2. Cleaning Dirty Pictures

In this chapter we will discuss and illustrate the previously introduced con-
cepts. We will pursue the process how expectations and restrictions are trans-
lated to and incorporated into Bayesian models.

We continue with edge preserving smoothing and image denoising from
Section 1.1; it is conceptually simple, can be grasped intuitively, and needs
no further theory. Moreover, it has direct applications in diverse important
fields like segmentation, motion analysis, remote sensing, tomography, X-ray
imaging, and other medical imaging techniques, just to mention some. This
will be made clear in Chapter 21 by various examples. The idea of smoothing
while preserving significant dissimilarities also penetrates disciplines where
the features of interest are not intensities. Important examples are texture
segmentation, and classification, treated in Part V of this text. The gen-
eral philosophy behind is simple: interesting things happen where something
changes; discontinuous phenomena are important carriers of information.

Let us return to intensity patterns. Real scenes usually are composed of
comparably smooth regions. Noise degradation results in roughness at small
scale. To reduce the noise contribution and thereby ‘restore’ an image, one
smoothes data in one or the other way. Global smoothing has the unpleas-
ant property to blur really existing contrast. Hence we aim at boundary
preserving methods. We will distinguish between edges as local instances
of sharp contrast and, at a somewhat higher level, boundaries as organized
strings of edges or ‘regular’ contours across which contrast is high. Edges and
boundaries play an important role in our considerations. They are intimately
connected to edge preserving smoothing, since smooth parts of an image on
different intensity levels automatically are separated by something we call
boundaries, and boundaries are modelled as strings of edges. Conversely,
contrast boundaries surround regions of smoothness. Hence edge detection
or boundary finding is an important part of image analysis. The Bayesian
approach allows one to incorporate notions like smoothness or regularity of
boundaries too. This aspect will be addressed in Example 2.4.1.
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2.1 Boundaries and Their Information Content

Before we turn to our main subject, some ‘philosophical’ remarks on bound-
aries are in order. These are important primitive image features; for instance
they provide an indication of the extent of objects and hence together with
other features are helpful for higher level image processing. As an example,
we consider intensity discontinuities.

Intensity boundaries may carry a considerable amount of information, rel-
evant for the observer or for processing tools. This is evident for line drawings,
handwriting, or blueprints. It seems that transmission of rational informa-
tion crucially relies on boundaries (for feelings and emotions this seems to be
different as a look at impressionist paintings like TURNER’S suggests).

This can to some extent be made precise, as U. DAUB (1995) and V. Auv-
RICH and U. DAUB (1996) show. Their approach may roughly be summarized
as follows: Take a digital picture and set a good edge detector to work. Store
the boundaries. This requires much less storage capacity than the whole origi-
nal picture. Add as a little bit more information intensities from the few pixels
on a very sparse sub-grid of the original pixel grid. The ratio of memory re-
quired to store these data to that required to store the whole picture is called
compression rate. Now construct a new picture from these sparse data in the
following way (we omit technical details): interpolate the values on the fine
original pixel grid from those on the sparse grid. To preserve contrast, the
interpolation method from a fixed pixel s does not ‘see’ intensities in pixels
t beyond the boundary surrounding s. This results in a picture which inside
regions surrounded by a boundary is smoother than the original one.

~~ g g~

Fig. 2.1. Natural scene and BPC compression, rate 2.94% ([73])

The information content of boundaries (together with the little extra in-
formation of undersampled intensities) is quantified in the following way: Fix
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Fig. 2.2. Numerals on a computer chip compressed at rate about 5 %. U.L.: original
image; 1.1. BPC compression; u.r.: compression with JPEG, based on cosine transform
Lr.: EpiC, a wavelet compression; [73]

the boundaries. Store the intensities on more and more sparse sub-grids as
long as a human observer accepts the recovered image as a reasonable version
of the original one. The resulting compression rate is a measure for the in-
formation content of boundaries; if it is 4 % then we threw away 96 % of the
original data and still have nearly the same information. Let us abbreviate
this method for boundary preserving compression by BpcC.

Both excellent restoration and compression are impressively illustrated
by way of a couple of experiments. In Figure 2.1 a natural scene is processed
with Bpc. Figure 2.2 compares Brpc with JPEG, the former international
compression standard (based on cosine transforms), and with the wavelet
based method Epic. Compression based on piecewise smoothing and edge
detection is completely different in flavour. Obviously, it is an excellent basis
for subsequent processing like number recognition.

2.2 Towards Piecewise Smoothing

Let us now turn to the Bayesian approach to piecewise smoothing of images.
This is our first and main example how the Bayesian paradigm can be used
in imaging. In this section we develop step by step a prior model for edge
preserving smoothing. We shall find simple general principles behind. This
is expressed in the following quotation from J.-M. MOREL and S. SOLIMINI
(1995), p. XII:

More than thousand algorithms have been proposed for segmenting
images or detecting ‘edges’. ... The result of this discussion was un-
expected to the authors of this book because they became aware that
under the very large diversity of these tools, there essentially was only
one segmentation (or ‘edge detection’) model. ... most segmentation
algorithms try to minimize ... the same Segmentation energy. This
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energy measures how smooth the regions are, how faithful the ‘an-
alyzed image’ to the original image and the obtained ‘edges’ to the
image discontinuities are.

Let us continue from Section 1.1 and start again from the Ising model. Let
us first recall the situation for the simplest case: S is a finite square grid, two
nodes are declared as neighbours if they are next to each other in one of the
four horizontal or vertical directions, and in each node s € S there is a value
gs equal to £1. The Ising energy function

K(g9) ==Y gsg;, 9s= %1, (2.1)
s~t

measures the excess of unlike over like neighbour pairs. The corresponding
Gibbsian prior has the form

exp (Y, Ys9t)
Zz exp ( stt ZSZt)

Plainly, IT is not affected by addition of a constant to K:

exp (3, 959t)  __xp (Xgns 959+ C))
Zz exp (Eswt Zszt) Z: exp ((ZSNt Zs2t + C))
and this simple observation allows different interpretations. Continuing with

notation from Section 1.1 let E = {{s,t} € S x S : s ~ t}. On the one hand,
choosing C' = |E| we get

Kip(g) = - nggt - |E]|

s~t

= —number of like + number of unlike neighbours — |E| (2.2)

II(g) =

, CeR,

= —2 x number of like neighbour pairs,

This measures the degree of smoothness. On the other hand,

Kp(g) ==Y gs9:+ | E|

st
= —number of like + number of unlike neighbours + |E| (2.3)
= 2 X number of unlike neighbour pairs = 2 x boundary length.

Hence Kg(g) is proportional to the length of the imaginary boundary be-
tween black and white regions. We see that the Ising model comprises two
complementary aspects: smoothness of regions and length of boundaries be-
tween regions of different intensities. The difference between these aspects
becomes more evident if we generalize to multi-valued intensities. Let the g,
take values in a finite set G. Then the straightforward generalization of the
boundary approach is the energy function
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LP(g) =8> (1-06(gs,9:)) = B - boundary length, >0, (2.4)

s~t

which again measures the length of the imaginary boundary between regions
of different colour. We inserted the parameter § to control the strength of
interaction. The MAP estimator tries to keep this boundary length as short as
possible. Hence it produces fairly regular boundaries, since wiggly boundaries
tend to be long, see Fig. 1.2. The patches of equal colour tend to be large
and of regular shape. Note that this can also be interpreted as segmentation
of the picture, and in fact, for this model edge detection = segmentation. At
this point, we are very close to texture segmentation where the g, are labels
associated to certain types of texture. The Gibbs field IT(g) o exp(—L”(g))
is known as the Potts model (R.B. PoTTs (1952)).
If G C R, then smoothness may be scored by

G9) =B (95— @), B>0. (2.5)

s~t

If g = +1 then gs9: = (95 — g:)?/2 — 1 and hence (2.5) is compatible with
the binary model (2.1). This simultaneously gives a least squares interpreta-
tion of (2.1) besides the smoothness interpretation (2.2) and the boundary
interpretation (2.3). If one combines the respective priors with a data term,
say D(g,y) = Y_.(9s — ys)?, then one arrives at posterior energy functions

LP(g,y) =B (1-0(gs,91)) + D(g,9) (2.6)
G*(g,y) =B (9s — 9)> + D(g,y). (2.7)

The first prior favours sharp boundaries surrounding regions of constant in-
tensity. The second one smoothes gently but blurs contrast. The obvious
question is how to draw benefit from both models. If we combine both in one
single model then each one should be given a turn where it is superior to the
other. To achieve this goal we introduce variables es;; which can switch off
smoothing and instead allow sharp breaks, and vice versa. For neighbour pix-
els s,t we introduce the microedge s ~ t between s and t. This was illustrated
in Fig. 1.4. For each microedge we define ‘switch variables’

o = {0 no edge between s and t for 5 o t.

1 an edge between s and ¢

Generic parameters are now of the form = = (g,e) and the parameter space
is X = G x Ewith G=G° and E = {0,1}¥. Now the two models are linked
by means of the switches:

H(gae) = Z ()‘Z(gs _gt)2 (1 _est)+ A€t ) + D(gay) . (28)
ot ﬁ—/%/—/ N~~~ N——r
smoothing on/off  penalty data term
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For the discussion recall from Section 1.1 that low H means ‘good’. If A2(g, —
g¢)? > a then it pays off to accept the penalty «a for es; = 1 and to switch off
the smoothing term (i.e. set it to 0). Therefore the penalty for high contrast
lgs — g¢| will not exceed a, and contrast survives if the distance to data is
sufficiently low. If the contribution to D(g,y) is high, then smoothing should
be ‘on’, or es = 0, to enforce a low value (gs — g¢)2.

Figs. 2.3 and 2.4 illustrate the paradigm of combining an edge model
with a smoothing model. Figs. 2.3 displays MAP estimators for the models
(2.4), (2.7), and (2.8). The differences are clearly visible in the profiles along
straight lines. If we look at the two dimensional images thoughtfully and vary
the distance to the picture we find that the visual impression of the pictures
is not drastically different. This shows that the human imaging system works
perfectly well and is robust against many kinds of distortions of usual images.
It seems not to be trained to do the same with the one-dimensional plots. A
similar effect is illustrated in Fig. 2.4 where 2D scenes are contrasted with
3D surface plots.

Remark 2.2.1. Perhaps it is helpful to think of the image g as an elastic
membrane which is drawn towards data y by the term D(g,y). In its neutral
position the membrane is as flat as possible, ideally it is constant. Stretch-
ing increases the energy by the squared derivative; the discrete directional
derivative (gs — g¢)/h between an s and its neighbour ¢ at distance h is the
elongation of the membrane. Because in our case h = 1, the membrane is
elongated by the factor |gs — g¢| which then is squared. The important issue
is that the membrane breaks if data enforce this and this entails energy costs
«. This is the basic idea along which A. BLAKE and A. Z1SSERMAN developed
their discrete version of the variational approach of D. MUMFORD AND J.
SHAH, D. MUMFORD and J. SHAH (1989), see their monograph A. BLAKE
and A. ZISSERMAN (1987). They do not work in the Bayesian framework and
restrict themselves to the special case D(g,y) = Y.,(ys — gs)?, cf. Example
6.2.3. Independently S. GEMAN and D. GEMAN (1984) adopted similar mod-
els in the Bayesian formulation, which explicitly incorporated edge elements
and allow for arbitrary noise, cf. the Examples 2.2.2 and 2.4.1.

Ezample 2.2.1. Let us compare the models (2.7) and (2.8). Let S={1,2, 3,4}
C Z with neighbour pairs {1,2}, {2,3}, and {3,4}. Set all parameters £,
A2, and a equal to 1. To avoid calculations, choose data y; = —1/2 = ys,
Yo = 1/2 = y4, and g; = 0 for every i. Then G'(g,y) = 1 = L'(g,y). This
is a low value underlining the smoothing effect of both functions. Choose
now data y1 = —2 = y» and y3 = 2 = y4 with a jump between s = 2 and
s = 3. For ¢ = y you get G*(g,y) = 16 whereas L'(g,y) = 1. Hence edge
preservation is favourable for L' whereas it is penalized by G!. Increasing
the jump height increases this difference drastically.

In summary, the model (2.8) consistently combines smoothing and preserva-
tion of boundaries. Boundaries explicitly enter the model. There is a general
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- Fig. 2.3. A natu-
. ral scene, the MAP
estimators for  the
Potts posterior (2.6),
the sum of squares
posterior (2.7), and the
edge preserving pos-
terior (2.8), or (2.10);
intensity profiles along
the horizontal lines
through the center of
the pupils
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Fig. 2.4. Upper array: the girls eyes

from Fig. 2.3; lower array: same as 3D-
" m surface plots

principle behind this method. A homogeneous local operation is switched off
where there is evidence that it does not make sense. Simultaneously, the set
where the operation is switched off is organized according to regularity re-
quirements; presently these are formulated in terms of the contour length.
We shall meet this principle in various other models, for example in texture
segmentation (Part V), or in motion analysis (Chapter 21).

The following simple but fascinating observation reveals that this is equiv-
alent to a robustification of the prior distribution. What this means will be
explained after some elementary calculations. Let (g*,e*) be a minimizer of
H(g,e). The data term does not depend on e and hence still has the form
D(g,y). We compute

H(g*,e*) = D(g%,y) + Z M (gF —g5)*(1 —ef,) + ae,
s~t
= min (D(g,y) + Y N (95 = 90)*(1 - ext) + e
’ s~t
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= min D(g,y) + ( min A*(gs — g1)*(1 — eq) + aest)
s~t

est=0,1

= min D(g,y) + Zmin{kz(gs —g0)%, a}
9

s~t

min D(g, y) + > lgs — a1, (2.9)

s~t

where the function ¢ is the truncated square function (2.11). Hence an opti-
mal intensity pattern ¢g* is a minimizer of the function

gr— > lgs — g1) + D(g,y), (2.10)

s~t

and vice versa. This function does not depend on e anymore. The component
e* of (g*,e*) can be uniquely reconstructed from g* since:

e =1<|g9; —gf| >d=Va/x, A>0.

In this model intensity differences |gs — g¢| > 0 are treated like in the Potts
model whereas differences |g; — g:| < 0 are not recognized as jumps and
hence smoothed according to (2.5). The message is that explicitly including
edge elements and thereby modelling boundaries is equivalent to replacing
the square function in (2.5) by the truncated square function ¢ in (2.11).
Graph and contour lines of the function (2.10) for two pixels and Gaussian
D is displayed in Fig. 2.6.

The form of ¢ and (2.9) tell a statistician that edge preservation is closely
related to robust statistics. Let us briefly indicate what ‘robust’ means.

Remark 2.2.2 (Robust estimators). Robust statistics has several aspects. The
oldest one was handling outliers in data. A crude but nevertheless frequently
adopted practice is to remove what one believes to be outliers. Robust statis-
tics deals with outliers without a need to identify them. We quote from F.R.
HAMPEL et al. (1986):

This ‘classical approach’ is founded on stringent stochastic models,
and before long it was noticed that the real world does not behave
as nicely as described by their assumptions. ... parametric mod-
els are used as vehicles of information, and procedures that do not
depend critically on the assumptions inherent in these models are
implemented.

In the simplest case one has i.i.d. random variables Y7, ...,Y, with common
finite expectation E(Y;) = m, and wants to estimate m. To this end one con-
structs an estimator or a statistic ¢ which for each realization y = y1,...,yn
returns an estimate t(yq, . ..,¥,). A traditional procedure is to choose a min-
imizer of the sum of squares of residuals
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5 } 5 Fig. 2.5. The ‘cup function’
a p(u) = pM(w)  (2.11)
(10)\,04 = min{\?u?, a}

9 — Ly, 9) =Y (v —9)°.

i=1

Setting the derivative with respect to ¥ to 0 gives the arithmetic mean
y = (1/n) >, y; which is the BLUE, i.e. the best linear unbiased estima-
tor. This means that among all linear estimators with expectation m it has
the least variance. If the variables are Gaussian then it is even the best among
all unbiased estimators, and simultaneously it is the maximum likelihood es-
timator, i.e. that value which maximizes the density (1.9). Could we wish for
anything better? Unfortunately, the performance of the mean changes dras-
tically if the model assumptions are violated. A single large deviation from
m in yp, ... ,y, has a strong influence on L since it is weighted heavily by
the squares, and hence on § itself, cf. Example 2.3.2.

Violation of the model assumption can appear in various ways. We may, for
example, guess that the distribution is Gaussian, but in reality it is near the
Laplace distribution, which has more heavy tails, cf. again Example 2.3.2.
Another possibility is that the true distribution p is close to the Gaussian
N(m,o?) but there is contamination by some other distribution v:

Fig. 2.6. Graph of (2.10) for two pixels 1 and 2: (g1, g») + min{100-(g1 —g»)*, 10} +
(g1 —2)® + (g2 + 2)?, seen from below and contour lines
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p=(1—-e)N(m,o*)+ev, 0<e<1.

Such a contaminated distribution may have heavy tails causing outliers. Insert
for example v = N (m,1000?) with a small . As a remedy one may replace
the squares by functions penalizing large differences more moderately. This
leads to M-estimators, which minimize functions

90— > oy — ),
i=1

with o(u) increasing slower in |u| than u?, see PETER J. HUBER (1981). Least
squares are the case po(u) = u?. HUBER suggests the least convex function
which coincides with A?«2 in a ball; it has the form

A2u? if ju| < ¢
o(u) = {2)\\/5|u| —a if IUI >0’ 0= va/x (2.12)
The associated Gibbs distribution, for which the MAP estimator is the max-
imum likelihood estimator, has density h(u) x exp(—o(u)) and is called the
least favourable distribution since in a neighbourhood of the normal law its
maximum likelihood estimator has largest variance. In the M-estimator, o
reduces the influence of outliers but does not remove it completely.
To kill the influence of outliers completely, HAMPEL cuts off the branches
of ¢ and introduces the p-function

[ N%? if fu| < d _

see F.R. HAMPEL et al. (1986). We realize that this is precisely the function
we derived by the calculations (2.9) from the edge model (2.8)! We can now
argue the other way round: reading the calculations in reverse order shows
that a radical robust approach to edge-preserving smoothing leads to the
edge model (2.8). The interpretation from the robust point of view is quite
natural: Consider a jump as displayed in Fig. 2.9. On the left half, variables
have a law p, with mean a and on the right half the law is g, with mean b,
a # b. As a neighbourhood or a window moves from left to right across the
jump, there is more and more contamination of p, by up until u, has been
completely turned into py.

Letting @ — 0 and 2\ — oo such that Aa'/? — v € R in HUBER’S proposal
(2.12) gives a weighted modulus g(u) = v|u|. It leads to a robust L!-theory
of statistics; it is much harder than the usual L2-theory for least squares,
cf. P. BLoOMFIELD and W.L. STEIGER (1983). The corresponding L!-prior
II(z) x exp(—p ) |zs—x¢]) is the most popular ‘edge-preserving’ prior. With
the modulus we can play the same game as with the square and arrive at an
edge type model with ¢ replaced by

[ Al] i |u] <6 _
g(u)—{ a if|u|2(5’6_a/)\'
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For further discussion we refer to Example 2.3.3, G. WINKLER et al. (1999),
and G. WINKLER and V. LIEBSCHER (2002).

Let us close this section with the classical example of a Bayesian edge model.

Ezample 2.2.2 (S. GEMAN and D. GEMAN (1984)). Bayesian imaging be-
came popular in the statistics community after the seminal article S. GE-
MAN and D. GEMAN (1984), [130], see also D. GEMAN (1990). Their idea of
piecewise smoothing by means of edge elements is nearly identical to that in
A. BLAKE and A. Z1SSERMAN (1987). The main difference is that the former
authors adopt the Bayesian approach and thereby are free to incorporate sta-
tistical properties of noise and additional image features; the latter authors
aim at the special GNC algorithm, cf. Section 6.2.3, which strictly limits their
model to the form (2.8). The model in [130] also encapsulates various terms
intended to capture regularity properties of boundaries. Our discussion above
already included the regularity requirement of their shortness. In addition,
in [130] selected undesired local edge configurations are penalized to control
the shape of boundaries.

The context is the same as for (2.8). The state space is X = G x E with the
spaces G of intensity patterns and E of edge configurations. The joint prior
distribution of g and e is given by:

H(g7e) X exp ( - K(gae))7 K(gae) = KS(gae) +KE(6)

The first term is responsible for boundary preserving smoothing and is very
similar to that in (2.8). The second one controls the shape of boundaries.
The smoothing term is given by

Ks(g,e€) 219221/}(..% _gt) (1_est)- (2.13)

The authors propose functions v similar to ¢ in (2.11), for example (2.15).
Since A?u?(1 —v) + A2av = A (u? — a)(1 — v) + A%, and since addition of

Fig. 2.7. Another cup function:

2

constants does not affect the Gibbs distribution, the model is of the same form
as (2.8) but with 1 instead of u? — a and with o/ = A%« instead of a. In view
of the discussion preceding (2.11), this amounts to a ‘double robustification’
since the edge terms correspond to a truncation of ¥ and hence cancel the
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effect ‘¢»(u) — constant’ as |u| — oo. For small dynamic range - say up to
15 grey values - the authors recommend the Potts type function ¥(0) = —1
and ¥(u) = 1 otherwise. In summary, the discussion of this smoothing term
is the same as above.

The function Kg(e) = —aW(e), a > 0, serves as an additional organization
term for the edges. W weights selected local edge configurations with a large
factor if they are desired and with a small one if they are not. A sample of local
configuration is displayed in Fig. 2.8. Edges should not be set inside smooth
regions and therefore ‘empty’ local configurations (a) get large weights wyp.
Smooth boundaries around smooth patches are welcome and configurations
(b) are weighted by w1 < wp; sharp turns and T-junctions (c) and (d) get
weights w3 < ws < w; and blind endings and crossings (e) and (f) are
penalized by weights wy < ws. One may add an ‘index of connectedness’ and

Fig. 2.8. Selected lo-

o o o o o | o o | o o o o | o cal configurations of

- - ' active edges: noth-

o o o o o o o o o o o | o ing, straight line, T-

@ ®  © @ (9 (@ | Juction sharp tum,
blind end, crossing

further organization terms; we postpone such supplements to Example 2.4.1.
The prior energy function K = Kg + K is specified now. Given a model
for degradation and an observation y of degraded grey values the posterior
can be computed (Example 1.2.5) and one can compute posterior estimates
like MAP estimates. Note that posterior means do not give precise boundary
values es; = 0,1. Nevertheless they may be used followed by rounding to 0
and 1.

This example illustrates a crucial aspect of contextual models. Smoothing,
boundary finding, and organization of boundaries are simultaneous and co-
operative processes.

2.3 Filters, Smoothers, and Bayes Estimators

Let us discuss the problem of smoothing or denoising and edge preservation
from another point of view. Suppose we want to recover or restore an intensity
pattern x from observed intensity data y. We invent a clever algorithm which
produces the output & if fed with the input y. For such a map y — F(y) = &
the designation filter is borrowed from engineering. Statisticians call it an
estimator, at least if randomness is involved. In this sense all Bayes estimators
introduced in Section 1.4 may be viewed as instances of filters.

Most conventional and also many recently developed filters act on signals
taking values in Euclidean spaces R¢ and not on finite discrete sets. In order
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to compare Bayesian estimators with such methods, we must also let them
take continuous values. Let us hence consider signals or images as elements
of a space X = {(ys)ses : ys € R}. We use the symbol X to distinguish
continuous signals from discrete ones, where we usually wrote X.

Let us start now naively from the very beginning. In the signal analysis
community, linear filters are very popular. A map F from X to X is called
linear if it fulfills F(ay+a'y") = aF (y)+o' F(y') forall y,y' € X, and a,a’ €
R. One reason for the popularity of linear filters is Fourier analysis, which
simultaneously is a powerful tool for their analysis, and a useful instrument
for their practical implementation. The first simple example is concerned with
the most frequently used filters.

Ezample 2.3.1 (Moving averages). Moving averages convolve the observed
image with ‘noise cleaning masks’. In the two-dimensional case, the latter are
matrices M = (M(k,1))} i, such that the weights M (k,) are nonnegative

and add up to 1; they were introduced in Example 1.2.5. On signals y € RZ®
their action is

q
(My) iy = Z Mk, Dy ik, j-1), (2.16)
k,l=—q

where (i,7) = s denotes a generic lattice point. If S is a finite lattice then
the definition is modified near the boundary, or better, the upper and lower
rim, as well as the left and right rim, are identified, and one works on a
torus. Typical instances are the uniform and the binomial masks in (1.11).
A large variety of such masks (and combinations) can be found in the tool-
box of image processing. A classical reference for such filters is W.R. PRATT
(1991), see also B. JAHNE (2002), [211], or B. JAHNE (1993) in German. The
uniform filter usually over-smoothes; even worse, inspection of its Fourier
transform shows that it does not remove roughness of certain ‘wave lengths’
(apply it to vertical or horizontal stripes of different width, cf. [211]). The
Binomial filter performs much better but there is still oversmoothing. The
filters frequently are iterated several times. Note that in Example 1.2.5 we
used the same construction to model blur. In fact, such filters smooth or blur
the signal in order to reduce the noise contribution. This works on flat parts,
but jumps are more or less destroyed. This is illustrated in Fig. 2.9.

A typical example of a nonlinear filter is the moving median.

Ezample 2.3.2 (Moving median). For s = (i,j) let Bs = {t = (i,j) £ (l,k) :
1], k| < q} be windows, and observations y;, t € B, with values in R, or an
ordered space be given. Write the observations in the window in increasing
order y1) < -+ < Y(n), where n = (2¢ + 1)2. The moving median filter
is defined by (My)s = y((nt1)/2), i-e. it takes as value in s the y) in the
middle. If, for example y_» = 2,y_1 = 2,y0 = 3,y1 = —1,y2 = 0 then
(My)o = 2 and the mean is 1.2. This median filter is much more robust
against outliers than moving averages. Whereas the mean of 2,1000,3, —1,0
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Fig. 2.9. Upper row: a jump of height 1, degraded by additive white Laplacian
noise of standard deviation o = 0.2; filtered with masks of length 2¢ + 1, ¢ = 5,
once in the second, and five times in the third row. A uniform moving average in
the left and the median filter in the right column. In the 4'* row on the left a MAP
for the truncated square model with § = 0.2 and a = 10, on the right for the Potts
model with 4 = 0.1. The error of the Potts MAP is about 1%

is 1004/5 ~ 201, the median again is 2. The action of the moving median is
illustrated in the right column of Fig. 2.9. The median here serves just as a
simple example. Much more important in practice are morphological filters
which are also based on the order of values. In particular, they are idempotent,
ie. fulfill o F(y) = F(y) for every y € X. The median is related to them
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but not morphological since it clearly is not idempotent. Standard texts on
mathematical morphology are the monographs by J. SERRA (1982, 1988).

Let us compare a typical linear with a typical nonlinear filter. The simplest
criterion for noise reduction is reduction of variance on a noisy flat region.

Ezample 2.3.3 (Noise reduction and robustness). The noisy flat simply is
a collection Y, s € S, of independent and identically distributed random
variables; in this example we let them be centred with standard deviation 0.2.
We will compare the moving median with the moving average with uniform
weights, defined on the left hand side of (1.11).

Consider first variables Y3,...,Y; uniformly distributed on [—v/3/5,v/3/5]
such that o = 0.2. Then the variance of the median is V(M) = (302)/(n+2),
whereas V(Y') = 02 /n. For a 5 x 5-window with n = 25 we have V(Y') = 02 /25
and V(M) = 02/9. The average performs much better than the median. For
Gaussian noise we get

VI)/V(M) = (2/m) 1+ (7 - 2)/(2n)).

For the same mask, the variance of the median is about 57% larger than that
of the average. Still the average is better than the median, but the median
catches up. For Laplacian noise, which has a considerably heavier tail, we get

02

VM)~ o =173y

which is about half the variance of an average, and now the median is already
superior to the average.

Since the variables in a moving window are i.i.d. these considerations
apply to the moving average and the mowing median.

This reveals the message: the median becomes more and more superior to
the average the heavier the tail of the noise distribution is. This means that
‘the median is more robust than the average’. The shape and a portion of
the tails are displayed in Figs. 2.10 and 2.11. For the proofs we refer to B.I.
JUSTUSSON (1981) (German readers may also consult [341]).

0.4 0.6 -0.6 -0.4 -0 0.2 0.4 0.6 0.6 0.4 -0.2 0.2 0.4 0.6

Fig. 2.10. Densities of the uniform-, Gaussian- and Laplace distribution with
standard deviation 0.2. For this standard deviation, the uniform distribution is
concentrated on the interval [—/3/5,v/3/5]
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\
0.02 0.02
0.01l 0.01 Fig. 2.11. Parts of the
tails of the Gaussian and
N N— the Laplace distribution
07 08 09 1.0 11 12||07 08 09 10 11 12 with standard deviation 0.2

To allow for edge preservation we extend the classical concept of a linear
filter. A natural generalization is to have filter weights depending on the
input: A map F : X — X will be called a convez filter if for each y € X and
each site s € S there are weights W (y) with

(F9)s = > Wa@)yr, Waly) 20, > Waly) = 1.
tes t

This generalizes the representation Fy = Ay of linear filters by (stochastic)
matrices A. Convexity means that the filter does not extend the range of the
input:

Lemma 2.3.1. A filter F is convez if and only if
min{y; : t € S} < (Fy)s < max{y,: ¢t € S}.

Clearly, linear filters are convex because of their very definition, and median
filters are convex by Lemma 2.3.1, since they just rearrange values.

Unfortunately, it turns out that for the models we discussed previously,
prior distributions do not exist in the continuous setting. The reason is that
most priors depended on differences x; — x;, these are not affected by the
addition of constants, i.e K((zs + ¢)s) = K((zs)s), if ¢ € R, and hence the
associated prior density I1(dz) o< exp(—K (x)) dz on R® would be translation
invariant. One can easily show that there is no probability density on R®
proportional to exp(—K (z)). Nevertheless, under suitable integrability con-
ditions measures corresponding to posterior distributions can be defined for
many models by IT(dz|y) « exp(—K (z) — D(z,y)) dz. If this works then one
still may speak about (pseudo) MAP, MMS, etc. estimators. For the Potts
model these considerations are not meaningful since its prior energy function
vanishes except on a set of Lebesgue measure zero. The pseudo MAP exists
also for this model since no substitute for the posterior is necessary and one
simply minimizes the function ¢ — K(z) + D(z,y). Notwithstanding the
formal incompatibility, one can learn a lot about Bayesian models from their
counterparts on continuous spaces.

For us it was a surprise that most MAP estimators are convex filters in
this sense. Typically, there are functions v, ¢ and v such that

K(z) = Zd}(ms —z)u(s —t), D(z,y) = Z o(zs — ys). (2.17)
s,t seS

In G. WINKLER and V. LIEBSCHER (2002) we show:
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Proposition 2.3.1. Let D and K be given by (2.17). Assume v > 0, that
Y(u) and go(u) are symmetric around zero and increasing in |u|, and suppose
further that o is strictly increasing on [0,00). Then each MAP-estimate is a
convez filter,

This holds in most practical cases. In this text v usually is the indicator
function of a neighbourhood of 0 € Z*.

Remark 2.3.1. A lot of other recent nonlinear methods fit into this conception
too. Examples closely related to the present discussion (G. WINKLER et al.
(1999), G. WINKLER and V. LIEBSCHER (2002)) are the nonlinear Gaussian
filter in F. GODTLIEBSEN et al. (1997), the nonlinear Gaussian filter chain in
V. AurIicH and J. WEULE (1995), [10], the local M-smoother in C.K. CHU
et al. (1998), [63], and the adaptive weights smoother in J. POLZEHL and
V.G. SPOKOINY (2000).

Edge preserving filters have to preserve significant intensity contrast. They
should even decide whether a place is an intensity jump and perhaps mark
the location - say by an active microedge. This raises the questions: ‘What
is a jump?’ and ‘Can we decide whether a method finds jumps, or not?’. The
Potts model and the robust models (2.8) and (2.10) both include a precise
criterion for what they declare to be a jump and where they locate it: for the
latter a jump is between two neighbours s and ¢ with contrast |zs—x¢| > § and
for the former with contrast |z —z¢| # 0. In the global smoother (2.7) and in
linear filters such criteria are not incorporated and they cannot decide upon
jumps. A decision can be taken only after a subsequent nonlinear operation
like thresholding.

The following sketches may shed some light on this problem. Since evident
jumps are supposed to be large, we suggest the crude criterion

lim r 'F(ry) =y, yeX (2.18)
r—00

where (ry)s = rys. No matter how small contrast may be we can force it to
be a locally significant jump by multiplication by a large scale parameter r.
Jumps in this sense vanish if r tends to zero. This concept captures jumps of
fixed size. It does not include a notion of jumps which are large relative to
the signal size.

Ezample 2.3.4 (Scale invariant filters). Consider now a linear filter Fy = Ay
with a stochastic matrix A. Then the identity Ay = r~! Ary = y shows that F
fulfills (2.18) if and only if A is the identity. This may be rephrased as: ‘Linear
filters do not preserve edges’. The moving median is sometimes believed to
preserve edges. In the sense of (2.18) it does not, since r~* M(ry) = M(y) and
r~IM(ry) = y for every y would again imply that M is the identity. This is
the case if and only the mask contains precisely one site. This observation may
at first glance look surprising. But we must keep in mind that the median only
sees the ordering and does not feel scale. If we look at slowly varying parts
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of the output through a magnifying glass it will look like the output in rough
parts. Observe that for convex filters F constant signals y are preserved; in
particular, 71 F(ry) = y if y is constant.

More generally, call a filter scale invariant if r=' F(ry) = F(y). We saw that
moving averages and medians are scale invariant. Generalizing, we may say
that ‘scale invariant filters do not preserve edges’.

The maximum posterior estimators for the Potts model and the robustified
square (2.8) or (2.10) fulfill (2.18):

Proposition 2.3.2 (V. Liebscher (2002)). Let

H(z) = Zz/)(ms —z)v(s —t) + Z o(zs —ys).

Assume v > 0, that ¥ (u) and o(u) are symmetric around zero and increasing
in |ul|, and suppose further that o is strictly increasing on [0,00). Moreover
assume that

()

im sup

|r|— o0 Q(T)

Let F(y) denote a corresponding MAP estimator. Then F fulfills (2.18). This
holds in particular for the Potts prior ¢ (u) = 1 — §(0,u), or if ¥ has a cup
shape like in (2.11).

=0, for every u > 0.

If p is quadratic, then the condition that v increases not slower than p is
fulfilled by all ¢ increasing not faster than linear. Examples for such functions
are the robust cup-shaped functions ¢ and Huber’s function.

Similar results hold for some other recent smoothers as well:

Remark 2.3.2. The Gaussian nonlinear sigma-filter from V. AURICH and
J. WEULE (1995) and the local M-smoother from C.K. CHU et al. (1998)
fulfill (2.18) as well.

In the above discussion we had continuous intensities but discrete space.
There is also a theory for continuous space which basically deals with
MUMFORD-SHAH energy functionals. These are formally similar to the dis-
crete edge model (2.8). The discrete arrays (zs) and (ys) are replaced by
functions z(u) and y(u) on some domain D C R?, with certain regularity
properties. There are subsets K of D enclosing points of irregularity, for ex-
ample points where the functions z(u) are allowed to be discontinuous across
K; these are interpreted as locations of boundaries. For d = 2, the edge set
K is assumed to be some curve with length L(K). The original functional
has the form

E(x, K) = \? /D\K ||V;v(u)||§du+a-L(K)+/D|:v(u)—y(u)|2du
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This is the continuous counterpart from D. MUMFORD and J. SHAH (1989) to
the discrete model (2.8) (nearly everywhere one finds the citation D. MUM-
FORD and J. SHAH (1985), but this paper seems never to have appeared. We
found contradictory comments). E. DE GIORGI (1991) adopts the modified
version

E(x):)\Q/D||Vm(u)||§du+a7-{,d_l(5z)+/D|m(u)—y(u)|2du.

The main difference is that the d — 1-dimensional set S, of discontinuities is
weighted by the d — 1-dimensional Hausdorff measure H?~!. A. BLAKE and
A. ZISSERMAN (1987) discuss their Graduated Nonconvexity Algorithm for
the actual computation of minimizers for discrete space. The state of the art
in 1995 is reported in J.-M. MOREL and S. SOLIMINI (1995), a more recent
account is L. AMBROSIO et al. (2000).

2.4 Boundary Extraction

Edge detection or boundary finding is an important field of image analysis.
Edges correspond to sudden changes of an image attribute such as lumines-
cence or texture and indicate discontinuities in the actual scene. There is an
enormous variety of filtering techniques for edge detection. Most are based
on discrete derivatives, frequently combined with smoothing at small scale to
reduce the noise contribution. There are also many ways to do some cosmet-
ics on the extracted raw boundaries, for example erasing loose ends or filling
small gaps. More refined methods like fitting step shaped templates locally
to the data have been developed, cf. the monographs H. NIEMANN (1990),
A. BLAKE and A. ZISSERMAN (1987).

The following Example 2.4.1 is of historical interest, since it is one of
the first which goes beyond filtering and models the shape of boundaries in
the Bayesian context. It is reported in D. GEMAN (1987) and D. GEMAN
et al. (1987). It is closely related to Example 2.2.2; the new idea is to model
boundaries in their own right and not merely as strings of active microedges.

Ezample 2.4.1 (Boundary extraction). We continue with notation from Ex-
ample 2.2.2. Recall that microedges were virtual edges s ~ ¢t between neigh-
bour pixels s and ¢. In Section 1.1 and in Example 2.2.2, we identified bound-
aries with the set of active microedges, i.e. neighbour pairs s, ¢ with eg; = 1.
Albeit boundaries are defined by means of edges in the present example, they
are now image features in their own right.

The locations of boundary elements will be between those of edge elements;
instead of a formal definition we indicate this in Fig. 2.12. Let the set of
these boundary locations ‘¢’ be denoted by B. Then, we can define active
and inactive boundary elements, and respectively let b, = 1, u € B.
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Hence we have a state space X = G'x{0,1}? containing intensity patterns
g and boundary configurations b. Similar to Example 2.2.2 the joint prior
distribution between intensities and boundaries is given by

H(gab) X exp ( - K(gab))a K(gab) = KS(gab) + KB(b) (219)

The first term K is responsible for seeding boundaries, and the second term
Kp provides boundary organization in accordance to our geometrical and
topological expectations. Seeding is based on contrast and continuation:

Ks(g,) =01 > 0(0u) (1= buby) + 02 > (bu — Cul9))”, 91, U2 > 0.

u~v ueB

In the left term, summation extends over pairs of adjacent boundary locations
u ~ v. In between there are microedges |, or — , separating pixels s(u,v) ~
t(u,v). 6uy(g) is the contrast |gs(u,v) — g¢(u,v)| across this microedge. Again,
¢ is an increasing function of contrast; in [127] the authors use ¥(8) = §*(c+

54)71, but the essential point is that ¢ has a shape similar to ¢ from (2.11).
The right term depends on an index ((g) of connectedness: given thresholds
c1 < ¢z, a microedge is called active if either (i) the contrast across the
microedge exceeds ¢» or (ii) the contrast exceeds ¢; and the contrast across
one of the neighbour microedges exceeds ¢;. The index (,(g) equals 1 if u is
inside a string of say four active microedges and 0 otherwise.

The second term in (2.19) organizes the boundary configuration b:

Kp(®b) =93> [ bu—04aW (), 95 >0, 94 > 0.
ceCuel

The first term penalizes double boundaries counting the local boundary con-
figurations depicted in the little plots (and their rotations by 90 degrees).
(‘«> means that there is a boundary element
and ‘o’ that there is none). The members C' of
C are the corresponding sets of boundary sites.
Like in Example 2.2.2, the second term penalizes local configurations. Be
aware that this is an example from 1987. Nevertheless it is a model in which

X X % O % * O O *
* X * O % % O O %
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Fig. 2.13. Left: Original image, right: Boundaries estimated by rounding an MMS
estimate from an edge model from Example 2.4.1

the processes of seeding and organization are entirely cooperative. Low con-
trast segments may survive if sufficiently well organized and, conversely, un-
structured boundary segments are removed by the organization terms.

The right picture in Fig. 2.13 shows a thresholded MMS estimate for such a
boundary model.

2.5 Dependence on Hyperparameters

Another important aspect is model choice. We mentioned already that config-
urations x correspond to the quantities called parameters in Bayesian statis-
tics. In practically all models there are additional parameters of another type,
like A and « in (2.10) or S in (2.4) or (2.7). They are called hyperparameters.
In our previous considerations they were part of a fixed model and assumed
to be known. It is obvious that estimators crucially depend on these hyper-
parameters; Fig. 2.16 illustrates this impressively. And precisely there is the
rub! Although we may have good reasons and a precise idea of the general
form of the prior, we nevertheless may have no idea about hyperparameters
appropriate for a special data set. In many articles, they are chosen by trial
and error, and in others ad hoc methods are invented, cf. [130]. Frequently
another prior is put on the hyperparameters. Hyperparameters are one of the
greatest obstacle to be removed in order to turn a Bayesian method into a
practicable algorithm. Let us illustrate dependence on hyperparameters by
way of an example which is simple, of practical relevance, and gives us the
opportunity to comment further on modelling.

Ezample 2.5.1 (Hyperparameters in the Potts model). The data displayed
as dots in Figure 2.16 are measurements from fMRI (functional magnetic
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resonance imaging or tomography) of the human brain. The aim is to identify
regions of the brain responding to an outer stimulus by increased activation.
Increased activity causes increased metabolic rate which in turn is followed
by increased delivery of blood to the activated region. The measurements are
based on the BOLD imaging technique. It does not measure tissue perfusion
or flow directly, however, but depends on the presence of blood deoxygenation
and that deoxigenated haemoglobin is a blood oxygen level dependent effect
(BOLD) that can be observed by noninvasive magnetic resonance imaging at
high magnetic fields.

In the experiment a person is exposed to a visual stimulus; in the present
case a chequerboard pattern was periodically switched on and off. This ‘on
and off’ is a signal of boxcar type like in Fig. 2.14. One expects that in

Fig. 2.14. A boxcar signal

certain brain regions, for example in the visual cortex, neurons respond to
this stimulus with a signal of similar shape, which can be recorded by means
of fMRI. Data in Fig. 2.16 show a time series of 70 measurements in a vozel
of the visual cortex (a voxel is a three-dimensional pixel) of about 3 x 3 x 5
mm?. The question is wether the time series shares crucial features with the
boxcar stimulus and can be labelled as ‘activated’.

In the present context, we use these data to illustrate dependence of MAP
estimators on hyperparameters. We adopt a one-dimensional Potts model
with S = {1,...,n} and neighbours i ~ i+ 1 . We write it in the form

n
L (x,y) = v|{i: @ # zi1}] + Z(ﬂ?i —yi)?, wi €R, 7 >0. (2.20)
i1

We want to illustrate how strongly MAP estimates, i.e. minimizers =7, of the
function z — L7(z,y), depend on 7.

Note that the signal x in this example takes values in R and not in a finite
discrete set. This has two reasons: the continuous case is analytically easier
to handle, and MAP estimators can be computed ezactly by means of dy-
namic programming. Exact MAPs are necessary to ensure that the observed
dependence of estimates on hyperparameters is not obscured by inaccurate
computations.

It is clear that the MAP estimator for (2.20) returns the original data if vy = 0
and a constant x* for v = oo. It is also plausible that the number of jumps
in the MAP estimate should increase as v decreases. One can show more.
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Proposition 2.5.1. There is a set N C R"® of Lebesgue measure zero such
that for each y ¢ N there is a sequence y1 > --+ > 7y, > 0 such that the
following holds:

(a) For each v in the intervals (y1,00), (Vi+1,7) and (0,7y) there is a
unique minimizer xj, of (2.20).

(b) For all v > 1 the MAP estimate x§ is a constant time series, and for
0 <v<vm one has x;, =y.

(¢) For v =y the only two minimizers of (2.20) are x},_, and x},.

(d) The number of jumps of the x} increases strictly in k.

This is shown in A. KEMPE (2003). Part (a) of the proposition means that
for every density on R" with respect to Lebesgue measure almost all y have
a unique MAP estimate. Fig. 2.15 illustrates such «-intervals. Let us check

Ty, T3 x5 ] i

[
8

0 data ym 3 Y2 1 constant

Fig. 2.15. On the intervals (yx+1,7x) the MAP estimate does not change

now how Proposition 2.5.1 works on the brain data. Fig. 2.16 shows the MAP
estimates based on the (dotted) data y for the first six subsequent 7y-intervals

gommo>= 00058440 0.0058440>=gomma>=  0.0040250 0.0040250>=gomma>=  0.0008140
r o7

w0 w ® o £ w0 w ® o £ w0 w

0.0008140>=gommo>=  0.0006410 0.0006410>=gommo>=  0.0004070 0.0004070>=gomme>=  0.0003810
o7 o7

i E) £} o ) i E) £} o ) i E)

0.0001680>=gomma>=  0.0001200 _ 0.0000540>=gomma>=  0.0000540 _ 0.0000000>=gomma>=  0.0000000

Fig. 2.16. Brain data, and MAP estimates on y-intervals
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beginning from the right. It also displays the MAPs for the 18t", 25" and 515
of the 51 v-intervals, including [v1,00). The MAP estimates were computed
ezactly by means of dynamic programming (which works without problems
in one dimension and on trees, cf. [344; 229]).

It is interesting to have a closer look at the lengths of these ~-intervals. We
have v; ~ 58 - 10~%. The three modes of the stimulus appear first in [y3,72)
with 75 & 40 - 10~* and the MAP estimate basically stays unchanged until
3.9-107* (in statistics a mode is a local maximum). Hence in the present
example, this ‘stable’ y-region fills more than 94% of the interval [0,~y;). This
is a strong indication that we should search for the correct hyperparameter
in this region. This is work in progress, cf. A. KEmMPE (2003).

Inspired by Example 2.14 we bring a further aspect of probabilistic modelling
up for discussion. In this - and in many, if not most, real applications, at least
in the life sciences - the (random) transformation of the ‘true’ object z to
data y basically is unknown. It is impossible to formalize precisely all the way
from the visual stimulus through receptors, nerve paths and all the biochemi-
cal reactions there, neurons, request for oxygen, magnetic fields, excitation of
spins, their relaxation times, and their measurement by a complicated tech-
nical machinery. There is nothing else we can do than to simplify matters
drastically. To stick to our example, we may ask what a response to the stim-
ulus should be. Differently phrased we should formulate minimal qualitative
criteria as a basis for statistical decisions. P.L. DAVIES (1995) calls this par-
stmonious statistics. For the brain data we might for example decide whether
neurons in a voxel respond or not comparing the number of significant modes
in the stimulus and the response, cf. Figs. 2.14 and 2.16.
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