
II. Reciprocity Maps
Existence Theorems

The fundamental results given in this chapter do not necessarily form a se-
quence of logical steps for a proof of class field theory, but are written and
commented so as to be used. This is so true that, as we will see several times,
a classical proof consists in deducing local class field theory from global class
field theory, as was initiated by Hasse and Schmidt in 1930 (see [Ha4] and
[SchFK], respectively), and in particular to base some local computations on
global arguments (a typical example being the global computation of a local
Hilbert symbol in 7.5); however here, in the description of the results, we will
go from local to global, which seems more natural.

Chapter I contains tools coming directly from elementary considerations
on number fields and local fields; on the contrary the present chapter relies
on the (nontrivial) existence, for each place of the number field K, of the
local reciprocity map (or local norm residue symbol). 1 The existence of the
local reciprocity map, and thus of the global one as we will see in 3.2, is in
fact of a cohomological nature, even though other approaches are possible,
such as the Lubin–Tate theory of formal groups. 2

§1 The Local Reciprocity Map — Local Class Field
Theory

Let K be a number field and let v ∈ Pl fixed. Since the case v ∈ Pl∞ is
immediate (see 1.4.6), we will usually assume that we are dealing with a
finite place, but everything which is detailed below can also be applied to
the local extension C/R, an unramified abelian extension whose Frobenius is
equal to complex conjugation c.

As usual, if v is finite all the corresponding local fields are taken in the
completion C� of an algebraic closure Q� of Q�, where � is the residue char-
acteristic of v. Let Kv be the v-completion of K; let Kv = Q� (resp. K

ab

v ) be
the algebraic (resp. abelian) closure of Kv in C�, and Gv (resp. G

ab

v ) the profi-

1 Its proof can be found in [d, CF, Ch.VI; Se2, Ch.XI, XIII], [f, Art1; Haz],
[c, Neu1, Ch. IV]; the first proof is actually due to Hasse–Chevalley [h, Che1].

2 [f, Lang2, Ch. 8; Iw1], [d, CF, Ch.VI, § 3], [c, Neu1, Ch.V, § 4].
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nite group Gal(Kv/Kv) (resp. Gal(K
ab

v /Kv) � Gv/[Gv, Gv]), where [Gv, Gv]
denotes the topological closure of the commutator subgroup of Gv.

Now let L be a finite extension of K; for each w ∈ PlL,v, Lw is the w-
completion of L. We fix Lw/Kv and the embeddings iv and iw for w|v, as
explained in I.2.4.

Note. Since any finite extension of local fields can be written (in infinitely many

ways) as Lw/Kv, we are indeed studying an arbitrary local extension; here, the use

of this global point of view will not matter since it will in any case be the natural

setting for the definition of the global reciprocity map corresponding to L/K (the

only one which interests us here and for which we must consider simultaneously all

the completions of L/K and all the corresponding local reciprocity maps).

a) Decomposition of Places: Local and Global Cases

In this subsection, we recall the main classical properties of the places in an
arbitrary extension L/K, both in the local and global cases. As explained in
the above Note, we work in the setting of a global extension L/K.

1.1 Local Galois Groups, Inertia Groups, Frobenius’. In this para-
graph, we will constantly refer to Section 2 of Chapter I.

1.1.1 Galois Case. If L/K is Galois with Galois group G, the decomposi-
tion group of w ∈ PlL,v in L/K, denoted Dw, can be canonically identified
with Gw := Gal(Lw/Kv), and under this isomorphism the inertia group Iw
of w in L/K, which is a normal subgroup of Dw, corresponds to the inertia
group G0

w of Lw/Kv. We will sometimes use the notation D0
w instead of Iw

when the higher ramification groups are needed in a global situation, and
then more generally Di

w � Gi
w or Dw,i � Gw,i, i ≥ 0, with the definitions

recalled in 1.3.

Since the field LDw is the decomposition field of w in L/K, we know that
iw(LDw) is dense in Kv. The inertia field is LIw ; similarly iw(LIw) is dense in
the subfield Lnr

w of Lw fixed under G0
w (the largest subfield of Lw unramified

over Kv). 3

1.1.2 Non-Galois Case. Even when the extension L/K is not Galois the
extension Lw/Kv may still be Galois (see Example I.2.2.3, (ii)), so that Gw

(hence G0
w which is still a normal subgroup of Gw) can exist even when

Dw does not make sense; this explains the independent choice of notations
between the local and global cases.
3 We use the superscript “nr” (as “non ramifié” from the french), thus following

most authors.



§1 The Local Reciprocity Map — Local Class Field Theory 67

1.1.3 Abelian Case. If L/K is abelian, the groups Dw, Iw, do not de-
pend on the choice of w ∈ PlL,v and, by abuse of notation, are simply
denoted Dv, Iv; similarly for the fixed subfields LDv , LIv . The notations
Gv, G0

v, Lv, Lnr
v are also legitimate since Lw does not depend on the choice

of w|v, and neither does the isomorphism Gw � Dw which sends τ ∈ Gw to
i−1
w ◦ τ ◦ iw on L.

In the Galois case the Gw for w|v are equal (since the Lw are equal), but
the canonical isomorphism Gw → Dw depends on the choice of w|v, which
explains that in this case Gw is not denoted Gv.

1.1.4 Maximal Abelian Subextensions. We now assume that L/K is
any finite extension. In the sequel, we will refer to the following diagram, in
which L′

w′/Kv comes from a subextension L′/K of L/K, w′ is the place of
L′ below w, Lab

w (resp. L′ab
w′ = Lab

w ∩ L′
w′) is the maximal abelian extension

of Kv in Lw (resp. in L′
w′), and where Lab′

w is the maximal abelian extension
of L′

w′ in Lw (Lab′
w contains L′

w′Lab
w , but is not necessarily equal to it).

LwLab′
wL′

w′Lab
wLnr′

wL′
w′

Lab
wL′ab

w′

Lnr
wL′nr

w′

Kv

Gab0
w

Gab
w

Fig. 1.1

By abuse of notation we set Gab
w := Gal(Lab

w /Kv); if Lw/Kv is Galois then
Gw exists and we indeed have Gab

w � Gw/[Gw, Gw]. We denote by Gab 0
w the

inertia group of Lab
w /Kv. If Lw/Kv is Galois (with Galois group Gw), the

inertia group of Lab
w /Kv is equal to Gab 0

w � G0
w/[Gw, Gw] which is not the

abelianization of G0
w but the image of G0

w in Gab
w , in accordance with the

general property of higher ramification groups (in upper numbering) which
is that for any normal subgroup H of Gw, we have (Gw/H)i = Gi

wH/H
(see [d, Se2, Ch. IV, § 3]).

We proceed in an analogous manner to define the groups Dab
w and Iab

w

which lift Gab
w and Gab 0

w respectively, when L/K is Galois; we have Dab
w =

Dw/[Dw,Dw] and Iab
w = Iw/[Dw,Dw].

Note that, even in the Galois case, Gab
w is not necessarily isomorphic to the

decomposition group Dw(Lab/K) of w in Lab/K, the latter corresponding to
the quotient of Gab

w which gives Gal((Lab)v/Kv) (see I.2.7).



68 II. Reciprocity Maps — Existence Theorems

1.1.5 Maximal Unramified Subextensions — Frobenius’. We denote
by K

nr

v the maximal unramified extension of Kv in Kv; it will of course be
obtained by the local infinite class field theory correspondence 1.7, but its
direct construction is classical and elementary: recall that, when v is finite,
K

nr

v is the lift, via the Hensel Lemma I.3.2, of the algebraic closure Fv of
the residue field Fv � Fqv of Kv, since for each degree n ≥ 1, the unique
unramified extension of degree n of Kv is equal to Kv(µqnv−1);

4 it is a cyclic

extension. It follows that K
nr

v is contained in K
ab

v , that it is procyclic with
Galois group:

Gal(K
nr

v /Kv) � lim←−
n≥1

Z/nZ =: Ẑ �
∏

p prime

Zp,

the profinite completion of Z. For any subextension M/Kv (finite or not) of
K

nr

v /Kv, we denote by:

Frob(M/Kv)

the Frobenius automorphism of M/Kv; it is a topological generator of the
group Gal(M/Kv), restriction of Frob(K

nr

v /Kv) to M . The Frobenius action
Frob(K

nr

v /Kv) (x) ≡ xqv mod (πv) for integers x is here characterized by:

Frob(K
nr

v /Kv) (ζ) = ζqv for all ζ ∈
⋃
n≥1

µqnv−1,

otherwise, Frob(K
nr

v /Kv) (ζ)− ζqv is a local unit (we are reduced to consider
1− ζ ′ where ζ ′ �= 1 is of order prime to the residue characteristic of v) which
must be in (πv), a contradiction.

In the above context 1.1.4, we then have Lnr
w = Lw ∩ K

nr

v ; this is the
maximal unramified subextension of Lw/Kv. As we have just mentioned, it
is cyclic, unique, contained in Lab

w , and Lw/Lnr
w is totally ramified; 5 Lnr

w exists
even when Lw/Kv is not Galois; in the Galois case, it is the subfield fixed
under G0

w (see 1.1.1).
We immediately check that L

nr

w = LwK
nr

v or, more canonically:

k
nr

= k Q
nr

� =
⋃
n≥1

k(µ�n−1),

for any algebraic extension k of Q�, where � is the corresponding residue
characteristic (for this, we must check that k(µ�n−1)/k is unramified, even if
�n is not a power of qv, which is immediate).

In (Fig. 1.1) above we have given the various maximal unramified exten-
sions using a principle of notation identical to the one used for maximal
abelian extensions (noting that since Lw/Lnr

w is totally ramified, we indeed
have here that Lnr′

w = L′
w′Lnr

w ). The diagram can be justified by the very
nature of K

nr

v . This gives the following result.
4 [e, Ko3, Prop. 1.77].
5 [d, Se2, Ch. III, § 5, Cor. 3 to Th. 3].
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1.1.6 Exact Sequence of Inertia Groups. Let L′/K be a subextension
of L/K. If Lw/Kv and L′

w′/Kv are Galois with respective Galois groups Gw

and Gw′ , we have the following exact sequence of inertia groups (which is
still valid if these local extensions are infinite as we will see in 1.2.3):

1 −→ G′0
w −−−→ G0

w −−−→ G0
w′ −→ 1,

where G′0
w := Gal(Lw/Lnr′

w ), G0
w′ := Gal(L′

w′/L′nr
w′ ).

The cyclicity of Lnr
w /Kv implies the following property of the Frobenius

automorphism.

1.1.6.1 Proposition.We have (see (Fig. 1.1)):

Frob(Lnr
w /Kv)f

′
w′ = Frob(Lnr

w /L′nr
w′ ) = Frob(Lnr′

w /L′
w′)|Lnr

w

,

where f ′
w′ := [L′nr

w′ : Kv] is the residue degree of L′
w′/Kv.

1.1.6.2 Notations. We denote by ew := [Lw : Lnr
w ] and eab

w := [Lab
w : Lnr

w ] the
ramification index of Lw/Kv and of Lab

w /Kv, respectively; since the extension
Lw/Lab

w is totally ramified, the residue degree fw := [Lnr
w : Kv] of Lw/Kv is

equal to fab
w , that of Lab

w /Kv.

1.2 Global Decomposition and Inertia Groups. We still consider a
finite extension L/K with a subextension L′/K.

1.2.1 Exact Sequences of Decomposition and Inertia Groups.

When L/K and L′/K are Galois, recall how the groups Dw′ and Iw′ (in
L′/K), D′

w := Dw(L/L′) and I ′w := Iw(L/L′), are related to the groups Dw

and Iw in L/K (with w |w′ | v in L ⊇ L′ ⊇ K).
We have the following diagram, where LDw and L′Dw′ are respectively

the decomposition fields of w and w′ in L/K and L′/K, where LIw and
L′Iw′ are the corresponding inertia fields, and where LD

′
w and LI

′
w are the

decomposition and inertia fields of w in the extension L/L′.

Iw

Dw

Iw′

Dw′

split

split

split

inert

inert

ramified

ramifiedramifiedramified

inertinert

split

LLI
′
wLD

′
wL′

LIwL′Iw′

LDwL′Dw′

K

(w)(w′)

(v)
Fig. 1.2
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In this diagram, all the field compositums are direct, the linear disjunction (on
their intersection) coming from the fact that in each case at least one of the
extensions is Galois. In particular, note that the decomposition and inertia
properties propagate under ground field extension. For L/K Galois, all of this
comes from existence and uniqueness of the fields L1, L2, K ⊆ L1 ⊆ L2 ⊆ L
for which w is totally ramified in L/L2, totally inert in L2/L1 (which is a
cyclic extension), and totally split in L1/K. This means that w is of residue
degree and ramification index equal to 1 in L1/K, of residue degree [L2 : L1]
in L2/L1, and of ramification index [L : L2] in L/L2. 6

We can summarize the above with the following, where L′ ⊆ L.

1.2.1.1 Proposition. When L/K and L′/K are Galois, we have the exact
sequences:

1 −→ D′
w = Dw(L/L′) −−−→ Dw −−−→ Dw′ −→ 1,

1 −→ I ′w = Iw(L/L′) −−−→ Iw −−−→ Iw′ −→ 1,

which come from the restriction map Gal(L/K) −→ Gal(L′/K).

1.2.1.2 Definition (global Frobenius’). Let L/K be Galois. Let v be a place

of K and w|v in L. When w is unramified in L/K, we denote by
(
L/K

w

)

the global Frobenius of w in L/K, i.e., the image of the local Frobenius
Frob(Lw/Kv) in Gal(L/K) under the canonical isomorphism Gw � Dw.

Then, in an analogous way as for 1.1.6.1:

1.2.1.3 Proposition. When L/K and L′/K are Galois, and if w is unram-
ified in L/K, we have:

(
L/K

w

)|Dw′ (L′/K)|
=
(

L/L′

w

)
.

1.2.2 Non-Galois Case. In the case where the extensions are not neces-
sarily Galois, see 1.2.5 which again proves these propagation properties using
local arguments. In the non-Galois case, we can still define the decomposition
and inertia fields L1 and L2 of w in L/K if we set:

L1 := {x ∈ L, iw(x) ∈ Kv}, L2 := {x ∈ L, iw(x) ∈ Lnr
w }.

These fields depend on the choice of w. We then say that w is totally split
(resp. unramified) in L/K if L1 = L (resp. L2 = L).

Note that now the extensions iw(L)/iv(K) and Kv/iv(K) are not any-
more necessarily linearly disjoint over their intersection iw(L1): look at the

6 [a, Sam, Ch.VI, § 2], [d, Lang1, Ch. I].



§1 The Local Reciprocity Map — Local Class Field Theory 71

case K = Q, L = Q( 3
√

2 ), where w is the place with residue characteristic
equal to � = 5 for which iw( 3

√
2 ) is not contained in Q5 (if 3

√
2 ∈ Q5, take

iw( 3
√

2 ) := j 3
√

2 ∈ Q5(j)).

1.2.3 Infinite Galois Case. When L/K is an infinite Galois extension
with Galois group G, we also define the decomposition field (resp. the inertia
field) of w in L/K as the set of elements of L whose image under iw is
contained in Kv (resp. K

nr

v ); thus, this defines the groups Dw and Iw in a
way which is compatible with the finite case. It is also possible to define these
groups as in the finite case (see [c, Wa, App., § 2]).

1.2.3.1 Proposition. We have the following homeomorphisms:

Dw � lim←−
L′

Dw′(L′/K), Iw � lim←−
L′

Iw′(L′/K),

where L′ ranges in the set of all finite Galois extensions of K in L ordered
by inclusion, and where, for each L′, w′ is the place of L′ below w. 7

Proof. Since Dw is a closed subgroup of the profinite group G � lim←−
H

G/H,

where H ranges in the set of all closed normal subgroups of finite index of
G, a general result gives:

Dw � lim←−
H

DwH/H ;

if L′ denotes the subfield of L fixed under H, by the above we thus have:

DwH/H � Gal(L′/L′ ∩ LDw) = Dw′(L′/K),

proving the result. The proof is the same for the inertia group.

1.2.3.2 Exercise. Let Σ be a finite set of places of L. Prove in the same
way that 〈Dw 〉w∈Σ = lim←−

L′
〈Dw′(L′/K) 〉w′∈Σ′ .

In applications, L/K will usually be abelian (infinite class field theory)
and so the groups Dw =: Dv and Iw =: Iv will thus be independent of the
choice of w|v.

1.2.4 Infinite Non-Galois Case. When L/K is an (arbitrary) infinite
algebraic extension, we use the definition given in 1.2.2 to define the de-
composition and inertia fields of w; this means that by definition an infinite
7 The place w is defined by means of a choice of coherent extensions w′ of v, and

denoted w = lim−→
L′

w′.
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extension is totally split (resp. unramified) at w if and only if any finite
subextension is totally split (resp. unramified) at w.

The following exercise justifies by local arguments the existence and ba-
sic properties of the decomposition and inertia fields in the most general
situation.

1.2.5 Exercise (propagation of decomposition and nonramification). Let
L/K be a fixed extension and let M be another extension of K.

(i) Let v′ ∈ PlM be totally split in M/K. Show that every place w′ ∈
PlLM,v′ is totally split in LM/L.

(ii) Let v′ ∈ PlM be a finite place unramified in M/K. Show that every
place w′ ∈ PlLM,v′ is unramified in LM/L.

Answer. We first show the evident relation (where v is the place of K below
v′, and w that of L below w′, which is thus above v):

(LM)w′ = LwMv′ ,

by writing that (LM)w′ := iw′(LM)Kv is the compositum of iw(L)iv′(M)
with Kv (see I.2.6, I.2.6.1).

(i) By assumption, we have Mv′ = Kv so that (LM)w′ = Lw.
(ii) By existence and uniqueness of the maximal unramified subextensions

of local extensions (or using the formula F nr = F ∩K
nr

v for any extension F
of Kv), we have:

Lw ∩ (LM)nr
w′ = Lnr

w ,

and since by assumption Mv′ ⊆ (LM)nr
w′ , we have:

(LM)w′ = LwMv′ ⊆ Lw(LM)nr
w′ ,

so (LM)w′ is equal to the direct compositum of Lw with (LM)nr
w′ over

Lnr
w . Since Lw/Lnr

w is totally ramified, when these extensions are finite,
the multiplicativity property of ramification indices immediately shows that
(LM)w′/Lw is unramified. For infinite extensions, simply note that Mv′ =:
Kv(µ), where µ is of the form

⋃
n

µqnv−1 for suitable integers n, and that

LwMv′ = Lw(µ) is contained in L
nr

w .
If M/K is abelian and if v ∈ PlK , then in case (i) (resp. (ii)), every place

w ∈ PlL,v is totally split (resp. unramified) in LM/L.

1.3 Higher Ramification. It is also useful to keep in mind a number of
results on higher ramification (which will of course be in parallel with the
fundamental results of class field theory when the extension is abelian), in
particular what follows. 8

8 After [d, Se2, Ch. IV, §§ 1, 2], [e, Ko3, Ch. 1, § 3.7].
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Let v be a finite place of K and denote by � the residue characteristic
of v. Assume that Lw/Kv is a finite Galois extension with Galois group Gw.

1.3.1 Higer Ramification Groups. For each i ≥ 0, we define the higher
ramification group (in lower numbering) by:

Gw,i := {s ∈ Gw, w(s(x)− x) ≥ i + 1 ∀x integer of Lw},

which is a normal subgroup of Gw. We have Gw,0 = G0
w, the inertia group.

We also have for all i ≥ 1:

Gw,i = {s ∈ Gw,0, w(πs−1
w − 1) ≥ i},

where πw is a uniformizer of Lw.

1.3.2 Inertia Group. Recall that the group Gw,1 is an �-group and the
quotient Gw,0/Gw,1 is a cyclic group isomorphic to a subgroup of F×

w (hence
whose order is prime to �): indeed, the kernel of the map sending s ∈ Gw,0

to the residue class us of us := πs−1
w is by definition equal to Gw,1. This

result shows that for a global finite p-extension 9 L/K and for a finite place
v of K with residue characteristic � �= p, the order of Iw � Gw,0 divides
|F×
w | = qw − 1.

1.3.3 Inertia Group in the Abelian Case. When Lw/Kv is abelian, we
can write for s ∈ Gw,0 and us := πs−1

w :

ut−1
s = (πs−1

w )t−1 = (πt−1
w )s−1 for all t ∈ Gw ;

since πt−1
w =: u(t) ∈ Uw, we obtain:

us
t−1 = u(t)

s−1
= 1 for all t ∈ Gw

since Fw (equal to the residue field of Lnr
w ) is fixed under Gw,0. It follows that

us ∈ F×
v ; in this case, we have an injection of the form:

Gw,0/Gw,1 −−−→ F×
v .

We have obtained:

1.3.3.1 Proposition. In any abelian extension L/K (finite or not), the
group Dv,0(L/K)/Dv,1(L/K) (which measures the tame ramification) 10 is
isomorphic to a subgroup of F×

v .
9 Recall that “p-extension” or “pro-p-extension” always means Galois extension

whose Galois group is a p-group or a pro-p-group.
10 “Tame ramification” of a finite place in an extension means that the correspond-

ing ramification index of the place is prime to the residue characteristic.
As explained in 1.1.1, for i ≥ 0, Dw,i(L/K) denotes the ramification groups
in a global Galois extension L/K; in particular, Dw,0(L/K) = Iw(L/K) and
Dw,i(L/K) � Gw,i for all i ≥ 0.
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For example, if Gal(L/K) � Zrp (i.e., if L/K is Zp-free of finite type),
then L/K is unramified outside places dividing p (same result if Gal(L/K)
is an arbitrary free pro-p-group [Y]).

For the definition of the ramification groups in upper numbering Gi
w, see

[d, Se2, Ch. IV, § 3].

We will come back to higher ramification groups in 1.6.2 when we will
perform conductor computations.

b) Local Class Field Theory Correspondence

Let L/K be a finite extension of number fields, L′/K a subextension, and
let v ∈ Pl, w ∈ PlL,v, and w′ below w (thus, above v) in L′. We denote by
Uv, U ′

w′ , and Uw the unit groups of the fields Kv, L′
w′ , and Lw. The first

fundamental result in the local case is the following (use Fig. 1.1).

1.4 Theorem (local reciprocity map, norm residue symbol). There exists a
canonical homomorphism:

( • , Lw/Kv) : K×
v −−−→ Gab

w := Gal(Lab
w /Kv)

x �−→ (x , Lw/Kv)

having the following properties:

(i) We have the exact sequence:

1 −→ NLw/Kv (L
×
w) −−−−−→ K×

v

(• ,Lw/Kv)−−−−−→ Gab
w −→ 1 ;

(ii) the composition of ( • , Lw/Kv) and of the projection Gab
w −→

Gal(L′ab
w′ /Kv) is equal to ( • , L′

w′/Kv);
(iii) the image of Uv (resp. of U i

v, i ≥ 1) under ( • , Lw/Kv) is equal to
the inertia group Gab 0

w (resp. to the ith higher ramification group in upper
numbering Gab i

w ) in Lab
w /Kv, and in particular we have the exact sequence:

1 −→ NLw/Kv (Uw) −−−→ Uv −−−→ Gab 0
w −→ 1 ;

(iv) for all x′ ∈ L′×
w′ , the image of (x′ , Lw/L′

w′) in Gab
w is equal to

(NL′
w′/Kv (x

′) , Lw/Kv); in particular, we have:

Gal(Lab
w /L′ab

w′ ) = (NL′
w′/Kv (L

′×
w′ ) , Lw/Kv),

and the inertia group of Lab
w /L′ab

w′ is equal to (NL′
w′/Kv (U

′
w′) , Lw/Kv);

(v) for all x ∈ K×
v , the image of (x , Lw/Kv) under the transfer map 11

(from Gab
w to Gal(Lab′

w /L′
w′)), is equal to (x , Lw/L′

w′);
(vi) for any isomorphism τ of Lw and all x ∈ K×

v , we have:

(τx , τLw/τKv) = τ ◦ (x , Lw/Kv) ◦ τ−1 on τLab
w ;

11 See Remark 1.4.1.
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(vii) if Lab
w /Kv is unramified, then for all x ∈ K×

v we have: 12

(x , Lw/Kv) = Frob(Lab
w /Kv)v(x) ;

in other words:
(πv , Lw/Kv) = Frob(Lab

w /Kv),

for any uniformizer πv of Kv.

The symbol ( • , Lw/Kv) is called the local norm residue symbol or the
local reciprocity map.

1.4.1 Remark (transfer map). For the cohomological definition and the
properties of the transfer map, see [d, Se2, Ch. VII, § 8] or [f, Neu2, Th. 8.8].
Here we do not assume that Lw/Kv is Galois, and the result is obtained (by
restriction) from the analogous computation in the Galois closure of Lw over
Kv. Recall how to compute Ver : G/[G,G] −→ H/[H,H] for any subgroup H
of finite index of a group G: let (si)i=1,...,(G:H) be a system of representatives
of the elements of G/H; for any fixed s ∈ G and for each i put s si =: sj ti,
ti ∈ H, then we have:

Ver(s mod [G,G]) =
(G:H)∏
i=1

ti mod [H,H].

1.4.2 Remark (local Frobenius’ for finite places). Recall that if Lab
w /Kv is

unramified (i.e., Lab
w = Lnr

w ), it is cyclic and its Frobenius Frob(Lab
w /Kv) is

the unique generator σ of Gab
w such that σ(x) ≡ xqv mod (πv) for all integers

x of Lab
w , where qv := |Fv|, or such that σ(ζ) = ζqv for a root of unity ζ of

order q
fab
w
v − 1 generating Lab

w over Kv.

Note. If we denote respectively by N′ and j′ the norm map in L′
w′/Kv and the

canonical injection Kv −→ L′
w′ , we have:

N′ ◦ j′ = [L′
w′ : Kv] on K×

v , j′ ◦ N′ =
∑
i
σ′

i on L′×
w′ ,

where the σ′
i are the [L′

w′ : Kv] Kv-isomorphisms of L′
w′ in C� (in the Galois case,∑

i
σ′

i =: ν′ is the algebraic norm in L′
w′/Kv). This applies to (iv) and (v).

1.4.3 Corollary. We have (with Notations 1.1.6.2):

(i) K×
v /NLw/Kv (L

×
w) � Gab

w has order equal to eab
w fab

w ;

(ii) Uv/NLw/Kv (Uw) � Gab 0
w has order equal to eab

w . Thus, if Lab
w /Kv is

unramified we have:

Uv = NLw/Kv (Uw)

12 See Remark 1.4.2 in the case of finite places; see Remark 1.4.6 in the case of
infinite places.
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(i.e., NLw/Kv (L
×
w) = π

fab
w Z

v ⊕ Uv), and x ∈ K×
v is a norm in Lw/Kv if and

only if:
v(x) ≡ 0 mod (fab

w ).

By 1.4, (iii), and the fact that for a finite place v with residue characteristic
equal to � the group U1

v is the �-Sylow subgroup of Uv, we deduce that
Gab 1
w = Gab

w,1 (the �-Sylow subgroup of Gab
w,0) (see 1.3.2).

1.4.4 Proposition. The map NLw/Kv : L×
w −→ K×

v is an open map.

Proof. It is enough to show that for all j ≥ 0 there exists i ≥ 0 such that
U i
v ⊆ NLw/Kv (U

j
w). The properties of the logarithm and exponential in Kv

(see [c, Wa, Ch. 5, § 1]) imply that, for i sufficiently large we have:

log(U i
v) = (πiv) =: [Lw : Kv](πi−hv ),

where h := v([Lw : Kv]), and for i ≥ j + h sufficiently large:

U i
v = (U i−h

v )[Lw:Kv ] = NLw/Kv (U
i−h
v ) ⊆ NLw/Kv (U

j
w).

It is clear that 1.4.3, (ii) is a deep result which is not simply elementary
v-adic analysis, but it implies that NL/K is an open map as a map from JL
to JK (this will be clear in Section 2). A direct proof may be found in [d,
Lang1, Ch. IX, § 3] and in [f, Art1, Ch. VII, § 2]; see also 1.6.4.

1.4.5 Remark. By its very nature, in a certain sense the norm residue sym-
bol:

( • , Lw/Kv),

does not depend on the extension Lw/Kv, but only on its maximal abelian
subextension; for instance, this allows us to write:

( • , Lw/Kv) = ( • , Lab
w /Kv) and NLw/Kv (L

×
w) = NLab

w /Kv
(Lab×

w ),

showing that the definition of this symbol for an arbitrary extension is useful
in practice and gives more precise information. This proves for example that
any element of Q×

2 is the norm of an element of Q2(
3
√

2 ).
In particular, we deduce the following equality:

Lab×
w = NLw/Lab

w
(L×

w) . NL
ab×
w ,

where NL
ab×
w is the kernel of NLab

w /Kv
.

1.4.6 Remark. Let us explicitly describe the case v ∈ Plr∞ (the reciprocity
map is the trivial map when v is complex). In this case Kv = R hence, since
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the only nontrivial algebraic extension of R is C (which is in addition abelian
and unramified over R), the reciprocity map ( • , C/R) is given by:

(x , C/R) := cv(x) for all x ∈ R×,

where c is complex conjugation, and where v(x) = 0 (resp. 1) if x > 0 (resp.
x < 0). This is the only way to have the exact sequence in 1.4, (i). It is also
the formula of statement (vii) since c = Frob(C/R) (the local Frobenius at v).

In this case, when Lw = C (i.e., iw(L) is a nonreal extension of iv(K) ⊂
R), we have Gw = Gab

w = 〈 c 〉, G0
w = 1, fw = 2, ew = 1. If L/K is Galois,

the decomposition group Dw is generated by the global Frobenius cw :=
i−1
w ◦ c ◦ iw; cw is called “a” complex conjugation of L/K.

Let Kv be the v-completion of the number field K.

1.5 Theorem (local existence). For any subgroup of finite index N of
K×
v there exists 13 a unique finite abelian extension M of Kv such that

NM/Kv (M
×) = N ; the norm residue symbol in M/Kv yields the exact se-

quence:
1 −→ N −−−→ K×

v −−−→ Gal(M/Kv) −→ 1.

In addition, the bijection from the set of subgroups of finite index of K×
v to

the set of finite abelian extensions of Kv is a Galois correspondence; in other
words we have the following properties (where M1 and M2 are abelian over
Kv and correspond respectively to N1 and N2 ⊆ K×

v ):

(i) we have M1 ⊆M2 if and only if N2 ⊆ N1;
(ii) M1M2 corresponds to N1 ∩N2;
(iii) M1 ∩M2 corresponds to N1N2;
(iv) if M1 ⊆M2, we have Gal(M2/M1) � N1/N2, where the isomorphism

is obtained from the restriction of ( • , M2/Kv) to N1.

Note. The subgroups of finite index of K×
v are open, but the converse is false

(look for example at the case of Uv). However, when we take limits to describe

Gal(K
ab
v /Kv), it is not K×

v and its topology which occur (see 1.7).

1.5.1 Remarks. (i) Properties (i) to (iv) logically follow from the exis-
tence of this bijection, because of 1.4, (i), (ii) (the equality Gal(M2/M1) =
(N1,M2/Kv) is a particular case of 1.4, (iv)).

(ii) By 1.4, (ii), (iii), the subgroup of K×
v corresponding to the iner-

tia subfield Mnr of M is Uv N , where N corresponds to M , since the ker-
nel of K×

v −→ Gal(M/Kv)/Im(Uv) = Gal(Mnr/Kv) is UvN ; similarly, its
maximal tamely ramified subextension corresponds to U1

v N . It is clear that
UvN = πfZ

v ⊕ Uv, where f is the residue degree of M/Kv. We recover the

13 in some fixed algebraic closure of Kv; here it is convenient to use Kv = Q� ⊂ C�,
where � is the residue characteristic or ∞ (see the introduction to Section 1).
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existence and the uniqueness of the unramified extension of degree n of Kv:
it corresponds to πnZ

v ⊕ Uv.
(iii) The group N corresponding to M/Kv is called the norm group of the

extension M/Kv.

1.5.2 Exercise. Prove the above Remark (i).

Answer. Suppose M1 ⊆ M2; since (N2, M2/Kv) = 1 by definition, one gets
(N2, M1/Kv) = 1, proving that N2 ⊆ N1. We now put:

H := (N1, M2/Kv) ⊆ Gal(M2/M1) ;

then |H| = (N1 : N2) = (K×
v : N2)(K×

v : N1)−1 = [M2 : M1], proving (iv):

(N1, M2/Kv) = Gal(M2/M1),

which we will now use systematically.
Let M1, M2 be arbitrary, and let N and N ′ be the norm groups of M :=

M1M2 and M ′ := M1 ∩M2; we put:

Hi := Gal(M/Mi) = (Ni, M/Kv), i = 1, 2 ;

we have the inclusions:

N ⊆ N1 ∩N2 ⊆ N1N2 ⊆ N ′.

We have H1H2 = Gal(M/M ′), hence, since Hi = (Ni, M/Kv), we have
(N1N2, M/Kv) = (N ′, M/Kv), and finally N ′ = N1N2 since these groups
contain the kernel N of ( • , M/Kv). In the same way, H1 ∩H2 = 1 yields:

(N1, M/Kv) ∩ (N2, M/Kv) = (N1 ∩N2, M/Kv) = 1,

thus N1 ∩N2 = N .
If N2 ⊆ N1 then N1N2 = N1 yields (by uniqueness) M1 ∩M2 = M1 (or

N1 ∩N2 = N2 and M1M2 = M2), which finishes the proof.

To illustrate the local class field theory correspondence, let us look at the
following situation which will be considered again in the Paragraph 2.6.

1.5.3 Example (local extensions coming from non-Galois extensions). Let
L/K be a finite extension of number fields and, for v ∈ Pl, let Lw for w ∈
PlL,v be the completions of L above v; recall that the Lw are defined only up
to Kv-conjugation. Let Lab

v be the maximal abelian subextension of Lv :=⋂
w|v

Lw; it is independent of the choice of the Kv-conjugates of the Lw since

we have Lab
v =

⋂
w|v

Lab
w , while Lv does depend on them, but we will see that

Lv will not really be used as such. We set:
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Gab
v := Gal(Lab

v /Kv).

Then the subgroup of K×
v corresponding to Lab

v is the subgroup generated
by the NLw/Kv (L

×
w) for w|v; in particular we have the equality:

NLv/Kv (L
×
v ) = 〈NLw/Kv (L

×
w) 〉w|v

and the exact sequence:

1 −→ NLv/Kv (L
×
v ) −−−→ K×

v −−−→ Gab
v −→ 1,

which can also be written using the corresponding abelianizations:

NLab
v /Kv

(Lab×
v ) = 〈NLab

w /Kv
(Lab×

w ) 〉w|v,

1 −→ NLab
v /Kv

(Lab×
v ) −−−→ K×

v −−−→ Gab
v −→ 1.

We will also encounter the field compositum L̂ab
v := 〈Lab

w 〉w|v; by local

class field theory, the field L̂ab
v corresponds to the subgroup:

⋂
w|v

NLw/Kv (L
×
w) =

⋂
w|v

NLab
w /Kv

(Lab×
w ).

Let us return to the general situation; we then have the following addi-
tional property which can easily be deduced from 1.4 and which we state in
a slightly different setting.

1.5.4 Corollary (norm lifting theorem). Let L/K be a number field exten-
sion and for v ∈ Pl, let M/Kv be a finite abelian extension.
If N is the subgroup of K×

v corresponding to M over Kv, then for w|v the
subgroup N ′ of L×

w corresponding to LwM over Lw is:

{y ∈ L×
w , NLw/Kv (y) ∈ N} =: N−1

Lw/Kv
(N).

Proof. We give the proof using the following diagram:

LwMLw

Lab
w (LwM)ab = Lab

w M

MLw∩MKv

We have N ′ = Ker(( • , LwM/Lw)). Since (LwM)ab = Lab
w M , we have the

isomorphisms:



80 II. Reciprocity Maps — Existence Theorems

Gal(LwM/Lw) � Gal(Lab
w M/Lab

w ) � Gal(M/Lw ∩M) ;

it follows that y ∈ N ′ if and only if the image of (y , LwM/Lw) in
Gal(M/Lw ∩M) is trivial. Using 1.4, (iv) applied to LwM/Kv, the image
of (y , LwM/Lw) in Gal(Lab

w M/Kv), which is an element of Gal(Lab
w M/Lab

w ),
is equal to (NLw/Kv (y) , Lab

w M/Kv) whose image in Gal(M/Lw ∩M) is ob-
tained by restriction to M , giving (NLw/Kv (y) , M/Kv) by 1.4, (ii). Since by
definition Ker(( • , M/Kv)) = N , we obtain the given formula for N ′.

c) Local Conductors and Norm Groups

Let L/K be an extension of number fields, and let v ∈ Pl0 and w ∈ PlL,v.
Using 1.4.4, the following definition makes sense.

1.6 Definitions (local conductors). (i) The smallest power pmwv , mw ≥ 0,
such that:

Umw
v ⊆ NLw/Kv (L

×
w)

(or, equivalently, Umw
v ⊆ NLw/Kv (Uw)) is called the norm conductor or con-

ductor of Lw/Kv and is denoted:

fLw/Kv .

(ii) The conductor of (Lab)v/Kv, the completion of Lab/K at v, is called
the norm v-conductor or v-conductor of L/K and denoted:

fv := fv(L/K).

1.6.1 Remarks. (i) By 1.4, (iii), mw is the smallest integer m for which we
have (using upper numbering):

Gabm
w = 1.

Since NLw/Kv (L
×
w) = NLab

w /Kv
(Lab×

w ), we have equality of the conductors of
the extensions Lw/Kv and Lab

w /Kv (so that in practice we always are reduced
to compute fLab

w /Kv
by using the formula that we will give in 1.6.2).

(ii) By definition, we have fv(L/K) = fv(Lab/K); in addition fv(Lab/K)
divides the fLab

w /Kv
for w|v.

(iii) Local class field theory implies the local conductor theorem which
says that v is ramified in Lab

w /Kv if and only if fLab
w /Kv

�= 1 (use 1.4.3, (ii)).
Note however that Lw/Lab

w is totally ramified; the conductor is thus equal to
1 if and only if Lab

w = Lnr
w .

It seems that it would be useful to define a generalized v-conductor
fv[L/K] when L/K is any extension; it should be the conductor of Lab

v be-
cause of the normic properties that we will see in 2.6 and of Definition 3.1.4
of the generalized norm residue symbol.
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In the Galois case, Lab
v = Lab

w0
for any place w0|v, and fv[L/K] is given

by fLw0/Kv
(which is then independent of the choice of w0).

Concerning L̂ab
v := 〈Lab

w 〉w|v in the general case, we easily check that its
conductor is equal to the l.c.m. of the fLw/Kv , w|v.

We can summarize the above by the following diagram where the corre-
sponding conductors divide each other in the given order:

Kv −−−−− (Lab)v −−−−− Lab
v −−−−− Lab

w −−−−− L̂ab
v

(1) fv(L/K) fv [L/K] fLw/Kv l.c.m.(fLw/Kv )

However, we will not have any use for the generalized v-conductor and in
global class field theory, only the fv (the v-conductors for Lab/K) will enter,
whose product will define a global conductor.

1.6.2 Remark (conductor computation). For the explicit computation of the
conductor fLw/Kv , we refer to [d, Se2, Ch. XV, § 2, Cor. 2 to Th. 1, Ch. IV,
§ 3] from which we deduce the following formula:

fLw/Kv = fLab
w /Kv

=: pmwv , with mw :=
1

gab
0

∑
i≥0

gabi >1

gab
i ,

where gab
i is the order of the higher ramification group Gab

w,i (in lower number-
ing) in Lab

w /Kv; for each i ≥ 1, Gab
w,i is defined from Gab

w,0 (of order gab
0 = eab

w )
by:

Gab
w,i = {s ∈ Gab

w,0, w((πab
w )s−1 − 1) ≥ i},

where πab
w is a uniformizer of Lab

w (see 1.3.1).
If v is tamely ramified in Lab

w /Kv (i.e., if the residue characteristic � of v
does not divide eab

w ), we have Gab
w,1 = 1, hence mw = 1.

We will assume known this conductor formula since it can be obtained
by a direct study of the norm on the groups Uv, as is done in [d, Se2, Ch. V
and XV] following Hasse, study which reduces to proving the property of the
local reciprocity map assumed in 1.4, (iii). It is nothing but the translation
of the lower numbering to the upper numbering for ramification groups when
we look for the first trivial Gabm

w (see 1.6, (i)). This is a great advantage
since the computation of the higher ramification groups in lower numbering
is always effective and easy in practice (see the example given below).

We use the same method to compute the v-conductor fv from the groups
(Gab)v,i, where (Gab)v := Gal((Lab)v/Kv).

As an application, we give the following result for the Kummer case, which
illustrates the computation of local conductors from the classical results on
higher ramification groups mentioned above.
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1.6.3 Proposition (v-conductors of a Kummer extension of prime degree p).
Let K be a number field containing the group µp of pth roots of unity and
let L = K( p

√
α ), α ∈ K×\K×p. Let v be a finite place of K ramified in L/K.

The norm v-conductor of L/K is equal to pv if v � p, and to ppev+1−r
v if v|p,

where ev is the ramification index of v in K/Q(µp) and r is the largest integer
for which the congruence:

α

xp
≡ 1 mod prv, x ∈ K×,

has a solution (the case v(α) �≡ 0 mod (p) meaning r = 0).

Proof. Let αv := iv(α) ∈ K×
v ; then Lv := Kv( p

√
αv ) is the completion Lw

of L at some place w|v, and by definition the conductor of Lv/Kv is equal
to fv. We set Gv := Gal(Lv/Kv).

If v � p is ramified (i.e., v(α) �≡ 0 mod (p)), we have fv = pv (tame
ramification). This case follows in fact trivially, directly from Definition 1.6.

Assume now that v|p. In this case the formula of 1.6.2 yields fv = pt+1
v ,

where t is the largest integer such that gt �= 1, and we have:

t = w(πσ−1
w − 1),

where πw is a uniformizer of Lv and σ a generator of Gv.
(i) If v(α) �≡ 0 mod (p), we can always assume that v(α) = 1, hence that

πw = p
√

αv. We then have πσ−1
w − 1 =: ζ − 1, where ζ is a generator of µp,

giving t = pev. But in this case r = 0, proving the result.
(ii) If v(α) ≡ 0 mod (p), we can reduce to the case where αv ∈ Uv. By

I.6.3, (ii), the integer r satisfies:

1 ≤ r ≤ pev − 1 ;

changing αv mod (Uv)p if necessary, we can assume that αv ∈ Ur
v ; then, by

definition of r, αv(U1
v )p is disjoint from Ur+1

v . Let us write:

p
√

αv := 1 + πρw uw, ρ ≥ 1, uw ∈ Uw ;

this yields:
αv = 1 + πpev(p−1)+ρ

w u′
w + πpρw upw, u′

w ∈ Uw

since v(p) = ev(p − 1) and v is ramified in Lv/Kv. We must have ρ <
pev, otherwise we would get r ≥ pev, a contradiction. Thus we must have
pρ < pev(p − 1) + ρ, hence ρ = r. Writing that σ( p

√
αv ) = ζ p

√
αv and that

πσ−1
w = ξ ∈ U t

w\U t+1
w , we obtain:

1 + πrw ξr uσw = ζ(1 + πrw uw),

hence, since w(1− ζ) = pev > r:

w(ξr uσ−1
w − 1) = pev − r.
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Lemma. We have r �≡ 0 mod (p).

Proof. Assume that r = λp and set αv =: 1 + πλpv ηv, ηv ∈ Uv; since r =
λp < pev we have λ < ev. Since Fv is a finite field, there exists η′v ∈ Uv such
that ηv ≡ η′pv mod (πv); it is then immediately checked that:

αv
(1 + πλv η′v)p

∈ Ur+1
v ,

a contradiction.

It follows that ξr ∈ U t
w \U t+1

w . But it is clear that uσ−1
w ∈ U t+1

w , which
yields:

w(ξr − 1) = pev − r.

It follows that w(ξr − 1) = w(ξ− 1) = t = pev − r, finishing the computation
of the v-conductor in the wild case.

Note. If v|p and if v(α) �≡ 0 mod (p), then r = 0 and the v-conductor is maximal;

if v(α) ≡ 0 mod (p), we have 1 ≤ r ≤ pev − 1, so that 2 ≤ pev + 1− r ≤ pev, where

the lower bound is in agreement with statement III.1.3.2.

The following result on norm actions can be useful in practice.

1.6.4 Proposition. Let Lw/Kv be a completion of an arbitrary finite ex-
tension L/K of number fields.

There exists a function ψw from N to N such that NLw/Kv (U
ψw(n)
w ) = Un

v for
all sufficiently large n.
If in addition Lw/Kv is Galois with Galois group Gw, the above relation
holds as soon as Gw,ψw(n) (the ψw(n)th higher ramification group) is trivial.

Proof. Referring to [d, Se2], we can sketch the following proof: we use [IV, 3,
Rem., 2] which allows us to define ψw in complete generality from the Galois
case, and using [V, 6, Cor. 3] for norm aspects. It is then clear that if Lw/Kv

is unramified, NLw/Kv (U
n
w) = Un

v for all n ≥ 0 ([V, 2, Prop. 3] or 1.4.3, (ii));
if Lw/Kv is tamely ramified, the above equality holds for all n ≥ 1 ([XV, 2,
Cor. 1 to Th. 1] or once again 1.4.3, (ii)).

1.6.5 Exercise (norm groups and conductors of quadratic extensions of Q�).
Let � be a prime number. If � �= 2, since:

Q×
� = 〈 � 〉 ⊕ 〈 ζ 〉 ⊕ 〈 1 + � 〉

Z�
, where 〈 ζ 〉 = µ�−1,

Kummer theory shows, through the study of Q×
� /Q× 2

� , that quadratic exten-
sions of Q� are:

Q�(
√

ζ ), Q�(
√

� ), Q�(
√

�ζ ).
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If � = 2, knowing that in this case:

Q×
2 = 〈 2 〉 ⊕ 〈−1 〉 ⊕ 〈 5 〉

Z2
,

we obtain the following list of quadratic extensions of Q2:

Q2(
√

5 ), Q2(
√
−1 ), Q2(

√
−5 ), Q2(

√
2 ), Q2(

√
−2 ), Q2(

√
10 ), Q2(

√
−10 ).

Compute all the norm groups and conductors.

Answer. For � �= 2, the subgroups of index 2 of Q×
� are the following:

N1 := 〈 �2 〉 ⊕ 〈 ζ 〉 ⊕ 〈 1 + � 〉
Z�

,

N2 := 〈 � 〉 ⊕ 〈 ζ2 〉 ⊕ 〈 1 + � 〉
Z�

,

N3 := 〈 �ζ 〉 ⊕ 〈 ζ2 〉 ⊕ 〈 1 + � 〉
Z�

.

The unique unramified extension Q�(
√

ζ ) corresponds to N1 since the residue
degree is 2 or the ramification index is 1 using 1.4.3; then, if we denote by N
the norm in these quadratic extensions, we have:

N(
√
−� ) = �, N(

√
−�ζ ) = �ζ.

Thus, it is more natural to write the three quadratic extensions of Q� in the
form:

Q�(
√

ζ ), Q�(
√
−� ), Q�(

√
−�ζ ),

in which case they correspond respectively to N1, N2, N3 (conductors
(1), (�), and (�) using 1.6). We then have:

Q�(
√
−� ) = Q�(

√
� ) and Q�(

√
−�ζ ) = Q�(

√
�ζ ),

if and only if � ≡ 1 mod (4) (otherwise the extensions on the right hand sides
are permuted).

For � = 2, the norm groups are the following:

N1 := 〈 4 〉 ⊕ 〈−1 〉 ⊕ 〈 5 〉
Z2

,

N2 := 〈 2 〉 ⊕ 〈 5 〉
Z2

,

N3 := 〈−2 〉 ⊕ 〈 5 〉
Z2

,

N4 := 〈 2 〉 ⊕ 〈−1 〉 ⊕ 〈 52 〉
Z2

,

N5 := 〈 2 〉 ⊕ 〈−5 〉
Z2

,

N6 := 〈 2× 5 〉 ⊕ 〈−1 〉 ⊕ 〈 52 〉
Z2

,

N7 := 〈−2 〉 ⊕ 〈−5 〉
Z2

.

The unramified extension is Q2(
√

5 ) and corresponds to N1 (we can also
note that N(2+

√
5 ) = −1 and N(5+2

√
5 ) = 5). We then have the following

computations:
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N(1 +
√
−1 ) = 2, N(2 +

√
−1 ) = 5,

N(
√
−5 ) = 5, N(3 +

√
−5 ) ∈ −2Q× 2

2 ,

N(
√

2 ) = −2, N(1 +
√

2 ) = −1,
N(
√
−2 ) = 2, N(1 +

√
−2 ) ∈ −5Q× 2

2 ,

N(
√

10 ) = −10, N(3 +
√

10 ) = −1,
N(
√
−10 ) = 10, N(2 +

√
−10 ) ∈ −2Q× 2

2 ;

they show that the (ramified) extensions Q2(
√
−1 ), Q2(

√
−5 ), Q2(

√
2 ),

Q2(
√
−2 ), Q2(

√
10 ), and Q2(

√
−10 ) correspond respectively to N2, N3, N4,

N5, N6, N7 and have as conductors (4), (4), (8), (8), (8), (8).

1.6.6 Exercise. Let v be a finite place of K and let n be a nonzero integer.
Show that K×

v /K×n
v is finite.

Assume that Kv contains the group µn of nth roots of unity; compute
the norm group N corresponding to M := Kv

(
n
√

K×
v

)
.

Answer. Let p be a prime number and let pe be the largest power of p dividing
n; it is sufficient to show that the p-torsion group K×

v /K×pe
v is finite. By

I.3.1.1, we have K×
v � Z⊕ µqv−1 ⊕ µ�(Kv)⊕Z

[Kv : Q�]
� , where � is the residue

characteristic of v, and the result follows.
Classical Kummer theory says that M is the maximal abelian extension

of exponent n of Kv; but the quotient K×
v /N is maximal of exponent n if

and only if N = K×n
v .

When µn ⊂ K×
v , for each p dividing n we have more precisely:

K×
v /K×pe

v � (Z/peZ)2 (resp. (Z/peZ)[Kv : Q�]+2)

if � �= p (resp. � = p). Without the Kummer hypothesis the norm group
K×n
v still corresponds to the maximal abelian extension of exponent n of Kv

(which is not a Kummer extension and cannot be generated by radicals) and
the structure of its Galois group is modified (in an explicit way).

1.6.7 Remark (local Hilbert symbols). One might think that in the Kummer
case (µn ⊂ Kv, M := Kv

(
n
√

K×
v

)
) the symbol ( • , M/Kv) is “easy”; as the

long search for explicit formulas shows, this is not the case. If we set for all
x, y ∈ K×

v :

(y , M/Kv)( n
√

x ) = (y , Kv( n
√

x )/Kv)( n
√

x ) =: (x , y)v n
√

x,

we thus define the local Hilbert symbol of order n: 14

( • , • )v : K×
v ×K×

v −−−→ µn

whose knowledge is equivalent to that of the norm residue symbol (we will
study it in Section 7). In most books, the definition is the inverse of the more
canonical present one.
14 [a, Se1; D, Ch. IV], [d, AT, Ch. 12; Se2, Ch.XIV], [e, Ko3, Ch. 2, § 1].
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Note. Since the 1928 original papers of Artin–Hasse, a very large number of contri-

butions (Mills, Hasse, Kneser, Šafarevič, Shiratani, Brückner, Iwasawa, Vostokov,

Wiles, Henniart, Sen, Kolyvagin, Coleman, de Shalit, Miki, Jaulent, ...) have given

explicit formulas for the local Hilbert symbol and reciprocity laws; these techniques,

closely related to the theory of formal groups that we have already mentioned

(Lubin–Tate (1965)) (see [f, Lang2, Ch. 9]) are outside the setting studied here. In

fact, from a theoretical point of view, all these laws can be expressed in the uni-

fied setting of p-adic Galois representations, developed in particular by Fontaine,

Messing, ... In this setting, one can say that all the known results on the local

Hilbert symbol are contained in the reciprocity law of Bloch and Kato, conjec-

turally generalized by Perrin-Riou, and independently proved by Benois, Colmez,

Kato–Kurihara–Tsuji, ...

1.6.8 Remarks. (i) However, in the regular case, also called by abuse of
language the tame case (i.e., when the residue characteristic � of v does not
divide n), n is then a divisor of qv − 1, and we have the following simple
formula (proved in 7.1.5) for the Hilbert symbol of order n:

(x , y)v ≡
(

(−1)v(x)v(y) xv(y)

yv(x)

) qv−1
n

mod (πv) ;

this indeed pinpoints (x , y)v ∈ µn(Kv) since the residue map:

µn(Kv) −−−→ µn(Fv) = (F×
v )

qv−1
n

is an isomorphism. When v is a real place at infinity (Kv = R and n = 2),
(x , y)v is given by the sign of the analogous expression:

(x , y)v = sgn((−1)v(x)v(y)xv(y)y−v(x)) = (−1)v(x)v(y).

(ii) In the absolute quadratic case, Exercise 1.6.5 gives the answer in
complete generality.

(iii) Finally, we will see, perhaps surprisingly, that to compute explicitly
a local Hilbert symbol in the irregular (or wild) case, we can always proceed
globally, without knowing any explicit formula; this will be explained together
with the statements of global class field theory (see 7.5).

We will devote Section 7 of this chapter to the more general notion of sym-
bols and their properties; we will see that Hilbert symbols play an important
role.

d) Infinite Local Class Field Theory

We will conclude by showing that finite local class field theory contains all
information concerning the structure of the abelian closure K

ab

v of Kv, for
v ∈ Pl0, and the class field theory correspondence.
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1.7 Limiting Procedure. By infinite Galois theory and the local class field
theory correspondence, we can relate the topological groups:

Gal(K
ab

v /Kv) � lim←−
M

Gal(M/Kv),

for the set of finite abelian extensions M of Kv, to:

lim←−
N

(K×
v /N),

where N ranges in the set of subgroups of finite index of K×
v , and by definition

we obtain the profinite completion K̂×
v := lim←−

N

(K×
v /N) of K×

v . It is easily

checked (see 1.6.6) that the subgroups K×n
v for n > 0 form a cofinal subset

of the set of subgroups N of finite index, hence that:

K̂×
v = lim←−

n≥1

(K×
v /K×n

v ) ;

since Uv is a profinite group, we immediately obtain (choosing a uni-
formizer πv):

K̂×
v = πẐ

v

⊕
Uv,

where by abuse of notation we have set:

πẐ

v := lim←−
n≥1

(〈πv 〉/〈πv 〉n) � lim←−
n≥1

(Z/nZ) = Ẑ,

which is legitimate since 〈πv 〉 has no Z-torsion. Recall that if � is the residue
characteristic and qv the order of the residue field of v, we have:

Uv � µqv−1

⊕
µ�(Kv)

⊕
Z

[Kv : Q�]
� .

A fundamental system of neighbourhoods of 1 in the profinite group K̂×
v is

given by the (K̂×
v )n for n > 0, or by the πnẐ

v ⊕ U i
v, n > 0, i ≥ 0.

More precisely, properties 1.4, (i), (ii) of the norm residue symbol imply
the existence of an isomorphism of inverse systems giving the homeomorphism
ρv : K̂×

v −→ G
ab

v and showing that there exists an analog to Theorem 1.5 on

the correspondence of infinite local class field theory, replacing K×
v by K̂×

v

and the notion of subgroup of finite index (of K×
v ) by that of closed subgroup

of K̂×
v because of the infinite Galois theory.

Let us describe this correspondence in a little more detail. Let M be
a finite abelian extension of Kv with norm group N := NM/Kv (M

×), and
consider the local reciprocity exact sequence:
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1 −→ N −−−−−→ K×
v

(• ,M/Kv)−−−−−→Gal(M/Kv) −→ 1.

The norm residue symbol ( • , M/Kv) is still continuous for the topology of

K×
v , diagonally embedded in K̂×

v , induced by that of K̂×
v as a profinite group

(neighbourhoods in K×
v : the K×n

v , n > 0); thus extending by continuity we
obtain the exact sequence:

1 −→ adh(N) −−−−−→ K̂×
v

(• ,M/Kv)−−−−−→Gal(M/Kv) −→ 1,

where adh denotes closure in K̂×
v for its topology, and the norm group which

now corresponds to M is:

adh(N) :=
⋂
n>0

(
N . (K̂×

v )n
)
.

This defines in an evident way the local reciprocity map (or norm residue
symbol):

( • , M/Kv) : K̂×
v −−−→ Gal(M/Kv),

for any abelian extension M (finite or not); it is also the composition of ρv

and of the projection G
ab

v −−−→ Gal(M/Kv).
One checks, from the finite case, that the image of Uv (compact) under

( • , M/Kv) is the inertia group. To summarize:

1.7.1 Theorem. There exists a homeomorphism of profinite groups (the
infinite local reciprocity map):

ρv =: ( • , Kv/Kv) : K̂×
v −−−→ G

ab

v := Gal(K
ab

v /Kv),

whose composition with the projection G
ab

v −−−→ Gal(M/Kv) is equal to
( • , M/Kv) for any abelian extension M/Kv.

The inertia group Gal(K
ab

v /K
nr

v ) is the image of Uv under ρv, and the higher
ramification groups (in upper numbering) correspond to the U i

v, i ≥ 1.

The image of a uniformizer πv under ρv is a (noncanonical) extension of
Frob(K

nr

v /Kv).
Finally, there exists a bijective correspondence, between the set of abelian

extensions of Kv and the set of closed subgroups of K̂×
v , which satisfies the

Galois properties (i) to (iv) of 1.5.

1.8 Norm Groups in Infinite Local Class Field Theory. Note that if
M/Kv is infinite, the notation NM/Kv (M

×) does not make any sense directly,
but since:

Gal(M/Kv) = lim←−
M ′

Gal(M ′/Kv),

for Kv ⊆M ′ ⊆M , M ′/Kv finite with norm group N ′, we have:
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Gal(M/Kv) = lim←−
M ′

K̂×
v /adh(N ′) � K̂×

v

/ ⋂
M ′

adh(N ′)

(by I.5.5, applied to A = K̂×
v compact and B = 1), so that the norm group

corresponding to M in K̂×
v can be written:
⋂

M′⊆M
M′/Kv finite

adh(NM ′/Kv (M
′×)).

Note also that the usual (locally compact) topology of K×
v is absolutely

not used here, and is not induced by that of K̂×
v (which is compact); in

particular, Uv is not open in K̂×
v since it is not of finite index.

If M (finite or not) corresponds to the norm group N , then Mnr still
corresponds to the group Uv N , and its maximal tamely ramified subextension
corresponds to U1

v N .

We thus easily obtain the structure of the group G
ab

v since that of K̂×
v �

Ẑ⊕Uv is known; we deduce a number of consequences, such as the following
result.

1.8.1 Proposition. Let v ∈ Pl0. The extension K
ab

v is the direct composi-
tum over Kv of K

nr

v and of a (nonunique) maximal totally ramified abelian
extension of Kv, the extension K

nr

v being fixed by the image of Uv under the
local reciprocity map, while the maximal totally ramified extension is fixed

by that of the subgroup πẐ

v , where πv is a uniformizer.

1.8.2 Remark. If we want to limit ourselves to the maximal pro-p-subex
tension K

ab

v (p) of K
ab

v , p prime, v ∈ Pl0 of residue characteristic equal to �,
we simply note that in terms of p-Sylow subgroups we have:

(i) for p �= �,
(
K̂×
v

)
p
� Zp ⊕ (µqv−1)p, where (µqv−1)p � (F×

v )p corres-
ponds to the inertia group, giving the following diagram:

K
ab

v (p)K
nr

v (p)

Kv M

(µqv−1)p

Zp

(ii) for p = �,
(
K̂×
v

)
p
� Zp ⊕ U1

v , with an inertia group which is, here,
isomorphic to:

U1
v � µp(Kv)⊕ Z[Kv : Qp]

p ,

which corresponds to the following analogous diagram:
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K
ab

v (p)K
nr

v (p)

Kv M

U1
v

Zp

In these two diagrams, the (nonunique) field M defines a maximal totally
ramified abelian pro-p-extension of Kv, finite in the case p �= �, containing
[Kv : Qp] independent totally ramified Zp-extensions in the case p = �.

In case (i), if ph is the p-part of qv − 1, Kv contains the group µph , in
which case Kummer theory shows that we can choose M = Kv( ph

√−πv ).

After treating the global case (Ch. III, § 4, (c), (d)), it will be useful to
compare the structures of K

ab

v /Kv and of K
ab

/K, for instance by checking
that for each place v, the decomposition group of v in K

ab
/K does give a

quotient of the Galois group of the abelian closure of Kv. In fact we will
obtain the much stronger result that the trivial inclusion (K

ab
)v ⊆ K

ab

v is an
equality (Theorem III.4.5, in the direction of the Grunwald–Wang theorem).

1.8.3 Exercise (the case of Q
ab

� ). Assume that K = Q and that v is finite;
we have Kv = Q�, where � is the corresponding residue characteristic. We
thus have Gal(Q

ab

� /Q�) � �Ẑ ⊕ Z×
� .

(i) Show that Q
nr

� = Q�(µ′), where µ′ is the group of roots of unity of
order prime to �, and that the field M fixed under the image of �Ẑ is equal
to Q�(µ�∞).

(ii) Assume that � �= 2. Since Q� contains a primitive (� − 1)th root of
unity, it is clear that the extension Q�( �−1

√
−� ) of Q� is abelian. Show that

it is equal to Q�(µ�), and deduce that there exists in Q�(µ�) a uniformizer π
(called Dwork’s uniformizer) such that π�−1 = −�.

Answer. (i) The elementary theory of cyclotomic fields over Q shows that
Q�(µ′)/Q� is unramified and that Q�(µ�∞)/Q� is totally ramified. Hence we
already have that Q�(µ′) ⊆ Q

nr

� . If n ≥ 1 is some integer, we know that the
field Q�(µ�n−1) has degree n (the Frobenius is of order n), which defines the
unique unramified extension of degree n of Q�, proving the first result of (i).

The norm group of the field M is �Ẑ and we have Gal(M/Q�) � Uv = Z×
� .

Using the cyclotomic polynomials Φm, we see that for all t ≥ 1, � = Φ�t(1) is
the norm of 1− ζt in Q�(µ�t)/Q�, where ζt generates µ�t . Thus Q�(µ�t) ⊂M .
Let Nt be the norm group of Q�(µ�t). Since Q�(µ�t)/Q� is totally ramified of
degree �t−1(� − 1), we have Nt = �Z ⊕ V with V of index �t−1(� − 1) in U�.
If � �= 2, the only possibility is V = 1 + �tZ�; if � = 2 and t ≥ 2, we have
Gal(L�/Q�) � Z/2Z× Z/2t−2Z and the only possibility is V = 1 + 4.2t−2Z2
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since V must be contained in the norm group of Q(µ4) which is equal to
2Z ⊕ (1 + 4Z2) (using 1.6.5). Thus in all cases we have Nt = �Z ⊕U t

v and, by
1.8, the norm group of Q�(µ�∞) is equal to

⋂
t

adh(�Z⊕U t
v) = �Ẑ proving that

M = Q�(µ�∞).
Thus, here we have Q

ab

� = Q�(µ), the field generated by all the roots of
unity.

(ii) The norm of �−1
√
−� in Q�( �−1

√
−� )/Q� is equal to � since:

Irr( �−1
√
−�, Q�) = X�−1 + � ;

the norm group of Q�( �−1
√
−� ) thus contains that of M , hence Q�( �−1

√
−� ) ⊂

M , whence the equality Q�( �−1
√
−� ) = Q�(µ�) (note that Q�(

�−1
√

� ) is also to-
tally ramified and abelian over Q�, but is not contained in M). The conclusion
is clear.

Note that 1 − ζ1 is also a uniformizer, hence (1− ζ1)�−1

−� is the (� − 1)th

power of a unit of Q�(µ�).

In the case where K = Q, we will be able to compute by global means
the local norm residue symbol for abelian extensions of the completions of Q

(see Exercise 3.4.3).

1.9 Exercise (Abhyankar’s lemma). Let M1 and M2 be finite extensions of
a nonarchimedean local field k. Assume that M2/k is tamely ramified (i.e.,
e(M2/k) is not divisible by the residue characteristic of k) and that e(M2/k)
divides e(M1/k). Show that M1 M2/M1 is unramified.

Answer. See [Cor1, Th. 3] for the use of this result, and more generally
[d, Lang1, Ch. II, § 5] for the study of not necessarily Galois tamely rami-
fied extensions.

§2 Idèle Groups in an Extension L/K

Let L/K be a finite extension of number fields. We use the local notations
of Section 1 (in particular of 1.1); if L/K (resp. Lw/Kv for w ∈ PlL,v) is
Galois, we set G := Gal(L/K) (resp. Gw := Gal(Lw/Kv)) and we introduce
the decomposition group Dw of w in L/K.

a) Canonical Injection of CK in CL

Let JK and JL be the respective idèle groups of K and L. For v ∈ PlK ,
recall the relations between the different embeddings of K and L in the
corresponding components K×

v and
⊕
w|v

L×
w of JK and JL. The embedding:
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iv : K −−−→ Kv

comes from the choice of a conjugate Kv of the v-completion of K; for all
w | v, Lw is defined in a similar way as an extension of Kv; the embedding:

iw : L −−−→ Lw

is then an extension of iv, such that the family (iw)w|v is a complete set of
representatives of the classes of Q-embeddings of L in Kv extending iv.

It is convenient to consider JK as a subgroup of JL using the diagonal
embedding jL/K : JK −→ JL for which the image of x =: (xv)v ∈ JK is
given by (xw)w, with xw = xv for all w | v. This map is injective. Similarly:

2.1 Proposition. The canonical map jL/K : CK −−−→ CL, induced by
JK −−−→ JL, is injective.

Proof. Let x =: (xv)v ∈ JK be an idèle such that jL/K(x) = iL(y) for
y ∈ L×, and let v be a fixed place of K; we thus have:

iw(y) = xv for all w|v.

This implies that all the K-conjugates of y are equal (seen in K ⊂ Kv,
these conjugates are the τw ◦ iw(y) = τw(xv) = xv for the w|v and the Kv-
isomorphisms τw of Lw); thus there is only one, so y ∈ K×, proving the
result.

Note. If we only have, for a single place v of K, (xv)w|v = (iw(y))w|v for an

xv ∈ Kv and an y ∈ L×, this yields y ∈ K×.

2.1.1 Remarks. (i) This property leads to a simple definition of the idèle
class group of an infinite algebraic extension L/K by taking the direct limit
of the CL′ for L′ ⊂ L, L′/K finite.

(ii) We will see later that the corresponding map CK/DK −−−→ CL/DL,
which class field theory identifies with the transfer map G

ab

K −−−→ G
ab

L (for
L/K finite), has a kernel isomorphic to (Z/2Z)r

c
1 , where rc

1 is the number of
real places of K totally complexified in L/K.

b) Relations Between Local and Global Norms

Let L/K be an arbitrary finite extension, NL/K the norm in L/K, and fix a
place v of K. For y ∈ L×, we have, giving in detail the computations:

iv(NL/K(y)) =
∏
σ

σ(y)

(where σ ranges in the set of Q-embeddings of L which extend iv)
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=
∏
w|v

∏
τw

τw ◦ iw(y)

(where τw ranges in the set of Kv-isomorphisms of Lw)

=
∏
w|v

NLw/Kv (iw(y)),

which can be summarized as follows.

2.2 Proposition. For any place v of K we have:

iv(NL/K(y)) =
∏
w|v

NLw/Kv (iw(y)) for all y ∈ L×.

By abuse of notation, this formula is in general written:

NL/K(y) =
∏
w|v

NLw/Kv (y),

by saying that, for each place v of K, “the global norm of y is equal to the
product of its local norms above v”.

This can be reinterpreted as the commutativity of the following diagram.

K×

L×

K×
v

⊕
w|v

L×
w

⊕
w|v

iw

∏
w|v

NLw/Kv

iv

NL/K

Fig. 2.1

From this we obtain a canonical definition of the norm in L/K of an idèle
y ∈ JL.

2.2.1 Definition. Let y =: (yw)w ∈ JL, we set:

NL/K(y) :=
(∏
w|v

NLw/Kv (yw)
)
v
.

This norm map indeed extends that defined on L× thanks to the above
commutative diagram. Taking quotients, we also define:

NL/K : CL = JL/L
× −−−→ CK = JK/K×.
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c) Galois Structure of JL: Semi-Local Theory

When L/K is Galois with Galois group G, it is necessary to put on JL a
G-module structure compatible (algebraically and topologically) with that
of the diagonal embedding of L× in JL. For this, it is sufficient to define
explicitly the operation of G on the semi-local factor (seen as a Kv-algebra):

⊕
w|v

Lw, v ∈ PlK ,

operation which we will then restrict to
⊕
w|v

L×
w . Thus, it must be such that

the diagonal embedding:

(iw)w|v : L −−−→
⊕
w|v

Lw

is a G-module homomorphism, is continuous for the v-topology of a K-algebra
on L, i.e., L � K [L:K] with the product of the topologies induced by | • |v on
K. Thus, by density of ((iw)w|v)(L) in

⊕
w|v

Lw (chinese remainder Theorem

I.4.3), this defines it uniquely. From this remark we can give the following
more precise algorithmic proof. For another direct proof, see 2.3.4, (i).

2.3 Existence and Definition of the Galois Action. Let w0 ∈ PlL,v
fixed. Sometimes, by abuse of notation, we consider Lw0 as a subspace of⊕
w|v

Lw. 15 Therefore, it will be sufficient to know the action of G on such a

subspace Lw0 . Let Vw0 be a neighbourhood of 0 in L for w0; for each s ∈ G,
sVw0 is an analogous neighbourhood for sw0, which we can denote Vsw0 ; this
defines Vw for each w|v since G acts transitively on PlL,v. The approximation

theorem means that iw0

( ⋂
w �=w0

Vw

)
is dense in the field Lw0 for every Vw0 ,

and that the closure of ((iw)w|v)
( ⋂
w �=w0

Vw

)
in

⊕
w|v

Lw is of the form Lw0 ⊕V ,

where V is a neighbourhood of 0 in
⊕

w �=w0

Lw.

Note. When v is finite we can for instance take
⋂

w �=w0
Vw =

∏
w �=w0

pm
w for m as large

as we like, hence V =
⊕

w �=w0
(πw)m since iw(pw) = (πw), where πw = π is a suitable

element (independent of w|v) of the maximal ideal of C�.

Furthermore, if s ∈ G we have s
( ⋂
w �=w0

Vw

)
=

⋂
w �=w0

(sVw) =
⋂

w �=sw0

Vw,

which, by going to the limit, easily gives the definition of the action of G
which in particular is such that (in terms of subspaces of

⊕
w|v

Lw):

15 It is important to distinguish between the two sets since an approximation of
y ∈ Lw0 by an element of L× may be very different from an approximation of
(y, 0, . . . , 0), but the context will be clear.
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s.Lw0 = Lsw0 for all s ∈ G.

Hence, for all s ∈ G we obtain a continuous Kv-isomorphism sw0
depending

on w0, still denoted s by abuse of notation:

s : Lw0 −−−→ Lsw0 ,

which defines an element of Gw0 = Gal(Lw0/Kv) if and only if s ∈ Dw0 (in
this case, we recover the canonical isomorphism Dw0 � Gw0 of I.2.5).

2.3.1 Exercise. (i) Check that for all y0 ∈ Lw0 :

s (y0, 0, . . . , 0) = (0, . . . , τ(y0), . . . , 0)

(as element of the subspace Lsw0), where τ ∈ Gal(Lsw0/Kv) is the extension
by continuity of:

isw0
◦ s ◦ i−1

w0
on iw0

(L)

(i.e., if z ∈ L is such that iw0
(z) is an approximation of y0 in the field Lw0 ,

then τ(iw0
(z)) = isw0

(s(z)) is an approximation of s(y0) in Lsw0).

(ii) Apply this (for K = Q) to the fields L = Q(
√

2,
√

5 ) and L =
Q(

√
2 +
√

2 ) for the residue characteristic � = 7, and compute the action of
G on (

√
3, 0) and (

√
2, 0) in each case.

(iii) Check the formula ss′w0
◦ s′w0

= (ss′)w0
, for any s, s′ ∈ G.

Answer. Let y ∈ L× such that:

y ≡ z mod pnw0
,

y ≡ 0 mod pnw ∀w �= w0,

where iw0
(z) ≡ y0 mod πnw0

in Lw0 ; thus we have:

s(y) ≡ s(z) mod pnsw0
,

s(y) ≡ 0 mod pnw′ ∀w′ �= sw0.

Since the embedding of y is an approximation of (y0, 0, . . . , 0), an approxi-
mation of s(y0, 0, . . . , 0) is given by the embedding of s(y), which clearly is
close to (0, . . . , isw0

(s(z)), . . . , 0). The case of infinite places is similar.
Points (ii) and (iii) are left to the reader.

We deduce from all the above the following explicit result (semi-local
theory) stated in terms of representations.

2.3.2 Theorem. Let L/K be Galois with Galois group G.

For any place v of K, the Kv-representation
⊕
w|v

Lw of G is induced by the

representation of the decomposition group Dw0 of w0|v defined by Lw0 .
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Thus it is the regular representation of G.

Proof. Since G acts transitively on PlL,v, we have
⊕
w|v

Lw =
∑
s∈G

Lsw0 =
⊕

s∈G/Dw0

Lsw0 =
⊕

s∈G/Dw0

s.Lw0 , giving
⊕
w|v

Lw as induced representation. The

representation Lw0 , of Dw0 � Gw0 , is the regular one (normal basis theorem
for Lw0/Kv); the uniqueness of the induced representation yields the result
by [Se4, § 3.3 or § 7.1].

2.3.3 Corollary. The action of s ∈ G on an y =: (yw)w|v ∈
⊕
w|v

Lw, is

such that (s.y)sw = s(yw) for all w|v, where by abuse in the second member
s := sw : Lw −→ Lsw is also the Kv-isomorphism defined above.

2.3.4 Remarks. (i) Since we also have
⊕
w|v

Lw � L ⊗
K
Kv, in this context

the G-module action is defined by s . (x⊗a) = (s . x)⊗a for all s ∈ G, x ∈ L,
and a ∈ Kv, giving again 2.3.2 (normal basis theorem for L/K); writing this
explicitly as in (Ch. I, § 2), we would recover the above results.

(ii) Finally, if we introduce the algebraic norm νL/K :=
∑
s∈G

s, we have on

JL the relation jL/K ◦NL/K = νL/K .

Note. In the non-Galois case, we would have, on JL, jL/K ◦ NL/K =
∑
i
τi,

where the τi are the isomorphisms JL −→ JσiL corresponding to the [L : K]

K-isomorphisms σi of L in C� by density. In other words, on the local factor Lw,

τi is the extension by continuity of iσiw ◦σi ◦ i−1
w on iw(L).

2.4 Proposition. Let L/K be a finite Galois extension, and put G =
Gal(L/K). Then JGL = jL/K(JK), H1(G, JL) = 1, and CG

L = jL/K(CK).

Proof. Consider the following more general situation. Let G be a finite group
and H a subgroup of G. Let A be a G-module and B a sub-H-module of A
(considered as a H-module). For s ∈ G/H, Bs := s.B := s.B does not
depend on the choice of the representative s ∈ s. Suppose that A =

⊕
s∈G/H

Bs

(in other words, the G-module A is induced by the H-module B); then, for
the usual cohomology Hr, r ≥ 0, as well as for Tate’s modified cohomology
Ĥr, r ∈ Z, we have (Shapiro’s lemma):

Hr(G,A)
can� Hr(H,B). 16

16 See [d, CF, Ch. VII, § 7, Prop. 7.2]; for the most general situation of Shapiro’s
lemma concerning the links between cohomology and representation theory, see
[g, NSW, Ch. I, § 6, Prop. 1.6.3 and Rem.].
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For example, this is the case for the regular representation A =
⊕
w|v

Lw of

G = Gal(L/K), with B = Lw0 × {0} × · · · × {0}, H = Dw0 for any w0|v,
hence for the modules A =

⊕
w|v

L×
w or

⊕
w|v

Uw, with B = L×
w0
×{1}× · · · × {1}

or Uw0 × {1} × · · · × {1} (review the definitions to see that the action of
Dw0 on B becomes the natural one of Gw0 on Lw0 under the isomorphism
Dw0 � Gw0).

We thus have JGL = jL/K(JK) because of 2.3.2.

Using the fact that JL = lim−→
Σ

UΣ′
L , Σ ⊂ Plnc finite containing the ramified

places (where Σ′ is the set of places of L above those of Σ), and the fact that
the cohomology of finite groups commutes with direct limits, the proof of
H1(G, JL) = 1 follows from the identity Hr

(
G,

∏
i∈I

Ai

)
�

∏
i∈I

Hr(G,Ai) for

all r ≥ 0 (here with “Ai” =
⊕
w|v

L×
w or

⊕
w|v

Uw, and r = 1), from Shapiro’s

lemma, then from the Theorem 90; 17 see also [d, CF, Ch. VII, Prop. 7.3].
The proof of CG

L = jL/K(CK) then uses the cohomology exact sequence

1→ L×G i−→ JGL −→ CG
L −→ H1(G,L×) = 1 and 2.1.

2.4.1 Remarks. Let G be a finite group, and A a G-module.
(i) We recall that Ĥ−r−1 := Ĥr, for r ≥ 0, in the context of Tate’s

modified cohomology, and that we have:

H0(G,A) = AG, Ĥ0(G,A) = AG/νA,

H0(G,A) = A/IGA, Ĥ0(G,A) = νA/IGA,

where ν := νG :=
∑
s∈G

s, and where IG is the augmentation ideal of G.

(ii) Recall also that we have the canonical isomorphisms:

Ĥr(G,A)∗ � Ĥ−r−1(G,A∗), r ∈ Z,

H0(G,A)∗ � H0(G,A∗),

Ĥ1(G,Q/Z) � Hom (G,Q/Z) =: Gab ∗,

Ĥ1(G,Z) � IG/I2
G,

where ∗ (see I.5.7) is the usual duality for abelian groups X (i.e., X∗ :=
Hom(X,Q/Z)), 18 and where Gab := G/[G, G].

(iii) For instance, the case r = −2, A = Z (with Z∗ = Q/Z), gives the
canonical isomorphism IG/I2

G � Gab.

17 We have H1(Dw0 , Uw0) = 1 in the unramified case, because πv is a uniformizer
of Lw0 , which yields νUw0 ⊆ νL

×
w0 = (L×

w0)
1−σ = U1−σ

w0 for a generator σ of Dw0 .
18 [g, NSW, Ch. III, § 1, Prop. 3.1.1].
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We would thus have all the necessary tools to start the computation of
the cohomology of idèle groups and of idèle class groups, as developed by
Hochschild, Nakayama, and Weil, then by Tate 19, which leads to the coho-
mological statement of class field theory, which is probably its most intrinsic
form (hence the most generalizable), but which does not allow the explicit
description of the arithmetic invariants which are involved (see 3.2 for some
insights about these cohomological aspects).

d) Local Norm Groups — The Non-Galois Case

We come back to the situation of an arbitrary finite extension L/K, and
we will lay the groundwork for a fundamental local to global principle, that
which corresponds to the norm in L/K.

2.5 Local Norm Groups — General Definitions. (i) We say that
x ∈ K× is a local norm at v ∈ Pl for L/K if:

iv(x) ∈ NL/K

(⊕
w|v

L×
w

)
,

which is equivalent to the existence of elements yw ∈ L×
w such that:

iv(x) =
∏
w|v

NLw/Kv (yw). 20

(ii) We say that x ∈ K× is a local norm everywhere for L/K if x is a
local norm at v for L/K for every place v.

2.5.1 Remark. It follows from 1.5.3 that x is a local norm at v for L/K if
and only if:

iv(x) ∈ NLab
v /Kv

(Lab×
v ),

with Lab
v =

⋂
w|v

Lab
w . In practice the field Lab

v has in general a small degree and

we can search directly whether or not iv(x) ∈ NLab
v /Kv

(Lab×
v ). Of course a

sufficient condition is that iv(x) must be a norm in a local extension Lw0/Kv

for some w0|v (which is the case if for example Lab
w0

= Kv).

As for the notion of v-conductor, we will also have to distinguish be-
tween the local norm group at v for L/K and the local norm group at v for
Lab/K, the former being the group i−1

v (NLab
v /Kv

(Lab×
v )), contained in the

latter i−1
v (N(Lab)v/Kv ((L

ab)×v )).

19 See [h, HN; We2; Che3], [d, CF, Ch.VII; Iy1, Ch. IV; Se2, Ch.XI], [e, Ko3, Ch. 2],
[g, NSW, Ch.VIII, § 1]; see also the formalism developed in [f, Neu2].

20 This formula shows, by approximation in L and the use of 1.4.4, that x is a local
norm at v if and only if it is arbitrary close, at v, to a global norm.
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2.5.2 Proposition. The subgroup of elements of K× which are local norms
everywhere for L/K is equal to:

{x ∈ K×, i(x) ∈ NL/K(JL)}.

Proof. One inclusion is trivial and the other comes from the fact that, apart
from the places v which are ramified in all the extensions Lw/Kv for w|v,
and those for which v(x) �= 0, we have iv(x) ∈ NLw0/Kv

(Uw0), where w0|v
is unramified (see 1.4.3, (ii)), hence iv(x) = NLw0/Kv

(u0) ∈ NL/K

(⊕
w|v

Uw

)
,

completing u0 ∈ Uw0 outside w0 by components equal to 1. We can thus
obtain i(x) as the norm of an idèle of L.

Because of this fact it is not necessary to give specific notations for the
local norm groups and in particular the subgroups of elements of K× which
are local norms everywhere for L/K is denoted by abuse of notation:

K× ∩NL/K(JL)

(instead of i−1(i(K×) ∩NL/K(JL))). In the same way:

K× ∩NL/K

(⊕
w|v

L×
w

)
,

denotes the local norm group at v for L/K.

2.5.3 Remarks. (i) It is clear that any x ∈ K× is a local norm almost
everywhere for L/K.

(ii) More generally, we could say that x is a local norm at w|v for L/K
when iv(x) ∈ NLw/Kv (L

×
w), but in the non-Galois case this depends on the

choice of w and does not have the desired meaning (it is the same problem as
that of local conductors defined in 1.6 since we want to define local notions
attached only to the places v of the base field K). For instance, if K = Q

and L = Q( 3
√

2 ), −1 is a local norm at the real place w above v =∞ (trivial
since Lw = Kv = R) but not at the complex place w′ (Lw′ = C, Kv = R);
however −1 is a local norm at v, and must be since −1 is here a global norm:

−1 = NL/Q(−1) = NL/Q(1− 3
√

2 ) = · · ·

Still in Q( 3
√

2 )/Q, we have a similar example with 5 = NL/Q

(
5

3− 3
√

2

)
which

is a local norm at w|5 such that Lw = Q5 but not at the place w′ such that
Lw′ = Q5(j). In these two examples we have Lab

v = Kv.
In other words, the idea of a local norm is attached to the formula of

Subsection (b):

“ iv(NL/K(y)) =
∏
w|v

NLw/Kv (iw(y)) ”,
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which suggests a necessary condition to have x = NL/K(y). Indeed, the local-
global principle attached to the norm for the extension L/K is the fact (true
or not) that x ∈ K× is a norm for L/K (i.e., x =: NL/K(y) for y ∈ L×) if
and only if x is a local norm everywhere for L/K; the least one can ask is
that the trivial direction be true.

2.5.4 Corollary (Galois case). Assume that L/K is Galois and, for v ∈ Pl,

consider the semi-local factor
⊕
w|v

L×
w . Since the Lw for w|v are equal, we have

Lab
v = Lab

w0
for w0|v arbitrarily fixed, and we obtain:

NL/K

(⊕
w|v

L×
w

)
= NLw0/Kv

(L×
w0

) = NLab
w0
/Kv (L

ab×
w0

),

NL/K

(⊕
w|v

Uw

)
= NLw0/Kv

(Uw0) = NLab
w0
/Kv (ULab

w0
).

Hence, x ∈ K× is a local norm at v for L/K if and only if, for some arbitrary
w0|v, there exists yw0

∈ Lab×
w0

such that:

iv(x) = NLab
w0
/Kv (yw0

).

If v(x) = 0, then x is a local norm at v if and only if iv(x) is a local norm of
local units, in other words:

iv(x) ∈ NLab
w0
/Kv (ULab

w0
).

Once again, Lab
w0

can strictly contain the completion (Lab)v of Lab.

For questions concerning local norms of local units in the non-Galois case,
the intersection and the compositum of the fields Lab

w (for w|v) play a fun-
damental role, and the above discussion is not valid; hence it is necessary to
study the following subsection whose results (apparently not in the literature)
will be used later in genus theory (Ch. IV, § 4).

2.6 Local Norm Invariants for Non-Galois Extensions. Let L/K
be an arbitrary finite extension. For v ∈ Pl, let Lw be the completions of L
for w|v; denote by Lab

v (resp. by L̂ab
v ) the intersection (resp. the compositum)

of the Lab
w for w|v. To ease notations, we set:

Nw := NLw/Kv (L
×
w), Vw := NLw/Kv (Uw) ;

then we get:

NL/K

(⊕
w|v

L×
w

)
= 〈Nw 〉w|v, NL/K

(⊕
w|v

Uw

)
= 〈Vw 〉w|v.

2.6.1 Lemma 1. We have (K×
v : 〈Nw 〉w|v) = [Lab

v : Kv] = eab
v fab

v , where

eab
v and fab

v are the ramification index and the residue degree of the extension
Lab
v /Kv, repectively, and we have (Uv : Uv ∩ 〈Nw 〉w|v) = eab

v .
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Denote by G0(M/M ′) := (Gal(M/M ′))0 the inertia group of v in M/M ′,
where M and M ′ are abelian extensions of Kv such that M ′ ⊆M .

2.6.2 Lemma 2. We have the following canonical isomorphisms:

G0(Lab
w0

/Kv) � Uv/Vw0 for any w0|v,

G0(L̂ab
v /Kv) � Uv

/ ⋂
w|v

Vw,

G0(L̂ab
v /Lab

w0
) � Vw0

/ ⋂
w|v

Vw for any w0|v.

2.6.3 Proposition. Let Ľab
v be the subfield of L̂ab

v fixed under the subgroup
of Gal(L̂ab

v /Kv) generated by the G0(L̂ab
v /Lab

w ) for w|v, and let ěab
v be the

ramification index of Ľab
v /Kv.

We have the canonical isomorphism:

G0(Ľab
v /Kv) � Uv

/
NL/K

(⊕
w|v

Uw

)
,

and therefore the formula
(
Uv : NL/K

(⊕
w|v

Uw

))
= ěab

v . In other words:

(U res
K : NL/K(U res

L )) =
∏

v∈Pl0
ěab
v .

2.6.4 Proposition. The number ěab
v is a multiple of eab

v and these indices are
equal when the Lab

w for w|v are all equal (for instance in the Galois case).

Proof of the statements. The results 2.6.1 and 2.6.2 are proved by giv-
ing systematically the norm groups corresponding to the abelian extensions
under study and their inertia subfields, and by using properties 1.5 of the cor-
respondence of local class field theory (if N is the norm group corresponding
to the abelian extension M of Kv, by 1.4, (iii), the group corresponding to
the inertia field of M is equal to UvN). If, to simplify notations we set:

Nv := 〈Nw 〉w|v, N̂v :=
⋂
w|v

Nw, Vv := 〈Vw 〉w|v, V̂v :=
⋂
w|v

Vw,

we obtain more precisely the following list:

fields corresponding norm groups

Kv K×
v K×

v

Lab
w Nw UvNw

Lab
v Nv UvNv

L̂ab
v N̂v UvN̂v

Hence:
Gal(Lab

v /Kv) � K×
v /Nv, of order eab

v fab
v ,
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and the inertia group of Lab
v /Kv is given by:

UvNv/Nv � Uv/Uv ∩Nv, of order eab
v ,

proving Lemma 1.

Furthermore:

G0(Lab
w0

/Kv) � UvNw0/Nw0 � Uv/Uv ∩Nw0 � Uv/Vw0 ,

G0(L̂ab
v /Kv) � UvN̂v/N̂v � Uv/Uv ∩ N̂v � Uv

/ ⋂
w|v

(Uv ∩Nw) = Uv/V̂v.

From the exact sequence of inertia groups 1.1.6:

1 −→ G0(L̂ab
v /Lab

w0
) −−−→ G0(L̂ab

v /Kv) −−−→ G0(Lab
w0

/Kv) −→ 1,

we deduce that the kernel of the map UvN̂v/N̂v −−−→ UvNw0/Nw0 is:

G0(L̂ab
v /Lab

w0
) � Nw0 ∩ (UvN̂v)/N̂v = Vw0N̂v/N̂v � Vw0/V̂v,

finishing the proof of Lemma 2.

The subgroup of Gal(L̂ab
v /Kv) generated by the G0(L̂ab

v /Lab
w ) is thus:

Gal(L̂ab
v /Ľab

v ) � VvN̂v/N̂v � Vv/V̂v,

showing that the field Ľab
v and its inertia subfield have respective norm groups

equal to:
VvN̂v and UvVvN̂v = UvN̂v,

so that:
G0(Ľab

v /Kv) � UvN̂v/VvN̂v � Uv/Vv,

since Uv ∩ (VvN̂v) = Vv(Uv ∩ N̂v) = VvV̂v = Vv, proving 2.6.3.

Since Lab
v is a subfield of Ľab

v , we have eab
v |ěab

v . Since eab
v = (Uv : Uv ∩Nv)

and Vv ⊆ Uv ∩Nv, we have more precisely:

ěab
v

eab
v

= (Uv ∩Nv : Vv) ;

if the Lab
w are all equal, Lab

v = L̂ab
v = Ľab

v , hence eab
v = ěab

v , proving 2.6.4.

2.6.5 Remark. In the Galois case, we thus have the formula:

(U res
K : NL/K(U res

L )) =
∏
v∈Pl0

eab
v ,

which must not be mistaken for the corresponding formula for the maximal
abelian subextension of L/K:
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(U res
K : NLab/K(U res

Lab)) =
∏
v∈Pl0

ev(Lab/K).

2.6.6 Exercise. Consider the following irreducible polynomial in Q[X]:

P := X4 + 14X2 − 19,

and take K = Q, L = K(θ) with Irr(θ,Q) = P , and v = 2.
(i) Show that PlL,v = {w1, w2} with:

Lw1 = Q2(
√
−1 ), Lw2 = Q2(

√
3 ).

Compute the indices in Uv of NL/K

(⊕
w|v

Uw

)
and of Uv ∩NL/K

(⊕
w|v

L×
w

)
.

(ii) Give also a direct numerical check by showing that the norm groups
Nw1 and Nw2 are respectively equal to:

〈 2 〉 ⊕ (1 + 4Z2) and 〈−2 〉 ⊕ (1 + 4Z2).

Answer. We can check (by computing the roots) that we have the following
factorization into irreducibles of Q2[X]:

P = (X2 + a2)(X2 − 3b2), a, b ∈ Q×
2 ,

giving the two completions Q2(
√
−1 ) and Q2(

√
3 ). We easily obtain:

L̂ab
v = Q2(

√
−1,
√

3 ),

hence Ľab
v = L̂ab

v and ěab
v = 2 since L̂ab

v /Q2(
√
−1 ) and L̂ab

v /Q2(
√

3 ) are
unramified. Since Lab

v = Q2, we have eab
v = 1, which gives an example for

which: (
Uv : NL/K

(⊕
w|v

Uw

))
�=
(
Uv : Uv ∩NL/K

(⊕
w|v

L×
w

))
.

For (ii), Exercise 1.6.5 then yields the norm groups. It follows that
Vw1 = Vw2 = 1 + 4Z2, hence finally NL/K

(⊕
w|v

Uw

)
= 1 + 4Z2, which is

of index 2 in Uv = 〈−1 〉 ⊕ (1 + 4Z2).
One checks that −1 can be written:

N
Q2(

√
3 )/Q2

(1 +
√

3 ) .N
Q2(

√−1 )/Q2
(1 +

√
−1 )−1,

but is not the norm of local units.

2.6.7 Conclusion. (i) We can keep in mind for later use (in particular for
genus theory) that when L/K is not Galois, local norm problems involve the
following diagrams of local fields (for a finite number of finite places v):

Kv −−−−− Lab
v :=

⋂
w|v

Lab
w −−−−− Ľab

v −−−−− L̂ab
v := 〈Lab

w 〉w|v
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and the inertia groups of Ľab
v /Kv, where Gal(L̂ab

v /Ľab
v ) is generated by the

inertia groups of the L̂ab
v /Lab

w for w|v.
(ii) The norm group of Lab

v /Kv is equal to:

〈NLw/Kv (L
×
w) 〉w|v,

and we have seen that the norm group of Ľab
v /Kv is equal to:

〈NLw/Kv (Uw) 〉w|v .
⋂
w|v

NLw/Kv (L
×
w) ;

we note that:

Uv ∩
⋂
w|v

NLw/Kv (L
×
w) =

⋂
w|v

(
Uv ∩NLw/Kv (L

×
w)
)

=
⋂
w|v

NLw/Kv (Uw) ⊆ 〈NLw/Kv (Uw) 〉w|v.

In particular u ∈ Uv is a norm of local elements (i.e., u is an element of
〈NLw/Kv (L

×
w) 〉w|v) if and only if:

u ∈ NLab
v /Kv

(Lab×
v ),

and u is a norm of local units (i.e., u is an element of 〈NLw/Kv (Uw) 〉w|v,
which is more difficult to characterize), if and only if:

u ∈ NĽab
v /Kv

(Ľab×
v ),

which can be expressed in terms of the corresponding norm residue symbol
without referring to units.

(iii) The case of the places at infinity is trivial for unit groups; we can
simply note that for v ∈ Pl∞ the field Lab

v = Lv, equal to R or to C, is
different from Kv if and only if v is real and all the places w|v are complex
(i.e., fab

v = 2).

§3 Global Class Field Theory: Idelic Version

We now start the study of the fundamental step in global class field the-
ory; it consists in giving the properties of the global reciprocity map (whose
existence, from the point of view that we have adopted, only relies on the
existence of the local reciprocity maps which has been assumed). We will
state in parallel the existence theorem (understood to mean of abelian ex-
tensions corresponding to norm groups) whose proof uses independent direct
techniques of Kummer extensions and which, because of this, is generally
proved at the end of the exposition.
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a) Global Reciprocity Map — The Product Formula — Global
Class Field Theory Correspondence

Let L/K be a finite extension of number fields and let Lab/K be its maximal
abelian subextension whose Galois group will be denoted Gab by abuse of
notation (we have Gab � G/[G,G] when the extension L/K is Galois with
Galois group G). We give here the crucial definition of the book.

3.1 Global Reciprocity Map. Let J := JK be the idèle group of K. We
define the global reciprocity map as being:

ρL/K : J −−−→ Gab

sending x =: (xv)v ∈ J to:

ρL/K(x) :=
∏
v∈Pl

(
xv , Lab/K

v

)
,

where
(
xv, L

ab/K

v

)
∈ Gab is the image of (xv, (Lab)v/Kv)∈ Gal((Lab)v/Kv)

under the canonical isomorphism:

Gal((Lab)v/Kv) � Dv(Lab/K) ⊆ Gab,

where Dv(Lab/K) is the decomposition group of v in the extension Lab/K
(see I.2.7, Fig. 2.3).

3.1.1 Remarks. (i) Since the xv are almost all units, property 1.4, (vii) of

the local norm residue symbol shows that the
(
xv , L

ab/K

v

)
are almost all

equal to 1, so the product makes sense.
(ii) The definition of ρL/K(x) shows that ρL/K = ρLab/K but, as in the

local case, we must also define ρL/K for an arbitrary extension. In keeping
with the notations that we have used, we can also by definition denote by(

• , L/K

v

)
the symbol

(
• , Lab/K

v

)
, all the more so that a little later we will

introduce a generalized symbol denoted
[

• , L/K

v

]
to avoid any confusion.

(iii) The definition of ρL/K does not use all the local information relative
to L/K: indeed, the local symbols ( • , (Lab)v/Kv) are the restrictions of
the ( • , Lab

v /Kv), themselves restrictions of the symbols ( • , Lab
w /Kv) of local

class field theory. This can be explained by the fact that we globalize and
that, for each v, (Lab)v/Kv is the largest local extension whose Galois group
can be interpreted as a subgroup of Gab.

3.1.2 Definition (Hasse symbols). Restricting the symbols
(

• , Lab/K

v

)
to

iv(K×) ⊂ K×
v , by composition with iv we define symbols on K×, called Hasse

symbols, and denoted in an analogous manner:
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(
• , L/K

v

)
:=

(
• , Lab/K

v

)
: K× −−−→ Gab

x �−→
(
iv(x) , Lab/K

v

)
.

They are not essentially different from the preceding ones since the image
of K× is dense in each K×

v , but the point is that we will see that on K×

these symbols are not anymore independent. More precisely, for x ∈ K× the

notation
(
x , Lab/K

v

)
, allows us to distinguish between the Hasse symbol

(defined on K×) and its analog
(
xv , L

ab/K

v

)
(defined on K×

v ) used to define
ρL/K .

Let L/K be a finite extension of number fields, L′/K a subextension
of L/K, and let v ∈ Pl. The Hasse symbols only depend on Lab/K. Their
properties follow of course from those of the symbols ( • , (Lab)v/Kv), except
that the global context modifies certain statements (compare with 1.4 whose
notations we again use), such as 3.1.3, (iv) below which uses the fact that the
global norm in L′/K is the product of the local norms, and (v) which means
that v splits into several places w′ in L′/K, which is less precise.

3.1.3 Theorem (properties of the Hasse symbol). (i) We have the exact
sequence:

1 −→ K× ∩N(Lab)v/Kv ((L
ab)×v ) −−−−−→ K×

(
• ,Lab/K

v

)
−−−−−→ Dv(Lab/K) −→ 1,

where the kernel is the local norm group at v for Lab/K (see 2.5.1);

(ii) the composition of
(

• , Lab/K

v

)
and of the projection Gab −−−→

Gal(L′ab/K), is equal to
(

• , L′ab/K
v

)
;

(iii) the image of K×
{v} (the subgroup of K× of elements prime to v) under(

• , Lab/K

v

)
is the group Iv(Lab/K);

(iv) for all x′ ∈ L′×, the image of
∏
w′|v

(
x′ , Lab′

/L′

w′

)
in Gab is equal to

(
NL′/K(x′) , Lab/K

v

)
;

(v) for all x ∈ K×, the image of
(
x , Lab/K

v

)
under the transfer map

(from Gab to Gal(Lab′/L′)), is equal to
∏
w′|v

(
x , Lab′

/L′

w′

)
;

(vi) for any Q-isomorphism τ of Lab in Q and all x ∈ K×, we have:

(
τx , τLab/τK

τv

)
= τ ◦

(
x , Lab/K

v

)
◦ τ−1 on τLab ;
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(vii) if v is unramified in Lab/K then we have, for all x ∈ K×:
(

x , Lab/K

v

)
=
(

Lab/K

v

)v(x)

,

where
(
Lab/K

v

)
denotes the Frobenius of v for Lab/K.

3.1.3.1 Remark (global Frobenius’). Recall that for a place v of K, un-
ramified in Lab/K, the global Frobenius of v for Lab/K is the canoni-
cal image in Gab of the local Frobenius Frob((Lab)v/Kv) (i.e., we have(
Lab/K

v

)
= i−1

w0
◦Frob((Lab)v/Kv) ◦ iw0

for any w0|v in Lab). In particu-

lar, if v ∈ Plr∞, then
(
Lab/K

v

)
= i−1

w0
◦ c ◦ iw0

, is the image of the restriction

to (Lab)v of complex conjugation c.
If v is finite, the Frobenius of v in Lab/K is thus the unique generator σ

of the decomposition group of pv such that:

σ(x) ≡ xqv mod pv for all integers x of Lab,

where qv := |Fv| = Npv.

3.1.3.2 Examples. (i) For K = Q, L = Q( 6
√

2 ), v = (7), x = 7, we have:

(
x, L/K

v

)
=
(

7, Q(
√

2 )/Q

(7)

)
= 1

since Lab = Q(
√

2 ) and 2 is a square in Q×
7 , but:

(x, Lv/Kv) = (7, Q7(
6
√

2 )/Q7) = Frob(Q7(
6
√

2 )/Q7),

(of order 3) since Q7(
6
√

2 ) = Lab
v is the unramified extension of degree 3 of

Q7 (see 1.4, (vii)). This means that 7 is a local norm at (7) in Lab/K but
not in L/K.

(ii) For K = Q, L = Q( 6
√

2 ), v = (43), L′ = Q( 3
√

2 ) (for which Lab′
= L),

x′ = −1 + 15 3
√

2− 10 3
√

4 (for which NL′/K(x′) = 432), we have:

(
NL′/K(x′), Lab/K

v

)
=
(

432, Q(
√

2 )/Q

(43)

)
=
(

Q(
√

2 )/Q

(43)

)2

= 1,

the square of the Frobenius (of order 2) since 43 is inert in Q(
√

2 )/Q (see
3.1.3, (vii)). Since v = (43) is totally split in L′/K, we check that:

∏
w′|v

(
x′, L/L′

w′

)
=
(

L/L′

w′
1

)(
L/L′

w′
2

)
,
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the product of two of the three (nontrivial) relative Frobenius’, giving the
result by restriction in Lab/K and illustrating 3.1.3, (iv).

3.1.4 Remark (generalized norm residue symbol for L/K). As already

noted, we have
(
x , Lab/K

v

)
= 1 if and only if x is a local norm at v for

Lab/K. If we want to characterize the subgroup of elements of K× which are
local norms at v for L/K, we need to define a generalized norm residue sym-
bol which must thus be intermediate between the symbol ( • , Lw/Kv), which
characterizes the elements which are local norms in Lw/Kv, which is not suit-
able (see 2.5.3, (ii)), and the Hasse symbol which does not deal with L/K but
with Lab/K. Since this subgroup is {x ∈ K×, iv(x) ∈ NLab

v /Kv
(Lab×

v )}, where
Lab
v :=

⋂
w|v

Lab
w , local class field theory tells us that we must use ( • , Lab

v /Kv)

restricted to iv(K×); by composition with iv, this defines the symbol:
[

• , L/K

v

]
: K× −−−→ Gab

v := Gal(Lab
v /Kv)

called the generalized norm residue symbol for L/K. This symbol cannot be
interpreted in Gab since Gab

v can be strictly larger than Gal((Lab)v/Kv) �
Dv(Lab/K) but, for all x ∈ K×,

[
x , L/K

v

]
|(Lab)v

can be identified with
(

x , Lab/K

v

)
.

Note that if L/K is Galois, the generalized norm residue symbol at v can
be identified, for any w0|v, with the local norm residue symbol ( • , Lab

w0
/Kv)

restricted to iv(K×).

3.2 Cohomological Statement of Class Field Theory (1951/1952).

Let L be a finite Galois extension of the number field K, and let G :=
Gal(L/K). Assuming that the cohomological version of class field theory can
be (in part) summarized by the magical formulas:

Ĥr(G,Z)
can� Ĥr+2(G,CL), for the global case,

Ĥr(Gw,Z)
can� Ĥr+2(Gw, L×

w), w ∈ PlL, for the local case,

where the Ĥr for r ∈ Z are Tate’s modified cohomology groups, we deduce
once again the existence of “a” global reciprocity map in the following way.

3.2.1 Global Reciprocity Map. Take r = −2, which in the global case
yields:

Ĥ−2(G,Z)
can� Ĥ0(G,CL) ;

but classically, we have:
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Ĥ0(G,CL) = CG
L /νL/K(CL) � CK/NL/K(CL) � JK/K×NL/K(JL),

the fact that:

CG
L = jL/K(CK) � CK and νL/K(CL) = jL/K ◦NL/K(CL) � NL/K(CL),

with the usual definitions of ν, j, N, being elementary (see (§ 2, (a), (b), (c))).
On the other hand, we have:

Ĥ−2(G,Z) := Ĥ1(G,Z)
can� Gab

(see 2.4.1, (ii), (iii), or [d, CF, Ch. IV, § 3, Prop. 1]), giving the result, except
that we must identify the map JK/K×NL/K(JL) −→ Gab. But the surjection:

JK/NL/K(JL) −−−→ Gab,

which we obtain from it, and the fact (which is immediate by 1.4.3, (ii)) that:

JK/NL/K(JL) �
⊕
v

(
K×
v /NLw0/Kv

(L×
w0

)
)
,

indeed suggests that it is the map defined in 3.1 from the local reciprocity
maps:

Ĥ0(Gw0 , L
×
w0

) � K×
v /NLw0/Kv

(L×
w0

) −−−→ Ĥ−2(Gw0 ,Z) � Gab
w0

,

where for each place v of K we have chosen a place w0 of L above v.
This does not make it any easier to obtain the kernel of this surjection,

which is the very heart of global class field theory.

3.2.2 Fundamental Class. Note that for r = 0 we obtain:

Ĥ2(G,CL)
can� Ĥ0(G,Z) = Z/[L : K]Z � [L : K]−1Z/Z,

since νL/K acts on Z as multiplication by [L : K]. The element uL/K ∈
Ĥ2(G,CL), which is the inverse image of the class [L : K]−1 + Z ∈ Q/Z, is
called the fundamental class of L/K.

Hence, the isomorphisms of global class field theory:

Ĥr(G,Z)
can� Ĥr+2(G,CL), r ∈ Z,

are given by the cup product x �→ x � uL/K for all x ∈ Ĥr(G,Z).
For a general view of the cohomological approach, we refer the reader

to [d, CF, Ch. VII; Iy1, Ch. IV; Se2, Ch. XI] or to [e, Ko3, Ch. 2], [g, NSW,
Ch. III, § 1], as well as to the concrete explanations of [i, Gar], and to Koch’s
lecture in [i, Miy0] for the history of the concept of class formation for which
the fundamental class plays a basic role.
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We will now introduce a finite set S of places, which will be a parameter
allowing us to specify the decomposition (i.e., splitting) of the elements of S
in the correspondence of class field theory.

Notations. (i) Let S = S0 ∪ S∞ be a finite set of noncomplex places of K.
For any finite extension L/K, we denote by LabS/K the maximal S-split
subextension of Lab/K (i.e., in which every place of S is totally split).

(ii) We denote by ρSL/K the composite:

J
ρL/K−−−→Gab := Gal(Lab/K) −−−→ GabS := Gal(LabS/K). 21

(iii) We set 〈S 〉 :=
∏
v∈S

K×
v

∏
v∈Pl\S

{1} =:
⊕
v∈S

K×
v , considered as a sub-

group of J (see I.4.1.2, (ii)).

The fundamental Theorem 1.4 (for the local reciprocity maps) has a global
analog in which the multiplicative group K×

v is replaced by the multiplica-
tive group J . Let L/K be a finite extension of number fields and L′/K a
subextension of L/K. We denote by S′ the set of places of L′ obove those
of S.

3.3 Theorem (properties of the global reciprocity map). The global reci-
procity map ρSL/K has the following properties:

(i) We have the exact sequence:

1 −→ K×〈S 〉NL/K(JL) −−−→ JK
ρSL/K−−−→GabS −→ 1 ;

(ii) the composition of ρSL/K and of the projection GabS −→ Gal(L′abS/K)
is equal to ρSL′/K ;

(iii) for any v ∈ Pl, the image of K×
v (resp. of Uv, resp. of U i

v for i ≥ 1) 22

under ρSL/K is the decomposition group (resp. the inertia group, resp. the ith
higher ramification group in upper numbering) of v for LabS/K;

(iv) for all x ′ ∈ JL′ , the image of ρS
′

L/L′(x ′) in GabS is equal to

ρSL/K(NL′/K(x ′)); in particular, we have:

Gal(LabS/L′abS) = ρSL/K(NL′/K(JL′)) ;

(v) for all x ∈ JK , the image of ρSL/K(x) under the transfer map, from

GabS to Gal(Lab′ S′
/L′), is equal to ρS

′
L/L′(x ′), where x ′ is the image of x

under the canonical injection JK −→ JL′ ;

21 where ρL/K will also be denoted ρres
L/K , in accordance with the principles of

notation given in Sections 3 and 4 of Chapter I.
22 where K×

v , Uv, and U i
v are considered as subgroups of JK .
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(vi) for any Q-isomorphism τ of L in Q and all x ∈ JK , we have:

ρτSτL/τK(τx) = τ ◦ ρSL/K(x) ◦ τ−1 on τLabS ,

noting that τLabS = (τLab)τS = (τL)ab τS (abelianized over τK);

(vii) if the support of x =: (xv)v ∈ JK is prime to the ramification of
LabS/K (i.e., xv = 1 if v is ramified), we have:

ρSL/K(x) =
∏
v∈Pl

(
LabS/K

v

)v(xv)

,

where
(
Lab S/K

v

)
denotes the Frobenius of v for LabS/K. If πv is a uni-

formizer of Kv (seen as an idèle of support {v}) and if LabS/K is unramified

at v, then ρSL/K(πv) =
(
Lab S/K

v

)
.

Note. In (i) we have by definition K×〈S 〉NL/K(JL) = K×NLS/K(JLS ) since

LS ab = Lab S . In (vii), we can replace the assumption on ramification by the weaker

condition: xv sufficiently close to 1 if v is ramified.

At this point we can note that the norm group Nv corresponding to
(Lab)v/Kv is N ∩K×

v , where N := K×NL/K(JL): indeed, by 3.1, the restric-
tion to K×

v ⊂ JK of ρLab/K can be identified with the norm residue symbol
( • , (Lab)v/Kv), proving our claim (considering Nv as canonically embedded
in JK).

This proves the following important relationship between local and global
class field theories for Lab/K.

3.3.1 Corollary. For any place v of K, we have the identity:

(K×NL/K(JL)) ∩K×
v = N(Lab)v/Kv ((L

ab)×v ).

3.3.2 Remarks. (i) There exists an infinity of finite sets Σ of places of K

such that, by restricting ρL/K to
⊕
v∈Σ

K×
v , we obtain the exact sequence:

1 −→ N ∩
( ⊕
v∈Σ

K×
v

)
−−−→

⊕
v∈Σ

K×
v

ρL/K−−−→Gab −→ 1,

where N := K×NL/K(JL) (for this, by 3.3, (iii), it suffices that the decom-
position groups of the places v ∈ Σ for Lab/K generate Gab, which uses the
density theorem which we will recall in 4.6).

(ii) In terms of reduced idèles, since U∞ ⊂ NL/K(JL), we systematically
replace the exact sequence of 3.3, (i) by:
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1 −→ K× .
⊕
v∈S0

K×
v

⊕
v∈S∞

{±1} .NL/K(JL,0) −−−→ JK,0
ρSL/K−−−→GabS −→ 1.

We will do this only if it is technically necessary.

3.3.3 Corollary. For any finite extension L/K of number fields, we have:

K×NL/K(JL) = K×NLab/K(JLab).

By giving a numerical example, it is easy to show that the equality:

NL/K(JL) = NLab/K(JLab)

is in general false.

3.3.4 Corollary. We obtain the exact sequences:

1 −→ K×NL/K(JL) −−−→ JK
ρL/K−−−→Gab −→ 1,

1 −→ K×〈Plr∞ 〉NL/K(JL) −−−→ JK
ρordL/K−−−→Gal(Lab nc/K) −→ 1,

where Lab nc is the maximal noncomplexified (i.e., Plr∞-split) abelian subex-
tension of L or, equivalently, the maximal abelian subextension of L which
stays real under all the real embeddings of K.

Let L/K be a finite extension, and let N := K×NL/K(JL), so that we
have the exact sequence:

1 −→ N −−−→ JK
ρL/K−−−→Gab −→ 1.

Theorem 3.3 gives then the important result:

3.3.5 Corollary (decomposition law of places in Lab/K). For each place
v ∈ Pl, we have the isomorphisms:

K×
v N/N � Dv(Lab/K), UvN/N � Iv(Lab/K),

where K×
v and Uv are considered as subgroups of JK .

In particular, v is unramified in Lab/K if and only if Uv ⊂ N . Hence, if v
is unramified in Lab/K, we have K×

v N/N = 〈πv 〉N/N since Uv ⊂ N , and
the residue degree fv of v for Lab/K is equal to the order in JK/N of any
uniformizer πv (seen as an idèle with support {v}).
The place v is totally split in Lab/K if and only if K×

v ⊂ N .

Recall that for v ∈ Plr∞, K×
v = R×, πv = −1, and Uv = R×+, so that in

this case we always have Uv ⊆ N (i.e., nonramification of the infinite places).
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Indeed, v ∈ Plr∞ does not become complex in Lab/K if and only if −1 (seen
as an idèle with support {v} and not diagonally embedded !) belongs to N .

3.4 Product Formula — Classical Applications. The fact that the
subgroup NL/K(JL) is in the kernel of ρL/K is clear since for each v,

〈NLw/Kv (L
×
w) 〉w|v which corresponds to Lab

v :=
⋂
w|v

Lab
w by local class field

theory (see 1.5.3), is in the kernel of ( • , Lab
v /Kv), hence a fortiori in that of

( • , (Lab)v/Kv), hence of
(

• , Lab/K

v

)
since Lab

v contains (Lab)v.
On the contrary, the fact that the kernel of ρL/K contains the diagonal

embedding of K× is the most remarkable fact (and the least trivial) of global
class field theory. We can consider this fact as the idelic version of Artin’s
reciprocity law (1924/1927), that we will give in 4.3.2 and 4.4; it is also called
the product formula since it can be stated in the following way in terms of
Hasse symbols (see 3.1.2).

3.4.1 Theorem (product formula). Let L/K be a finite extension of number
fields. For all x ∈ K× we have:

∏
v∈Pl

(
x , Lab/K

v

)
= 1.

This property allows us to define the reciprocity map on the idèle class
group:

ρL/K : CK −−−→ Gab.

This product formula, which says that the Hasse symbols are not inde-
pendent on K×, can also be considered as the general reciprocity law, since
it generalizes (among other results) the quadratic reciprocity law of Gauss.
To illustrate this, we are going to show that we can deduce the quadratic
reciprocity law without using any additional deep arguments (we will give in
7.4 the nth power reciprocity law analogous to the quadratic reciprocity law
when K contains µn; see also [f, Lem1] and [Wy] for further examples and
the history of the subject).

3.4.2 Example (quadratic reciprocity law). Take K = Q and consider L =

Q

(√
(−1)

p−1
2 p

)
for a positive odd prime p; thus the extension L/Q is only

ramified at p. For convenience, we identify Gal(L/Q) with the multiplicative
group {±1}. The places of Q will be denoted either v, or else � and ∞.

The computation of the Hasse symbols
(
x , L/Q

v

)
, x ∈ Q×, can be re-

duced successively, by multiplicativity, to that of the:
(
−1 , L/Q

v

)
, and of the

(
q , L/Q

v

)
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for any positive prime q. Recall that, by 3.1.3, (vii),
(
x , L/Q

v

)
= 1 except

perhaps for (finite or infinite) places v such that v(x) �= 0 and the ramified
places v (hence here p).

(i)
(−1 , L/Q

v

)
is equal to 1 except perhaps for v ∈ {∞, p}; but we have:

(
−1 , L/Q

∞

)
=
(
− 1

) p−1
2

(indeed, L∞/Q∞ = C/R or R/R if
(
− 1

) p−1
2 = −1 or 1 respectively, and −1

is a local norm only in the second case, or (by 3.1.3, (vii))
(−1 , L/Q

∞

)
is the

Frobenius of ∞ for L/Q); using the product formula, we obtain:
(
−1 , L/Q

p

)
=
(
− 1

) p−1
2

(even though a direct computation is easy).

(ii)
(
q , L/Q

v

)
is equal to 1 except perhaps for v ∈ {p, q}:

If q = p, the product formula (reduced to a single term) yields:
(

p , L/Q

p

)
= 1.

Assume now that q �= p:

• If v = p, then
(
q , L/Q

p

)
= 1 if and only if q (which belongs to Up)

is a norm for the extension Lp/Qp (since this extension is ramified, we have
(Up : Up ∩NLp/Qp

(L×
p )) = 2 by local theory); but the only subgroup of index

2 of Up = Z×
p = µp−1 ⊕ (1 + pZp) is µ2

p−1 ⊕ (1 + pZp) = (Up)2, hence q is
a norm for Lp/Qp if and only if q ∈ (Up)2, hence if and only if q ∈ F×2

p , so
that: (

q , L/Q

p

)
=
(

q

p

)

(the usual quadratic residue symbol). We can of course use 1.6.5.

• If v = q, to compute
(
q , L/Q

q

)
we see that Lq/Qq is unramified and

we have, by 3.1.3, (vii),
(
q , L/Q

q

)
=
(
L/Q

q

)
which is equal to 1 if and only

if q is split in L/Q, hence if and only if Lq = Qq

(√
(−1)

p−1
2 p

)
= Qq, hence:

(
q , L/Q

q

)
=
(

(−1)
p−1
2 p

q

)
,
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where we use here the Kronecker symbol, equal to the quadratic residue
symbol if q �= 2, and otherwise defined by

(
a

2

)
= 1 or −1 according as

a ≡ 1 mod (8) or not. 23

Hence, using the product formula we have
(
q , L/Q

p

)(
q , L/Q

q

)
= 1, which

can be interpreted as follows.

• For q /∈ {2, p} we get
(
q

p

)(
(−1)

p−1
2 p

q

)
= 1, hence (using (i)):

(
q

p

)(
p

q

)
=
(
− 1

) p−1
2

q−1
2

;

• for q = 2 this yields
(

2

p

)
=

(
(−1)

p−1
2 p

2

)
; we check, by choosing p ≡

1, 3, 5, 7 mod (8), that this can be written:
(

2
p

)
=
(
− 1

) p2−1
8

.

Note that the above computations never went any further than the use
of the Hensel lemma in the Q� (to characterize the elements of Q×2

� ) and
ramification theory in a quadratic field.

The product formula enables us to make convenient explicit computa-
tions, even for the local case, as is shown in the following exercise which
gives the local reciprocity map for abelian extensions of the completions of
Q (by Exercise 1.8.3 any abelian extension of Q� is contained in the maximal
cyclotomic extension Q�(µ)). This procedure will be systematized in 4.4.3
and illustrated in 7.5 for the computation of local Hilbert symbols.

3.4.3 Exercise (local reciprocity map in Q
ab

� /Q�). Assume that K = Q and
consider for a fixed prime � the abelian extension L = Q(µ�n) with n ≥ 1; we
will denote by Lq/Qq = Qq(µ�n)/Qq the completion of L/Q at v = q finite,
and we will consider the embedding i : Q× −→ JQ as being the identity.

(i) Find the norm group N corresponding to L�.
(ii) Check that for all prime q, q > 0, and q �= �, the local norm residue

symbol (q , Lq/Qq) is the Frobenius automorphism σq defined by ζ → ζq for
all ζ ∈ µ�n .

(iii) Show that (q , L�/Q�) = σ−1
q .

(iv) Let x ∈ Q×
� , and write x =: �v�(x)u. Deduce from the above that:

(x , L�/Q�) = σ−1
u = σu−1 ,

23 This symbol at 2 is not multiplicative:
(

3
2

)
=
(

5
2

)
=
(

15
2

)
= −1; it is multiplica-

tive however on 1 + 4Z2, which is the present context.
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defined by ζ → ζu
−1

for all ζ ∈ µ�n .
Show that for L = Q(µ�∞), the local reciprocity map:

Q̂×
� = �Ẑ ⊕ U� −−−→ Gal(L�/Q�)

induces the isomorphism U� � Gal(L�/Q�) which sends u ∈ U� to σ−1
u = σu−1

defined by ζ → ζu
−1

for all ζ ∈ µ�∞ .

Answer. (i) We have Q×
� = �Z ⊕ U� with U� = µ�−1 ⊕ (1 + �Z�) if � �= 2, and

U2 = {±1} ⊕ (1 + 4Z2). We know that if ζn is a generator of µ�n we have
NL/Q(1 − ζn) = Φ�n(1) = � ∈ N ; since in addition L�/Q� is totally ramified
of degree �n−1(�− 1), we have N = �Z⊕V with V of index �n−1(�− 1) in U�.

If � �= 2, the only possibility is V = 1 + �nZ�; if � = 2 and n ≥ 2, we have
Gal(L�/Q�) � Z/2Z×Z/2n−2Z and the only possibility is V = 1 + 4.2n−2Z2

since V must be contained in the norm group of Q(µ4) which is equal to
2Z ⊕ (1 + 4Z2) (using 1.6.5).

Thus in all cases we have:

N = �Z ⊕ (1 + �nZ�).

(ii) By 1.4, (vii), we have (q , Lq/Qq) = Frob(Lq/Qq), equal to σq for a
cyclotomic field: indeed, for all ζ ∈ µ�n the congruence Frob(Lq/Qq)(ζ) ≡ ζq

mod (q) is equivalent to the equality (use 1.1.5 with the characteristic q !).

(iii) We have the product formula
∏
v

(
q , L/Q

v

)
= 1, where

(
q , L/Q

v

)

is the canonical image of (q , Lv/Qv) in Gal(L/Q), and we know that
(q , Lv/Qv) = 1 except perhaps if Lv/Qv is ramified (which occurs only for
v = �) or if q is not a unit at v (hence only for v = q since we chose q > 0);

this yields
(
q , L/Q

�

)
=

(
q , L/Q

q

)−1

=: σ−1
q by abuse of notation (we have

also
(
q , L/Q

q

)
(ζ) =

(
L/Q

q

)
(ζ) = ζq in L/Q since L/Q is a cyclotomic field);

interpreted in Gal(L�/Q�), we get (q , L�/Q�) = σ−1
q .

(iv) We deduce that, for any rational number a > 0 prime to �, we have
(a , L�/Q�) = σ−1

a hence, by density, that (a , L�/Q�) = σ−1
a for all a ∈ U�; in

particular it follows that (x , L�/Q�) = σ−1
u since (� , L�/Q�) = 1. It is then

immediate to obtain the local reciprocity map for Q�(µ�∞)/Q� by taking
inverse limits.

Note that if µ′ is the group of roots of unity of order prime to �, then
Q�(µ′) is the maximal unramified extension of Q� and its norm group is
equal to U� (see 1.8.3); the isomorphism �Ẑ −→ Gal(Q�(µ′)/Q�) is given by
� → σ� := Frob(Q�(µ′)/Q�)). Since Q

ab

� is the direct compositum of Q�(µ′)
with Q�(µ�∞) over Q�, the case of abelian extensions of Q� is completely
explicit.

See in 4.4.3.3 a slightly more global version of this exercise.
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The product formula has the following converse which gives more precise
information on the dependence of the Hasse symbols. Let L/K be a finite
extension of number fields.

3.4.4 Theorem (converse of the product formula). Let (sv)v∈Pl be a family
of elements sv ∈ Gal(Lab/K) satisfying the following conditions:

(i) sv ∈ Dv(Lab/K) for all v,

(ii) sv = 1 for almost all v, and
∏
v

sv = 1.

Then there exists x ∈ K× such that
(
x , Lab/K

v

)
= sv for all v ∈ Pl.

Proof. Let Σ be the (finite) support of (sv)v. Since the image of K× under

the Hasse symbol
(

• , Lab/K

v

)
is equal to Dv(Lab/K), for each v ∈ Σ there

exists x(v) ∈ K× such that
(
x(v) , Lab/K

v

)
= sv; consider the idèle x :=

(xv)v, whose components outside Σ are equal to 1, and where we have chosen
xv := iv(x(v)) for v ∈ Σ. We then have:

ρL/K(x) =
∏
v

(
xv , Lab/K

v

)
=
∏
v

sv = 1,

so that there exist x ∈ K× and y =: (yw)w ∈ JL such that:

x = i(x)NL/K(y) ;

but
( ∏
w|v

NLw/Kv (yw) , (Lab)v/Kv

)
= 1 for all v since by definition we already

have (NLw/Kv (yw) , Lab
w /Kv) = 1 for all w|v. Hence x is a solution to our

problem.

This result can in fact be expressed in terms of generalized norm residue
symbols (see 3.1.4). For all v ∈ Pl, let Lab

v :=
⋂
w|v

Lab
w , Gab

v := Gal(Lab
v /Kv)

(see 1.5.3).

3.4.4′ Theorem. For any family (σv)v∈Pl ∈
⊕
v∈Pl

Gab
v such that the product

of the images of the σv|(Lab)v
in Gab is equal to the identity, there exists

x ∈ K× such that (iv(x), Lab
v /Kv) =:

[
x , L/K

v

]
= σv for all v ∈ Pl.

Proof. We use here the fact that the local symbol:

( • , Lab
v /Kv) : K×

v −−−→ Gab
v

is surjective to construct an idèle x := (xv)v such that (xv, Lab
v /Kv) = σv

for each v ∈ Σ, xv = 1 outside Σ (where Σ is the support of (σv)v).
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Since
(
xv , L

ab/K

v

)
is the canonical image in Gab of σv|(Lab)v

(see 3.1.4),

we still have ρL/K(x) = 1, x = i(x)NL/K(y), and x is still a solu-
tion, but note that we now use the (more precise) fact that for all v,( ∏
w|v

NLw/Kv (yw) , Lab
v /Kv

)
= 1 for the same reasons as in the preceding

case, or note that by 1.5.3 we have directly:

〈NLw/Kv (L
×
w) 〉w|v = NLab

v /Kv
(Lab×

v ).

We will see in IV.4.5.5 that genus theory gives some additional information
on this converse aspect of the product formula and shows that x can be chosen
in a suitable S-unit group.

This finishes the first applications of the product formula.
We now come to the global existence theorem (i.e., the existence of abelian

extensions of the global field K). By opposition to the local case, all the
abelian extensions of K will be taken in a fixed algebraic closure K of K
which may be independent of our various complex fields C� or C∞.

The analog of the local existence theorem can be obtained from the idèle
class group CK of K in the following way (coming back to JK for conve-
nience).

3.5 Theorem (global existence). For any closed subgroup N of finite index
of JK containing K×, there exists a unique abelian extension M of K such
that K×NM/K(JM ) = N ; the reciprocity map yields the exact sequence:

1 −→ N −−−→ JK
ρM/K−−−→Gal(M/K) −→ 1.

In addition, the bijection between the closed subgroups of finite index of JK
containing K× and the finite abelian extensions of K is a Galois correspon-
dence which has the following properties (where M1 and M2 are abelian over
K and correspond respectively to N1 and N2):

(i) we have M1 ⊆M2 if and only if N2 ⊆ N1;
(ii) M1M2 corresponds to N1 ∩N2;
(iii) M1 ∩M2 corresponds to N1N2;
(iv) if M1 ⊆M2, we have Gal(M2/M1) � N1/N2.

3.5.1 Remarks. (i) As in the local case, the above Galois properties come
from the existence of the correspondence and from 3.3, (i), (ii) on the global
reciprocity map.

(ii) Similarly, if M corresponds to N , the decomposition subfield (resp.
the inertia subfield) of a place v in M/K corresponds to K×

v N (resp. to
UvN), i.e., is fixed under ρM/K(K×

v ) (resp. ρM/K(Uv)).
For instance, the field corresponding to the closed subgroup of finite index

N := K×U res (resp. K×Uord) is the maximal abelian unramified (resp. un-
ramified and Pl∞-split) extension of K. This field Hres (resp. Hord) is called
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the Hilbert class field of K in the restricted (resp. ordinary) sense. From I.5.1
or I.5.1.1 we deduce that Gal(Hres/K) � C�res (resp. Gal(Hord/K) � C�ord).
We will find again these fields in the Paragraph 5 as particular cases of the
ray class fields corresponding to the open subgroups K×U res

m .
The subfield of M fixed under ρM/K(U1

v ) =: D1
v(M/K) = Dv,1(M/K) is

the maximal v-tamely ramified subextension of K in M . Hence the maximal
tamely ramified extension of K in M corresponds to the idèle group:

∏
v

U1
v . N.

Warning: K×∏
v

U1
v is not of finite index in JK .

In the statements it is not necessary to refer to a set S; if we want that the
places in such a set split completely, it is necessary and sufficient to include
〈S 〉 in the subgroup N under consideration (see 3.3.5).

(iii) By abuse of notation, we will say that N is the norm group corre-
sponding to the extension M/K.

(iv) Finally, recall that an open subgroup of JK containing K× is of finite
index and necessarily contains a subgroup of the form U res

m (see I.4.2.3). Thus
there is an equivalence between a closed subgroup of finite index of JK con-
taining K× and an open subgroup of JK containing K× (which corresponds
to an open subgroup of CK). Hence this contains the assertion about the
existence of a conductor which will be studied in Section 4.

(v) The situation is the same if we express the correspondence in terms
of subgroups of JK,0 containing the diagonal embedding of K× since we can
go from one point of view to the other thanks to the identity N = N0 ⊕U∞,
which is self-explanatory.

Note that in the correspondence of class field theory, the group NL/K(JL)
does not characterize the extension Lab (in other words, although the equality
NL′/K(JL′) = NL′′/K(JL′′) clearly implies L′ab = L′′ab, the converse is false).
More precisely, Stern has given the following result (for the proof and the
study of some consequences for norms, see [St]).

3.5.2 Proposition. Let L′ and L′′ be two finite extensions of K, and let L
be a Galois extension of K containing L′ and L′′. Set:

G := Gal(L/K), H ′ := Gal(L/L′), H ′′ := Gal(L/L′′).

Denote by H [∗] the set of primary elements (i.e., of order a prime power) of
a group H. Then the following conditions are equivalent:

(i) NL′/K(JL′) ⊆ NL′′/K(JL′′),

(ii) K× ∩NL′/K(JL′) ⊆ K× ∩NL′′/K(JL′′),

(iii) NL′/K(L′×) ∩NL′′/K(L′′×) is of finite index in NL′′/K(L′′×),

(iv)
⋃
s∈G

sH ′
[∗] s−1 ⊆

⋃
s∈G

sH ′′
[∗] s−1.
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Finally, as in the local case (same proof), we have the following conse-
quence of 3.3.

3.5.3 Corollary (norm lifting theorem). Let L/K be a finite extension of
number fields and let M/K be an abelian extension.
If N is the subgroup of JK corresponding to M , then the subgroup N ′ of JL
corresponding to LM over L is given by:

{y ∈ JL, NL/K(y) ∈ N} =: N−1
L/K(N).

3.5.4 Proposition (relative decomposition and inertia groups). Let L/K be
a finite extension and let L′/K be a subextension. Denote by N and N ′ the
subgroups of J corresponding to Lab and L′ab (so that N ⊆ N ′).
Under the isomorphisms Dv(Lab/K) � K×

v N/N and Iv(Lab/K) � UvN/N
(see 3.3.5), we then have:

Dv(Lab/L′ab) � N ′ ∩K×
v /N ∩K×

v ,

Iv(Lab/L′ab) � N ′ ∩ Uv/N ∩ Uv.

Proof. Indeed, we have the general exact sequence (see 1.2):

1 −→ Dv(Lab/L′ab) −−−→ Dv(Lab/K) −−−→ Dv(L′ab/K) −→ 1,

which can be written:

1 −→ N ′ ∩ (K×
v N)/N −−−→ K×

v N/N −−−→ K×
v N ′/N ′ −→ 1 ;

it is then immediate to check that N ′ ∩ (K×
v N)/N � N ′ ∩K×

v /N ∩K×
v . The

case of inertia groups is completely similar.

3.6 Theorem (Galois action). Let M/K be a finite abelian extension of
number fields and let g be an automorphism group of K with fixed subfield k.
Let N := K×NM/K(JM ) be the norm group corresponding to M/K.
We have the following facts:

(i) M/k is Galois if and only if g acts on N ;
(ii) M/k is abelian if and only if g is commutative and there exists

a subgroup n of Jk, containing the diagonal embedding of k×, such that
N = N−1

K/k(n), in which case M is the compositum of K with the abelian

extension of k corresponding to n.

Proof. (i) Let τ be a k-isomorphism of M extending t ∈ g. By 3.3, (vi),
the group corresponding to τM over τK = K is equal to τN = tN (since
ρτM/K(τx) = 1 is equivalent to ρM/K(x) = 1); thus the uniqueness theorem
indeed implies that τM = M if and only if tN = N (i.e., g acts on N).

(ii) If M/k is abelian, g is commutative and there exists n in Jk containing
k×, corresponding to M/k. By 3.5.3, we have N = N−1

K/k(n).
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Conversely, assume that g is commutative and that N is of the form
N−1
K/k(n). Since by 1.4.3 and 1.4.4, for all m (built on the ramified places

in K/k), NK/k(U res
K,m) contains U res

k,n for a suitable n in k, it follows that
NK/k : JK −→ Jk is an open map and so n, which contains NK/k(N) with N
open, is an open subgroup of Jk, hence of finite index since it contains k×.

Let k′ be the abelian extension corresponding to n over k; since g is
commutative, the field Kk′ is the compositum of two abelian extensions of
k and corresponds, over K, to N−1

K/k(n) = N . Hence, by uniqueness we have
Kk′ = M .

This theorem is the starting point for a more general Galois study; for
instance, if M/k is Galois and [M : K] is prime to |g|, the action of g on
JK/N or, equivalently, that of g on Gal(M/K), characterizes the semidirect
product Gal(M/k) = Gal(M/K)×| g.

3.6.1 Example. Let K/Q be Galois with Galois group G =: g, and let H
(resp. C�) be the restricted or the ordinary Hilbert class field (resp. class
group) of K (see 3.5.1, (ii)). If |G| and |C�| are coprime, Gal(H/Q) � C�×| G
is characterized by the relations:

s′ ◦ ρH/K(c�(x)) ◦ s′−1 = ρH/K(c�(sx)),

for any s′ extending s ∈ G and any idèle x (with c�( • ) ∈ J/K×U � C�), which
become, in terms of Artin symbols that we will introduce in Subsection (b):

s′ ◦
(

H/K

c�(a)

)
◦ s′−1 =

(
H/K

c�(s a)

)
,

for any s′ extending s ∈ G and any ideal a (with c�( • ) ∈ C�). Thus the Galois
structure of C� gives that of Gal(H/Q). Note that if C� �= 1, C�×| G is never a
direct product since this is equivalent to C� = C�G, therefore to C� = 1 because
of the assumption on the orders (hint: if the class c is fixed under G, then,
since Q is principal, 1 = νL/K(c) :=

∏
s∈G

cs = c|G|; or use the fact that one

can write H = KM with M/Q abelian and unramified).

The most complete achievement of Theorem 3.6 is then the Šafarevič–Weil
theorem, 24 which characterizes the group extension:

1 −→ Gal(M/K) −−−→ Gal(M/k) −−−→ g −→ 1,

which is of a cohomological nature, in terms of the fundamental class briefly
mentioned in 3.2.2. More precisely, the element of H2(g,Gal(M/K)) associ-
ated to this group extension is the image of the fundamental class under the
24 See [e, Ko3, Ch. 2, § 7.1] and [i, Miy0, Koch] for the history of this result whose

name would aptly be “Šafarevič–Hochschild–Nakayama–Jehne theorem”, as ex-
plained by Koch.
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composite of canonical maps:

H2(g, CK) −−−→ H2(g, CK/c�K(N))
ρM/K−−−→H2(g,Gal(M/K)),

where N ⊂ JK is the norm group corresponding to M/K.

b) Global Class Field Theory in K
ab

/K

To conclude, we want to show how the global reciprocity map behaves when
we take the inverse limit of the J/N (from the correspondence of 3.5), hoping
that this will not create some new and dreadful object; we will see that this
is not the case.

3.7 Reciprocity Map in K
ab

/K. By the general principles, we can go to
the limit as in the local case by writing that:

G
ab

:= Gal(K
ab

/K) � lim←−
N

J/N,

where N ranges in the set of open (or closed of finite index) subgroups of
J containing K×. As already explained, these subgroups N must necessarily
contain a subgroup of the form U res

m = U res
0,m ⊕ U∞, where (see I.5.2):

U res
0,m :=

∏
v∈Pl0\T

Uv
∏
v∈T

Umv
v

if m =
∏
v∈T

pmvv , and where U∞ :=
⊕
v|∞

Uv � (R×+)r1×(C×)r2 is the connected

component of the unit element of J . Thus the group G
ab

is also of the form
(using reduced idèles):

lim←−
N0

J0/N0,

where N0 ranges in the set of open subgroups of J0 containing K×, of which
a cofinal subset is formed by the K×U res

0,m.
We are going to see however that these inverse limits can easily be written

in terms of quotients of J or J0, which in practice avoids working in C or C0.

3.7.1 Definition. Let ρ be the limit reciprocity map: ρ : J −−−→ G
ab

,
defined for all x ∈ J by:

ρ(x) := (ρM/K(x))M ∈ lim←−
M

Gal(M/K) � lim←−
N

J/N,

for the finite abelian extensions M/K, N denoting the norm group of M (i.e.,
the kernel of the reciprocity map ρM/K defined in 3.1).
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The fundamental canonical exact sequence I.5.2.2 (in terms of reduced
idèles):

1 −→ K×Uord
0 −−−→ J0 −−−→ C�ord −→ 1,

shows that there exists a finite number of representative idèles x i0 ∈ J0,
1 ≤ i ≤ h := |C�ord|, such that J0 = {x i0, 1 ≤ i ≤ h}K× Uord

0 .
We have:

J/K×U∞ � J0/K
× = {x i0, 1 ≤ i ≤ h}K× Uord

0 /K×,

which is represented by the set {x i0, 1 ≤ i ≤ h}Uord
0 ; we can then apply

I.5.5 to A = J , the subgroups N ⊂ J corresponding to the finite abelian
extensions M/K, B = K×U∞, and the compact set {x i0, 1 ≤ i ≤ h}Uord

0 ,
and so we deduce that ρ is surjective (its kernel being trivially equal to

⋂
N

N).

We have of course the analogous surjective map ρ : J0 −−−→ G
ab

, defined
by ρ(x0) := (ρM/K(x0))M , whose kernel is

⋂
N0

N0.

We thus have the following homeomorphisms:

G
ab � lim←−

N

J/N � J
/⋂
N

N � J
/⋂

m
(K×U res

m ) � C/D

� lim←−
N0

J0/N0 � J0

/ ⋂
N0

N0 � J0

/⋂
m

(K×U res
0,m) � C0/D0,

where D := c�
(⋂

m
(K×U res

m )
)
, D0 := c�0

(⋂
m

(K×U res
0,m)

)
, are the connected

components of the unit element of C and C0 respectively, and where we recall
that (see I.4.2.5, I.4.2.8, (ii)):

D = c�
(⋂

m
(EordU res

m )
)
, D0 = c�0

(⋂
m

(EordU res
0,m)

)
.

3.7.2 Remark. Note that in general the Uord
0,m do not form a fundamental

system of neighbourhoods of 1 in J0; in a similar way, although the U res
0,m form

such a fundamental system, this is not the case for the U res
m in J (because of

the archimedean factors), and only
⋂
m

(K×U res
0,m) represents the closure of the

image of K× in J0, so that we have:

D0 = adh0(K
×)/K× = adh0(E

ord)/Eord.

However, we can write D = adh(K×U∞)/K×.

Summarizing these results, we obtain the following description of G
ab

:=
Gal(K

ab
/K) by means of the usual reciprocity maps ρM/K for finite abelian

extensions M/K.
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3.7.3 Theorem. The infinite reciprocity map ρ : J −−−→ G
ab

(resp. ρ :
J0 −−−→ G

ab
), which associates with x ∈ J (resp. x0 ∈ J0), (ρM/K(x))M

(resp. (ρM/K(x0))M , is surjective.

Thus ρ induces the canonical homeomorphisms:

G
ab � J/adh(K×U∞) � J0/adh0(K

×).

Of course, the composition of ρ and the restriction G
ab−→ Gal(M/K) yields

the reciprocity map ρM/K for any abelian extension M/K (finite or not).

3.7.4 Corollary. Taking quotients by the diagonal embeddings of K×, we
can write:

G
ab � C/D � C0/D0,

where D = c�
(⋂

m
(K×U res

m )
)

= adh(K×U∞)/K×, D0 = c�0

(⋂
m

(K×U res
0,m)

)
=

adh0(K
×)/K×.

3.8 Infinite Global Class Field Theory Correspondence. The cor-
respondence for infinite idelic class field theory can be expressed in terms of
either:
• closed subgroups of J containing K×U∞,
• closed subgroups of C containing D,
• closed subgroups of J0 containing K×,
• closed subgroups of C0 containing D0.
In addition, the bijection between the set of abelian extensions of K and

the set of closed subgroups of J0 containing K× (for instance) is a Galois
correspondence having the properties (i) to (iv) of 3.5.

3.8.1 Remarks. (i) Under this correspondence, the decomposition and in-
ertia groups are still related to the images under ρ of the groups K×

v and Uv
but this is not enough to identify them; in other words the computation of
K×
v adh0(K

×)/adh0(K
×) or of K×

v /K×
v ∩ adh0(K

×) is neither sufficient nor
a priori easy. It is however easy to see that we have ρ(Uv) = Iv(K

ab
/K) and

that ρ(K×
v ) is dense in Dv(K

ab
/K). In addition there is a topological problem

since J induces on K×
v its usual topology (with neighbourhoods Um

v ), while

it is that induced by K̂×
v (with neighbourhoods πnZ

v ⊕Um
v ) which is suitable

since Dv(K
ab

/K) is obtained by an inverse limiting process (which we will
give in III.4.12.5 following III.4.5); recall also the problem that we have met
in I.4.2.8, (iv). All this needs Theorem III.4.3 of Schmidt–Chevalley, which
uses the local-global principle 6.3.3 on powers. It is thus natural to delay the
study of all questions dealing with the global structure of K

ab
/K which are



§3 Global Class Field Theory: Idelic Version 125

logically equivalent to the study of the properties of D and D0, and will be
the object of the next chapter.

(ii) The group D is also called the universal norm group simply because it
corresponds to K

ab
by infinite class field theory, and because it is contained

in the images in C of all the norm groups K×NL/KJL of finite extensions
L of K. As we have already mentioned, D is the connected component of
the unit element of C and also its maximal divisible subgroup. We will show
this last point in III.4.15.1. Exactly the same things can be said about D0

in C0.

In terms of classes of reduced idèles, the above yields:

C0 = {c�0(x i0), 1 ≤ i ≤ h} . c�0(Uord
0 ),

and the exact sequence:

1 −→ c�0(U
ord
0 )D0/D0 −−−→ C0/D0 −−−→ C�ord −→ 1,

shows that the study of C0/D0 can be reduced to that of:

c�0(U
ord
0 )D0/D0 � K×Uord

0

/⋂
m

(K×U res
0,m) � Uord

0

/⋂
m

(EordU res
0,m),

which is Uord
0 /adh0(E

ord) or, equivalently, the quotient of Uord
0 /Eord by the

connected component D0.
We obtain the following result.

3.8.2 Theorem (global exact sequence of class field theory). We have the
exact sequence:

1 −→ Uord
0 /adh0(E

ord)
ρ−−−→G

ab −−−→ C�ord −→ 1,

in which Uord
0 /adh0(E

ord) � Gal(K
ab

/Hord) and C�ord � Gal(Hord/K).

For instance, if K is equal to Q or to a principal imaginary quadratic field,
this yields G

ab � Uord
0 /i0(µ(K)).

The determination of the structures of adh0(E
ord) and D0 is the object

of Theorem III.4.4.6.
The point of view of the notes of Artin–Tate [d, AT, Ch. 9, § 1], and before

of the book of Weil [h, We2, III], is to give explicitly the structure of D (in
particular for the computation of the cohomology of C and of C/D). Our
point of view consists also in looking at the formulas:

G
ab � lim←−

N

J/N � lim←−
N0

J0/N0 � lim←−
m

C�resm ,
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which show how the finite case, which is amenable to numerical computations,
regularizes when one takes the limit, but there is no difficulty in expressing
and in proving certain results thanks to the properties of C/D or of C0/D0,
and we will do so when needed (for instance in Chapter III, Section 4, and
in the Appendix).

The structure of the inverse limit lim←−
m

C�resm and especially those of its p-

Sylow subgroups are quite complex, and their arithmetic computation will
be the object of Chapter III.

3.8.3 Remark. It is interesting to note a difference between the local and
global cases. In the global case, the map:

ρ : J −−−→ Gal(K
ab

/K)

is surjective, while in the local case, the analogous map:

ρv := ( • ,K
ab

v /Kv) : K×
v −−−→ Gal(K

ab

v /Kv)

only has a dense image. This comes from the fact that in the local case
K

nr

v /Kv is infinite, contrary to the global case where Hord/K is finite: indeed,
the relative Galois groups Gal(K

ab

v /K
nr

v ) and Gal(K
ab

/Hord) are the images
under the continuous maps ρv and ρ of the compact groups Uv and Uord

0 ,
but K×

v /Uv � Z is not compact, contrary to J0/K
×Uord

0 which is finite.
Note also that for any xv ∈ K×

v (seen as an idèle), ρ(xv) corresponds to
ρv(xv)|

(K
ab

)v

under the identification of Dv(K
ab

/K) with Gal((K
ab

)v/Kv).

But we will prove in III.4.5 that (K
ab

)v = K
ab

v ; thus we indeed have that
ρ|K×

v

corresponds to ρv, which confirms the topological problems we have

mentionned at several occasions.

§4 Global Class Field Theory: Class Group Version

a) Global Norm Conductor — Properties

Let L/K be a finite extension of number fields; the use of generalized ideal
class groups implies that we must introduce the fundamental notion of a
global norm conductor. To begin with, recall that from our point of view, the
existence of a modulus m satisfying the condition:

U res
m ⊆ NL/K(JL),

which says that the group NL/K(JL) is open, hence that the group:

K×NL/K(JL),
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is open with finite index in JK , comes essentially from local class field theory
since, for every place v unramified in L/K we have, for the places w of L
above v:

Uv = NLw/Kv (Uw)

(see 1.4.3, (ii)), and that for every place v ramified in L/K, there exists a
sufficiently large i such that for all w|v we have (see 1.4.4):

U i
v ⊆ (Uv)[Lw:Kv] ⊆ NLw/Kv (Uw).

The existence of m (also called an admissible modulus) trivially implies that
of a smallest admissible modulus since we have U

m1
v U

m2
v = U

min (m1,m2)
v , for

any v ∈ Pl. The support of this modulus is contained in the set of places
ramified in L/K. 25 We can thus state the following.

4.1 Theorem and Definition (global norm conductor). Let L/K be a finite
extension of number fields.
There exists a smallest modulus fL/K =: f of K, such that:

U res
f ⊆ K×NL/K(JL).

This modulus is called the global norm conductor or the conductor of L/K. It
only depends on the maximal abelian subextension Lab/K of L/K and hence
is also equal to fLab/K , the global norm conductor of Lab/K (see 3.3.3).

Note. According to our point of view, f is a nonzero integral ideal of K and in

particular does not involve any infinite places. Moreover, its support is contained

in the set of places ramified in L/K (even with the meaning of the above footnote)

since it is an admissible module for K×NL/K(JL) which contains NL/K(JL). See

the more precise result 4.2.

4.1.1 Proposition (conductor of a compositum of fields). If Lab is the com-
positum, over K, of the extensions M1, . . . ,Mn, then its conductor is equal
to the l.c.m. of the conductors of the Mi for 1 ≤ i ≤ n.

Proof. Immediate from Definition 4.1 and the fact that we have:

K×NL/K(JL) =
n⋂
i=1

(K×NMi/K(JMi
)),

by 3.5, (ii).

For example, if L/K is a p-elementary extension (i.e., Gal(L/K) �
(Z/pZ)r, p prime), its norm group and its conductor can be computed from
25 More precisely, in the non-Galois case we have Uv ⊂ NL/K(JL) if and only if

Lab
v /Kv is unramified, so that this support is contained in the set of places v

such that all w|v ramify in L/K. For the sequel (abelian case), this information
is useless.
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the case of a cyclic extension of degree p; if µp ⊂ K, the result immediately
follows from 1.6.3, otherwise we can be reduced to the Kummer case because
of norm lifting Theorem 3.5.3.

4.1.2 Remark. If M is the intersection of the Mi, we can only say that the
conductor of M divides the g.c.d. of the conductors of the Mi; for example,
for K = Q, M1 = Q(

√
−1 ), M2 = Q(

√
2 ), we have f1 = (4), f2 = (8) (see

1.6.5), g.c.d.(f1, f2) = (4), but M1 ∩M2 = Q.

The global norm conductor has the following property (which comes from
the local case, as is shown by the proof of Lemma 4.2.1).

4.2 Theorem (of the conductor). Let L/K be a finite extension of number
fields and let f be its global norm conductor. Let v be a finite place of K.
Then v is ramified in Lab/K if and only if pv divides f (i.e., the support of f
is equal to the set R of places which are ramified in Lab/K).

4.2.1 Lemma (computation of a global norm conductor). Let L/K be
a finite extension. Then f := fL/K is equal to the product of the local

v-conductors of Lab/K, in other words f =
∏

v∈Pl0
fv(Lab/K) (see 1.6, (ii)).

Proof of the statements. In the fundamental Corollary 3.3.1 we have
observed that the norm groups Nv (corresponding to (Lab)v/Kv) are the
N ∩ K×

v , where N := K×NL/K(JL); thus, using 1.4.3, (ii), it is clear that
Umv
v ⊆ Nv for all v (taking mv = 0 if v /∈ R), is equivalent to U res

m ⊆ N , for
m =

∏
v∈R

pmvv . This proves the result as well as the theorem of the conductor.

The above lemma gives a result which is essential for the practical com-
putation of a global conductor: indeed, in general we know a multiple of the
discriminant of Lab/K, so that we are reduced to a finite (explicit) number
of computations of local v-conductors of cyclic extensions by 4.1.1 (for this,
we use Formula 1.6.2).

We illustrate the above on an example showing that the local information
coming from the Lab

v /Kv should not be mistaken for that coming from the
subextension Lab/K, even when L/K is Galois.

Example. Consider the extension L = Q( 3
√

7, j) of K = Q, in which the
ramified places are 3 and 7. For the place v = 7 of K, we obtain Lab

v =
Q7(

3
√

7 ) which is a cyclic extension of degree 3 of Q7; it follows that we have
fLab
v /Kv

= (7) (7 is tamely ramified in Lab
v /Kv) while the global conductor

f =
∏
v

fv(L
ab/K), which is the conductor of Lab/K = Q(j)/Q, is equal to (3)

(i.e., for v = 7 the local v-conductor of Lab/K is equal to 1, or equivalently,
we have Lab

v = Q7(
3
√

7 ), but (Lab)v = Q7).



§4 Global Class Field Theory: Class Group Version 129

4.2.2 Exercise. Deduce from the proof of Lemma 4.2.1 the equivalence of
the following conditions:

U res
m ⊆ N := K×NL/K(JL) and U res

m ⊆ NLab/K(U res
Lab).

Answer. One direction is clear since N = K×NLab/K(JLab); for the other, it
suffices to check that N ∩Uv = Nv∩Uv = N(Lab)v/Kv (U(Lab)v ), where U(Lab)v

is the unit group of (Lab)v.
Beware that the results of 2.6 show that U res

m ⊆ K×NL/K(JL) is in general
not equivalent to U res

m ⊆ NL/K(U res
L ) =

∏
v

NĽab
v /Kv

(UĽab
v

) since we have:

(
NLab/K(U res

Lab) :
∏
v

NĽab
v /Kv

(UĽab
v

)
)

=
∏
v

ěab
v

ev(Lab/K)
;

neither is it equivalent to U res
m ⊂ NL/K(JL), which means that for all v,

Umv
v ⊆ NLab

v /Kv
(ULab

v
), since the index:

(
NLab/K(U res

Lab) :
∏
v

NLab
v /Kv

(ULab
v

)
)

=
∏
v

eab
v

ev(Lab/K)
,

can also be different from 1 (recall that ěab
v := e(Ľab

v /Kv) and eab
v :=

e(Lab
v /Kv)). This remark remains in the case where L/K is only Galois (use

the example given above).

We also give the following classical property which is summarized under
the name “Führerdiskriminantenproduktformel”.

4.2.3 Proposition. Let L/K be a finite extension of number fields.
Then the relative discriminant of the subextension Lab/K is:

dLab/K =
∏
χ

fχ,

where χ ranges in the dual of Gab and where fχ is the global norm conductor

of the subfield of Lab fixed under the kernel of χ.

4.2.4 Nonabelian Artin Conductors. Recall, without any justification,
that these (abelian) conductors have the following Galois generalization which
comes from higher ramification theory. 26

Denote by Ψ(Γ ) the set of absolutely irreducible characters of a finite
group Γ . Let L/K be a finite Galois extension with Galois group G, and let
Lw0/Kv, with Galois group Gw0 , be a completion of L/K at v ∈ Pl0 and a
fixed w0|v; for any ψ ∈ Ψ(Gw0) we set:

fartv (ψ) := p
mv,ψ
v ,

26 [d, Se2, Ch.VI, § 2; CF, Ch. VI, § 4], [c, Neu1, Ch.VII, § 11].
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with:
mv,ψ :=

1
g0

∑
i≥0

gi

(
ψ(1)− 1

gi

∑
s∈Gw0,i

ψ(s)
)
,

where Gw0,i is the ith higher ramification group of Lw0/Kv (in lower num-
bering) and gi := |Gw0,i|. For an arbitrary character χ we define fartv (χ) by
linearity, and this modulus is called the local v-conductor of the character χ.
If ψ is of degree 1, the factor:

ψ(1)− 1
gi

∑
s∈Gw0,i

ψ(s),

is equal to 0 or 1 depending on whether or not the restriction of ψ to Gw0,i is
the unit character, and we recover the norm conductor of the cyclic extension
fixed under the kernel of ψ (see [d, Se2, Ch. VI, § 2, Prop. 5, Cor.]).

This gives the local Artin v-conductors for the extension L/K. We then
define the global Artin conductors, for any ψ ∈ Ψ(G), by:

fart(ψ) :=
∏

v∈Pl0
fartv (Resv(ψ)),

where Resv(ψ) is the restriction of ψ to Dw0(L/K) � Gw0 (it does not depend
on the choice of w0). We thus have the corresponding formula for the relative
discriminant of L/K (Artin–Hasse):

dL/K =
∏

ψ∈Ψ(G)
(fart(ψ))ψ(1).

An important property of the Artin conductor is that it characterizes the
ramification for the extension L/K (and not only for the extension Lab/K),
but this is not anymore part of class field theory.

The reader can refer to [e, Ko3, Ch. 5, § 1] to have an overview on questions
dealing with Artin L-functions, whose study at s = 0 is the object of Stark’s
conjectures.

b) Artin’s Reciprocity Map — Reciprocity Law — Global
Computation of Hasse Symbols — Decomposition Law

To go from the idelic to the generalized class group point of view, we have
at our disposal the fundamental exact sequence of Theorem I.5.1, relative to
the usual data T , m, and S prime to T :

1 −→ K×US
m/K× � US

m/ES
m −−−→ C

γSm−−−→C�Sm −→ 1.

Furthermore, the above fundamental results (in idelic terms) for a finite ex-
tension L/K and a finite set S of noncomplex places of K unramified in
Lab/K, are:
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(α) the exact sequence:

1 −→ K×〈S 〉NL/K(JL)/K× −−−→ C
ρSL/K−−−→GabS −→ 1,

with 〈S 〉 :=
⊕
v∈S

K×
v , where K×NL/K(JL) is an open subgroup of J , and

GabS := Gal(LabS/K);
(β) the existence theorem which says that, conversely, for any open sub-

group N of J containing the image of K×, there exists L/K such that we
indeed have:

1 −→ N〈S 〉/K× −−−→ C
ρSL/K−−−→GabS −→ 1.

We then see that we may successively:
(α′) factor ρSL/K as a map from C�Sm to GabS , for m multiple of the norm

conductor of L/K;
(β′) express the existence theorem in terms of subgroups of C�Sm, which

will be equivalent to classifying abelian extensions of K by their conductor.

4.3 The Fundamental Diagram for Artin and Reciprocity Maps.

The translation in terms of generalized class groups of the properties of the
global reciprocity map relies on the following commutative diagram, in which
L/K is a finite extension of number fields, m is any multiple of the norm
conductor f of L/K, and S is a finite set of noncomplex places of K, disjoint
from the set T containing the support of m. Recall that US

m = U res
m 〈S 〉 and,

by our assumption on m, that we have:

U res
m ⊆ K×NL/K(JL) ;

we also recall that the map γSm defines the fundamental exact sequence of
I.5.1 and that c�Sm is the canonical map:

IT −−−→ C�Sm.

This commutative diagram has the following form (where N denotes NL/K):

1 1
↓ ↓

K×US
m/K× ==== K×US

m/K×�
�

1 −→ K×〈S 〉N(JL)/K× −−−→ C
ρS
L/K−−−→ Gal(LabS/K) −→ 1�

�γSm

∣∣∣
∣∣∣

1 −→ c�Sm(N(IL,T )) −−−→ C�Sm
αS
L/K−−−→ Gal(LabS/K) −→ 1

↓ ↓
1 1
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To show its validity, it is sufficient to define αL/K since, as for ρSL/K , αSL/K will
be the composition of αL/K with the canonical projection Gab −→ GabS . 27

The map αL/K must thus be such that αL/K ◦ γm = ρL/K .

Recall that if x =: (xv)v ∈ J , ρL/K(x) =
∏
v

(
xv , L

ab/K

v

)
, and that

K× ⊆ Ker(ρL/K); it follows that we can replace x modulo K× by xm,pos =:
(x′
v)v ∈ JT,m,pos (see I.4.3.3) so that we now have:

ρL/K(x) = ρL/K(xm,pos) =
∏
v

(
x′
v , Lab/K

v

)
=

∏
v∈Pl0\T

(
x′
v , Lab/K

v

)
,

the symbols on T ∪ Pl∞ being trivial since U res
m ⊆ NLab/K(U res

Lab) (see 4.2.2);

furthermore γm(xm,pos) is of the form c�resm (a), where a :=
∏

v∈Pl0
p
v(x′

v)
v is prime

to T , and defined modulo PT,m,pos (because of the choice of xm,pos). For v ∈

Pl0\T , v is unramified in Lab/K and we have
(
x′v , L

ab/K

v

)
=
(
Lab/K

v

)v(x′
v)

(see 1.4, (vii), or 3.1.3, (vii) by density), so that we must set:

αL/K(c�resm (a)) :=
∏
v∈Pl0

(
Lab/K

v

)v(a)

.

The diagram for S = ∅ follows by computing γm(K×N(JL)). The general
case is immediate by taking quotients with 〈S 〉.

It is classical to lift αL/K to IT , denoting also the Frobenius
(
Lab/K

v

)

by
(
Lab/K

pv

)
for any finite place v unramified in Lab/K.

4.3.1 Definitions (Artin map and Artin group). (i) Let L/K be a finite
extension of number fields and let T be a finite set of finite places containing
the set R of places ramified in Lab/K. The Artin map (or Artin symbol) on
IT is the map:

αL/K : IT −−−→ Gab := Gal(Lab/K)

which sends a ∈ IT to:
(

Lab/K

a

)
:=

∏
p

(
Lab/K

p

)vp(a)

.

(ii) Its kernel AL/K,T is called the Artin group of Lab/K in IT ⊆ IR.

27 In accordance with our general principles, we have αL/K =: αres
L/K , and similarly

for γm and for ρL/K .
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The diagram shows, by lifting c�resm (N(IL,T )) to IT , the following.

4.3.2 Theorem. The kernel of the Artin map αL/K on IT , T ⊇ R, is equal
to the subgroup:

PT,m,posNL/K(IL,T ),

for any m which is a multiple of the norm conductor f of Lab/K.

This shows that PT,m,posNL/K(IL,T ) is independent of m, as long as this
modulus is a multiple of f, a result which is not a priori clear.

4.3.3 Remark. As for the composite map αSL/K : IT −→ GabS , its kernel
is equal to:

ASL/K,T := PT,m,pos〈S 〉NL/K(IL,T ) := PT,m,∆∞ . 〈S0 〉NL/K(IL,T ),

for any m multiple of f, where ∆∞ := Plr∞\S∞ (see I.4.4).
By definition, since ASL/K,T corresponds to LabS/K, we have:

PT,m,pos〈S 〉NL/K(IL,T ) = PT,m,posNLabS/K(ILabS ,T ),

for any m multiple of the conductor of LabS .

4.4 Artin’s Reciprocity Law. The canonical isomorphism:

IT /PT,m,posNL/K(IL,T )
αL/K−−−−−→Gab

defines the Artin reciprocity law. It is the ideal version of the idelic version
of the global reciprocity law asserting that K× is in the kernel of ρL/K .

4.4.1 Takagi Groups — Artin and Norm Conductors. The groups:

TL/K,T,m := PT,m,posNL/K(IL,T ),

which were introduced by Takagi to make explicit the congruence groups of
Weber (see Subsection (d)), are thus independent of the choice of m (multiple
of the norm conductor f of L/K); hence the canonical choice is that of:

TL/K,R,f := PR,f,posNL/K(IL,R),

where R is the support of f. This group is called simply the Takagi group
of L/K and “the groups” TL/K,T,m, the Takagi groups modulo m; they only
depend on Lab/K, but the possibility of choosing m (multiple of f) may have
some practical importance. In particular, we have the equality (for any m
multiple of f):

PT,m,posNL/K(IL,T ) = PT,m,posNLab/K(ILab,T ).
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The identity AL/K,T = TL/K,T,m = PT,m,posNL/K(IL,T ) is classically stated
by saying that:

“The Artin group is equal to the Takagi group”.

If we say that the (abelian!) Artin conductor of L/K is by definition the
smallest modulus fA of K, with support equal to R, such that PR,fA,pos is
in the kernel of the Artin map αL/K , the above results show that f = fA.
We can thus speak of the conductor of L/K (or of Lab/K) without being
specific. The fact that PT,m1,pos PT,m2,pos = PT,g.c.d.(m1,m2),pos, where m1 and
m2 have supports contained in T , can easily be checked directly thanks to the
chinese remainder theorem, but the idelic formulation in the introduction to
Subsection (a) is much more immediate; we thus obtain the existence of the
abelian Artin conductor (by choosing T = R).

4.4.2 History. These statements in terms of ideal groups (the equality of
the Artin and Takagi groups, and the isomorphism IT /TL/K,T,m � Gab)
form the historical approach to the fundamental results of class field theory.
In particular, the only proof of the equality, valid for any number field:

(IT : PT,m,posNL/K(IL,T )) = [Lab : K],

was split in the difficult proofs of the first inequality of class field theory
(“≥ ”, Takagi) and of the second inequality or universal equality (“≤ ”, We-
ber (1897) using analytic methods, and Hasse–Scholz (1929) in the general
case). It is only later (1920/1924) that Artin introduced the map αL/K ,
constructed with the Frobenius symbols, and showed (1927), using ideas of
Čebotarev (the crossing with a cyclic cyclotomic field), that αL/K gave the
exact sequence:

1 −→ PT,m,posNL/K(IL,T ) −−−→ IT −−−→ Gab −→ 1,

thus giving for the first time the general notion of a global reciprocity map;
the idelic version of Section 3 (Chevalley (1936/1940)) representing only the
translation in the other direction, showing that it is possible (although ap-
parently illogical but very useful) to go from a global approach of class field
theory to a local approach (after Hasse–Schmidt (1930)).

The direct proof of the existence of an Artin conductor for an abelian
extenion L/K, i.e., the existence of m such that αL/K is trivial on PT,m,pos

(or such that K×U res
m ⊆ Ker(ρL/K) in idelic terms) uses very strongly the

properties of cyclotomic fields (in other words, essentially class field theory
for Q with which we must begin); although it is only a series of elementary
exercises (see [d, Lang1, Ch. X, § 2]), this proof is still considered as deep
since it involves the construction of abelian extensions of K satisfying certain
local conditions and giving already enough information on Gal(K

ab
/K). For
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instance, one of the key arguments is Lemma 1 of [d, Lang1, Ch. X, § 2]
which originates in Birkhoff–Vandiver (1907), of which several proofs have
been given by Chevalley in [h, Che1], Iyanaga in [h, Iy2], van der Waerden
(1934), Takagi (1948); this lemma states that if a > 1 and e ≥ 1 are integers
and p a prime number, there exists a prime number q such that a modulo (q)
is of order equal to pe.

At this step, we should mention, among other interesting studies of
Kubota (like [Kub2, Kub3]), the paper [KO] of Kubota–Oka (2000) prov-
ing that Artin’s reciprocity law can be deduced from the case of cyclotomic
extensions and Kummer extensions. This paper is based on the Schmidt–
Chevalley theorem.

The necessity of performing such constructions shows that it seems im-
possible to give a näıve proof of the fact that (to give a minimal example in
the case of conductor 1):

“p is a principal prime ideal of K = Q(
√

10 ),

if and only if:

the Frobenius of p in K(
√

5 )/K is trivial”

(since K(
√

5 ) is the Hilbert class field of K). This example may not be
completely convincing since it can be solved using genus theory (here Gauss’s
genus theory of quadratic forms, see IV.4.2.10), which can be considered
as intermediate between näıve and highly nontrivial. On the contrary, the
analogous result:

“p is a principal prime ideal of K = Q(
√
−23 ),

if and only if:

the Frobenius of p in K(θ)/K is trivial”

(where Irr(θ, Q) := X3 −X − 1), seems faultless (see 5.2.1 for more details),
except that Q(

√
−23 ) has no nontrivial units, and to stress even more the

origin of the difficulties for an arbitrary base field, we can cite Tate (from
[d, CF, Ch. VII, § 6]) who asserts: “It may well be that it is the connected
component that prevents a simple proof of the reciprocity law in the general
case”. Indeed, we will see that D0 = 1 if and only if the Z-rank of Eord is
equal to zero (i.e., K is equal to Q or to an imaginary quadratic field, fields
for which questions having to do with reciprocity laws are indeed simpler).

Finally, we can replace Q(
√
−23 ) by Q(

√
79 ), whose Hilbert class field is

also of degree 3, and obtain the same conclusion.

The advantage of Artin’s formulation above is that in general we know
how to compute the Frobenius’ (in particular numerically). Thus, we are
going to give a global method for the computation of the symbols:
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(
x , Lab/K

v

)
, x ∈ K×, v ∈ Pl.

4.4.3 Computation of Hasse Symbols by Global Means. Call R
the set of (finite) places ramified in Lab/K, and let m be a multiple of the
conductor f (it does not matter if the support T of m strictly contains R,
which will be the case if the conductor and its support are not precisely
known). Finally, set m =:

∏
v∈T

pmvv with mv ≥ 0.

Let x ∈ K×; fix a place v of K, and let us consider several cases:
(α) v ∈ Plr∞. By 3.1.3, (vii), we have:

(
x , Lab/K

v

)
=
(

Lab/K

v

)v(x)

,

where v(x) = 0 (resp. 1) if iv(x) > 0 (resp. iv(x) < 0).
(β) v ∈ Pl0\T . Similarly, since v is unramified, we have:

(
x , Lab/K

v

)
=
(

Lab/K

v

)v(x)

.

(γ) v ∈ T . Let x′ ∈ K× be such that (chinese remainder theorem):
(i) iv(x′x−1) ∈ Umv

v ,
(ii) iv′(x

′) ∈ U
mv′
v′ , for each place v′ ∈ T, v′ �= v,

(iii) iv′(x
′) > 0 for each place v′ ∈ Plrc∞ (i.e., each real place v′ complex-

ified in Lab/K).
Then, by the product formula we have:

(
x′ , Lab/K

v

)
=

∏
v′∈Pl,v′ �=v

(
x′ , Lab/K

v′

)−1

,

and since
(
x , Lab/K

v

)
=
(
x′ , Lab/K

v

)
, by (i) and the definition of the local

v-conductor of Lab/K, we have:

(
x , Lab/K

v

)
=

∏
v′∈Pl,v′ �=v

(
x′ , Lab/K

v′

)−1

;

let us compute the symbols occurring in the right hand side:

• if v′ ∈ T \{v}, iv′(x
′) ∈ U

mv′
v′ (by (ii)) and we have

(
x′ , Lab/K

v′

)
= 1,

• if v′ ∈ Pl∞,
(
x′ , Lab/K

v′

)
= 1 since either

(
Lab/K

v′

)
= 1 if v′ is complex

or noncomplexified real, or v′(x′) = 0 for v′ complexified real (by (iii)),
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• if v′ ∈ Pl0\T , v′ is unramified and we can write (by 3.1.3, (vii)):
(

x′ , Lab/K

v′

)−1

=
(

Lab/K

v′

)−v′(x′)

;

finally, we have obtained:
(

x , Lab/K

v

)
=

∏
v′∈Pl0\T

(
Lab/K

v′

)−v′(x′)

.

It follows that if we write:

(x′) =: pv(x′)
v a = pv(x)

v a

(we have v(x′) = v(x) by (i) even when mv = 0), then a is prime to T by (ii)
and we obtain, since Pl0\T does not contain v:

(
x , Lab/K

v

)
=
(

Lab/K

a

)−1

= αL/K(a)−1,

which finishes the hand computation of the Hasse symbol of an x ∈ K× which
is not necessarily prime to the place v under consideration.

We will come back to this procedure in 7.5 for the practical computation
of Hilbert symbols.

4.4.3.1 Remarks. (i) The auxiliary element x′ is called a v-associate (or a
pv-associate) of x.

(ii) In the case where v ∈ T is unramified (i.e., v /∈ R), the above compu-
tation still yields (x′) = p

v(x)
v a, a prime to T , but the v-associate x′ is then

such that αL/K((x′)) = 1 (the Artin map is defined since here (x′) is prime
to R; moreover f |m′ := mp−mvv and (x′) ∈ PT,m′ with iv′(x′) > 0 on Plrc∞;
since by definition LabS = Lab for S = Plr∞\Plrc∞, the formula given in 4.3.3
yields PT,m′,Plrc∞ ⊆ PT,m′,posNLab/K(ILab,T ), giving the result), and we find
once again that by 3.1.3, (vii):

(
x , Lab/K

v

)
= αL/K(a)−1 =

(
Lab/K

pv

)v(x)

.

(iii) If f is primary (i.e., a power of pv), then any x ∈ K× (positive at the
complexified real places) is equal to its own v-associate, and we have:

(
x , Lab/K

v

)
= αL/K

(
(x)p−v(x)

v

)−1

.

4.4.3.2 Example. Let K = Q and let L = Lab = Q(
√

5,
√
−3 ). Let us

compute the Hasse symbol
(

15 , L/Q

(3)

)
. The conductor of L is equal to (15);

we must find x′ ∈ Q× such that:



138 II. Reciprocity Maps — Existence Theorems

x′

15
≡ 1 mod (3),

x′ ≡ 1 mod (5),
x′ > 0 ;

x′ = 6 is suitable, so that a = (2) and:

(
15 , L/Q

(3)

)
=
(

L/Q

(2)

)−1

·

But it is easy to see that (2) is inert in Q(
√

5 ) and in Q(
√
−3 ); the Frobenius

of (2) is thus a generator of Gal(L/Q(
√
−15 )). It follows that 15 is not a local

norm at (3).
Since the product formula is reduced here to:

(
15 , L/Q

(3)

)(
15 , L/Q

(5)

)
= 1,

the symbol at (5) is the same, but the (3)-associate x′ is not suitable anymore

for the direct computation of
(

15 , L/Q

(5)

)
; a (5)-associate is for example 40

which indeed gives the expected result.
Finally, if we omit the condition x′ > 0, for instance for a (3)-associate

we can try:
x′′ = −39,

which yields a = (13); but the Frobenius of (13) being the generator of
Gal(L/Q(

√
−3 )), the result is false !

4.4.3.3 Exercise (the case of cyclotomic fields). Let K = Q and let L =
Q(µm); we assume that m is odd or divisible by 4. Describe the method for

the computation of
(
x , L/Q

(�)

)
, x ∈ Q×, for a prime divisor � of m.

Deduce the values of
(
� , L/Q

(�)

)
and of

(
y , L/Q

(�)

)
for y prime to �.

Characterize the x which are local norms at (�) for L/Q.

Answer. The conductor of L/Q is equal to mZ (see 5.5); set m =: �an and
x =: �by with n and y prime to �. We must find x′ = �by′, with y′ ∈ Q× such
that:

y′ ≡ y mod (�a),
�by′ ≡ 1 mod (n),

y′ > 0,

which can be achieved thanks to suitable extended Euclid relations. The
result is the Artin symbol:
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(
L/Q

(y′)

)−1

corresponding to the inverse of y′ ∈ (Z/mZ)× under the usual canonical
isomorphism Gal(L/Q) � (Z/mZ)× (see 5.5.2).

It follows that
(
� , L/Q

(�)

)
(take b = 1, y = 1) is the lift of

(
Q(µn)/Q

(�)

)
to

Gal(Q(µm)/Q(µ�a)), and that for all y > 0 prime to � (take b = 0),
(
y , L/Q

(�)

)

is the lift of
(

Q(µ�a)/Q

(y)

)−1

to Gal(Q(µm)/Q(µn)). This should be compared

with the results of Exercise 3.4.3.
The rational number x = �by is a local norm at � in L/Q if and only if

y′ ≡ 1 mod (m); but this is equivalent to:

y ≡ 1 mod (�a),
�b ≡ 1 mod (n).

We see that N1 := �Z⊕(1+�aZ�) and N2 := �fZ⊕Z×
� are the norm groups

of Q�(µ�a) and Q�(µn), where f | b is the residue degree of � in Q(µn)/Q

(smallest integer such that �f ≡ 1 mod (n)): use respectively 3.4.3, (i), and
the fact that Q�(µn)/Q� is unramified; the norm group of Q�(µm) is then
N1 ∩N2 = �fZ ⊕ (1 + �aZ�) giving again the result.

Let L/K be a finite extension of number fields and L′/K a subextension
of L/K. Let S be a set of noncomplex places of K, disjoint from T ⊇ R;
we denote by S′ the set of places of L′ above those of S, and put GabS :=
Gal(LabS/K). Let us state the functorial properties of the Artin map on:

C�Sm := IT /PT,m,pos〈S 〉 := IT /PT,m,∆∞ . 〈S0 〉,

with ∆∞ := Plr∞ \S∞, which follow from those of ρSL/K (this is a simple
transcription of Theorem 3.3).

4.5 Theorem (properties of the Artin map). Let m with support contained
in T be a multiple of the norm conductor of L/K (i.e., of Lab/K).
We have the following properties:

(i) We have the exact sequence:

1 −→ c�Sm(NL/K(IL,T )) −−−→ C�Sm
αS
L/K−−−→GabS −→ 1,

where c�Sm is the map IT −→ C�Sm;

(ii) the composition of αSL/K and of the projection GabS−→ Gal(L′abS/K)
is equal to αSL′/K ;

(iii) for each place v ∈ T , set mv := p
v(m)
v ; then the decomposition

group (resp. the inertia group, resp. the higher ramification group with
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upper index i ≥ 1) of v ∈ T in LabS/K is the image under αSL/K of

(PT\{v}, m
mv

,pos . 〈 pv 〉)∩IT 28 (resp. of PT, m
mv

,pos, resp. of PT, m
mv

piv,pos); if v /∈ T

is finite, the decomposition group of v is the image of 〈 pv 〉; if v ∈ Plr∞, the de-
composition group of v for LabS/K is the image under αSL/K of PT,m,Plr∞\{v};

(iv) for all a′ ∈ IL′,T , prime to the norm conductor of L/L′, the image of(
Lab′ S′

/L′

a′

)
in GabS is

(
Lab S/K

NL′/K(a′)

)
; in particular, we have:

Gal(LabS/L′abS) = αSL/K(NL′/K(IL′,T )) ;

(v) for all a ∈ IT , prime to the norm conductor of L/L′, the image

of
(
Lab S/K

a

)
under the transfer map (from GabS to Gal(Lab′ S′

/L′)) is
(
Lab′ S′

/L′

a′

)
, where a′ is obtained by extending a to L′;

(vi) for any Q-isomorphism τ of L in Q, we have for all a ∈ IT :
(

τ LabS/τK

τa

)
= τ ◦

(
LabS/K

a

)
◦ τ−1 on τLabS = (τL)ab τS .

Note. In (iv) and (v), the set T (which contains the set of places of L ramified in

Lab/K) may be inadequate. Indeed, consider the following example (with K = Q):

L = Q(µ4,
4
√

18 ), L′ = Q(µ4), T = {2}, for which Lab′
= L, Lab = L′Q(

√
18 ) =

Q(µ8), L
′ab = L′; the ideal a′ = (3) is prime to T but its Artin Symbol in L/L′ does

not exist; the Artin Symbol of a = (3) exists in Lab/K but not its transfer. However,

this is not annoying since any element (of the above abelian Galois groups) is the

Artin Symbol of a suitable ideal.

4.5.1 Corollary. We have:

c�resm (NL/K(IL,T )) = c�resm (NLab/K(ILab,T )).

4.5.2 Corollary. We have the exact sequences:

1 −→ c�resm (NL/K(IL,T )) −−−→ C�resm

αres
L/K−−−→Gal(Lab/K) −→ 1,

1 −→ c�ordm (NL/K(IL,T )) −−−→ C�ordm

αord
L/K−−−→Gal(Lab nc/K) −→ 1,

where Lab nc/K is the maximal Plr∞-split (i.e., noncomplexified) abelian
subextension of L/K.

4.5.3 Example. In the particular case where the extension Lab/K has con-
ductor f = 1 (i.e., Lab/K is unramified but may be complexified; in other
words Lab ⊆ Hres), we obtain, by taking T = ∅, the exact sequences:

28 Note that
(
PT\{v}, m

mv
,pos . 〈 pv 〉

)
∩ IT =

{
(x) p

−v(x)
v , x ∈ K×

T\{v}, m
mv

,pos

}
.
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1 −→ c�res(NL/K(IL)) −−−→ C�res
αres
L/K−−−→Gal(Lab/K) −→ 1,

1 −→ c�ord(NL/K(IL)) −−−→ C�ord
αord
L/K−−−→Gal(Lab nc/K) −→ 1,

which give a description of Gal(Lab/K) (resp. of Gal(Lab nc/K)) in terms of
usual ideal classes; this occurs only if the base field is not principal in the
restricted sense (resp. in the ordinary sense).

We return to the general setting of Theorem 4.5. For this, let m with
support contained in T be a multiple of the conductor f of L/K, and let
AT be the Artin group of L/K in IT which we can take to be equal to
TT,m = PT,m,posNL/K(IL,T ). For each v ∈ T we set mv := p

v(m)
v .

4.5.4 Corollary (decomposition law of places in Lab/K). We have:

(i) (ramification groups). From the Artin isomorphism IT /AT � Gab, we
obtain, for each place v ∈ T and all i ≥ 1, the isomorphisms: 29

PT, m
mv

piv,posAT /AT � Di
v(L

ab/K) ;

in particular, v ∈ T is unramified in Lab/K if and only if we have:

PT, m
mv

,pos ⊆ AT . 30

Similarly, v is tamely ramified in Lab/K if and only if:

PT, m
mv

pv,pos ⊆ AT .

(ii) (decomposition groups). For v ∈ T , let av be prime to T and such
that av = pv

(
u m

mv

)
, u m

mv

∈ K×
T\{v}, m

mv
,pos (see I.5.1.2); we then have the

isomorphism:

〈 av 〉PT, m
mv

,posAT /AT � Dv(Lab/K) ;

if v ∈ Pl0\T (v is thus unramified), we have:

〈 pv 〉AT /AT � Dv(Lab/K),

and the residue degree fv(Lab/K) of v in Lab/K is equal to the order of the
class of pv in IT /AT .

(iii) If v ∈ Plr∞, then v is noncomplexified in Lab/K if and only if:

PT,m,pos〈 v 〉 := PT,m,Plr∞\{v} ⊆ AT .

29 See 1.1.1 for some notations about higher ramification.
30 Relate this with the characterization of the conductor given in 4.4.1.
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4.5.5 Remark. For the noncomplexification of a real place v, a necessary
and sufficient condition is that for an arbitrary element um,v ∈ K×

T,m,Plr∞\{v}
such that iv(um,v) < 0 then (um,v) ∈ AT .

The case of an infinite place v ∈ Plr∞ can be treated directly if Lab is
known (but it is not anymore a class field theoretic proof): we have fv = 1
(resp. 2) if the extension iw0

(Lab) is real (resp. complex) for an arbitrary
w0|v in Lab (we have iv(K) ⊂ R since v is real).

4.6 Density Theorem (1926). The surjectivity of αL/K can be shown
without using analytic arguments, and one can even prove a little more (see
[e, Ko3, Ch. 2, § 4.4, Th. 2.70]); however, in practice it is better to consider it
through the density theorem which asserts that every class aPR,f,pos, a prime
to f, contains an infinity of prime ideals, with density:

1
|C�resf |

·

Thus, for any σ ∈ Gab, we can have the equality
(
Lab/K

p

)
= σ, for an infinite

number of prime ideals p of K, unramified in Lab/K, with density equal to:

1
[Lab : K]

·

Note. One can find in [d, Lang1, Ch.VIII, § 4] the general Galois statement (the

Čebotarev theorem) which is in fact deduced, after an argument of Deuring (1934),

from the above abelian density theorem; see also [c, Nar1, Ch. 7] and [e, Ko3, Ch. 1,

§ 6.7]. More precisely, this theorem was conjectured by Frobenius (1896), proved by

Čebotarev (1926), with a simplified proof by Schreier (1927); these proofs (using

cyclotomic fields) originate, as we have mentioned in 4.4.2, the fundamental proof

by Artin of his reciprocity law. The Čebotarev theorem is the following. Let L/K

be Galois with Galois group G, and let t ∈ G; then the set of unramified primes p of

K such that t =
(L/K

P

)
, for a P|p in L, has a density equal to 1

[L:K]
|{sts−1, s ∈ G}|

(note that s ◦
(L/K

P

)
◦ s−1 =

(L/K
sP

)
as usual).

In terms of generalized class groups, the existence theorem takes the fol-
lowing form (we do not state once more the four usual properties which
characterize this correspondence; see 3.5, (i) to (iv)).

4.7 Theorem (global existence). Let m be a modulus of K built from T ⊂
Pl0. Then there exists a bijective Galois correspondence between the set of
subgroups Cm of C�resm (or of subgroups Nm of IT containing PT,m,pos) and the
set of abelian extensions M of K, of conductor f dividing m.
The Artin map yields the equivalent two exact sequences:
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1 −→ Cm −−−→ C�resm

αres
M/K−−−→Gal(M/K) −→ 1,

1 −→ Nm −−−→ IT
αres
M/K−−−→Gal(M/K) −→ 1,

with Cm := c�resm (NM/K(IM,T )) and Nm := PT,m,pos NM/K(IM,T ).

The group Cm (resp. Nm) is called the class group (resp. the congruence
group) corresponding to M/K (but it is also a norm group in terms of ideal
classes).

4.7.1 Remarks. (i) The Artin group of the decomposition subfield of v in
M (with Artin group AT ) is given by:

〈 av 〉PT, m
mv

,posAT , 〈 pv 〉AT , 〈 (um,v) 〉AT ,

depending on the situation (by 4.5.4, (ii), (iii), and 4.5.5); that of the inertia
subfield is given by:

PT, m
mv

,posAT .

(ii) The Artin group of the maximal v-tamely ramified subextension is:

PT, m
mv

pv,posAT .

(iii) If we want S-decomposition, we replace Nm := PT,m,pos NM/K(IM,T )
by:

PT,m,pos〈S 〉NM/K(IM,T ) := PT,m,∆∞ . 〈S0 〉NM/K(IM,T ),

where ∆∞ := Plr∞\S∞.

4.7.2 Corollary (norm lifting theorem). Let L/K be a finite extension of
number fields, let M/K be an abelian extension, and let m with support
contained in T be a modulus of K multiple of the conductor of M/K.
Then any modulus m′ of L, with support contained in the set of places of L
above those of T and such that:

NL/K(PL,T,m′,pos) ⊆ PT,m,pos,

is a multiple of the conductor of LM/L.
If C is the subgroup of C�resm corresponding to M , then the subgroup C′ of
C�resL,m′ corresponding to LM over L is given by:

{
c�resL,m′(a′), a′ ∈ IL,T , c�resm (NL/K(a′)) ∈ C

}
=: N−1

L/K(C).

Proof. We check that the given condition is equivalent to:

NL/K(L×U res
L,m′) ⊆ K×U res

m .

It follows by 3.3, (iv), that the image of ρLM/L(U res
L,m′) in Gal(M/K) is:
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ρM/K(NL/K(U res
L,m′)) ⊆ ρM/K(K×U res

m ) = 1 ;

so that U res
L,m′ ⊆ Ker(ρLM/L), which indeed shows that m′ is a multiple of

fLM/L. The rest is then only a translation of global norm lifting Theorem
3.5.3 in terms of class groups.

We will return in 5.7 to the action of the norm in this context of general-
ized class groups.

It is clear that the fields corresponding to Cm = 1 (i.e., Nm = PT,m,pos in
terms of ideal groups, Nm = K×U res

m in terms of idèle groups) play a crucial
role in the correspondence of class field theory; hence we are going to look in
more detail at these ray class fields.

§5 Ray Class Fields — Hilbert Class Fields

Let K be a number field and let m be a modulus of K built on T ⊂ Pl0. The
unique abelian extension of K corresponding to K×U res

m in the idelic version,
in other words to PT,m,pos in the ideal group version, is called the restricted
(or narrow) ray class field modulo m, and is denoted:

K(m) =: K(m)
res ;

thus, for this field we have Gal(K(m)
res/K) � C�resm and:

NK(m)res/K(JK(m)res) ⊂ K×U res
m and NK(m)res/K(IK(m)res,T ) ⊂ PT,m,pos.

For m = 1, we obtain K(1)
res, denoted Hres, and called the restricted

Hilbert class field. Hilbert had very early conjectured the existence of the
absolute (or wide) class field Hord (for us the maximal Plr∞-split subextension
of Hres, called the ordinary class field), and in this context, in which most of
the proofs are due to Furtwängler, had predicted the main principles of class
field theory.

The extension Hres/K (resp. Hord/K) is thus the maximal unramified
(resp. unramified and noncomplexified) abelian extension of K, and we have:

Gal(Hres/K) � C�res, Gal(Hord/K) � C�ord.

a) Elementary Properties — Decomposition Law

We start by giving a number of elementary remarks which we divide in five
statements 5.1.1 to 5.1.5.

5.1 Properties of Ray Class Fields. In the sequel we fix a modulus m
of K, with support T .
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5.1.1 Conductor of a Ray Class Field. The existence of a (norm or
Artin) conductor for any abelian extension of K implies that the conduc-
tor f of K(m)

res divides m (and is possibly not equal to it); we thus have
U res

f ⊆ K×U res
m , hence K×U res

f = K×U res
m , which means (by uniqueness in

the correspondence of class field theory) that K(m)
res = K(f)

res, and is also
equivalent to the condition PT,m,pos = PT,f,pos. In fact, it is simpler to say
that m is the conductor of K(m)

res if and only if, for all v ∈ T , we have
C�resm

pv

�= C�resm , which yields:

(
Eres

m
pv

: Eres
m

)
< ϕ(m)ϕ

(
m

pv

)−1

for all v ∈ T,

using formula I.4.5.1 (recall that ϕ(m)ϕ
(

m
pv

)−1 = qv or qv − 1 depending on
whether v(m) > 1 or v(m) = 1, where qv = |Fv|).

5.1.1.1 Example. For K = Q(
√

3 ) and m = l 11 (a prime ideal above 11),
we find that [K(m)

res : K(1)
res] = 1: this is immediate from the fact that

Eres = 〈 ε 〉 with ε := 2+
√

3, that Eres
l11

= 〈 ε10 〉, and ϕ(l 11) = 10 (see I.4.5.6,
(i)). Here, we have f = 1, in other words K(l 11)

res is equal to the restricted
Hilbert class field which is of degree 2 over K.

5.1.1.2 Exercise. Assume that K is such that Eres is finite (so that K is
equal to Q or to an imaginary quadratic field). Characterize the moduli m
which are not conductors of any abelian extension of K.

Answer. We first note that m is a conductor if and only if K(m)
res has con-

ductor m; hence the following general case (valid without any assumption
on K):

(0) If p2|2 has residue degree equal to 1 in K/Q and if n is any modulus
not divisible by p2, then m := p2 n is not a conductor.

Indeed, we have [K(m)
res : K(n)

res] = 1 since qv − 1 = 1.

The criterion giving the nonconductors m can be written: there exists
pv|m such that:

(1) v(m) = 1 and qv − 1 ≤ uv,
or:

(2) v(m) > 1 and qv ≤ uv,
with uv :=

(
Eres

m
pv

: Eres
m

)
.

For uv = 1, the only possible solution corresponds to (1) and is relative
to case (0); this is the case for the field Q for which the nonconductors are
the 2nZ with n odd. Thus, we only need to consider the case uv > 1.

Assume now that K is an imaginary quadratic field different from Q(µ4)
and Q(µ3). Since uv = 2, this is equivalent to E m

pv
= 〈−1 〉, Em = 1, or to
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m
pv
|2, m � 2. Case (1) yields the following moduli, in addition to those given

in case (0):

p3, p′3, 2p3, 2p′3, if 3 is split and 2 is not split,
p3, 2p3, if 3 is ramified and 2 is not split.

Similarly, case (2) yields the additional moduli:

p2
2, p′22 , if 2 is split,

p3
2, if 2 is ramified.

For K = Q(µ4) or Q(µ3), we proceed in the same way and we obtain the
following conductors (in addition to those coming from case (0) for Q(µ4)):

p2
2, p3

2, p5, p′5, for K = Q(µ4),
(2), p3, p2

3, 2p3, p7, p′7, for K = Q(µ3).

See also in [j, Coh2, Ch. 3, § 5.2] an original algorithmic expression for conduc-
tors, discriminants and signatures of abelian extensions of a number field K.

5.1.2 Artin Conductor of an Abelian Field. More generally, by
uniqueness in the correspondence of class field theory and by definition of
the norm conductor for an abelian extension M of K, the smallest modulus
n such that:

M ⊆ K(n)
res

is again the conductor of M/K, which gives a third definition of the conductor
widely used in the case of abelian extensions of Q (see 5.5, 5.5.1), and which
can be expressed as follows. Let m be a modulus with support T such that
M ⊆ K(m)

res (which in terms of Artin groups is equivalent to PT,m,pos ⊆
AT := AM/K,T ); then m is the conductor of M if and only if for each v ∈ T ,
AT does not contain PT, m

pv
,pos.

5.1.3 S-Decomposition. For any finite set S of noncomplex places of
K which is disjoint from T , the maximal S-split subextension K(m)

S of
K(m)

res corresponds to K×〈S 〉U res
m = K×US

m (in the idelic version), to
PT,m,pos〈S 〉 := PT,m,Plr∞\S∞ . 〈S0 〉 (in the ideal group version), and hence
we have:

Gal(K(m)
S/K) � C�Sm and Gal(K(m)

res/K(m)
S) � 〈 c�resm (S) 〉,

in the same sense as in I.4.4.1, (ii).
When S = Plr∞, we obtain the field K(m)

Plr∞ =: K(m)
ord which is the ray

class field modulo m in the ordinary sense, in other words the maximal non-
complexified subextension of K(m)

res; it corresponds respectively to K×Uord
m

or to PT,m, and we have:
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Gal(K(m)
ord/K) � C�ordm ;

in certain contexts, we can also denote it by K(m)
nc.

As in 5.1.1, the conductor f of K(m)
S is a divisor of m which can be

characterized in an analogous manner; we simply replace Eres
m
pv

and Eres
m by

ES
m
pv

and ES
m.

When m = 1, we denote by HS the field K(1)
S ; it is the maximal S-split

subextension of the restricted Hilbert class field Hres. We will call it the
S-split Hilbert class field.

5.1.4 Norm Groups. We have the following general diagram in which, be-
sides each field M , we have indicated the ideal group corresponding to it
by class field theory, then the idèle group, and for which the Artin (or reci-
procity) map induces the isomorphism Gal(M/K) � IT /N (or J/N):

K(m)
resHresK(m)

SHres

K(m)
SHS

K

PT,pos

K×U res

PT,pos〈S 〉
K×US

IT
J

PT,m,pos

K×U res
m

PT,m,pos〈S 〉
K×US

m

Recall that PT,m,pos〈S 〉 := PT,m,Plr∞\S∞ . 〈S0 〉. Recall also the four exact
sequences induced by the reciprocity or Artin map, in the particular case of
ray class fields:

1 −→ K×U res
m −−−→ J

ρres−−−→Gal(K(m)
res/K) −→ 1,

1 −→ K×US
m −−−→ J

ρS−−−→Gal(K(m)
S/K) −→ 1,

1 −→ PT,m,pos −−−→ IT
αres

−−−→Gal(K(m)
res/K) −→ 1,

1 −→ PT,m,pos〈S 〉 −−−→ IT
αS−−−→Gal(K(m)

S/K) −→ 1.

5.1.5 Intersection and Compositum of Ray Class Fields. As already
remarked, for m1, m2 with supports contained in T , we have:

PT,m1,pos PT,m2,pos = PT,g.c.d.(m1,m2),pos,

or in (clearer) idelic terms:
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K×U res
m1

K×U res
m2

= K×U res
g.c.d.(m1,m2)

,

showing, by the usual Galois correspondence, that we always have:

K(m1)
res ∩K(m2)

res = K(g.c.d.(m1,m2))
res,

which is still true with S-splitting. On the contrary, the trivial inclusion:

K(m1)
res K(m2)

res ⊆ K(l.c.m.(m1,m2))
res

may not be an equality, as is shown by the following example.

5.1.5.1 Example. Let K = Q(
√

2 ), m1 = (4), m2 = (3). Then we have
C�res = C�ord = 1, E =: Eres = 〈 ε 〉 with ε = 3 + 2

√
2, and in particular

ε2 = 1 + 16 + 12
√

2, which implies:

Em1 = E2 , Em2 = E4 , Em1m2 = E4,

and yields (see I.4.5.6, (i)):

[K(m1)
res : K] = 4, [K(m2)

res : K] = 2, [K(m1m2)
res : K] = 16,

thus showing that [K(m1m2)
res : K(m1)

resK(m2)
res] = 2.

5.1.5.2 Exercise. Check that for arbitrary moduli m1 and m2, the general
formula is (denoting to simplify notations by ∧ and ∨ the g.c.d. and l.c.m.
operators):

[K(m1∨m2)
res : K(m1)

resK(m2)
res] =

(Eres
m1∧m2

: Eres
m1

)
(Eres

m2
: Eres

m1∨m2
)

=
(Eres

m1∧m2
: Eres

m2
)

(Eres
m1

: Eres
m1∨m2

)
·

It is clear that there exists an identical formula in terms of S-split ray
class fields and S-units.

It is useful to relate the above fact 5.1.5.2 with Proposition 4.1.1. In par-
ticular, we see that if m1 and m2 are the conductors of K(m1)

res and K(m2)
res,

then m1 ∨m2 is the conductor of their compositum.

5.2 Decomposition Law of Places in a Ray Class Field. The decom-
position law of places in K(m)

res/K is especially simple and typical of class
field theory since it relates this information to questions about ideal classes
(see 4.5.4, and compare also with the idelic formulation in 3.3.5); recall that
here T is the support of m:
• If v is a finite place not belonging to T (hence unramified), then its

residue degree in K(m)
res/K is equal to the order of the class of pv in C�resm =

IT /PT,m,pos; it is totally split if and only if pv ∈ PT,m,pos.
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• If v ∈ T is unramified, this means that K(m)
res = K( m

mv
)
res, where

mv := p
v(m)
v , and the preceding statement is still valid if we perform the com-

putations in C�resm
mv

= IT\{v}/PT\{v}, m
mv

,pos � C�resm , the place v being totally
split if and only if pv ∈ PT\{v}, m

mv
,pos.

In particular (case m = 1) the residue degree of a finite place v in Hres/K
is equal to the order of the restricted class (i.e., in C�res) of pv; its residue
degree in Hord/K is equal to the order of the ordinary class (i.e., in C�ord) of
pv. Hence, the prime ideals which are totally split in Hres/K (resp. Hord/K)
are those which are principal in the restricted (resp. ordinary) sense (see
below the example concerning Q(

√
−23 )).

• If v is a real place at infinity, then v is totally split in K(m)
res/K if and

only if PT,m,Plr∞\{v} ⊆ PT,m,pos. Thus this occurs if and only if there exists
εm ∈ Eord

m such that:

iu(εm) > 0, for each real infinite place u �= v,

iv(εm) < 0

(see I.4.5.8, second part of (i) for S = ∅ and δ∞ = {v}).
• If v is a ramified finite place (i.e., dividing the conductor), we simply

perform the computations in the inertia field of v which is given explicitly in
Exercise 5.2.2; since this field is the ray class field K( m

mv
)
res, this reduces the

computation of the residue degree of v to the preceding situation.

5.2.1 Example. Let K = Q(
√
−23 ) and H = K(θ0), where Irr(θ0,K) =

X3 −X − 1. The K-conjugates of θ0 are:

θ0, θ1 := 1√
−23

(
3 θ2

0 −
9 +
√
−23

2
θ0 − 2

)
,

θ2 := 1√
−23

(
− 3 θ2

0 + 9−
√
−23

2
θ0 + 2

)
.

We know from I.6.3.3 that H is the Hilbert class field of K and, by 3.6.1,
that Gal(H/Q) is the dihedral group of order 6. We will illustrate the fact

that the Frobenius
(
H/K

p

)
of a prime ideal p depends only on its class in the

class group of K (of order 3). For this, we select the generator σ of Gal(H/K)
such that σ(θ0) = θ1.

It is easily checked that, for p �= (
√
−23 ),

(
H/K

p

)
is characterized by the

congruence: (
H/K

p

)
θ0 ≡ θNp

0 mod p,

so that
(
H/K

p

)
= 1, σ, σ2, according as θNp

0 ≡ θ0, θ1, θ2 mod p. If p is inert

in K/Q, it is trivial that
(
H/K

p

)
= 1 since H/Q is not cyclic, and we always

have θNp
0 ≡ θ0 mod p; but such an ideal is principal for trivial reasons.
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Suppose now that p is split in K/Q. If p′ is the conjugate of p, the Galois

operation 3.6.1 gives
(
H/K

p′

)
=
(
H/K

p

)−1

(which is in accordance with the

principality of pp′).
For p2 =

(
2, 1+

√−23
2

)
we find θ2

0 ≡ θ1 mod p2 since 9+
√−23
2 ∈ p2, and

for p3 =
(
3, 1+

√−23
2

)
we find θ3

0 ≡ θ2 mod p3 using the congruence
√
−23 ≡

−1 mod p3 and the relation θ3
0 = θ0+1. Thus

(
H/K

p2

)
= σ and

(
H/K

p3

)
= σ2.

In other words, the Artin symbol
(
H/K

p2p3

)
is trivial, and indeed, we have

p2p3 =
(

1+
√−23
2

)
, a principal ideal.

With p13 = (13, 4+
√
−23 ) we find θ13

0 ≡ θ1 mod p13, so that
(
H/K

p13

)
= σ.

We must verify that p2p
′
13 is principal, which is indeed the case since(

9+
√−23
2

)
= p2p

′
13 (and not p2p13 since

√
−23 ≡ −4 mod p13 or, equiva-

lently,
√
−23 ≡ 4 mod p′13).

For all the split prime ideals p with Np < 59 we find
(
H/K

p

)
∈ {σ, σ2}

and we verify that p is always in the “good” nontrivial class.
For the prime number 59, we find θ59

0 ≡ θ0 mod p59. This means that(
H/K

p59

)
=
(
H/K

p′
59

)
= 1 and that the prime ideals above 59 are principal (we

have N(6 +
√
−23 ) = 59 which proves the claim). Note that 59 is the least

example giving nontrivial principal ideals.
This gives a good idea of a reciprocity law since the splitting of the poly-

nomial f = X3−X−1 (into one (f3), two (f1f
′
2), or three (f1f

′
1f

′′
1 ) irreducible

factors in Qp[X]) has been characterized by means of ray classes (i.e., multi-
plicative congruences). More precisely:
•

(
p
23

)
= −1 implies f = f1f

′
2 (indeed, this is equivalent to

(−23
p

)
= −1

(first reciprocity !), and therefore p = (p) is inert in K/Q and split in H/K);
•

(
p
23

)
= +1 and p|p principal imply f = f1f

′
1f

′′
1 (p is split in K/Q and

in H/K);
•

(
p
23

)
= +1 and p|p nonprincipal imply f = f3 (p is split in K/Q and

inert in H/K).
One verifies that the first case is equivalent to:

p ∈ jK/Q
((ai)PQ,(23),pos), ai ∈ {5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22},

and that the last one is equivalent to:

p ∈ p2PK ∪ p2
2PK .

The problem has been “linearized” in an obvious way.
In terms of quadratic forms, we check that the norm form x2 +xy+6y2 =

NK/Q

(
x + y 1+

√−23
2

)
, x, y ∈ Z, represents p �= 23 if and only if X3 −X − 1

has three roots in Qp (indeed, this is equivalent to p split and principal).
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The power of class field theory comes from the fact that it is impossible to
deduce the above rules from elementary properties of number fields and/or
polynomials. See [Wy] for other examples and comments.

5.2.2 Exercise (study of ramification in a ray class field). Let K be a
number field together with sets of places T and S.

(i) Let m be a modulus of K with support T , and let v ∈ T . Show that
if we set mv := p

v(m)
v , then K( m

mv
)
S is the inertia field of v in the extension

K(m)
S/K.

Deduce a formula for the ramification index of v in K(m)
S/K.

Generalize by giving a description of Gal(K(m)
S/K(n)

S∪δ∞), where δ∞ ⊆
Plr∞\S∞, and where n =

∏
v∈t

mv for t ⊆ T .

Compute also the residue degree of v in K(m)
S/K.

(ii) Show that the maximal T -tamely ramified abelian extension (i.e.,
T -ramified and such that for every place v ∈ T , the ramification index of v in
this extension is prime to the residue characteristic of v) is equal to K(mta)

res

for mta :=
∏
v∈T

pv.

Answer. (i) We start with the case S = ∅, and give several approaches.
By the conductor theorem, v is unramified in K( m

mv
)
res, hence the inertia

field M of v in K(m)
res/K contains K( m

mv
)
res; since M/K is unramified at v,

its conductor f is not divisible by pv, and since M ⊆ K(m)
res, we have f |m

(see 5.1.2) hence f | m
mv

, and we have M ⊆ K(f)
res ⊆ K( m

mv
)
res.

We can base a proof on the characterization of Iv(K(m)
res/K) given in

4.5.4, (i), or 4.7.1, so that in this case the inertia field corresponds to the
group PT, m

mv
,pos.

The inertia group of v in K(m)
S/K is Gal(K(m)

S/K( m
mv

)
S); indeed, use

1.2.1 and the fact that:

Gal(K(m)
res/K(m)

S) and Gal(K( m
mv

)
res/K( m

mv
)
S)

are generated by the decomposition groups of the v ∈ S in the corresponding
extensions.

In idelic terms, the inertia field of v in K(m)
S/K corresponds to K×US

mUv
by 3.3, (iii), or 3.5.1, (ii); but clearly we have US

mUv = US
m

mv

.
Formula I.4.5.1, for n = m

mv
(in which case ϕ(m) = ϕ(n)ϕ(mv) since n and

mv are coprime) and δ∞ = ∅, immediately yields:

ev(K(m)
S/K) =

ϕ(mv)(
ES

m
mv

: ES
m

) ,

for any v ∈ T , which, for S = ∅ yields:

ev(K(m)
res/K) =

ϕ(mv)(
Eres

m
mv

: Eres
m

) ·
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The same arguments show that for t ⊆ T , n =
∏
v∈t

mv, and δ∞ ⊆ Plr∞\S∞,

the ray class field K(n)
S∪δ∞ is the subfield of K(m)

S fixed under the subgroup
generated by the inertia groups of the places of T \t and the decomposition
groups of the places of δ∞.

If v ∈ Plr∞, by I.4.5.1 for n = m and δ∞ = {v}, we also obtain:

fv(K(m)
S/K) =

2(
E
S∪{v}
m : ES

m

) =
2∣∣sgnv

(
E
S∪{v}
m

)∣∣ ·

To obtain a formula for the residue degree of a finite place v not belonging
to T ∪ S, we use directly 3.3.5 by computing the image of K×

v in J/K×US
m,

so that we obtain:

fv(K(m)
S/K) =

(
K×
v : iv

(
E
S∪{v}
m

)
Uv

)
,

but it is still possible to perform a direct computation using I.4.5.1, from
which we recover (see 5.2):

fv(K(m)
S/K) =

|C�Sm|∣∣C�S∪{v}
m

∣∣ = |〈 c�Sm(pv) 〉|.

The idelic formulation is more convenient if the S ∪{v}-units are known, the
other one relies on a computation of generalized ideal classes (here the class
of pv); as always, the correspondence is justified by I.5.1.

See also III.1.1.6, (ii) for a slightly more general context.
(ii) The formula for ev immediately shows that K(mta)

res is T -tamely ram-
ified. Let L ⊇ K(mta)

res be the maximal T -tamely ramified abelian extension
of K. Let M be a finite extension of K(mta)

res in L and let m ∈ 〈T 〉
N

be a
multiple of its conductor, with support T (mta is always the tame part of m);
if N corresponds to M , we have K×U res

m ⊆ N . Since by 3.5.1, (ii) the idèle
group corresponding to M is also equal to

∏
v

U1
v . N,

we have
∏
v

U1
v .K×U res

m ⊆
∏
v

U1
v . N = N , giving K×U res

mta
⊆ N , and showing

that we have M ⊆ K(mta)
res, which does not depend on the choice of m. This

shows that L =
⋃
M

M is finite and equal to the ray class field K(mta)
res (the

finiteness of L/K comes from 1.3.3.1 and of the finiteness of Hres/K, which
also implies that of ray class fields). In the same way, K(mta)

S is the maximal
T -tamely ramified S-split abelian extension of K.

b) Rank Formulas — The Reflection Theorem

When we take limits on m, we must use slightly different notations. Let K
be a number field together with sets of places T and S, and let 〈T 〉

N
be the
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monoid generated by the pv for v ∈ T . By reference to the notion of Hilbert
class field when we use sets T and S which are not necessarily empty, we put
the following.

5.3 Notations. (i) From 5.1.2, we set:

HS
T :=

⋃
m∈〈T 〉

N

K(m)
S ,

which is the maximal T -ramified S-split abelian extension of K. We also use
the notation HS0 res

T (resp. HS0 ord
T ) when S∞ = ∅ (resp. S∞ = Plr∞). 31

(ii) From 5.2.2, (ii), we define:

HS
ta :=

⋃
mta

K(mta)
S ,

which is the maximal tamely ramified S-split abelian extension of K (the
tame moduli mta have an arbitrary support, are prime to the fixed set S, but
are squarefree).

For a fixed finite T , the groups:

Gal(HS
T /K) � lim←−

m∈〈T 〉
N

C�Sm =: C�ST ,

will be studied in great detail in Chapter III. Meanwhile, we can prove a num-
ber of properties on the p-ranks of these groups which had been mentioned
at the end of Section 4 of Chapter I.

5.4 Rank Formulas. We start, in the following exercise, with the simplest
situation (i.e., without any Galois structure) which is an essential prelude to
the reflection theorem.

5.4.1 Exercise (Šafarevič’s formula (1964), reflection formula (1998)). The
notations are those of I.4.5, I.4.6. For finite and disjoint sets T, S = S0∪S∞,
and for m ∈ 〈T 〉

N
, ∆∞ := Plr∞\S∞, we set:

Y S
T,m := {α ∈ K×p

T K×
T,m,∆∞ , (α) = apaS0

, a ∈ IT , aS0
∈ 〈S0 〉},

V S
T := {α ∈ K×p

T K×
T,∆∞ , (α) = apaS0

,

a ∈ IT , aS0
∈ 〈S0 〉, iv(α) ∈ K×p

v ∀v ∈ T},

δv := 1 or 0 according as Kv contains µp or not, δ := 1 or 0 according as K
contains µp or not.

(i) Prove the formula:
31 In these definitions, T is not assumed finite. When T = ∅, we recover the S-split

Hilbert class field HS .
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rkp(Y S0 ord
T /K×p

T ) = rkp(C�S0 ord) + δ + |S0|+ r1 + r2 − 1.

(ii) Show that for any sufficiently large modulus m ∈ 〈T 〉
N
, we have

Y S
T,m = V S

T , and deduce Šafarevič’s rank formula:

rkp(C�ST ) = rkp(V S
T /K×p

T ) +
∑
v∈Tp

[Kv : Qp]

+
∑
v∈T

δv − δ − |S0|+ 1− r1 − r2 + δ2,p|∆∞|,

where δ2,p is the Kronecker symbol equal to 1 if p = 2 and to 0 otherwise.

(iii) We now assume that µp ⊂ K and Tp ∪Sp = Plp. Show that V S
T /K×p

T

is the radical of the maximal elementary S0-ramified T ∪ ∆∞-split abelian
p-extension denoted HT∪∆∞

S0
[p], and deduce the reflection formula:

rkp(C�S0∪S∞
T )− rkp(C�T∪∆∞

S0
) = |T |− |S0|+

∑
v∈Tp

[Kv : Qp]−r1−r2 +δ2,p|∆∞|.

Find the corresponding formula when one removes the assumption
Tp ∪ Sp = Plp.

(iv) (asked in [j, Coh2, Ch. 3, § 6, Exer. 16]). Let K be a number field such
that (C�ord(4) )2 = 1; show that K is totally real.

Answer. (i) If α ∈ Y S0 ord
T (m = 1, ∆∞ = ∅), we have α ∈ K×

T and (α) =:
apaS0

; if we send α to the class of a in C�S0 ord, we obtain the exact sequence:

1 −→ ES0 ord/(ES0 ord)p −−−→ Y S0 ord
T /K×p

T −−−→ pC�S0 ord −→ 1,

where pC�S0 ord is the subgroup of C�S0 ord formed by classes killed by p. By
the Dirichlet Theorem I.3.7.1, the rank formula follows.

(ii) Let α ∈ K×
T ; it is clear, by using the chinese remainder theorem, that if

iv(α) ∈ K×p
v for each v ∈ T , we have α ∈ K×p

T K×
T,m for all m with support T ;

to have equivalence, it is enough to choose m such that iT (K×
T,m) ⊂

⊕
v∈T

(Uv)p

and we then have Y S
T,m = V S

T .

Note. If µp ⊂ K, by I.6.3.4, (iii), we can choose m =
∏

v∈T\Tp
pv

∏
v∈Tp

ppev+1
v .

Let HS
T [p] be the maximal elementary p-subextension of HS

T (i.e., fixed
under (C�ST )p); by I.4.5.1, HS

T [p]/K is finite. Assume that m ∈ 〈T 〉
N

is such
that Y S

T,m = V S
T and is a multiple of the conductor of HS

T [p], so that rkp(C�ST ) =
rkp(C�Sm). By I.4.5, (ii) applied to n = 1 and δ∞ = ∆∞, we obtain:

rkp(C�ST ) = rkp(C�S0 ord) +
∑
v∈T

rkp(Uv) + δ2,p|∆∞|

−rkp(Y S0 ord
T /K×p

T ) + rkp(V S
T /K×p

T )

= rkp(V S
T /K×p

T ) +
∑
v∈T

rkp(Uv)− |S0| − r1 − r2 + 1− δ + δ2,p|∆∞|
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(using (i)). Since rkp(Uv) = δv (resp. δv + [Kv : Qp]) if v � p (resp. v|p) by
I.3.1.1, we obtain Šafarevič’s formula with decomposition.

(iii) We have α ∈ V S
T if and only if iv(α) ∈ K×p

v for each v ∈ T∪∆∞ and if
(α) = apaS0

; this gives the T ∪∆∞-splitting and the Plp∪S0-ramification (see
I.6.3); the equality Plp = Tp ∪ Sp implies the S0-ramification. The converse
is trivial after noting that if αK× p is an element of the radical of HT∪∆∞

S0
[p],

we may assume that α is prime to T . The rank formula of (ii) then gives the
result.

More generally, set ∆p := Plp\(Tp ∪ Sp) and consider:

m∗ :=
∏

v∈S0\Sp
pv

∏
v∈Sp

ppev+1
v

∏
v∈∆p

ppevv ,

where, for v|p, ev denotes the ramification index of v in K/Q(µp). Let us check

that K
(
p

√
V S
T

)
is the maximal elementary p-subextension of K(m∗)

T∪∆∞ . If

α ∈ V S
T , the v-conductor computations made in 1.6.3 show that if v is tame

(i.e., if v ∈ S0 \Sp) the v-conductor of K( p
√

α )/K is fv = (1) or pv, and that
otherwise (i.e., if v ∈ Plp\Tp = Sp ∪∆p) then fv = ppev+1−r

v , where r = 0 is
equivalent to v(α) �≡ 0 mod (p); we thus obtain the inclusion:

K
(
p

√
V S
T

)
⊆ K(m∗)

T∪∆∞ .

If K( p
√

α ) ⊆ K(m∗)
T∪∆∞ , analogous considerations show that α ∈ V S

T . We
thus obtain (using µp ⊂ K) the formula that we have already mentioned:

rkp(C�S0∪S∞
T )− rkp(C�T∪∆∞

m∗ ) =

|T | − |S0|+
∑
v∈Tp

[Kv : Qp]− r1 − r2 + δ2,p|∆∞|.

(iv) For p = 2, T = S = ∅, we have m∗ = (4) and:

rk2(C�res)− rk2(C�ord(4) ) = −r2 ;

under the assumption of the question, we thus obtain the stronger result:

r2 = 0 and rk2(C�res) = 0.

The formulas of (iii) are only a particular case of the reflection theorem
whose statement we are going to give below. However, they already show the
symmetry which, in the Kummer case, roughly speaking exchanges ramifica-
tion and decomposition, except that for p = 2 and the places at infinity, we
obtain for instance (assuming that T2 ∪ S2 = Pl2):

rk2(C�S0 res
T )− rk2(C�T ord

S0
) = |T | − |S0|+

∑
v∈T2

[Kv : Q2]− r2.
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5.4.2 Reflection Principle. The most general statement assumes the
following definitions and facts, borrowed from the language of group repre-
sentations (use [Se4] and in particular Paragraph 12 for rationality questions;
see also 5.4.9.1 for some complements), and which we only recall briefly:
• Let g be a finite group of order prime to p. We denote by Xp(g) the set

of Fp-irreducible characters of g, and for χ ∈ Xp(g) we set:

eχ := ψ(1)

|g|
∑
s∈g

χ(s−1) s,

where ψ is an absolutely irreducible character such that χ is equal to the sum
of the distinct Fp-conjugates of ψ (which we denote by ψ|χ): an Fp-conjugate
of ψ is of the form ψp

i

, i ≥ 0, where ψp
i

(s) := ψ(sp
i

) for all s ∈ g. We
thus obtain a fundamental system of central orthogonal idempotents of the
algebra Fp[g], thanks to the assumption that p � |g|.

We denote by Vχ the Fp-irreducible representation with character χ. If g
is commutative, ψ(1) = 1, Vχ is an Fp-vector space of dimension equal to the
order of p modulo the order of ψ.
• For any Z[g] or Zp[g]-module M of finite type and any χ ∈ Xp(g) we

set:
Mχ := (M ⊗ Fp)eχ � (M/Mp)eχ ,

and we call χ-rank of M the integer r := rkχ(M) such that:

Mχ � r Vχ :=
r⊕
i=1

Vχ.

Therefore, we have rkp(Mχ) = χ(1)rkχ(M).
• Assume that g, of order prime to p, is an automorphism group of K

(K containing µp), and let k := Kg. If T and S are sets of places of K stable
under g, we denote by Tk and Sk the sets of places of k below those of T
and S. Finally, for any place u of k we denote by abuse of notation by du
the decomposition group, in K/k, of a place v of K above u (thus du is only
defined up to conjugation).
• Let ω be the Teichmüller character, i.e., the character defined by the

action of g on µp (if s ∈ g, ω(s) is the unique element a ∈ F×
p such that

s(ζ) = ζa for all ζ ∈ µp). If χ ∈ Xp(g) we set:
χ∗ := ωχ−1,

where χ−1(s) := χ(s−1) for all s ∈ g; we still have χ∗ ∈ Xp(g) and this defines
the fundamental involution attached to the reflection principle (the mirror
involution).
• We then define for all χ ∈ Xp(g) (with ψ|χ) (see 5.4.9.1):

ρχ(T, S) := ψ(1)r2(k) +
∑

u∈Plrk,∞
ρu,χ +

∑
u∈Tk

ρu,χ + δω,χ − δ1,χ

−
∑

u∈S0,k

ρu,χ∗ − ψ(1)
∑

u∈Sp,k∪∆p,k
[ku : Qp]− δ2,pψ(1)|S∞,k|
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=
∑
u∈Tk

ρu,χ + ψ(1)
∑

u∈Tp,k
[ku : Qp]−

∑
u∈S0,k

ρu,χ∗ + δω,χ − δ1,χ

− ψ(1)r2(k)−
∑

u∈Plrk,∞
ρu,χ∗ + δ2,pψ(1)|∆∞,k|,

where the δa,b denote Kronecker symbols and where:

ρu,χ :=
1
|du|

∑
t∈du

ψ(t), ρu,χ∗ :=
1
|du|

∑
t∈du

ωψ−1(t),

∆p,k := Plk,p\(Tp,k ∪ Sp,k), ∆∞,k := Plrnc
k,∞\S∞,k,

where Plrnc
k,∞ is the set of real places of k noncomplexified in K. Be careful

to distinguish between Plrk,∞ and Plr∞,k; in particular, we have the equality
|S∞,k|+ |∆∞,k| = r1(k)− rc

1(k), where rc
1(k) is the number of real places of

k which are complexified in K.

5.4.3 Remark. It is now important to comment on the relationship between
Kummer theory and class field theory which will give the reflection theorem
with characters. We use the notations of (Ch. I; § 6), where the symbol ∗ also
denotes the dual of a group. Let L/K be a p-elementary Kummer extension
of radical W and Galois group A. Then we have the “Spiegelungsrelation”,
which comes directly from I.6.2, in view of the g-module action on a dual,
and which can be stated as follows for any χ ∈ Xp(g):

Wχ∗ � (A∗)χ∗ := Hom(A,µp)χ∗ � (Aχ)∗ 32

(canonical isomorphisms of g-modules), and yields the relation:

rkχ∗(W ) = rkχ(A).

More precisely, we remark that if Lχ is the subfield of L with radical Wχ∗ ,
then Gal(L/Lχ) =

⊕
χ′ �=χ

Aχ′ yielding Gal(Lχ/K) � Aχ: from I.6.2.1, we

check that W⊥
χ∗ :=

{
a ∈ A, λ

(
Wχ∗ , a

)
= 1

}
=

⊕
χ′ �=χ

Aχ′ since λ(αeχ∗ , a) =

λ(α, aeχ) = 1 for all α ∈W if and only if aeχ = 1.

We suppose that K is given together with sets of places T and S; we do not
assume that Plp = Tp∪Sp. This leads to the context of Exercise 5.4.1, (iii), for
which we put m∗ :=

∏
v∈S0\Sp

pv
∏
v∈Sp

ppev+1
v

∏
v∈∆p

ppevv , with ∆p := Plp\(Tp∪Sp).

The reflection theorem then consists in the application of the above to the
extension L := K(m∗)

T∪∆∞ [p] for which the χ∗-component Wχ∗ of the radical
W = V S

T /K×p
T will be computed using the χ∗-component of the class group

C�ST (see below), the χ-component of Aχ then being nothing else than the
χ-component of C�T∪∆∞

m∗ under the isomorphism of class field theory.

5.4.4 Proposition. Let K be any number field together with sets of places
T and S, and p a prime. We have the exact sequences of Fp-vector spaces:

32 Use I.6.1.2 to check that heχ∗ (a) = h(aeχ) for all h ∈ A∗, a ∈ A; then associate
with heχ∗ the restriction of h to Aχ.
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1 −→ ES0 ord/(ES0 ord)p −−−→ Y S0 ord
T /K×p

T −−−→ pC�S0 ord −→ 1,

1 −→ Y S0 ord
T /V S

T −−−→
⊕
v∈T

Uv/(Uv)p
⊕

v∈∆∞
({±1})p −−−→ X −→ 1,

where X := Ker
(
C�ST /(C�ST )p −−−→ C�S0 ord/(C�S0 ord)p

)
.

Proof. The first exact sequence is given in the proof of 5.4.1, (i). For the
second one, see the proof of I.4.5, (ii) with n = 1, δ∞ = ∆∞, and with
m =

∏
v∈T

pmvv sufficiently large in order to have Umv
v ⊆ (Uv)p for all v ∈ T ,

C�Sm/(C�Sm)p = C�ST /(C�ST )p, and Y S
T,m = V S

T (see 5.4.1, (ii)).

Suppose now that K is given together with a group of automorphisms
g of order prime to p. We do not assume that µp ⊂ K. Then, the above
exact sequences give immediately a generalization of Šafarevič’s formula, with
characters (noting that pC�S0 ord and C�S0 ord/(C�S0 ord)p have same character):

rkχ∗(C�ST )− rkχ∗(V S
T ) = rkχ∗

( ⊕
v∈T

Uv
⊕

v∈∆∞
{±1}

)
− rkχ∗(ES0 ord).

The right hand side is a straightforward computation (see 5.4.9.1) using
representation theory in the context of 2.3 and the S-unit Dirichlet–Herbrand
Theorem I.3.7 (see in 5.4.7 the value of this expression which is a little more
complicated than ρχ(T, S) given above corresponding to the case µp ⊂ K).
If µp ⊂ K, we can use the Kummer interpretation rkχ∗(W ) = rkχ(A) of the
Remark 5.4.3, with W = V S

T /K×p
T and A = C�T∪∆∞

m∗ , giving the reflection
theorem for which we recall the main notations.

Notations. For a number field K containing µp, given together with sets of
places T and S = S0 ∪ S∞, we put:

Tp := T ∩ Plp, Sp := S ∩ Plp, ∆p := Plp\(Tp ∪ Sp), ∆∞ := Plr∞\S∞,

T ∗ := T ∪∆∞, S∗ := S0 ∪∆p, m∗ :=
∏

v∈S0\Sp
pv

∏
v∈Sp

ppev+1
v

∏
v∈∆p

ppevv ,

where, for v|p, ev denotes the ramification index of v in K/Q(µp). We use
also the notations given in Paragraph 5.4.2.

5.4.5 Theorem (of T -S-reflection [Gr10, Ch. I, Th. 5.18] (1998)). Let K
be a number field containing the group µp of pth roots of unity, and g an
automorphism group of K of order prime to p. We assume that T and S are
g-invariant sets.
Then for all χ ∈ Xp(g), we have:

rkχ∗(C�ST )− rkχ(C�T∗
m∗) = ρχ(T, S),

and if, in addition, ∆p = ∅, then C�T∗
m∗ = C�T∗

S∗ and we obtain:

rkχ∗(C�S0∪S∞
T )− rkχ(C�T∪∆∞

S0
) = ρχ(T, S).
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When ∆p = ∅, reflection is perfect in that the operation sending (T, S)
to (S∗, T ∗) is an involution. When ∆p �= ∅, we only have the inequality
rkχ(C�T∗

m∗) ≤ rkχ(C�T∗
S∗ ) since m∗ is not necessarily equal to the conductor of

HT∗
S∗ [p] (the maximal p-elementary subextension of HT∗

S∗ ). A simple sufficient
condition for equality is that ρu,χ∗ = 0 for all u ∈ ∆p,k.

Similarly, using the inequality:

rkχ(C�T∗
m∗) ≥ rkχ(C�T∗

S0
),

which easily yields, using the involution (T, S, χ) �→ (S0, T ∪ ∆∞, χ∗) for
the upper bound:

ρχ(T, S) ≤ rkχ∗(C�ST )− rkχ(C�T∪∆∞
S0

) ≤ −ρχ∗(S0, T ∪∆∞),

we obtain classical inequalities (optimal for p �= 2) which we indicate in the
case T = S0 = ∅ (for the proof of the specific result when p = 2, see 5.4.9).

5.4.6 Corollary (classical “Spiegelungssätze”: k = Q). Let K be a Galois
extension of Q, containing µp, of degree not divisible by p, and let χ ∈
Xp(Gal(K/Q)). For χ �= 1, ω, we have the following inequalities:

(i) Case p �= 2 (Leopoldt’s “Spiegelungssatz” [Le2] (1958)):

ψ(c)− ψ(1)

2
≤ rkχ∗(C�)− rkχ(C�) ≤ ψ(c) + ψ(1)

2
,

where c is the restriction to K of complex conjugation and ψ|χ; if in addition
K/Q is abelian and χ is even (i.e., ψ(c) = 1), we have:

0 ≤ rkχ∗(C�)− rkχ(C�) ≤ 1.

(ii) Case p = 2 (Armitage–Fröhlich–Serre, Taylor, Oriat [Or1] (1976)):

0 ≤ rkχ−1(C�res)− rkχ−1(C�ord) + rkχ(C�res)− rkχ(C�ord) ≤ ψ(1) ;

if K/Q is abelian, then when χ �= χ−1 we have the following two possibilities:

rkχ−1(C�res) = rkχ−1(C�ord) and rkχ(C�res) = rkχ(C�ord) + 1,

rkχ−1(C�res) = rkχ−1(C�ord) + 1 and rkχ(C�res) = rkχ(C�ord),

and when χ = χ−1, we have the equality:

rkχ(C�res) = rkχ(C�ord).

5.4.6.1 Remark. If C is (for example) a generalized p-class group of K, the
χ-component Ceχ depends only on the faithful character χ′ corresponding to
χ and on the subfield K ′ of K fixed under the kernel of χ; in other words,
we have the following relation:
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Ceχ � (NK/K′C)eχ′ = C′eχ′ ,

in which the analogous generalized p-class group C′ of K ′ enters only via its
χ′-component. All this is valid only in the semi-simple case p � |g|. For the
proof, use the relation (N ◦ j)(C′) = C′[K:K′] = C′, yielding the surjectivity of
N := NK/K′ and the injectivity of j := jK/K′ .

For instance, this applies to C = (c�resm (S))p, in the p-Sylow of C�Sm :=
C�resm /c�resm (S), whose χ-component may be simplified according to the de-
composition of the v ∈ S in K ′/k, k = Kg (e.g., χ �= 1 and v nonsplit in
K ′/k).

5.4.6.2 Example 1 (case of the Scholz theorem [Scholz2], p = 3). Let K =
Q(
√

d,
√
−3 ), d > 0, d /∈ Q×2, and CK := (C�K)3. We have g = Gal(K/Q) �

(Z/2Z)2. If χ is the quadratic character whose kernel fixes Q(
√

d ), then
the kernel of χ∗ fixes Q(

√
−3d ); thus CeχK (for instance) is isomorphic to

Ceχ′
Q(

√
d )
� C

Q(
√
d )

since Q(
√

d ) has only two characters (χ′ and 1) for which

C
Q(

√
d )

= Ceχ′
Q(

√
d )
⊕ Ce1

Q(
√
d )

with (in a similar way) Ce1
Q(

√
d )
� Ce1′

Q
= 1 ! Of

course, Ceχ∗
K � C

Q(
√−3d ).

In general, the CeχK are only particular components of the p-class groups of
the subfields of K.

5.4.6.3 Example 2. Let K = Q(µp), p �= 2, and let g = Gal(K/Q). We
easily obtain from 5.4.5 (with S = Plp, T = ∅, χ = 1):

rkω
(
C�Plp

Q(µp)

)
= 0

(since the unit character 1 leads to invariants of Q, we have rk1(C�Q(µp),Plp) =
rkp(C�Q,{p}) = 1 33, and we check that ρ1(∅, Plp) = −1); but c�(Plp) = 1 in
Q(µp) since Plp = {v} with pv = (1− ζ). Hence:

rkω
(
C�Q(µp)

)
= 0

for all prime numbers p.

For additional concrete examples, especially in the case p = 2, see [Gr10,
Ch. II]. For some arithmetical interpretations of the Spiegelungssatz, see
5.4.9.2.

To be complete on this representation-theoretic aspect, we also give the
generalization with characters of Šafarevič’s formula proved in 5.4.1 which
does not need the assumption µp ⊂ K.

33 The maximal abelian p-ramified pro-p-extension of Q is, for p �= 2, the cyclotomic
Zp-extension.
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5.4.7 Proposition (Šafarevič’s formula with characters). Let p be a prime
number. Let g be an automorphism group of K of order prime to p, with
fixed field k. Let T and S = S0 ∪S∞ be two disjoint finite g-invariant sets of
finite and noncomplex places of K.
Then for any χ ∈ Xp(g) we have:

rkχ(C�ST ) = rkχ(V S
T /K×p

T ) + ψ(1)
∑

u∈Tp,k
[ku : Qp] +

∑
u∈Tk

δuρu,ωuχ−1

− δω,χδ −
∑

u∈Plrk,∞∪S0,k

ρu,χ + δ1,χ − ψ(1)r2(k) + δ2,pψ(1)|∆∞,k|,

where:

V S
T := {α ∈ K×p

T K×
T,∆∞ , (α) = apaS0

,

a ∈ IT , aS0
∈ 〈S0 〉, iv(α) ∈ K×p

v ∀v ∈ T},

where the δa,b denote Kronecker symbols, where ωu is the local Teichmüller
character (possibly trivial) given by the action of du � Gal(Kv/ku) on µp(Kv)
(for v above u), δu := 1 or 0 according as Kv contains µp or not, and δ := 1
or 0 according as K contains µp or not.

5.4.8 Exercise. Let K be a number field containing µn for some integer
n ≥ 2; assume that K is given together with sets of places T and S such that
T ∪ S0 contains all the places above the prime divisors of n. Consider:

V S
T := {α ∈ K×n

T K×
T,∆∞ , (α) = anaS0

,

a ∈ IT , aS0
∈ 〈S0 〉, iv(α) ∈ K×n

v ∀v ∈ T}.

Show that the norm group of L := K
(
n

√
V S
T

)
is:

N = PS0,n,S∞ . 〈T 〉 . InS0
=: PS0,n,pos〈T ∪∆∞ 〉 . InS0

,

for any sufficiently large modulus n ∈ 〈S0 〉N, where ∆∞ := Plr∞ \ S∞.

Answer. Using arguments analogous to those of 5.4.1, (iii), one can show that
L is the maximal S0-ramified T ∪ ∆∞-split extension of K, with exponent
dividing n. It is a finite extension. Since N = PS0,n,S∞ . 〈T 〉 .NL/K(IL,S0),
for any n multiple of the conductor of L/K it is clear that:

N0 := PS0,n,S∞ . 〈T 〉 . InS0
⊆ N ;

since N0 corresponds to an S0-ramified T ∪∆∞-split abelian extension with
exponent dividing n, the maximality of L gives the result.

This Kummer situation is the starting point for the proof of the existence
theorem of global class field theory; for this, one shows that if K is an ar-
bitrary number field and M an abelian extension of exponent n of K then,
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for K ′ := K(µn), we have (for suitable T and S and with self-explanatory
notations):

M K ′ ⊆ K ′
(
n

√
V S′
T ′

)
;

we then descend to the extension M/K thanks to the type of reasoning used
in 3.6, (ii). Even though we have assumed the truth of the existence theorem,
this aspect is still interesting for us since it can be used algorithmically to
find M concretely starting from the class field data (conductor, Artin group);
this is one of the objectives of [j, Coh2, Ch. 5] to which we refer.

The reader will have noted that we are in a reflection situation and that if
we want to come back to the usual situation, we must start from the radical
defined by V T∪∆∞

S0
.

(5.4.9) Additional Material. In 5.4.9.1, we will go into more details
about the computation of rkχ∗

( ⊕
v∈T

Uv
⊕

v∈∆∞
{±1}

)
− rkχ∗(ES0 ord), and in

5.4.9.2, we will give some comments on the interpretation of the classical
reflection theorem. The notations are given in 5.4.2 and 5.4.5.

(5.4.9.1) p-Ranks Computations. We use the following properties of
representation theory of g over Fp, in the semi-simple case (i.e., p � |g|):

(i) In the exact sequence of Zp[g]-modules 1→ N →M →M/N → 1 we
suppose that N ∩Mp = Np; then this yields the exact sequence:

1 −→ N/Np −−−→M/Mp −−−→M/MpN −→ 1,

and by semi-simplicity: M ⊗
Zp

Fp � N ⊗
Zp

Fp ⊕ (M/N) ⊗
Zp

Fp (isomorphism
of representations).

(ii) If the Zp[g]-module M is a free Zp-module of finite type, the Fp-
representation M ⊗

Zp
Fp � M/Mp and the Qp-representation M ⊗

Zp
Qp have

the same character (see [Se4, §§ 14-16]).
(iii) If M is a finite Zp[g]-module then the Fp-representations M/Mp and

pM := {x ∈ M, xp = 1} are isomorphic: from the above reference, we know
that, in the semi-simple case, the representation theories over Zp and Fp are
“the same” by reduction modulo p, so that for any χ ∈ Xp(g) we can write
the exact sequence of Zp[g]-modules:

1 −→ (pM)eχ −−−→Meχ p−−−→(Meχ)p = (Mp)eχ −→ 1

(the idempotents eχ being those of Zp[g]); since M is finite, we get:

|(pM)χ| := |(pM)eχ | = |Meχ | |(Mp)eχ |−1 = |(M/Mp)eχ | =: |(M/Mp)χ|,

which proves that (M/Mp)χ and (pM)χ are isomorphic.
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(iv) Let d be a subgroup of g and Vd the permutation representation
of g modulo d (Vd � Fp[g]

∑
t∈d

t for instance); then the character of Vd is

Indgd(1d) =:
∑

χ∈Xp(g)
ρχ χ, where we recall that ρχ := 1

|d|
∑
t∈d

ψ(t), ψ|χ. If d is

normal in g, Vd is the regular representation of g/d, then ρχ = ψ(1) (resp. 0)
if d ⊆ Ker(χ) (resp. d �⊆ Ker(χ)).

(v) Let d be a subgroup of g and W a representation of d whose character
is equal to the restriction of the Teichmüller character ω (since µp ⊂ K, then
µp is such a representation). Then, the character of the representation V of
g induced by W is (Indgd(1d))

∗, and rkχ∗(V ) = ρχ: indeed, the si denoting
a complete system of representatives of g/d, by definition (see [Se4, § 3.3,
Th. 12]) we have for all s ∈ g:

Indgd(ω)(s) =
∑

si∈g/d
s-1i ssi∈d

ω(s−1
i ssi) =

∑
si∈g/d
s-1i ssi∈d

ω(s)

= ω(s) Indgd(1d)(s) = ω(s) Indgd(1d)(s
−1),

giving the first part of the claim; then, rkχ∗(V ) is given by the scalar
product 〈 (Indgd(1d))

∗, ψ∗ 〉 with ψ∗ := ωψ−1 (note that ψ∗ is also absolu-
tely irreducible), and an elementary computation yields 〈 (Indgd(1d))

∗, ψ∗ 〉 =
〈 Indgd(1d), ψ 〉. Therefore rkχ∗(V ) = ρχ.

Let u ∈ Plp,k, and consider the induced representation
⊕
v|u

Uv ⊗ Fp of g;

from (i) with N =
⊕
v|u

tor(Uv) we have:
⊕
v|u

Uv ⊗ Fp �
⊕
v|u

tor(Uv)⊗ Fp ⊕
⊕
v|u

(Uv/tor(Uv))⊗ Fp.

Using the log map defined in III.2.2.1, which is a g-module homomor-
phism, injective on

⊕
v|u

(Uv/tor(Uv)), we see from (ii) that the character of
⊕
v|u

(Uv/tor(Uv)) ⊗ Fp is the character of the Qp-representation
⊕
v|u

Kv which

is [ku : Qp] times the regular representation. The corresponding χ∗-rank is
thus [ku : Qp]ψ∗(1) = [ku : Qp]ψ(1).

Since µp ⊂ K,
⊕
v|u

tor(Uv)⊗Fp is induced by tor(Uv)⊗Fp whose character

is ω; from (v), the character of the above representation of g is (Indgdu(1du))
∗,

where we recall that du is the decomposition group in K/k of a fixed place
v|u, and the χ∗-rank is ρu,χ.

Let u ∈ Plta. In this case U1
v ⊗ Fp = 1 and the character of

⊕
v|u

Uv ⊗ Fp is

the character of the torsion part giving a χ∗-rank equal to ρu,χ.
Let u ∈ Plrk,∞. In this case,

⊕
v|u
{±1} ⊗ Fp is nontrivial only for p = 2 and

gives the regular representation since du = 1 (by assumption |g| is odd); this
yields a χ∗-rank equal to δ2,pψ(1).
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We now compute the χ∗-rank of ES0 ord which is given by the Dirichlet–
Herbrand Theorem I.3.7. We have:

rkχ∗(ES0 ord) =
∑

u∈Plk,∞
ρu,χ∗ +

∑
u∈S0,k

ρu,χ∗ + δω,χ∗ − δ1,χ∗ .

We remark that if u is a complex infinite place of k or a real infinite place
of k, totally split in K/k, then ρu,χ∗ = ψ(1) since du = 1; if u is a real
infinite place of k, complexified in K/k, then ρu,χ∗ = 1

2 (ψ(1) + ψ(cu)) where
cu generates du. Note that δω,χ∗ = δ1,χ and δ1,χ∗ = δω,χ.

We have obtained:

rkχ∗

( ⊕
v∈T

Uv
⊕

v∈∆∞
{±1}

)
=

∑
u∈Tk

ρu,χ +
∑

u∈Tp,k
[ku : Qp]ψ(1) + δ2,pψ(1)|∆∞,k|,

and:

rkχ∗(ES0 ord) = r2(k)ψ(1) +
∑

u∈Plrk,∞∪S0,k

ρu,χ∗ + δ1,χ − δω,χ.

This yields the second expression of ρχ(T, S) given at the end of 5.4.2.

Note. We have
∑

u∈Plk,∞
(ρu,χ + ρu,χ∗) = ψ(1)[k : Q] + δ2,pψ(1)r1(k): we check

that ρu,χ + ρu,χ∗ = 1
2
(ψ(1) + ψ(cu) + ψ(1) + ψ(cu)ω(cu)); if cu = 1, this sum is

equal to 2ψ(1); otherwise, if cu �= 1 (which supposes p �= 2), ω(cu) = −1, and this

sum is equal to ψ(1); let rc1(k) := |Plrck,∞|;
∑

v∈Plk,∞
(ρu,χ + ρu,χ∗) − ψ(1)[k : Q] =

ψ(1)
(
2
(
r2(k)+r1(k)−rc1(k)

)
+rc1(k)

)
−ψ(1)

(
r1(k)+2r2(k)

)
= ψ(1)

(
r1(k)−rc1(k)

)
=

δ2,pψ(1)r1(k). Finally we use the relation [k : Q] = r1(k) + 2r2(k) =
∑
u|p

[ku : Qp] to

obtain the first expression of ρχ(T, S) (note that rc1(k) = 0 if p = 2 since |g| is odd,

and rc1(k) = r1(k) if p �= 2 since K ⊃ µp is totally complex).

(5.4.9.2) Interpretation of the Reflection Theorem for Usual

Class Groups. We consider the case where µp =: 〈 ζ 〉 ⊂ K, T = ∅, S =
S∞ ⊆ Plr∞; then the reflection theorem becomes for any χ ∈ Xp(g):

rkχ∗(C�S∞)− rkχ(C�∆∞
m∗ ) = ρχ(∅, S∞), (1)

where m∗ :=
∏
v|p

ppevv = p(1 − ζ) is the modulus of p-primarity of K which

characterizes the non-ramification at p of Kummer extensions of degree p
(review I.6.3), and where ∆∞ := Plr∞\S∞.

We can take the χ-parts of the exact sequences given in the proof of I.4.5,
(ii) (beware that the notations are permuted because of the reflection situa-
tion: m �→ m∗, T �→ Plp, S∞ �→ ∆∞, ∆∞ �→ S∞); then since (Uv/U1

v )p = 1
for v|p, taking n = 1, Σ∞ ⊆ S∞, we obtain:

rkχ(C�∆∞
m∗ )− rkχ(C�∆∞∪Σ∞) =

rkχ
(⊕
v|p

U1
v /(U

1
v )pUpev

v

⊕
v∈Σ∞

{±1}
)
− rkχ

(
Y ∆∞∪Σ∞
Plp

/Y ∆∞
Plp,m∗

)
, (2)
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where we recall that:

Y ord
Plp := {α ∈ K×

Plp
, (α) = ap},

Y ∆∞∪Σ∞
Plp

:= {α ∈ Y ord
Plp , iv(α) > 0 ∀v ∈ S∞\Σ∞},

Y ∆∞
Plp,m∗ := {α ∈ Y ord

Plp , iv(α) ∈ (U1
v )pUpev

v ∀v|p, iv(α) > 0 ∀v ∈ S∞}

(the subgroup of p-primary “∆∞-pseudo-units”); this group will be deno-
ted Y ∆∞

prim (and for simplicity, the indices Plp will be omitted). Recall that
Y ord = K×pY ord

Plp
is given by the exact sequence:

1 −→ Eord/(Eord)p −−−→ Y ord/K×p −−−→ pC�ord −→ 1, (3)

where (pC�ord)χ � C�ordχ by (iii). Thus we easily obtain from (1) and (2):

rkχ∗(C�S∞)− rkχ(C�∆∞∪Σ∞) = ρχ(∅, S∞)

+rkχ
(⊕
v|p

U1
v /(U

1
v )pUpev

v

⊕
v∈Σ∞

{±1}
)
− rkχ

(
Y ∆∞∪Σ∞/Y ∆∞

prim

)
.

We now compute the χ-rank of
⊕
v|p

U1
v /(U

1
v )pUpev

v . Consider the exact se-

quences:

1 −→ Upev
v /Upev

v ∩ (U1
v )p −−−→ U1

v /(U
1
v )p −−−→ U1

v /(U
1
v )pUpev

v −→ 1,

and:
1 −→ Upev

v ∩ (U1
v )p −−−→ Upev

v
τ−−−→µp −→ 1,

where the map τ associates with α = 1 + p(1− ζ)η the root of unity ζt with
t := trFv/Fp

(η) (see I.6.3.5).

If s ∈ du, s(α) = 1 + p(1 − ζω(s))s(η) = 1 + p(1 − ζ)1−ζω(s)

1−ζ s(η) ≡
1+p(1−ζ)ω(s)s(η) mod p(1−ζ)pv, thus trFv/Fp

(
ω(s) s(η)

)
= ω(s)trFv/Fp

(η)

since ω(s) ∈ Fp; therefore τ is an homomorphism of du-modules and the cha-
racter of the representation

⊕
v|u

Upev
v /Upev

v ∩(U1
v )p is induced by ω; then, using

5.4.9.1, (v), we get:

rkχ
(⊕
v|u

U1
v /(U

1
v )pUpev

v

)
= rkχ

(⊕
v|u

U1
v /(U

1
v )p

)
− rkχ

(⊕
v|u

Upev
v /Upev

v ∩ (U1
v )p

)

= ρu,χ∗ + [ku : Qp]ψ(1)− ρu,χ∗ = [ku : Qp]ψ(1),

and we get:

rkχ∗(C�S∞)− rkχ(C�∆∞∪Σ∞)

= ρχ(∅, S∞) +
∑
u|p

[ku : Qp]ψ(1) + δ2,pψ(1)|Σ∞,k| − rkχ
(
Y ∆∞∪Σ∞/Y ∆∞

prim

)

= ρχ(∅, S∞) + ψ(1)
(
[k : Q] + δ2,p|Σ∞,k|

)
− rkχ

(
Y ∆∞∪Σ∞/Y ∆∞

prim

)
.
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Using the expression of ρχ(∅, S∞) and the relation [k : Q] = r1(k) + 2r2(k),
we finally obtain:

rkχ∗(C�S∞)− rkχ(C�∆∞∪Σ∞) = δω,χ − δ1,χ −
∑

u∈Plrk,∞
ρu,χ∗

+ψ(1)
(
r1(k) + r2(k) + δ2,p|∆∞,k ∪Σ∞,k|

)
− rkχ

(
Y ∆∞∪Σ∞/Y ∆∞

prim

)
; (4)

since rkχ
(
Y ∆∞∪Σ∞/Y ∆∞

prim

)
is the χ-rank of the diagonal image of Y ∆∞∪Σ∞

in
⊕
v|p

U1
v /(U

1
v )pUpev

v

⊕
v∈Σ∞

{±1}, we have the inequality:

rkχ
(
Y ∆∞∪Σ∞/Y ∆∞

prim

)
≤ ψ(1)

(
[k : Q]+δ2,p|Σ∞,k|

)
. (4′)

We will explain the interest of such formulas (4), (4′), by giving two
classical examples which are not always well understood since, in general, in
(4) the term ψ(1)

(
[k : Q]+δ2,p|Σ∞,k|

)
−rkχ

(
Y ∆∞∪Σ∞/Y ∆∞

prim

)
is replaced by 0

(for a lower bound) or by ψ(1)
(
[k : Q] + δ2,p|Σ∞,k|

)
(for an upper bound),

giving again the Leopoldt’s Spiegelungssatz 5.4.6, (i) with inequalities.
For p = 2, to obtain the inequalities 5.4.6, (ii), we substract the equality

(4) with S∞ = Plr∞ from the equality (4) with S∞ = ∅ (Σ∞ = ∅ in each
case); then we check that rkχ(Y ord/Y ord

prim)− rkχ(Y res/Y res
prim) is the χ-rank of

the quotient of the images of Y ord and Y res in
⊕
v|p

U1
v /(U

1
v )pUpev

v .

Analysis of the Theorem of Scholz. We refer to 5.4.6.1 and 5.4.6.2 to
review that rkχ(C�) = rk3

(
C�

Q(
√
d )

)
, rkχ∗(C�) = rk3

(
C�

Q(
√−3d )

)
.

Let E =: 〈 ε, ζ 〉, where ε is the fundamental unit of Q(
√

d ); to simplify,
we merge the notation of an element with that of its class modulo K×3. Thus:

(E/E3)χ = 〈 ε 〉, (E/E3)χ∗ = 1,

(E/E3)ω = 〈 ζ 〉, (E/E3)1 = 1 ;

Formulas (4), (4′) yield (since ρ∞,χ∗ = 0):

rk3

(
C�

Q(
√−3d )

)
− rk3

(
C�

Q(
√
d )

)
= 1− rk3

(
Y

Q(
√
d )

/
Y

Q(
√
d ),prim

)
,

with rk3

(
Y

Q(
√
d )

/
Y

Q(
√
d ),prim

)
≤ 1. Let:

Y
Q(

√
d )

/
Q(
√

d )×3 =: 〈 y1, . . . , yr, ε 〉,

where r is the 3-rank of the class group of Q(
√

d ) (see (3)); we have:

rk3

(
C�

Q(
√−3d )

)
− rk3

(
C�

Q(
√
d )

)
= 1

if and only if the yi as well as ε are 3-primary; otherwise Y
Q(

√
d ),prim is of

index 3 in Y
Q(

√
d ) and we have:
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rk3

(
C�

Q(
√−3d )

)
= rk3

(
C�

Q(
√
d )

)
.

If we only know that ε is 3-primary, then we have:

0 ≤ rk3

(
C�

Q(
√−3d )

)
− rk3

(
C�

Q(
√
d )

)
≤ 1 ;

oterwise, if we know that ε is not 3-primary, then:

rk3

(
C�

Q(
√−3d )

)
= rk3

(
C�

Q(
√
d )

)
.

Symmetrically, we can start from the character χ∗ and write (with ρ∞,χ = 1):

rk3

(
C�

Q(
√
d )

)
− rk3

(
C�

Q(
√−3d )

)
= −rk3

(
Y

Q(
√−3d )/YQ(

√−3d ),prim

)
,

with rk3

(
Y

Q(
√−3d )/YQ(

√−3d ),prim

)
≤ 1, then we can put, in an analogous

manner, Y
Q(

√−3d )

/
Q(
√
−3d )×3 = 〈 y′1, . . . , y′r′ 〉, where r′ is the 3-rank of the

class group of Q(
√
−3d ), which gives the following reasoning. We have:

rk3

(
C�

Q(
√
d )

)
= rk3

(
C�

Q(
√−3d )

)

if and only if all the y′i are 3-primary, otherwise Y
Q(

√−3d ),prim is of index 3
in Y

Q(
√−3d ) and this yields:

rk3

(
C�

Q(
√
d )

)
− rk3

(
C�

Q(
√−3d )

)
= −1.

This methodology was initiated in: Bull. Soc. Math. France 100 (1972),
177–193; in this paper we gave many numerical examples.

Analysis of a Result of Hecke. We are now concerned with the case
K = Q(µp), p �= 2, with g = Gal(K/Q). For an even character χ �= 1 (i.e.,
χ = ωk, k even, 1 < k < p − 1), we have χ∗ = ωχ−1 = ω1−k �= ω. Since
ρ∞,χ∗ = 0, formulas (4), (4′) yield:

rkχ∗(C�)− rkχ(C�) = 1− rkχ
(
Y/Yprim

)
,

with rkχ
(
Y/Yprim

)
≤ 1. Let (E/Ep)χ =: 〈 εχEp 〉 denoted 〈 εχ 〉, and let:

(
Y/K×p)

χ
=: 〈 y1, . . . , yrχ , εχ 〉,

where rχ is the χ-rank of the class group, and where all the numbers are
prime to p. Then:

rkχ∗(C�)− rkχ(C�) = 1

if and only if all the elements y1, . . . , yrχ , εχ are p-primary, otherwise,
(
Yprim/K×p)

χ

is of index p in
(
Y/K×p)

χ
and the p-ranks are equal.

If εχ is p-primary, we only have 0 ≤ rkχ∗(C�) − rkχ(C�) ≤ 1, otherwise
rkχ∗(C�) = rkχ(C�).
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The result of Hecke (1910) was (with classical notations) the inequality
rkp(C�+) ≤ rkp(C�−) that we easily obtain from (4) by summation over the
even χ �= 1; the use of (4′) yields 0 ≤ rkp(C�−)−rkp(C�+) ≤ p−3

2 . Some insights
into representation aspects were given by Pollaczek (1924) after Kummer.

If we start from the odd character χ∗ �= ω, we obtain, since ρ∞,χ = 1:

rkχ(C�)− rkχ∗(C�) = −rkχ∗
(
Y/Yprim

)
;

then if
(
Y/K×p)

χ∗ =: 〈 y′1, . . . , y′rχ∗ 〉, the reasoning is the same, but with
pseudo-units (which are not units) comming from an odd component.

We do not know examples with rχ ≥ 1 (see [(c), Wa, Ch. 8, § 3]). To
find an rχ ≥ 1, we must check that rχ∗ ≥ 1 and (when it is the case) that
y′χ∗ (generator of (Y/K×p)χ∗ when rχ∗ = 1) is p-primary (the case rχ∗ ≥ 2
automatically yields rχ ≥ 1); the first condition is equivalent to the triviality
modulo (p) of the generalized Bernoulli number bχ∗ or to the p-primarity

of the cyclotomic unit ηχ, giving a probability equal to 1

p
; 34 the second

condition (when the first one is realized with rχ∗ = 1) has also a probability

equal to 1

p
. If we assume that these two conditions are independent, this gives

the probability 1

p2
(for χ fixed). We have neglected the case rχ∗ ≥ 2 whose

probability is less than 1

p2
(the principal theorem of Ribet–Mazur–Wiles–

Kolyvagin implies that |C�eχ∗
K | = |bχ∗ |−1

p , but if bχ∗ ≡ 0 mod (p2), C�eχ∗
K may

be cyclic), so that we can consider the probability 2

p2
as a wide upper bound.

This heuristic reasoning, involving congruences, is more convincing than
the direct interpretation rχ ≥ 1 if and only if p | (〈 εχ 〉 : 〈 ηχ 〉) (principal
theorem of Ribet–Mazur–Wiles–Kolyvagin–Greither), since we do not know
efficient heuristics for global p-powers; the above gives for p | (〈 εχ 〉 : 〈 ηχ 〉) a

probability less than 2

p2
(see [Scho2] for the non-p-parts of the class goup).

But there are n := p− 3

2
even characters �= 1 for p ≥ 3; perhaps they do

not have the same “weight” because of the subfields of “small” degree whose
p-class number can be limited. To be more precise, we may estimate the index
of irregularity i(p) (i.e., the number of odd characters χ∗ giving rχ∗ ≥ 1): it
seems clear that the density of prime numbers p, for which i(p) ≥ 1, exists (its
34 The equivalence of these two conditions is classical and comes from the con-

gruence properties of p-adic L-functions. Let µp =: 〈 ζ 〉, and for any a ∈ Z

prime to p, let σa ∈ g be such that σa(ζ) = ζa. By definition, we have

bχ∗ := 1
p

∑p−1

a=1 χ
∗(σ−1

a )a ∈ Zp, and ηχ := (1 − ζ)eχ seen in (E/Ep)χ, with the

idempotent eχ := 1
p−1

∑p−1

a=1 χ(σ−1
a )σa ∈ Zp[g]; for u = p, ev = 1, ϕ /∈ {1, ω},

we have (U1
v /(U

1
v )pUp

v )ϕ � Fp; since ηχ is p-primary if and only if its image in
(U1

v /(U
1
v )pUp

v )χ is trivial, this gives one possibility out of p. In an analogous way,
the p-primarity of y′χ∗ only depends on its image in (U1

v /(U
1
v )pUp

v )χ∗ .
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value is discussed in [(c), Wa, Ch. 5, § 3] after the Theorem 5.17; see [Ri4] and
[BCEMS] for some numerical computations). In this context, the probability

that i(p) = i ≥ 0 is Cin
(
1− 1

p

)n−i(1

p

)i
, for p ≥ 3.

Since these values are in accordance with all numerical data, this “proves”
that the above phenomena can be neglected 35, which yields a number of

favourable cases p < B around
∑
p<B

n∑
i=0

Cin
(
1− 1

p

)n−i(1

p

)i(
1−

(
1− 2

p

)i)
=

∑
p<B

(
1−

(
1− 2

p2

)n)
<

∑
p<B

2n

p2
<

∑
p<B

1

p
< log(log(B)) (of course, it is then

equivalent to use directly the probability that p | (〈 εχ 〉 : 〈 ηχ 〉) for at least
one character χ). See in [Th2] a criterion for the p-triviality of this index.

In conclusion, the classical Kummer–Vandiver conjecture is probably false
for probabilistic reasons 36 (see [Iw5] for another approach with Gauss sums).

c) Class Field Theory Over Q

We come back to ray class fields by looking at the case where the base field
is Q.

5.5 Ray Class Fields on the Field of Rational Numbers. If K = Q,
any modulus is of the form mZ for m ≥ 1, and the ray class field Q(m)

res

is simply the cyclotomic field Q(µm) of mth roots of unity (see 5.5.1). Note
that (except for m = 1, 2, where Q(m)

res = Q), the place at infinity of Q is
complexified in Q(m)

res/Q; the maximal real subfield of Q(m)
res is the field

Q(m)
{∞} =: Q(m)

ord =: Q(m)
nc.

The case of ray class fields over Q gives the simplest example in which
mZ is not always equal to the conductor of Q(m)

res: indeed, mZ (or simply
m) is the conductor of Q(m)

res if and only if m is odd or divisible by 4 (this
follows from 5.1.1.2).

Using classical properties of cyclotomic fields (see [c, Wa, Ch. 2]), we can
now prove that Q(m)

res = Q(µm).

5.5.1 Proposition. For any rational integer m ≥ 1, we have:

Q(m)
res = Q(µm).

Proof. With the computation that we will give in 5.5.2, we already have:

Gal(Q(m)
res/Q) � (Z/mZ)× � Gal(Q(µm)/Q),

35 However, see [Sou] giving some insights into this aspect.
36 A more precise computation involving the Cohen–Lenstra–Martinet heuristics on

class groups would certainly give less than c log(log(B)) with c < 1. Moreover,
discarding the small primes, we would obtain c log(log(B)) − c′, c′ > 1, which
explains that only very large p can disprove the conjecture.
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so an inclusion will be sufficient. We will check that Q(µm) ⊆ Q(m)
res; for this

we may assume that m is a conductor. By 4.1.1, we are reduced to compute
the conductor of Q(µ�n) where �n is the �-part of m (n ≥ 1, n ≥ 2 if � = 2).
Then, since � is the only ramified place, we see from 4.2.1 that this conductor
is that of Q�(µ�n). Part (i) of Exercise 3.4.3 computes the norm group, and
hence the conductor, equal to �n.

5.5.2 Remark. At the level of generalized class groups and of the Artin
map, we do not obtain directly the classical isomorphism:

Gal(Q(µm)/Q) � (Z/mZ)×.

Indeed, if we denote by T the support of mZ we obtain:

Gal(Q(m)
res/Q) � IT /PT,mZ,pos

= {aZ, a ∈ Q×
T }/{uZ, u ∈ Q×

T , u ≡ 1 mod mZ, u > 0} ;

now consider the map (which is well defined):

IT −−−→ (Z/mZ)× ;
aZ �−→ |a|+ mZ

its kernel is the set of the aZ, a ∈ Q×
T such that |a| ≡ 1 mod mZ, hence

is equal to PT,mZ,pos; since surjectivity is trivial, we obtain the expected
isomorphism (which is specific to the base field Q).

We recover the Artin map:

IT /PT,mZ,pos −−−→ Gal(Q(m)
res/Q),

which sends �Z =: (�), with � positive prime number not dividing m, to the
Frobenius: (

Q(m)
res/Q

(�)

)

(which acts via ζ −→ ζ� for any ζ ∈ µm), by composing the above isomor-
phism:

IT /PT,mZ,pos −−−→ (Z/mZ)×,

with the one sending a + mZ ∈ (Z/mZ)× for a ∈ Q×
T to the Artin symbol:

(
Q(m)

res/Q

(b)

)
,

where b is a positive representative of a+mZ (and not |a| !). More generally,

we would like to insist on the fact that a Frobenius
(
Lab/K

v

)
, or

(
Lab/K

pv

)
,

involves qv := |Fv|, in other words a positive generator of Npv (and similarly,

by multiplicativity for the Artin symbol); for instance, for m = 7,
(

Q(7)
res/Q

(−2)

)
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would be the Frobenius of 2, of order 3, while, choosing 5 as representative

of the class of −2 modulo (7),
(

Q(7)
res/Q

(5)

)
is the Frobenius of 5, of order 6,

which is indeed the automorphism ζ → ζ−2. Going from a ∈ Q×
T to b > 0 is

not necessary if we set:
(

Q(m)
res/Q

a

)
:=

(
Q(m)

res/Q

(a)

)

for any a > 0 prime to m, and:
(

Q(m)
res/Q

−1

)
:=

(
Q(m)

res/Q

∞

)
= c

(complex conjugation), but this is a trick only valid for the base field Q.

5.6 Class Field Theory Correspondence. Thus, in the case of the base
field Q, the class field theory correspondence is the well-known Kronecker–
Weber theorem, of which a direct proof is not too difficult (such a proof is
given in [c, Wa, Ch. 14] and in [Neum1]). In other words, in the cyclotomic
field Q(µm), there is a bijective Galois correspondence between the set of
subfields and the set of subgroups of (Z/mZ)×.

5.6.1 Artin Group of Abelian Extensions of Q. If L is an abelian
extension of Q with conductor fZ, for which we know H := Gal(Q(f)

res/L)
as a subgroup of (Z/fZ)×, then (denoting by R the support of f) the Artin
group of L/Q is equal to:

AL/Q = {aZ, a ∈ Q×
R, a > 0, a + fZ ∈ H}.

It indeed contains PR,fZ,pos.

5.6.2 Decomposition Law of Prime Numbers in Q(m)
res/Q. By 5.2, we

need not consider prime divisors � of m since the inertia field is Q(n)
res, where

n is the largest divisor of m prime to �.
The residue degree of � is then the order of the class � + mZ in (Z/mZ)×

and the decomposition field is the field fixed under 〈 � + mZ 〉. Thus, � is
totally split in Q(m)

res/Q if and only if � ≡ 1 mod mZ.
If the conductor of an abelian extension L is fZ, the residue degree of

� � f in L/Q is then the order of � + fZ modulo H.

5.6.3 Abelian Closure of Q. The Galois group of Q
ab

= Q(µ) (the field
generated by all the roots of unity) is:

G
ab � lim←−

m≥1

(Z/mZ)× � Ẑ× =
∏

p prime
Z×
p ,
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whose structure is well known (we will find again this result in III.4.1.11 in
an idelic way). The inertia groups correspond to each Z×

p .

Since Gal(Q(m)
res/Q) is the direct sum of the inertia groups of the ramified

primes, it is clear that it may be convenient to use duality to express the class
field theory correspondence and the law of decomposition of the places. This
leads to the notion of Dirichlet characters. We leave this to the reader (see
[c, Wa, Ch. 3]).

d) Congruence Groups

Before coming back to generalized class groups, we explain in this short sub-
section a classical formalism which is necessary when we cannot take quotients
by a suitable ray group, situation which we avoid since we assume the Artin
reciprocity law (or any equivalent statement) from the start.

The notion of congruence groups, used instead of idèle class groups or
generalized class groups, introduced without any knowledge of the existence
of a norm or Artin conductor, is the following. Consider the groups Nm (the
congruence groups) which are the subgroups of IT containing PT,m,pos, where
m is a modulus of K with support T ⊂ Pl0; we then define an equivalence
relation by:

Nm1 ∼ Nm2 ,

for m1, m2 with supports T1, T2, if and only if:

Nm2 ∩ IT1 = Nm1 ∩ IT2 .

In this context, class field theory consists in proving that there exists a bi-
jective Galois correspondence between finite abelian extensions of K and
equivalence classes of congruence groups; the conductor (of the extension
corresponding to the class) is then the g.c.d. of the m belonging to the class.
From the point of view that we have adopted here, this fact is quite clear for
the following reason: if f is the conductor of the abelian extension L/K and
if m, built on T , is a multiple of f, the congruence group relative to m is the
Takagi group:

Nm := PT,m,posNL/K(IL,T ).

The equivalence relation is a simple translation of the invariance of the quo-
tients IT /Nm when m ranges over all the multiples of f (see 4.3.2, 4.4.1).

However, this point of view can be convenient to define a priori subgroups
of IT (containing PT,m,pos), for instance by asking that certain ideals should
be norms; we must then algorithmically compute the conductor of this con-
gruence group and find the structure of the corresponding quotient group.
This is the point of view used in [j, Coh2, Ch. 3 and 4].
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e) Norm Action on Generalized Class Groups

Let L/K be a finite extension of number fields. It is useful to give the action
of the arithmetic norm for L/K on generalized class groups, using the fact
that it corresponds to restriction of automorphisms under the Artin map. By
perversity, we are going to start by looking at class groups in idelic terms (in
fact this is technically simpler).

Notation and assumption. Let m ∈ 〈T 〉
N
, and let m′ be a modulus of L

built from the set of places of L above those of T , such that:

NL/K(U res
L,m′) ⊆ K×U res

K,m,

where NL/K is the norm map from JL to JK .

We then have:

5.7 Proposition. For any finite set S of places of K, disjoint from T , we
have the following commutative diagram, where S′ denotes the set of places
of L above those of S:

C�SK,m

C�S′
L,m′

Gal(K(m)
S/K)

Gal(L(m′)S
′
/L)

ρL

restriction

ρK

NL/K

Proof. In the idelic formulation (see I.5.1):

C�resL,m′ � JL/L
×U res

L,m′ , C�resK,m � JK/K×U res
K,m ;

by assumption we have the inclusion NL/K(L×U res
L,m′) ⊆ K×U res

K,m or, equiv-
alently, NL/K(PL,T,m′,pos) ⊆ PK,T,m,pos, showing that NL/K is defined as a
map from C�resL,m′ to C�resK,m and is also given by:

NL/K(c�resL,m′(a′)) := c�resK,m(NL/K(a′)),

for any ideal a′ of L prime to T . Furthermore, applying norm lifting Theorem
4.7.2 to the extension M := K(m)

res and to the norm group N := K×U res
K,m,

the idèle group corresponding to LK(m)
res on L, is equal to N−1

L/K(K×U res
K,m)

which contains L×U res
L,m′ , once again by assumption; thus, we have:

LK(m)
res ⊆ L(m′)res,

and hence the restriction:
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Gal(L(m′)res/L) −−−→ Gal(K(m)
res/K)

makes sense.
Finally, since NL/K

( ⊕
w∈S′

L×
w

)
⊆

⊕
v∈S

K×
v (i.e., NL/K(〈S′ 〉) ⊆ 〈S 〉) and

using the decomposition properties 1.2.5, all the above statements are still
valid in terms of S and S′-splitting.

The above diagram is thus well defined, and its commutativity again
comes from applying 4.5, (iv) to the extension L(m′)S

′
/K.

5.7.1 Corollary. We have the diagram:

C�S′
L,m′

NC�S′
L,m′

C�SK,m

L(m′)S
′

LK(m)
SL

K(m)
SL ∩K(m)

S

K

where Gal(K(m)
S/L∩K(m)

S) � NL/K(C�S′
L,m′). In particular the norm map is

surjective if and only if L and K(m)
S are linearly disjoint over K; when this

is the case, |C�SK,m| divides |C�S′
L,m′ |.

5.7.2 Remarks. (i) We also have:

Gal(L(m′)S
′
/LK(m)

S) � NC�S
′

L,m′

(the kernel of the arithmetic norm NL/K), equal to:

{c�S′
L,m′(a′), a′ prime to T, c�SK,m(NL/K(a′)) = 1}.

(ii) Going to the limit but keeping T and S fixed (see 5.3), we obtain a
similar diagram, in which NL/K : JL −→ JK yields:

NL/K : C�S′
L,T ′ := lim←−

m∈〈T 〉
N

JL/L
×U res

L,(m) −−−→ C�SK,T := lim←−
m∈〈T 〉

N

JK/K×U res
K,m,

where, to simplify, we have chosen m′ := (m), the modulus obtained by
extending m to L, which is always suitable.

5.7.3 Remarks. (i) Without any difficulty we can even go completely to the
limit on T (for instance with S = ∅) so as to obtain the corresponding abelian
closures K

ab
and L

ab
, the norm, still coming from NL/K : JL −→ JK , giving:
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NL/K : CL/DL −−−→ CK/DK .

In this case, since DK = D
[L:K]
K ⊂ NL/K(CL) by divisibility (see III.4.15.1,

(i)), we get:

NL/K(CL/DL) = NL/K(CL)/DK � Gal(K
ab

/Lab),

and the norm is surjective if and only if Lab = K. But this is nothing else
than class field theory in L/K (see 3.7).

(ii) The usual particular cases (T = ∅, S = ∅, and S = Plr∞) can be
represented by an analogous diagram of finite extensions, such as:

C�resL

NC�resL
C�resK

Hres
LLHres

KL

Hres
KL∩Hres

K

K

Here L ∩Hres
K /K is the maximal abelian subextension of L/K which is un-

ramified (at the finite places), and the norm map is surjective if and only if
this extension reduces to K. For the ordinary sense, we replace everywhere
“res” by “ord”; L∩Hord

K /K is then the maximal abelian subextension which
is unramified and noncomplexified, whose Galois group measures the surjec-
tivity defect of the norm on the ordinary class group of L.

5.7.4 Example. Assume that L is a quadratic extension of K and that there
exists a finite ramified place in L/K or a real place of K which is complexified
in L; consider the ordinary sense (T = ∅, S = Plr∞):

Hord
LLHord

KL

Hord
KK

2

Since L/K is ramified or complexified in at least one place, we have L∩Hord
K =

K; hence the ordinary class number of K divides the ordinary class number
of L. Thus, we have the exact sequence:

1 −→ NC�ordL −−−→ C�ordL
NL/K−−−→C�ordK −→ 1,

which is a simple translation of the classical equality (with notations which
are themselves classical):
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hL = h∗
L hK ,

in which h∗
L is called the relative class number.

5.7.5 Remark. Note that this result is often stated for a field with complex
conjugation (or a CM field), in other words a totally complex field L which is
a quadratic extension of a totally real field K; in this context, h∗

L and hK are
often denoted h−

L and h+
L (relative class number and real class number), but

this notation is ambiguous since we do not necessarily have C�L = C�+L ⊕C�−L ,
in the usual Galois meaning for which C�±L := {c�(a) ∈ C�L, c�(ac) = c�(a)±1},
c denoting complex conjugation (the obstruction coming from the 2-Sylow
subgroups; see [Scho3], [Scho4]).

This is particularly interesting in the case of cyclotomic fields L = Q(µm),
since in this case, although Q(µm)/Q(µm)nc is unramified as soon as m (as-
sumed to be a nontrivial conductor) is not a prime power, we always have
the relation “h = h− h+” (this nonramification property is proved in III.1.4.2
but can be checked in an elementary way).

f) The Principal Ideal Theorem — Hilbert Towers

5.8 The Principal Ideal Theorem in the Tame Case. Let K be a
number field together with sets of places T and S. For the tame modulus
m =

∏
v∈T

pv, we consider the S-split ray class field K ′ := K(m)
S , and we

denote by T ′ and S′ the sets of places of K ′ above those of T and S. Let
K ′′ := K ′(m′)S

′
for m′ =

∏
v′∈T ′

pv′ be the analogous ray class field over K ′.

By 3.6, it is a Galois extension of K.

5.8.1 Lemma 1. The maximal abelian subextension K ′′ab of K ′′ in K ′′/K
is equal to K ′.

Proof. Set L := K ′′ab ⊇ K ′. The extension K ′′/K is T -tamely ramified
(use 5.2.2, (ii) for the extensions K ′/K and K ′′/K ′, and multiplicativity of
ramification indices); it follows that L/K is also T -tamely ramified and, once
again using 5.2.2, (ii), we have L ⊆ K ′, proving equality.

If G′ := Gal(K ′/K) and G′′ := Gal(K ′′/K), we have:

G′ = G′′ab and Gal(K ′′/K ′) = [G′′, G′′].

We now state a purely algebraic but nontrivial classical result 37 which
was the prelude to further development of the subject which, after Suzuki in
[Su], [i, Miy0, Suzuki], has been renewed by Gruenberg–Weiss in [GW] whose
main result we give a little later.
37 Works of Artin–Furtwängler (1930), Magnus (1934), Iyanaga (1930, 1934); see

[d, AT, Ch. 13, § 4] and [c, Neu1, Ch.VI, 7.6].
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5.8.2 Lemma 2. Let G be a finite group whose commutator subgroup [G , G]
is commutative. Then the transfer map from G to [G , G] is trivial.

It then immediately follows, from property 4.5, (v) of the Artin map, that
for a number field K given together with sets of places T and S, we have:

5.8.3 Theorem (principal ideal). For m =
∏
v∈T

pv, consider the S-split ray

class field K ′ := K(m)
S , and denote by T ′ and S′ the sets of places of K ′ above

those of T and S.
Then for the ideal extension map jK′/K : IK,T −→ IK′,T ′ , we have the

inclusion jK′/K(IK,T ) ⊂ PK′,T ′,m′,pos〈S′ 〉 where m′ =
∏

v′∈T ′
pv′ . In other

words, the natural map jK′/K : C�SK,m −→ C�S
′

K′,m′ is zero.

When T = ∅ and S = Plr∞ (for instance), the field K ′ is the ordinary
Hilbert class field Hord

K , and we obtain the famous result (which was conjec-
tured by Hilbert from the very beginning of the theory), called the principal
ideal theorem, which states that the extension to Hord

K of an ideal of K is
principal.

This theorem does not say precisely how this principalization takes place;
historically (see for instance Olga Taussky’s account in [i, Tau]), the Hilbert
Theorem 94 asserted that in any unramified cyclic extension M of K, the
capitulation kernel (i.e., the kernel of the transfer map for M/K or that
of extension of classes from K to M) is of order a multiple of [M : K].
Many partial results were then given (for instance those of Tannaka–Terada,
Furuya, Thiébaud), and we refer to [Miy3] and [i, Miy0, Suzuki] for a detailed
account of the main results on these problems, which seem to have reached
their optimal formulation with the results of [GW] which we simply state in
a less general situation.

5.8.4 Definition (Gruenberg–Weiss). Let G be a finite abelian group. We
say that a finite abelian group X is a transfer kernel for G if there exists an
exact sequence of the form 1→ A −→ H −→ G→ 1, with A a finite abelian
group, such that:

X � Ker (Ver : H/[H,H] −−−→ A),

where as usual Ver denotes the transfer map (see 1.4.1).

5.8.5 Theorem (Gruenberg–Weiss [GW] (2000)). Let X be a finite abelian
group of exponent dividing |G|.
Then X is a transfer kernel for G if and only if |G| divides |X|.

We apply this to the following data: L/K is a subextension of Hord
K /K,

H = Gal(Hord
L /K), A = Gal(Hord

L /L), G = Gal(L/K), so the exact sequence:
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1 −→ X −−−→ C�ordK � H/[H,H] Ver−−−→A � C�ordL ,

implies that |G| divides |X| (i.e., in more colorful terms, the capitulation
kernel in L/K is of order a multiple of |G| = [L : K]). The condition that the
exponent of X is a divisor of |G| is here trivially satisfied since NL/K ◦ jL/K =
[L : K] in C�ordK . For L = Hord

K we find again the principal ideal theorem.
More generally:

5.8.6 Corollary. Let L/K be an abelian T -tamely ramified S-split exten-

sion. Then for m =
∏
v∈T

pv and m′ =
∏

v′∈T ′
pv′ in L, the capitulation kernel:

Ker
(
C�SK,m −−−→ C�S

′
L,m′

)

has order a multiple of [L : K].

Proof. Replace Hord
K and Hord

L by K(m)
S and L(m′)S

′
respectively.

5.9 Hilbert Towers. Of course the ideals of Hord
K are not necessarily prin-

cipal and one may ask if, by iteration, the tower of number fields:

K(0) := K ⊆ K(1) ⊆ · · · ⊆ K(∞) :=
⋃
i≥1

K(i),

inductively defined by K(i+1) := Hord
K(i) , is finite or not (finiteness being equiv-

alent to the existence of n0 ≥ 0 such that the class group of K(n0) is trivial).
The field K(∞) is called the Hilbert class fields tower (in the ordinary sense).
In a similar way, for any prime number p, we define the p-Hilbert class fields
tower K(∞)

(p) :=
⋃
i≥1

K(i)
(p) ⊆ K(∞), with K(i+1)

(p) := Hord
K(i)(p)

(p), and ask

for the same question. The notation K(∞)
(p) is legitimate since the maximal

pro-p-subextension of K(∞) is solvable and thus coincide with the p-tower
and even with the maximal unramified (noncomplexified) pro-p-extension M

of K (hint: let M0 := K ⊆ M1 ⊆ · · · ⊆
⋃
i≥1

Mi = M with Mi+1/Mi abelian;

for the inclusion M ⊆ K(∞)
(p), prove by induction that Mi ⊆ K(i)

(p)).
This second problem, which is just as famous, was solved in the negative

in 1964, thanks to a group-theoretical result of Šafarevič. 38

5.9.1 Theorem (Golod–Šafarevič–Gaschütz–Vinberg). Let G be a pro-p-
group of finite rank (i.e., with a finite number of generators); let d(G) and
r(G) be respectively the minimal number of generators and of relations defin-
ing the group G. 39

If G is a finite group, then we have r(G) > 1
4 (d(G))2.

38 See in [d, CF, Ch. IX], [g, Se3, Ch. I, Ann. 3; NSW, Ch. III, § 9], the Golod–
Šafarevič theorem which was later improved in a number of ways such as the
Gaschütz–Vinberg theorem and some results of Koch.

39 [e, Ko3, Ch. 3, §§ 1.16, 2.7].
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It is then sufficient to exhibit an example for which d(G) is sufficiently
large compared with r(G), for G := Gal(K(∞)

(p)/K), which class field theory
easily gives (see Exercise 5.9.5).

Note. We will introduce the notation H
S
T (p) for the maximal T -ramified S-split

pro-p-extension of K; as in the case T = ∅, S = Plr∞ (the p-Hilbert class fields

tower K(∞)
(p) in the ordinary sense), H

S
T (p) is also the p-tower of the succes-

sive maximal T -ramified S-split abelian pro-p-extensions defined in 5.3, and the

maximal pro-p-subextension of the corresponding tower H
S
T (same proof). The

groups GS
T := Gal(H

S
T (p)/K) will be studied in the Appendix. Warning: H

S
T may

be strictly contained in the maximal T -ramified S-split Galois extension of K (e.g.,

take k/Q with Galois group A5 and let T be the set of ramified primes in k/Q; then

k ∩HT = Q with HT �= Q).

The above result (existence of infinite class fields towers) thus showed the
complexity of the unramified Galois closure of a number field, and showed
that the historical utopia of finding a finite extension of K whose principality
would reduce computations in K to ordinary element arithmetic was doomed
(see in 5.9.3 the proof that the existence of such an extension is equivalent
to the finiteness of the class fields tower).

Many infinite Hilbert class fields towers have been constructed (for in-
stance by Matsumura [Mat], Martinet [Mar1], Schmithals [Schm], Schoof
[Scho1], Maire [Mai1]). Recently, tamely ramified class fields towers (or p-
towers) have also been studied in [Mai1], both for number fields and for func-
tion fields, and have renewed the study of the Martinet constants on number
field discriminants, for which upper bounds are obtained from infinite towers
(see in the introduction of [HM1] a good historical review of the subject).
It is in the same paper [HM1] that Hajir–Maire give improvements on these
constants, in this wider context, and for which many interesting questions
can be asked (see [HM2, HM3], [HM4] for additional results). We will give
in 5.9.4, (iii) a detailed example after [HM2] of such a computation, showing
also some links with genera theory.

Note (Martinet’s constants). Let K be a number field of signature (r1, r2). The
infinity type of K is the rational number

r1
[K : Q ]

and its root discriminant is rdK :=

(dK/Q
)1/[K : Q ], where dK/Q

is the absolute value of the discriminant of K/Q. For

fixed t ∈ Q ∩ [0, 1] and integers n ≥ 1 such that number fields of degree n and
infinity type t exist (i.e., such that tn ∈ N and tn ≡ n mod (2)), we let (after
[Mar1], [HM1, § 1.1]):

αn(t) := min
K
{rdK , [K : Q ] = n,

r1
[K : Q ]

= t},

α(t) := lim inf
n

αn(t).

Let T be a finite set of finite places of K and let K =: K0 ⊆ K1 ⊆ · · · ⊆ K∞ :=⋃
i≥1

Ki be a tower of T -tamely ramified, noncomplexified extensions of K (the non-
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complexification insures that the infinity type is constant in the tower). Then, if

K∞/K is infinite, we easily obtain α(t) ≤ rdK .
∏

v∈T
(Npv)1/[K : Q ].

In the nontame case for p-towers, the moduli m (with fixed support T
such that Tp �= ∅) can take an infinite number of values, and the only canon-
ical tower is then that of the HS

T (p) (see 5.3) which are, in general, infinite
extensions of the base field; in addition, we will see in Section 2 of Chapter
IV that, in this context, the transfer map is on the contrary injective (under
the assumption that Plp ⊆ T , S0 = ∅, for the ordinary sense, and assuming
the Leopoldt conjecture for p). It is however possible to ask that ramification
is bounded by observing that because of the reciprocity law we have a corre-
spondence between the natural filtration of the local unit groups with that of
higher ramification groups (in upper numbering); this is the study which has
been started in [HM3]. Hence this is quite a different context (even though
the problem of principalization under extensions can be asked in complete
generality), and which leads to difficult questions related to the theory of pro-
p-groups (for instance the conjecture of Fontaine–Mazur stated in [g, NSW,
Ch. X, § 8]) which we will not describe (see [Haj] for an introduction to these
problems in the particular case of p-Hilbert towers).

5.9.2 Remarks. (i) The Hilbert class field is a particular solution to the
principalization problem of the ideal group of a field K; we will not expand
on this, but it is clear that the classes of K can principalize in many other
abelian extensions of K, and we now have quite a precise understanding of
the ideal extension map for the extension K

ab
/K (see [Gr9], [Kur], [Bos]).

For instance, from the above papers we can state the following results:

(α) Let K/Q be a real abelian extension of degree prime to p �= 2. For
any Qp-irreducible character χ of g := Gal(K/Q), let C�χ := (C�K)eχp where
eχ ∈ Zp[g] is the corresponding idempotent. Let ψ|χ; ψ is of degree 1, of order

mχ prime to p, and Zp[g]eχ � Zp[µmχ ] =: Rχ; put C�χ �
rχ⊕
i=1

Rχ/p
nχ,iRχ.

Then there exist infinitely many abelian extensions M/Q such that

Gal(KM/K) �
⊕
χ

rχ⊕
i=1

Z/pnχ,iZ and jKM/K((C�K)p) = 1.

(β) Let k be a non-totally real number field; then for all finite extension
K of k there exists an abelian extension M of k such that jKM/K(C�ordK ) = 1.

(γ) For any totally real number field K there exists a real abelian extension
M of Q such that jKM/K(C�ordK ) = 1.

In a forthcoming paper, Bosca proves (β) and (γ) in a unified way: “if K/k
is totally split at a (real or complex) infinite place, then the ordinary class
group of K principalizes in an abelian compositum of K/k”. In [Bos], we also
find analogous results for the logarithmic class group defined in (Ch. III, § 7).
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In addition, if we do not request any Galois conditions, it is easy to
principalize C�ordK in a brutal way; setting C�ordK = 〈 c�ord(ai) 〉1≤i≤r, we simply
consider:

L := K( n1
√

α1, . . . ,
nr
√

αr ),

where anii = (αi), αi ∈ K×, 1 ≤ i ≤ r, but this is far from class field theory
considerations.

(ii) Finally, concerning the construction of unramified extensions (for in-
stance), we have only mentioned the abelian case (Hilbert class fields) or
briefly the soluble case (p-Hilbert class fields towers); however, it is impor-
tant to note that a principal number field can have an infinite unramified
extension (Galois or non-Galois) (see various examples in [Mai3]; we repro-
duce such an example in Exercise 5.9.7).

5.9.3 Proposition. Let K be a number field and let L be an arbitrary finite
extension of K such that C�ordL = 1.
Then L contains the (finite) ordinary Hilbert class fields tower of K.

Proof. Consider the extension Hord
K L of L which is abelian, unramified and

noncomplexified (see II.1.2.5), hence equal to L.
By induction, seen as an extension of K(i), L contains K(i+1), hence we

have K(∞) =: K(n0) ⊆ L.

The extension L := K(n0) is the minimal solution to the problem “C�ordL = 1”.

Note that if there are several floors in the tower, then K(∞) = H
ord

K is
not contained in Lab.

There is an analogous result with sets T and S for the corresponding
tower H

S

K,T , relative to the existence of L such that C�S′
L,T ′ = 1.

5.9.4 Examples (from [Mai1] and [HM2, § 3.2] (1999/2000)). (i) The field
Q(
√

53× 131 ) has an infinite restricted Hilbert class fields tower but a finite
ordinary Hilbert class fields tower (see Exercise 5.9.6).

(ii) The number field (totally complex of degree 10):

Q(ξ,
√
−36ξ4 + 125ξ3 − 221ξ2 + 182ξ − 80 ),

where ξ is a root of the polynomial:

X5 − 2X4 + 3X3 − 3X2 −X + 1,

has an infinite 2-class fields tower whose root discriminant is equal to 84.37 · · ·
(see Exercise 5.9.8).

(iii) The number field Q(θ) (totally complex of degree 12), where θ is a
root of the polynomial:
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X12 + 339X10 − 19752X8 − 2188735X6 + 284236829X4

+4401349506X2 + 15622982921,

has an infinite 2-tower of number fields (tamely ramified at a place dividing 3)
with root discriminant bounded by 82.2 · · · .

I thank F. Hajir and C. Maire for the authorization to reproduce the
details for this example and to use their source text (the notations being the
same as ours). We will see that cohomological computations of the Appendix
and genera theory (Chapter IV) are needed for the proof.

“ The number field arithmetic which is at the heart of our construction
takes place in degree 6 number fields; computer packages such as PARI and
KANT make it easy to carry out these calculations. However, we would like
to present the examples in such a way that a reader armed with an ordinary
calculator can verify all of our claims. To this end, we provide (at the cost
of lengthening the presentation slightly) much supplementary data and a
method for verifying each step in the reasoning. We also provide some data
(such as class number, generators for the unit group) whose validity need not
be verified but which would aid the reader who wishes to check our claims
independently.

Let k = Q(ξ) where ξ is a root of f = x6 + x4 − 4x3 − 7x2 − x + 1. The
prime factorization of the discriminant of f is df = −23·35509; thus, df = dk
is also the discriminant of k, and Zk = Z[ξ].

The roots of f are:

ξ1 = −0.761662453844681007917846097 · · ·
ξ2 = −0.699537962843721299070572553 · · ·
ξ3 = +0.295225713177299636689397098 · · ·
ξ4 = +1.830157823416367310460200115 · · ·
ξ5 = −0.332091559952632320080589281 · · ·

+1.833942276050826293170694152 · · ·
√
−1

ξ6 = −0.332091559952632320080589281 · · ·
−1.833942276050826293170694152 · · ·

√
−1.

Thus, k has signature (4, 1). The restricted class number of k is 1. The
unit group of k is generated by {ξ, 4ξ5 − 3ξ4 + 6ξ3 − 20ξ2 − 13ξ + 6, 6ξ5 −
4ξ4 + 9ξ3 − 30ξ2 − 21ξ + 8, −ξ5 + ξ4 − 2ξ3 + 6ξ2 + ξ − 1, −1}.

Generators for some Zk-ideals of small norm are listed in the table below
where πr = a5ξ

5 + a4ξ
4 + a3ξ

3 + a2ξ
2 + a1ξ + a0 generates a prime ideal

πrZk of norm r, and the coefficients of hπr , the minimal polynomial of πr,
are listed in descending powers.
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πr a5, a4, a3, a2, a1, a0 hπr
π3 −6, 4,−9, 30, 21,−7 1, 0,−5, 2, 5,−5, 3
π7 −9, 6,−13, 44, 31,−12 1, 1,−29, 98, 624,−449,−7
π13 −7, 5,−11, 36, 23,−9 1, 3,−4,−24,−23, 7, 13
π19 5,−4, 8,−26,−15, 6 1, 11, 50, 120, 151, 89, 19
π′

19 5,−3, 7,−24,−20, 6 1,−3,−10, 13, 29,−8,−19
π23 −5, 4,−8, 26, 15,−9 1, 7, 20, 30, 16,−20,−23
π′

23 6,−4, 9,−30,−22, 6 1, 6, 11, 0,−30,−46,−23
π29 11,−8, 17,−56,−35, 16 1,−7, 3, 52,−82, 55,−29
π31 7,−5, 11,−36,−22, 7 1, 9, 22, 13,−15,−38,−31

The fact that 19Zk has two prime factors of residue degree 1 can be seen,
for instance, from the factorization of f over F19: f(x) ≡ (x + 7)(x − 2)
(x4 + 14x3 + 2x2 + 11x + 4) mod 19. Similarly, f factors over F23 as f(x) ≡
(x + 10)2(x − 5)(x3 + 8x2 + 19x + 4) mod 23. To see that the pairs π19, π

′
19

and π23, π
′
23 generate different prime ideals, one can check that the minimal

polynomials of π19/π
′
19 and π23/π

′
23 are not integral.

The element η = −671ξ5 + 467ξ4 − 994ξ3 + 3360ξ2 + 2314ξ − 961
of Zk is totally negative. Its minimal polynomial is g(y) = y6 + 339y5 −
19752y4 − 2188735y3 + 284236829y2 + 4401349506y + 15622982921. The
ideal (η) factors into eight prime ideals of Zk; in fact, one can check that
η = π7π13π19π

′
19π23π

′
23π29π31. We let K = k(

√
η ), a totally complex field of

degree 12. A defining polynomial for K is g(y2). We note that η is congruent
to a square modulo 4Zk; explicitly, η = β2 + 4γ with β = ξ5 + ξ4 + ξ3 + 1
and γ = −173ξ5 + 112ξ4 − 270ξ3 + 815ξ2 + 576ξ − 237. Thus, the relative
discriminant dK/k is simply (η), and K/k is complexified at the four real
infinite places of k, ramified at the eight primes dividing η, and nowhere else.
The root discriminant of K is:

rdK = rdk.(NK/kdK/k)1/12

= (23 · 35509)1/6(7 · 13 · 192 · 232 · 29 · 31)1/12 = 68.363 · · ·

Consider t := {p} for the prime p = π3Zk of k above 3; p is inert in K/k.
We put T = {pZK}. ”

Now we leave the text of [HM2] and give a direct (but similar) reasoning
for the infiniteness of the group GK,T = Gres

K,T = Gord
K,T := Gal(HK,T (2)/K)

whose abelianization is isomorphic to (C�K,T )2. Suppose that GK,T is finite.
Recall that d := d(GK,T ) = rk2(H

1(GK,T ,Z/2Z)) = rk2(C�K,T ), and that
r := r(GK,T ) = rk2(H

2(GK,T ,Z/2Z)). Then, from Corollary 3.8.2 of the
Appendix with ES

m = EK,pZK , we obtain:

d < 2 + 2
√

6 < 6.9

since r1 = 0, r2 = 6, and −1 �≡ 1 mod pZK .
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Now we apply Corollary IV.4.5.1 to the extension K/k for the sets t and
s = Plrk,∞; since all elements of s are complexified in K, this gives:

1 −→ Eord
k,p /Eord

k,p ∩NK/k(JK) ν−→Ωs
t (K/k) π−→(Gal(HK/k,t/K Hord

k,t ))2 −→ 1,

where:
Eord
k,p := {ε ∈ Eord

k , ε ≡ 1 mod p},

Ωs
t (K/k) �

{
(σu)u/∈t ∈

⊕
u∈s

Dv(K/k)
⊕

u/∈t∪s
Iu(K/k),

∏
u/∈t

σu = 1
}
� (Z/2Z)11

since, in K, four real infinite places of k are complexified and eight finite places
of k are ramified. Since d = rk2(Gal(HK,T /K)) ≥ rk2(Gal(HK/k,t/K Hord

k,t )),
we have:

d ≥ rk2(Ω
s
t (K/k))− rk2(E

ord
k,p ) = 11− 4 = 7

because the numerical data above show that rk2(E
ord
k,p ) = 4, a contradiction.

Therefore, K has an infinite 2-tower of number fields (tamely ramified at
a place dividing 3, unramified elsewhere) with a root discriminant bounded
by rdK × 91/12 = 82.1 · · · , giving α(0) < 82.2 · · · .

Note that the classical reasoning with class groups (i.e., t = ∅) and cor-
responding genera theory does not succeed in this case.

5.9.5 Exercise (Golod–Šafarevič’s first example). Show that the 2-class
fields tower of K = Q(

√
−2× 3× 5× 7× 11× 13 ) is infinite (hint: use

the Example of Corollary IV.4.5.1 in K/Q, and Corollary 3.8.2 of the Ap-
pendix).

5.9.6 Exercise. Consider the fields k = Q(
√
−131 ) whose class number is 5,

and put K = Q(
√

53× 131 ). Let M = Hk(
√
−53 ), where Hk is the Hilbert

class field of k. Note that C�resK � Z/2Z× Z/2Z and C�ordK � Z/2Z.
(i) Check that 53 is totally split in Hk/Q and that 2 is totally split in

Hk/k.
(ii) Deduce that rk2(C�M ) ≥ 9 (apply IV.4.5.1 in M/Hk).
(iii) Prove that the 2-class fields tower of M is infinite. Therefore, the class

fields tower of K, in the restricted sense, is infinite since M/K is unramified
(but not necessarily its 2-class fields tower !).

(iv) Using Corollary 3.8.1 of the Appendix, show that the class fields tower
of K in the ordinary sense is finite. Therefore, it is K(

√
53 ).

For generalizations of such examples, see [Mai1].

5.9.7 Exercise (after [Mai3] using PARI). Consider the totally real field F
associated to the irreducible polynomial:

X7 − 3X6 − 13X5 + 28X4 + 42X3 − 47X2 − 31X + 12,

whose discriminant is the prime number � = 17380678572159893 (the Galois
group of the Galois closure of F/Q is S7).
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Let q = 1051, r = 16747, K = Q(
√

� . q . r ), and M = FK.
(i) Check the decomposition of �, q, r in F/Q (hint: � splits into five

places of residue degree 1 and one place of ramification index 2; q splits into
six places; r is totally split).

(ii) Deduce that M has an infinite 2-Hilbert class fields tower H
ord

M (2) and
that M/K is unramified. Therefore, the Galois closure of H

ord

M (2) over K is
an infinite unramified Galois extension of K.

(iii) Prove that the Hilbert tower H
ord

K of K is equal to the genus field
Q(
√

� ,
√

q . r ) of K (hint: check that the fields Q(
√

� ) and Q(
√

q . r ) are
principal and that the class number of K is equal to 2). Note that the genus
field of K is thus principal and admits an infinite unramified extension.

For other similar constructions, see [Mai3].

5.9.8 Exercise (after [HM2] using PARI). Consider the Example 5.9.4, (ii).
Let k = Q(ξ), K = k(

√
η ), with η = −36ξ4 + 125ξ3 − 221ξ2 + 182ξ − 80.

Show that the discriminant of k is −31391, that its signature is (3, 1), that
η is totally negative and such that (η) = π7π

′
7π11π

′
11π13π19π

′
19π23π29, with

the principle of notations of the Example 5.9.4, (iii). Deduce that K/k is
ramified at nine finite places and complexified at three real places, so that
d ≥ 7. Conclude that the 2-Hilbert tower of K cannot be finite.

In the totally complex case, the historical example of Martinet (published
in 1978 in [Mar1]) yields a root discriminant less than 92.4 in the following
way. Consider k = Q(µ11,

√
2 )nc, a totally real field of degree 10 in which 23

is totally split, and use K/k = k(
√
−23 )/k which is ramified at ten places

v|23 and complexified at ten real places.

§6 The Hasse Principle — For Norms — For Powers

6.1 An Index Computation. The equality:

(JK : K×NL/K(JL)) = [Lab : K],

which comes from the fundamental properties of the global reciprocity map
for a finite extension L/K will allow us to give a nontrivial example of the
local-global principle mentioned in the Introduction, the Hasse norm theorem.
For this, we will interpret this index as a product of suitable norm indices; this
computation, which is useful in practice only when L/K is a cyclic extension,
involves interesting arithmetic invariants (such as the order of the group of
ambiguous classes). For a cohomological approach see [d, Lang1, Ch. IX].

6.1.1 Notations. Let L/K be a cyclic extension with Galois group G =:
〈σ 〉, and write NL/K =: N. Recall that for S = ∅, US = U , ES = E, and
C�S = C� denote respectively the group of unit idèles in the restricted sense
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(U res), the group of units in the restricted sense (Eres), and the restricted
class group (C�res) of K. In the computations below, to simplify notations we
omit these superscripts.

Finally, it will be necessary to check that each of the indices that we will
write below is finite (in particular by using the fact that JL/L

×UL � C�L and
JK/K×UK � C�K are finite).

Because of the inclusions K×N(UL) ⊆ K×N(JL) ⊆ JK , we have the
equality:

(JK : K×N(JL)) =
(JK : K×N(UL))

(K×N(JL) : K×N(UL))

(the finiteness of the numerator comes from that of JK/K×UK � C�K and
from that of UK/N(UL) by local class field theory 1.4.3). We have the exact
sequence:

1 −→ K× ∩N(JL)/K× ∩N(L×UL) −−−→ N(JL)/N(L×UL) −−−→
K×N(JL)/K×N(UL) −→ 1,

since the kernel is equal to:

K×N(UL) ∩N(JL)/N(L×UL) � (K× ∩N(JL))N(UL)/N(L×UL)
� K× ∩N(JL)/K× ∩N(L×UL) ;

thus, N(JL)/N(L×UL) being finite as a quotient of C�L, we obtain the formula:

(JK : K×N(JL)) =
(JK : K×N(UL))(K× ∩N(JL) : K× ∩N(L×UL))

(N(JL) : N(L×UL))
;

furthermore, the exact sequence:

1 −→ NJL L×UL −−−→ JL −−−→ N(JL)/N(L×UL) −→ 1,

where NJL := {x ∈ JL, Nx = 1}, allows us to interpret the finite index
(N(JL) : N(L×UL)) in the form:

(JL : NJL L×UL) =
(JL : J1−σ

L L×UL)
(NJLL×UL : J1−σ

L L×UL)
·

It is here that class groups enter since, in the exact sequence:

1 −→ J1−σ
L L×UL/L

×UL −−−→ JL/L
×UL −−−→ JL/J

1−σ
L L×UL −→ 1,

JL/L
×UL � C�L and J1−σ

L L×UL/L
×UL � (C�L)1−σ; we thus have:

1 −→ (C�L)1−σ −−−→ C�L −−−→ JL/J
1−σ
L L×UL −→ 1

and thanks to:
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1 −→ (C�L)G −−−→ C�L −−−→ (C�L)1−σ −→ 1,

this allows us to write:

(JL : J1−σ
L L×UL) = |(C�L)G|,

which is equal to the number of invariant classes for the cyclic extension L/K
(also called the number of ambiguous classes); the (delicate) computation of
|(C�L)G| yields the following result.

6.1.2 Lemma. For any cyclic extension L/K with Galois group G, we have:

|(C�L)G| =
|C�K |

∏
v∈Pl0

ev

[L : K] (EK : EK ∩NL×)
,

where ev is the ramification index of v in L/K. 40

Therefore, we have obtained:

(JK : K×N(JL)) =
(JK : K×N(UL))
|(C�L)G| ×

(K× ∩N(JL) : K× ∩N(L×UL))(NJL L×UL : J1−σ
L L×UL) ;

however, we can write:

(JK : K×N(UL)) = (JK : K×UK)(K×UK : K×N(UL))

= |C�K |
(UK : N(UL))

(EK : EK ∩N(UL))
,

since we have the exact sequence:

1 −→ EK/EK ∩N(UL) −−−→ UK/N(UL) −−−→ K×UK/K×N(UL) −→ 1.

By local class field theory (see 1.4.3, (ii)), the numerator is:

(UK : N(UL)) =
∏
v∈Pl0

ev,

and the denominator can be written in the form:

(EK : EK ∩N(UL)) =
(EK : EK ∩NL×)

(EK ∩N(UL) : EK ∩NL×)
,

the inclusion EK ∩ NL× ⊆ EK ∩ N(UL) being an easy consequence of 2.5.4
(we have here EK ∩N(UL) = EK ∩N(JL)). Thus, the index (JK : K×N(UL))
can be written:
40 Recall that classes and units are taken in the restricted sense; for the ordinary

sense, see 6.2.3.
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(JK : K×N(UL)) =
|C�K |

∏
v∈Pl0

ev

(EK : EK ∩NL×)
(EK ∩N(UL) : EK ∩NL×)

= |(C�L)G| [L : K] (EK ∩N(UL) : EK ∩NL×)

using 6.1.2. Coming back to the expression for (JK : K×NJL), we obtain:

(JK : K×NJL) = [L : K] (EK ∩NUL : EK ∩NL×)×
(K× ∩N(JL) : K× ∩N(L×UL))(NJL L×UL : J1−σ

L L×UL) ;

this index being equal to [L : K] (by the fundamental equality of global class
field theory), we therefore obtain:

(i) EK ∩N(UL) = EK ∩NL×,
(ii) K× ∩N(JL) = K× ∩N(L×UL),
(iii) NJL L×UL = J1−σ

L L×UL.
Statement (iii) does not tell us much since NJL = J1−σ

L by the Hilbert The-
orem 90 for the idèle group in a cyclic extension; this fact has an analog for
an arbitrary Galois extension L/K and can be written H1(G, JL) = 1 (see
2.4). But one checks that (ii) can be written:

K× ∩N(JL) = K× ∩N(L×UL)
= NL× (EK ∩N(UL))
= NL× (EK ∩NL×) (by (i))
= NL×.

Thus we have proved the following result.

6.2 Theorem (Hasse’s norm theorem (1930)). Let L/K be a cyclic extension
of number fields.
Then a necessary and sufficient condition for an x ∈ K× to be the norm of an
element of L× is that x be a local norm everywhere for L/K or, equivalently,
iv(x) =: NLv/Kv (yv), yv ∈ L×

v , for all v ∈ Pl.

The product formula tells us that this is equivalent to
(
x , L/K

v

)
= 1 for all

noncomplex places v except an arbitrarily chosen one.

6.2.1 Remark. Since by 4.4.3 we know how to compute the Hasse symbols(
x , L/K

v

)
, in the cyclic case it is numerically possible to know whether or not

x ∈ NL/K(L×); for this, we can omit the computation at an arbitrary place v0.
Recall also that it is sufficient to check this for the (finite) places which are
ramified in L/K (except one), as soon as we know that v(x) ≡ 0 mod (fv)
for every place v (in particular for v ∈ Plr∞), where fv is the residue degree
of v for L/K (see 1.4.3).

Note that Hasse’s theorem does not give us the solution y ∈ L× such that
NL/K(y) = x, but note that if y0 is one of them, the others will be given by
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y = y0 z1−σ, z ∈ L×. For an algorithmic point of view, see [Sim] or [j, Coh2,
Ch. 7, § 5] where S-unit groups play a fundamental role.

6.2.2 Exercise. Let L be a totally imaginary number field. It is known
(claimed by Hilbert (1902), proved by Siegel (1919)) that −1 is the sum of
1, 2, or 4 squares in L (with evident condition of minimality). Thus, if we
suppose that

√
−1 /∈ L, −1 is the sum of 2 squares if and only if it is a norm

in L(
√
−1 )/L.

Prove that this is the case if and only if for all w|2 the local degree
[Lw : Q2] is even (hint: use the Hasse norm Theorem 6.2 in L(

√
−1 )/L, and

show that −1 is a local norm at the odd places of L; for w|2, use the norm
residue symbols (−1, Lw(

√
−1 )/Lw), then the local norm lifting Theorem

1.5.4 for Kv = Q2, M = Q2(
√
−1 ), and finally 1.6.5).

We can omit a place w0|2 and deduce that the corresponding local degree
is even ! This is not surprising since here the product formula looks like:

∑
w|2

[Lw : Q2] = [L : Q] = 2r2(L) ≡ 0 mod (2).

For instance, there is nothing to do for the field L generated by a root of
X4 + 2X + 2.

6.2.3 Remark (Chevalley’s ambiguous class formula (1933)). Classically,
the above index computations are done in the ordinary sense (Uord, Eord,
and C�ord), which lead to a formula involving |(C�ordL )G|, which itself involves
the “ramification” of real infinite places, and which for us can be written
(still for a cyclic extension L/K):

|(C�ordL )G| =
|C�ordK |

∏
v∈Pl0

ev
∏

v∈Plr∞
fv

[L : K] (Eord
K : Eord

K ∩NL/K(L×))
·

This formula occurs for the first time in complete generality in [h, Che1]
and relies on work of Herbrand on the unit group, more precisely on the
computation of the Herbrand quotient of EL (see for instance [d, Lang1,
Ch. IX, § 1]), which is given by the formula:

(EK : NL/K(EL))
(NEL : E1−σ

L )
=

2r
c
1

[L : K]
,

where rc
1 is the number of real places of K complexified in L, and which is

the key of Chevalley’s formula.
It has been extended to the case of S-decomposition in [Ja2].

We also give without proof a more general formula which allows to perform
computations of invariant classes in cyclic extensions (see [Gr8]).
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6.2.4 Proposition (invariant class formula with unramified modulus). Let
L/K be a cyclic extension of number fields with Galois group G, and let

m =
∏
v∈T

pmvv , mv ≥ 0, T disjoint from the set of places which are ramified in

L/K. Let m′ be the extension of m to L. Let C′ := I ′PL,T,m′,pos/PL,T,m′,pos ⊆
C�resL,m′ , where I ′ is an arbitrary sub-G-module of IL,T . We then have:

|(C�resL,m′/C′)G| =
|C�resm |

∏
v∈Pl0

ev

[L : K] |NL/K(C′)| (Λ : Λ ∩NL/K(L×))
,

where Λ := {x ∈ K×
T,m,pos, (x) ∈ NL/K(I ′)}.

6.2.5 Remarks. (i) Recall that the action of NL/K on C�resL,m′ is given in 5.7,
and implies that NL/K(C′) makes sense.

(ii) By the Hasse norm Theorem 6.2, the term (Λ : Λ ∩ NL/K(L×)) is of
a local nature; it can be written (Λ : Λ ∩ NL/K(JL)) and depends only on
the norm residue symbols at the ramified places since the condition (x) ∈
NL/K(I ′) defining Λ implies that these norm conditions are already satisfied
at the unramified places (by 1.4.3).

This remark is of course valid for EK ∩ NL/K(L×) = EK ∩ NL/K(JL) in
the various ambiguous class formulas.

(iii) We obtain an expression for |(C�S′
L,m′)G|, where S′ ⊂ PlL is stable

under G, by choosing for C′ the G-module 〈 c�resL,m′(S′) 〉 (in the sense explained
in I.4.4.1, (ii)).

The Hasse principle is a key tool in the proof of the Hasse–Minkowski
theorem on quadratic forms over number fields (see also the direct proofs of
[a, BŠa; D; Se1]). The three-variable case is the object of Exercise 6.4 which
can also be found in [d, CF, Exer. 4] and which is given in all the books
dealing with the Hasse principle. The four-variable case is solved in 7.3.2.

When L/K is not cyclic, the Hasse principle is in general not true and its
defect group, which is essentially given in cohomological terms, is in fact an
algebraic invariant, related to the family of decomposition groups of ramified
places. To be complete on this, we simply give the following results of Scholz-
Tate involving Schur multipliers. 41

Let L/K be Galois with Galois group G; for any noncomplex place v of
K we denote by w a place of L above v, fixed arbitrarily, and we denote by
Dw the decomposition group of w in L/K.

6.2.6 Proposition. We have a canonical isomorphism (where H−3 := H2):

K× ∩NL/K(JL)/NL/K(L×) � H−3(G,Z)
/

Inf
(⊕

v
H−3(Dw,Z)

)
,

41 See [d, CF, Ch.VII, § 11.4], [Scholz1], [Jeh], as well as the work of Razar [Ra]
which is the culmination of several approaches (Garbanati, Gerth, Gurak, ...).
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where, for (αw)v ∈
⊕
v

H−3(Dw,Z), we put Inf((αw)v) :=
∏
v

Infw(αw), Infw
denoting the inflation map H−3(Dw,Z) −→ H−3(G,Z).

6.2.7 Remarks. (i) Since the group G is finite, by duality (see 2.4.1, (ii)),
we can express that the dual of K×∩NL/K(JL)/NL/K(L×) is isomorphic to:

Ker
(
Res : H2(G,Q/Z) −−−→

⊕
v

H2(Dw,Q/Z)
)
,

where Res := (Resw)v is the family of restriction maps. Since Q is uniquely
divisible, its cohomology is trivial and we may replace the H2( • ,Q/Z) by
the H3( • ,Z). When v is unramified in L/K, Dw is cyclic (generated by the
Frobenius of w), and H3(Dw,Z) = H1(Dw,Z) = 1, so that only the finite
ramified places enter in the definition of Inf and of Res.

(ii) Finally, when L/K is abelian, Razar has shown in [Ra] that we may
replace H−3(G,Z) and H−3(Dw,Z) by

∧2
G and

∧2
Dw, respectively, which

in this case enables us to perform explicit computations and to immedi-
ately construct counterexamples to the Hasse principle (the simplest being
Q(
√

13,
√

17 )/Q of Scholz, for which −1 is a local norm everywhere without
being a global norm; see [Scholz1] or [d, CF, Ch. VII, § 11.4]).

(iii) For example, if L/K is abelian and if there exists a place v of K such
that Dw = G, then the Hasse principle for the norm is true in L/K.

In the case where G � Z/pZ × Z/pZ, the Hasse principle for the norm
holds in L/K if and only if there exists v such that Dw = G.

We will again meet the default group K× ∩NL/K(JL)/NL/K(L×) in the
section dealing with central class fields (Ch. IV, § 4, (c), and Exercise IV.4.10).
This group is also called the knot group of the extension L/K, notion which
was introduced and studied by Scholz, then by Jehne.

6.3 Local-Global Principle for Powers. Starting with Chapter III,
we will come back to the fine study of the elementary parts of class field theory
so as to obtain the structure of Gal(K

ab
/K), and deduce a number of little-

known consequences. Meanwhile, in the following Theorem 6.3.3 the reader
will find the solution of an important local-global problem (the local-global
principle for powers) which only relies on the surjectivity of the Artin map
and on simple Kummer theory arguments which can found for the first time
in [SchFK] and in [Che5, I], and which should not be considered as a result of
class field theory, although it is an essential tool for it. 42 This result will be
crucial to explain in detail certain elements of the structure of Gal(K

ab
/K)

(for instance by means of the Schmidt–Chevalley Theorem III.4.3 and the
Grunwald–Wang Theorem III.4.16.4); note that it is the starting point for
the p-adic class field theory of Jaulent and for the study of the connected
component of the unit element of C done by Artin–Tate and Weil. Finally,
42 See [d, AT, Ch.X, § 1]; see also [e, Ko3, Ch. 2, § 1.12, Th. 2.21].
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we mention that it exhibits the famous special case (which is an obstruction
at 2 of the corresponding Hasse principle), which shows once more to those
who are not yet convinced, that 2 is the most “interesting” prime number.

6.3.1 Notations. Let K be a number field 43, and let pe for some e ≥ 1 be
a fixed power of a prime number p. We set (in a suitable algebraic closure):

µpe =: 〈 ζe 〉 and µpk =: 〈 ζk 〉, where ζk := ζp
e−k
e ,

for 0 ≤ k ≤ e. Denote by K ′ the field K(µpe), and set G′ := Gal(K ′/K)
which is isomorphic to a subgroup of (Z/peZ)×.

6.3.2 Theorem. Let x ∈ K× be such that x =: x′pe , x′ ∈ K ′×.
Then x = yp

e

for an y ∈ K×, except in the following exceptional case:
• p = 2, e ≥ 2,

• K ∩Q(µ2e) = Q(ζn + ζ−1
n ), for 2 ≤ n ≤ e,

• x = (−1)2
e−n

x0 . y2e , with x0 := (2 + ζn + ζ−1
n )2

e−1
and y ∈ K×.

In this case, (−1)2
e−n

x0 = (1 + ζn)2
e

.

6.3.3 Theorem (local-global principle for powers). Let Σ be a finite set of
places of K. Let x ∈ K× be such that iv(x) ∈ K×pe

v for all places v /∈ Σ.
Then x = yp

e

for an y ∈ K×, except in the following Σ-special case:
• p = 2, e ≥ 3,

• K ∩Q(µ2e) = Q(ζn + ζ−1
n ), for 2 ≤ n < e,

• for all places v ∈ Pl2\(Σ ∩ Pl2), Kv contains one of the numbers:

1 + ζn, ζn+1 + ζ−1
n+1,

√
−1 (ζn+1 + ζ−1

n+1),

• x = x0 . y2e , with x0 := (2 + ζn + ζ−1
n )2

e−1
and y ∈ K×.

We give detailed proofs by the way of the following exercise in which the
reader will find many other properties and examples, as well as the study of
an idèle s such that i(x0) = s2e in the special case (i.e., the Σ-special case
above for Σ = ∅). The notations are those of 6.3.1.

6.3.4 Exercise. Let x ∈ K× be such that x =: x′pe , for an x′ ∈ K ′×.
(α) (case p �= 2). In this case, G′ =: 〈σ 〉 is cyclic.

(i) Show that H1(G′, µpe) = 1 (since µpe is finite, its Herbrand quo-
tient 44 is trivial and we have |H1(G′, µpe)| = |µG′

pe /NK′/K(µpe)|; thus, one
can show the equality µG

′
pe = NK′/K(µpe), but one can also show by a direct

computation that Nµpe = µ1−σ
pe , where Nµpe is the kernel of NK′/K in µpe).

43 Result 6.3.2 is valid for any field of characteristic equal to 0; in particular it will
be used for the completions of the field K.

44 [d, Lang1, Ch. IX, § 1], [d, Se2, Ch.VIII, § 4].
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(ii) From the equality x = x′pe and the above results, deduce that
x = yp

e

for y ∈ K×.
(β) (case p = 2, e ≥ 2). In this case, G′ is isomorphic to a subgroup of

〈−1 〉 ⊕ 〈 5 〉 in (Z/2eZ)×. Set Q := K ∩Q(µ2e).
(i) Show that x ∈ K×2e is still true if K contains Q(µ4) or if for some

n ≥ 3, Q is equal to the subfield Q′
n−2 of Q(µ2n), of relative degree equal

to 2, different from Qn−2 := Q(ζn + ζ−1
n ) (see Fig. 6.1) (thus there will only

remain the case where Q = Qn−2 for some n ≥ 2).
(ii) Show that in all other cases, we have x ∈ 〈−1 〉K×2e−1

.
From now on, we assume that Q = Qn−2 for e ≥ n ≥ 2; in particular

K1 := K(
√
−1 ) is a quadratic extension of K containing µ2n and not µ2n+1 .

(iii) Show that, if the set of counterexamples (to x ∈ K×2e) is not
empty, it is of the form x0K

×2e for an arbitrary solution x0 (by abuse of
language we will say that the counterexample is unique).

(iv) Show that, for all n ≥ 2:

xn := (1 + ζn)2
n ∈ Q×

n−2 ∩ (Q(µ2n))×2n , where Qn−2 := Q(ζn + ζ−1
n ),

and that it is also an element of −Q×2n−1

n−2 .
(v) Conclude by giving a characterization of the cases where K contains

a counterexample, and give its value. This will prove Theorem 6.3.2.
(γ) (Hasse principle for powers). In this question, p is once again an

arbitrary prime number and e an integer which is ≥ 1. Let Σ be a finite set
of noncomplex places of K, and let x ∈ K× be such that iv(x) ∈ K×pe

v for all
places v not belonging to Σ. Consider the Kummer extension K ′( pe

√
x )/K ′.

(i) Check that there exists a place v′0 of K ′, unramified in K ′( pe
√

x )/K ′,
which is not above a place of Σ, whose Frobenius in K ′( pe

√
x )/K ′ is a gen-

erator (density Theorem 4.6).
(ii) Deduce that x ∈ K ′×pe , and then that x ∈ K×pe , except perhaps

in the case p = 2, for a particular case which one asks to characterize: it is
the Σ-special case, where nonetheless we have x ∈ K×2e−1

.
(iii) Let peJ (resp. peC) be the set of idèles (resp. of idèle classes) of

order a divisor of pe, and let c� be the canonical map J −→ C. Deduce from
the above that peC = c�(peJ) except in the Σ-special case for Σ = ∅ (then
simply called the special case), in which case 2eC = 〈 c�(s) 〉 . c�(2eJ), with
c�(s2) ∈ c�(2e−1J), c�(s) /∈ c�(2eJ) for a suitable idèle s (see the data in the
proof of (ii) above). In other words, 2eC/c�(2eJ) has order 2 in the special
case.

Answer. For statements (α) and (β), we may assume that µpe �⊂ K; note also
that µG

′
pe = µp(K) is of the form µpk for 0 ≤ k < e, with k ≥ 1 for p = 2.

(α) (i) If k = 0, the result is trivial. If k ≥ 1, K ∩ Q(µpe) = Q(µpk)
(indeed, between Q(µpk) and Q(µpe) there exist only the fields Q(µpk+i) for
0 ≤ i ≤ e− k since k ≥ 1), G′ has order pe−k, and we have:
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Irr(ζe,K) = Xpe−k − ζk,

hence µpk ⊆ NK′/K(µpe).

(ii) If x = x′pe , we have 1 = (x′1−σ)p
e

, hence x′1−σ =: ζ ′ ∈ Nµpe ;
since H1(G′, µpe) = 1 (i.e., Nµpe = µ1−σ

pe ), there exists ξ ∈ µpe such that
ζ ′ = ξ1−σ, and there exists y ∈ K× such that x′ = ξy. We thus have x = yp

e

.
We can also say that the exact sequence:

1 −→ µpe −−−→ K ′× pe−−−→K ′×pe −→ 1,

yields, since H1(G′, µpe) = 1, the surjective map:

K ′×G = K× pe−−−→K ′×peG = K× ∩K ′×pe ,

so that K×pe = K× ∩K ′×pe .
(β) (i) If K contains Q(µ4), we have Q = Q(µ2k) for k ≥ 2, G′ is cyclic

of order 2e−k, and we still have Irr(ζe,K) = X2e−k − ζk and the same result
(here we find that −ζk ∈ NK′/K(µ2e), but ζk = (−ζk)1+2k−1

).

The following field diagram gives the structure of Q(µ2∞)/Q:

Q=Q0 Q1 Qn−2 Qn−1Qn−3

Q(µ22) Q(µ23) Q(µ2n) Q(µ2n+1)Q(µ2n−1)

Q′
1 Q′

n−2 Q′
n−1

. . .

. . .

. . .

. . .

Fig. 6.1

If for some n ≥ 3, Q = Q′
n−2 (which is the subfield of Q(µ2e) fixed under

〈−52n−3

〉), then necessarily n ≤ e, the group G′ is cyclic of order 2e−n+1 and
we have:

Irr(ζe,K) = X2e−n+1 − ωX2e−n − 1,

where ω := ζn − ζ−1
n , so that NK′/K(µ2e) = 〈−1 〉 = µ2(K). In this case, we

still have x = y2e .
(ii) If we consider the equality x = x′2e in K1 := K(

√
−1 ) ⊆ K ′,

fact (i) shows that there exists y1 ∈ K×
1 such that x = y2e

1 ; hence, x2 =
NK1/K(x) = (NK1/K(y1))

2e , proving the existence of y := NK1/K(y1) ∈ K×

such that x = ±y2e−1
.

(iii) Let τ be the generator of Gal(K1/K). From the following exact
sequence of 〈 τ 〉-modules:
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1 −→ µ2n −−−→ K×
1

2e−−−→K×2e

1 −→ 1,

by taking invariants under 〈 τ 〉, we obtain:

1 −→ µ2 −−−→ K× 2e−−−→K× ∩K×2e

1 −−−→ H1(〈 τ 〉, µ2n) −→ 1

since H1(〈 τ 〉,K×
1 ) = 1 (Theorem 90). Thus, the Herbrand quotient of µ2n

being trivial:

K× ∩K×2e

1 /K×2e � Nµ2n/µ
1−τ
2n � µ2/NK1/K(µ2n),

and so “the” counterexample happens if and only if NK1/K(ζn) = 1, hence
if and only if τ(ζn) = ζ−1

n , which means that Q(ζn + ζ−1
n ) ⊆ K, i.e., Q =

Q(ζn + ζ−1
n ), which is indeed the case.

(iv) If n ≥ 2, we have xn := (1 + ζn)2
n ∈ Q×

n−2 since (1 + ζ−1
n )2

n

=
(ζ−1
n (ζn + 1))2

n

= (1 + ζn)2
n

; furthermore, we have:

(1 + ζn)2 = 1 + ζ2
n + 2ζn = ζn(ζ

−1
n + ζn + 2),

which shows that:

xn = −y2n−1

n , with yn := 2 + ζn + ζ−1
n ∈ Q×

n−2.

Note that xn is not even a square in Q×
n−2

(v) Assume that K does not contain Q(µ4) and is such that Q �= Q′
n−2

for all n ≥ 3. We thus have:

Q = Qn−2 for some n ≥ 2.

Recall that K×
1 ∩ µ2e = µ2n since K1 ∩ Q(µ2e) contains Q(µ4) and Qn−2,

hence Q(µ2n), the only possible quadratic extension of Qn−2.
If n = e, by “uniqueness” the counterexample in K is equal to:

x := xe = −y2e−1

e (equal to (1 + ζe)2
e

in K ′)

(indeed, if we had x = y2e with y ∈ K×, then −1 would be a square in K,
which is not the case).

If n < e, we have at our disposal the element xn ∈ Q×
n−2 (see (iv)) such

that:
xn = −y2n−1

n , yn ∈ Q×
n−2,

so that we can consider:

x := x2e−n
n = y2e−1

n (equal to (1 + ζn)2
e

in K ′) ;

x is the desired counterexample in K: indeed, if y2e−1

n = y2e , y ∈ K×, then
yn = ξy2, ξ ∈ µ2e−1 ; but ξ ∈ K×, hence ξ = ±1 so we easily obtain:
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y = ±(ζn+1 + ζ−1
n+1), if ξ = 1,

y = ±
√
−1 (ζn+1 + ζ−1

n+1), if ξ = −1.

But the field Qn−2(y) ⊆ K is respectively equal to Qn−1 and to Q′
n−1,

which means (since here n < e) that K ∩ Q(µ2e) is not equal to Qn−2, a
contradiction.

To summarize, the counterexample of Theorem 6.3.2 takes place if and
only if:

K ∩Q(µ2e) = Q(ζn + ζ−1
n ), 2 ≤ n ≤ e,

and it is given by:

x := (−1)2
e−n

(2 + ζn + ζ−1
n )2

e−1

(equal to (1 + ζn)2
e

in K ′).

6.3.4.1 Examples. (i) If K does not contain Q(µ4) and if we take e = 2,
we always obtain Q = Q = Q0 (i.e., n = e = 2), and:

x = x2 = −4 = (1 +
√
−1 )4,

which is a 4th power in K(
√
−1 ) but is not a square in K.

(ii) For e = 3, if K contains Q1 = Q(
√

2 ) but does not contain Q(
√
−1 ),

we obtain Q = Q1 (i.e., n = e = 3), and:

x = x3 = −(2 +
√

2 )4 = (1 + ζ3)
8,

with ζ2
3 =
√
−1 , ζ3 + ζ−1

3 =
√

2.
(iii) Finally note that, when K does not contain Q(

√
2 ) and e = 3, Q =

Q0, hence n = 2, we have:

x = x2
2 = 16 = (1 +

√
−1 )8 = (

√
2 )8 = (

√
−2 )8,

which is an 8th power in Q(µ8) and only a 4th power in K.

Note. The case n = e ≥ 2 is the only case where there exists a counterexample with

K′/K cyclic (of degree 2); we will see that the special case assumes the noncyclicity,

hence n < e with n ≥ 2.

(γ) (i) Since K ′( pe
√

x )/K ′ is cyclic, there exists an infinite number of
such places by the density theorem or simply the surjectivity of the Artin
map (but the finiteness assumption on Σ is essential).

(ii) Let v be the place of K below v′0. The extension K ′( pe
√

x )/K ′ is split
at v′0 (since iv(x) ∈ K× pe

v , a fortiori i′v′0(x) ∈ K ′×pe
v′0

), hence the Frobenius

of v′0 is equal to 1, and K ′( pe
√

x ) = K ′, hence x ∈ K ′×pe . We thus have
x ∈ K× pe , except if p = 2, e ≥ 2, Q = Qn−2 for some n such that 2 ≤ n ≤ e,
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and if (up to an element of K× 2e) x = (−1)2
e−n

y2e−1

n . But since e ≥ 2, in
the case x = −y2e−1

e we would have −1 ∈ K× 2
v for all places v /∈ Σ (since

y2e−1

e ∈ K× 2); this is impossible since
√
−1 /∈ K (choose v1 /∈ Σ such that

the Frobenius of v1 for K(
√
−1 )/K is of order 2, or simply note that this is

the reasoning used in (i) above for e = 1 with x = −1). We are thus in the
case where (see (β), (v)):

Q = Qn−2, 2 ≤ n < e,

which corresponds to the counterexample x = x2e−n
n = y2e−1

n . It follows that
the extension K ′/K contains the biquadratic subextension KQ(µ2n+1)/K
since e ≥ n + 1. In K ′ we have:

x = (1 + ζn)2
e

= (ζn+1 + ζ−1
n+1)

2e = (
√
−1 (ζn+1 + ζ−1

n+1))
2e ,

so that 1 + ζn, ζn+1 + ζ−1
n+1,

√
−1 (ζn+1 + ζ−1

n+1) are generators over K of
KQ(µ2n), KQn−1, KQ′

n−1, respectively.
But if v is any place of K not dividing 2, it is split in at least one of

the three extensions KQ(µ2n), KQn−1, and KQ′
n−1 (since v is unramified

in KQ(µ2n+1)/K and Gal(KQ(µ2n+1)/K) � (Z/2Z)2). It follows that for
such places iv(x) ∈ K×2e

v (for instance if v|∞, the splitting takes place in
KQn−1/K). It follows that our initial assumption (iv(x) ∈ K× pe

v for all
v /∈ Σ) is satisfied for x, except perhaps for the even places not belonging
to Σ.

Finally, if v divides 2, iv(x) ∈ K×2e

v if and only if Kv contains one of the
three quadratic extensions of Qn−2 in Q(µ2n+1), in other words if v splits at
least partially in KQ(µ2n+1)/K (apply the results of (α) and (β) to Kv by
discussing over Kv ∩Q(µ2e)).

This defines the Σ-special case of Theorem 6.3.3, which is especially
tricky:
• p = 2, e ≥ 3,
• K ∩Q(µ2e) = Q(ζn + ζ−1

n ), for some n such that 2 ≤ n < e,
• for all places v ∈ Pl2\Σ2, Kv contains one of the numbers: 45

1 + ζn, ζn+1 + ζ−1
n+1,

√
−1 (ζn+1 + ζ−1

n+1),

the defect to the Hasse principle relative to Σ being due to:

x ∈ x0K
×2e , with x0 = (2 + ζn + ζ−1

n )2
e−1

,

where ζn = ζ2
n+1 is a generator of µ2n .

The minimal example is for K = Q, e = 3, n = 2, Σ = Pl2, which is the
example x = 16 given in 6.3.4.1, (iii).
45 where the first one may be replaced by

√
−1 since Qn−2(

√
−1 ) = Q(µ2n).
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6.3.4.2 Notation. We introduce the set Plns
2 of the (“nonsplit”) places v|2

such that Gal(Kv(µ2n+1)/Kv) is isomorphic to Z/2Z×Z/2Z (or, equivalently,
Kv ∩Q(µ2e) = Qn−2).

We can say that the third condition of the Σ-special case is equivalent to
the condition:
• Plns

2 ⊆ Σ2,
according to the following diagram:

Plnc

Pl2
Σ2 Σ\Σ2

Plns
2

| | | | | |

This diagram means that we have (unfortunately, when Plns
2 �= ∅) discarded

the places v|2 which would have told us (for a local reason) that x is not a
2eth power. In other words, to choose Σ2 ⊇ Plns

2 when Plns
2 �= ∅ is in practice

artificial, and the true special case corresponds to the fields K for which:

K ∩Q(µ2e) = Q(ζn + ζ−1
n ), for some n such that 2 ≤ n < e,

and whose places v|2 are all partially split in KQ(µ2n+1)/K (i.e., Plns
2 = ∅).

6.3.4.3 Remark (special case: the idèle s). The Hasse principle for powers
consists precisely in choosing Σ = ∅, in which case the last condition (cor-
responding to the existence of the special case, hence to the fact that the
principle is false) can be written:
• Plns

2 = ∅.
In this case i(2 + ζn + ζ−1

n )2
n

is of the form s2n+1
, where s is an idèle whose

components sv are, at each place, one of the numbers (considered in Kv):

1 + ζn, ζn+1 + ζ−1
n+1,

√
−1 (ζn+1 + ζ−1

n+1).

For any e > n, we also have i(x0) := i(2 + ζn + ζ−1
n )2

e−1
= s2e . The idèle s

is not unique and is clearly defined only up to some element of 2n+1J (this
comes from the fact that if v is totally split in KQ(µ2n+1)/K, we can choose
the component sv among three possibilities; this total splitting is equivalent
to ζn+1 ∈ Kv).

One should keep in mind that for all e > n, the idèle group 〈 s 〉 . 2eJ does
not depend on the choice of s .

(iii) Note (still in the special case with Plns
2 = ∅) that s2 is of the form

ζ i(2 + ζn + ζ−1
n ), where ζ ∈ 2nJ , ζ /∈ 2n−1J : indeed, we have ζ =: (ζv)v with

ζv = ζn, or ζv = 1, or ζv = −1 since:
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(1 + ζn)2 = ζnyn, (ζn+1 + ζ−1
n+1)

2 = yn, (
√
−1 (ζn+1 + ζ−1

n+1))
2 = −yn,

with yn := 2 + ζn + ζ−1
n ; but by the Čebotarev theorem, we have equidistri-

bution of all possibilities. In other words:

c�(s) ∈ 2n+1C, c�(s) /∈ 2nC.

Finally, for all e > n:

c�(s2) ∈ c�(2e−1J), c�(s) /∈ c�(2eJ)

(indeed, otherwise we would easily obtain yn ∈ ±K×2, which is absurd).
Let x be an idèle such that c�(x)p

e

= 1; there exists x ∈ K× such that
xp

e

= i(x), so that iv(x) ∈ K×pe
v for all noncomplex places v. Thus, in general

we have xp
e

=: i(y)p
e

, y ∈ K×, which yields x =: ζ i(y), where ζ ∈ peJ is
an idèle of the form (ζv)v, with ζv ∈ peµ(Kv); the result follows in this case.

The special case gives the additional solutions x2e = s2e . i(y2e), which
proves the final result (independently of the choice of s). This finishes the
question (γ) and the exercise.

For use in Exercise 6.4 on quadratic forms below, we note that we have
shown that a ∈ K× is a square in K× if and only if it is a square locally at
almost every place of K since troubles can start only for 8th powers.

6.3.5 Remarks. (i) The existence of a counterexample to the equality:

K× ∩K(µpe)
× pe = K× pe

(Theorem 6.3.2) should not be mistaken with a Σ-special case (Theorem
6.3.3), which is a counterexample to the Hasse principle for powers and which
is relative to the choice of Σ; the former case is characterized by the following
conditions:
• p = 2, e ≥ 2,
• K ∩Q(µ2e) = Q(ζn + ζ−1

n ), for 2 ≤ n ≤ e,

and concerns x := (−(2 + ζn + ζ−1
n )2

n−1
)2
e−n

, which yields the minimal ex-
ample x = −4 (for K = Q and e = 2) which is never a special case. To avoid
any misunderstanding, this case has been called instead the exceptional case.

(ii) Note also that ±(2 + ζn + ζ−1
n )2

n−1
is a 2nth power in each of the

three quadratic subextensions of KQ(µ2n+1)/K (the minus sign occurs only
for KQ(µ2n)/K and the relation (2 + ζn + ζ−1

n )2
n−1

= −(1 + ζn)
2n).

Finally, we give the following numerical example of a true special case.

6.3.6 Example. Let K = Q(
√

7 ), p = 2, and e = 3. Then K ∩ Q(µ8) = Q

(i.e., n = 2), so that we have the exceptional case with x = 16 (we have
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16 = (1 +
√
−1 )8 = (

√
2 )8 = (

√
−2 )8 in Q(µ8)). From the above, we know

that iv(x) ∈ K×8
v for any place not dividing 2, and for the unique place v0 of K

above 2, we have Kv0 = Q2(
√

7 ) = Q2(
√
−1 ) (i.e., Plns

2 = ∅), which implies
that iv0(x) ∈ K×8

v0 (we could also have chosen K = Q(
√
±14 )). We thus have

a special case (i.e., Σ = ∅); therefore it is an absolute counterexample to the
Hasse principle for powers.

We will speak of the special case only in this type of situation.

6.3.7 Exercise. Consider the special case of Example 6.3.6 above. Let � be
the residue characteristic of v ∈ Pl0. Show that the idèle s =: (sv)v (see
6.3.4.3) can be chosen as follows. If � = 2, sv = 1 +

√
−1; if � = 7, sv =

√
2;

if � ≡ 1 mod (4), sv = 1 +
√
−1, and if � ≡ −1 mod (4), sv =

√
(−1)

�+1
4 2 .

Check that 1+
√
−1,
√

2,
√
−2 are all possible for sv if and only if |Fv| ≡

1 mod (8) (i.e., � ≡ 1 mod (8), or � �≡ 1 mod (8) and � ≡ ±5, ±11, ±13 mod
(28)).

6.3.8 Exercise (another criterion for pth powers). Let S be a finite set of
noncomplex places of K such that (〈 c�resK′(S′) 〉)p = (C�resK′)p (in the sense of
I.4.4.1, (ii)), where S′ is the set of places of K ′ := K(µp) above those of S.
Let x ∈ K× satisfying the following conditions:
• (x) = ap, for an ideal a of K,
• iv(x) ∈ K×p

v for all v ∈ S ∪ Plp.
Show that x ∈ K×p.

Answer. The assumption on S′ in K ′ is equivalent to HS′
K′ (p) = K ′. But the

assumption (x) = ap implies that K ′( p
√

x )/K ′ is unramified outside p, and
the assumption iv(x) ∈ K×p

v for all v ∈ S ∪Plp implies that it is S′-split and
finally unramified; thus K ′( p

√
x ) ⊆ HS′

K′ , hence x ∈ K×p by the above and
6.3.2 for e = 1.

Here, the number of local conditions is finite, but the required conditions
assume the knowledge of the p-class group of K ′.

We can also replace the conditions iv(x) ∈ K×p
v for v|p by the Kummer

nonramification conditions for places above p (use I.6.3, (ii) in K ′).

6.3.9 Remark. Let K be a number field and p a prime. Suppose we need
to prove that some α ∈ K× is not a pth power in K. Then it is sufficient to
find a place v � p such that α is not congruent to a pth power modulo pv.
The local-global principle for powers implies that such a place always exists
but it does not give a bound for the number of tests.

6.4 Exercise (quadratic forms in three variables). For a, b ∈ K×, consider
the quadratic form:
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(q) X2 − aY 2 − bZ2.

We will say that it represents 0 in K if there exist x, y, z ∈ K (not all zero)
such that:

x2 − ay2 − bz2 = 0.

Set L = K(
√

a ).
(i) Check that (q) represents 0 in K if and only if b ∈ NL/K(L×).
(ii) Characterize the finite places of K which are ramified in L/K (see

I.6.3).
(iii) Check that, for unramified places v (finite or not), the local norm

condition iv(b) ∈ NLv/Kv (L
×
v ) (where Lv = Lw = Kv(

√
a ), for any w|v) is

equivalent to v(b) ≡ 0 mod (fv). For a concrete use of this, note that it is
necessary to check the local conditions only when v(b) is odd, and that then
we must have fv = 1, which is the case if and only if iv(a) ∈ K×2

v .
To apply the Hasse principle, we can now assume that we are in the

case where the bad places are the finite ramified places (where one may be
omitted). It is then necessary to compute the symbols (iv(b), Lv/Kv) which

can be identified with the quadratic Hilbert symbols
(
a, b

v

)
over K; the case

of odd places corresponds to regular Hilbert symbols and is given by a formula
(see 1.6.8 for n = 2), so there essentially remains the case of even places. These

symbols are also the Hasse symbols
(
b , L/K

v

)
that we know how to compute

in terms of Frobenius’ thanks to the global approach explained in 4.4.3 which
thus reduces to the techniques of question (iii) since here the conductor fL/K
is known by 1.6.3.

(iv) Let K = Q(
√

2 ), a = 2 + 3
√

2, and b = −15(1 +
√

2 ); does the form
(q) represent 0 in K ?

(v) Specialize all the above to K = Q, taking into account the impor-
tant simplifications that we have in this case, and show that, for v �= 2,
we have

(
a, b

v

)
=

(
u

v

)
(quadratic residue symbol in F×

v ), where u =

(−1)v(a)v(b) av(b) b−v(a) (a particular case of the general formula given in 1.6.8
and proved in 7.1.5). Although, because of the product formula it is not really
necessary to give a formula for the Hilbert symbol at v = (2), show that:

(
a, b

v

)
=
(
− 1

) a′−1
2

b′−1
2
(

2
u′

)
,

where a′ = 2−v(a) a, b′ = 2−v(b) b, u′ = av(b) b−v(a) = a′v(b) b′−v(a), and
where: (

2
u′

)
:=

(
− 1

)u′2−1
8

,

for a 2-adic unit u′.
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Answer. The case where a is a square in K× being solved trivially by a direct
study, we will implicitly assume that a is not a square; in this case, for any
solution, z is nonzero.

(i) We write:

b =
x2 − ay2

z2
= NL/K

(x + y
√

a

z

)
.

(ii) An odd place v is ramified if and only if v(a) ≡ 1 mod (2), an even
place is ramified if and only if a

t2
≡ 1 mod (4) is not soluble for t ∈ K×.

(iii) This is Corollary 1.4.3: if iv(b) ∈ NLv/Kv (L
×
v ) = NLv/Kv (π

Z

wUw) ⊂
πfvZ

v Uv, we indeed have v(b) ≡ 0 mod (fv) (including the case πv = −1 and
fv = 2 corresponding to a complexified real place v), and the converse comes
from the fact that, in the unramified case, Uv ⊆ NLw/Kv (Uw).

(iv) We have (a) = (
√

2 )(3 +
√

2 ) = p2p7 (the place 2 is ramified in K/Q

and the place 7 is split). It follows that the places of K which are ramified in
L/K are the places p2 and p7.

Since b = −15(1 +
√

2 ) has even valuation at every place except perhaps
at places above ∞, 3, and 5, we must see whether or not v(b) ≡ 0 mod (fv)
is true for these places; we will simply check that if v(b) ≡ 1 mod (2), then
fv = 1 (splitting):
• the place∞ splits in K/Q into two places v1, v2, and we have iv1(b) < 0

(i.e., v1(b) = 1), iv2(b) > 0 (i.e., v2(b) = 0). But we have iv1(a) > 0 (v1 is
split in L/K, hence fv1 = 1);
• the place 3 is inert in K/Q, hence Fv = F9, and since a ≡ −1 mod (3),

the residual image of a is a square (i.e., iv(a) ∈ K× 2
v , hence fv = 1);

• the place 5 is also inert, Fv = F25, and we find that a3 ≡ 1 mod (5),
hence that a is also a square at 5.

The remaining local norm conditions are for the even place p2 (which we
can omit), and for v = p7. We can compute the Hasse symbol:

(
b , L/K

p7

)
=
(
−15(1 +

√
2 ) , L/K

p7

)
.

In fact, it defines a regular Hilbert symbol of order 2 which we will learn how
to compute in 7.1.5; with this result, we would obtain:

(
a, b

p7

)
≡
(
(−1)v(a)v(b) av(b) b−v(a)

) qv−1
2 ≡ b−3 ≡ 1 mod p7.

Let us nonetheless directly compute this Hasse symbol knowing that the
conductor of L/K is (because of 1.6.3 which yields r = 0 in the computation
of the 2-part of the conductor):

f = p2×2+1
2 p7 = (4)p2p7.
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A p7-associate b′ of b must satisfy (see 4.4.3, (γ)):

b′ ≡ b mod p7 (since here v(b) = 0),
b′ ≡ 1 mod (4)p2,

iv2(b
′) > 0 (since only v2|∞ is complexified),

which for example yields b′ = 17 + 12
√

2. Here b′ happens to be a unit (this
was not done on purpose !); the ideal b (in the general formula (b′) =: p

v(b)
7 b)

whose Artin symbol we must compute is thus the unit ideal, hence b is indeed
a local norm at p7.

The product formula tells us that b is also a local norm at p2. To double-
check this, we want to compute the symbol:

(
b, L/K

p2

)
=
(
−15(1 +

√
2 ), L/K

p2

)
,

which does not have any simple formula. We proceed as above, and we check
that 9 + 5

√
2 is a p2-associate which yields b = p31 split in L/K since the

residual image of a is a square.
Thus, the given quadratic form represents 0 in K.
(v) The norm conditions on b at the unramified odd places v = (�) (i.e.,

such that v(a) ≡ 0 mod (2)) are therefore (by (iii))
(
a�−v(a)

v

)v(b)

= 1, includ-

ing for v =∞; we thus indeed obtain
(
u

v

)
= 1 in this case.

There remain the odd places v = (�) such that v(a) ≡ 1 mod (2) (i.e.,
the ramified finite odd places) for which we must check that b is in the norm
group of Q�(

√
a )/Q�. Set a′ := a�−v(a) and b′ := b�−v(b). We use Exercise

1.6.5 which shows that b is a local norm at � if and only if b ∈ N2 (resp.

N3) when
(−a′

�

)
= 1 (resp. −1) (we see whether Q�(

√
a ) = Q�(

√
−� ) or

Q�(
√
−�ζ )). But b ∈ N2 (resp. N3) is equivalent to

(
b′

�

)
= 1 (resp. (−1)v(b)).

It follows that b is a local norm at � if and only if:

(
−a′

�

)v(b)

=
(

b′

�

)
,

hence
(
u

�

)
= 1 with the given formula for u since v(a) is odd.

The case of the place v = 2 can be obtained in analogous way by noting
that the Hilbert symbol and the explicit formulas that we must prove are
F2-bilinear and symmetrical in a and b, and thus we are reduced to the
computation of the six symbols:

(
2 , 2
v

)
,

(
2 , q

v

)
,

(
2 , −1

v

)
,

(
q , q

v

)
,

(
q , −1

v

)
,

(
−1 , −1

v

)
,
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where q is an odd prime. The computation of these symbols is immediate
from the results of 1.6.5. In fact, the general properties of symbols (see 7.1.1
below) show that it is sufficient to compute:

(
2 , q

v

)
,

(
q , −1

v

)
,

(
−1 , −1

v

)
.

6.4.1 Remark. If the quadratic form X2 − aY 2 − bZ2 does not represent
0 in K, it does not represent 0 in a nonzero even number of completions of
K (consider for instance X2 + Y 2 + Z2 in Q).

§7 Symbols Over Number Fields — Hilbert and
Regular Kernels

The notion of symbol, which can be set in the very general context of Milnor’s
K-theory, where the letter K �= K does not denote a field but a functor (see
[Mil], [Sil]), is directly inspired from the Hilbert symbols that we have already
encountered in 1.6.7, 1.6.8, 6.4; hence we will start by giving more completely
their properties, obtain from this the general definition of symbols over a field,
and ask whether or not we know all the symbols over a number field.

Thanks to this, we will see that class field theory is only an (essential)
prelude to a larger theory which involves many invariants which we have
not met up to now; as already said, the only unified point of view on these
questions is of a cohomological nature (see [Schn], [Ta2]), and we refer to the
enormous bibliography devoted to higher K-theory.

7.1 Definitions (local Hilbert symbol). Let K be a number field. Then for
any place v of K we define the local Hilbert symbol at v:

( • , • )v : K×
v ×K×

v −−−→ µ(Kv),

by:

(x , y)v :=
(y , Kv(

mv
√

x )/Kv)
mv
√

x
mv
√

x

for all x, y ∈ K×
v , where mv := |µ(Kv)| and where ( • , Kv(

mv
√

x )/Kv) is the
norm residue symbol for the cyclic extension Kv(

mv
√

x )/Kv (see 1.4).

Note, once and for all, that if v is a complex place at infinity, then
( • , • )v = 1.

7.1.1 Proposition. The local Hilbert symbol ( • , • )v has the following
properties:
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(i) it is Z-bilinear, nondegenerate as a bilinear map on K×
v /K×mv

v ×
K×
v /K×mv

v , and continuous as a map on K×
v ×K×

v ;
(ii) it satisfies:

(x , 1− x)v = 1 for all x ∈ K×
v \{1},

(x , −x)v = 1 for all x ∈ K×
v ,

(x , y)v = (y , x)−1
v for all x, y ∈ K×

v (antisymmetry) ;

(iii) we have (x , y)v = 1 if and only if y is a norm in Kv(
mv
√

x )/Kv (or x
is a norm in Kv(mv

√
y )/Kv);

(iv) in an extension L/K, for any w|v in L we have, with evident notations:

(
x
mw
mv , y′

)
w

=
(
x , NLw/Kv (y

′)
)
v

for all x ∈ K×
v and y′ ∈ L×

w ;
(v) for any isomorphism τ of K, we have (τx , τy)τv = τ(x , y)v for all

x, y ∈ K×
v ;

(vi) if v is unramified in Kv(
mv
√

x )/Kv, we have:

(x , y)v =
(

Frob
(
Kv(

mv√x )/Kv

)
mv
√

x
mv
√

x

)v(y)

for all y ∈ K×
v .

Note. In (v), τv is the place of τK for which |τa|τv = |a|v for all a ∈ K; afterwards,

by abuse of notation, τ also denotes the isomorphism τ : Kv −→ (τK)τv coming

from K ⊂
⊕
v′|�

Kv′ −→ τK ⊂
⊕
v′|�

(τK)τv′ , by density (the generalization of the

situation of 2.3.1), the embeddings
⊕
v′|�

iv′ onK and
⊕
v′|�

iτv′ on τK being understood

(here, � denotes a prime number or ∞); then it is also the extension by continuity

of iτv ◦ τ ◦ i−1
v on iv(K). Thanks to this, the expressions τx, τy, and τ(x , y)v make

sense.

Proof of the proposition. (i) We have (x , yz)v = (x , y)v(x , z)v because
of the multiplicativity of the norm residue symbol and of the isomorphism of
Kummer duality (see I.6.1).

We have (xy , z)v =
τ(mv
√

xy )
mv
√

xy
, where τ := (z , Kv(mv

√
xy )/Kv); but τ is

the restriction to Kv(mv
√

xy ) of σ := (z , Kv(
mv
√

x, mv
√

y )/Kv) by 1.4, (ii), and
we have:

σ(mv
√

xy )
mv
√

xy
=

σ(mv
√

x )
mv
√

x
× σ(mv

√
y )

mv
√

y
,

thus giving the result since the restrictions of σ to Kv(
mv
√

x ) and to Kv(mv
√

y )
are the corresponding norm residue symbols of z.

Assume that (x , y)v = 1 for all y ∈ K×
v ; the surjectivity of the norm

residue symbol implies that Kv(
mv
√

x ) = Kv, so that x ∈ K×mv
v .
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If (x , y)v = 1 for all x ∈ K×
v , we have

(
y, Kv

(mv√
K×
v

)
/Kv

)
= 1 hence y

is a norm in Kv

(mv√
K×
v

)
, hence y ∈ K×mv

v (see 1.6.6).
Continuity comes from the fact that, if u and u′ are sufficiently close

to 1 in Uv, then u and u′ are mvth powers in K×
v , and we have trivially

(xu , yu′)v = (x , y)v.
To prove some of the above properties, we may use the antisymmetry that

we will prove in full generality in 7.2.1.
(ii) Let us show that 1−x is the norm of an element of M := Kv(

mv
√

x ). If
d|mv is the degree of M/Kv, Kummer theory shows that there exists t ∈ K×

v

such that x = t
mv
d , and we have M = Kv(d

√
t ). Since for all ξ ∈ µ(Kv) we

have:
NM/Kv (1− ξ

d
√

t ) = 1− ξdt,

then denoting by ζv a generator of µ(Kv), it follows that:

NM/Kv

( mv
d∏
i=1

(1− ζiv
d
√

t )
)

=

mv
d∏
i=1

(1− ζdiv t) = 1− t
mv
d = 1− x.

The relation (x , −x)v = 1 as well as antisymmetry then follow from this (see
7.2.1).

Facts (iii), (iv), (v), and (vi) follow trivially from the corresponding prop-
erties 1.4 of the norm residue symbol.

7.1.2 Remark. If m is a divisor of mv, the symbol ( • , • )(m)
v defined by:

(x , y) ∈ K×
v ×K×

v �−→
(y , Kv(m

√
x )/Kv) m

√
x

m
√

x

for all x, y ∈ K×
v , is equal to

(
• , •

)mv
m

v
since

mv√
x
mv
m = m

√
x. By abuse of

language, it is called the local Hilbert symbol of order m. In common usage,
we write simply (x , y)v instead of (x , y)(m)

v , the context being in general
sufficient to give the order of the symbols under study (for example m = 2
for the usual quadratic Hilbert symbol). The Hilbert symbol defined in 7.1
has maximal order with an evident meaning.

Before going any further, it is necessary to introduce the regular Hilbert
symbol (which has the advantage of being explicit), and for this we give some
notations and definitions.

7.1.3 Notations. (i) Let v ∈ Pl0 and let � be the residue characteristic of v.
We know (see I.3.1.1) that we have the decomposition:

µ(Kv) = µqv−1 ⊕ µ�(Kv),

where qv := |Fv| is a power of � and where µ�(Kv) = tor
Z
(U1

v ) is also of order
a power of �, which we will write here in the more descriptive form:
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µ(Kv) =: µ(Kv)reg ⊕ µ(Kv)1.

(ii) For v ∈ Plr∞, we have µ(Kv) = µ2 and we set, in accordance with the
fact that U1

v = R×+:

µ(Kv)reg := µ2, µ(Kv)1 := 1.

(iii) As is easily checked, µ(Kv)1 = 1 for almost all places of K (indeed,
µ(Kv)1 �= 1 implies that Kv contains µ�, hence Q�(µ�), which implies that
� − 1 ≤ [K : Q]). The places v for which µ(Kv)1 �= 1 will be called the
irregular places of K.

7.1.4 Definitions (regular Hilbert symbol). We define the regular or tame
Hilbert symbol at a noncomplex place v as the Hilbert symbol of order
|µ(Kv)reg|, in other words as the symbol ( • , • )regv := ( • , • )m

1
v

v , where
m1
v := |µ(Kv)1| (equal to mv

qv − 1
in the finite case).

7.1.5 Proposition (regular Hilbert symbol formula). For any x, y ∈ K×
v ,

(x , y)regv is the component on µ(Kv)reg of:

(−1)v(x)v(y)xv(y)y−v(x).

Note. For computations and when v is finite, it is equivalent to take the residual

image of the above expression since µ(Kv)reg = µqv−1 � F×
v (canonically), and for

a real infinite place v, it is the sign of this same expression, equal to (−1)v(x)v(y).

Proof of the proposition. The case of an infinite place v being trivial
directly, we assume that v is a finite place. We have:

(x , y)m
1
v

v = (xm
1
v , y)v =

(y , Kv(
qv−1√

x )/Kv)
qv−1√

x
qv−1√

x
·

To identify this Hilbert symbol, it is sufficient to compute (using bilinearity
and antisymmetry):

(u , u′)m
1
v

v , (u , π)m
1
v

v , (π , π)m
1
v

v ,

for u, u′ ∈ Uv and for a uniformizer π of Kv:

• by 7.1.1, (vi), we have (u , u′)m
1
v

v = 1 since Kv(
qv−1√

u )/Kv is unramified;

• in the same way, (u , π)m
1
v

v = σ(
qv−1√

u )
qv−1√

u
, where σ := Frob(Kv(

qv−1√
u )/Kv);

it follows that we have:

σ( qv−1√
u )

qv−1√
u
≡ ( qv−1√

u )qv
qv−1√

u
≡ u mod (π),
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which shows that (u , π)m
1
v

v is the component of u on µqv−1;

• by 7.1.1, (ii), we have (π , −π)v = 1, hence (π , π)m
1
v

v = (−1 , π)m
1
v

v , so
that we are reduced to the preceding situation with u = −1.

By “gluing the pieces together”, we obtain the desired formula.

Note. It is also possible to use symbols having an order dividing qv − 1 (v finite);

this is for instance the case for quadratic Hilbert symbols which are given, for any

odd place v, by the residual image of
(
(−1)v(a)v(b) av(b) b−v(a)

) qv−1
2 . By abuse of

language, we will also say that they are regular symbols.

Note that the basic symbols ( • , • )regv and ( • , • )v coincide for almost
every place (the regular places).

We will see in 7.5 how to compute in practice the irregular Hilbert sym-
bols, which are finite in number; the numerical computations done in 6.4 for
some quadratic symbols are illustrations of this.

The above study motivates the general definition of a symbol on a field
k, with values in an abelian group A.

7.2 Definition (symbols on a field). Let k be a field, and let A be an abelian
group. A symbol (on k, with values in A) is a Z-bilinear map:

( • , • ) : k× × k× −−−→ A,

such that (x , y) = 1 for all x, y ∈ k×\{1} such that x + y = 1.

If we consider the quotient group:

K2(k) := k× ⊗
Z
k×/〈x⊗ y ; x, y ∈ k×\{1}, x + y = 1 〉

(second Milnor’s K-group of the field k), it is immediate to check that this
object satisfies the following universal property. For any symbol:

( • , • ) : k× × k× −−−→ A,

there exists a unique group homomorphism h : K2(k) −−−→ A, such that the
following diagram commutes:

−−−−−→

↓

↗

K2(k)

k× × k× A
( • , • )

h{ • , • }
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the vertical arrow being the canonical map sending the pair (x, y) to the
image of x⊗ y; this map is not necessarily surjective, but its image generates
K2(k).

We have denoted {x , y} the canonical image of x ⊗ y in K2(k); by con-
struction, it is clear that { • , • } is itself a symbol with values in K2(k).

7.2.1 Exercise. Show that any symbol ( • , • ) : k× × k× −→ A satisfies
(x , −x) = 1 for all x ∈ k×. Deduce that any symbol is antisymmetric.

Answer. If x = 1, we have (1 , −1) = 1 by linearity on the first component.
Thus we may assume that x �= 1. We then have the equalities:

1 =
( 1
x

, 1− 1
x

)
=
(
x , 1− 1

x

)−1

=
(
x ,

1− x

−x

)−1

=
(
x , 1− x

)−1(
x ,

1
−x

)−1

= (x , −x).

We then apply this property to the product xy, and we obtain:

1 = (xy , −xy) = (x , −xy)(y , −xy)
= (x , −x)(x , y)(y , x)(y , −y) = (x , y)(y , x),

so the antisymmetry follows.

7.2.2 Examples. (i) If k = Kv (the completion of the number field K at a
finite place v), the local Hilbert symbol ( • , • )v defines the group homomor-
phism:

hv : K2(Kv) −−−→ µ(Kv),

which is in fact an isomorphism, a result of Moore (see [e, Ko3, Ch. 2, § 6.6]).
(ii) If k = K, we can consider the symbol obtained by globalizing the

family of local Hilbert symbols in the following way:

( • , • ) : K× ×K× −−−→
⊕

v∈Plnc
µ(Kv),

(x , y) �−→
(
(iv(x) , iv(y))v

)
v∈Plnc

where Plnc := Pl\Plc∞ is the set of noncomplex places of K. This symbol
indeed takes its values in the direct sum since for any place v such that v(x) =
v(y) = 0, iv(y) is a unit and the extension Kv(

mv
√

iv(x) )/Kv is unramified
except perhaps if the residue characteristic � of v divides mv, which happens
only for a finite number of places (the irregular places, i.e., those for which
Kv contains µ�; see 7.1.3, (iii)). For convenience, this symbol will be called
the global Hilbert symbol. It defines the homomorphism:

h : K2(K) −−−→
⊕

v∈Plnc
µ(Kv).
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(iii) We can also define the global regular Hilbert symbol, from the local
regular Hilbert symbols (see 7.1.4, 7.1.5):

( • , • )reg : K× ×K× −−−→
⊕

v∈Plnc
µ(Kv)reg

which sends any pair (x, y) to
(
(iv(x) , iv(y))regv

)
v∈Plnc . Recall that for

v ∈ Pl0:

( • , • )regv := ( • , • )m
1
v

v , where m1
v := |µ(Kv)1| =

mv

qv − 1
·

The resulting homomorphism K2(K) −→
⊕

v∈Plnc
µ(Kv)reg is denoted hreg.

7.3 Theorem. For all x, y ∈ K×, we have in µ(K) the product formula:

∏
v∈Plnc

i−1
v

((
iv(x) , iv(y)

)mv
m

v

)
= 1,

where m := |µ(K)|, mv := |µ(Kv)|.

Proof. We have
(
iv(x) , iv(y)

)mv
m

v
=
(
iv(x

mv
m ) , iv(y)

)
v
, and the norm residue

symbol:

(
iv(y) , Kv

(
mv

√
iv(x

mv
m )

)/
Kv

)
=
(
iv(y) , Kv

(
m
√

iv(x)
)/

Kv

)

being the norm residue symbol in Lv/Kv for L := K( m
√

x ), which is abelian
over K, in terms of Hasse symbols 3.1.2 we obtain:

i−1
v

((
iv(x) , iv(y)

)mv
m

v

)
=
(

y , K(m
√

x )/K
v

)
m
√

x
/

m
√

x ∈ µ(K) ;

hence, by the isomorphism of Kummer duality I.6.1, the product formula (in
G := Gal(K(m

√
x )/K)):

∏
v

(
y , K(m

√
x )/K

v

)
= 1

is transformed into the analogous formula on the i−1
v

((
iv(x) , iv(y)

)mv
m

v

)
(in

µ(K)).

7.3.1 Definitions (Hilbert symbols of K — product formula). If we set:

(x , y

v

)
:= i−1

v

((
iv(x) , iv(y)

)mv
m

v

)
=
(

y , K(m
√

x )/K
v

)
m
√

x
/
m
√

x ∈ µ(K)
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for all x, y ∈ K×, then this defines
(

• , •

v

)
, which we call the v-Hilbert

symbol of K (defined on K× ×K×); its order m is maximal. We then have
the simpler expression:

∏
v∈Plnc

(x , y

v

)
= 1, for all x, y ∈ K×,

which is called the product formula for Hilbert symbols on K.

Note. Do not confuse the symbol ( • , • )v defined on Kv with values in µ(Kv),
with the symbol

( • , •
v

)
defined on K with values in µ(K). We have:

iv ◦
( • , •

v

)
=
(

• , •
)mv
m

v
◦ iv on K× ×K×.

7.3.2 Exercise (prescribed Hilbert symbols). Let K be a number field and
let m := |µ(K)|.

(i) For i = 1, . . . , r, let ai be fixed elements of K×, and let (ζi,v)v with
ζi,v ∈ µ(K) be r families with finite support in Plnc; assume that for each
v ∈ Plnc there exists x(v) ∈ K× such that:

(ai , x(v)
v

)
= ζi,v, i = 1, . . . , r, 46

and assume (product formula !) that:
∏
v

ζi,v = 1, i = 1, . . . , r.

Show that there exists x ∈ K× such that for all v ∈ Plnc:
(ai , x

v

)
= ζi,v, i = 1, . . . , r.

(ii) Deduce the Hasse–Minkowski theorem for quadratic forms in four
variables over K (hint: let aY 2+bZ2−(c T 2+dU2), a, b, c, d ∈ K×, be such
a quadratic form; check that there exists x ∈ K× for which xX2−aY 2−bZ2

and xX2 − c T 2 − dU2 represent 0 in K).

Answer. (i) Let A := 〈 a1, . . . , ar 〉, L := K( m
√

A ), and G := Gal(L/K).

Denote by sv ∈ G the Hasse symbol
(
x(v) , L/K

v

)
; we thus have sv ∈ Dv :=

Dv(L/K). We have:

sv( m
√

ai ) =
(

x(v) , K( m
√

ai )/K
v

)
m
√

ai = ζi,v
m
√

ai

46 A necessary condition is that the order of ζi,v must be a divisor of that of the
decomposition group of v in K( m

√
ai )/K since this decomposition group is an

image under the Hasse symbol and that K( m
√
ai )/K is cyclic; it is sufficient only

for r = 1: for K = Q(
√
−1 ), v|2, a1 = 2, a2 = −2, ζ1,v = −1, ζ2,v = 1, x(v) does

not exist.



212 II. Reciprocity Maps — Existence Theorems

for all v and i = 1, . . . , r, so that (sv)v has finite support. Set s :=
∏
v

sv; we

easily obtain s( m
√

ai ) =
(∏
v

ζi,v

)
m
√

ai = m
√

ai, i = 1, . . . , r, hence s = 1. We

can thus apply Theorem 3.4.4 on the converse of the product formula, and
so there exists x ∈ K× such that:

(
x , L/K

v

)
= sv

for all v ∈ Plnc. By construction we immediately have:
(ai , x

v

)
= sv( m

√
ai )/ m

√
ai = ζi,v, i = 1, . . . , r

for all v ∈ Plnc.
(ii) Consider the quadratic form:

(q) aY 2 + bZ2 − (cT 2 + dU2), a, b, c, d ∈ K×,

and assume that it represents 0 in all the Kv. For all v there exist yv, zv, tv,
uv ∈ Kv (not all zero) such that:

xv := ay2
v + bz2

v = ct2v + du2
v,

in Kv (we have omitted the embeddings iv).
If xv = 0, it is easy to see that the forms aY 2+bZ2 and cT 2+dU2 represent

any element of Kv, so we can find a solution y′v, z′v, t′v, u′
v which yields xv =

1, which we will now assume (for instance, since yv and tv cannot be equal
to zero, we take y′v := (a−1 + 1)/2, t′v := (c−1 + 1)/2, z′v := zv(a−1 − 1)/2yv,
and u′

v := uv(c−1 − 1)/2tv).
Since axv = (ayv)2 + abz2

v , we have (see 6.4):

1 = (axv, −ab)v = (a, −a)v(a, b)v(xv, −ab)v,

so that we obtain:
(−ab, xv)v = (a, b)v =:

(a, b

v

)

for all v, and similarly:

(−cd, xv)v = (c, d)v =:
(c, d

v

)
.

For all v set:
ζ1,v := (−ab, xv)v, ζ2,v := (−cd, xv)v,

which satisfies the first assumption of (i) with a1 = −ab, a2 = −cd, for the
ζi,v, i = 1, 2 (the fact that xv ∈ K×

v does not matter since there also exists
x(v) ∈ K× by approximation at v). Since for all v:
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(−ab, xv)v =
(a, b

v

)
, (−cd, xv)v =

(c, d

v

)
,

by the product formula we have:

∏
v

ζ1,v =
∏
v

(a, b

v

)
= 1,

∏
v

ζ2,v =
∏
v

(c, d

v

)
= 1.

It follows that there exists x ∈ K× such that:
(−ab, x

v

)
=
(a, b

v

)
=
(−ab, a

v

)−1

,
(−cd, x

v

)
=
(c, d

v

)
=
(−cd, c

v

)−1

for all v, which can also be written:
(−ab, ax

v

)
= 1,

(−cd, cx

v

)
= 1

for all v. The forms xX2 − aY 2 − bZ2 and xX2 − cT 2 − dU2 thus represent
0 in all the Kv and hence in K. The result follows by equality of the two
expressions for x which one obtains from this.

Beware that we are not allowed to exclude a place in the statement; for
example, for K = Q:

Y 2 + Z2 + 3T 2 + 5U2

represents 0 in all the completions of Q except in R. Indeed, for � �= 2 the
given form represents 0 in Q� (in each case, we put a suitable variable T or
U equal to zero, and write that −5 or −3 is a norm in Q�(

√
−1 )/Q� since it

is then a unit in an unramified local extension). For � = 2, we check that −3
is a norm in Q2(

√
−1 )/Q2 (the norm group is 〈 2 〉 ⊕ 〈 5 〉

Z2
and −3 = 5u for

u ≡ −1 mod (4)).

7.4 Power Residue Symbol, nth Power Reciprocity Law. Let K
be a number field, m the order of µ(K) and n a divisor of m. We have just
defined the v-Hilbert symbol of K:

(
• , •

v

)
: K× ×K× −−−→ µ(K)

(x , y) �−→ i−1
v

((
iv(x) , iv(y)

)mv
m

v

)

which is essentially the same as the local Hilbert symbol of order m re-
stricted to iv(K), and which is also given by the action of the Hasse symbol(
y , K(m

√
x )/K

v

)
on m
√

x. We will be using the Hilbert symbol of order n:
( • , •

v

)
n

:=
( • , •

v

)m
n

.

7.4.1 Definition. For x ∈ K×, we denote by Rx the set of finite places of
K which are ramified in K(n

√
x )/K (Rx, which depends on n, is contained
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in the set of places v such that v(x) �≡ 0 mod (n), or dividing n). For v /∈ Rx

we define via the Frobenius symbol:
(x

v

)
n

:=
(K(n

√
x )/K
v

)
n
√

x
/

n
√

x.

This defines an nth power residue symbol (including when v ∈ Plr∞) since, if
v /∈ Rx, we have:

(x

v

)
n

= 1 if and only if iv(x) ∈ K×n
v .

7.4.2 Remarks. (i) If v /∈ Rx is a finite place, we also set
(x

v

)
n

=:
( x

pv

)
n
,

so that we can define by multiplicativity:

(x

b

)
n

:=
∏
v∈Pl0

(x

v

)v(b)

n
for all b ∈ IRx .

Hence, in terms of Artin symbols, we have (since µn ⊂ K):

(x

b

)
n

=
(K(n

√
x )/K
b

)
n
√

x
/

n
√

x.

(ii) We can also define an idelic version
( x

(yv)v

)
n
, in a completely clear

and analogous way, so that, for all y ∈ K× prime to Rx (identifying i(y)
with y) we get: (x

y

)
n

:=
∏

v∈Plnc

(x

v

)v(y)

n
,

which thus involves the real infinite places. Note that in the literature,
(x

y

)
n

usually means
( x

(y)

)
n
.

Note. If n > 2, Plr∞ = ∅ and the infinite places do not enter in the definition. If

n = 2, (x
v
) = (−1)v(x), and the properties of the more general symbol may be easily

deduced from the following.

7.4.3 Proposition. We have the following functorial properties of the nth
power residue symbol for n|m := |µ(K)|, where x, y, are elements of K×:

(i)
(x

b

)
n

(y

b

)
n

=
(x y

b

)
n
, if b ∈ IRx ∩ IRy ;

(ii)
(x

b

)
n

(x

c

)
n

=
( x

b c

)
n
, if b, c ∈ IRx ;

(iii) for any isomorphism τ of K we have
(τ(x)
τ(b)

)
n

= τ
(x

b

)
n
, if b ∈ IRx ;
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(iv) for any divisor d of n we have
(x

b

)d
n

=
(x

b

)
n
d

, if b ∈ IRx ;

(v) let L be a finite extension of K; we have
( x

b′
)
L,n

=
( x

NL/K(b′)

)
n
, if

b′ ∈ IL,Rx ;

(vi) for any prime ideal p, prime to x and n, we have
(x

p

)
n
≡ x

Np−1
n mod p;

(vii) let Nx ⊂ IRx be the norm group corresponding to K(n
√

x )/K; then,

for b, c ∈ IRx , we have
(x

b

)
n

=
(x

c

)
n

if and only if b c−1 ∈ Nx;

(viii) for v /∈ Rx, we have
(x , y

v

)
n

=
(x

v

)v(y)

n
for all y ∈ K×.

Proof. Use properties 4.5 of the Artin map and/or properties 7.1.1 of the
local Hilbert symbol, noting that iv

((x

v

)
n

)
=
(
iv(x)

mv
n , πv

)
v

if v /∈ Rx.

Then we can state:

7.4.4 Theorem. The nth power reciprocity law (n dividing |µ(K)|) is given
by the relation: (y

x

)
n

(x

y

)−1

n
=
∏
v|n

(x , y

v

)
n

for all x, y ∈ K×, x and y coprime (i.e., for any place v, we have v(x) = 0
or v(y) = 0, including the case v|∞ if n = 2) and prime to n.

Proof. We compute the left hand side by using the definition of the symbols(
•

•

)
n

and by noting that the products can be restricted to the places not

dividing n (because of the relations v(x) = v(y) = 0 for v|n):

(y

x

)
n

(x

y

)−1

n
=
∏
v�n

(y

v

)v(x)

n

∏
v�n

(x

v

)−v(y)

n
;

then, treating the cases v(x) �= 0 and v(y) �= 0 for v � n separately 47 and
coming back to Hilbert symbols because of 7.4.3, (viii), this yields:
(y

x

)
n

(x

y

)−1

n
=

∏
v�n

v(x) �=0

(y , x

v

)
n

∏
v�n

v(y) �=0

(x , y

v

)−1

n
=

∏
v�n

v(xy) �=0

(y , x

v

)
n

=
∏
v�n

(y , x

v

)
n

since
(
y , x

v

)
n

= 1 if v(xy) = 0, v � n; the theorem follows by using the

product formula.
47 The case v(x) �= 0 implies v(y) = 0 and, since v � n, this yields v /∈ Ry; the case

v(y) �= 0 is symmetrical.
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The nth power reciprocity law for the number field K is thus explicit
as soon as the right hand side is computed. Because of 7.5 below and the
continuity of the Hilbert symbols, using suitable representatives x, y ∈ K×

of the finite groups Uv/(Uv)n, v|n, we only need a finite number of numerical
computations (once for all). We thus obtain in particular the quadratic reci-
procity law of Jacobi (K = Q, n = 2; the signed form that we have obtained
being a slight generalization) by checking that:

(y

x

)(x

y

)
=
(x , y

2

)
2

=
(
− 1

) x−1
2

y−1
2

for all rational x, y, coprime, odd, not both negative (see 6.4, (v)).

7.4.5 Remark. The above formula is false when the rationals x and y are
both negative; for example we have:

(−3
−5

)(−5
−3

)
=
(−3
∞

)(−3
5

)(−5
∞

)(−5
3

)
=
(15
∞

)(−3
5

)(−5
3

)
= −1,

although x−1
2

y−1
2 = 6 which would give the value +1; in the general case for

K = Q, we must multiply the right hand side of the formula by (−1)v(x)v(y) =(
− 1

) sgn(x)−1
2

sgn(y)−1
2 , where v is the valuation corresponding to v =∞.

7.4.6 Proposition. If z ∈ K× is such that v(z) = 0 for any place v not
dividing n, and if x ∈ K× is prime to n, we have the supplementary formula:

( z

x

)
n

=
∏
v|n

(x , z

v

)
n
.

Proof. We have:
( z

x

)
n

=
∏
v

(z

v

)v(x)

n
=
∏
v�n

(z

v

)v(x)

n
=
∏
v�n

(z , x

v

)
n

=
∏
v|n

(x , z

v

)
n
.

This can be applied to K = Q and the quadratic case to prove that:

( 2
x

)
2

=
(x , 2

2

)
2

=
(
− 1

) x2−1
8

,

for any odd rational x.

For additional material on these reciprocity laws aspects, see [a, Ko1],
[f, Lem1], [Kub2], [KubO], [Wy].

7.5 Computation of a Hilbert Symbol by Global Means. As already
mentioned in 1.6.8, assume that we want to compute a local Hilbert symbol
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(x , y) of order n, with x, y ∈ k×, where k is a finite extension of Q� containing
the group µn of nth roots of unity. The method consists in looking for a
number field K containing µn, and such that Kv = k for some place v|� of K.

In general it is an irregular symbol (i.e., �|n), and by localizing the prob-
lem, we are reduced to the case where n = �h for h ≥ 1. Then, if (K, v|�)
is a solution, we consider here K as a subfield of k and, by density, we are
reduced to the case where x, y ∈ K× (this only involves the properties of
k× deduced from the knowledge of k×/k×�h); we then have (x , y) =

(
x , y

v

)

which reduces to the computation of the Hasse symbol
(
y , K( �

h√
x )/K

v

)
.

We can even construct K containing µ�h and having a unique �-adic place

v, in which case the Hilbert symbol
(
x , y

v

)
can be computed, because of the

product formula, by using only regular symbols: if k =: Q�(µ�h)(α), α ∈ Q�,
of degree d over Q�(µ�h), we may assume that α ∈ Q and that it has degree
d over Q(µ�h) (Krasner’s lemma proven and illustrated in [b, Rob, Ch. 3,
§ 1.5]), hence K := Q(µ�h)(α) is a suitable field since v|� is split neither in
K/Q(µ�h) (by our choice of α) nor in Q(µ�h)/Q (totally ramified). However,
if this construction is numerically too delicate, it is still very much possible to

compute the Hasse symbol
(
y , L/K

v

)
, with L = K( �h

√
x ) for K containing

µ�h , if necessary by brutally adjoining these roots of unity, by the usual
method explained in 4.4.3; in this case, we do not need to assume that v|� is
unique (and in general we cannot). We then obtain an Artin symbol of the

form
(
L/K

b

)−1

, for some ideal b of K prime to a modulus m, multiple of the
conductor of L/K, m divisible by all the prime ideals dividing (x) and (�),
from which we obtain:

(x , y) =
(
L/K

b

)−1
�h
√

x
/

�h
√

x =
(x

b

)−1

�h
,

in L/K. If p is a prime ideal of K dividing b, by definition of a Frobenius,
and since x and �h are prime to p, we know that:

(x

p

)
�h
≡ x

q−1
�h mod p,

where q := Np, which identifies
(
x

p

)
�h

in µ�h (global). We thus obtain
(
x

b

)
�h

by multiplicativity.
If we are a priori in a given (global) field K containing µ�h , and that we

want to compute
(
x , y

v

)
, x, y ∈ K×, where v|� is not unique, we can either

use the Hasse symbol, or change the global field K (note that x and y must
be reinterpreted in the new field by means of the common completion !). The
reader can practice on the field K := Q

(√
−3 +

√
2,

√
−3−

√
2, µ8

)
.
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Let us give an example in the nonsplit case so as to apply both points of
view.

7.5.1 Example. Take k = Q2(i), where i =
√
−1 and let us compute the

symbol of order 4:
(6 , 3 + i).

We will choose K = Q(i), L = K( 4
√

6 ) and begin by computing the Hasse

symbol
(

3 + i , L/K

v

)
, where v is the place of K above 2.

Since 6 = −3i(1 + i)2, K(
√

6 ) = K(
√
−3i ), and by Kummer theory

(−3i ≡ i mod (4), which is not congruent to a square modulo (4)) we see
that v is ramified in K(

√
6 )/K, hence totally ramified in L/K. We then

check that:

π =
1 +
√
−3i

4
√

6
− 1

is a uniformizer of Lv. Using the higher ramification groups we find (by
computing the valuations of πσ−1 and πσ

2−1 for a generator σ of Gal(L/K))
that the conductor of L/K is equal to (24) (see 1.6.2). We then look for
y′ ∈ K such that:

y′

3 + i
≡ 1 mod (8)

y′ ≡ 1 mod (3),

and we obtain for instance y′ = −5 + 9i = (1 + i)(2 + 7i) which yields
b = (2 + 7i) (a prime ideal above 53). Thus, we have

(
6

b

)
4
≡ 613 ≡ −1

modulo b; hence:
(6 , 3 + i) = (−1)−1 = −1.

Beware that if b is not a prime ideal, we must come back to the
(
x

p

)
4

for p|b,

and conclude by multiplicativity.
The product formula is here reduced to (using prime ideals instead of

places): (
3 + i, L/K

p2

)(
3 + i, L/K

p5

)(
3 + i, L/K

(3)

)
= 1,

where p2 = (1 + i), p5 = (2− i), which can be written:
(

6, 3 + i

p2

)(
6, 3 + i

p5

)(
6, 3 + i

(3)

)
= 1,

in terms of Hilbert symbols of order 4. But the computation of regular sym-
bols yields:
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(
6, 3 + i

p5

)
≡ 61 ≡ 1 mod p5,

(
6, 3 + i

(3)

)
≡ ((3 + i)−1)2 ≡ −1 mod (3),

giving once again the result in a nicer way.
However the first method is useful when x (= 6) is fixed and y varies:

setting y =: (1+ i)mz, m ∈ Z, z prime to p2, and using the chinese remainder
theorem, we obtain the general solution:

b =: (z′), z′ := 9z − 8(i− 1)m,

where z′ is defined modulo (24). The solution is then given by the Artin
symbol: (

L/K

(z′)

)−1

.

Thus, let A ⊂ IT for T = {p2, (3)} be the Artin group of K( 4
√

6 ); we check
that IT = 〈 p13 〉A, for p13 := (3+2i), whose Frobenius sends 4

√
6 to −i 4

√
6,

so that (6, y) = 1, −1, i, −i, according to whether:

(z′) ∈ A, (3 + 2i)2 A, (3 + 2i)A, (3 + 2i)3 A = (3− 2i)A.

If y = 9 + 32i, we find z′ ≡ 1 mod (24), hence (6, y) = 1, although method
using the product formula needs the computation of four regular symbols.
The generalized class group IT /PT,(24) has order 64, so that A/PT,(24) has
order 16 and can easily be computed.

Finally, since any class modulo PT,(24) contains an infinity of prime ideals,
we can look for b =: q prime, and then (6, y) is given by the residual image
of

(
6

Nq−1
4

)−1 mod q. For example, if y = 3 + 2i then z′ = 19 + 18i which is
composite, but z′− 24(1 + i) = −5− 6i yields p61, and (615)−1 ≡ 11 mod p61

implies that (6, 3 + 2i) = −i.

Note that the case n = 2 is particularly simple since K is easier to find
and that all the computations lead to quadratic residue symbols.

Let us come back to the general theory of symbols for a number field K.
The homomorphism:

h : K2(K) −−−→
⊕

v∈Plnc
µ(Kv)

which comes from the global Hilbert symbol (see 7.2.2, (ii)) is therefore the
most precise possible for identifying K2(K) as a function of known symbols.
The two main questions which can be asked about h are what are its kernel
and image. One is deep (Garland’s theorem given in 1971 in [Ga], for the
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finiteness of the kernel, which we will assume), the other is a nontrivial appli-
cation of the techniques of class field theory that we have developed. This is
Moore’s theorem on the characterization of the image, which we are going to
prove by following a paper of Jaulent written in [Ja1] from the paper [ChaW]
of Chase–Waterhouse; see also [Mil, Th. 16.1]. With the above notations and
definitions 7.1.3, 7.2.2, we can then state:

7.6 Theorem (fundamental diagram of the K2 (1971/1972)). We have, for
any number field K, the following commutative diagram:

1 −→WK2(K) −−−→ K2(K) h−−−→
⊕

v∈Plnc
µ(Kv)

π−−−→ µ(K) −→ 1
�
∩ ∣∣∣

∣∣∣
�↓⊕m1

v

�m

1 −→ Rord
2 (K) −−−→ K2(K) hreg

−−−→
⊕

v∈Plnc
µ(Kv)reg −−−→ 1

where π((ξv)v) :=
∏
v

i−1
v

(
ξ
mv
m
v

)
for all (ξv)v ∈

⊕
v∈Plnc

µ(Kv), m := |µ(K)|,

mv := |µ(Kv)|, m1
v := |µ(Kv)1| = mv

qv − 1
for v finite, and where WK2(K)

(resp. Rord
2 (K)) denotes the kernel of the global Hilbert symbol h (resp. of

the global regular Hilbert symbol hreg).

Proof. The crucial point is to show that the set of families:

(ξv)v ∈
⊕

v∈Plnc
µ(Kv),

such that
∏
v

i−1
v

(
ξ
mv
m
v

)
= 1, is contained in the image of h. By localizing the

problem, we can fix a prime number p and reduce to families in
⊕

v∈Plnc
µp(Kv)

satisfying the product formula. Denote by Σ the set formed by the places of
K dividing p, the real infinite places, and the irregular places (i.e., the places
v such that m1

v �= 1) (Σ is finite).
Thus, let (ξv)v ∈

⊕
v∈Plnc

µp(Kv) such that
∏
v

i−1
v

(
ξ
mv
m
v

)
= 1. The first step

consists in reducing to a situation where the (bad) places of Σ do not occur.
For each v ∈ Σ, there exist xv, yv ∈ K×

v such that (xv , yv)v = ξv (we choose
xv such that Kv( mv

√
xv )/Kv has degree mv, and we use the surjectivity of

the norm residue symbol to find yv). By approximation on Σ, we can find
x, y ∈ K× such that:

(iv(x) , iv(y))v = (xv , yv)v = ξv for all v ∈ Σ.

Since h({x , y}) belongs to a direct sum, replacing if necessary x (for ex-
ample) by a suitable power (prime to p), we may assume that h({x , y}) ∈
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⊕
v∈Plnc

µp(Kv) and that, on Σ, we still have (iv(x) , iv(y))v = ξv. If we con-

sider:

(ξ′v)v :=
(ξv)v

h({x , y})
,

it is an element of
⊕

v∈Plnc
µp(Kv) satisfying the product formula, and it is

such that ξ′v = 1 for all v ∈ Σ. Hence, for the support Σ′ of (ξ′v)v the Hilbert
symbols are regular, and we are going to obtain the equality h({x′ , y′}) =
(ξ′v)v for suitable x′ and y′ in K×.

For e := vp(m) ≥ 0, consider now the cyclotomic field Ke+1 := K(ζe+1),
where as usual ζe+1 is a primitive pe+1th root of unity; it is a nontrivial cyclic
extension of K (of degree p if e ≥ 1, of degree dividing p− 1 if e = 0). Let:

a′ :=
∏
v∈Σ′

pv,

which is an ideal of K prime to p (since ξ′v �= 1 implies that v /∈ Σ), hence
prime to the ramified places of Ke+1/K. By the Čebotarev Theorem 4.6,
there exists a prime ideal q of K, prime to Σ∪Σ′, such that the Artin symbol(
Ke+1/K

a′q

)
generates Gal(Ke+1/K). Since on Σ′ we have regular symbols,

we have:
(ξ′v , πv)v = ξ′v for all v ∈ Σ′,

the result being independent of the choice of a uniformizer πv of Kv (see
7.1.5). By approximation on Σ′ ∪ {q}, we can find x′ ∈ K× such that:

x′ ≡ 1 mod q,

iv(x′) ξ′−1
v ∈ U1

v for all v ∈ Σ′.

We then have (again by 7.1.5):

(iv(x′) , πv)v = (ξ′v , πv)v = ξ′v for all v ∈ Σ′.

Let T be the union of Σ0 := Σ ∩Pl0 with the set of finite places dividing
x′ (T is prime to q and to Σ′). Consider the modulus n =

∏
v∈T

pnv , for a

sufficiently large integer n (in particular, we can assume that n is a multiple
of the conductor of Ke+1/K). By the Čebotarev theorem, there exists a prime
ideal l prime to T ∪Σ′ and such that c�resn (l) = c�resn (a′q), in C�resn , so that we
can write:

a′q = l (y′), y′ ∈ K×
T,n,pos.

Now consider h({x′ , y′}) =
(
(iv(x′) , iv(y′))v

)
v
:

• if v is an infinite place, we have (iv(x′) , iv(y′))v = 1 since iv(y′) > 0;
• if v ∈ Σ′, because of the congruences imposed on x′, we have:

(iv(x′) , iv(y′))v = (ξ′v , iv(y′))v,
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but iv(y′) is a uniformizer of Kv since v(y′) = v(a′) = 1, and by what we
have seen above:

(iv(x′) , iv(y′))v = ξ′v ;

• if v corresponds to q, we obtain (iv(x′) , iv(y′))v = 1 since we have
chosen x′ ≡ 1 mod q;
• if v ∈ T (the symbol is then not necessarily regular), we have

(iv(x′) , iv(y′))v = 1 since iv(y′) ∈ Un
v (a local norm for n sufficiently large);

• if v is none of the above and if v does not correspond to l, we have
(iv(x′) , iv(y′))v = 1 since iv(x′) and iv(y′) are local units by definition of T
and y′, and the symbol is regular;
• finally, assume that v is the place corresponding to l; we have:

(
Ke+1/K

a′q

)
=
(

Ke+1/K

l

)(
Ke+1/K

(y′)

)
=
(

Ke+1/K

l

)

since by assumption y′ ≡ 1 mod n, and n is a multiple of the conductor of

Ke+1/K. Hence,
(
Ke+1/K

l

)
=

(
Ke+1/K

a′q

)
is by assumption a generator of

Gal(Ke+1/K), which shows that l is not split in Ke+1/K, hence that Kv does
not contain ζe+1, or, equivalently that vp(mvm ) = 0. Since mv

m is a p-adic unit,
we deduce from this and the product formula that (iv(x′) , iv(y′))v = 1.

We have thus proved the first exact sequence of the diagram.
The surjectivity of hreg is equivalent to the fact that any element of⊕

v∈Plnc
µ(Kv)reg (which can be written

(
(ζreg
v )m

1
v

)
v

since m1
v is prime to

the order of ζreg
v ) is the image under the surjection ⊕m1

v of an element
(ζv)v =: (ζreg

v . ζ1
v )v of

⊕
v∈Plnc

µ(Kv) satisfying the product formula. Since the

component (ζ1
v )v belongs to the kernel of ⊕m1

v, it is sufficient to check that
it is possible to find it so that (ζv)v ∈ Ker(π), and this is equivalent to be
able to solve, for any ζ ∈ µ(K):

∏
v

i−1
v (ζ1

v )
mv
m = ζ, with (ζ1

v )v ∈
⊕

v∈Plnc
µ(Kv)1.

Let us localize at a prime divisor p of m (the case p � m being trivial), take
ζ ∈ µp(K), and consider v0|p; the inclusion iv0(µp(K)) ⊆ µ(Kv0)

1 shows
that, taking the p-parts: (mv0

m

)
p

=
m1
v0

mp

,

and implies the existence of ζ1
v0 such that (ζ1

v0)
mv0
m = iv0(ζ); we then set

ζ1
v = 1 for all v �= v0.

This proves the two exact sequences of the diagram.

The snake lemma applied to the fundamental diagram yields:
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7.6.1 Corollary. We have the exact sequence:

1 −→ Rord
2 (K)/WK2(K) α−−−→

⊕
v

µ(Kv)1
β−−−→µ(K) −→ 1,

in which α is obtained from the restriction of h to Rord
2 (K) and β is the

restriction of π to
⊕
v

µ(Kv)1. Thus (Rord
2 (K) : WK2(K)) = 1

m

∏
v

m1
v.

This result indicates that everything can be reduced to the fundamental
invariant WK2(K), even though Rord

2 can be more easily interpreted arith-
metically (see below).

We note that WK2(K) = Rord
2 (K) if and only if for all prime number p:

µp(K) �
⊕
v|p

µp(Kv) ;

for applying this, it is sufficient to check the primes p for which there exists
an irregular place v|p. We will often encounter this condition (see for example
III.4.2.5).

7.6.2 Definitions (Hilbert and regular kernels). The kernel of h (denoted
H2(K) or WK2(K)) is called the Hilbert or wild kernel (in K2(K)) 48, and
the kernel of hreg (denoted Rord

2 (K)), is called the regular or tame kernel.

Recall that Rord
2 (K) is also equal to Kord

2 (ZK) and that this interpretation
of “R2(K)” as the K2 of the ring of integers ZK of K is due to Quillen (1973)
and must be understood with the language of the general K-theory of rings
(see an arithmetic study of the regular and Hilbert kernels in [Keu1], as a
prelude to numerous developments on this subject).

7.6.3 Remarks. (i) The notation Rord
2 (K) = Kord

2 (ZK) represents the mod-
ification (introduced in 1986 in [Gr6]) coming from the consideration of the
real places at infinity in the definition of hreg; in other words, the classical
kernel R2(K) = K2(ZK) must be understood as Rres

2 (K) = Kres
2 (ZK), which

fortunately is compatible with the general system of notations that we have
adopted here. The difference between these two definitions is given precisely
by the following trivial exact sequence:

1 −→ Kord
2 (ZK) −−−→ K2(ZK) −−−→ (Z/2Z)r1 −→ 1,

but the existence of Kord
2 (ZK) (and also probably the existence of more gen-

eral groups of the form KS
2 (ZK,T ) for our usual sets of places T and S, ZK,T

being the ring of T -integers of K) is essential.
(ii) The equality π ◦h = 1 follows of course from the product formula 7.3

for Hilbert symbols, but the exactness that is obtained (Moore’s theorem)
48 The notation WK2 is to be preferred, instead of H2, to avoid confusion with

homology groups, but we will continue to speak of the Hilbert kernel.
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says that this product formula is the unique relation between Hilbert symbols.
This property is called “uniqueness of reciprocity laws”.

(iii) The existence of WK2(K) (a finite group which is in general non-
trivial) means that there can exist symbols on K which do not come from
Hilbert symbols (and called exotic symbols because of this) 49; but, although
class field theory gives quite good information on these kernels (see below),
up to now it has not been possible to exhibit (numerically) a single exotic
symbol !

It is easy to find fields for which WK2(K) �= 1; for instance, we have
{−1,−1} �= 1 in WK2(K) if K = Q(

√
d ), d < 0, d ≡ 2 mod (16) (see [Keu2]).

On the contrary, it is more difficult to characterize the cases where, for a given
p, the p-Sylow subgroup of this kernel is trivial. See for example the results of
Kolster–Movahhedi in [KM1] dealing (after a few particular cases of Thomas)
with the case of biquadratic fields for p = 2, the case of quadratic fields having
been treated before by Browkin–Schinzel, then revisited by Jaulent–Soriano.
Many other papers are concerned with the case p = 2 (Conner–Hurrelbrink,
Candiotti–Kramer, Berger, Hettling, Hutchinson, ...).

In [KM2] is given a characterization of the p-extensions of Q such that
the p-Sylow subgroup of the Hilbert kernel is trivial (p �= 2).

In [Sor] is given an approach of the structure of the Hilbert kernel in a
Kummer situation.

Thus many new questions related to the K-theory of number fields can
be asked, which are not the subject of this book. However, we will mention
some of the most classical results, since as mentioned in the introduction to
this section, they involve invariants which are directly linked with class field
theory (in particular through the reflection theorem).

7.7 Links Between Class Field Theory and K2(K). The relationships
which exist between these K-theory kernels and class field theory are the
following.

7.7.1 Logarithmic Class Group. Concerning WK2(K), under the fun-
damental assumption µ2p ⊂ K, the results of Jaulent can be summarized by
the relation:

WK2(K)/WK2(K)p � µp ⊗ C̃�K ,

where the p-group C̃�K (of logarithmic classes) is an invariant of class field
theory, related to Gross’s conjecture which we will state in III.4.13, which can
be defined from the usual arithmetic of the number field K. 50 This represents
the best practical approach to the Hilbert kernel since we have at our disposal
49 Such an exotic symbol is given by f ◦ { • , • } for any group homomorphism f :

K2(K) −→
⊕
v
µ(Kv), nontrivial on WK2(K).

50 [Ja4; Ja5; Ja6], [JaSor1], [JaSor2], [Sor], [JaMi], [JaMai].
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the corresponding formalism, which is completely parallel with the (better-
known) one for class groups “ C� ” or (a little less known) for the torsion groups
“ T ”. It is therefore possible to perform numerical computations (as in [DS]).
See (Ch. III, § 7) for a direct approach of the definition of the logarithmic class
group and the proof of the above property.

7.7.2 Tate’s Results. For Rord
2 (K), still when µp ⊂ K, we have a Kummer

interpretation coming from the results of Tate published in 1976 in [Ta2],
which is given by the exact sequence:

1 −→ µp ⊗N2(K) −−−→ µp ⊗WK,Plp,pos
f−−−→ pRord

2 (K) −→ 1,

where WK,Plp,pos := Rad(Hord
Plp

[p]/K) is the radical of the maximal abelian
p-ramified noncomplexified elementary p-extension of K, f being defined by:

f(ζ ⊗ x) := {ζ , x}

for all ζ ∈ µp, x ∈WK,Plp,pos, and where:

N2(K) := {x ∈ K×, {ζ1 , x} = 1}/K×p

(Tate’s kernel, where ζ1 is a generator of µp) is such that:

µp ⊗N2(K) � (µp ⊗ µp)⊕ µr2p .

Note. When the number field K is given together with an automorphism group g,

the fact that in these statements we write µp ⊗X (instead of pX or X/Xp) allows

us to have canonical isomorphisms of g-modules.

Tate’s exact sequence already yields:

7.7.2.1 Proposition. When K contains µp we have:

rkp(Rord
2 (K)) = rkp(C�ordPlp)− (r2 + 1).

Note. Recall that Hord
Plp [p] has a conductor which divides m =

∏
v|p

ppev+1
v , where

ev is the ramification index of v in K/Q(µp). Therefore, rkp(C�ordPlp) = rkp(C�ordm ).

Moreover, the radical of Hord
Plp (p) is {xK×p, x ∈ K×

pos, (x) ∈ Ip〈Plp 〉}.

Assuming the Leopoldt conjecture for p, the p-rank of Rord
2 (K) is also

equal to the p-rank of the torsion group of Gal(Hord
Plp

(p)/K) (see III.2.1.1 for
S = Plr∞, T = Plp, and III.4.2.2).

The reflection theorem I.4.6, (ii), applied to C�ordPlp , implies:
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7.7.2.2 Corollary. In the Kummer case we have:

rkp(Rord
2 (K)) = rkp

(
C�Plp res

)
+ |Plp| − 1.

7.7.3 Tate’s Results in the Non-Kummer Case. In the general case, we
must introduce K ′ := K(µp), use formulas with characters and the reflection
principle. More precisely, starting from Tate’s exact sequence, the reflection
theorem allows us to prove the following general formula.

7.7.3.1 Theorem. For any number field K, we have:

rkp(Rord
2 (K)) = rkω−1

(
C�Pl

′
pres

K′

)
+
∣∣{v|p, dv = 1}

∣∣− δ,

where ω is the Teichmüller character, dv is the decomposition group of v in
K ′/K, and δ = 1 or 0 according as µp ⊂ K or not.

7.8 p-Regular Fields. We have introduced in 1989, in [GrJ], the following
definition.

7.8.1 Definition. Number fields for which (Rord
2 (K))p = 1 are called p-

regular.

These fields have a much simpler arithmetic since deep invariants vanish,
and for these fields we can even compute higher K-groups (as in [RØ] and a
few others). We will see in III.4.1.10, III.4.2.6, (i), and especially in (Ch. IV;
§ 3, (b)), the similar notion of p-rational fields and what class field theory says
about them. The above general formula shows that the p-regularity depends
on the ω−1-component of the Pl′p-class group (in the restricted sense) of
K ′ := K(µp). We will see that the ω-component is concerned with the p-
rationality and that the two notions coincide if and only if ω2 = 1. Then, if
K contains the maximal real subfield of Q(µp), p-regularity and p-rationality
will be equivalent notions (this condition is always satisfied for p = 2 and
p = 3).

7.8.1.1 Example. The number field K ⊃ µp is p-regular (or p-rational) if
and only if p does not split in K/Q and (C�res)p is generated by means of the
single prime ideal of K above p (use 7.7.2.2).

We will now prove that Q is p-regular for all p. Thus for K = Q, we will
have:

WK2(Q) = Rord
2 (Q) = 1, Rres

2 (Q) � Z/2Z.

The proof given below is a direct one and does not use the class field theory
results we have seen up to now; but it is also possible to check that the rank
formula above gives the result by analytical means.
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7.8.1.2 Theorem (Gauss’s first proof of the quadratic reciprocity law, re-
visited by Tate). The global regular Hilbert symbol induces the isomorphism:

K2(Q) � µ(R)
⊕

� prime
� �=2

µ(Q�) � {±1}
⊕

� prime
� �=2

F×
� .

Proof. 51 The letters �, p, q denote prime numbers, a, b, c denote nonzero
elements of Z, and {a, b} is the image of (a, b) in K2(Q). We use the reg-
ular Hilbert’s symbol hreg : K2(Q) −→ {±1}

⊕
�

µ(Q�)reg, where we replace

µ(Q�)reg by F×
� (note that µ(Q2)reg = F×

2 = 1 and µ(Q2)1 = 〈−1 〉); the first
factor corresponds to the place ∞. Put:

t∞ = 〈 {−1, −1} 〉,
t0 = 〈 {a, b}, a, b ∈ [1, ∞[ 〉,
t� = 〈 {a, b}, a, b ∈ [1, �] 〉, � prime.

Note that K2(Q) is generated by the {u, v}, u, v ∈ Z \ {0}.

Lemma 1. We have K2(Q) = t∞ ⊕ t0.

Proof. The bilinearity gives {a, b} = {|a|, |b|} . s, where s is an element
of 〈 {−1, −1}; {c, −1}, c > 0 〉. But {c, −c} = 1, which yields {c, −1} =

{c, c} ∈ t0. The sum is direct since we have
(−1, −1

∞

)
= −1 and

( |a|, |b|
∞

)
= 1,

proving the result.

Since by 7.1.5, hreg(t∞) = {±1} and hreg(t0) ⊆
⊕
�

F×
� , it is equivalent to

prove that the restriction of hreg to t0 yields t0 �
⊕
�

F×
� .

Lemma 2. Let p be fixed. Then the restriction of hreg to tp yields an iso-

morphism of tp onto
⊕
�≤p

F×
� .

Proof. We note that t2 � F×
2 (indeed, {2, 2} = {2, −2}{2, 1− 2} = 1). For

p �= 2, let q be the greatest prime number such that q < p; we suppose, by
induction, that tq �

⊕
�≤q

F×
� . Thus it is sufficient to prove that tp/tq � F×

p

under hreg.
Consider the following two maps:

ϕ : tp/tq −−−→ F×
p , θ : F×

p −−−→ tp/tq,

51 Inspired by a conference of Tate (Grenoble 1968): “Sur la première démonstra-
tion par Gauss de la loi de réciprocité”. See also [Ta1, § 3, (17)], [Mil, Th. 11.6],
[f, Lem1, Th. 2.30].
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for which:

ϕ({a, b}) :=
(a, b

p

)reg

∈ F×
p , θ(c) = {c, p} mod tq,

where c is the representative of c ∈ F×
p in [1, p[ . Since:

(a, b

p

)reg

= (−1)vp(a)vp(b) avp(b) b−vp(a) mod (p),

ϕ is trivial on tq since vp(a) = vp(b) = 0 for such a, b.
We will prove that ϕ ◦ θ and θ ◦ϕ are the corresponding identity maps (it

is not a priori evident that θ is a group homomorphism).

We have ϕ ◦ θ(c) = ϕ({c, p}) =
(
c, p

p

)reg

= c since vp(c) = 0. Then

θ ◦ϕ({a, b}) = θ
((

a, b

p

)reg)
= θ(c), where c = (−1)vp(a)vp(b) avp(b) b

−vp(a).

The case where a, b ∈ [1, p[ is immediate since {a, b} ∈ tq. If a < p and b = p,
then c = a, thus θ(c) ≡ {a, p} mod tq. If a = p and b < p, then c = b

−1
,

and we have to verify that {p, b}{c, p}−1 = {p, b c} ∈ tq. Put b c = 1 + d p;
the case b = 1 being trivial, suppose b > 1, thus 0 < d < p. Then we have
1 = {−d p, 1 + d p} = {−d p, b c} = {−d, b}{−d, c}{p, b c} giving the result
since {−1, u} = {u, u}. If a = b = p, then c = −1, c = p − 1, but we have
{p− 1, p} = {−1, p} = {p, p}. This finishes the proof of the lemma.

Taking the direct limit (i.e., the union t0 =
⋃
�
t�), the theorem follows.

We now consider the Hilbert symbol
( • , •

2

)
for the place 2; it takes its

values in 〈−1 〉. Since this Hilbert symbol is of order 2, we can write
( • , •

2

)
=:

g ◦ { • , • }, where g : {±1}
⊕
� �=2

F×
� /F×2

� −−−→ 〈−1 〉, is such that:

g((uv)v �=2) = g∞(u∞)
∏
� �=2

g�(u�),

with g∞ := g|{±1}, g� := g|
F
×
� /F

×2
�

. We then have gv( • ) = ( • )δv , δv = 0

or 1 depending only on v. Let a, b ∈ Z\{0}. Taking u∞ =
(
a, b

∞

)
and,

u� =
(
a, b

�

)
mod F×2

� for all � �= 2, which implies that
(
a, b

�

)
mod F×2

� is

the quadratic Hilbert symbol
(
a, b

�

)
2

:=
(
a, b

�

) �−1
2

= ±1, we get:

(a, b

2

)
=
(a, b

∞
)δ∞ ∏

� �=2

(a, b

�

)δ�
2

for all a, b ∈ Z\{0}.

The uniqueness of the product formula readily gives δv = 1 for all v �= 2,
but of course, the point of view of Gauss was to prove the product formula,
giving easily the reciprocity law as we know it. For this, the computation
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of
(−1, −1

2

)
gives δ∞ = 1; if � ≡ 3 mod (4), the computation of

(
�, −1

2

)

gives δ� = 1; if � ≡ 5 mod (8), the computation of
(
�, 2

2

)
gives δ� = 1; for

� ≡ 1 mod (8), the computation is not easy since
(
�, b

2

)
= 1 for any b.

In this case, let p be the least prime � ≡ 1 mod (8) such that δ� = 0.

Gauss proved the existence of a prime q < p such that
(
p

q

)
= −1 (see

[f, Lem1, Th. 2.30]), yielding a contradiction to the computation of
(
p, q

2

)
=

∏
� �=2

(
p, q

�

)δ�
2

=
(
p, q

q

)
2

(
p, q

p

)0

2
=
(
p

q

)
since

(
p, q

2

)
= 1.

Note. The isomorphism of Theorem 7.8.1.2 is not canonical, the image of h being{
(ζv)v ∈

⊕
v∈PlQ

µ(Qv),
∏
v
ζ
mv
2

v = 1
}
. Since m∞

2
= m2

2
= m3

2
= 1, we can express

ζ∞, ζ2, or ζ3 by means of the other ζv. Here, we “eliminate” the wild place.

7.8.2 Remark. Recall that the main theorem of Mazur–Wiles–Kolyvagin
on abelian extensions K of Q yields, in the real case, the following analytical
expression for |Rord

2 (K)| which had been conjectured by Birch–Tate (on this
subject, see [Grt1]):

|Rord
2 (K)| = w2

2[K : Q]
|ζK(−1)| =: w2 |ζord

K (−1)|,

where ζK is the Dedekind zeta function of K, which must be interpreted
as the restricted zeta function ζres

K (see III.2.6.5, (ii)), and w2 is the largest
integer n such that Gal(K(µn)/K) is killed by 2.

For K = Q, we have w2 = 24, ζord
Q

(−1) = 1
2ζ

res
Q

(−1) = − 1
24 , thus giving

Rord
2 (Q) = 1.
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