construct { By }>0 it suffices, by the Kolmogorov extension theorem, to
specify a family {1y, . ¢ } of probability measures satisfying (K1) and (K2).
These measures will be chosen so that they agree with our observations of
the pollen grain behaviour:

Fix x € R™ and define

_ a2
p(t,x,y) = (2mt)~"/2 ~exp(—%) for ye R", t>0.
If 0 <t <ty <. <ty define a measure vy, 4 on R™ by
Vig, oty (F1 X - X Fy) = (2.2.1)

= / p(tr, z,x1)p(ta—t1,x1,22) - p(tg —th—1, Tp—1, T )dxy - - - dT)e
Fi1 XX Fy

where we use the notation dy = dy; - - - dyx for Lebesgue measure and the
convention that p(0,z,y)dy = d,(y), the unit point mass at x.
Extend this definition to all finite sequences of t;’s by using (K1). Since

[ p(t,z,y)dy = 1 for all t >0, (K2) holds, so by Kolmogorov’s theorem there
R”

exists a probability space (£2,F, P*) and a stochastic process {By}¢>0 on {2
such that the finite-dimensional distributions of B; are given by (2.2.1), i.e.

PI(Btl €F17"';Btk EFk):

= / p(t, z, 1) - pty — th—1, Tp—1, Tk )dxy . .. dT) . (2.2.2)
F‘])(“')(F‘)c

Definition 2.2.1 Such a process is called (a version of) Brownian motion
starting at « (observe that P*(By = x) =1).

The Brownian motion thus defined is not unique, i.e. there exist several
quadruples (By, 2, F, P¥) such that (2.2.2) holds. However, for our purposes
this is not important, we may simply choose any version to work with. As we
shall soon see, the paths of a Brownian motion are (or, more correctly, can be
chosen to be) continuous, a.s. Therefore we may identify (a.a.) w € 2 with a
continuous function t — B¢(w) from [0, 00) into R™. Thus we may adopt the
point of view that Brownian motion is just the space C([0, ), R™) equipped
with certain probability measures P* (given by (2.2.1) and (2.2.2) above).
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This version is called the canonical Brownian motion. Besides having the
advantage of being intuitive, this point of view is useful for the further anal-
ysis of measures on C([0,00), R™), since this space is Polish (i.e. a complete
separable metric space). See Stroock and Varadhan (1979).

We state some basic properties of Brownian motion:

(i) B; is a Gaussian process, i.e. for all 0 < t; < .-+ < t;, the random
variable Z = (By,,..., By, ) € R™ has a (multi)normal distribution.
This means that there exists a vector M € R™ and a non-negative
definite matrix C' = [¢j,,] € R"™ ™% (the set of all nk x nk-matrices
with real entries) such that

nk
E* [exp <Z Z Uij)] = exp ( % Z UjCimUm + 1 ZUij)
Jj=1 Jm J
(2.2.3)
for all u = (u1,...,unk) € R where i = \/—1 is the imaginary unit
and E® denotes expectation with respect to P®. Moreover, if (2.2.3)

holds then
M = E*[Z] is the mean value of Z (2.2.4)

and
Cim=E*(Z;=M;)(Z—M,,)] is the covariance matrix of Z. (2.2.5)

(See Appendix A).
To see that (2.2.3) holds for Z = (By,,..., By, ) we calculate its left
hand side explicitly by using (2.2.2) (see Appendix A) and obtain

(2.2.3) with
M = E®*Z] = (z,x,---,x) € R™ (2.2.6)
and
t1, til, --- til,
tlln tQIn tee tQIn
= . . . (2.2.7)
tlln t2In e tk:In
Hence
E*[By| =« forall t >0 (2.2.8)
and

E*[(B; —x)?] = nt, E°[(B; — 2)(Bs — )] =n min(s,t) . (2.2.9)
Moreover,
E*(B; — Bs))] =n(t —s)ift > s, (2.2.10)
B*[(By — B,)?] = E*[(B — 2)? — 2(B, — )(By — 2) + (By — 2
=n(t—2s+s)=n(t—s),whent>s.
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(ii) By has independent increments, i.e.

By,, B, — By, +, By, — By, _, are independent
forall 0 <ty <ty <ty . (2.2.11)

To prove this we use the fact that normal random variables are inde-
pendent iff they are uncorrelated. (See Appendix A). So it is enough
to prove that

Ex[(Btl — Btifl)(Btj - Btjfl)] =0 when tz < t] 3 (2212)
which follows from the form of C:

Ea:[BtiBtj - Bti—lBtj - Bt'iBtj—l + Bti—lBtj—l}
= ’I’L(ti —ti1—t; +ti—1) =0.

From this we deduce that Bs — B; is independent of F; if s > t.

(iii)  Finally we ask: Is ¢ — B;(w) continuous for almost all w? Stated like
this the question does not make sense, because the set H = {w;t —
Bi(w) is continuous} is not measurable with respect to the Borel o-
algebra B on (R")[*:°) mentioned above (H involves an uncountable
number of ¢’s). However, if modified slightly the question can be given
a positive answer. To explain this we need the following important
concept:

Definition 2.2.2 Suppose that {X:} and {Y;} are stochastic processes on

(2, F, P). Then we say that {X;} is a version of (or a modification of ) {Y;}
i P{w; Xo(w) = Yy(@)}) =1 for all ¢.

Note that if X is a version of Yy, then X; and Y; have the same finite-
dimensional distributions. Thus from the point of view that a stochastic pro-
cess is a probability law on (R”)[O"x’) two such processes are the same, but
nevertheless their path properties may be different. (See Exercise 2.9.)

The continuity question of Brownian motion can be answered by using
another famous theorem of Kolmogorov:

Theorem 2.2.3 (Kolmogorov’s continuity theorem) Suppose that the
process X = {X,}i>0 satisfies the following condition: For all T > 0 there
exist positive constants «, 3, D such that

E[|X; — X <D-Jt—s*"?; 0<s,t<T. (2.2.13)
Then there exists a continuous version of X.

For a proof see for example Stroock and Varadhan (1979, p. 51).
For Brownian motion B, it is not hard to prove that (See Exercise 2.8)

E®(|B; — Bs|*] = n(n +2)|t — 5| . (2.2.14)
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So Brownian motion satisfies Kolmogorov’s condition (2.2.13) with o = 4,
D =n(n+2) and § = 1, and therefore it has a continuous version. From now
on we will assume that B; is such a continuous version.

Finally we note that

If Bi= (Bt(l)7 N Bt(n)) is n-dimensional Brownian motion, then

the 1-dimensional processes {Bt(j ) }i>0, 1<j<n are independent,

1-dimensional Brownian motions . (2.2.15)

Exercises

2.1. Suppose that X: 2 — R is a function which assumes only countably
many values aq, as,... € R.

a) Show that X is a random variable if and only if
X Hap)eF  foral k=1,2,... (2.2.16)

b) Suppose (2.2.16) holds. Show that
E[X[| = la|P[X = ax] . (2.2.17)
k=1

c) 1If (2.2.16) holds and E[|X|] < oo, show that

d) If (2.2.16) holds and f:R — R is measurable and bounded,
show that

E[f(X)] =) flax)P[X = ay] .
k=1
2.2. Let X:§2 — R be a random variable. The distribution function F' of
X is defined by
F(x)=P[X <z].

a) Prove that F' has the following properties:

(i) 0<F<I, lim F(z)=0, lim F(z)=1.

(ii)  F is increasing (= non-decreasing).

(iii)  F is right-continuous, i.e. F(x) =limp_o F(z +h) .

h>0
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b) Let g:R — R be measurable such that E[|g(X)|] < occ. Prove
that

Elg(X)) = [ g(@)iF (@),
where the integral on the right is interpreted in the Lebesgue-
Stieltjes sense.

c¢) Let p(x) > 0 be a measurable function on R. We say that X
has the density p if

x

F(x) = / p(y)dy for all x .

— 00

Thus from (2.2.1)—(2.2.2) we know that 1-dimensional Brownian
motion By at time t with By = 0 has the density

1 z?
p(m):%exp(—g); reR.

Find the density of B?.

2.3. Let {H;}icr be a family of o-algebras on 2. Prove that

H=(\{Hii eI}
is again a o-algebra.
2.4.% a) Let X:{2 — R"™ be a random variable such that

E[IX|P] < o0 for some p, 0 <p < oo.

Prove Chebychev’s inequality:

1
P[X| 2\ < 5 EIX[]  forall A= 0.

Hint: [ |X[PdP > [|X[PdP, where A = {w:|X| > A} .
b) Supp(?se there exisis k > 0 such that
M = Elexp(k| X])] < 00
Prove that P[|X| > A\ < Me ™ forall A > 0.

2.5. Let X,Y: {2 — R be two independent random variables and assume
for simplicity that X and Y are bounded. Prove that

E[XY] = E[X]E]Y] .
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(Hint: Assume | X| < M, |Y] < N. Approximate X and Y by simple

m—1 n—1
functions p(w) = > a; Xk, (w), Y(w) = > bjXg,(w), respectively,
i=1 j=1

where F; = Xﬁl([ai,aﬂrl)), Gj = Yﬁl([bj,b]url)), —M=a¢g < a1 <
co.<@p=M,—-N=0by<b; <...<b, =N.Then

E(X]~ Elg] =Y _a:P(F), EY]~ B[] =3 b;P(G))

and BIXY] % Blpt] = Y aib;P(FiNG;)...)
4,J
2.6.% Let (2, F, P) be a probability space and let Ay, As, ... be sets in F
such that

iP(Ak) < 0.

k=1

Prove the Borel-Cantelli lemma:
P(() U A4x) =0,
m=1k=m
i.e. the probability that w belongs to infinitely many A} s is zero.

2.7.% a) Suppose Gi1,Gs,...,G, are disjoint subsets of {2 such that

Prove that the family G consisting of () and all unions of some

(or all) of Gy, ..., G, constitutes a o-algebra on (2.
b) Prove that any finite o-algebra F on {2 is of the type described
in a).

c) Let F be a finite o-algebra on {2 and let X:2 — R be F-
measurable. Prove that X assumes only finitely many possible
values. More precisely, there exists a disjoint family of subsets
Fy,..., F, € F and real numbers cq, ..., ¢, such that

X(w)=> ciXpw).
i=1

2.8.  Let B; be Brownian motion on R, By = 0. Put E = E°.

a) Use (2.2.3) to prove that

E[eiuBt] — eXp(—%Uzt) foralu e R.
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2.9.%

2.10.

2.11.

2.12.
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b) Use the power series expansion of the exponential function on
both sides, compare the terms with the same power of u and
deduce that

E[B}] = 3t*
and more generally that
ok _ (2R
E[Bt]_gk.k!t’ keN.

c) If you feel uneasy about the lack of rigour in the method in b),
you can proceed as follows: Prove that (2.2.2) implies that

2
! ~%

f(x)e
Vart J

E[f(By)] = dx

for all functions f such that the integral on the right converges.
Then apply this to f(z) = 22 and use integration by parts and
induction on k.

d) Prove (2.2.14), for example by using b) and induction on n.

To illustrate that the (finite-dimensional) distributions alone do not
give all the information regarding the continuity properties of a pro-
cess, consider the following example:

Let (2, F,P) = ([0,00), B, 1) where B denotes the Borel o-algebra
on [0,00) and p is a probability measure on [0, 00) with no mass on
single points. Define

1 ift=w

0 otherwise

Xu(w) = {
and
Yi(w) =0 for all (t,w) € [0,00) x [0,00) .

Prove that {X;} and {Y;} have the same distributions and that X;
is a version of Y;. And yet we have that ¢t — Y;(w) is continuous for
all w, while t — X;(w) is discontinuous for all w.

A stochastic process X; is called stationary if {X;} has the same
distribution as { X4} for any h > 0. Prove that Brownian motion
B, has stationary increments, i.e. that the process {Bi+n — Bi}n>0
has the same distribution for all ¢.

Prove (2.2.15).

Let B; be Brownian motion and fix tg > 0. Prove that

EtSZBtOH*BtO ; t>0

is a Brownian motion.
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2.13.* Let B; be 2-dimensional Brownian motion and put
D, ={z € R?%|z| < p} for p>0.

Compute
P°B, e D,].

2.14.* Let B; be n-dimensional Brownian motion and let K C R"™ have
zero n-dimensional Lebesgue measure. Prove that the expected to-
tal length of time that B, spends in K is zero. (This implies that
the Green measure associated with B; is absolutely continuous with
respect to Lebesgue measure. See Chapter 9).

2.15.* Let B; be n-dimensional Brownian motion starting at 0 and let
U € R™" be a (constant) orthogonal matrix, i.e. UUT = I. Prove
that B
Bti == UBt
is also a Brownian motion.
2.16. (Brownian scaling). Let B; be a 1-dimensional Brownian motion
and let ¢ > 0 be a constant. Prove that
=~ 1
Bt: = —BCZt
¢

is also a Brownian motion.

2.17.% If X;(-): 2 — R is a continuous stochastic process, then for p > 0
the p’th variation process of Xy, (X, X>§p) is defined by

(X, X)P(w) = lim Z | X1, (@)= X, (@) (limit in probability)

where 0 =t <ty <...<t, =tand Aty =ty4+1 — tx. In particular,
if p = 1 this process is called the total variation process and if p = 2
this is called the quadratic variation process. (See Exercise 4.7.) For
Brownian motion B; € R we now show that the quadratic variation
process is simply

(B,B)(w) = (B,B)?(w) =t as.

Proceed as follows:

a) Define
ABy = By, ., — By,

and put

Y(tw) =Y (ABw))*,

tr<t
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2.18.

2.19.

2.20.
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Show that

E[(Y(AB)? 1] =23 (Aty)?

tp<t t, <t

and deduce that Y (t,-) — t in L?(P) as Aty — 0.

b) Use a) to prove that a.a. paths of Brownian motion do not have
a bounded variation on [0, ¢], i.e. the total variation of Brownian
motion is infinite, a.s.

a) Let 2 =1{1,2,3,4,5} and let U be the collection

U=1{{1,2,3},{3,4,5}}

of subsets of (2. Find the smallest o-algebra containing U (i.e. the
o-algebra Hy, generated by U).

b) Define X : 2 — R by

Is X measurable with respect to Hy?
c) DefineY : 2 — R by

Find the o-algebra Hy generated by Y.

Let (£2,F, 1) be a probability space and let p € [1,00]. A sequence
{fn}52, of functions f, € LP(u) is called a Cauchy sequence if

| fo — fmllp — 0 as n,m — 0o.

The sequence is called convergent if there exists f € LP(u) such that
fo— [ in LP(p).

Prove that every convergent sequence is a Cauchy sequence.

A fundamental theorem in measure theory states that the converse is
also true: Every Cauchy sequence in LP (1) is convergent. A normed
linear space with this property is called complete. Thus the LP(u)
spaces are complete.

Let B; be 1-dimensional Brownian motion, ¢ € R be constant and
0 < s < t. Use (2.2.2) to prove that

E[exp(o(Bs — By))] = exp (30%(t — s)). (2.2.18)
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