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12.1 Introduction

Polymeric non-linear optical (NLO) materials have attracted much attention
during the last two decades because of their potential to surpass the perfor­
mance of current inorganic materials such as LiNbO3 in integrated high-speed
electro-optic devices. Since the optical nonlinearity in polymers is based on
molecular properties of chromophorers, molecular design allows to tailor the
material properties and thus to achieve high electro-optic coefficients. Other
important advantages of polymers are the low dispersion between carrier
and modulation frequency (allowing high-speed operation), their compatibil­
ity with many substrates, a flexibility of fabrication methods, and therefore
the prospect of large-scale low-cost integration (see e.g. [1, 2]).

The polar symmetry that is required for second-order (quadratic) non-lin-
ear optical properties has been a main point of interest since the first descrip­
tion of such properties in polymers [3], because the non-centrosymmetry has
to be induced for amorphous polymers by a poling process: The polymers
are cooled down from temperatures above to well below the glass transition
point while a high d.c. electric field is applied and a frozen-in polar order
of dipolar chromophores remains even after the d.c. poling field is switched
off. However, the glassy state allows for structural relaxations and a decay of
quadratic NLO properties can be observed. Investigations on the poling and
its relaxation processes have thus been major topics in research and devel­
opment of NLO polymer materials and devices. The activity in this field led
also to the development of new experimental techniques that are now used
far beyond their original scope.

In this paper we will briefly review the basic principles of NLO polymers.
Then experimental techniques and results performed to study the relaxation
of polar order will be presented. We will show that the observed relaxation
behavior can be described in terms of a relaxation model for structural relax­
ations in the glassy state. Finally the application of electroabsorption spec­
troscopy for evaluation of relaxation processes will be discussed.
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12.2 Physical background

12.2.1 NLO susceptibility and effects

In nonlinear optical media the linear relationship between an electric field E
and the induced polarization P must be replaced by a nonlinear expression,
e.g. a Taylor series expansion:

Pi = P
(0)
i +

∑
j

χ
(1)
ij Ej +

∑
jk

χ
(2)
ijkEjEk +

∑
jkl

χ
(3)
jklEjEkEl + . . . (12.1)

Here the indices i, j , k , l denote the vector components in the laboratory
frame, P(0) is a permanent polarization that may be present in the material,
χ(1) is the linear optical susceptibility and χ(2), χ(3), . . . are the nonlinear
susceptibilities of second, third, . . . order, respectively. For quadratic effects
we have to take into account only the term containing χ(2) and we obtain for
the related quadratic polarization

P
(2)
i =

∑
jk

χ
(2)
ijkEjEk . (12.2)

Quadratic effects require a non-centrosymmetric material structure. Other­
wise, an inversion operator applied to (12.2) would invert the sign of the
electric polarization vector component P (2)

i and the electric field vector com­
ponents Ej and Ek, but not of the χ(2) tensor, a contradiction that can only
be solved if all components of χ(2) are zero. For non-centrosymmetric ma­
terials however the inversion operator will also change the sign of the χ(2)

components.
Equation (12.2) describes the interaction of three waves. This can be seen

best considering the total electric field applied to the material consisting of
two Fourier components E(ω1) and E(ω2):

P
(2)
i (ω3) =

∑
jk

χ
(2)
ijk(ω3;ω1, ω2)Ej(ω1)Ek(ω2) + . . . (12.3)

Thus, the nonlinear χ(2) term is the origin of the generation of the sum and the
difference frequencies ω3 = ω1 + ω2, ω

′
3 = ω1 − ω2. Two special cases deserve

special attention: First, in the case ω1 = ω2 we have frequency doubling
(second harmonic generation, SHG), which may occur as the self-interaction
of a single optical wave. Second, if one electric field is an optical wave and the
other is a static (or quasi-static low frequency) field the interaction appears
as a (static or low-frequency) refractive index variation for the light beam.
This is known as Pockels effect and the basis for interferometric electrooptic
modulators.
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12.2.2 Organic NLO materials

In organic materials the origin of the optical nonlinearity is the nonlinear be­
havior on the molecular level. The dipole moment of a molecule under a local
electric field Eloc may be described similar to (12.1) as a Taylor expansion:

µI = µ0
I +

∑
J

αIJEJ +
∑
JK

βIJKEJEK +
∑
JKL

γJKLEJEKEL + . . . (12.4)

Here µ0 is the permanent dipole moment, α is the linear polarizability and β, γ
are the quadratic and cubic hyperpolarizabilities , respectively. A well known
type of molecules, representing materials with high quadratic hyperpolariz­
ability, are extended π-electron systems with donor and acceptor substituting
groups (Fig. 12.1). The π-electron system may be realized e.g. by phenyl, stil­
bene or azobenzene groups. The nitro and the dialkylamino groups are often
used as donor and acceptor groups, respectively. The β tensor of such rod-like
NLO molecules has one dominant component βZZZ , where Z is the molecu­
lar longitudinal axis. Other components are much smaller and can usually be
neglected.

Fig. 12.1. Quadratic NLO chromophores. (a) General structure (D = donor group,
A = acceptor group). (b),(c) Example molecules

In organic materials intramolecular forces are much higher than inter­
molecular forces and the macroscopic susceptibility may easily be calculated
from the hyperpolarizabilities of the molecules in the ensemble by considering
their orientational average [4–6]:

χ
(2)
ijk(−ω3;ω1, ω2) = (N/V )fω3

i fω1
j fω2

k 〈βIJK cos ξiI cos ξjJ cos ξkK〉 (12.5)

N/V is the number of molecules per volume unit, ξiI = ∠(i, I), ξjJ = ∠(j, J)
and ξkK = ∠(k,K) describe the relative orientation of the molecular frame
(I, J,K) and the laboratory frame (i, j, k). The angle brackets 〈. . .〉 denote
averaging over all molecules in the ensemble. The local field correction fac­
tors fω

i describe the relation between the externally applied field E and the
local field Eloc sensed by the molecules.

12.2.3 Poled NLO polymers

A poling procedure is necessary to introduce a non-centrosymmetric structure
in amorphous polymers. For thermal poling (as shown in Fig. 12.2a) the
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Fig. 12.2. Thermal poling. (a) Schematic of the evolution of temperature T and
electric poling field E. (b) Expectation values for the polar order parameters 〈cos3 θ〉
and 〈cos θ sin2 θ〉

polymer is heated to or above the glass transition point and a high electric
field is applied. Subsequently the polymer is cooled down to room temperature
under the field. At low temperatures the induced polar structure is frozen in
and the external electric field can be switched off. The resulting structure
of the polymer has an ∞mm symmetry and the χ(2) tensor has only two
independent elements χ

(2)
zzz and χ

(2)
zxx (if additional symmetry considerations

are valid [7]). Thus (12.5) results in

χ(2)
zzz(−ω3;ω1, ω2) = (N/V )fω3

z fω1
z fω2

z βZZZ〈cos3 θ〉 (12.6)
χ(2)

zxx(−ω3;ω1, ω2) = 0.5(N/V )fω3
z fω1

x fω2
x βZZZ〈cos θ sin2 θ〉 , (12.7)

where the terms 〈cos3 θ〉 and 〈cos θ sin2 θ〉 are the relevant polar order parame­
ters. Their expectation values can be calculated from the Maxwell–Boltzmann
distribution of the dipoles in the poling field [5, 8]. Figure 12.2b shows the or­
der parameters in dependence on the Boltzmann factor µgE

loc
pol/kBT (µg =

permanent dipole moment, Eloc
pol = local electric poling field, kB = Boltzmann

constant, T = temperature). The scale for the electric field refers to an ex­
ample of µg = 7 Debye and T = 100 ◦C. Note that a local field correction
factor f0 = fω=0 describes the relation between external and local poling
field. The Onsager and the Lorentz–Lorenz models have been widely used for
the calculation of f0 and fω, the d.c. and optical local electric field correction,
respectively [5, 9], but alternative models, that consider the anisotropic shape
of molecules, e.g. [10], deliver non-negligible different results. The uncertainty
in the determination of the correction factors is in general a problem for the
exact calculation of the relationship between molecular and macroscopic NLO
properties.

12.2.4 Stark effect (Electroabsorption)

In quadratic NLO materials the absorption is influenced by an electric field si­
multaneously to the refractive index (electroabsorption and electrooptic effect,
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or Stark effect and Pockels effect , respectively) and both effects are connected
due to the Kramers–Kronig relation. Thus the Stark effect may be discussed
in terms of the imaginary parts of the nonlinear optical tensors χ(2), β, χ(3)

and γ for the linear and the quadratic effect, respectively [11]. We use here
a description, where the Stark effect is immediately related to relevant molecu­
lar properties of the chromophores, i.e. the differences of dipole moment (�µ)
and linear polarizability (�α) in the ground and the electronically excited
state [12]. The shift �ν̃ of the wave number of the absorption band of an
orientationally fixed molecule by application of an electric field E is given by

(h/c)�ν̃ = �µEloc − (1/2)�αElocEloc (12.8)

(c = light velocity, h = Planck constant). Note, that (12.8) contains the local
electric field Eloc = fE; again a local field correction factor f is required
to obtain it from the external field E. �ν̃ is usually too small (especially in
comparison to the width of the absorption band) to be measured directly. We
rather consider the change of the extinction �ε(ν̃) at fixed ν̃ and derive from
(12.8) for a single molecule [12]

�ε(ν̃) =
�µ

hc
Eν̃

d(ε/ν̃)
dν̃

+
(�µE)2

2(hc)2
ν̃

d2(ε/ν̃)
dν2 +

(�αE)E
2hc

ν̃
d(ε/ν̃)

dν̃
. (12.9)

We can calculate the electric induced absorption change �A(ν̃) of a macro­
scopic sample by averaging (12.9) over all molecules in the ensemble consider­
ing of the molecules’ orientational distribution in respect to the electric field
and the light propagation direction:

�A(ν̃) = F1
�µ E

hc
A′(ν̃) +

1
2
E2

hc
[�αl(1 − F2) + �αtF2]A′(ν̃)

+
1
2

(
�µ E

hc

)2

F2A′′(ν̃), (12.10)

where A′(ν̃) and A′′(ν̃) are abbreviations for the derivative terms

A′(ν̃) = ν̃
d(A/ν̃)

dν̃
and A′′(ν̃) = ν̃

d2(A/ν̃)
dν̃2 (12.11)

of the absorption spectrum A(ν̃) of the sample. �αl is the longitudinal com­
ponent of the polarizability difference, �αt is the transversal component and
F1 and F2 are order parameters given by

F1 =
〈cos θ sin2 θ〉
〈sin2 θ〉 and F2 =

〈cos2 θ sin2 θ〉
〈sin2 θ〉 . (12.12)

θ is the angle between the dipole moment and the propagation direction of
the light. The angle brackets 〈. . .〉 denote averaging over all molecules in the
sample. F1 is a polar order parameter, consequently the linear Stark effect
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described by the first term of (12.10) can be observed only in polar samples.
Since F2 is a non-polar order parameter the quadratic effect [second and third
term in (12.10)] occurs also in unpoled samples. The expectation value of F2
can be calculated easily to 1/5 for isotropic materials, but differs even for
poled samples only insignificantly from this value. We can therefore simplify
(12.10) by neglecting this small difference as well as the then meaningless
polarizability anisotropy by replacing F2 with 1/5 and using �α = �αl =
�αt.

12.2.5 Piezoelectric effect

Quadratic NLO polymers have a macroscopic polarization due to a frozen-in
polar orientation of dipolar chromophores. They can thus be considered as
molecular dipole electrets with additional polarization-related properties as
e.g. piezo- and pyroelectricity. We paid some attention to the characterization
of poling stability by the piezoelectric effect because rather simple experimen­
tal techniques (acoustoelectric measurements) may be used. Broadhurst et al.
provided a theoretical description of the piezoelectricity in molecular dipole
electrets [13, 14]. We present their results here briefly: The frozen-in polariza­
tion P of a molecular dipole electret is given by

P =
N

V
〈m〉 , (12.13)

where N/V is the number of dipoles per volume and 〈m〉 is the effective molec­
ular dipole moment, which is composed from the permanent dipole moment µg

and an internal-field-induced contribution. Calculation of 〈m〉 results in

P =
N

V

ε∞ + 2
3

µg〈cos θ〉 , (12.14)

with the dielectric constant ε∞ at optical frequencies and the average 〈cos θ〉
of the angle between individual molecular dipoles and the polar axis of the
material. Rather than the variation of the polarization P that is induced by
a change of the pressure p, one measures experimentally the change of the
compensation charges Q on the electrode area A of the sample, i.e.

dexp
p =

1
A

∂Q

∂p
, (12.15)

which can be approximately described by

dexp
p = −Pβ ε∞

3
= −βN

V

(ε∞ + 2)ε∞
9

µg〈cos θ〉 , (12.16)

where β = −(dV/dp)/V is the volume compressibility. The piezoelectric co­
efficient is proportional to the induced polarization, i.e. to the average value
〈cos θ〉. This is a different dependency on molecular order than in the case of
the nonlinear optical susceptibilities, where higher order terms are used (12.6).
Thus one can’t necessarily expect a similar relaxation behavior of NLO and
piezoelectric properties.
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12.3 The stability of polar order after poling

12.3.1 Experimental methods

Sample preparation and poling

Investigations on NLO polymers require very often thin film samples , pre­
pared using the spin coating technique, where the polymer is dissolved in an
appropriate solvent and the solution is spread onto a substrate, e.g. glass,
mounted on top of a rotating table. The film thickness can be set from the
sub-micrometer range until several micrometers by varying the polymer con­
centration and the rotation speed. For drying one usually keeps the films
after their preparation for several hours under room ambient conditions and
subsequently heats them under vacuum to remove the remaining solvent.

In most cases poling field is applied perpendicular to the film plane and
the substrate must comprehend a conductive layer used as an electrode. If
a transparent substrate is required, the electrode usually consists of indium
tin oxide (ITO). Two different poling techniques, electrode poling and corona
poling , have been used. For the first an additional electrode layer must be
provided, e.g. by sputtering a thin metal layer onto the polymer film or at­
taching a second ITO covered substrate onto the polymer film using an epoxy
resin [12]. The demand for a sophisticated sample preparation is one central
problem of electrode poling. Any defect in the film (originated from dust or
impurities in polymer or solvent) may lead to an electric short circuit when
a high poling voltage at an elevated temperature is applied and thus destroy
the sample. The absorption of metal electrodes, although semi-transparent for
sufficiently thin layers, raise another problem for experiments where higher
light intensities are necessary as e.g. in SHG measurements.

Corona poling does not require a second electrode, but uses the corona dis­
charge at a needle tip or a thin wire connected to a high voltage UHV (about
10 kV) to generate ions above a polymer sample (see Fig. 12.3). Grounding
the ITO electrode of the sample forces the ions to follow the electric field onto
the polymer film’s surface, where they remain for some time until they are

Fig. 12.3. Schematics of a corona poling setup (UHV high voltage, UP poling
voltage)
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Fig. 12.4. Chemical structure of polymers used for poling and relaxation experi­
ments

neutralized. Hence a rather high voltage is applied across the polymer film.
In a more sophisticated version of the technique an additional grid is used
between the corona and the film that allows to control the poling voltage,
which will not exceed the intermediate voltage UP applied to the grid. The
major advantage of corona poling is the much less demanding sample prepara­
tion: Local defects do not destroy the whole sample because of the low lateral
conductivity for the ions on the polymer surface and the remaining part of
the film can be poled without damage. A disadvantage of corona poling is
a possible impairment of the surface quality through the ion bombardment.
The ions may also induce chemical reactions with the polymer or the NLO
chromophores and thus deteriorate the sample. Controlling the corona poling
atmosphere, esp. using an oxygen-free gas, can reduce the negative effects [15].

We present here results that were obtained from measurements on the
polymers depicted in Fig. 12.4. Polymer 1 is a copolymer of ethylene and
methacrylate units, the latter are attached by an O(CH2)4 spacer to an amino
nitrostilbene NLO chromophore. The ratio of ethylene and methacrylate is 9:1;
the glass transition temperature is about 103 ◦C. The poly(styrene-maleic an­
hydride) polymer 2 with a chemically attached Disperse Red 1 side group was
provided by Sandoz Optoelectronics (Huningue, France). The glass transition
is at 137 ◦C. The polymethacrylate 3 has an amino nitrostilbene NLO side
group and a glass transition temperature of about 66 ◦C. Polymers 1 and 3
were provided by Merck KGaA (Darmstadt, Germany).

Second harmonic generation

We used the Maker-fringe technique [16] to determine the stability of the
optical nonlinearity in poled polymers. The pulsed laser beam of a Nd-YAG
laser (λ = 1064 nm) was directed to the sample (the polymer film on a glass
substrate), which was mounted on a rotation stage to allow a variation of
the angle of incidence α (Fig. 12.5a). After blocking the fundamental wave
the signal strength of the second harmonic light (λ = 532 nm) was measured
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Fig. 12.5. (a) Schematics of a SHG experiment using the Maker-fringe technique.
(b) Experimental curves of SH intensity vs. angle of incidence α

using a photomultiplier and a Boxcar integrator that measured the signal only
during the 10 ns pulses to increase the signal-to-noise ratio. To avoid errors
due to fluctuations of the energy of the pulses of the fundamental wave, the
polymer second harmonic signal was measured in respect to a reference signal
obtained from a quartz crystal. A sample curve of second harmonic intensity
versus angle of incidence is shown in Fig. 12.5b. We omit here a discussion
of the shape of the curve I2ω(α), which depends not only on the nonlinear
susceptibility tensor elements χ(2)

zzz and χ
(2)
zxx, but also on the refractive indices

for the fundamental and second harmonic in polymer and substrate as well as
on the sample thickness [5, 8]. For relaxation measurements only the relative
signal strength at different times after the poling is relevant and we were able
to use the experimental signals directly rather than calculating the nonlinear
susceptibility χ(2). Keeping the angle of incidence α constant allowed for
mounting of a corona-poling setup onto the optical table and thus for in situ
measurements of the second harmonic intensity during the poling.

Acoustoelectric measurements

To compare the relaxation of NLO properties and piezoelectricity, we de­
veloped acoustoelectric methods for the measurement of the relaxation be­
haviour of the piezoelectric effect [15, 17]. Both are based on the fact that
acoustic waves with relatively moderate pressure suffice to generate an elec­
tric response that can be measured by lock-in technique. As shown in
Fig. 12.6 the differential pressure of the acoustic sound wave may be ap­
plied either transversal (a) or longitudinal (b) to the polar axis of the
polymer. Samples for the transversal configuration are prepared by press­
ing a melted drop of the polymer between two ITO coated glass plates
until it reaches the thickness of the spacers that defines the desired dis­
tance between the glass plates (typically about 100 µm). The advantage
is the very small amount of polymer that is required for sample prepara­
tion, which requires however some experience to avoid parasitic signals (e.g.
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Fig. 12.6. Acoustoelectric measurements on poled NLO polymers in
(a),(b) transversal and (c) longitudinal geometry (E = electrode, G = gold
electrode, L = loudspeaker, LI = lock-in amplifier, P = polymer, S = substrate,
Sp = spacer, W = wires)

from the spacers). The disadvantage is the relatively small part of the sam­
ple along the edge of the polymer that is deformed by the acoustic pressure
and thus contributes to the signal. As shown in [17] the active area corre­
sponds to an annular plate with a width in the order of 2/3 of the sample
thickness.

Measurements in the longitudinal configuration were performed on spin-
casted films with a sputtered top gold electrode. During the poling process
the samples were cooled down to the temperature of measurement with a rate
of 3 K/min under electric field (corona poling was used for the SHG experi­
ment). For the piezoelectric measurements the electrodes were short-circuited
for a few seconds to allow for the discharge of the sample capacitance. The
sound signal was generated using the internal signal generator of the lock-in
amplifier, an amplifier and a loudspeaker. A funnel and a pipe were used to
guide the acoustic wave to the sample.

12.3.2 The relaxation of SHG and acoustoelectric response

In in-situ corona poling and SHG experiments we observed two different pro­
cesses that contribute to the relaxation of second order NLO properties after
poling. Figure 12.7a shows the second harmonic power P (2ω) during and
shortly after corona poling of polymer 1 (Fig. 12.4) at different temperatures.
A steep decrease of the SHG signal takes place immediately after switching off
the high voltage (at t−t0 = 0), followed by a slower relaxation. The time scale
of the faster process is in the order of 1 minute and is generally attributed to
the decay of surface charges on the polymer sample. The presence of surface
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Fig. 12.7. (a) SHG signal P (2ω) during and immediately after corona poling of
the nitrostilbene side-chain polymer 1. (b) Nonlinear susceptibility χ(2) measured
in long time experiments at different temperatures

charges, and thus of a poling field, increases the SHG signal by stabilization
of the chromophores’ polar order in the external d.c. field as well as through
higher order nonlinear terms, i.e. from χ(3)(E2ω ;Eω, Eω , E0) tensor elements
that correspond to the interaction of the d.c. field E0 and the optical field Eω .

Figure 12.7b shows the long term behavior of the nonlinear susceptibility
χ(2) of polymer 1 at different temperatures. To describe the measured data
analytically we tested several different relaxation functions (exponential, bi­
exponential, and exponential functions with a time dependent constant as
proposed in [18]), but we received the best results using the stretched expo­
nential function

u(t) = u0 exp[−(t/τ0)β ] , (12.17)

also known as the Kohlrausch–Williams–Watt (KWW) function, where the
exponent β (0 < β ≤ 1) describes an asymmetrical broadening of the relax­
ation time distribution. The average relaxation time τm = 〈τ〉 is different
from the nominal value τ0 and is given by τm = (τ0/β)� (β−1), where � is the
Euler gamma function [19]. The lines in Fig. 12.7b were obtained by fitting
KWW functions to the experimental data.

We found a very similar relaxation behavior in acoustoelectric measure­
ments of the piezolectric effect (Fig. 12.8). Since electrode poling was used
for these experiments, the faster process cannot be explained by the presence
of ions on the surface, but by charge distributions that are generated due
to charge injection at the polymer electrode interfaces. The influence of such
charges on the acoustoelectric signal is however different from NLO experi­
ments, because rather high piezoelectric signals my arise from asymmetric vol­
ume charge distributions directly, i.e. even without a polar order of the NLO
chromophores. Indeed, we observed rather high acoustoelectric signal ampli­
tudes during the fast process immediately after the poling ended, esp. in case
of the transversal experiment (cf. Fig. 12.8a, where the sample is deformed
non-homogeneously). The decay times of these fast processes are comparable
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Fig. 12.8. Relaxation of the piezoelectric signal dp in acoustoelectric experiments
(a) measured in transversal geometry on a sample of polymer 1 , (b) obtained from
longitudinal experiments on polymer 2

Fig. 12.9. Temperature dependence of the average relaxation time τm of the poly­
mer 1 obtained from relaxation data of SHG and piezoelectric (acoustoelectric)
effect

to those observed in transient depolarization current measurements [15, 20],
which is another indication for their relation to charge distributions.

Fitting the KWW function to experimental curves of both, the piezoelec­
tric effect and SHG measured on samples of the polymer 1 we found values
for β in the range from 0.35 to 0.45 for the temperature between 40 ◦C and
85 ◦C. An example for the temperature dependence of the average relaxation
time τm is shown in Fig. 12.9. The experimental values of τm follow in a good
approximation an Arrhenius-type temperature behavior [15, 21].

12.3.3 Discussion of poling stability

An interpretation of the experimental results is possible in terms of semi-em-
pirical phenomenological models, which describe the glass transition as a re­
laxational phenomenon: Below the transition temperature the characteristic
time constant of the structural relaxations of the polymer chains exceeds the
time scale set by the experiment, thus the polymer appears as rigid. Above
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the glass transition temperature a deviation from Arrhenius behavior is ob­
served for the α relaxation, i.e. the large scale microbrownian motion of the
chains, with a strong slowing down of the relaxation when approaching the
glass transition temperature. This temperature dependence of the relaxation
time τ is often described by the equation given by Williams, Landel and Ferry

ln
[
τm(T )
τ(Tg)

]
=
−C1(T − Tg)
C2 + (T − Tg)

, (12.18)

known as WLF behavior, where τ(Tg) is the relaxation time constant at the
glass transition temperature Tg, and C1 and C2 are material constants, which
are very often close to the “standard” values C1 = 17 and C2 = 52 K [22].
Equation (12.18) implies an infinitively large relaxation time for the tem­
perature Tg − C2. Therefore its validity is typically limited to the tempera­
ture range above Tg + 10 K. A theoretical foundation for the WLF behavior
(Adams–Gibbs–DiMarzio theory) was presented in [23, 24] and based on cal­
culations of the configuration entropy. T0 = Tg − C2 was identified as the
temperature where the configuration entropy becomes zero.

In the glassy state the relaxation time τ depends, in general, not only
on T but also on the material history, hence the material is not in an ther­
mal equilibrium. Non-equilibrium behavior is often described by means of the
fictive temperature Tf introduced by Tool [25]. It corresponds to the tem­
perature of an equilibrium state, which is fictive and could be reached only
by infinitively slow cooling, and is equivalent to the actual non-equilibrium
state of the material. Figure 12.10 illustrates the fictive temperature concepts
by means of the generalized temperature dependence of a thermodynamical
quantity φ. The measurable temperature dependence φ(T ) has distinctively
different slopes above and below the glass transition temperature (a) and (c),
respectively, with a transition region (b) around Tg. The exact shape of (b)
and (c) depends on the history of the material (cooling rate, aging, etc.).

Fig. 12.10. Schematic of the temperature dependence of a thermodynamical quan­
tity φ for a glass forming material
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Curves (a) and (a′) describe the material in an equilibrium state, the extrap­
olation (a′) is however a fictive curve for infinitively slow cooling, which is
required to allow for slow structural relaxations. This extrapolation ends at
the intersection with curve φS(T ), which is valid for a fictive equilibrium solid
state. The free part φfr, i.e. the portion of φ that can be attributed to struc­
tural relaxation, is given by the difference between φ(T ) and φS(T ), and can
be divided into an equilibrium part φE

fr below (a′) and a non-equilibrium part
φN

fr above (a′). The fictive temperature Tf for a given state φ(T ) is defined
by φE

fr(T ) = φfr(T ).
If we identify the quantity φ with the enthalpy H, then the slopes of

the curve parts (a) and (b) are the heat capacities cl
p and cg

p for the liquid
and glassy state, respectively, and may be obtained by extrapolation of an
experimental cp(T ) curve. The fictive temperature may thus be calculated
from experimental data by numerical integration of the equation

dTf(T )
dT

=
cp(T )− cg

p(T )
cl
p(T )− cg

p(T )
. (12.19)

We used differential scanning calorimetry (DSC) to measure cp(T ). In
Fig. 12.11a two different experimental curves are shown, obtained after an­
nealing the polymer 1 at 80 ◦C for 20 and 75 minutes. Using (12.19) we
obtained the curves for the fictive temperatures Tf(T ) shown in Fig. 12.11b.
They demonstrate that the fictive temperature is mainly determined by the
material-history-dependent magnitude of the DSC nose at the glass transition
and is nearly independent from T below Tg.

Scherer used the fictive temperature to derive an analytic description of re­
laxation processes in the glassy state by extending the Adams–Gibbs–DiMar-
zio theory considering the fictive temperature for the calculation of the config­
urational entropy [26]. This Adam–Gibbs–Scherer (AGS) model results in the

Fig. 12.11. (a) DSC curves (shifted by an offset for better visualization) and (b) cal­
culated temperature dependence of the fictive temperature of polymer 1 after an­
nealing at different temperatures
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following expression for the time-temperature dependence of the relaxation
process (in terms of the WLF notation) [15, 27]:

ln
[
τm(T, Tf(T ))

τ(Tg)

]
=

C1C2

T

(
1− Tg − C2

Tf (T )

) − C1 . (12.20)

For the case of a constant Tf , which is nearly the case according to DSC ex­
periments (Fig. 12.11b), this equation predicts indeed the Arrhenius-type be­
havior of τm(T ) in the glassy state that was found in SHG and acoustoelectric
measurements. The AGS model is also in accordance with relaxation behav­
ior measured above and below the glass transition temperature as shown in
Fig. 12.12. The temperature dependence of relaxation times observed on the
side-chain NLO polymer 3 with dielectric spectroscopy above [20] and by SHG
below the glass transition are well described by the AGS model (solid line).

In conclusion, our experiments showed a similar relaxation behavior for
second order nonlinear optical and piezoelectric properties, although they are
determined by different polar order parameters , and confirmed the theoretical
prediction in [28]. The observed Arrhenius type temperature dependence of
the relaxation time constants (also reported e.g. in [19, 29]) can be explained
by the AGS model, which was discussed in similar way in [27, 30]. One may
conclude from this result that a NLO polymer is the better suitable for ap­
plication in electrooptic devices the higher its glass transition temperature is.
A high Tg implicates however such problems as a reduced poling efficiency
(because of the Boltzmann factor) and the chemical instability of NLO chro­
mophores at high temperatures. Alternative approaches to stabilize the polar
order have been discussed: Cross linking of the NLO polymers during pol­
ing [31, 32] may improve the poling stability but on the cost of disadvantages

Fig. 12.12. Temperature dependence of relaxation time constants of the polymer 3
measured with dielectric spectroscopy and SHG above and below Tg, respectively,
(dots) and a fit of the AGS model (solid line)
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as a worse processability or a reduced polar order [33]. Enforcing the polar
order by application of a permanent high d.c. voltage [34] is probably imprac­
ticable for real devices. Hence, the selection of the appropriate material for
electrooptic devices is not only a question of the poling stability but a trade-off
between several important material properties and some decrease of the elec­
trooptic coefficient may be acceptable and compensated by an increase of the
driving voltage.

12.4 Electroabsorption spectroscopy as a tool for
relaxation measurements

12.4.1 Experimental technique

The detected signals in an electro-absorption spectrometer are the static com­
ponent I and the electric field induced change �I of the transmitted light in­
tensity (Fig. 12.13). Since �I � I the absorption change can be approximated
by �A = −�I/I ln 10. It makes the measurement insensitive to any specific
spectral dependencies of the detector and allows for a comparable simple ex­
perimental set-up without sophisticated spectral calibration. A comparison of
spectra obtained with and without a d.c. electric field applied does usually not
suffice to determine the Stark effect because �A is small and might not exceed
the noise level. The signal-to-noise ratio can be improved by several orders
of magnitude using an a.c. electric field and a lock-in amplifier. If an electric
field E(t) = E0 sin(�t) with a modulation frequency f = �/2π is applied to
the sample, the linear effect will also be observed at f . The quadratic effect is
proportional to E2(t) and has, because of E2

0 sin2(�t) = 0.5E2
0 [1− cos(2�t)],

a d.c. component and a component at 2f = �/π. Since a lock-in amplifier
typically delivers effective values in both the f and the 2f measurement mode,
it is convenient to express the magnitude of all a.c. signals as effective values.
We have thus for the linear effect

Fig. 12.13. Schematics of an electroabsorption spectroscopy experiment (G = semi­
transparent gold electrode, P = polymer film, S = glass substrate with transparent
ITO electrode), I0 incoming light intensity; I , �I see text
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�Aeff(f) = F1
�µEeff(f)

hc
A′(ν̃), (12.21)

and for the quadratic effect

�Aeff(2f) =
E2

eff√
2

[
�α

2hc
A′(ν̃) +

(�µ)2

10h2c2
A′′(ν̃)

]
. (12.22)

Using measured absorption spectra A(ν̃) one can calculate the derivative
terms A′(ν̃) and A′′(ν̃) numerically. Fitting an equation of the form �A(ν̃) =
C1A′(ν̃) + C2A′′(ν̃) with variable parameters C1 and C2 to an experimental
quadratic electroabsorption spectrum �A2ω

eff (ν̃) allows to determine the molec­
ular parameters �µ and �α. The knowledge of the value of �µ allows then
for the determination of the polar order parameter F1 after fitting an equa­
tion of the form �A(ν̃) = CLA′(ν̃) to the measured linear electroabsorption
spectrum �Aω

eff(ν̃) of a polar sample. Note that the polar order parameter
can be calculated from

F1 =
CLU

qu
eff√

10
√

2C2U lin
eff

, (12.23)

where Uqu
eff and U lin

eff are the modulation voltages used in the quadratic and
linear experiment, respectively. F1 can therefore be determined without mea­
suring the film thickness and without any assumption about the correction
factors for the local field; esp. the latter reduces the error for the polar order
parameter significantly and is a valuable advantage in comparison with other
NLO measurements [35].

12.4.2 Electroabsorption spectroscopy with variable modulation
frequency

It has been desirable to study relaxation processes of NLO chromophores in
polymers above and below the glass transition temperature, i.e. over several
orders of magnitude in timescale, observing only one single physical prop­
erty. New experimental techniques, often referred to as chi-electric relaxation
measurements, have thus been developed for the observation of fast dynam­
ics above the glass transition using quadratic NLO properties as e.g. SHG.
The polar orientation of the chromophores is induced by a time dependent
electric field Ep applied to the sample. The variation of the temporal relation
between probing laser pulses and poling field allows to measure the temporal
response of the NLO chromophore to the electric field. Figure 12.14 depicts the
principles of two of the methods for chi-electric relaxation measurements. In
Fig. 12.14a measurements are performed in the time domain [30]: Ep is a pulse
of duration td and induces a second-order nonlinear susceptibility χ(2) that
follows the electric field with a characteristic response time. The variation
of the delay tm between probing laser pulse Iω and Ep allows to determine
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Fig. 12.14. Methods for chi-electric relaxation measurements in (a) time domain
and (b) frequency domain (top: applied electric field, middle: response of nonlinear
susceptibility χ2, bottom: probing laser pulse intensity)

the response characteristics of the field induced χ(2). As shown in Fig. 12.14b
a sinusoidal Ep (with oscillation time tp) induces a χ(2) response that is also
sinusoidal and, in general, phase shifted [36]. Variation of the delay time tm
for the synchronization of the probing laser pulses with Ep allows to scan the
SHG response and thus to determine the amplitude and phase shift of χ(2)

(with respect to Ep). Repeating the measurements at a number of different
frequencies f = 1/tp in the interesting frequency range allows to characterize
the response characteristics of the NLO chromophores in the frequency do­
main. The measured SHG signal in both methods is however in fact the sum
of χ(2) and χ(3) effects, where one of the field components in the χ(3) term
of (12.1) is from the electric field Ep, whereas the other two components are
from the electric field of the laser pulse. This χ(3) contribution to the apparent
effect doesn’t require reorientation of the chromophores , is much faster due
to its electronic nature and appears thus as a constant offset.

The method for the measurement of the χ(2) response is not limited to
SHG; the electrooptic (Pockels) effect or the electroabsorption (Stark) effect
may be used as well. Both effects are the optical response (in dispersion and
absorption, respectively) to an electric field. Measurements in the frequency
domain may thus be performed using a sinusoidal electric field for both, in­
ducing the polar order and measuring the electrooptic or electroabsorption
response. Our research in this direction has been focused on the Stark effect
after we observed the influence of an electric field on the electroabsorption
signal due to reorientation of chromophores [37].

Electroabsorption spectroscopy as described above allows in general to
distinguish between the χ(2) and the χ(3) contributions, which correspond
to the linear and quadratic Stark effect, respectively, due to their different
wavenumber dependency. As described in (12.12) and (12.21) the linear elec­
troabsorption effect can be observed at the first harmonic f = �/2π of the
modulation field E(t) = E exp(i�t) and is proportional to the polar order
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parameter F1, whereas the quadratic effect is observable at the second har­
monic 2f and is (in good approximation) independent of F1. The linear effect
doesn’t contribute to the signal at 2f if the orientation of the chromophores is
fixed. In the case of a sufficient rotational mobility at the frequency f a time
dependent dipolar order may be induced by the modulation field Em. In this
case the polar order parameter F1 oscillates with the frequency f, i.e.

F1(t) = M1E exp(i�t) =
√

2M1Eeff exp(i�t) , (12.24)

where M1 describes the magnitude of the chromophores’ reorientation in the
electric modulation field Em(f) at the frequency f .

Another contribution to the apparent electroabsorption spectrum is based
on the absorbance change through the reorientation itself. The electric field
gives a slight preference for molecules oriented in the direction of the light
propagation (z axis) and thus reduces the absorbance of the sample, which
is proportional to the expectation value 〈sin2 θ〉 for the angle between the
molecular long axis and the z axis. The effect is (in contrast to the linear and
quadratic Stark effect) proportional to the absorption spectrum A(ν̃) itself
and is quadratic in the electric modulation field Em. Both, the oscillating
polar order and the electro-orientation introduce additional contributions to
the electroabsorption response at 2f . Thus the electroabsorption spectrum
can be described by

�Aeff(2f) =
E2

eff√
2

[
2M1�µ + �α

2hc
A′(ν̃) +

(�µ)2

10h2c2
A′′(ν̃) + M0A(ν̃)

]
.

(12.25)

Taking into account the maximum values for both coefficients M1 and M0
according to the Boltzmann distribution of dipoles µg in the electric field E,
we can write

M1 =
1
5
η

µg

kBT
and M0 =

1
15

η

(
µg

kBT

)2

, (12.26)

where η is the relative response function that describes the reorientation mag­
nitude in respect to its maximum (η = 0 for orientational fixed chromophores,
η = 1 for chromophores that fully follow the modulation field E).

Figure 12.15a shows the electroabsorption spectra of Disperse Red 1 (DR1,
Fig. 12.1) in polymethylmethacrylate (PMMA) measured with modulation fre­
quencies f = 2 Hz and 2 kHz [38]. At f = 2 kHz the chromophores are not
able to follow the modulation field, whereas for f = 2 Hz the reorientation of
the chromophores is possible; the signal has thus a different amplitude and
wavenumber dependency. The reorientation magnitude η can be evaluated
by analyzing the relative magnitude of the different spectral contributions
(A, A′, A′′) to the experimental electroabsorption spectra �A(ν̃). After fitting
an equation of the form �A(ν̃) = C0A(ν̃)+C1A′(ν̃)+C2A′′(ν̃) to experimen­
tal data, η is obtained by comparing the fit parameters C0 and C1 with the
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Fig. 12.15. Electroabsorption spectroscopy with variable modulation frequency.
(a) Spectrum for Disperse Red 1 in PMMA for f = 2 Hz and 2 kHz. (b) Frequency
dependence of the reorientation magnitude η for two temperatures

expressions of the corresponding coefficients given in (12.25). In experiments
we found C0 more significant than C1 because of the magnitude of this contri­
bution and its direct proportionality to η. To determine the mean relaxation
frequency and the relaxation frequency distribution one has to repeat the
measurement of the electroabsorption spectra several times at different mod­
ulation frequencies f and calculate the corresponding η value. Figure 12.15b
shows as an example the results obtained for DR1 in PMMA at two differ­
ent temperatures. More detailed analyses have shown that the curves η(f)
can be described by well-known frequency-domain relaxation functions (the
dashed curves in Fig. 12.15b were obtained by fitting the Cole–Cole model).
The corresponding mean relaxation frequencies are in agreement with results
obtained by other techniques as chi-electric measurements [39–41].

Hence, electroabsorption spectroscopy with variable modulation frequency
proved to be an alternative to other methods for the measurement of molec­
ular orientation relaxation. The non-ambiguous attribution of the measured
effect to the chromophore relaxation is a very important advantage over bulk
measurements as dielectric spectroscopy and might be interesting for investi­
gations on other materials besides quadratic NLO polymers, e.g. low-Tg pho­
torefractive polymers. Electroabsorption measurements are also possible on
samples with very low chromophore concentration, which may be important
to exclude or even study effects of aggregation. A certain disadvantage of this
method is the requirement to measure full spectra �A(ν̃) for a number of dif­
ferent modulation frequencies. However, in many cases it might be sufficient
to determine the modulation frequency dependence of electroabsorption at
a fixed wave number ν̃. E.g. in Fig. 12.15a the response at ν̃ = 2.1× 106 m−1

would be a good choice, because the signal magnitude is (besides a small
frequency-independent offset) almost proportional to η.
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12.4.3 Internal electric field in NLO films

In Sect. 12.3 we discussed briefly the influence of charges on the SHG or
acoustoelectric signals. However, little attention (with some exceptions, see
e.g. [42]) has been paid to understand effects related to charge transport and
storage as well as non-uniform electric field distributions in NLO polymers ,
although these phenomena are relevant for both, preparation and operation
of NLO polymer devices. From special importance is the knowledge of the
internal electric field distribution from an externally applied voltage for pol­
ing [43, 44] or adjustment of retardation in modulators in Mach–Zehnder inter­
ferometer configuration [45]. Waveguide modulators consist usually of three
different polymer layers, where the active layer (the NLO polymer) is embed­
ded between two NLO inactive cladding layers. Since there is no method to
measure the field distribution directly, one has to estimate it from its effect
on other phenomena. To determine the electric field E0 within the active layer
one may measure NLO properties but their field dependence may be unclear
because a mixture of χ(2) and χ(3) effects is observed. An effect that is di­
rectly proportional to the field in the NLO active layer is thus very helpful for
the investigation and understanding of the processes in polymeric sandwich
structures under electric field. In the following we will show that electroab­
sorption is especially suitable for this task and present measurements that
demonstrate the behavior of a nonuniform field distribution in a double-layer
polymer film.

Above we discussed electroabsorption spectroscopy in terms of the linear
Stark effect (observed at the frequency f) of the modulation field Ef and
the quadratic Stark effect, which can be measured at 2f . In the presence of
a d.c. electric field E0 (from an externally applied d.c. voltage or as result of
internal polarization) the quadratic effect will however also contribute to the
signal at f . It will be referred to as quasilinear Stark effect and is described
by

�Aql
eff(f) = 2E2

effE0

[
�α

2hc
A′(ν̃) +

(�µ)2

10h2c2
A′′(ν̃)

]
, (12.27)

i.e. it has the same wave number dependency as the quadratic effect (12.22).
If the sample is polar the electroabsorption spectrum measured at f is the
sum of the linear and the quasilinear effects. Figure 12.16 shows as an ex­
ample the quasilinear and the linear electroabsorption spectrum of the NLO
chromophore DMANA (Fig. 12.1) in polycarbonate [38]. Note two important
points in the spectra: At wave number ν̃A the quasilinear effect is zero and
only the linear effect contributes to the signal, whereas at ν̃B only the quasilin­
ear effect will be measured. Since the latter is proportional to the electric field
strength E0, one may determine the magnitude and the temporal evolution
of the internal field E0 by measuring the Stark signal at ν̃B [46, 47].

To demonstrate the usefulness of the method we performed experiments
on double-layer sandwich structures (one active and one inactive layer,
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Fig. 12.16. Quasilinear and linear electroabsorption spectrum of the chromophore
DMANA in polycarbonate. ν̃A corresponds to λ = 501 nm, ν̃B to 488 nm

Fig. 12.17. Double polymer layer sandwich structure and simple equivalent circuit

Fig. 12.17a). The active layer consisted of 4 µm polycarbonate bisphenol-
A containing 2 weight-% of the NLO chromophore DMANA, for the 8.5 µm
thick inactive layer the polyimide PI 2566 was used. Figure 12.18 shows the
evolution of the electroabsorption response measured with the modulation
frequency f at 488 nm (=̂ ν̃B), where the linear effect is zero [38]. During the
first 500 seconds no d.c. voltage was applied to the sample and the response
is zero within error range. At t = 0 s the d.c. voltage was switched on and we
observed an immediate response followed by a slower increase of the signal
magnitude. A fast signal jump (in opposite direction) was also observed when
the d.c. voltage was switched off at t = 1000 s. The signal returns however
not to zero but relaxes slowly with approximately the same time constant of
τ ≈ 430 s as observed at the process between t = 0 s and 1000 s.

The equivalent circuit shown in Fig. 12.17b is the simplest model to de­
scribe the observed behavior. It considers that the layers have in general
different resistance and capacitance, depending on the conductivity, dielec­
tric constant and thickness of the respective layer. Immediately after a d.c.
voltage U is applied to the electrodes of the sandwich structure at t = 0
the voltage U0

a across the active layer is determined by the capacitances of
the layers, i.e. U0

a = UCa/(Ca + Ci). Then the conductivity of the layers
allow charges to accumulate at the interface between active and cladding
layer until the voltage U∞

a across the active layer for t → ∞ is determined
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Fig. 12.18. Quasilinear Stark effect measured on a two-layer polymer sample

by the resistances, i.e. U∞
a = URa/(Ra + Ri). According to the equivalent

circuit the transition between U0
a and U∞

a follows an exponential behavior
Ua(t) = U∞

a − (U0
a − U∞

a ) exp(−t/τ) with τ = (Ca + Ci)/(R−1
a + R−1

i ). Con­
sidering the dielectric constants of the polymers, thickness of the layers, the
measured capacitance and resistance of the sample we find that the measured
time constant (τ ≈ 430 s) is in accordance with the two-layer equivalent
circuit.

Comparable measurements on single-layer films reveal that an internal
electric field may also be induced by charging effects on the polymer-electrode
interface [47]. Such effects are important for the understanding of the proper­
ties of other sandwich structures, esp. organic light emitting diodes and solar
cells. Electroabsorption spectroscopy has recently been used to determine the
internal electric field in both structures [48, 49].

12.5 Summary

We presented investigations on relaxation phenomena in nonlinear optical
polymers with focus on the stability of polar order after poling and the ap­
plication of electroabsorption spectroscopy for relaxation measurements. The
decay of the second order nonlinear optical susceptibility χ(2) in the glassy
state of the polymers was measured by SHG and compared with piezoelectric
measurements. The relaxation behavior for both cases was similar and could
be described by an Arrhenius-type temperature dependence of the mean re­
laxation time. This result can be understood in frames of Scherer’s extension
of the Adams–Gibbs–DiMarzio theory for the glassy state.

We demonstrated that the electroabsorption spectra of NLO chromophores
in polymers depend on the the modulation frequency f used in the electroab­
sorption spectrometer if f is in the range of the chromophores’ orientational
relaxation frequency. The relaxation time constant can thus be obtained by
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analyzing the spectra for a number of different suitable f values. This method
allows one to measure chromophore relaxation abovse or in the glass transi­
tion region optically (i.e. in absorption) and is hence only sensitive to the ab­
sorbing chromophores. It can be considered as a valuable supplement to other
techniques (e.g. dielectric spectroscopy) and can be compared with chi-electric
relaxation measurements.

We also showed that anisotropic field distributions – especially in multi-
layer polymer films – and their evolution can be studied by the Stark effect.
For the appropriate wavelength the Stark effect is directly proportional to
the internal electric field in the polymer layer that contains the NLO chro­
mophores. It can thus be used to determine the response of the internal field
to changes of the externally applied voltage. This is of specific importance for
optimized poling, in polymeric light-emitting diodes and solar cells, where po­
larization effects at layer interfaces strongly influence the device performance.
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