
Chapter 2

Some Mathematical Preliminaries

2.1 Probability Spaces, Random Variables and
Stochastic Processes

Having stated the problems we would like to solve, we now proceed to find
reasonable mathematical notions corresponding to the quantities mentioned
and mathematical models for the problems. In short, here is a first list of the
notions that need a mathematical interpretation:

(1) A random quantity
(2) Independence
(3) Parametrized (discrete or continuous) families of random quantities
(4) What is meant by a “best” estimate in the filtering problem (Problem 3)
(5) What is meant by an estimate “based on” some observations (Problem 3)?
(6) What is the mathematical interpretation of the “noise” terms?
(7) What is the mathematical interpretation of the stochastic differential

equations?

In this chapter we will discuss (1)–(3) briefly. In the next chapter we will
consider (6), which leads to the notion of an Itô stochastic integral (7). In
Chapter 6 we will consider (4)–(5).

The mathematical model for a random quantity is a random variable.
Before we define this, we recall some concepts from general probability theory.
The reader is referred to e.g. Williams (1991) for more information.

Definition 2.1.1 If Ω is a given set, then a σ-algebra F on Ω is a family
F of subsets of Ω with the following properties:

(i) ∅ ∈ F
(ii) F ∈ F ⇒ FC ∈ F , where FC = Ω \ F is the complement of F in Ω

(iii) A1, A2, . . . ∈ F ⇒ A: =
∞⋃
i=1

Ai ∈ F

7
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The pair (Ω,F) is called a measurable space. A probability measure P on
a measurable space (Ω,F) is a function P :F −→ [0, 1] such that

(a) P (∅) = 0, P (Ω) = 1
(b) if A1, A2, . . . ∈ F and {Ai}∞i=1 is disjoint (i.e. Ai ∩ Aj = ∅ if i �= j)

then

P

( ∞⋃

i=1

Ai

)
=

∞∑

i=1

P (Ai) .

The triple (Ω,F , P ) is called a probability space. It is called a complete
probability space if F contains all subsets G of Ω with P -outer measure zero,
i.e. with

P ∗(G): = inf{P (F );F ∈ F , G ⊂ F} = 0 .

Any probability space can be made complete simply by adding to F all
sets of outer measure 0 and by extending P accordingly. From now on we
will assume that all our probability spaces are complete.

The subsets F of Ω which belong to F are called F -measurable sets. In a
probability context these sets are called events and we use the interpretation

P (F ) = “the probability that the event F occurs” .

In particular, if P (F ) = 1 we say that “F occurs with probability 1”, or
“almost surely (a.s.)”.

Given any family U of subsets of Ω there is a smallest σ-algebra HU
containing U , namely

HU =
⋂
{H;H σ-algebra of Ω, U ⊂ H} .

(See Exercise 2.3.)
We call HU the σ-algebra generated by U .
For example, if U is the collection of all open subsets of a topological space

Ω (e.g. Ω = Rn), then B = HU is called the Borel σ-algebra on Ω and the
elements B ∈ B are called Borel sets. B contains all open sets, all closed
sets, all countable unions of closed sets, all countable intersections of such
countable unions etc.

If (Ω,F , P ) is a given probability space, then a function Y :Ω → Rn is
called F-measurable if

Y −1(U): = {ω ∈ Ω;Y (ω) ∈ U} ∈ F

for all open sets U ∈ Rn (or, equivalently, for all Borel sets U ⊂ Rn).
If X :Ω → Rn is any function, then the σ-algebra HX generated by X is

the smallest σ-algebra on Ω containing all the sets

X−1(U) ; U ⊂ Rn open .
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It is not hard to show that

HX = {X−1(B); B ∈ B} ,

where B is the Borel σ-algebra on Rn. Clearly,X will then be HX -measurable
and HX is the smallest σ-algebra with this property.

The following result is useful. It is a special case of a result sometimes
called the Doob-Dynkin lemma. See e.g. M. M. Rao (1984), Prop. 3, p. 7.

Lemma 2.1.2 If X,Y :Ω → Rn are two given functions,then Y is HX-
measurable if and only if there exists a Borel measurable function g:Rn → Rn

such that
Y = g(X) .

In the following we let (Ω,F , P ) denote a given complete probability space.
A random variable X is an F -measurable function X :Ω → Rn. Every ran-
dom variable induces a probability measure μX on Rn, defined by

μX(B) = P (X−1(B)) .

μX is called the distribution of X .
If

∫

Ω

|X(ω)|dP (ω) <∞ then the number

E[X ]: =
∫

Ω

X(ω)dP (ω) =
∫

Rn

xdμX(x)

is called the expectation of X (w.r.t. P ).
More generally, if f :Rn → R is Borel measurable and∫

Ω

|f(X(ω))|dP (ω) <∞ then we have

E[f(X)]: =
∫

Ω

f(X(ω))dP (ω) =
∫

Rn

f(x)dμX(x) .

The Lp-spaces
If X : Ω → Rn is a random variable and p ∈ [1,∞) is a constant we define
the Lp-norm of X , ||X‖p, by

‖X‖p = ‖X‖Lp(P ) =
(∫

Ω

|X(ω)|pdP (ω)
) 1

p

.

If p = ∞ we set

‖X‖∞ = ‖X‖L∞(P ) = inf{N ∈ R; |X(ω)| ≤ N a. s.}.

The corresponding Lp-spaces are defined by
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Lp(P ) = Lp(Ω) = {X : Ω → Rn; ‖X‖p <∞}.

With this norm the Lp-spaces are Banach spaces, i.e. complete (see Exercise
2.19), normed linear spaces. If p = 2 the space L2(P ) is even a Hilbert space,
i.e. a complete inner product space, with inner product

(X,Y )L2(P ) := E[X · Y ]; X,Y ∈ L2(P ).

The mathematical model for independence is the following:

Definition 2.1.3 Two subsets A,B ∈ F are called independent if

P (A ∩B) = P (A) · P (B) .

A collection A = {Hi; i ∈ I} of families Hi of measurable sets is independent
if

P (Hi1 ∩ · · · ∩Hik) = P (Hi1) · · ·P (Hik)

for all choices of Hi1 ∈ Hi1 , · · · , Hik ∈ Hik with different indices i1, . . . , ik.
A collection of random variables {Xi; i ∈ I} is independent if the collection

of generated σ-algebras HXi is independent.

If two random variables X,Y :Ω → R are independent then

E[XY ] = E[X ]E[Y ] ,

provided that E[|X |] <∞ and E[|Y |] <∞. (See Exercise 2.5.)

Definition 2.1.4 A stochastic process is a parametrized collection of ran-
dom variables

{Xt}t∈T
defined on a probability space (Ω,F , P ) and assuming values in Rn.

The parameter space T is usually (as in this book) the halfline [0,∞), but
it may also be an interval [a, b], the non-negative integers and even subsets
of Rn for n ≥ 1. Note that for each t ∈ T fixed we have a random variable

ω → Xt(ω) ; ω ∈ Ω .

On the other hand, fixing ω ∈ Ω we can consider the function

t→ Xt(ω) ; t ∈ T

which is called a path of Xt.
It may be useful for the intuition to think of t as “time” and each ω

as an individual “particle” or “experiment”. With this picture Xt(ω) would
represent the position (or result) at time t of the particle (experiment) ω.
Sometimes it is convenient to write X(t, ω) instead of Xt(ω). Thus we may
also regard the process as a function of two variables
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(t, ω) → X(t, ω)

from T × Ω into Rn. This is often a natural point of view in stochastic
analysis, because (as we shall see) there it is crucial to have X(t, ω) jointly
measurable in (t, ω).

Finally we note that we may identify each ω with the function t→ Xt(ω)
from T into Rn. Thus we may regardΩ as a subset of the space Ω̃ = (Rn)T of
all functions from T into Rn. Then the σ-algebra F will contain the σ-algebra
B generated by sets of the form

{ω;ω(t1) ∈ F1, · · · , ω(tk) ∈ Fk} , Fi ⊂ Rn Borel sets

Therefore one may also adopt the point of view that a stochastic process is
a probability measure P on the measurable space ((Rn)T ,B).

The (finite-dimensional) distributions of the process X = {Xt}t∈T are the
measures μt1,...,tk defined on Rnk, k = 1, 2, . . ., by

μt1,...,tk(F1 × F2 × · · · × Fk) = P [Xt1 ∈ F1, · · · , Xtk ∈ Fk] ; ti ∈ T .

Here F1, . . . , Fk denote Borel sets in Rn.
The family of all finite-dimensional distributions determines many (but

not all) important properties of the process X .
Conversely, given a family {νt1,...,tk ; k ∈ N, ti ∈ T } of probability mea-

sures on Rnk it is important to be able to construct a stochastic process
Y = {Yt}t∈T having νt1,...,tk as its finite-dimensional distributions. One
of Kolmogorov’s famous theorems states that this can be done provided
{νt1,...,tk} satisfies two natural consistency conditions: (See Lamperti (1977).)

Theorem 2.1.5 (Kolmogorov’s extension theorem)
For all t1, . . . , tk ∈ T , k ∈ N let νt1,...,tk be probability measures on Rnk s.t.

νtσ(1),···,tσ(k)(F1 × · · · × Fk) = νt1,···,tk(Fσ−1(1) × · · · × Fσ−1(k)) (K1)

for all permutations σ on {1, 2, . . . , k} and

νt1,...,tk(F1×· · ·×Fk) = νt1,...,tk,tk+1,...,tk+m
(F1×· · ·×Fk×Rn×· · ·×Rn) (K2)

for all m ∈ N, where (of course) the set on the right hand side has a total of
k +m factors.

Then there exists a probability space (Ω,F , P ) and a stochastic process
{Xt} on Ω,Xt:Ω → Rn, s.t.

νt1,...,tk(F1 × · · · × Fk) = P [Xt1 ∈ F1, · · · , Xtk ∈ Fk] ,

for all ti ∈ T , k ∈ N and all Borel sets Fi.
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2.2 An Important Example: Brownian Motion

In 1828 the Scottish botanist Robert Brown observed that pollen grains sus-
pended in liquid performed an irregular motion. The motion was later ex-
plained by the random collisions with the molecules of the liquid. To describe
the motion mathematically it is natural to use the concept of a stochastic
process Bt(ω), interpreted as the position at time t of the pollen grain ω. We
will generalize slightly and consider an n-dimensional analog.

To construct {Bt}t≥0 it suffices, by the Kolmogorov extension theorem, to
specify a family {νt1,...,tk} of probability measures satisfying (K1) and (K2).
These measures will be chosen so that they agree with our observations of
the pollen grain behaviour:

Fix x ∈ Rn and define

p(t, x, y) = (2πt)−n/2 · exp(−|x− y|2
2t

) for y ∈ Rn, t > 0 .

If 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk define a measure νt1,...,tk on Rnk by

νt1,...,tk(F1 × · · · × Fk) = (2.2.1)

=
∫

F1×···×Fk

p(t1, x, x1)p(t2−t1, x1, x2) · · · p(tk−tk−1, xk−1, xk)dx1 · · ·dxk

where we use the notation dy = dy1 · · · dyk for Lebesgue measure and the
convention that p(0, x, y)dy = δx(y), the unit point mass at x.

Extend this definition to all finite sequences of ti’s by using (K1). Since∫

Rn

p(t, x, y)dy = 1 for all t≥0, (K2) holds, so by Kolmogorov’s theorem there

exists a probability space (Ω,F , P x) and a stochastic process {Bt}t≥0 on Ω
such that the finite-dimensional distributions of Bt are given by (2.2.1), i.e.

P x(Bt1 ∈ F1, · · · , Btk ∈ Fk) =

=
∫

F1×···×Fk

p(t1, x, x1) · · · p(tk − tk−1, xk−1, xk)dx1 . . . dxk . (2.2.2)

Definition 2.2.1 Such a process is called (a version of) Brownian motion
starting at x (observe that P x(B0 = x) = 1).

The Brownian motion thus defined is not unique, i.e. there exist several
quadruples (Bt, Ω,F , P x) such that (2.2.2) holds. However, for our purposes
this is not important, we may simply choose any version to work with. As we
shall soon see, the paths of a Brownian motion are (or, more correctly, can be
chosen to be) continuous, a.s. Therefore we may identify (a.a.) ω ∈ Ω with a
continuous function t→ Bt(ω) from [0,∞) into Rn. Thus we may adopt the
point of view that Brownian motion is just the space C([0,∞),Rn) equipped
with certain probability measures P x (given by (2.2.1) and (2.2.2) above).
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This version is called the canonical Brownian motion. Besides having the
advantage of being intuitive, this point of view is useful for the further anal-
ysis of measures on C([0,∞),Rn), since this space is Polish (i.e. a complete
separable metric space). See Stroock and Varadhan (1979).

We state some basic properties of Brownian motion:

(i) Bt is a Gaussian process, i.e. for all 0 ≤ t1 ≤ · · · ≤ tk the random
variable Z = (Bt1 , . . . , Btk) ∈ Rnk has a (multi)normal distribution.
This means that there exists a vector M ∈ Rnk and a non-negative
definite matrix C = [cjm] ∈ Rnk×nk (the set of all nk × nk-matrices
with real entries) such that

Ex
[
exp

(
i

nk∑

j=1

ujZj

)]
= exp

(
− 1

2

∑

j,m

ujcjmum + i
∑

j

ujMj

)

(2.2.3)
for all u = (u1, . . . , unk) ∈ Rnk, where i =

√
−1 is the imaginary unit

and Ex denotes expectation with respect to P x. Moreover, if (2.2.3)
holds then

M = Ex[Z] is the mean value of Z (2.2.4)

and

cjm=Ex[(Zj−Mj)(Zm−Mm)] is the covariance matrix of Z . (2.2.5)

(See Appendix A).
To see that (2.2.3) holds for Z = (Bt1 , . . . , Btk) we calculate its left
hand side explicitly by using (2.2.2) (see Appendix A) and obtain
(2.2.3) with

M = Ex[Z] = (x, x, · · · , x) ∈ Rnk (2.2.6)

and

C =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1In t1In · · · t1In
t1In t2In · · · t2In

...
...

...
t1In t2In · · · tkIn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (2.2.7)

Hence
Ex[Bt] = x for all t ≥ 0 (2.2.8)

and

Ex[(Bt − x)2] = nt, Ex[(Bt − x)(Bs − x)] = n min(s, t) . (2.2.9)

Moreover,
Ex[(Bt −Bs)2] = n(t− s) if t ≥ s , (2.2.10)

since

Ex[(Bt −Bs)2] = Ex[(Bt − x)2 − 2(Bt − x)(Bs − x) + (Bs − x)2]
= n(t− 2s+ s) = n(t− s),when t ≥ s .
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(ii) Bt has independent increments, i.e.

Bt1 , Bt2 −Bt1 , · · · , Btk − Btk−1 are independent
for all 0 ≤ t1 < t2 · · · < tk . (2.2.11)

To prove this we use the fact that normal random variables are inde-
pendent iff they are uncorrelated. (See Appendix A). So it is enough
to prove that

Ex[(Bti −Bti−1)(Btj −Btj−1 )] = 0 when ti < tj , (2.2.12)

which follows from the form of C:

Ex[BtiBtj −Bti−1Btj −BtiBtj−1 +Bti−1Btj−1 ]
= n(ti − ti−1 − ti + ti−1) = 0 .

From this we deduce that Bs −Bt is independent of Ft if s > t.
(iii) Finally we ask: Is t → Bt(ω) continuous for almost all ω? Stated like

this the question does not make sense, because the set H = {ω; t →
Bt(ω) is continuous} is not measurable with respect to the Borel σ-
algebra B on (Rn)[0,∞) mentioned above (H involves an uncountable
number of t’s). However, if modified slightly the question can be given
a positive answer. To explain this we need the following important
concept:

Definition 2.2.2 Suppose that {Xt} and {Yt} are stochastic processes on
(Ω,F , P ). Then we say that {Xt} is a version of (or a modification of) {Yt}
if

P ({ω;Xt(ω) = Yt(ω)}) = 1 for all t .

Note that if Xt is a version of Yt, then Xt and Yt have the same finite-
dimensional distributions. Thus from the point of view that a stochastic pro-
cess is a probability law on (Rn)[0,∞) two such processes are the same, but
nevertheless their path properties may be different. (See Exercise 2.9.)

The continuity question of Brownian motion can be answered by using
another famous theorem of Kolmogorov:
Theorem 2.2.3 (Kolmogorov’s continuity theorem) Suppose that the
process X = {Xt}t≥0 satisfies the following condition: For all T > 0 there
exist positive constants α, β,D such that

E[|Xt −Xs|α] ≤ D · |t− s|1+β ; 0 ≤ s, t ≤ T . (2.2.13)

Then there exists a continuous version of X.

For a proof see for example Stroock and Varadhan (1979, p. 51).
For Brownian motion Bt it is not hard to prove that (See Exercise 2.8)

Ex[|Bt −Bs|4] = n(n+ 2)|t− s|2 . (2.2.14)
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So Brownian motion satisfies Kolmogorov’s condition (2.2.13) with α = 4,
D = n(n+2) and β = 1, and therefore it has a continuous version. From now
on we will assume that Bt is such a continuous version.

Finally we note that

If Bt=(B(1)
t , · · · , B(n)

t ) is n-dimensional Brownian motion, then

the 1-dimensional processes {B(j)
t }t≥0, 1≤j≤n are independent,

1-dimensional Brownian motions . (2.2.15)

Exercises

2.1. Suppose that X :Ω → R is a function which assumes only countably
many values a1, a2, . . . ∈ R.

a) Show that X is a random variable if and only if

X−1(ak) ∈ F for all k = 1, 2, . . . (2.2.16)

b) Suppose (2.2.16) holds. Show that

E[|X |] =
∞∑

k=1

|ak|P [X = ak] . (2.2.17)

c) If (2.2.16) holds and E[|X |] <∞, show that

E[X ] =
∞∑

k=1

akP [X = ak] .

d) If (2.2.16) holds and f :R → R is measurable and bounded,
show that

E[f(X)] =
∞∑

k=1

f(ak)P [X = ak] .

2.2. Let X :Ω → R be a random variable. The distribution function F of
X is defined by

F (x) = P [X ≤ x] .

a) Prove that F has the following properties:
(i) 0 ≤ F ≤ 1, lim

x→−∞
F (x) = 0, lim

x→∞
F (x) = 1 .

(ii) F is increasing (= non-decreasing).
(iii) F is right-continuous, i.e. F (x) = limh→0

h>0
F (x+ h) .



16 2. Some Mathematical Preliminaries

b) Let g:R → R be measurable such that E[|g(X)|] < ∞. Prove
that

E[g(X)] =

∞∫

−∞

g(x)dF (x) ,

where the integral on the right is interpreted in the Lebesgue-
Stieltjes sense.

c) Let p(x) ≥ 0 be a measurable function on R. We say that X
has the density p if

F (x) =

x∫

−∞

p(y)dy for all x .

Thus from (2.2.1)–(2.2.2) we know that 1-dimensional Brownian
motion Bt at time t with B0 = 0 has the density

p(x) =
1√
2πt

exp(−x
2

2t
); x ∈ R .

Find the density of B2
t .

2.3. Let {Hi}i∈I be a family of σ-algebras on Ω. Prove that

H =
⋂
{Hi; i ∈ I}

is again a σ-algebra.

2.4.* a) Let X :Ω → Rn be a random variable such that

E[|X |p] <∞ for some p, 0 < p <∞ .

Prove Chebychev’s inequality:

P [|X | ≥ λ] ≤ 1
λp
E[|X |p] for all λ ≥ 0 .

Hint:
∫

Ω

|X |pdP ≥
∫

A

|X |pdP , where A = {ω: |X | ≥ λ} .

b) Suppose there exists k > 0 such that

M = E[exp(k|X |)] <∞ .

Prove that P [|X | ≥ λ] ≤Me−kλ for all λ ≥ 0 .

2.5. Let X,Y :Ω → R be two independent random variables and assume
for simplicity that X and Y are bounded. Prove that

E[XY ] = E[X ]E[Y ] .
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(
Hint: Assume |X | ≤M , |Y | ≤ N . Approximate X and Y by simple

functions ϕ(ω) =
m−1∑
i=1

aiXFi(ω), ψ(ω) =
n−1∑
j=1

bjXGj (ω), respectively,

where Fi = X−1([ai, ai+1)), Gj = Y −1([bj , bj+1)), −M = a0 < a1 <
. . . < am = M , −N = b0 < b1 < . . . < bn = N . Then

E[X ] ≈ E[ϕ] =
∑

i

aiP (Fi), E[Y ] ≈ E[ψ] =
∑

j

bjP (Gj)

and
E[XY ] ≈ E[ϕψ] =

∑

i,j

aibjP (Fi ∩Gj) . . .
)
.

2.6.* Let (Ω,F , P ) be a probability space and let A1, A2, . . . be sets in F
such that

∞∑

k=1

P (Ak) <∞ .

Prove the Borel-Cantelli lemma:

P (
∞⋂

m=1

∞⋃

k=m

Ak) = 0 ,

i.e. the probability that ω belongs to infinitely many A′
ks is zero.

2.7.* a) Suppose G1, G2, . . . , Gn are disjoint subsets of Ω such that

Ω =
n⋃

i=1

Gi .

Prove that the family G consisting of ∅ and all unions of some
(or all) of G1, . . . , Gn constitutes a σ-algebra on Ω.

b) Prove that any finite σ-algebra F on Ω is of the type described
in a).

c) Let F be a finite σ-algebra on Ω and let X :Ω → R be F -
measurable. Prove that X assumes only finitely many possible
values. More precisely, there exists a disjoint family of subsets
F1, . . . , Fm ∈ F and real numbers c1, . . . , cm such that

X(ω) =
m∑

i=1

ciXFi(ω) .

2.8. Let Bt be Brownian motion on R, B0 = 0. Put E = E0.

a) Use (2.2.3) to prove that

E[eiuBt ] = exp(− 1
2u

2t) for all u ∈ R .
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b) Use the power series expansion of the exponential function on
both sides, compare the terms with the same power of u and
deduce that

E[B4
t ] = 3t2

and more generally that

E
[
B2k
t

]
=

(2k)!
2k · k! t

k ; k ∈ N .

c) If you feel uneasy about the lack of rigour in the method in b),
you can proceed as follows: Prove that (2.2.2) implies that

E[f(Bt)] =
1√
2πt

∫

R

f(x)e−
x2
2t dx

for all functions f such that the integral on the right converges.
Then apply this to f(x) = x2k and use integration by parts and
induction on k.

d) Prove (2.2.14), for example by using b) and induction on n.

2.9.* To illustrate that the (finite-dimensional) distributions alone do not
give all the information regarding the continuity properties of a pro-
cess, consider the following example:
Let (Ω,F , P ) = ([0,∞),B, μ) where B denotes the Borel σ-algebra
on [0,∞) and μ is a probability measure on [0,∞) with no mass on
single points. Define

Xt(ω) =
{ 1 if t = ω

0 otherwise

and
Yt(ω) = 0 for all (t, ω) ∈ [0,∞)× [0,∞) .

Prove that {Xt} and {Yt} have the same distributions and that Xt

is a version of Yt. And yet we have that t → Yt(ω) is continuous for
all ω, while t→ Xt(ω) is discontinuous for all ω.

2.10. A stochastic process Xt is called stationary if {Xt} has the same
distribution as {Xt+h} for any h > 0. Prove that Brownian motion
Bt has stationary increments, i.e. that the process {Bt+h − Bt}h≥0

has the same distribution for all t.

2.11. Prove (2.2.15).

2.12. Let Bt be Brownian motion and fix t0 ≥ 0. Prove that

B̃t: = Bt0+t −Bt0 ; t ≥ 0

is a Brownian motion.
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2.13.* Let Bt be 2-dimensional Brownian motion and put

Dρ = {x ∈ R2; |x| < ρ} for ρ > 0 .

Compute
P 0[Bt ∈ Dρ] .

2.14.* Let Bt be n-dimensional Brownian motion and let K ⊂ Rn have
zero n-dimensional Lebesgue measure. Prove that the expected to-
tal length of time that Bt spends in K is zero. (This implies that
the Green measure associated with Bt is absolutely continuous with
respect to Lebesgue measure. See Chapter 9).

2.15.* Let Bt be n-dimensional Brownian motion starting at 0 and let
U ∈ Rn×n be a (constant) orthogonal matrix, i.e. UUT = I. Prove
that

B̃t: = UBt

is also a Brownian motion.

2.16. (Brownian scaling). Let Bt be a 1-dimensional Brownian motion
and let c > 0 be a constant. Prove that

B̂t: =
1
c
Bc2t

is also a Brownian motion.

2.17.* If Xt(·):Ω → R is a continuous stochastic process, then for p > 0
the p’th variation process of Xt, 〈X,X〉(p)t is defined by

〈X,X〉(p)t (ω) = lim
Δtk→0

∑

tk≤t

∣∣Xtk+1(ω)−Xtk(ω)
∣∣p (limit in probability)

where 0 = t1 < t2 < . . . < tn = t and Δtk = tk+1 − tk. In particular,
if p = 1 this process is called the total variation process and if p = 2
this is called the quadratic variation process. (See Exercise 4.7.) For
Brownian motion Bt ∈ R we now show that the quadratic variation
process is simply

〈B,B〉t(ω) = 〈B,B〉(2)t (ω) = t a.s.

Proceed as follows:

a) Define
ΔBk = Btk+1 −Btk

and put
Y (t, ω) =

∑

tk≤t
(ΔBk(ω))2 ,
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Show that

E[(
∑

tk≤t
(ΔBk)2 − t)2] = 2

∑

tk≤t
(Δtk)2

and deduce that Y (t, ·) → t in L2(P ) as Δtk → 0 .
b) Use a) to prove that a.a. paths of Brownian motion do not have

a bounded variation on [0, t], i.e. the total variation of Brownian
motion is infinite, a.s.

2.18. a) Let Ω = {1, 2, 3, 4, 5} and let U be the collection

U =
{
{1, 2, 3}, {3, 4, 5}

}

of subsets of Ω. Find the smallest σ-algebra containing U (i.e. the
σ-algebra HU generated by U).

b) Define X : Ω → R by

X(1) = X(2) = 0, X(3) = 10, X(4) = X(5) = 1.

Is X measurable with respect to HU?
c) Define Y : Ω → R by

Y (1) = 0, Y (2) = Y (3) = Y (4) = Y (5) = 1.

Find the σ-algebra HY generated by Y .

2.19. Let (Ω,F , μ) be a probability space and let p ∈ [1,∞]. A sequence
{fn}∞n=1 of functions fn ∈ Lp(μ) is called a Cauchy sequence if

‖fn − fm‖p → 0 as n,m→∞.

The sequence is called convergent if there exists f ∈ Lp(μ) such that
fn → f in Lp(μ).
Prove that every convergent sequence is a Cauchy sequence.
A fundamental theorem in measure theory states that the converse is
also true: Every Cauchy sequence in Lp(μ) is convergent. A normed
linear space with this property is called complete. Thus the Lp(μ)
spaces are complete.

2.20. Let Bt be 1-dimensional Brownian motion, σ ∈ R be constant and
0 ≤ s < t. Use (2.2.2) to prove that

E
[
exp(σ(Bs −Bt))

]
= exp

(
1
2σ

2(t− s)
)
. (2.2.18)
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