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ERRATA and COMPLEMENTS for the corrected 2nd printing
2005 and the first edition 2003 of the Springer Monographs in Mathe-
matics (ISSN 1439-7382):

CLASS FIELD THEORY: From Theory to Practice (by Georges Gras)

In this ‘ERRATA and COMPLEMENTS ’ we indicate the improvements and
corrections concerning the corrected 2nd printing 2005 (IT). These precisions
do not affect any statement, so that this errata will be usefull especially for
those who work carefully on the text, except perhaps for some more important
corrections that we give in the first part (A), before the less important ones
given in the second part (B). When it is possible we indicate, in parentheses,
the corresponding page and line for the 1st edition (T).

For the convenience of the reader we also precise, in the third part (C),
the main changes which where written for the corrected 2nd printing 2005
(IT) from the Ist edition 2003 (I). This part (C) is rather long since we
reproduce all the paragraphs which were added to the 1st edition (especially
some interpretations of the Spiegelungssatz).

* * *

(A) MAIN CORRECTIONS TO THE CORRECTED 2nd PRINTING:

IT, p.5, £.-11 (I, p.5, £.-11), after: ‘ because of the Schmidt—Chevalley theorem’
add the following: ‘ (more precisely, the Theorem I1.6.3.2 on the “going down”
of p®-powers in the cyclotomic extension by the p®th roots of unity)’

I1, p.80, before subsection (¢) (I, p.79-80), add the following exercise which
is the local analog of Theorem 3.6 (global case):

‘1.5.5 Exercise (Galois action). Let M /K, be a finite abelian extension and
let ¢ be an automorphism group of K, with fixed subfield k. Let N C K¢
be the norm group corresponding to M/K,.
Prove the following facts:

(i) M/k is Galois if and only if g acts on N

(i1) M/k is abelian if and only if ¢ is commutative and there exists a sub-
group n of finite index of k> such that N = N;(i/k(n) in which case M is the
compositum of K, with the abelian extension of k corresponding to n. [’

IT, p.228, £.-8 (I, p.219, £.1), the definition of g, is incorrect for v = £; read:
=1
“We then have goo (o) = (o )%=, go(+) = (.) 2 64, 4, = 0 or 1 depending only
. a, b _{a,b
on v. Let a, b € Z\ {0}. Taking ue, = (;) and u; = (7) for all £ # 2,

=1
which implies that (#) * s the quadratic Hilbert symbol (%) = =1,
2

we get: ...~

IT, p.294, £.9/11 (I, p.283, £.13/14), the explanation about 4.2.2 is not ade-
quate: in fact we use the Spiegelungsrelation 11.5.4.3 in K’ := K(y,) for the

class group Cﬁg,USA,:"’ and the corresponding radical V’TS,I/K’TX,p, then the rank
formula rk, (Vi /K:P) = rkl(V’TS,I/K’TX,p) = rky (Cﬁf(llyT,), and finally 4.2.

I1, p.466-470 (I, p.454-457): This part concerns a minor modification in the
Appendix, Section 3, Subsection (a), in view of Theorems 3.6 and 3.7 of
the Subsection (b): The set .S, := S N P, is not taken into account in some
computations, what is incorrect; this modifies the Notations 3.1 (pp. 466/467,
2nd ed.; p.454, 1st ed.) and the proofs of the Lemmas 1 and 2 (pp. 469-470,
2nd ed.; pp.456-457, 1st ed.) in an evident way given below; this does not
affect any result since the cohomology on S, is also trivial because of the
total splitting of these places in the extensions under consideration:

I, p.466, 3.1 and footnote (I, p.454), replace: ‘Ty * by: ‘T3 \ Sy * and: ‘Tu’ " by:
‘Tﬁ’\SZ’, ”; in the footnote supress: ‘is unimportant’; replace: “ p’ by: * PI,\S,’
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I1, p.467, £.2 (I, p.454, £.17), replace: “p’ by: * PI,\S,’
IT, p.467, after £.11 (I, p.454, after £.-6), add the following notations:
‘o 1y = Ir, @ Zyp, Iﬁ = IL,Tu’ ® Zp,’

II, p.467, £.14 (I, p.454 |, £.-3), replace: ‘T’ and: ‘Z’’ respectively by: ‘Z;’
and: ‘7’

IT, p.469, £.12 (I, p.456, £.-4), the exact sequence becomes:

At —
1 LY, —— L —"s D vl D (LX) — 10
weAIN\S] weSs, P

I1, p.469, £.15-16 (I, p.456, £.-1; p.457, £.1), replace these two lines by:
‘Proof. Since L/K is Galois, unramified in Ap\S, and split in S, the norm:
N: & vl & L)) — & vl D (r)

wEAI\S] wes, p vEAL\S, vESy P
I, p.469, £.-4 (I, p.457, £.10), replace: * A, by: “ A,\ S, and split in S’
11, p.469, ¢.-1 (I, p.457, £.13), the formula becomes:
‘g1 (G, & vl P (L?,)p) = @ H YDy, UL)=1,

wEAL\S, wEeS, vEAL\Sp

since Dy, =11in Sp,’
IT, p.470, ¢.1 (I, p.457, £.14), read:

hence i, (v0) € 1o B UL B (L3),)..
ence ZAP(Z‘/ ) G weaps, weS;,< )p

I, p.AT1, £.15 (I, p.458, £.-1), replace: * PI,” by: “ (Pl,\S)’
ok ok

(B) OTHER CORRECTIONS TO THE CORRECTED 2nd PRINTING:
I, p.8, £.-12 and -22, replace: ‘torsion groups’ by: ‘torsion groups in p-
ramification’

IT, p.26, £.15 (I, p.26, £.7, add: * (see[Sed, §§14-16])’); remark that this argu-

ment uses (i), the result in characteristic 0.
I1, p.26, £.18 (I, p.26, £.10),read: * Sy := SN Ply’

I1, p.27, before 3.7 (I, p.27), add: ‘Recall that E% is the group of S-units,
(r1, 7o) the signature, of K, and p, the group of pth roots of unity.’

IT, p.27, after 3.7.2 (I, p.27), add the following comment: ‘If K is real,
Qo (E‘;(rd(}bz(@) ~ Q[G] and if K is complex, Q @ (E‘;(rd(}bz(@) ~ QG114 ¢e0)’

IT, p.30, £.6 (I, p.29, £.-2), read: ‘Let S =: SyUSe be a finite set of noncomplex
places’

1T, p.32,4.2.5 (I, p.32, £.6): ‘closure’ means: ‘ topological closure > which will
be denoted: ‘adh’

11, p.40, £.3 (I, p.39, £.-7), instead of: ‘we’ read: ‘will’
II, p.41, £.8-9, read: ‘the above first exact sequence’

IT, p.44, £-6 (I, p.44, £.17), instead of: ‘11.5.4.3/ 11.5.4.5” read: ‘11.5.4.2 to
11.5.4.6°

11, p.48, £.14 (1, p.48, £.3), add: * (verify that ((5, — (13Y%%) oy = U0 )’
IT, p.51, £-3 (I, p.51, £.-13), at the end add:  (see 4.2.5,4.2.6)°
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I, p.59, £.11 (I, p.58, £.-4): there is a contradiction since we get Ny /x(y) €
<Ce—1 >
IT, p.62, £.1 (I, p.61, £.-11), put the: ‘(i) before: ‘since. ..’
I, p.67, £.-11 (I, p.67, £.-10/-11): note that [Gy : Gy] C GO because Lg?” C
L2b.

IT, p.68, £.13 (I, p.68, £.13): remember that any Frobenius automorphism of a
unramified local extension is the canonical lift of the Frobenius automorphism
of the corresponding residue extension.

IT, p.73 (T, p.73), before 1.3.3, add the following remark: ‘ For t € G, 7' := y
for all g € F,, makes sense since F, = Oy /(my) with (7,)" = (my), and
FSw = F,. In fact, Gal(F,/F,) is canonically isomorphic to G, /G which
is generated by the Frobenius automorphism (cf. 1.1.5).°

11, p.82, £.12 (1, p.82, £.5): we have f, = p, for the following reason: U]} is a
Zpy-module and ¢ # p = [L, : K,]; thus any element of Ul is a pth power in
Ul, then a norm.

IT, p.83, £.3 (I, p.82, £.-3), read: ‘Since F), is a finite field of characteristic p’

IT, p.85, £.-1 (I, p.85, £.-6), add the following remark: ¢ The maximal value of
nis |p(Ky)| = (qv — 1) x |pe(Ky)| where £ is the residue characteristic of v’

IT, p.94, £.10/11 (I, p.94, £.10/11): it is usefull to see that the topology induced
by that of Gla LY on the diagonal embedding of L is the same as the topology

of L identified with KK (by choosing a K-base for instance).

I1, p.96, 2.4 (I, p.96), read: * J& = jL/K(JK) ~ Jg and: ‘C¢ = jL/K(CK) ~
Cg’

IT, p.103, £.-5 (I, p.103, £.-4), read: ‘but is not the norm of local units at 2’
IT, p.107, £.-3 (I, p.107, £.-10), put the right: *) " after: ‘Q(v/2/Q)’

IT, p.110, £.1 (I, p.109, £.-7): S is a set of noncomplex places.

IT, p.116, £.-5 (I, p.116, £.-14), replace: <1.8.3” by: “1.8.1°

I1, p.120, £.-2 (I, p.120, £.17), read: ‘n open subgroup in Jg’

1L, p.123, (-4 (I, p.123, £.7), add: = adh(E°™ U, /£

I1, p.129, £.8 (I, p.128, £.15): this normic equality comes from 2.6.7, (ii).

IT, p.133, 4.4 (I, p.132), add the usual hypothesis: ‘ For flm’

IT, p.139, £.3 (I, p.138, £.3), at the end put: ‘ (see 5.5.2; thus, the above symbol
is trivial if and only if y = 1 mod (m))’

I1, p.141, £.12 (I, p.140, £.12), replace: ‘¢ > 1" by: ‘4 > 0’
I, p.154, (iii) (I, p.153): we recall that X, := XN Pl, for any set = of places.
IT, p.154, £.-6 (I, p.153, £.-3), instead of: ‘1.4.5.1” read: ‘1.4.5.4°

IT, p.160, £.8 (I, p.159, £.14), read: ‘(e.g., x # 1 and v nonsplit in K’/k for
all v € S, which implies (7)), = (C3°) )

IT, p.162, £.13, add the hypothesis: ‘when py, C K’

I, p.167, £.-3, read: ‘and the p-ranks of the class groups are equal’

IT, p.171, £.12 (I, p.163, £.7), read: ‘[f, Neum1]’

IT, p.178, £.-13 (I, p.170, £.13), add the definition: * K(®)(p) := K ’. Moreover,

all the indices: ‘¢’ are > 0.

IT, p.179, Note: remark that the intermediate extensions [((i-l—l)(p)/[((i)(p), in
F;(p), may be infinite.
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IT, p.181, £.15 (I, p.172, £.19), read: ‘Hilbert class fields tower y K9 of K°
i>0

11, p.189, 6.2.3 (I, p.180), add the following remark: ‘ Let L/K be a quadratic
extension such that ((/5¢%)s = 1; since ¢ € ((5°%)§ is equivalent to ¢? = 1 (use
the algebraic norm vy g = 14s), we have rko (/) =t — 1 —rko (L5° /L3N
Nz (L*)), where t is the number of finite places ramified in L/K. If K = Q
this gives rkq ((F5%°) = t — 1. The ordinary sense is analogous. Of course, genus
theory (Ch.IV, §4) gives again these results.’

IT, p.194, £.9 (I, p.185, £.14), replace the two: ‘G’ by: ‘G’
IT, p.196, £.11 (I, p.187, £.14), read: ‘in K’ := K (pge)’

IT, p.201, £.11 (I, p.192, £.15), remember that: ¢ f, > is the residue degree of
Lo/ K,.
I1, p.211, end of the footnote (I, p.202), add: “ (hint: K(v/2) = K(v/—=2))’

IT, p.214, £.-7, after: ‘n =27 add: ‘v € PI.°

I, p214, £-1 (I, p:205, £-11), read: * () =7 (2) -

, P ; ( , P 05a )a rea T(b) TKon T b Kn
IT, p.215, (vii) (I, p.205): since the nth power residue symbol of z is an
homomorphism of groups on Ig_, it is equivalent to say that its kernel is V.

IT, p.225, £.-5 (I, p.216, £.3-4, Note), read/add: ‘Moreover, the radical of
HY) is Wy, pos i= (2K, 2 € KXy, () € P(PL)}

IT, p.226, 7.8.1 (I, p.216), read: ‘Number fields K for which...”’
I, p.231, £.-13 (I, p.221, £.-13), Remember that H7 = U Km?®.
me(T)w

I1, p.242, £.13, replace: ‘In 1.1 for ¢ = T\{v}, doc = @’ by: ‘From 1.1.2, (i)’

IT, p.245, £.1 (I, p.234, £.-7), the definition of the neighbourhoods is incorrect:
the good neighbourhoods are the subgroups of finite index of A, but in the
present case (A = Up), the topology of the subspaces under consideration

coincide with that induced by the A”” n > 1, so that the proof is unchanged.
I1, p.249, ¢.-7 (I, p.239, £.-14), refer to: ‘ Theorem 1.6 and Exercise 1.6.5’

IT, p.264, £.16 (I, p.254, £.7): we consider the product of the U, only for
w € Plyrp, instead of the whole set of places, because the norms considered
are surjective for the missing factors.

11, p.264, ¢.-2 (I, p.254, £.-13), read: ‘I1.3.3, (iv) and (ii) in Qun41 L/L/Q°
IT, p.271, £.-1/-2 (I, p.261, £.1/2): this definition must be put in the Note
above.

II, p.283, £-6/-5 (I, p.272, £.-3/-4), replace the exponent: ‘n’ by: ‘n 44§, ,’
I1, p.285, £.7 (I, p.274, £.9), add at the end: ‘ (see 1.6.6, (i))’

IT, p.285, £.11/12 (I, p.274, £.13/14), after: 3.6.6, add the following exercise

which has some interest:

3.6.7 Exercise. Suppose that p, C K and that there exists v|p such that
{e € B, i,(c) € KP} = (E°*)P. Prove that K satisfies the Leopoldt con-
jecture at p. Hint: use 3.6.2, (vi) with a unit ¢ € £ such that 7,(¢) = 1 and
prove by induction that, for all n > 1, ¢ = 2" ¢, € £, with 7,(c,)? = 1

nt
in K (to obtain ¢ = 6’71_'_11, modify €, by a suitable root of unity). K
IT, p.290, 4.1.7 (I, p.279), the isomorphisms of the two exact sequences are

not canonical and the factors: ‘Z;TH ” correspond respectively to Gal([}p/[()
and Gal([}p/f&’p N Ho™ ).
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IT, p.298, £.-5 (I, p.287, £.-9): as we have yet explained, the Schmidt-Chevalley
Theorem uses more precisely the Theorem 11.6.3.2 on the “going down” of
p®-powers in the cyclotomic extension by the p®th roots of unity.

IT, p.299, £.-1 (I, p.288, £.-2), add the following remark: ‘ This is consistent
with the criteria 1.4.3.7

I1, p.309, £.-1 (I, p.298, £.-4): the extension Kab/K is seen in C;, where £ is
the residue characteristic of v finite, or in Cy, = C for v finite.

IT, p.310, £.-15 (I, p.299, £.15), read: ‘the lemma follows since e is arbitrary’
IT, p.314, £.8 (I, p.303, £.6), read: ‘ we obtain from 4.6.3, (ii):’
IT, p.319, £.3 (I, p.308, £.1), read: < We see from 1.3.7.2 that’

IT, p.321, Proof of 4.10.6 (I, p.310): the use of Krasner lemma has some
curious consequences: we can choose 8,,, such that its global and local degrees
coincide, but 8y, is not anymore necessarily in N ! This does not matter since
the action of I" on (fy,,0,...,0) only depends on the Galois action of Dy,

on fy, (e.g., N = Q(ps), NP»0 = Q(V/5) with wg|19).

11, p.322, £-11 (I, p.311, £-13), add: ‘2’ € Q)

IT, p.327, £.-3 (I, p.316, £.-1), replace: “ (see §4.9)” by: * (see 4.7.1)°

IT, p.335, £.-10 (I, p.324, £.-11), read: ‘ (see 11.6.3.4.2 and 11.6.3.4.3)°

1T, p.337, ¢.-13 (I, p.326, £.-13), after: * Dy > add: ¢ which is divisible (see 4.4.6)°
IT, p.341, £.-7 (I, p.330, £.-11), at the end of the line add: “(see 11.7.1.5)°

IT, p.342, £.5 (I, p.331, £.1), read: ‘is it possible, for a given number field K’
I1, p.349, £.13 (I, p.338, £.5), delete: “in the (strong) sense of 1.4.3’

IT, p.361, £.-10 (I, p.350, £.12), delete: ‘to p and’

I1, p.365, £.-10, replace: * Z5 x Z5’ by: ‘Zs x Z»’

I1, p.366, £.18 (I, p.355, £.7), read: ‘ Point (i) is evident from the formalism
of the Log, function (see 2.7, 2.8)”

IT, p.367, £.-4/-5: invert the two sentences

IT, p.377, 2.4 (I, p.365): for the proof of the result stated in this remark, use
2.3 by going to the direct limit on T with S., = (0.

I, p.379, £.8 (I, p.367, £.3), replace: ‘U, and: ‘U, respectively by: ‘UL’
and: ‘U}’

II, p.384, £.5 (I, p.371, £.-1), read: ‘consider the Z,-lattices of the Qp-space
Ly = G? I(U/Qplogp(E) ;

vlp
IT, p.387, £.13 (I, p.375, £.8), in fact the prime number £ must be congruent to

1 modulo p (without this condition, £ does not ramify), so that the condition
of the line 15 becomes: £ # 1 mod (p?)’

IT, p.394, €.11 (I, p.382, £.6), replace: ‘modulo this norm group’ by: ‘ modulo
(SS)[L:K]P contained in NL/K(ULS )’

IT, p.397, £.1 (I, p.384, £.-6), read: ‘is unramified (and split at all the p;)’

I1, p.409, £.13 (I, p.396, £.-3), read: ‘ The brutal lower bound (comming from
the first exact sequence of 4.4.2):’

II, p.412, £.-8 (I, p.399, £.-1), delete: ‘since N(Jr) N U = N(U;*®)’ which

1s useless

1T, p.414, £.3 (I, p.401, £.12), in: ‘ Tt follows that N(y) € K* .N(ULSI) ", replace:
CKX by CN(LX)?

IT, p.417, £.12 (I, p.404, £.16), read: ‘extension F' containing H’
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I1, p.420, £.-9, instead of: * FF " read: “ F,}’

IT, p.422, €7 (I, p.410, £.2), the fields: “ K(7™%(2)” and: ‘ K(n™%(2)” must be
permuted.

I, p.433, £.-6, replace: ‘=" by: ‘<’

11, p.439, £.-7 (I, p.427, £.-14): the above condition is only a necessary con-
dition; more precisely, read: ‘It is easily checked that if this is the case, then
Pl5*NTy =@’ (for e > n it is a necessary and sufficient condition, but for
e = n, there is a supplementary condition).

IT, p.445, footnote (I, p.433), read: < B K x>

IT, p.453, £.13: Concerning the p-tower F;(p), we refer to the first Note in
I1.5.9 (p.179).

I1, p.456, £.-5 (I, p.444, £.10): for these questions of duality, we also refer to
I1.2.4.1, (ii).

IT, p.461, £.-12, after: ‘we have the exact sequences’ add: ‘ (where ¢’ is the
modification of § depending on the identification of (Z/p°Z)* with Z /p°Z)’

I, p.475, £-12 (I, p.462, £.-13), replace: “Pr 1/ 0 a1 .S’ by: “PL, . Sp’
k%

(C) CORRECTIONS AND IMPROVEMENTS TO THE 1st EDITION:

I, Introduction, p.3, £.-2, add: ‘where [ 1s the group of nonzero fractional
ideals of K.’

I, Introduction, p.4, .1, read: ‘for the subgroups of finite p-power index’
I, Introduction, p.5, £.-17, read: ‘ the v-completion of K’

I, p.9, £.17, replace: ‘ are homeomorphic’ by: ‘are equal’

I, p.11, 1.4, replace the references: ‘1.1° by: ‘1.2’

I, p.13, £.-14: Remark that we deduce from these isomorphisms the well-known

formula [K : Q] = Z|: (K, : @yl

vlp
I, p.14, end of 2.1.3, add the following remark: ‘For p prime, the ring of
integers (resp. the maximal ideal) of C, is then the subset of elements 2 such
that ||z]|| <1 (resp. ||z]|| < 1)’
I, p.17, £-11, we give the proof of i, (KPv) = i,(K) N Qp: ‘Let z € K
be such that i,(x) € Qp. Then for all ¢ > 0 there exists a € Q) such that
| — al, < €; this yields | — a|, = |sz — al|s = |sz — a|, < ¢ for all s € D,
then |sz — z|, < 2¢ proving that sz = x for all s € D, (i.e., z € KP); thus
[K : KPv] < [K, : @]. In the case p prime, the global theory of Dedekind
rings yields ZU“,[K KPP =[K:Q]= ZU”,[KU : @p), which implies all the
inclusions i, (K”v) C Qp, v|p. The case p = co is immediate.’
I, p.21, £.14, put on the left of the formula: ‘U, = pig,—1 & U},
I, p.24, £.-1/-2, put: “ (i)’ then: ‘ (ii) * on the left of the corresponding formula

I, p.27, 3.7, note that the Teichmuller character is the character of the action
of g on pp.

I, p.27, 3.7.1, add the formula: ‘dim o (F @,Q) = + 7y + [So| — 1"
I, p.27, £.-13, read: < B¢ ®,Q”

I, p.32, £.2, add: ‘Since J is locally compact, the Lemma 4.2.1 also gives
Uss C N in the proof of 4.2.3’

I, p.34, £.11, instead of: ‘U™ read: ‘U’
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I, p.41, £.11, instead of: ‘v € T\T, " read: ‘v {p’ (since T, := TN Pl, is not
yet defined)

I, p.b1, footnote, read: ‘choose a real quadratic field and, in the spirit of the
proof of 4.2.8, (iv), use the powers of its totally positive fundamental unit ¢
in the idele (..., 1,...; 7™, ") € J, so that é(e"). (..., 1,...; 7™, &") =
(oo d(e™),. .51, 1)

I, p.54, £.-9, add:  The Subsection (a) is valid for any field whose characteristic
isOorpfn.’

I, p.bb, £.3, read: ‘for the same reason, since (G is abelian,’

I, p.61, 6.3.2, put: ‘(i) at the begining of line -9

I, p.71, after 1.2.3.1, add the following exercise:

‘1.2.3.2 Exercise. Let X be a finite set of places of L. Prove in the same

way that ( Dy )y ex :@<Dw’(L//K)>w'ez'~ K
LI

I, p.76, £.13, add: ¢ A direct proof may be found in [d, Langl, Ch.9, § 3]’

I, p.77, £.-10, after: ‘where N corresponds to M,’ add: ‘since the kernel of
K} — Gal(M/Ky)/Im(U,) = Gal(M™/K,) is Uy N’
I, p.85, £.-6, add: ‘In most books, the definition is the inverse of the more

canonical present one.’

I, p.97, £.8, delete: ‘ and complexified” and remember that X’ denotes the set
of places of L above those of X.

I, p.97, £.11, add the following proof: ‘ We have H'(Dy,,Uy,) = 1 in the
unramified case, because m, is a uniformizer of L, which yields ,U,,, C
vly, = (Léu)l_g = Ujju_a for a generator ¢ of Dy, ’

I, p.97, (iii), replace by: * (iii) For instance, the case r = =2, A = 7Z (with
7Z* = Q/7Z), gives the canonical isomorphism Ig/I% ~ G*~

I, p.104, after £.7, add: ‘ we note that:

Uy N Q Ni, k(L) = [ (U, NNL, ik, (L))

wlv

(NL s, (V) € (Newgic, (V) g
I, p.112, end of 3.3.5, add the following statement: ‘ The place v is totally
split in L /K if and only if KX C N.’

I, p.116, (iii), this proof is not totally convincing; read: ‘We have the
product formula [I (M) = 1, where (M) is the canonical im-
v v

v

age of (¢, Ly/Q,) in Gal(L/Q), and we know that (¢, L,/Q,) = 1 ex-
cept perhaps if L,/Q, is ramified (which occurs only for v = £) or if ¢
is not a unit at v (hence only for v = ¢ since we chose ¢ > 0); this

(q7 i/@) _ (q7 s/ﬁ@)‘l _

yields : O'q_l by abuse of notation (we have also

(@)(C) = (L/TQ) (€¢) = ¢?in L/Q since L/Q is a cyclotomic field);
interpreted in Gal(L./Qy), we get (¢, Le/Qy) = O'q_l.’

I, p.118, 3.5.1, (ii), we give more complete comments for the first part of this
point:

‘(ii) Similarly, if M corresponds to N, the decomposition subfield (resp.
the inertia subfield) of a place v in M/K corresponds to KN (resp. to
Uy,N), i.e., is fixed under pM/K(KUX) (resp. pM/K(UU)).

For instance, the field corresponding to the closed subgroup of finite index
N 1= KXU* (resp. K*U°9) is the maximal abelian unramified (resp. un-
ramified and PL,-split) extension of K. This field H** (resp. H°™) is called
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the Hilbert class field of K in the restricted (resp. ordinary) sense. From 1.5.1
or 1.5.1.1 we deduce that Gal(H™/K) ~ (f*** (resp. Gal(H°™/K) ~ (°r9).
We will find again these fields in the Paragraph 5 as particular cases of the
ray class fields corresponding to the open subgroups K> U5’

I, p.120, £-10, read: ‘the action of ¢ on J/N’

I, p.120, 3.6.1, we have the more detailed version of the first part: ‘Let K/Q

be Galois with Galois group G =: ¢, and let H (resp. (¥) be the restricted or

the ordinary Hilbert class field (resp. class group) of K (see 3.5.1, (ii)). If |G|

and |(Z] are coprime, Gal(H/Q) ~ ! x1G is characterized by the relations:
"o prrypc(cl()) o s’ = Pr/K (cl(sz)),

for any s’ extending s € (G and any idéle @ (with ¢/(+) € J/K*U ~ (), which
become, in terms of Artin symbols that we will introduce in Subsection (b):

(it ) = (o)

for any s’ extending s € G and any ideal a (with /() € &).’

I, p.124, after 3.8.2, add the following example:

‘For instance, if K is equal to Q or to a principal imaginary quadratic field,
this yields G~ U§ /ig(u(K)).”
I, p.132, after 4.3.2, add the following remark:

‘4.3.3 Remark. As for the composite map af/K o Ip — G| its kernel
is equal to:

ALy = Prmpos{ S INL/k (IL 1) = Prm an, - (S0 )NL/x (I 7),

for any m multiple of f, where Ao, := P\ Ss (see 1.4.4).
By definition, since Af/K o corresponds to L¥% /K | we have:

Prmpos{S)NLjk (IL,T) = PrmposNravs k(s 1),
for any m multiple of the conductor of L3b%. K

I, p.136,4.4.3.1, (ii), we give more justification of pL/K(i(x’)) = 1: ‘moreover
flm' :=mp; " and (2') € Pp s with ¢y (2') > 0 on PI; since by definition
L3P9 = [3b for § = PIE\ PIX, the formula given in 4.3.3 yields Pr i pre C
Pr mi posNrav /g (Irse 1), giving the result’

I, p.156, £.-1, read: ‘W = Vi3 /K57

I, p.157, £.-10, read: ‘we can use the Kummer interpretation rkx*(W) =
rk, (A) of the Remark 5.4.3, with W = VE/KP and A = (LY4>, giving

the reflection theorem’

I, p.159, £.-8, note that the maximal abelian p-ramified pro-p-extension of
is, for p # 2, the cyclotomic Z,-extension; then read: ‘p, (0, Pl,) = —1’

I, p.161, before Subsection (c), we give a large complement of 6 pages, con-
cerning the representation theory and the Spiegelungssatz, that we reproduce
here:

‘(5.4.9) ADDITIONAL MATERIAL. In 5.4.9.1, we will go into more details

about the computation of rk,. ( v, D {:I:l}) — I'kx*(ESD ord) when
veT VEA

Hp C K, and in 5.4.9.2, we will give some comments on the interpretation of
the classical reflection theorem. The notations are given in 5.4.2 and 5.4.5.

(5.4.9.1) p-Ranks CoMPUTATIONS. We use the following properties of
representation theory of g over F,, in the semi-simple case (i.e., p1|g|):
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(1) In the exact sequence of Z,[g]-modules 1 = N - M — M/N — 1 we
suppose that N N MP = NP; then this yields the exact sequence:

1— N/NP —— M/M? —— M/MPN — 1,

and by semi-simplicity: M @ F, ~ N @ F, & (M/N) ®, [, (isomorphism
of representations). ’ ’ ’

(ii) If the Z,[g]-module M is a free Z,module of finite type, the F,-
representation M @, F, ~ M/MP? and the Q,-representation M ©, @, have
the same character (psee [Sed, §§ 14-16]). ’

(iii) If M is a finite Z,[g]-module then the F,-representations M/M? and
pM = {x € M, zP = 1} are isomorphic: from the above reference, we know
that, in the semi-simple case, the representation theories over Z, and [, are

“the same” by reduction modulo p, so that for any x € X,(g) we can write
the exact sequence of Z,[g]-modules:

1 — (M) Mo —2 5 (M)P = (MP)*>* — 1

(the idempotents e, being those of Z,[g]); since M is finite, we get:
(M) ] = (M) = [ME[(MP)x]~h = [(M/MP)*x| =2 |(M/MP),],

which proves that (M/MP), and (,M ), are isomorphic.

(iv) Let d be a subgroup of g and Vy the permutation representation
of ¢ modulo d (Vz ~ F,[g] Y. ¢ for instance); then the character of Vy is
ted

Ind9(1q) =: > Py X, where we recall that p, = ﬁ > ), ¥|x. If dis
x€Xp(g) ted

normal in g, Vy is the regular representation of g/d, then p, = (1) (resp. 0)
if d C Ker(y) (resp. d € Ker(x)).

(v) Let d be a subgroup of ¢ and W a representation of d whose character
is equal to the restriction of the Teichmiiller character w (since p, C K, then
fp s such a representation). Then, the character of the representation V of
g induced by W is (Ind%(14))*, and rk,.(V) = p,: indeed, the s; denoting
a complete system of representatives of g/d, by definition (see [Se4, §3.3,
Th. 12]) we have for all s € ¢:

W) = X wlsrlss) = X w(s)
si€g/d si€g/d
s;lss,ed s;lss,Ed

= w(s) IndY(14)(s) = w(s) Indg(ld)(s_l),

giving the first part of the claim; then, rkx*(V) is given by the scalar
product {(Ind%(14))*,v*) with ¥* := wyy™! (note that ¥~ is also absolu-
tely irreducible), and an elementary computation yields ( (Ind%(14))*,¢*) =
(Ind¥%(14), % ). Therefore rk, . (V) = p,..

Let w € Pl, i, and consider the induced representation Du, ® IF, of g;

vl|u
from (i) with N = Glator(UU) we have:
GPUU O, ~ Glator(UU) QF, @ Gla(Uv/tor(UU)) @ TF,.
Using the log map defined in II1.2.2.1, which is a g-module homomor-
phism, injective on Gla(Uv/tor(UU)), we see from (ii) that the character of

Gla(UU/tor(Uv)) ® IF, is the character of the (Qp-representation Gla K, which

viu

is [ky : Q] times the regular representation. The corresponding y*-rank is
thus [k, QplY* (1) = [ky : Qple(1).
Since p, C K, Gla tor(Uy, ) ®F, is induced by tor(U, ) @F, whose character

is w; from (v), the character of the above representation of g is (Indflu (L))",
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where we recall that d,, is the decomposition group in K/k of a fixed place
v|u, and the y*-rank is p,, ..

Let u € Pli,. In this case U ®@IF, = 1 and the character of © Uy @, is

vl|u
the character of the torsion part giving a x*-rank equal to p,, .

Let w € Pl . In this case, @{:I:l} ® IF, is nontrivial only for p = 2 and

v|u
gives the regular representation since dy, = 1 (by assumption |g| is odd); this
yields a x*-rank equal to d, ,9(1).

We now compute the y*-rank of £°°°"d which is given by the Dirichlet—
Herbrand Theorem 1.3.7. We have:

rkx* (ESD ord) — ue;i Pu =+ ueZS:D)k Pu x* =+ 6w,x* — 61,)(*'

We remark that if u is a complex infinite place of £ or a real infinite place

of k, totally split in K/k, then p, .. = ¥(1) since d, = 1; if u is a real

infinite place of k, complexified in K/k, then p, X = —(1/)(1) + ¢(cy)) where

¢y generates dy. Note that o, \« =4, , and d;
We have obtained:

e (B0 @ (13) = T gt 2 b Qulp(1) 48,600 Al

veT vEA

and:

Spordy __
rkx* (E ) - TZ(k)’l/)(l) + UEPlZ)ZO.;USD,k pu,x* + 61,)( - 6w,x'

This yields the second expression of pX(T, S) given at the end of 5.4.2.

Note. We have GFZZ: (Pux + Pux+) = Ok + Q]+ 83 00 (1)ry (k): we check
u€E Pl oo

that p,, + pu+ = %(1/1(1) + Y(cu) + (1) + ¢¥(cu)w(cu)); if ¢, = 1, this sum is

equal to 2¢(1); otherwise, if ¢, # 1 (which supposes p # 2), w(c,) = —1, and this

sum is equal to ¥(1); let ri(k) := |Pli .l GFZZ: (Puy + Pux+) — (V[ : Q] =
vEPlL o

P(1) (2(ro (k) +ri (k) =ri (k) +r1 (k) = (1) (r1 (k) +2r2(k)) = &(1) (ri (k) = ri(k)) =

83 p¥(1)ry (k). Finally we use the relation [k : Q] = ry (k) + 2ry (k) = Xli[ku : @y] to
ulp

obtain the first expression of p, (7, .S) (note that ri(k) = 0if p = 2 since |g| is odd,

and ri(k) =ry (k) if p # 2 since K D p, is totally complex).

(5.4.9.2) INTERPRETATION OF THE REFLECTION THEOREM FOR USUAL
Crass GRrRoups. We consider the case where p, =: () C K, T =0, 5 =
Seo C PI; then the reflection theorem becomes for any x € X,(g):

rk . (C5) — 1k, (Un2) = p, (B, Seo), (1)
where m* = Hp’f” = p(1 = () is the modulus of p-primarity of K which
vlp

characterizes the non-ramification at p of Kummer extensions of degree p
(review 1.6.3), and where A, := PIEL\ Sy

We can take the y-parts of the exact sequences given in the proof of 1.4.5,
(i) (beware that the notations are permuted because of the reflection situa-
tion: m > m*, T+ Pl,, Seo = Ac, Aoy = Seo); then since (U, /U}), = 1
for v|p, taking n =1, ¥y, C So., we obtain:

rk, ((Upe) — 1k, (AA=0¥=) =
s (@Ul/whyrure @ (1) -k (RE VRS, (@)

VEY oo
where we recall that:
Vv =A{ae Kp,, (o) =0a"},
YA Ve = {a e Y, iv(a) > 0 Vv € S\ Teo ),
Y;,‘ “we = {a €YEY iy (@) € (U} U™ Vulp, iy(a) >0 Vv € Soo}
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(the subgroup of p-primary “As-pseudo-units”); this group will be deno-
ted YA (and for simplicity, the indices Pl, will be omitted). Recall that

prim

yord = | XpYﬁlZd is given by the exact sequence:
1 —s Eord/(Eord)p Yord/Azxp pcgord — 1’ (3)
where (,°™d), ~ C€;rd by (iii). Thus we easily obtain from (1) and (2):
Seo AceU¥e0) _
rk . (C7) — 1k, (& )= p,(0,55)
+rk, (69 vl jwiyvy @ {il}) k(Y ASUT

prlm)

We now compute the y-rank of @U J(UHPUPv . Consider the exact se-
quences:

1 — UPer JUPS O (U —— UL /(U —— UL j(UHPUPe — 1,

and:

1 — UPev N (UL)P Uper — T, — 1,

v

where the map 7 associates with o = 1+ p(1 — ()5 the root of unity ¢* with
t:= trFU/Fp(ﬁ) (see 1.6.3.5).

It s € dy, s(a) = 1+p(1 = C*O)s(n) = 1+ p(1 = 557 5() =
1+p(1=()w(s)s(n) mod p(1—{)py, thus trp /T, ( (s )5(77)) _w( )trF /Ty (M)

since w( ) € Fp; therefore 7 is an homomorphism of d,,-modules and the cha-
racter of the representation @ UPev /U2 N (U})? is induced by w; then, using
vl|u

5.4.9.1, (v), we get:

e (Ui vpe) = e (BUL/W)) ~ e (B Ureejvr 0 (1))
= P T Q1) = py o = [k = QI (D),
and we get:
rkx*(C€S°")— (ce“www)
= (0 Se0) o Xlbu = Qlur(1) 8, (1) B ] =k (¥ 2420 /¥ 05)
= py (0, Seo) + (1) ([k - QI+ 8y | Zog ) — ki, (VA=0T= /y A ),

Using the expression of p, (0, So.) and the relation [k : Q] = ry (k) + 2r4(k),

we finally obtain:

vk (%) =k (QA=YY) =5, =8, - ue;; Pue

FO(1) (11 (k) 4 7o (k) + 05 | Aco kU Zoo e]) =tk (Y A=UTo2 /Y S) 5 (4)

since rk (YA U¥eo / pmm) is the y-rank of the diagonal image of Y Aet¥e
in @ UL J(UNPUPe @ {£1}, we have the inequality:
VED oo
rk, (Y A=UTe /Yl ) <) ([k - Q-8 p| Koo i) (4)

We will explain the interest of such formulas (4), (4’), by giving two
classical examples which are not always well understood since, in general, in
(4) the term (1) ([% : Q]—|—527p|2007k|)—rk (YAl pmm) is replaced by 0
(for a lower bound) or by 1/)(1)([k c Q]+ 27p|2007k|) (for an upper bound),
giving again the Leopoldt’s Spiegelungssatz 5.4.6, (i) with inequalities.

For p = 2, to obtain the inequalities 5.4.6, (ii), we substract the equality
(4) with So, = PI&, from the equality (4) with Soo = 0 (Yoo = @ in each
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case); then we check that rk, (Yr4/Y % ) —rk (Y5 /YIS ) is the y-rank of

prim prim

the quotient of the images of Y4 and Y™ in @ U} /(U})PUPer.
vlp

ANALYSIS OF THE THEOREM OF ScHOLZ. We refer to 5.4.6.1 and 5.4.6.2 to
review that rk, () = rk3(C€@(\/C—l)), rk, . () = rk3(C€@( —3d))'

Let F =: (&,¢), where ¢ is the fundamental unit of Q(v/d); to simplify,
we merge the notation of an element with that of its class modulo K *3. Thus:

(E/EP) =(e), (B/E®)\ =1,
(E/E)y =(¢), (B/E®)1=1;
Formulas (4), (4') yield (since p., \» = 0):
rka(Cly(y=sa)) — ks (Cya)) = 1= ke (Y /Yo wa) prim)
with rks (Yo /a)/ Yo vy prim) < 1- Let:
Y@(\/J)/@(\/C_Z)XB = (Y1, Y E),s
where 7 is the 3-rank of the class group of Q(v/d) (see (3)); we have:

ks (o =5a)) — rks (g yz)) =1

if and only if the y; as well as ¢ are 3-primary; otherwise Y@(ﬂ) is of

index 3 in Y@(\/C—l) and we have:

,prim

ks (g (y=am)) = rks (o) )-
If we only know that ¢ is 3-primary, then we have:
oterwise, if we know that £ is not 3-primary, then:

ks (Cyy=3a)) = tks (L))

Symmetrically, we can start from the character x* and write (with Pooy = 1):

k(g ) — rks(Cyym3a)) = —rks(Yo(/=8a)/ Yo(/=sa) prim)

with rks (Y@(\/_—M)/Y@(\/_—M)yprim) < 1, then we can put, in an analogous

manner, Y@(\/_—Bd)/@(\/—i%d)xz)’ ={¥\,...,y. ), where ' is the 3-rank of the
class group of Q(v/—3d), which gives the following reasoning. We have:

rks (Cg@(\/&)) =1k (Cé@(\/—_?wl))

if and only if all the y} are 3-primary, otherwise Y@(\/_—Bd) is of index 3

in Y@(\/_—Bd) and this yields:

,prim

rk3(C€@(\/g)) - rk3<C€@(\/—_?>cl)) =-L

This methodology was initiated in: Bull. Soc. Math. France 100 (1972),
177-193; in this paper we gave many numerical examples.

ANALYSIS OF A RESULT oF HECKE. We are now concerned with the case
K = Q(up), p # 2, with ¢ = Gal(K/Q). For an even character y # 1 (i.e.,
x =W keven, 1 < k < p—1), we have x* = wx™! = w!™* #£ w. Since
Poo x+ = 0, formulas (4), (4') yield:

rhoye () = they (€)= 1 — 1k (Y/ Yorim ),
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with rk, (Y/Yprim) < 1. Let (E/E?), =: (e EP) denoted (¢, ), and let:

(Y/[(XP)X = <y1a""y7‘x’6x>’

where r, is the y-rank of the class group, and where all the numbers are
prime to p. Then:
thky o« () — 1k, () =1

if and only if all the elements y1,...,4, ,€y are p-primary, otherwise, the
group (Yprim/KXp)X is of index p in (Y/KXP)X and the p-ranks of the class
groups are equal.

If ¢, is p-primary, we only have 0 < rk,.((¥) — rk, () < 1, otherwise
ko« () = 1k (V).

The result of Hecke (1910) was (with classical notations) the inequality
rk, () < rk, (/) that we easily obtain from (4) by summation over the
even x # 1; the use of (4') yields 0 < rk, (/™) —rk, (/) < ’%3. Some insights
into representation aspects were given by Pollaczek (1924) after Kummer.

If we start from the odd character x* # w, we obtain, since p., , = 1:

tk, () — tky+ () = —1ky+ (Y/Yprim) ;

then if (Y/I(Xp)x* = (.. .,y;X* ), the reasoning is the same, but with
pseudo-units (which are not units) comming from an odd component.

We do not know examples with r, > 1 (see [(c), Wa, Ch.8, §3]). To
find an r, > 1, we must check that ry+ > 1 and (when it is the case) that
Yy+ (generator of (Y/K*?),. when ry. = 1) is p-primary (the case 7y > 2
automatically yields r,, > 1); the first condition is equivalent to the triviality
modulo (p) of the generalized Bernoulli number by or to the p-primarity
of the cyclotomic unit 7,, giving a probability equal to l; I the second
condition (when the first one is realized with r,+ = 1) has also a probability

equal to l If we assume that these two conditions are independent, this gives

the probability % (for x fixed). We have neglected the case ry+ > 2 whose
P

2

probability is less than 1 (the principal theorem of Ribet—-Mazur—Wiles—
P

Kolyvagin implies that |C€§é‘* = |bx* ;1’ but if b, = 0 mod (»?), ;?* may

be cyclic), so that we can consider the probability % as a wide upper bound.
1

This heuristic reasoning, involving congruences, is more convincing than

the direct interpretation r, > 1 if and only if p|({ey) : {7y )) (principal

theorem of Ribet—Mazur-Wiles—Kolyvagin—Greither), since we do not know
efficient heuristics for global p-powers; the above gives for p| ((ey ) : {1y )) a

probability less than ]% (see [Scho2] for the non-p-parts of the class goup).

But there are n := £— 3 even characters # 1 for p > 3; perhaps they do

not have the same “weight” because of the subfields of “small” degree whose
p-class number can be limited. To be more precise, we may estimate the index
of irregularity i(p) (i.e., the number of odd characters x* giving r,+ > 1): it
seems clear that the density of prime numbers p, for which i(p) > 1, exists (its

value is discussed in [(c), Wa, Ch. 5, § 3] after the Theorem 5.17; see [Ri4] and

! The equivalence of these two conditions is classical and comes from the con-
gruence properties of p-adic L-functions. Let p, =: ({), and for any a € Z
prime to p, let 0, € g be such that o.({) = (“ By definition, we have

-1
bys = %Zzzl X*(cr;l)a € Zyp, and 1y := (1 — {)°* seen in (E/E?)y, with the
. -1 _
idempotent ey := zﬁ Z:l X(aal)aa € Zyplg]; for u = p, e, = 1, ¢ & {1, w},
we have (U, /(Us)PUP), = Fp; since 1, is p-primary if and only if its image in
(Us J(U)PUP)y is trivial, this gives one possibility out of p. In an analogous way,
the p-primarity of y}+ only depends on its image in (Us J(UDPUR ).
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[BCEMS] for some numerical computations). In this context, the probability
that i(p) =i > 0 is Cn(l—];) (;),forpZ&

Since these values are in accordance with all numerical data, this “proves”
that the above phenomena can be neglectedz, which ylelds a number of

favourable cases p < B around > Z CZ (1 — —)n Z (1) (1 — (1 — —)Z) =

P<B 1= P P 14
> (1 — (1 — 3) ) < Z D < Z — < log(lo of course, it is then
S 7 S <2 g(log(B)) (
equivalent to use directly the probablhty that p| ((ey) : (my)) for at least
one character x). See in [Th2] a criterion for the p-triviality of this index.

In conclusion, the classical Kummer—Vandiver conjecture is probably false
for probabilistic reasons. ? (see [Iwh] for another approach with Gauss sums).’

o I, p.170, £.-6, we give the following Note to precise some forthcoming nota-
tions:

‘Note. We will introduce the notation F’]S“(p) for the maximal T-ramified S-split
pro-p-extension of K; as in the case T' = 0, S = PI, (the p-Hilbert class fields
tower K(°(p) in the ordinary sense), Ff]s"(p) is also the p-tower of the succes-
sive maximal T-ramified S-split abelian pro-p-extensions defined in 5.3, and the
maximal pro-p-subextension of the corresponding tower Fqs« (same proof). The
groups G5 := Gal(ﬁ?« (p)/K) will be studied in the Appendix. Warning: F; may
be strictly contained in the maximal T-ramified S-split Galois extension of K (e.g.,
take k /@ with Galois group As and let T be the set of ramified primes in k/Q; then
kNnHr :@WithﬁT 75@)7

I, p.172, 5.9.2, we have a new redaction of the point (i) as follows:

‘(i) The Hilbert class field is a particular solution to the principalization
problem of the ideal group of a field K; we will not expand on this, but it is
clear that the classes of K can principalize in many other abelian extensions
of K, and we now have quite a precise understanding of the ideal extension

map for the extension Kab/K (see [Gr9], [Kur], [Bos]). For instance, from
the above papers we can state the following results:

(a) Let K/Q be a real abelian extension of degree prime to p # 2. For
any Q,-irreducible character x of g := Gal(K/Q), let &/, := (g )y where
ey € Zplg] is the corresponding idempotent. Let 4| y; ¢ is of degree 1, of order

X
m,, prime to p, and Zp[gle, ~ Zp[pmx] =: Ry; put (4, ~ Z@ Ry/p" Ry,
Then there exist infinitely many abelian extensions M/Q such that

Gal(KM/K) ~ @ 6_9 Zfp L and eay e (Cr)p) = 1.
(B) Let k be a non-totally real number field; then for all finite extension
K of k there exists an abelian extension M of & such that jKM/K(C@é”d) =1.

(v) For any totally real number field K there exists a real abelian extension

M of @@ such that jKM/K(C€O ) =1

In a forthcoming paper, Bosca proves (5) and () in a unified way: “if
K /k is totally split at a (real or complex) infinite place, then the ordinary
class group of K principalizes in an abelian compositum of K/k”. In [Bos],
we also find analogous results for the logarithmic class group defined in

(Ch.1I1, §7)..."
o I, p.186, £.5, add: ‘Let T be a generator of Gal(K,/K)’

2 However, see [Sou] giving some insights into this aspect.

# A more precise computation involving the Cohen-Lenstra—Martinet heuristics on
class groups would certainly give less than clog(log(B)) with ¢ < 1. Moreover,
discarding the small primes, we would obtain clog(log(B)) — ¢', ¢/ > 1, which
explains that only very large p can disprove the conjecture.
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I, p.189, £.-17, replace: ‘ Xy #£ (7 by: <3y D PI§s’

I, p.202, footnote, add: “‘ay; = —2’

I, p.205, £.11, read: ‘ power residue symbol for n|m = |p(K)|’

I, p.205, £.-2, replace: “(x,my), * by: ¢ (iv(x)%, FU)U ’

I, p.206, £.10, after: ‘separately * add: ‘ (the case v(z) # 0 implies v(y) = 0
and, since v { n, this yields v ¢ R,; the case v(y) # 0 is symmetrical)’

I, p.213, 7.6.1: this result comes from the snake lemma applied to the funda-
mental diagram.

I, p.216, £.4, replace: ‘this rank’ by: ‘the p-rank of RS™(K)’ ; read: *(see
m.2.1.1for S=PL,, T = Pl,, and 111.4.2.2).”

I, p.223, 1.1.3, this remark i1s written as follows:
‘1.1.3 Remarks. (i) Note that in 1.1 we have, by 11.5.2.2, (i):

Gal(Km)®/Km®¥°=) = (L (Km)¥ [ K) )y ey - { Do (Km)* [ K) )y

the group generated by the inertia groups of the places v € T\t and the
decomposition groups of the places v € doo, in K(m)* /K.

This interpretation is valid only if n is a pure divisor of m, in other words
if n and = are coprime (see more general situations in 1.1.6 and 1.1.8).

(i) If my, = 1 for all v € T\, then U, /U™ ~ FX for these places, the
embedding iT\t 5. may be identified with the family of residual maps, and
the exact sequence of the Theorem 1.1 yields the isomorphism:

7 NS T S Udoe ) ~u x [z SUS oo
Gal(K(m)~ / K(n) )_UE(T%B)U&& Fy /ZT\t,éw(En )

(with & = 1;[\ Py prime to 0, deo C Ao, F = {F1}if v € d0o). L
VE t

I, p.224, £.-10/-9, put: ‘ (&)’ before: ‘ Using I1.3.3, (iii), or 11.3.3.5...°
I, p.236, 1.6, this theorem is written as follows:
1.6 Theorem (structure of Gal(H45/H*)). We have the homeomorphism:

Gal(H3 /H®) ~ @TUU adhy (E°),
ve
where adh,.(E®) is the topological closure of i (E*) in GBT U, . This Galois
ve

group is a Z-module of finite type. We have Gal(H2 /H®) = (I,(H2 /| K) ver,
L(HE/K) ~ U, /U, N adhy(ES).

For any prime number p we have:

Gal(Hz (p)/ H® (p)) ~ ( ® v D (va)p)/ath(E/S),

veT, VvETa

where adhy (E’'®) is the topological closure of i (E'®) in 62 Ul G? (F))p.
veT), vELta

This Galois group is a Zp,-module of finite type. WK
I, p.239, £.16, replace: ‘io(E°™ @ Z,) by: “iy(E°™ @ 2) ’

I, p.255, £.-7, read: ‘The fact that we consider (still in the totally real case):’
I, p.257, 2.8, we give a more detailed version of this page (after the end of
2.7):

‘This is consistent since, for all n such that m(n) is a multiple of the
conductor of M (see 2.3.5), we have A = Pp 1(n),posNar/k ({ar,7) Which yields
A ® Zp = PT,m(n),posNM/K(IM,T) = PT,oo,posNM/K(IM,T)~ 4

* Since Ir /Pr,00,pos is of finite type, Pr oo pos - Naryx(Zas,1) = Pryco,pos - C, where

C C Ir is of finite type (i.e. compact); thus we apply [.5.4 to the relations
A® Zp = PT,m(n),pos . PT,OO,pos . NM/I\"(IM,T) = PT,m(n),pos .Cfor all n > 1.
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In the general case of abelian pro-p-extensions with restricted ramifica-
tion, and mainly when 7, # (}, we can state the correspondence of class field
theory in the following way.®

2.8 Theorem. There is a bijective Galois correspondence between the sub-
extensions M /K of H5®(p)/ K and the closed subgroups N of Iy containing
P7 co,pos- The field Hy(p) corresponds to Pr o pos. For a given M, we have:

N = ﬂ PT,OO,pOSNM’/K(IM’,T) = ﬂ adh (NM’/K(IM’,T)>
M/'CM M'CM
M'/K finite M'/K finite

since the Pr y(n)pos form a fundamental system of neighbourhoods of 1 in
Zr containing Pr oo pos-
We have the following properties where K C M' C M C H¥S(p):

(i) We have the exact sequence:

@

M/K
1 — N/Pr oo pos — L1/ Pr,co,pos — Gal(M/K) — 1 ;

if M/K is finite, N' = Pp oo posNar/ i (Zar,7);

(ii) the composition of /i and of the projection Gal(M/K) —
Gal(M'/K) is equal to Oppri s

(iii) the decomposition group (resp. the inertia group) of v € T in M/K
is the image under pr/rc of (PT\{U}wa\{U}ypOS Apo) ® Zp) NIy (resp. of
PTvOOT\{U}vPOS)" if v ¢ T is finite, the decomposition group of v is the image
of {(py) ® Zp; if v € P, the decomposition group of v is the image of
P00, P\ (v}

(iv) if M'/K is finite, for all @’ € Zyp 7, the image of aM/M,(a’) in
Gal(M/K) is aM/K(NM//K(a’)); in particular, we have:

Gal(M/M') = @y (Nagry g (Tvr))

(v) if M'/K is finite, for all a € Iy, the image of aM/K(a) under the
transter map (from Gal(M/K) to Gal(M/M')) is oy 5 (a’), where o is
obtained by extending a to M’;

(vi) for any Q-isomorphism 7 of M in Q, we have for all a € Tp:

ozTM/TK(Ta):7’oon/K(a)o7'_1 on tM. m

The finite extensions correspond to closed subgroups of finite index of the
form A ® Z, as in 2.7 above. For instance A = Pp y pos, M € (T )y, for ray
class fields, giving the open subgroups Pr m pos.

Then, the function Logp, allows us to characterize the Z,-torsion and
the Z,-free part of any relative extension, and hence of any subextension

(see 2.7).

2.8.1 Example. Take T' = PI,. Then it is immediate to check that the sub-
group N of Z,, corresponding to the cyclotomic p-extension I(Q(upw)(p)
of K, is the subgroup {a € Z,, Ng,g(a) € Pgp,copos), in other words
N ={a €T, iy(Na)=1in ZX}, where N now denotes the absolute norm
taking values in QF s 1= Q) @ Zp.

In the above, for p = 2, using KQ(2)/K instead of KQ(pe)/ K, where
Ql2y is also equal to H$™(2), we obtain:

Gal(Ko/KQ®2)) ~ {Log,(a) € Log,(Z), Logg »(Nk/q(a)) = 0}.

® We leave the reader to establish the details for the functorial properties of
this correspondence (restriction, decomposition and inertia groups, norm lifting,
transfer, etc...), in the spirit of I1.4.5, where ray groups mod m or % become

infinitesimal ray groups for co := cop or for cop .} in an evident meaning. For

X

: X _ X
instance, remark that KT,oo = KT,OOTP N K:T,mta'
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We always have N/ g(a) = (Na) but possibly with i5(—Na) = 1, which means
that the Artin symbol of a in H3%%(2)/ K fixes KQ(2) but not KQ(pge). [’
« 1, p.269, £.-15, instead of: * p-rank ’ read: ‘ Z,-rank’

« I, p.273: In 3.6.3 and 3.6.4, we still assume that £°°°*¢ is monogeneous (=
monogenic in IT).

o I, p.278, 4.1.5, the statement is given in a more general form:

‘4.1.5 Theorem. Let K be a number field satisfying the Leopoldt conjecture
for p. Let T' be a finite set of finite places of K containing Pl,, and let
Seo C PI,. Put Ti, := T\ Pl,. We then have the exact sequence:

X Sw S(x:U6<x) 3
1 ” @ (Fv )p 7~Tut TPl Ut 1’
VET aU Soo p

for any finite set t C PI\T, and do, C PIE\S, giving the following particular
cases:

1 —s @ F>< ord ord —1
UETta( v )P /TT 7;; 3
1 —s @ F>< Tes ord —1
vETtaUPl(; v )P /TT 7;; 3
I — {£11" T T — 1 (p=2). 0

o 1, p.299, £.-1, read: ‘by 1.1.6, (ii), («) for S = and m, =0 (i.e., my = 1),

we have:’
. I, p.305, £.16, read: “if and only if |Pl,| > 1 or |Pl,| =1 and p,(K) =1’

. I, p.308-310, we say that the coefficients of e € Q,[I'] are in Q(fuw,); this is
not correct: these coefficients are in general in the Galois closure of Q(fy,)-

o I, p.327, Note, after: ‘can be reptesented by ¢ € tor(Cg)’ put: ‘since Dg is
divisible’
o 1, p.328, the proof of 4.15.4 is given in a more detailed way:

‘Proof. Denote by x € éab* a character of order p” of éab such that the
orthogonal complement { x )& (i.e., the kernel of y) fixes L. The existence of

. . —ab e . .
M is equivalent to that of ¥ € G such that x = P . Since a profinite

. . . —ab*p® | .
abelian group is reflexive, we can say that y € G""F if and only if:

Gal(E™/L) 2 (G™"F")*
_ {O’ c éab’ gppe(()') _ gp(o’pe) -1 Vgp c éab*} _ peéab.

.. . —ab .
Thus this is equivalent to peGa C Ker(x), hence (apart from the special case)

to Pfab/K(peJ) C Ker(x) which means, by restriction to L/ K, pL/K(peJ) =1,

in other words to pep (K, ) C Ker(pL/K) for all v since peJ = Hpep(Kv), which
is again equivalent to: pep(K,) C Ker(va/Kv) = Nz, /k, (L)) for all v, by
definition of p; /- (or because “N N K = N,” seen in 11.3.3.1).
In the special case we add the condition pL/K(s) =1. K
. I,p.340, 4.18.1, read: ‘ Let K be a number field; consider the following objects
which are Z-modules or homomorphisms of Z-modules:’
o I, p.353, £.4, add the following hint: ‘For the computation of (%), check
that the Frobenius of [, in K(v/7)/K is that of 7 in Q(v/=23)/Q; for the

computation of (%), use the relation 7n’ = 2.3%.°
x4+ L

o 1, p.354, 6.7.2, we add the following hint: ‘show that (T) =pa?, p|2,

and ((¥)2 = 1 (genera theory), deduce that Wy = (—1,2,a)K*?/K*? then
use the equality ZsLog,(Iz) = Zalogy(Pa) = Za X Za to compute Ws.’
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I, p.356, 7.3, after: ‘(i) add: ‘Let Q;yd be the cyclotomic Zp-extension of
@p. . Then in the sequel replace: ‘Q;yd(p) > by: ‘Q;yd’

I, p.356, £.-14, add: ¢ For this, the embeddings ¢, for v|p must be extended to
X 7

iy KX (K) = " @ (V).
I, p.360, £.3, add the following justification of the existence of vg: ‘This is
valid because the extension is cyclic since o, C K.’

I, p.360, £.-10, add the following remark: ¢ The map 1 ® (¥), is also the map
1 ®div (see 7.5, (iii)).’

I, p.361, £.-5, we give the well-known proof: ‘if o € I is such that (a) =
(a) € P, then (o~ Y,eq =: (65)oec defines a 1-cocycle in Ezrd; this yields
a map which factors through Pg; if (¢5)oec = (177 oeq with n € Ezrd,
then we get (a) = (an~1) with an=! € K* giving the injectivity of the map’

I, p.398, £.17, we give the well-known proof of this algebraic property in the
following Note:

‘Note. Let H be an abelian normal subgroup of a group " and let G := ['/H.
Since H is abelian, G acts by conjugation on H (for s € G, o € H, 6° := s'os' !
for any s’ € I extending s). Let h be a subgroup of H, normal in I"; then H/h is in
the center of I'/h if and only if s’0s’ o= € hfor all s’ € I" and all o € H, which
is equivalent to a°~! € h for all s € G and all ¢ € H; thus the minimal solution A
is H1G | where I is the augmentation ideal of G. Here, H = Gal(HLSI/L). ’

I, p.403, £.2, read: ‘then [C’f/K(p) L) = |(C€fl);G|;’

I, p.416, £.9, instead of: ‘ Kummer theory for the case e = 1’ read: ‘the Hensel
lemmain K,’

I, p.419, £.-10, read: ‘In the case p = 2, if K is a real quadratic field with a
trivial restricted 2-class group,’

I, p.420, in 2.4.6, when we put v|p we have of course v ¢ Sp.

I, p.421, £.-13, add the following remark: ‘More generally, we must have
(67 ) Yver ~ G%UU/(UU)” for all ¢ C T (which is equivalent to be satis-
: Ve

fied for all maximal subsets ¢ C T'); thus, minimality takes place if and

only if rkp(<5ﬁv Yoet) = UZ:EtrkP(UU) for all maximal subsets ¢ C T, and if

tho (65, Juer) £ 2 1l (1) — 1

I, p.435, £.-1, add: “ (since Gal(Q1(c0)/ K) is the decomposition group of vy|2,
we are reduced to the tame case)’

I, p.443, 1.2, we give the well-known proof of this lemma: ‘ Let ¢ be a contin-
uous 2-cocycle of G; the inverse images of the elements a of the discrete finite
set 7 /p°Z are thus open and closed sets in G?; since the profinite group G? is

compact (Ch.T, §5, (c)), these sets are compact of the form U Taillys,
;€1 finite

za; € G, for open normal subgroups U, ; of G2, so that ¢ is locally constant;
since all the above classes x,;U,; are finite in number, by taking suitable
finite intersections,; we can find an open normal subgroup H of G such that
¢ factors through (g/%)z, yielding the nontrivial inclusion (C) (for more
general situations, see [g, Se3, Ch.1, §2.1] or [g, NSW, Ch.1, §5]).’

I, p.443, £.-12, the Note is modified as follows:
‘Note. If A is a finite G-module, we denote by A* the dual G-module of A; this

notation, defined in 1.5.7, will be compatible with those used elsewhere, subject to
some identifications since we consider dualities with values in various cyclic groups
of order p°.’

I, p.462, 3.8: For this theorem we still suppose that the p-tower L satisfies
the Leopoldt conjecture at p.
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