II. Reciprocity Maps
Existence Theorems

The fundamental results given in this chapter do not necessarily form a se-
quence of logical steps for a proof of class field theory, but are written and
commented so as to be used. This is so true that, as we will see several times,
a classical proof consists in deducing local class field theory from global class
field theory, as was initiated by Hasse and Schmidt in 1930 (see [Had] and
[SchFK], respectively), and in particular to base some local computations on
global arguments (a typical example being the global computation of a local
Hilbert symbol in 7.5); however here, in the description of the results, we will
go from local to global, which seems more natural.

Chapter I contains tools coming directly from elementary considerations
on number fields and local fields; on the contrary the present chapter relies
on the (nontrivial) existence, for each place of the number field K, of the
local reciprocity map (or local norm residue symbol). ! The existence of the
local reciprocity map, and thus of the global one as we will see in 3.2, is in
fact of a cohomological nature, even though other approaches are possible,
such as the Lubin-Tate theory of formal groups. 2

81 The Local Reciprocity Map — Local Class Field
Theory

Let K be a number field and let v € Pl fixed. Since the case v € Pl is
immediate (see 1.4.6), we will usually assume that we are dealing with a
finite place, but everything which is detailed below can also be applied to
the local extension C/R, an unramified abelian extension whose Frobenius is
equal to complex conjugation c.

As usual, if v is finite all the corresponding local fields are taken in the
completion Cy of an algebraic closure Q, of Qy, where / is the residue char-

acteristic of v. Let K, be the v-completion of K; let K, = Q, (resp. Kib) be
the algebraic (resp. abelian) closure of K, in C,, and G,, (resp. ézb) the profi-
! Tts proof can be found in [d, CF, Ch.VI; Se2, Ch.XI, XIII], [f, Artl; Haz],

[c, Neul, Ch.IV]; the first proof is actually due to Hasse-Chevalley [h, Chel].
2 [f, Lang2, Ch.8; Iw1], [d, CF, Ch. VI, §3], [c, Neul, Ch.V, §4].
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nite group Gal(K,/K,) (resp. Gal(?ib/KU) ~ G,y /|Gy, Gy)), where [G,, G,)]
denotes the topological closure of the commutator subgroup of G,,.

Now let L be a finite extension of K; for each w € Pl ,, Ly, is the w-
completion of L. We fix L,,/K, and the embeddings i, and 4, for w|v, as
explained in 1.2.4.

Note. Since any finite extension of local fields can be written (in infinitely many
ways) as L., /K,, we are indeed studying an arbitrary local extension; here, the use
of this global point of view will not matter since it will in any case be the natural
setting for the definition of the global reciprocity map corresponding to L/K (the
only one which interests us here and for which we must consider simultaneously all
the completions of L/K and all the corresponding local reciprocity maps).

a) Decomposition of Places: Local and Global Cases

In this subsection, we recall the main classical properties of the places in an
arbitrary extension L/K, both in the local and global cases. As explained in
the above Note, we work in the setting of a global extension L/K.

1.1 LocaL GALois GROUPS, INERTIA GROUPS, FROBENIUS . In this para-
graph, we will constantly refer to Section 2 of Chapter I.

1.1.1 Gavrors Cask. If L/K is Galois with Galois group G, the decomposi-
tion group of w € Plr, in L/K, denoted D,,, can be canonically identified
with G, := Gal(L,,/K,), and under this isomorphism the inertia group I,,
of w in L/K, which is a normal subgroup of D,,, corresponds to the inertia
group GV of L, /K,. We will sometimes use the notation DY instead of I,
when the higher ramification groups are needed in a global situation, and
then more generally D!, ~ G!, or D, ; ~ Gy, i > 0, with the definitions
recalled in 1.3.

Since the field LPv is the decomposition field of w in L/K, we know that
iw(LPw) is dense in K,,. The inertia field is Lv; similarly i,, (L) is dense in
the subfield LT of L,, fixed under G (the largest subfield of L,, unramified
over K,).?

1.1.2 NON-GALOIS CASE. Even when the extension L/K is not Galois the
extension L,,/K, may still be Galois (see Example 1.2.2.3, (ii)), so that G,
(hence G which is still a normal subgroup of G,,) can exist even when
D,, does not make sense; this explains the independent choice of notations
between the local and global cases.

3 We use the superscript “nr” (as “non ramifié” from the french), thus following
most authors.
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1.1.3 ABELIAN CASE. If L/K is abelian, the groups D,,, I, do not de-
pend on the choice of w € Plj, and, by abuse of notation, are simply
denoted D,, I,; similarly for the fixed subfields L”», L». The notations
Gy, GY, L,, L are also legitimate since L., does not depend on the choice
of w|v, and neither does the isomorphism G,, ~ D,, which sends 7 € G,, to
2;1 0T oly On L.

In the Galois case the G, for w|v are equal (since the L,, are equal), but
the canonical isomorphism G,, — D,, depends on the choice of w|v, which
explains that in this case G, is not denoted G,.

1.1.4 MAXIMAL ABELIAN SUBEXTENSIONS. We now assume that L/K is
any finite extension. In the sequel, we will refer to the following diagram, in
which L/ ,/K, comes from a subextension L'/K of L/K, w' is the place of
L' below w, L2 (vesp. L'’ = L2 N L! ) is the maximal abelian extension
of K, in L, (resp. in L), and where L2 is the maximal abelian extension
of L), in Ly, (L2 contains L/, L2", but is not necessarily equal to it).

’ nr’ / ab ab’
I, L L, L2 L Lu

Fig. 1.1

By abuse of notation we set G2 := Gal(L2’/K,); if L, /K, is Galois then
G, exists and we indeed have G2P ~ G, /[G., G1]. We denote by G20 the
inertia group of L2P/K,. If L, /K, is Galois (with Galois group G,,), the
inertia group of L2P/K, is equal to G2"° ~ GO /|G, G,,] which is not the
abelianization of G% but the image of G% in G2P, in accordance with the
general property of higher ramification groups (in upper numbering) which
is that for any normal subgroup H of G, we have (G, /H)" = G H/H
(see [d, Se2, Ch.1V, §3]).

We proceed in an analogous manner to define the groups D2P and I2P
which lift G2 and G2P0 respectively, when L/K is Galois; we have D> =
Dy/[Dw, Dy) and 12> = I,,/[Duw, Dy

Note that, even in the Galois case, G2 is not necessarily isomorphic to the
decomposition group D,,(L*?/K) of w in L* /K, the latter corresponding to
the quotient of G2 which gives Gal((L*"),/K,) (see 1.2.7).
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1.1.5 MAXIMAL UNRAMIFIED SUBEXTENSIONS — FROBENIUS’. We denote
by fzr the maximal unramified extension of K, in K,; it will of course be
obtained by the local infinite class field theory correspondence 1.7, but its
direct construction is classical and elementary: recall that, when v is finite,
K, is the lift, via the Hensel Lemma 1.3.2, of the algebraic closure F, of
the residue field F,, ~ F, of K,, since for each degree n > 1, the unique
unramified extension of degree n of K, is equal to Kv(/qug_l); 4 it is a cyclic

extension. It follows that K :r is contained in K i , that it is procyclic with
Galois group:

Gal(K /K,) ~ lim Z/nZ =: 7 ~ H Ly,

n>1 p prime

the profinite completion of Z. For any subextension M/K, (finite or not) of
K:}lr/Ku, we denote by:

Frob(M/K,)

the Frobenius automorphism of M/ K.,; it is a topological generator of the
group Gal(M/K,), restriction of Frob(K "' /K,) to M. The Frobenius action
Frob(K, /K,) (x) = 2% mod (r,) for integers z is here characterized by:

Frob(K.' /K,) (¢) = ¢® for all ¢ € L>J1 Han—15

otherwise, Frob(K, /K,) (¢)— (% is a local unit (we are reduced to consider
1— ¢’ where ¢’ # 1 is of order prime to the residue characteristic of v) which
must be in (7, ), a contradiction.

In the above context 1.1.4, we then have L} = L, N FT; this is the
maximal unramified subextension of L,,/K,. As we have just mentioned, it
is cyclic, unique, contained in Lzb, and L., /L™ is totally ramified; > L exists

even when L, /K, is not Galois; in the Galois case, it is the subfield fixed
under GY (see 1.1.1).

We immediately check that fzr = wazr or, more canonically:
Enr — kil’l!‘ — k .
Q, ngl (tgn 1),

for any algebraic extension k of Qp, where ¢ is the corresponding residue
characteristic (for this, we must check that k(. _,)/k is unramified, even if
£™ is not a power of ¢,, which is immediate).

In (Fig.1.1) above we have given the various maximal unramified exten-
sions using a principle of notation identical to the one used for maximal
abelian extensions (noting that since L,, /L% is totally ramified, we indeed
have here i}rll?t ¥ = L/, L™). The diagram can be justified by the very
nature of K, . This gives the following result.

* [e, Ko3, Prop. 1.77].
5 [d, Se2, Ch.III, §5, Cor. 3 to Th. 3].
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1.1.6 EXACT SEQUENCE OF INERTIA GROUPS. Let L'/ K be a subextension
of L/K.1f L,,/K, and L ,/K, are Galois with respective Galois groups G,
and G, we have the following exact sequence of inertia groups (which is
still valid if these local extensions are infinite as we will see in 1.2.3):

1 —G°0 —— G ——GY — 1,
where G0 := Gal(L,, /L"), GO, := Gal(L’,, /L'™F).

The cyclicity of L2'/K, implies the following property of the Frobenius
automorphism.

1.1.6.1 Proposition. We have (see (Fig. 1.1)):

Frob(L™ /K, )% = Frob(L" /L/*) = Frob(L™ /L.,,)

b
nr
L'w

where f!, := [L!"" : K, is the residue degree of L, , /K. 0]

1.1.6.2 Notations. We denote by e,, := [Ly, : L] and €2 := [L2P : L] the
ramification index of L,, /K, and of L2P /K, respectively; since the extension
L., /L2 is totally ramified, the residue degree f,, := [LYF : K,] of L, /K, is
equal to f2P that of L2P/K,. 0J

1.2 GLOBAL DECOMPOSITION AND INERTIA GROUPS. We still consider a
finite extension L/K with a subextension L'/K.

1.2.1 EXACT SEQUENCES OF DECOMPOSITION AND INERTIA GROUPS.
When L/K and L'/K are Galois, recall how the groups D, and I, (in
L'/K), D,, := D,(L/L') and I}, := I,,(L/L’), are related to the groups D,,
and I, in L/K (with w|w'|vin L D L' D K).

We have the following diagram, where LP» and L'Pw’ are respectively
the decomposition fields of w and w’ in L/K and L'/K, where L'» and
L'lw are the corresponding inertia fields, and where LPw and L' are the
decomposition and inertia fields of w in the extension L/L’.

(w/) L/ split LD:U inert L];U ramified L (w)
I /< ramsified ramsified
w

ramsified
D , L/Iw, split inert L[w Iw
w — E—

inert

inert

L/Dw/ split LDw

split

Fig. 1.2
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In this diagram, all the field compositums are direct, the linear disjunction (on
their intersection) coming from the fact that in each case at least one of the
extensions is Galois. In particular, note that the decomposition and inertia
properties propagate under ground field extension. For L/ K Galois, all of this
comes from existence and uniqueness of the fields Ly, Lo, K C Ly C Ly C L
for which w is totally ramified in L/Ls, totally inert in Lo/L; (which is a
cyclic extension), and totally split in L; /K. This means that w is of residue
degree and ramification index equal to 1 in Ly /K, of residue degree [Ls : L]
in Ly/Ly, and of ramification index [L : Ly] in L/Lo.6

We can summarize the above with the following, where L' C L.

1.2.1.1 Proposition. When L/K and L'/K are Galois, we have the exact
sequences:

1 — D! = D,(L/L") D, D, — 1,

1—1I,=I1,L/)L) —— I, —— L,y —1,
which come from the restriction map Gal(L/K) — Gal(L'/K). O]

1.2.1.2 Definition (global Frobenius’). Let L/K be Galois. Let v be a place

of K and w|v in L. When w is unramified in L/K, we denote by (L/—K)

w
the global Frobenius of w in L/K, i.e., the image of the local Frobenius

Frob(L,,/K,) in Gal(L/K) under the canonical isomorphism G, ~ D,,. [
Then, in an analogous way as for 1.1.6.1:

1.2.1.3 Proposition. When L/K and L'/K are Galois, and if w is unram-

ified in L/ K, we have:
L/K |Dw’(L//K)‘ _ L/L/
w \w ) 0

1.2.2 NON-GALOIS CASE. In the case where the extensions are not neces-
sarily Galois, see 1.2.5 which again proves these propagation properties using
local arguments. In the non-Galois case, we can still define the decomposition
and inertia fields Ly and Ls of w in L/K if we set:

Li:={zel, iy(z) e Ky}, Ly:={x €L, in(x) € Ly}

These fields depend on the choice of w. We then say that w is totally split
(resp. unramified) in L/K if Ly = L (resp. Lo = L).

Note that now the extensions 4,(L)/i,(K) and K, /i,(K) are not any-
more necessarily linearly disjoint over their intersection 4,,(L1): look at the

6 [a, Sam, Ch. VI, §2], [d, Langl, Ch.T].
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case K = Q, L = Q(¥/2), where w is the place with residue characteristic
equal to £ = 5 for which i, (3/2) is not contained in Qs (if V/2 € Qs, take
iw(V2) = jV2 € Qs(4)).

1.2.3 INFINITE GALOIS CASE. When L/K is an infinite Galois extension
with Galois group G, we also define the decomposition field (resp. the inertia
field) of w in L/K as the set of elements of L whose image under i, is
contained in K, (resp. Kr;r); thus, this defines the groups D,, and I, in a
way which is compatible with the finite case. It is also possible to define these
groups as in the finite case (see [c, Wa, App., §2]).

1.2.3.1 Proposition. We have the following homeomorphisms:
Dy, ~lim D/ (L'/K), IL,=lim L,(L'/K),
L L

where L' ranges in the set of all finite Galois extensions of K in L ordered
by inclusion, and where, for each L', w' is the place of L' below w.”

Proof. Since D, is a closed subgroup of the profinite group G ~ lim G /H,

H
where H ranges in the set of all closed normal subgroups of finite index of
G, a general result gives:

Dy, ~lim D,H/H ;
H

if L’ denotes the subfield of L fixed under H, by the above we thus have:
D H/H ~ Gal(L' /L' N LP*) = D, (L' | K),
proving the result. The proof is the same for the inertia group. ]

1.2.3.2 Exercise. Let Y be a finite set of places of L. Prove in the same
way that <‘Dw>’w62:(li_m<Dw/(L//K)>’w,€2/' D
L/

In applications, L/K will usually be abelian (infinite class field theory)
and so the groups D,, =: D, and I, =: I, will thus be independent of the
choice of w|v.

1.2.4 INFINITE NON-GALOIS CASE. When L/K is an (arbitrary) infinite
algebraic extension, we use the definition given in 1.2.2 to define the de-
composition and inertia fields of w; this means that by definition an infinite

" The place w is defined by means of a choice of coherent extensions w’ of v, and
denoted w = lim w'.
_—
L/
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extension is totally split (resp. unramified) at w if and only if any finite
subextension is totally split (resp. unramified) at w.

The following exercise justifies by local arguments the existence and ba-
sic properties of the decomposition and inertia fields in the most general
situation.

1.2.5 Exercise (propagation of decomposition and nonramification). Let
L/K be a fixed extension and let M be another extension of K.

(i) Let v' € Ply be totally split in M/K. Show that every place w’ €
Pl s totally split in LM /L.

(ii) Let v' € Plys be a finite place unramified in M/K. Show that every
place w’ € Pl is unramified in LM /L.

Answer. We first show the evident relation (where v is the place of K below
v', and w that of L below w’, which is thus above v):

(LM)y = LiyM,y,

by writing that (LM ), := i,,(LM)K, is the compositum of i,,(L)i,, (M)
with K, (see 1.2.6, 1.2.6.1).

(i) By assumption, we have M,, = K, so that (LM )y = Ly,.

(ii) By existence and uniqueness of the maximal ugrn%miﬁed subextensions
of local extensions (or using the formula F™ = FF'N K, for any extension F'

of K,), we have:
Ly N (LM)™ = L™,

and since by assumption M, C (LM)2, we have:
(LM)y = LM, C Ly, (LM,
so (LM),» is equal to the direct compositum of L, with (LM)Y, over

w’
L. Since L, /LM is totally ramified, when these extensions are finite,
the multiplicativity property of ramification indices immediately shows that
(LM)y /Ly, is unramified. For infinite extensions, simply note that M, =:

K, (), where p is of the form Uuqﬁ_l for suitable integers n, and that
5 Hag

LM, = L,(p) is contained in f::r.
If M/K is abelian and if v € Plk, then in case (i) (resp. (ii)), every place
w € Pl , is totally split (resp. unramified) in LM /L. OJ

1.3 HIGHER RAMIFICATION. It is also useful to keep in mind a number of
results on higher ramification (which will of course be in parallel with the
fundamental results of class field theory when the extension is abelian), in
particular what follows.

8 After [d, Se2, Ch.1V, §§1, 2], [e, Ko3, Ch. 1, §3.7].
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Let v be a finite place of K and denote by ¢ the residue characteristic
of v. Assume that L,,/K, is a finite Galois extension with Galois group G,,.

1.3.1 HiGER RAMIFICATION GROUPS. For each i > 0, we define the higher
ramification group (in lower numbering) by:

Gu,i ={s € Gy, w(s(x) —z) >i+1 Ve integer of L, },

which is a normal subgroup of G,,. We have G, o = G, the inertia group.
We also have for all ¢ > 1:
Guwi=1{5€ Guo, writ —1) >4},

w

where m,, is a uniformizer of L,,.

1.3.2 INERTIA GROUP. Recall that the group G, is an f-group and the
quotient Gy, 0/Gy,1 is a cyclic group isomorphic to a subgroup of F, (hence
whose order is prime to ¢): indeed, the kernel of the map sending s € G0
to the residue class u; of us := 751 is by definition equal to Gy,1- This
result shows that for a global finite p-extension? L/K and for a finite place
v of K with residue characteristic £ # p, the order of I,, ~ G, divides

‘Fqij‘:(Iw_l-

1.3.3 INERTIA GROUP IN THE ABELIAN CASE. When L,,/K, is abelian, we

can write for s € G0 and ug := 7571

ul™t = (r T = (7f )5 forall t € Gy

since /7! =: u(t) € Uy, we obtain:

Tt l=u@)’ " =T forallt € G,

since Fy, (equal to the residue field of L)) is fixed under G, . It follows that
u, € F*; in this case, we have an injection of the form:

Gw,O/Gw,l e FUX.
We have obtained:

1.3.3.1 Proposition. In any abelian extension L/K (finite or not), the
group D, o(L/K)/D,1(L/K) (which measures the tame ramification)® is
isomorphic to a subgroup of F,*. |

9 Recall that “p-extension” or “pro-p-extension” always means Galois extension
whose Galois group is a p-group or a pro-p-group.

10 “Tame ramification” of a finite place in an extension means that the correspond-
ing ramification index of the place is prime to the residue characteristic.
As explained in 1.1.1, for ¢ > 0, Dy ;(L/K) denotes the ramification groups
in a global Galois extension L/K; in particular, D.,o(L/K) = I,(L/K) and
Dyi(L/K) ~ Gy, for all i > 0.
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For example, if Gal(L/K) ~ Z; (i.e., if L/K is Zy-free of finite type),
then L/K is unramified outside places dividing p (same result if Gal(L/K)
is an arbitrary free pro-p-group [Y]).

For the definition of the ramification groups in upper numbering G¢,, see
[d, Se2, Ch.1V, §3].

We will come back to higher ramification groups in 1.6.2 when we will
perform conductor computations.

b) Local Class Field Theory Correspondence

Let L/K be a finite extension of number fields, L'/K a subextension, and
let v € Pl, w € Ply,,, and w’ below w (thus, above v) in L’. We denote by
Uy, U.,, and U, the unit groups of the fields K, L/ ,, and L,,. The first
fundamental result in the local case is the following (use Fig.1.1).

1.4 Theorem (local reciprocity map, norm residue symbol). There exists a
canonical homomorphism:

(o, Ly/K,) : K —— G2 := Gal(L2P/K,)
r (z, Ly/Ky)
having the following properties:
(i) We have the exact sequence:

(‘ :Lw/Kv)

1 — Ngp,/x, (L) K[ G — 1

(ii) the composition of (., L, /K,) and of the projection G* —
Gal(L!?P/K,) is equal to («, L.,/ K,);

(iii) the image of U, (resp. of U}, i > 1) under (., L,/K,) is equal to
the inertia group G2P° (resp. to the ith higher ramification group in upper
numbering G2P?) in L2 /K,,, and in particular we have the exact sequence:

1 — NL“,/K”(UU,) _ Uv - Gi}bo 1 :

(iv) for all o' € LY, the image of (x', L,/L!,) in G is equal to

w’?

(NLL//Kv (2'), Ly/Ky); in particular, we have:
Gal(Liy/Lip?) = (Nur, y, (L5, L/ Ko),

and the inertia group of L3P /L3P is equal to (N /i, (UL, Luw/Ky);

(v) for all z € K, the image of (z, L,,/K,) under the transfer map'!
(from G2 to Gal(L2> /L’ .)), is equal to (z, L, /L.,);

(vi) for any isomorphism 7 of L,, and all x € K¢, we have:
(2, TLy/TK,) = To (%, Ly/Ky) o ' on 7L ;

1 See Remark 1.4.1.
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(vii) if L?P /K, is unramified, then for all x € KX we have: 12

(Jf, Lw/KU) = FI'Ob(LZb/KU)V(I) ;

in other words:
(74, Lw/K,) = Frob(L** /K,),

for any uniformizer ., of K,. O

The symbol (., L,,/K,) is called the local norm residue symbol or the
local reciprocity map.

1.4.1 Remark (transfer map). For the cohomological definition and the
properties of the transfer map, see [d, Se2, Ch. VII, § 8] or [f, Neu2, Th. 8.8].
Here we do not assume that L,,/K, is Galois, and the result is obtained (by
restriction) from the analogous computation in the Galois closure of L,, over
K,. Recall how to compute Ver : G/[G,G] — H/[H, H] for any subgroup H
of finite index of a group G: let (Si)izl,“.,(G:H) be a system of representatives
of the elements of G/H; for any fixed s € G and for each ¢ put ss; =: s, ¢;,
t; € H, then we have:

(G:H)
Ver(s mod [G,G]) = ‘1:[1 t; mod [H, H|. O

1.4.2 Remark (local Frobenius’ for finite places). Recall that if L3P /K, is
unramified (i.e., L2 = L), it is cyclic and its Frobenius Frob(L2P/K,) is
the unique generator o of G2 such that o(x) = 2% mod () for all integers

x of L2P where ¢, := |F,|, or such that o(¢) = (% for a root of unity ¢ of
ab
order g»* — 1 generating L2P over K,,. ]

Note. If we denote respectively by N’ and j’ the norm map in L/ ,/K, and the
canonical injection K, — L. ,, we have:

N'oj' =[L,, : K,] on K, j'oN’:Xi:U;‘onLKI,

w’

/

where the o} are the [L],, : K,| K,-isomorphisms of L}, in C; (in the Galois case,

> o} =: v/ is the algebraic norm in L, /K,). This applies to (iv) and (v).

1.4.3 Corollary. We have (with Notations 1.1.6.2):

(i) K /Ny, sk, (LY) ~ G2 has order equal to €2 faP;

(ii) Uy/Np, /k, (Uw) = G20 has order equal to €. Thus, if L& /K, is
unramified we have:

Uv = NLw/KU (Uw)

12 See Remark 1.4.2 in the case of finite places; see Remark 1.4.6 in the case of
infinite places.
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(ie., Ny /k,(Ly) = 71'1{3’[)2 ®U,), and x € K¢ is a norm in L, /K, if and
only if:
v(z) = 0 mod (f2P). O

By 1.4, (iii), and the fact that for a finite place v with residue characteristic
equal to ¢ the group U} is the (-Sylow subgroup of U,, we deduce that
GaP1 = GaP, (the (-Sylow subgroup of G2P;) (see 1.3.2).

1.4.4 Proposition. The map N, /i, : Ly — K is an open map.

Proof. It is enough to show that for all j > 0 there exists ¢ > 0 such that
Ul CNp, /K. (UJ). The properties of the logarithm and exponential in K,
(see [c, Wa, Ch.5, §1]) imply that, for i sufficiently large we have:

log(Uy) = (m) =: [Lw : K] (my "),
where h := v([L,, : K,]), and for ¢ > j + h sufficiently large:

Ul = (Uil = Ny e (USM) © N/, (U2). .

v

It is clear that 1.4.3, (ii) is a deep result which is not simply elementary
v-adic analysis, but it implies that Ny, /i is an open map as a map from Jp,
to Jgi (this will be clear in Section 2). A direct proof may be found in [d,
Langl, Ch.IX, §3] and in [f, Art1l, Ch. VII, §2]; see also 1.6.4.

1.4.5 Remark. By its very nature, in a certain sense the norm residue sym-
bol:
( ®y Lw/Kv)a

does not depend on the extension L,,/K,, but only on its maximal abelian
subextension; for instance, this allows us to write:

(o, Lw/Ky) = (o, L2/K,) and Nz, /&, (Ly) = Npav /g, (L3>,

showing that the definition of this symbol for an arbitrary extension is useful
in practice and gives more precise information. This proves for example that
any element of Q is the norm of an element of Qy(4/2).

In particular, we deduce the following equality:

L3P =Np jpav (L) NLE
where NL2P* is the kernel of N Lab /K, - O

1.4.6 Remark. Let us explicitly describe the case v € P (the reciprocity
map is the trivial map when v is complex). In this case K, = R hence, since
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the only nontrivial algebraic extension of R is C (which is in addition abelian
and unramified over R), the reciprocity map («, C/R) is given by:

(z, C/R) := ¢"® for all z € R”,

where ¢ is complex conjugation, and where v(z) = 0 (resp. 1) if z > 0 (resp.
x < 0). This is the only way to have the exact sequence in 1.4, (i). It is also
the formula of statement (vii) since ¢ = Frob(C/R) (the local Frobenius at v).

In this case, when L,, = C (i.e., i,,(L) is a nonreal extension of i, (K) C
R), we have G, = G2 = (¢), G% =1, f, = 2, e, = 1. If L/K is Galois,
the decomposition group D, is generated by the global Frobenius ¢, :=

il oCoiy; ¢y is called “a” complex conjugation of L/K. O
Let K, be the v-completion of the number field K.

1.5 Theorem (local existence). For any subgroup of finite index N of
K there exists'® a unique finite abelian extension M of K, such that
Nar/ i, (M*) = N; the norm residue symbol in M /K, yields the exact se-
quence:

1— N K} Gal(M/K,) — 1.

In addition, the bijection from the set of subgroups of finite index of K, to
the set of finite abelian extensions of K, is a Galois correspondence; in other
words we have the following properties (where My and My are abelian over
K, and correspond respectively to Ny and Ny C KX ):

(i) we have My C My if and only if Ny C Ny;

(ii) My My corresponds to N1 N No;

(iii) My N My corresponds to Ny Na;

(iv) if My C My, we have Gal(Msy/M7) ~ Ny/Na, where the isomorphism
is obtained from the restriction of («, May/K,) to Nj. U

Note. The subgroups of finite index of K, are open, but the converse is false
(look for example at the case of U,). However, when we take limits to describe
Gal(?ib/KU), it is not K and its topology which occur (see 1.7).

1.5.1 Remarks. (i) Properties (i) to (iv) logically follow from the exis-
tence of this bijection, because of 1.4, (i), (ii) (the equality Gal(Mz/M;) =
(N1, My /K,) is a particular case of 1.4, (iv)).

(ii) By 1.4, (ii), (iii), the subgroup of K corresponding to the iner-
tia subfield M™ of M is U, N, where N corresponds to M, since the ker-
nel of K — Gal(M/K,)/Im(U,) = Gal(M™/K,) is U,N; similarly, its
maximal tamely ramified subextension corresponds to Ul N. It is clear that
U,N = /% @ U,, where f is the residue degree of M/K,. We recover the

3 in some fixed algebraic closure of K, ; here it is convenient to use K, = Q, C Cq,

where £ is the residue characteristic or co (see the introduction to Section 1).
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existence and the uniqueness of the unramified extension of degree n of K,:
it corresponds to 7% @ U,.

(iii) The group N corresponding to M /K, is called the norm group of the
extension M/K,. O

1.5.2 Exercise. Prove the above Remark (i).

Answer. Suppose M1 C My; since (No, My/K,) = 1 by definition, one gets
(No, M, /K,) = 1, proving that No C N;. We now put:

H = (Nla MZ/KU) g Garl(MQ/Ml) ;
then |H| = (N1 : No) = (K : No)(KS : Ny)~! = [My : My], proving (iv):
(Nl, MQ/K»U) = Gal(Mg/Ml),

which we will now use systematically.
Let My, M5 be arbitrary, and let N and N’ be the norm groups of M :=
MMy and M’ := M; N M,; we put:

H; := Gal(M/M;) = (N;, M/K,), i=1,2;
we have the inclusions:
NCN NNy C NNy CN'.

We have HiHy; = Gal(M/M'), hence, since H; = (N;, M/K,), we have
(N1N2, M/K,) = (N, M/K,), and finally N’ = N; N, since these groups
contain the kernel N of («, M/K,). In the same way, H; N Hy = 1 yields:

(N1, M/K,) N (N, M/K,) = (NN Noy M/K,) =1,

thus NlﬁNg =N.
If Ny C N; then Ny Ny = Nj yields (by uniqueness) M; N My = M; (or
Ny N Ny = Ny and My My = Ms), which finishes the proof. Il

To illustrate the local class field theory correspondence, let us look at the
following situation which will be considered again in the Paragraph 2.6.

1.5.3 Example (local extensions coming from non-Galois extensions). Let
L/K be a finite extension of number fields and, for v € Pl, let L,, for w €
Ply, ,, be the completions of L above v; recall that the L,, are defined only up
to K,-conjugation. Let L2® be the maximal abelian subextension of L, :=

L,,; it is independent of the choice of the K,-conjugates of the L,, since
wlv
we have L2P = N L2 while L, does depend on them, but we will see that
wlv
L, will not really be used as such. We set:
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G .= Gal(L*"/K,).

Then the subgroup of K¢ corresponding to L2 is the subgroup generated
by the Nz /x, (L) for wlv; in particular we have the equality:

N, /i, (L3) = (NL, /i, (L) Dufo

and the exact sequence:

1 — N/, (L) K GyP — 1,

v

which can also be written using the corresponding abelianizations:

NL%b/K/U (L’la)bX) = <NL$Ub/KU (L?ubx) >w|v’

1 — Npan g, (L") K G — L.
We will also encounter the field compositum L2P := ( L2P )l DY local

class field theory, the field j);‘,b corresponds to the subgroup:

N Np, k., (L) = L} Npab, g, (L2X). u

wlv

Let us return to the general situation; we then have the following addi-
tional property which can easily be deduced from 1.4 and which we state in
a slightly different setting.

1.5.4 Corollary (norm lifting theorem). Let L/K be a number field exten-
sion and for v € Pl, let M/K, be a finite abelian extension.

If N is the subgroup of K¢ corresponding to M over K, then for w|v the
subgroup N’ of L corresponding to L.,,M over L, is:

{ye Ly No,jw,(y) € N} =N i (N).

Proof. We give the proof using the following diagram:

Ly — LM
L ——————— (LyM)™ = L3P M
K, LonM — M

We have N’ = Ker((+, LyM/Ly)). Since (L,M)** = L2PM we have the
isomorphisms:
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Gal(L,M/L,) ~ Gal(L* M/L*) ~ Gal(M/L,, N M) ;

w

it follows that y € N’ if and only if the image of (y, L,M/L,) in
Gal(M/L,, N M) is trivial. Using 1.4, (iv) applied to L,,M/K,, the image
of (y, LyM/L,) in Gal(L2’M/K,), which is an element of Gal(L2P M /L2P),
is equal to (Np /, (y), L3 M/K,) whose image in Gal(M/L,, N M) is ob-
tained by restriction to M, giving (N, x, (y), M/K,) by 1.4, (ii). Since by
definition Ker((., M/K,)) = N, we obtain the given formula for N’. OJ

c) Local Conductors and Norm Groups

Let L/K be an extension of number fields, and let v € Pl and w € Plf, .
Using 1.4.4, the following definition makes sense.

1.6 Definitions (local conductors). (i) The smallest power pI*v, m,, > 0,
such that:
U™ SN,k (L)

(or, equivalently, U™ C N /k,(Uy)) is called the norm conductor or con-
ductor of L,,/K, and is denoted:

Fro/r,:

(ii) The conductor of (L*?), /K., the completion of LY /K at v, is called
the norm v-conductor or v-conductor of L/K and denoted:

fv = fv(L/K) O

1.6.1 Remarks. (i) By 1.4, (iii), m,, is the smallest integer m for which we
have (using upper numbering):

Ga™ =1.

Since N, /k, (L)) = Npan /g, (L2P*), we have equality of the conductors of
the extensions L,,/K, and L2 /K, (so that in practice we always are reduced
to compute fLr:ub/Ku by using the formula that we will give in 1.6.2).

(ii) By definition, we have f,(L/K) = f,(L*"/K); in addition f,(L*"/K)
divides the sz}’/KU for wlv.

(iii) Local class field theory implies the local conductor theorem which
says that v is ramified in L2°/K, if and only if frav /e, 7 1 (use 1.4.3, (ii)).
Note however that L, /L2 is totally ramified; the conductor is thus equal to
1 if and only if L2P = L1, O

It seems that it would be useful to define a generalized v-conductor
fo[L/K] when L/K is any extension; it should be the conductor of L2® be-
cause of the normic properties that we will see in 2.6 and of Definition 3.1.4
of the generalized norm residue symbol.
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In the Galois case, L3> = L2 for any place wy|v, and §,[L/K] is given

by fr, /x, (which is then independent of the choice of wj).
wo /Ko
Concerning L2P := ( L2P Vol
conductor is equal to the l.c.m. of the fLw/KU’ wlv.
We can summarize the above by the following diagram where the corre-
sponding conductors divide each other in the given order:

in the general case, we easily check that its

Ku . (Lab)v - Lab . Lab —iab
(1) Fu(L/K) FulL/K] Fowsicy  Leam(io, )

However, we will not have any use for the generalized v-conductor and in
global class field theory, only the f, (the v-conductors for L#?/K) will enter,
whose product will define a global conductor.

1.6.2 Remark (conductor computation). For the explicit computation of the
conductor fLw/Kv’ we refer to [d, Se2, Ch.XV, §2, Cor.2 to Th.1, Ch.IV,
§ 3] from which we deduce the following formula:

1
— — M : R E ab
fLw/Kv - fL?Ub/Kv - pv b 1) Wlth My = ab gz )
90 i>0
g >1

where g2 is the order of the higher ramification group Gi}ji (in lower number-
ing) in L3P/ K,; for each i > 1, G4, is defined from G%; (of order g§® = e2P)
by:

Gioi = {s € G, w((miy)* ™' = 1) 2 i},

where 72 is a uniformizer of L3P (see 1.3.1).

If v is tamely ramified in L2’ /K, (i.e., if the residue characteristic ¢ of v
does not divide €3), we have G24P; = 1, hence m,, = 1. U

We will assume known this conductor formula since it can be obtained
by a direct study of the norm on the groups U,, as is done in [d, Se2, Ch. V
and XV] following Hasse, study which reduces to proving the property of the
local reciprocity map assumed in 1.4, (iii). It is nothing but the translation
of the lower numbering to the upper numbering for ramification groups when
we look for the first trivial G2P™ (see 1.6, (i)). This is a great advantage
since the computation of the higher ramification groups in lower numbering
is always effective and easy in practice (see the example given below).

We use the same method to compute the v-conductor f, from the groups
(G?),.i, where (G®),, := Gal((L*),/K,).

As an application, we give the following result for the Kummer case, which
illustrates the computation of local conductors from the classical results on
higher ramification groups mentioned above.
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1.6.3 Proposition (v-conductors of a Kummer extension of prime degree p).
Let K be a number field containing the group , of pth roots of unity and
let L =K({/a),a € K*\K*P. Let v be a finite place of K ramified in L/K.
The norm v-conductor of L/K is equal to p,, if v1{ p, and to pPe =" if v|p,
where e, is the ramification index of v in K/Q(u,) and r is the largest integer
for which the congruence:

@ =1modp), z€ K*,
xP
has a solution (the case v(a)) Z 0 mod (p) meaning r = 0).

Proof. Let a, := i,(a) € K; then L, := K,(y/a, ) is the completion L,,
of L at some place w|v, and by definition the conductor of L, /K, is equal
to f,. We set G, := Gal(L,/K,).
If v { p is ramified (i.e., v(a) Z 0mod (p)), we have §f, = p, (tame
ramification). This case follows in fact trivially, directly from Definition 1.6.
Assume now that v[p. In this case the formula of 1.6.2 yields f, = pi*,
where ¢ is the largest integer such that g; # 1, and we have:

t= W(T('Z)_l - 1)7

where 7, is a uniformizer of L, and o a generator of G,.

(i) If v(a) # 0 mod (p), we can always assume that v(a) = 1, hence that
Tw = /0. We then have 77~1 — 1 =: ¢ — 1, where ( is a generator of y,,
giving t = pe,. But in this case r = 0, proving the result.

(ii) If v(or) = 0 mod (p), we can reduce to the case where «, € U,. By
1.6.3, (ii), the integer r satisfies:
IL<r<pe —1;

changing o, mod (U, )? if necessary, we can assume that a, € UJ; then, by
definition of r, a, (U})? is disjoint from U7 1. Let us write:
YOy 1= 1 +7TZ; Uy P = 1, uy €Uy ;
this yields:
Qy = 1 + ﬂ'ﬁev (=1)++ uiu + ﬂ-fup UZN uiu € Uw

since v(p) = ey(p — 1) and v is ramified in L,/K,. We must have p <
pe,, otherwise we would get » > pe,, a contradiction. Thus we must have
pp < pey(p — 1) + p, hence p = r. Writing that o(y/a, ) = (/o and that
77"t =¢ e UL \ULT!, we obtain:

1+ my, & ug, = (1 + 73, ww),

hence, since w(1 — ) = pe, > r:



81 The Local Reciprocity Map — Local Class Field Theory 83

Lemma. We have r # 0 mod (p).

Proof. Assume that » = Ap and set o, =: 1 + 7T{)\p Ny, Ny € U,; since r =
Ap < pe, we have \ < e,. Since F, is a finite field, there exists 7, € U, such
that n, = n/? mod (m,); it is then immediately checked that:
Qy
(L+ ;)P

a contradiction. O

curtt,

It follows that &" € UL \ULTL. But it is clear that ug~' € UL, which
yields:
w(" —1)=pe, — .

It follows that w(¢" — 1) = w(§ — 1) =t = pe,, — r, finishing the computation
of the v-conductor in the wild case. ]

Note. If v|p and if v(a) #Z 0 mod (p), then » = 0 and the v-conductor is maximal;
if v(a) = 0 mod (p), we have 1 < r < pe, — 1, so that 2 < pe, + 1 —r < pe,, where
the lower bound is in agreement with statement I11.1.3.2.

The following result on norm actions can be useful in practice.

1.6.4 Proposition. Let L, /K, be a completion of an arbitrary finite ex-
tension L/K of number fields.

There exists a function 1,, from N to N such that Ny, ,r, (Uw”(n)) = U} for
all sufficiently large n.

If in addition L,,/K, is Galois with Galois group G.,, the above relation
holds as soon as Gy, ., (n) (the 1, (n)th higher ramification group) is trivial.

Proof. Referring to [d, Se2], we can sketch the following proof: we use [IV, 3,
Rem., 2] which allows us to define v,, in complete generality from the Galois
case, and using [V, 6, Cor. 3] for norm aspects. It is then clear that if L,,/K,
is unramified, Ny g (Uy) = U} for all n > 0 ([V, 2, Prop. 3] or 1.4.3, (ii));

if L,,/K, is tamely ramified, the above equality holds for all n > 1 ([XV, 2,
Cor.1 to Th. 1] or once again 1.4.3, (ii)). 0J

1.6.5 Exercise (norm groups and conductors of quadratic extensions of Q).
Let ¢ be a prime number. If ¢ # 2, since:

Q =(£)®(C) ®(1+L)z,, where ({) = e,

Kummer theory shows, through the study of Q, /Q/ 2 that quadratic exten-

sions of @y are:
Qe(V<), Qu(VE), Qu(\/1S).
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If £ = 2, knowing that in this case:
we obtain the following list of quadratic extensions of Qs:

Q2(V5), Q2(vV-1), Q2(V=5), Qa(v2), Qa(V=2), Q2(v10), Qa(v-10).

Compute all the norm groups and conductors.

Answer. For £ # 2, the subgroups of index 2 of Q; are the following:

Ny = ()@ (C)d(1+1)y,
Ny = () ® ()@ (1+1L)g,,
N3 := (L) D ((*) D (1+1L)yg,.

The unique unramified extension Qg(+/¢ ) corresponds to N; since the residue
degree is 2 or the ramification index is 1 using 1.4.3; then, if we denote by N
the norm in these quadratic extensions, we have:

N(V=0)=1¢, N(/—£) = L.

Thus, it is more natural to write the three quadratic extensions of Qy in the

form:
Qe(v<), Que(vV=E), Qu(v/=£C),

in which case they correspond respectively to Ny, N», N3 (conductors
(1), (¢), and (¢) using 1.6). We then have:

Qe(V—=1) = Qe(V€) and Qu(v/—€() = Qu(/£C),

if and only if £ = 1 mod (4) (otherwise the extensions on the right hand sides
are permuted).

For ¢ = 2, the norm groups are the following:

Ny = <4>@<_1>@<5>227

Na :=(2) ®(5)z,,

N3 :=(=2) @ (5)z,

Ny = (2)@ (1) ®(5?)z,,
N5 :=(2) ®(—5)z,

No :=(2x5)®(-1)® (5%)z,
N7 :=(-2)®(-5)g,.

The unramified extension is Qz(v/5) and corresponds to N; (we can also
note that N(2++/5) = —1 and N(5+2v/5) = 5). We then have the following
computations:
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N( (

N( ) N(

N(V2) = -2, N(1+v2) =1,
N(v=2) =2, N(1++v=2) € —5Q5 2,
N(V10) = —10, N@B+V10) = -1,
N(v/~10) = 10, N(2 +v/~=10) € —2Q5 %

they show that the (ramified) extensions Qa(v/—1), Qa2(v/=5), Qa2(V2),
Q2(v=2), Q2(v/10), and Qz(v/—10) correspond respectively to Ny, N3, Ny,
N5, Ng, N7 and have as conductors (4), (4), (8), (8), (8), (8). 0J

1.6.6 Exercise. Let v be a finite place of K and let n be a nonzero integer.
Show that KX /K ™ is finite.
Assume that K, contains the group pu, of nth roots of unity; compute

the norm group N corresponding to M := KU( VK )

Answer. Let p be a prime number and let p© be the largest power of p dividing
n; it is sufficient to show that the p-torsion group K)/KX?" is finite. By
1.3.1.1, we have KX ~Z & p, & p,(K,) ® ZEK“ ‘@) \here ¢ is the residue
characteristic of v, and the result follows.

Classical Kummer theory says that M is the maximal abelian extension
of exponent n of K,; but the quotient K*/N is maximal of exponent n if
and only if N = K.

When p,, C K, for each p dividing n we have more precisely:

KX /K)P ~ (Z/p°L)? (vesp. (Z/p°Z)Kv:QI+2)

if £ # p (resp. £ = p). Without the Kummer hypothesis the norm group
K" still corresponds to the maximal abelian extension of exponent n of K,
(which is not a Kummer extension and cannot be generated by radicals) and
the structure of its Galois group is modified (in an explicit way). U

1.6.7 Remark (local Hilbert symbols). One might think that in the Kummer

case (pn, C Ky, M := K,({/KJ)) the symbol (+, M/K,) is “easy”; as the
long search for explicit formulas shows, this is not the case. If we set for all
x, y€ K}

(v, M/K,)(Vz) = (y, K,(V2)/K,) (V) = (z,y)Vx,
we thus define the local Hilbert symbol of order n: '
(-7 o)»U:I(;< XK;< — Un

whose knowledge is equivalent to that of the norm residue symbol (we will
study it in Section 7). In most books, the definition is the inverse of the more
canonical present one. O

' Ja, Sel; D, Ch.1V], [d, AT, Ch. 12; Se2, Ch. XIV], [e, Ko3, Ch.2, §1].
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Note. Since the 1928 original papers of Artin-Hasse, a very large number of contri-
butions (Mills, Hasse, Kneser, Safarevi¢, Shiratani, Briickner, Iwasawa, Vostokov,
Wiles, Henniart, Sen, Kolyvagin, Coleman, de Shalit, Miki, Jaulent, ...) have given
explicit formulas for the local Hilbert symbol and reciprocity laws; these techniques,
closely related to the theory of formal groups that we have already mentioned
(Lubin—Tate (1965)) (see [f, Lang2, Ch.9]) are outside the setting studied here. In
fact, from a theoretical point of view, all these laws can be expressed in the uni-
fied setting of p-adic Galois representations, developed in particular by Fontaine,
Messing, ... In this setting, one can say that all the known results on the local
Hilbert symbol are contained in the reciprocity law of Bloch and Kato, conjec-
turally generalized by Perrin-Riou, and independently proved by Benois, Colmez,
Kato-Kurihara—Tsuji, ...

1.6.8 Remarks. (i) However, in the regular case, also called by abuse of
language the tame case (i.e., when the residue characteristic £ of v does not
divide n), n is then a divisor of ¢, — 1, and we have the following simple
formula (proved in 7.1.5) for the Hilbert symbol of order n:

qv—1

) " mod (m,) ;

v(y)

— (v T
(T,9) = (( 1) yv (@)

this indeed pinpoints (z, y), € pn(K,) since the residue map:

qv—1

Mn<Kv) - Mn(Fv) = (va) "

is an isomorphism. When v is a real place at infinity (K, = R and n = 2),
(z, y)y is given by the sign of the analogous expression:

(.13, y)'u = Sgn((_1)V(E)v(y)xv(y)y—v(a?)) _ (_1)v($)v(y)

(ii) In the absolute quadratic case, Exercise 1.6.5 gives the answer in
complete generality.

(iii) Finally, we will see, perhaps surprisingly, that to compute explicitly
a local Hilbert symbol in the irregular (or wild) case, we can always proceed
globally, without knowing any explicit formula; this will be explained together
with the statements of global class field theory (see 7.5). O]

We will devote Section 7 of this chapter to the more general notion of sym-
bols and their properties; we will see that Hilbert symbols play an important
role.

d) Infinite Local Class Field Theory

We will conclude by showing that finite local class field theory contains all

. . . . —ab
information concerning the structure of the abelian closure K i of K,, for
v € Ply, and the class field theory correspondence.
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1.7 LiMITING PROCEDURE. By infinite Galois theory and the local class field
theory correspondence, we can relate the topological groups:

Cal(K, /K,) ~ lim Gal(M/K,),
M

for the set of finite abelian extensions M of K,, to:

lim (K, /N),
N

where N ranges in the set of subgroups of finite index of K, and by definition

we obtain the profinite completion K, := lim (K /N) of K. It is easily
N
checked (see 1.6.6) that the subgroups K™ for n > 0 form a cofinal subset

of the set of subgroups N of finite index, hence that:

K =lim (K /K;") ;
n>1

since U, is a profinite group, we immediately obtain (choosing a uni-
formizer m,):

K =rt@U,,
where by abuse of notation we have set:

~

= lim ((m,)/(7,)") = lim (Z/nZ) = Z,

<N

Yy

which is legitimate since (, ) has no Z-torsion. Recall that if ¢ is the residue
characteristic and ¢, the order of the residue field of v, we have:

K, :
Up = g1 @ po(K,) @ 25 %

A fundamental system of neighbourhoods of 1 in the profinite group K, is
given by the (K,*)" for n > 0, or by the 7% @ Ui, n >0, i > 0.

More precisely, properties 1.4, (i), (ii) of the norm residue symbol imply
the existence of an isomorphism of inverse systems giving the homeomorphism

iy b
Pyt Ky — Gi and showing that there exists an analog to Theorem 1.5 on

the correspondence of infinite local class field theory, replacing KX by Ky
and the notion of subgroup of finite index (of K¢) by that of closed subgroup

of K because of the infinite Galois theory.

Let us describe this correspondence in a little more detail. Let M be
a finite abelian extension of K, with norm group N := Ny /k, (M*), and
consider the local reciprocity exact sequence:
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M/K)

1—N Kx L Gal(M/K,) — 1.

The norm residue symbol («, M/K,) is still continuous for the topology of

K, diagonally embedded in K, induced by that of K, as a profinite group
(neighbourhoods in K<: the K™, n > 0); thus extending by continuity we
obtain the exact sequence:

1 — adh(N) KM, MK, — 1

)

—

where adh denotes closure in K, for its topology, and the norm group which
now corresponds to M is:

adh(N) := () (N.(KX)").
n>0

This defines in an evident way the local reciprocity map (or norm residue

symbol):
(e, M/K,) : K —— Gal(M/K,),

for any abelian extension M (finite or not); it is also the composition of p,
and of the projection Gib — Gal(M/K,).

Omne checks, from the finite case, that the image of U, (compact) under
(o, M/K,) is the inertia group. To summarize:

1.7.1 Theorem. There exists a homeomorphism of profinite groups (the
infinite local reciprocity map):

b

po =i (o, KoJKy) : Kf —— @ = Gal(B™/K,),

v

whose composition with the projection @zb — Gal(M/K,) is equal to
(o, M/K,) for any abelian extension M /K,.

The inertia group Gal(?ib/Fgr) is the image of U,, under p,,, and the higher
ramification groups (in upper numbering) correspond to the U!, i > 1.

The image of a uniformizer m, under p, is a (noncanonical) extension of
Frob(K, /K,).

Finally, there exists a bijective correspondence, between the set of abelian

p—

extensions of K, and the set of closed subgroups of K, which satisfies the
Galois properties (i) to (iv) of 1.5. 0]

1.8 NORM GROUPS IN INFINITE LOCAL CLASS FIELD THEORY. Note that if
M/K, is infinite, the notation Ny x, (M*) does not make any sense directly,
but since:
Gal(M/K,) = lim Gal(M'/K,),
M

for K, C M’ C M, M'/K, finite with norm group N’, we have:
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Gal(M/K,) = lim K /adh(N') ~ K} / () aan(n')
M/

(by 1.5.5, applied to A = K, compact and B = 1), so that the norm group

—

corresponding to M in K;* can be written:

N adh(Nyyx, (M')).
M'CM
M'/K, finite

Note also that the usual (locally compact) topology of K¢ is absolutely
not used here, and is not induced by that of K, (which is compact); in

particular, U, is not open in K. since it is not of finite index.

If M (finite or not) corresponds to the norm group N, then M™ still
corresponds to the group U, N, and its maximal tamely ramified subextension
corresponds to U} N.

. . —ab . TR
We thus easily obtain the structure of the group Gi since that of K0 ~
Z ® U, is known; we deduce a number of consequences, such as the following
result.

oy . —ab . . .
1.8.1 Proposition. Let v € Ply. The extension Kz is the direct composi-
tum over K, of K., and of a (nonunique) maximal totally ramified abelian
extension of K,, the extension K 2r being fixed by the image of U, under the

local reciprocity map, while the maximal totally ramified extension is fixed

Z

2 where T, is a uniformizer. O

by that of the subgroup =

1.8.2 Remark. If we want to limit ourselves to the maximal pro-p-subex
—ab —ab
tension Kz (p) of Kz , p prime, v € Ply of residue characteristic equal to ¢,
we simply note that in terms of p-Sylow subgroups we have:
(i) for p # ¢, (Kﬁ)p ~ Zp @ (g, —1)p, Where (p, _1)p =~ (F)), corres-
ponds to the inertia group, giving the following diagram:

—nr (M o= ) —ab

Ko —2= K
Zp

K, — M

—

(ii) for p = ¢, (ny)p ~ Z, ® U}, with an inertia group which is, here,

isomorphic to:
Ul ~ iy (K,) @ 2 )

which corresponds to the following analogous diagram:



90 II. Reciprocity Maps — Existence Theorems
1
—nr v —ab

K, ®» K, »
Ly
K, — M

In these two diagrams, the (nonunique) field M defines a maximal totally
ramified abelian pro-p-extension of K, finite in the case p # ¢, containing
[K, : Qp] independent totally ramified Z,-extensions in the case p = ¢.

In case (i), if p" is the p-part of ¢, — 1, K, contains the group Foph in
which case Kummer theory shows that we can choose M = K, ( »/—n, ).

After treating the global case (Ch.III, §4, (c), (d)), it will be useful to
compare the structures of Kib /K, and of fab /K, for instance by checking

that for each place v, the decomposition group of v in Kab /K does give a
quotient of the Galois group of the abelian closure of K,. In fact we will

obtain the much stronger result that the trivial inclusion (fab)v - Fib is an
equality (Theorem II1.4.5, in the direction of the Grunwald—Wang theorem).

—ab
1.8.3 Exercise (the case of Q). Assume that K = Q and that v is finite;
we have K, = Qy, where £ is the corresponding residue characteristic. We

thus have Gal(@?b/(@g) ~ g Z).

(i) Show that @, = Qq(1'), where 4/ is the group of roots of unity of
order prime to ¢, and that the field M fixed under the image of 2 s equal
to Qe(pge0)-

(ii) Assume that ¢ # 2. Since Q, contains a primitive (¢ — 1)th root of
unity, it is clear that the extension Qu( “+/—f) of Q, is abelian. Show that
it is equal to Q¢(u,), and deduce that there exists in Q¢(u,) a uniformizer =
(called Dwork’s uniformizer) such that 7°~! = —/.

Answer. (i) The elementary theory of cyclotomic fields over Q shows that
Qe(1')/Qy is unramified and that Qg (g )/Qy is totally ramified. Hence we
already have that Q(y/) C @, . If n > 1 is some integer, we know that the
field Q¢ (ftn_,) has degree n (the Frobenius is of order n), which defines the
unique unramified extension of degree n of Q, proving the first result of (i).

The norm group of the field M is ¢# and we have Gal(M/Q,) ~ U, = Z'.
Using the cyclotomic polynomials @,,, we see that for all t > 1, £ = ®pe (1) is
the norm of 1 —¢; in Qg(p,e)/Qe, where ¢, generates pi,.. Thus Qg (p,:) C M.
Let N; be the norm group of Qg(s1,.). Since Qg(pye)/Qy is totally ramified of
degree /*=1(¢ — 1), we have N; = ¢* © V with V of index ¢!='(¢ — 1) in U,.
If ¢ # 2, the only possibility is V = 1+ £!Z;; if £ = 2 and t > 2, we have
Gal(L;/Qp) ~ 7/27 x 7./2'=%7 and the only possibility is V = 1+ 4.2!727Z,
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since V' must be contained in the norm group of Q(u,) which is equal to
22 & (1 + 4Z2) (using 1.6.5). Thus in all cases we have N; = (% @ U} and, by

1.8, the norm group of Q¢ (1) is equal to Oadh(ﬂZ Ul = Iz proving that

M = @é(ﬂew)~ b
Thus, here we have @Z = Qu(u), the field generated by all the roots of
unity.

(ii) The norm of “/—¢ in Qu( “v/—£)/Qy is equal to ¢ since:
Ler( V=0, Qo) = X1+ 45

the norm group of Q;( “v/—¢) thus contains that of M, hence Qu( “v/—¢) C
M, whence the equality Qg( “+v/—¢) = Qu(s,) (note that Qg( “v/¢) is also to-
tally ramified and abelian over Qy, but is not contained in M). The conclusion
is clear.

-1
Note that 1 — ¢; is also a uniformizer, hence % is the (¢ — 1)th

power of a unit of Qg(x,). OJ

In the case where K = Q, we will be able to compute by global means
the local norm residue symbol for abelian extensions of the completions of Q
(see Exercise 3.4.3).

1.9 Exercise (Abhyankar’s lemma). Let M; and M; be finite extensions of
a nonarchimedean local field k. Assume that My /k is tamely ramified (i.e.,
e(Ms/k) is not divisible by the residue characteristic of k) and that e(Maz/k)
divides e(M; /k). Show that M; My/M; is unramified.

Answer. See [Corl, Th.3] for the use of this result, and more generally
[d, Langl, Ch.II, §5] for the study of not necessarily Galois tamely rami-
fied extensions. O

§2 Idele Groups in an Extension L/K

Let L/K be a finite extension of number fields. We use the local notations
of Section 1 (in particular of 1.1); if L/K (resp. L, /K, for w € Plg,) is
Galois, we set G := Gal(L/K) (resp. G, = Gal(L,/K,)) and we introduce
the decomposition group D,, of w in L/K.

a) Canonical Injection of Ck in Cp

Let Jx and Jp be the respective idele groups of K and L. For v € Plg,
recall the relations between the different embeddings of K and L in the
corresponding components KX and & L of Jx and Jg. The embedding:

wlv
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iy : K —— K,

comes from the choice of a conjugate K, of the v-completion of K; for all
w | v, Ly is defined in a similar way as an extension of K,; the embedding:

lw @ L ——— Ly

is then an extension of i,, such that the family (4. )., is a complete set of
representatives of the classes of Q-embeddings of L in K, extending i,,.

It is convenient to consider Jg as a subgroup of Jp using the diagonal
embedding jL/K : Jx — Jp, for which the image of x =: (x,), € Jx is
given by (2 ), with 2, = z,, for all w|v. This map is injective. Similarly:

2.1 Proposition. The canonical map jL/K : Cx —— (', induced by
Jxg — Jr, is injective.

Proof. Let @ =: (zy), € Jk be an ideéle such that j; . (x) = iy (y) for
y € L*, and let v be a fixed place of K; we thus have:

iw(y) = x, for all wv.

This implies that all the K-conjugates of y are equal (seen in K C K,,
these conjugates are the 7, 04y (y) = Tw(xy) = x, for the w|v and the K-
isomorphisms 7, of L, ); thus there is only one, so y € K*, proving the
result. O

Note. If we only have, for a single place v of K, (v)wje = (tw(y))w|s for an
zy € Ky and an y € L, this yields y € K*.

2.1.1 Remarks. (i) This property leads to a simple definition of the idele
class group of an infinite algebraic extension L/K by taking the direct limit
of the Cp/ for L’ C L, L' /K finite.

(ii) We will see later that the corresponding map Cx /D —— Cr,/Dy,

which class field theory identifies with the transfer map @?ﬁ — @ib (for
L/K finite), has a kernel isomorphic to (Z/2Z)"%, where r$ is the number of
real places of K totally complexified in L/K. O

b) Relations Between Local and Global Norms

Let L/K be an arbitrary finite extension, Nz /g the norm in L/K, and fix a
place v of K. For y € L*, we have, giving in detail the computations:

iw(Npx(®) = [[ew)

(where o ranges in the set of Q-embeddings of L which extend i,)
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= H H Ty © iw(y)

wlv Tw

(where T, ranges in the set of K,-isomorphisms of L,,)

=TI Neo k. (iw®)),

wlv

which can be summarized as follows.

2.2 Proposition. For any place v of K we have:

iv(Np K (y HNL /K, (iw(y)) forally e L*. O

wlv

By abuse of notation, this formula is in general written:

Nz/x(y HNL K (

wlv
by saying that, for each place v of K, “the global norm of y is equal to the
product of its local norms above v”.
This can be reinterpreted as the commutativity of the following diagram.

X < wlv @LX
wlv
Ni/x l_ll N, /K,
by
KX < KX
Fig. 2.1

From this we obtain a canonical definition of the norm in L/K of an idele
yeJgp.

2.2.1 Definition. Let y =: (yw)w € JL, We set:

Ni/k(y (HNL /1, (Yo ) : 0

w|v

This norm map indeed extends that defined on L™ thanks to the above
commutative diagram. Taking quotients, we also define:

NL/K : OL = JL/LX —_— CK = JK/KX.
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c) Galois Structure of Jr: Semi-Local Theory

When L/K is Galois with Galois group G, it is necessary to put on Jr a
G-module structure compatible (algebraically and topologically) with that
of the diagonal embedding of L* in Jp. For this, it is sufficient to define
explicitly the operation of G on the semi-local factor (seen as a K,-algebra):

DL, ve P,

wlv

operation which we will then restrict to D L. Thus, it must be such that
wlv

the diagonal embedding:
(iw)wly : L —— D Ly,
wlv
is a G-module homomorphism, is continuous for the v-topology of a K-algebra
on L, i.e., L ~ KKl with the product of the topologies induced by ||, on
K. Thus, by density of ((iw)wv)(L) in E||9 L,, (chinese remainder Theorem

1.4.3), this defines it uniquely. From this remark we can give the following
more precise algorithmic proof. For another direct proof, see 2.3.4, (i).

2.3 EXISTENCE AND DEFINITION OF THE GALOIS ACTION. Let w, € Pl ,
fixed. Sometimes, by abuse of notation, we consider L,, as a subspace of
6‘9 L.,,. !5 Therefore, it will be sufficient to know the action of G on such a
w|v

subspace L,,,. Let V,,, be a neighbourhood of 0 in L for wy; for each s € G,
sV, is an analogous neighbourhood for sw,, which we can denote Vi, ; this
defines V,, for each w|v since G acts transitively on Pz, ,,. The approximation

theorem means that iw0< N Vw> is dense in the field L,,, for every V,,,,

wFwo
and that the closure of ((iw)w‘v)( Q Vw) in €|B Ly, is of the form L,,, &V,
WFHWo w (v

where V is a neighbourhood of 0 in D L,.

wFwo
Note. When v is finite we can for instance take Q Vw = 71:[ pw for m as large
wFwo wFwg

as we like, hence V = @D (7)™ since iw(pw) = (mw), where T, = 7 is a suitable

wHwq
element (independent of w|v) of the maximal ideal of C,.

Furthermore, if s € G we have s( N Vw> = N (sV)= N Vg,
wFwo wF#wo wWHSwo

which, by going to the limit, easily gives the definition of the action of G

which in particular is such that (in terms of subspaces of @ L,,):
wlv

15 It is important to distinguish between the two sets since an approximation of
y € Lw, by an element of L™ may be very different from an approximation of
(y,0,...,0), but the context will be clear.
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5.Ly, = Lgy, for all s € G.

Hence, for all s € G we obtain a continuous K,-isomorphism s,, depending
on wy, still denoted s by abuse of notation:

5t Ly, —— Lsw,,

which defines an element of G, = Gal(Ly,/K,) if and only if s € D,,, (in
this case, we recover the canonical isomorphism D,,, ~ G,,, of 1.2.5).

2.3.1 Exercise. (i) Check that for all y, € Ly,:

$(Yp,0,...,0) = (0,...,7(y9),---,0)

(as element of the subspace Ly, ), where 7 € Gal(Lsy,/K,) is the extension
by continuity of:
1

Ggrpy © 800y OM 4y (

L)
(i.e., if 2 € L is such that i, (z) is an approximation of y, in the field Ly,
then 7(i,,, (2)) = i4,,(5(2)) is an approximation of s(y,) in Luw,)-

(ii) Apply this (for K = Q) to the fields L = Q(v/2, v5) and L =

Q(V2 +V/2) for the residue characteristic £ = 7, and compute the action of
G on (v/3,0) and (v/2, 0) in each case.

(iii) Check the formula s, o sy, = (88'),,, for any s, s’ € G.

wo?
Answer. Let y € L* such that:

y = z mod py,

y = 0 mod p;, Yw # wy,

where i, (2) = yo mod 7} in Ly,; thus we have:

s(y) = s(z) mod pg,,,
s(y) = 0 mod p2l, Yw' # swy.
Since the embedding of y is an approximation of (y,,0,...,0), an approxi-
mation of s(y,0,...,0) is given by the embedding of s(y), which clearly is
close to (0,...,ig,,(5(2)),...,0). The case of infinite places is similar.
Points (ii) and (iii) are left to the reader. O]

We deduce from all the above the following explicit result (semi-local
theory) stated in terms of representations.

2.3.2 Theorem. Let L/K be Galois with Galois group G.
For any place v of K, the K,-representation G‘B L., of G is induced by the

representation of the decomposition group D.,, of wy|v defined by L., .
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Thus it is the regular representation of G.

Proof. Since G acts transitively on Pl ,, we have D L, = %sto =
LIS

wlv

& Lz, = D 5.Ly,, giving &) L., as induced representation. The
5€G /Dy, SEG/ Dy wlv

representation L, of Dy, =~ G, is the regular one (normal basis theorem
for L, /K,); the uniqueness of the induced representation yields the result
by [Se4, §3.3 or §7.1]. ]

2.3.3 Corollary. The action of s € G on an y =: (Yuw)w|y € G?Lw, is

such that (5.Y)sw = $(yw) for all w|v, where by abuse in the second member
S := Sy : Ly — Ly, is also the K, -isomorphism defined above. O

2.3.4 Remarks. (i) Since we also have @D L, ~ L ®, Ky, in this context

wlv
the G-module action is defined by s.(x®a) = (s.z)@aforall s € G, z € L,
and a € K,, giving again 2.3.2 (normal basis theorem for L/K); writing this
explicitly as in (Ch.I, §2), we would recover the above results.

(ii) Finally, if we introduce the algebraic norm v, JK T Z:G s, we have on

se
Jp the relation j; ;o oN; o= vy pe. ]
Note. In the non-Galois case, we would have, on Ji, jp/xoNp r = Zn,

where the 7; are the isomorphisms J;, — J,,r corresponding to the [L : K]
K-isomorphisms o; of L in C; by density. In other words, on the local factor L.,
7; is the extension by continuity of i,.,, o 0 04, on 4, (L).

2.4 Proposition. Let L/K be a finite Galois extension, and put G =
Gal(L/K). Then J¢ =Jrr(JK), HYG,Jp) =1, and C§ = Ik (Cr).

Proof. Consider the following more general situation. Let G be a finite group
and H a subgroup of G. Let A be a G-module and B a sub-H-module of A
(considered as a H-module). For 5 € G/H, By := 5.B := s.B does not

depend on the choice of the representative s € 5. Suppose that A = D B
5€G/H

(in other words, the G-module A is induced by the H-module B); then, for
the usual cohomology H", r > 0, as well as for Tate’s modified cohomology
H", r € Z, we have (Shapiro’s lemma):

can

H'(G,A)~ H"(H, B). 16

16 See [d, CF, Ch. VII, §7, Prop. 7.2]; for the most general situation of Shapiro’s
lemma concerning the links between cohomology and representation theory, see
[g, NSW, Ch.1, §6, Prop.1.6.3 and Rem.].
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For example, this is the case for the regular representation A = DL, of
wlv

G = Gal(L/K), with B = Ly, x {0} x --- x {0}, H = D,,, for any wg|v,
hence for the modules A = @D L or @ U, with B = Ly, x {1} x---x {1}

wlv wlv
or Uy, X {1} x -+ x {1} (review the definitions to see that the action of
Dy, on B becomes the natural one of G, on L,,, under the isomorphism

Doy = Gyy)-
We thus have J& = Jrx(JK) because of 2.3.2.

Using the fact that J;, = lim Uy ', ¥ C PI™ finite containing the ramified

2
places (where X' is the set of places of L above those of X), and the fact that
the cohomology of finite groups commutes with direct limits, the proof of

HY(G,Jy,) = 1 follows from the identity H" (G, HIA,-) ~ I 1#7(G, 4) for
ic i€
all > 0 (here with “A;” = EIB LY or E‘B Uw, and 7 = 1), from Shapiro’s
lemma, then from the Theorem 90;17 see also [d, CF, Ch. VII, Prop. 7.3].
The proof of C¢ = j L (CK) then uses the cohomology exact sequence

1— LX6¢ 2 Jf — Cf — H'(G,L*) =1 and 2.1, -

2.4.1 Remarks. Let G be a finite group, and A a G-module.

(i) We recall that Hr 1 = ﬁ[r, for » > 0, in the context of Tate’s
modified cohomology, and that we have:

HY(G,A)= A%,  H°G,A) = A%/vA,
Hy(G,A) = A/IgA, Hy(G,A)=,A/IcA,
where v =y = X:G s, and where I is the augmentation ideal of G.
s€
(ii) Recall also that we have the canonical isomorphisms:
H(G,A)" ~ HNG,AY), rei,
Hy(G, A)" ~ H°(G,A"),
HY(G,Q/Z) ~ Hom (G, Q/Z) =: G***,
H\(G.2) ~ Ia/1I¢,

12

where * (see 1.5.7) is the usual duality for abelian groups X (i.e., X* :=
Hom(X,Q/Z)),*® and where G** := G/[G, G].

(iii) For instance, the case r = —2, A = Z (with Z* = Q/Z), gives the
canonical isomorphism I /1% ~ G#P. O

17 We have H'(Dygy,Uw,) = 1 in the unramified case, because m, is a uniformizer
of Lu,, which yields , Uy, C L, = (L3,)' 77 = U, © for a generator o of D, .
18 [g) NSW, Ch.1III, §1, Prop. 3.1.1].
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We would thus have all the necessary tools to start the computation of
the cohomology of idéle groups and of idéle class groups, as developed by
Hochschild, Nakayama, and Weil, then by Tate ', which leads to the coho-
mological statement of class field theory, which is probably its most intrinsic
form (hence the most generalizable), but which does not allow the explicit
description of the arithmetic invariants which are involved (see 3.2 for some
insights about these cohomological aspects).

d) Local Norm Groups — The Non-Galois Case

We come back to the situation of an arbitrary finite extension L/K, and
we will lay the groundwork for a fundamental local to global principle, that
which corresponds to the norm in L/K.

2.5 LocAL NORM GROUPS — GENERAL DEFINITIONS. (i) We say that
x € K* is a local norm at v € Pl for L/K if:

iv(z) € NL/K(gaL;),

which is equivalent to the existence of elements y,, € L5 such that:

7;1) (.’L‘) = ul]_llu NL’U}/KU (yw) 20

(ii) We say that x € K* is a local norm everywhere for L/K if z is a
local norm at v for L/K for every place v.

2.5.1 Remark. It follows from 1.5.3 that z is a local norm at v for L/K if
and only if:

iv(z) € NLgb/KU (L:bx)y

with L2b = Q L?Ub. In practice the field L2P has in general a small degree and

we can search directly whether or not i,(z) € NL%b/KU(L%bX). Of course a
sufficient condition is that 7, (z) must be a norm in a local extension L, /K,
for some wy|v (which is the case if for example L3P = K,).

As for the notion of v-conductor, we will also have to distinguish be-
tween the local norm group at v for L/K and the local norm group at v for
L* /K, the former being the group i;l(NL%b/Kv (L2P*)), contained in the
latter iqjl(N(Lab)v/KU ((Lab);< )) O

19 See [h, HN; We2; Che3], [d, CF, Ch. VII; Iyl, Ch.IV; Se2, Ch. XI], [e, Ko3, Ch. 2],
[g, NSW, Ch. VIII, §1]; see also the formalism developed in [f, Neu2].

20 This formula shows, by approximation in L and the use of 1.4.4, that z is a local
norm at v if and only if it is arbitrary close, at v, to a global norm.
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2.5.2 Proposition. The subgroup of elements of K* which are local norms
everywhere for L/K is equal to:

{we K*, i(x) € Nk (Jp)}-

Proof. One inclusion is trivial and the other comes from the fact that, apart
from the places v which are ramified in all the extensions L, /K, for w|v,
and those for which v(z) # 0, we have i,(z) € N, /r, (Uw,), Where wylv

is unramified (see 1.4.3, (ii)), hence i,(z) = Nz, /K, (ug) € NL/K( E‘B Uw),
w|v

completing u, € U,, outside w, by components equal to 1. We can thus
obtain i(z) as the norm of an ideéle of L. O

Because of this fact it is not necessary to give specific notations for the
local norm groups and in particular the subgroups of elements of K* which
are local norms everywhere for L/K is denoted by abuse of notation:

K*NNp/k(Jr)

(instead of i1 (i(K*) NN,k (JL))). In the same way:
K~ ﬂNL/K(gaLE>7
denotes the local norm group at v for L/K.

2.5.3 Remarks. (i) It is clear that any € K* is a local norm almost
everywhere for L/K.

(ii) More generally, we could say that x is a local norm at w|v for L/ K
when i,(z) € Ny /k, (L), but in the non-Galois case this depends on the
choice of w and does not have the desired meaning (it is the same problem as
that of local conductors defined in 1.6 since we want to define local notions
attached only to the places v of the base field K). For instance, if K = Q
and L = Q(\s/i ), —1 is a local norm at the real place w above v = oo (trivial
since L,, = K, = R) but not at the complex place w’ (L, = C, K, = R);
however —1 is a local norm at v, and must be since —1 is here a global norm:

—1=Npg(-1) =Npjp(1-V2) ="

Still in Q(¥/2)/Q, we have a similar example with 5 = N, /g (%ﬁ) which

is a local norm at w|5 such that L,, = Q5 but not at the place w’ such that
L, = Q5(5). In these two examples we have L2 = K.

In other words, the idea of a local norm is attached to the formula of
Subsection (b):

“i,(Np/x(y)) = H Np,/x,(iw(y))”,

wlv
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which suggests a necessary condition to have x = N,k (y). Indeed, the local-
global principle attached to the norm for the extension L/K is the fact (true
or not) that € K* is a norm for L/K (i.e., z =: Ny k(y) for y € L*) if
and only if z is a local norm everywhere for L/K; the least one can ask is
that the trivial direction be true. UJ

2.5.4 Corollary (Galois case). Assume that L/K is Galois and, for v € Pl,

consider the semi-local factor @ L. Since the L,, for w|v are equal, we have
wlv

Lab = L2 for wy|v arbitrarily fixed, and we obtain:

Nogie (D L) = Nouy /e, (15,) = Nugg e, (18),

NL/K<§?U Uw) = NLwO/KU(Uwo) = NL?}:)/K,J(UL&‘B)-

Hence, x € K* is a local norm at v for L/K if and only if, for some arbitrary
woplv, there exists y,, € L?Uk(’]x such that:

iy(T) = Npa /k, (Y )-
Ifv(z) =0, then x is a local norm at v if and only if i,,(z) is a local norm of
local units, in other words:

iv(£) € NL?U%/KU(UL;‘U%)' 0

Once again, Lijf) can strictly contain the completion (L), of L2b.

For questions concerning local norms of local units in the non-Galois case,
the intersection and the compositum of the fields L2P (for w|v) play a fun-
damental role, and the above discussion is not valid; hence it is necessary to
study the following subsection whose results (apparently not in the literature)
will be used later in genus theory (Ch.IV, §4).

2.6 LOCAL NORM INVARIANTS FOR NON-GALOIS EXTENSIONS. Let L/K
be an arbitrary finite extension. For v € Pl, let L,, be the completions of L
for w|v; denote by L2P (resp. by L2P) the intersection (resp. the compositum)
of the L2 for w|v. To ease notations, we set:

Ny =N, /k,(Ly); Vw:=Np,/r, (Us) ;

then we get:

NL/K(UERLi) = (Nuw ) oo NL/K( & Uw) = (Vo Jufo-

wlv

2.6.1 Lemma 1. We have (K : (Ny)

e2? and f2" are the ramification index and the residue degree of the extension
L2*/K,, repectively, and we have (U, : U, N { N, ) = edb, O]

w\u) = [L2* : K] = e’ 2P| where

w\v)
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Denote by GO(M/M’) := (Gal(M/M’))° the inertia group of v in M/M’,
where M and M’ are abelian extensions of K, such that M’ C M.

2.6.2 Lemma 2. We have the following canonical isomorphisms:
(La”]D /Ky) >~ U, /Vy, for any wylv,
(Lib/Kv) ~ U,/ 1V,

wlv

Go(ﬁib/Li};) o Vwo/ﬂv Vi for any w|v. O

2.6.3 Proposition. Let L2P be the subfield ofﬁib fixed under the subgroup
of Gal(L?*/K,) generated by the G°(L2*/L2P) for w|v, and let ¢ be the
ramification index of L2*/K,.

We have the canonical isomorphism:

G /) = Uy [Nujse (D U,
and therefore the formula (UU :Ng, K(SBv Uw )) db . In other words:

(Urea NL/K( reS)) H & 0

E€Ply

2.6.4 Proposition. The number &2 is a multiple of e2” and these indices are
equal when the L2 for w|v are all equal (for instance in the Galois case). []

Proof of the statements. The results 2.6.1 and 2.6.2 are proved by giv-
ing systematically the norm groups corresponding to the abelian extensions
under study and their inertia subfields, and by using properties 1.5 of the cor-
respondence of local class field theory (if N is the norm group corresponding
to the abelian extension M of K, by 1.4, (iii), the group corresponding to
the inertia field of M is equal to U,N). If, to simplify notations we set:

Ny = (N )y No = () Nop, Vi 1= (Vg )y Vo i= 1 Vi,
wlv w|v
we obtain more precisely the following list:

FIELDS CORRESPONDING NORM GROUPS
K, K K
Lab Ny, Uy, Ny
Lab N, Uy Ny
fap N, U,N,

Hence:
Gal(L**/K,) ~ K /N,, of order e2" f2b,
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and the inertia group of L2"/K, is given by:
U,N,/N, ~ U,/U, N N,, of order 2",

proving Lemma 1.

Furthermore:
(Lab/K ) UUN’UJO/NMO :U’U/Uvawo ng/Vwm
GOER® [K0) = Ul Ny 2 Uy U O Ry Uy [ 1) (U0 0 Ny) = UV

From the exact sequence of inertia groups 1.1.6:
1 — QUL /L) —— GULP/K,) —— GO(Liy /K,) — 1,
we deduce that the kernel of the map UUNU/NU —— Uy Ny, /Ny, is:
Go(i’gb/LZ%) = Nwo N (UUNU)/NU = VUJONU/N = wo/‘A/’Ua
finishing the proof of Lemma 2.
The subgroup of Gal(L2P/K,) generated by the GO(L2P/L2P) is thus:
Gal(L?P /L) ~ V,N, /N, ~ V,/V,,

showing that the field L‘;b and its inertia subfield have respective norm groups
equal to: . R A
VyN, and U,V,N, = U,N,,

so that: ) R X
GY(L**/K,) ~ U,N,/V,N, =~ U, /V,,

since U, N (V,N,) = Vo (U, N N,) = V,V, = V,, proving 2.6.3.

Since L2 is a subfield of L2P, we have e2P|é2P. Since e2® = (U, : U, N N,)
and V,, C U, N N, we have more precisely:

sab

eb—(U NN, :V,);

if the L2 are all equal, L2> = L2 = [2P hence 2> = &P, proving 2.6.4. []
2.6.5 Remark. In the Galois case, we thus have the formula:

(U Ny (Up) = [] e
vePlo

which must not be mistaken for the corresponding formula for the maximal
abelian subextension of L/K:
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(U5 : Npa e (Uf) =[] eo(2°/K). 0
vEPly

2.6.6 Exercise. Consider the following irreducible polynomial in Q[X]:
P:=X*414X? - 19,
and take K = Q, L = K(0) with Irr(6,Q) = P, and v = 2.
(i) Show that Pl , = {wy, w,} with:
Lu, = Qa(V=1), Ly, = Qa(V3).

Compute the indices in U, of NL/K( EI|9 Uw) and of U, N NL/K< 6|9 Lf;)

(i) Give also a direct numerical check by showing that the norm groups
N, and N,,, are respectively equal to:

(2) @ (1+4Z5) and (—2) @ (1 + 4Zs).

Answer. We can check (by computing the roots) that we have the following
factorization into irreducibles of Qo[ X]:

P=(X?+a%)(X?-3b%), a, beQJ,
giving the two completions Qa(v/—1) and Q2(v/3). We easily obtain:
LiP = Qa(V=1,V3),
hence L2* = [2P and > = 2 since L2?/Qq(v/—1) and L2P/Qy(v/3) are

unramified. Since L2® = Qo, we have €2 = 1, which gives an example for

which:
. . X
(Uv : NL/K(SCPUUw)) £ (Uv .U, mNL/K(gaLw)).

For (ii), Exercise 1.6.5 then yields the norm groups. It follows that
Vi, = Vw, = 1 + 4Z, hence finally NL/K(G? Uw) = 1 + 4Zs, which is
of index 2in U, = (—1) @ (1 + 4Z,).

One checks that —1 can be written:

—1
No,va)es(1+ V3) - Noy =10, (1 + V=1) 7,

but is not the norm of local units. O

2.6.7 CONCLUSION. (i) We can keep in mind for later use (in particular for
genus theory) that when L/K is not Galois, local norm problems involve the
following diagrams of local fields (for a finite number of finite places v):

K, L= (1 2P L L0 = (L2P)

wlv
wlv
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and the inertia groups of L2 /K, where Gal(L2P/L2P) is generated by the
inertia groups of the L2P /L2 for w]v.
(ii) The norm group of L2P/K, is equal to:

(NL, /i, (L) ) wos
and we have seen that the norm group of Ef}b /K, is equal to:
(Np,w, (Uw) Yo - (VN /5, (L) 5
wlv
we note that:

Us NNk, (L) = ) (U NN, i, (LX)

wlv wlv

Q Nz, k, (Uw) € (N, /5, (Uw) Vo

In particular u € U, is a norm of local elements (i.e., u is an element of
(Nr, /K, (L) >w|,u) if and only if:

(S NLgb/KU(L%b ),

and u is a norm of local units (i.e., u is an element of (N /g (Uy) >w|v’
which is more difficult to characterize), if and only if:

u € NLab/K,U (izb X)a

which can be expressed in terms of the corresponding norm residue symbol
without referring to units.

(iii) The case of the places at infinity is trivial for unit groups; we can
simply note that for v € Pl the field L?® = L,, equal to R or to C, is
different from K, if and only if v is real and all the places w|v are complex
(ie., fab = 2).

83 Global Class Field Theory: Idelic Version

We now start the study of the fundamental step in global class field the-
ory; it consists in giving the properties of the global reciprocity map (whose
existence, from the point of view that we have adopted, only relies on the
existence of the local reciprocity maps which has been assumed). We will
state in parallel the existence theorem (understood to mean of abelian ex-
tensions corresponding to norm groups) whose proof uses independent direct
techniques of Kummer extensions and which, because of this, is generally
proved at the end of the exposition.
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a) Global Reciprocity Map — The Product Formula — Global
Class Field Theory Correspondence

Let L/K be a finite extension of number fields and let L?"/K be its maximal
abelian subextension whose Galois group will be denoted G by abuse of
notation (we have G* ~ G/[G,G] when the extension L/K is Galois with
Galois group G). We give here the crucial definition of the book.

3.1 GLoBAL REcCIPROCITY MAP. Let J := Jg be the idele group of K. We
define the global reciprocity map as being:

PL/K * J —— G

sending « =: (zy), € J to:

oo (@ = [ (ﬂ>

vEPL

Ty, P /K

where ( ) € G is the image of (z,, (L*"),/K,)€ Gal((L*"),/K,)

under the canonical isomorphism:
Gal((L*™),/K,) ~ D,(L**/K) C G*®,

where D,(L*"/K) is the decomposition group of v in the extension L*"/K
(see 1.2.7, Fig. 2.3).

3.1.1 Remarks. (i) Since the z, are almost all units, property 1.4, (vii) of

ab
the local norm residue symbol shows that the (M) are almost all

equal to 1, so the product makes sense.

(ii) The definition of pL/K(a:) shows that p; ;- = ppu g but, as in the
local case, we must also define p, /K for an arbitrary extension. In keeping
with the notations that we have used, we can also by definition denote by

ab
(#) the symbol (#), all the more so that a little later we will
{ ., L/K}
v

introduce a generalized symbol denoted to avoid any confusion.

(iii) The definition of p, /i does not use all the local information relative

to L/K: indeed, the local symbols (., (L*"),/K,) are the restrictions of
the (+, L2P/K,), themselves restrictions of the symbols (., L2 /K,) of local
class field theory. This can be explained by the fact that we globalize and
that, for each v, (L*"),/K, is the largest local extension whose Galois group
can be interpreted as a subgroup of G2P. O

ab
3.1.2 Definition (Hasse symbols). Restricting the symbols (#) to

i, (K*) C KX, by composition with i, we define symbols on K *, called Hasse
symbols, and denoted in an analogous manner:
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() (52w — o

v v
r (M) O

They are not essentially different from the preceding ones since the image
of K* is dense in each K, but the point is that we will see that on K*

v
these symbols are not anymore independent. More precisely, for x € K* the
ab
M), allows us to distinguish between the Hasse symbol

z,, L**/K
v

notation (

(defined on K*) and its analog (
Pr/k-

) (defined on K*) used to define

Let L/K be a finite extension of number fields, L'/K a subextension
of L/K, and let v € Pl. The Hasse symbols only depend on L*’/K. Their
properties follow of course from those of the symbols (., (L®),/K,), except
that the global context modifies certain statements (compare with 1.4 whose
notations we again use), such as 3.1.3, (iv) below which uses the fact that the
global norm in L'/K is the product of the local norms, and (v) which means
that v splits into several places w’ in L’'/K, which is less precise.

3.1.3 Theorem (properties of the Hasse symbol). (i) We have the exact
sequence:

o L2P/K
v

1 — K™ NNy, /., (L%))) K ) Dy(L*/K) — 1,

v

where the kernel is the local norm group at v for L** /K (see 2.5.1);
ab
(ii) the composition of <M>

v
/ab
Gal(L'*?/K), is equal to (#)

(iii) the image of K {XU} (the subgroup of K* of elements prime to v) under
ab
<M> is the group I,(L**/K);
(%

and of the projection G*® ——

)

/ ab’ /11
(iv) for all ' € L'*, the image of H‘ (#
(NL,/K(Q;’), Lab/K)

v

) in G?* is equal to

)

(m, L** /K
v

(v) for all x € K*, the image of under the transfer map

’

T, Lab’/L/)

wl

(from G* to Gal(L*' /L)), is equal to I_II (

(vi) for any Q-isomorphism 7 of L* in Q and all z € K*, we have:

Lab K Lab K
(Tx’T /T >TO(I, / )oT1 on TL* ;

TU (%
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(vii) if v is unramified in L* /K then we have, for all z € K*:

<$7 Lab/K) _ (Laﬂ)/K)V(fﬂ)7

L /K . ab
where (T) denotes the Frobenius of v for L*° /K. OJ

3.1.3.1 Remark (global Frobenius’). Recall that for a place v of K, un-
ramified in L*"/K, the global Frobenius of v for L* /K is the canoni-
cal image in G®" of the local Frobenius Frob((L®P),/K,) (i.e., we have

Lab/K
(—) = iyt o Frob((L*?),/K,) oi,, for any welv in L*"). In particu-

v
Lab/K 1
= l’u}o

lar, if v € Pl%_, then ( ”

to (L*"), of complex conjugation c.
If v is finite, the Frobenius of v in L*?/K is thus the unique generator o
of the decomposition group of p, such that:

oCoi,,, is the image of the restriction

o(x) = 2% mod p, for all integers x of L*",
where ¢, := |F,| = Np,,. O
3.1.3.2 Examples. (i) For K = Q, L = Q(v/2), v = (7), x = 7, we have:

(=3) - (R959) -

since L2P = Q(v/2) and 2 is a square in Q5, but:

(z, Lo/ Ky) = (7, Q7(V2)/Qr) = Frob(Q7(V2)/Qy),

(of order 3) since Q7(v/2) = L2" is the unramified extension of degree 3 of
Q7 (see 1.4, (vii)). This means that 7 is a local norm at (7) in L* /K but
not in L/K.

(i) For K = Q, L = Q(¥/2), v = (43), L' = Q(¥/2) (for which L*®" = L),
= —1+15+/2— 10 /4 (for which Nz, /(') = 43%), we have:

:L,l

(NL,/KW)’ Lab/K> _ (432, @(ﬁ)/@) _ (@(ﬁ)/@)2 .

v (43) C(43)

the square of the Frobenius (of order 2) since 43 is inert in Q(v/2)/Q (see
3.1.3, (vii)). Since v = (43) is totally split in L'/K, we check that:

(=)= () Gr)

w’ |v
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the product of two of the three (nontrivial) relative Frobenius’, giving the
result by restriction in L®/K and illustrating 3.1.3, (iv). O]

3.1.4 Remark (generalized norm residue symbol for L/K). As already
z, L**/K
v
L?P /K. If we want to characterize the subgroup of elements of K * which are
local norms at v for L/ K, we need to define a generalized norm residue sym-
bol which must thus be intermediate between the symbol (., L,,/K,), which
characterizes the elements which are local norms in L, /K,, which is not suit-
able (see 2.5.3, (ii)), and the Hasse symbol which does not deal with L/K but
with L2P /K. Since this subgroup is {x € K*, i,(z) € Niav/k, (L2PX)}, where
L2b .= () L2’ local class field theory tells us that we must use (+, L2P/K,,)

wlv

restricted to 4, (K™ ); by composition with 4,, this defines the symbol:

2K

noted, we have ( ) = 1 if and only if z is a local norm at v for

} : KX ——— G* .= Gal(L?"/K,)

v

called the generalized norm residue symbol for L/K. This symbol cannot be
interpreted in G® since G2 can be strictly larger than Gal((L®),/K,) ~
D,(L**/K) but, for all z € K*,

[m, L/K -

} can be identified with (
v ‘(Lab)v

x, L**/K
)

Note that if L/K is Galois, the generalized norm residue symbol at v can
be identified, for any wo|v, with the local norm residue symbol (., L2 /K,)
restricted to 4,(K ™).

3.2 COHOMOLOGICAL STATEMENT OF CLASS FIELD THEORY (1951/1952).
Let L be a finite Galois extension of the number field K, and let G :=
Gal(L/K). Assuming that the cohomological version of class field theory can
be (in part) summarized by the magical formulas:

H™(G,z) B H™(G,Cy), for the global case,
H"(Gy,7) S I;T”JFQ(GU,7 LX), we Plg, for the local case,

where the H” for r € Z are Tate’s modified cohomology groups, we deduce
once again the existence of “a” global reciprocity map in the following way.

3.2.1 GLoBAL REcCIPROCITY MAP. Take r = —2, which in the global case
yields:

can

H2(@G,2)% H(G,Cy) ;

but classically, we have:



83 Global Class Field Theory: Idelic Version 109
HY(G,Cp) = CF /vy k(CL) ~ Cr /Ny (CL) ~ Ji /KNy i (J1),
the fact that:

CF =i k(Ck) ~ Cx and vy, (CL) = jp/oNp/x(CL) ~ Npk(Cr),

with the usual definitions of v, j, N, being elementary (see (§2, (a), (b), (c))).
On the other hand, we have:

H%(G,Z) = H\(G,Z) ® G*
(see 2.4.1, (ii), (iii), or [d, CF, Ch.IV, § 3, Prop. 1]), giving the result, except
that we must identify the map Jx /K *Ny, /x(J) — G=". But the surjection:

Ji /Ny (JL) —— G*,

which we obtain from it, and the fact (which is immediate by 1.4.3, (ii)) that:
/Ny (Jp) = © (KS/NL,, /i, (L)

indeed suggests that it is the map defined in 3.1 from the local reciprocity
maps:

H(Guy, LY) ~ K /Np, i (L) —— H (G, Z) ~ Gy,

wo?

where for each place v of K we have chosen a place w, of L above v.
This does not make it any easier to obtain the kernel of this surjection,
which is the very heart of global class field theory.

3.2.2 FUNDAMENTAL CLASS. Note that for r = 0 we obtain:

can

H*(G,C )% HYG,Z)=2Z/|L: K|Z~[L: K|"'Z/Z,

since vy ;- acts on Z as multiplication by [L : K]. The element u; . €
H2(G,Cy), which is the inverse image of the class [L : K|™! + Z € Q/Z, is
called the fundamental class of L/K.

Hence, the isomorphisms of global class field theory:

can

ﬁT(G?Z) = ﬁr+2(G7cL)7 TEZa

are given by the cup product z — x — Up g for all x € fIT(G7Z).

For a general view of the cohomological approach, we refer the reader
to [d, CF, Ch. VIL; Iyl, Ch.IV; Se2, Ch.XI] or to [e, Ko3, Ch.2], [g, NSW,
Ch.III, § 1], as well as to the concrete explanations of [i, Gar], and to Koch’s
lecture in [i, Miy0] for the history of the concept of class formation for which
the fundamental class plays a basic role.
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We will now introduce a finite set S of places, which will be a parameter
allowing us to specify the decomposition (i.e., splitting) of the elements of S
in the correspondence of class field theory.

Notations. (i) Let S = Sy U S, be a finite set of noncomplex places of K.
For any finite extension L/K, we denote by L**®/K the maximal S-split
subextension of L* /K (i.e., in which every place of S is totally split).

(ii) We denote by p} - the composite:

PL/K
—

J G* = Gal(L**/K) —— G**% := Gal(L**9/K). 2!

(iii) We set (S) := II K* Il {1} =@ @ K, considered as a sub-
ves vePI\S veS

group of J (see 1.4.1.2, (ii)). UJ

The fundamental Theorem 1.4 (for the local reciprocity maps) has a global
analog in which the multiplicative group K is replaced by the multiplica-
tive group J. Let L/K be a finite extension of number fields and L'/K a
subextension of L/K. We denote by S’ the set of places of L’ obove those
of S.

3.3 Theorem (properties of the global reciprocity map). The global reci-
procity map pi /K has the following properties:

(i) We have the exact sequence:
Pi/K
e

GabS_>1 .

)

1 — K*(S)Np/k(Jp) —— Jk

(ii) the composition ofp}f/K and of the projection G**° — Gal(L'* %/ K)
is equal to pi,/K;

(iii) for any v € Pl, the image of K (resp. of U, resp. of U} fori > 1)%2
under pf K is the decomposition group (resp. the inertia group, resp. the ith
higher ramification group in upper numbering) of v for L**° /K ;

(iv) for all ¥ € Jp, the image of pfl/L,(a}’) in G*% s equal to
pf/K(NL,/K(m’)); in particular, we have:

Gal(LabS/LlabS) — pi/K(NL’/K(‘]L’)) ;

(v) for all ¢ € Jg, the image of pf/K(m) under the transfer map, from

G2PS to Gal(L*' 5" /L), is equal to pi//L,(a:’), where ' is the image of x
under the canonical injection Jx — Jpr/;

2! where p;, sk Will also be denoted py7jy, in accordance with the principles of

notation given in Sections 3 and 4 of Chapter I.
22 where KX, U,, and U! are considered as subgroups of Jx.
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(vi) for any Q-isomorphism 7 of L in Q and all € Jg, we have:
- b
p:i/TK(T:B) = Topf/K(:zz) o7~ on TL*I

noting that 7L = (71L**)™ = (7L)279 (abelianized over 7K );

(vii) if the support of x =: (z,), € Jx is prime to the ramification of
L**S /K (ie., x, =1 if v is ramified), we have:

LabS/K v(zy)
st = I (E5)

vEPL

L*%/K . ab S . .
where <7> denotes the Frobenius of v for L**~ /K. If w, is a uni-
v
formizer of K., (seen as an idéle of support {v}) and if L*** /K is unramified
LabS K
at v, then pi/K(m) = (T/) ]
Note. In (i) we have by definition K*(S)Np k(Jr) = K*Nps, x(Jps) since
LS8P — [2b5 1 (vii), we can replace the assumption on ramification by the weaker
condition: z, sufficiently close to 1 if v is ramified.

At this point we can note that the norm group N, corresponding to
(L**), /K, is NNK), where N := K*Ny /x(JL): indeed, by 3.1, the restric-

v
tion to K C Ji of Prav /g CAN be identified with the norm residue symbol

(e, (L*),/K,), proving our claim (considering N, as canonically embedded
in JK)

This proves the following important relationship between local and global
class field theories for L2P /K.

3.3.1 Corollary. For any place v of K, we have the identity:

(K*Np g (JL) N KS = Ngany, /i, (L*)5). O

3.3.2 Remarks. (i) There exists an infinity of finite sets X of places of K
such that, by restricting p, /K 1o GBZKUX, we obtain the exact sequence:
US

PL/K

1— N0 (@ KY) — @ K G 1,

veX vex
where N := K*Np i (Jr) (for this, by 3.3, (iii), it suffices that the decom-
position groups of the places v € X for LP/K generate G*, which uses the
density theorem which we will recall in 4.6).

(ii) In terms of reduced ideles, since Uy, C Ny, (JL), we systematically
replace the exact sequence of 3.3, (i) by:
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1— K*. @ K @ {£1}.Np/x(Jro) Jio G5 1
vESy VESoo
We will do this only if it is technically necessary. |

3.3.3 Corollary. For any finite extension L/K of number fields, we have:

K*Np/g(Jr) = K*Npav g (Jpan). 0

By giving a numerical example, it is easy to show that the equality:
Nr/x(Jr) = Npav /g (Jpav)

is in general false.

3.3.4 Corollary. We obtain the exact sequences:

PL/K
_—

1 — K*Np/x(Jp) — Jk G*® — 1,

ord
1 — K*(PIL Ny i (Jn) —— Ji —25 Gal(L* 1/ K) — 1,

where L*P"¢ js the maximal noncomplexified (i.e., PI% -split) abelian subex-

tension of L or, equivalently, the maximal abelian subextension of L which
stays real under all the real embeddings of K. U

Let L/K be a finite extension, and let N := K*Np k(Jr), so that we
have the exact sequence:

PL/K
e

1— N — Jg G*® — 1.

Theorem 3.3 gives then the important result:

3.3.5 Corollary (decomposition law of places in L*/K). For each place
v € Pl, we have the isomorphisms:

KXN/N ~ D,(L**/K), U,N/N ~ I,(L**/K),

where KX and U, are considered as subgroups of Ji.

In particular, v is unramified in L* /K if and only if U, C N. Hence, if v
is unramified in L** /K, we have KXN/N = (m,)N/N since U, C N, and
the residue degree f, of v for L**/K is equal to the order in Ji /N of any
uniformizer m, (seen as an idéle with support {v}).

The place v is totally split in L*" /K if and only if K} C N. ]

Recall that for v € PIt,, K = RX, m, = —1, and U, = R*T, so that in
this case we always have U, C N (i.e., nonramification of the infinite places).
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Indeed, v € PI%, does not become complex in L*°/K if and only if —1 (seen
as an idele with support {v} and not diagonally embedded!) belongs to N.

3.4 ProDUCT FORMULA — CLASSICAL APPLICATIONS. The fact that the
subgroup N, g (Jr) is in the kernel of p, /i 18 clear since for each v,
(Nr, /K, (L) >w|v which corresponds to L2P := Q L2 by local class field

theory (see 1.5.3), is in the kernel of (+, L2?/K,), hence a fortiori in that of

(o, (L?),/K,), hence of ( ., L*/K

since L2 contains (L2),,.
v
On the contrary, the fact that the kernel of p, /K contains the diagonal

embedding of K is the most remarkable fact (and the least trivial) of global
class field theory. We can consider this fact as the idelic version of Artin’s
reciprocity law (1924/1927), that we will give in 4.3.2 and 4.4; it is also called
the product formula since it can be stated in the following way in terms of
Hasse symbols (see 3.1.2).

3.4.1 Theorem (product formula). Let L/K be a finite extension of number
fields. For all x € K* we have:

I (-2 - :

vEPL

This property allows us to define the reciprocity map on the ideéle class
group:
pr/x ¢ Ck — G,

This product formula, which says that the Hasse symbols are not inde-
pendent on K*, can also be considered as the general reciprocity law, since
it generalizes (among other results) the quadratic reciprocity law of Gauss.
To illustrate this, we are going to show that we can deduce the quadratic
reciprocity law without using any additional deep arguments (we will give in
7.4 the nth power reciprocity law analogous to the quadratic reciprocity law
when K contains p,; see also [f, Lem1] and [Wy] for further examples and
the history of the subject).

3.4.2 Example (quadratic reciprocity law). Take K = Q and consider L =

Q(\/ (—1)pT_1p) for a positive odd prime p; thus the extension L/Q is only

ramified at p. For convenience, we identify Gal(L/Q) with the multiplicative

group {£1}. The places of Q will be denoted either v, or else £ and oco.
z, L/Q

The computation of the Hasse symbols ), x € Q*, can be re-

v
duced successively, by multiplicativity, to that of the:

(LL/Q> and of the (q,L/Q)
’ v

v
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z, L/Q
v

for any positive prime ¢. Recall that, by 3.1.3, (vii), ( ) = 1 except

perhaps for (finite or infinite) places v such that v(z) # 0 and the ramified
places v (hence here p).

(i) (M) is equal to 1 except perhaps for v € {oo, p}; but we have:
v

(2:29)- (-9

p—1

(indeed, Lo /Qoc = C/Ror R/Rif (—1) 2 = —1 or 1 respectively, and —1
is a local norm only in the second case, or (by 3.1.3, (vii)) (_127.5/@) is the

Frobenius of oo for L/Q); using the product formula, we obtain:

(59)- (-9

(even though a direct computation is easy).

(ii) (%) is equal to 1 except perhaps for v € {p, ¢}:
If ¢ = p, the product formula (reduced to a single term) yields:

(1)

e If v = p, then (%) = 1 if and only if ¢ (which belongs to Up)

is a norm for the extension L,/Q, (since this extension is ramified, we have
(Up : UpNNL /g, (L)) = 2 by local theory); but the only subgroup of index
20f Uy =2 = iy & (1+ pZy) is p2 1 & (1 + pZy) = (Up)?, hence q is
a norm for L,/Q, if and only if ¢ € (U,)?, hence if and only if g € F)?, so

that: L/Q
(£23)- ()

(the usual quadratic residue symbol). We can of course use 1.6.5.

L)

Assume now that ¢ # p:

e If v = ¢, to compute ( we see that L,/Qq is unramified and

we have, by 3.1.3, (vii), (q, s/Q) = (L{]Q) which is equal to 1 if and only
p—1

if ¢ is split in L/Q, hence if and only if L, = @q( (—1)%" p> = Q,, hence:

1

(£49)- (47




83 Global Class Field Theory: Idelic Version 115

where we use here the Kronecker symbol, equal to the quadratic residue
symbol if ¢ # 2, and otherwise defined by (%) = 1 or —1 according as
a =1 mod (8) or not. 2

Hence, using the product formula we have (q, ﬁ/(@) (q, s/Q) = 1, which

can be interpreted as follows.

e For q ¢ {2,p} we get ( ) ) =1, hence (using (i)):
p
q

(=
0)- ()"

e for ¢ = 2 this yields (%) = ((71)%), we check, by choosing p =

1,3,5,7 mod (8), that this can be written:

(2)=(-)~

Note that the above computations never went any further than the use
of the Hensel lemma in the Q; (to characterize the elements of Q%) and
ramification theory in a quadratic field.

The product formula enables us to make convenient explicit computa-
tions, even for the local case, as is shown in the following exercise which
gives the local reciprocity map for abelian extensions of the completions of
Q (by Exercise 1.8.3 any abelian extension of Qy is contained in the maximal
cyclotomic extension Qg(x)). This procedure will be systematized in 4.4.3
and illustrated in 7.5 for the computation of local Hilbert symbols.

3.4.3 Exercise (local reciprocity map in @21)/@4). Assume that K = Q and
consider for a fixed prime ¢ the abelian extension L = Q(u,.) with n > 1; we
will denote by L,/Qq = Qq4(ttpn)/Qq the completion of L/Q at v = ¢ finite,
and we will consider the embedding i : Q* — Jg as being the identity.

(i) Find the norm group N corresponding to L.

(ii) Check that for all prime ¢, ¢ > 0, and g # ¢, the local norm residue
symbol (¢, Ly/Q,) is the Frobenius automorphism o, defined by ¢ — ¢? for
all ¢ € pym.

(iii) Show that (¢, L¢/Q¢) = o'

(iv) Let = € Q), and write z =: £'¢(*)y. Deduce from the above that:

(z, Le/Qe) =0, = 0,1,

23 This symbol at 2 is not multiplicative: (%) = (%) = (%) = —1; it is multiplica-

tive however on 1 + 4Z2, which is the present context.
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defined by ¢ — ¢* ' for all ¢ € pun.
Show that for L = Q(uy- ), the local reciprocity map:

—

Q) = £ o U, —— Gal(Le/Qy)

induces the isomorphism Uy ~ Gal(L;/Q;) which sends u € Uy to 0,1 = 0,1
defined by ¢ — ¢* ' for all ¢ € prpee.

Answer. (i) We have Q) = 2 3 Uy with Uy = g1 @ (1+4Zy) if £ # 2, and
U = {£1} & (1 4 4Z3). We know that if ¢, is a generator of u,, we have
Nz/o(1 = ¢n) = @¢n (1) = £ € N; since in addition Lg/Q is totally ramified
of degree ("~1(¢ —1), we have N = (2@ V with V of index ¢*~1(¢/—1) in U,.

If ¢ # 2, the only possibility is V' = 1+ 0"Zy; if £ = 2 and n > 2, we have
Gal(L;/Qp) ~ Z/27 x 7./2"2Z and the only possibility is V = 1+ 4.2""27Z,
since V' must be contained in the norm group of Q(u,) which is equal to
22 @ (1 + 4Zs) (using 1.6.5).

Thus in all cases we have:

N =020 (1+0"7).

(ii) By 1.4, (vii), we have (¢, L,/Q,) = Frob(L,/Q,), equal to o, for a
cyclotomic field: indeed, for all ¢ € p,. the congruence Frob(L,/Qq)(¢) = ¢
mod (q) is equivalent to the equality (use 1.1.5 with the characteristic ¢!).

(iii) We have the product formula ]I <%) = 1, where <%)
is the canonical image of (¢, L,/Q,) in Gal(L/Q), and we know that
(¢, L,/Q,) = 1 except perhaps if L,/Q, is ramified (which occurs only for
v =) or if ¢ is not a unit at v (hence only for v = ¢ since we chose g > 0);

-1
this yields (%) = (%) =: 0;1 by abuse of notation (we have

also (%)(O = (L/TQ)(C) = (%in L/Q since L/Q is a cyclotomic field);
interpreted in Gal(L;/Qy), we get (¢, L¢/Qy) = O'q_l.

(iv) We deduce that, for any rational number a > 0 prime to ¢, we have
(a, Ly/Qp) = o, ! hence, by density, that (a, L,/Q) = o, ! for all a € Uy; in
particular it follows that (z, Ly/Qy) = o ! since (¢, Ly;/Q¢) = 1. It is then
immediate to obtain the local reciprocity map for Qg(iy)/Q¢ by taking
inverse limits.

Note that if p’ is the group of roots of unity of order prime to ¢, then
Qe(¢') is the maximal unramified extension of Q; and its norm group is
equal to U, (see 1.8.3); the isomorphism ¢# — Gal(Qq(u')/Qy) is given by
¢ — o, = Frob(Q¢(1')/Q¢)). Since @Zb is the direct compositum of Qg (u’)
with Qg(ppe) over Qg, the case of abelian extensions of Qy is completely
explicit. 0

See in 4.4.3.3 a slightly more global version of this exercise.
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The product formula has the following converse which gives more precise
information on the dependence of the Hasse symbols. Let L/K be a finite
extension of number fields.

3.4.4 Theorem (converse of the product formula). Let (s,),cp be a family
of elements s, € Gal(L*"/K) satisfying the following conditions:

(i) sy € Dy(L**/K) for all v,
(ii) s, = 1 for almost all v, and [Is, = 1.

z, L**/K

Then there exists x € K* such that ( ”

) — s, forallv € Pl.

Proof. Let X be the (finite) support of (s,),. Since the image of K> under
ab

the Hasse symbol (M) is equal to D, (L*"/K), for each v € X there
v

ab
exists z(v) € K* such that (M

(24)v, whose components outside X are equal to 1, and where we have chosen
Ty = iy(z(v)) for v € X. We then have:

pr(®) =] <"T”Lvab/K) = 1:[% -1,

v

) = s,; consider the idele x :=

so that there exist x € K™ and y =: (yu)w € Jr such that:
© =1i(z)Np/k(y) ;
but ( 1_‘[ Nz, /x, (Yw) (Lab)v/KU> = 1 for all v since by definition we already

have (N k. (yw), L2?/K,) = 1 for all w|v. Hence z is a solution to our
problem. [

This result can in fact be expressed in terms of generalized norm residue
symbols (see 3.1.4). For all v € P, let L := () L2’ G2> .= Gal(L*"/K,)

wlv
(see 1.5.3).
3.4.4' Theorem. For any family (oy)yecp € S5 G?P such that the product
vePL
of the images of the 0”|(Lab) in G® is equal to the identity, there exists

x € K* such that (i,(z), L2?/ K,) =: [#} =0, for allv € Pl.

Proof. We use here the fact that the local symbol:
(e LK) K s G2

is surjective to construct an idele ¢ := (z,), such that (z,, L2"/K,) = o,
for each v € X, z, = 1 outside X (where X is the support of (oy)y).
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Since (

we still have pL/K(sc) = 1, ¢ = i(x)Ny/k(y), and z is still a solu-

ab
M) is the canonical image in G# of o] vy (see 3.1.4),
/l} ab v

tion, but note that we now use the (more precise) fact that for all v,

( I1 N, /K, Ww), Lib/KU> = 1 for the same reasons as in the preceding
wlv
case, or note that by 1.5.3 we have directly:

(N, /a6, (L35) Vs = Nipav e, (L5, u

We will see in IV.4.5.5 that genus theory gives some additional information
on this converse aspect of the product formula and shows that x can be chosen
in a suitable S-unit group.

This finishes the first applications of the product formula.

We now come to the global existence theorem (i.e., the existence of abelian
extensions of the global field K). By opposition to the local case, all the
abelian extensions of K will be taken in a fixed algebraic closure K of K
which may be independent of our various complex fields C, or C.

The analog of the local existence theorem can be obtained from the idele
class group Ck of K in the following way (coming back to Jx for conve-
nience).

3.5 Theorem (global existence). For any closed subgroup N of finite index
of Ji containing K>, there exists a unique abelian extension M of K such
that K* Ny x(Ju) = N; the reciprocity map yields the exact sequence:

1— N —— Jie 2, Gal(M/K) — 1.

In addition, the bijection between the closed subgroups of finite index of Jg
containing K* and the finite abelian extensions of K is a Galois correspon-
dence which has the following properties (where My and My are abelian over
K and correspond respectively to Ny and Ns):

(i) we have My C Ms if and only if Ny C Ny;

(ii) M1 Ms corresponds to N1 N Na;

(iii) My N My corresponds to N1 Na;

(IV) IfMl QMQ, we have Gal(Mg/Ml)ZNl/Ng UJ

3.5.1 Remarks. (i) As in the local case, the above Galois properties come
from the existence of the correspondence and from 3.3, (i), (ii) on the global
reciprocity map.

(ii) Similarly, if M corresponds to N, the decomposition subfield (resp.
the inertia subfield) of a place v in M/K corresponds to KN (resp. to
U,N), i.e., is fixed under pM/K(Kf) (resp. pM/K(UU)).

For instance, the field corresponding to the closed subgroup of finite index
N := KXU™ (resp. K*U°) is the maximal abelian unramified (resp. un-
ramified and Pl,.-split) extension of K. This field H™® (resp. H°™) is called
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the Hilbert class field of K in the restricted (resp. ordinary) sense. From 1.5.1
or 1.5.1.1 we deduce that Gal(H™/K) ~ &/** (resp. Gal(H*/K) ~ ¢/°9).
We will find again these fields in the Paragraph 5 as particular cases of the
ray class fields corresponding to the open subgroups K> UL.

The subfield of M fixed under p,, - (U;) =: Dy(M/K) = D, 1 (M/K) is
the maximal v-tamely ramified subextension of K in M. Hence the maximal
tamely ramified extension of K in M corresponds to the idele group:

IIv. -~

Warning: K* [1 U} is not of finite index in J.
v
In the statements it is not necessary to refer to a set .S; if we want that the

places in such a set split completely, it is necessary and sufficient to include
(S') in the subgroup N under consideration (see 3.3.5).

(iii) By abuse of notation, we will say that N is the norm group corre-
sponding to the extension M/K.

(iv) Finally, recall that an open subgroup of Jx containing K * is of finite
index and necessarily contains a subgroup of the form UL (see 1.4.2.3). Thus
there is an equivalence between a closed subgroup of finite index of Jg con-
taining K and an open subgroup of Jx containing K * (which corresponds
to an open subgroup of Ck). Hence this contains the assertion about the
existence of a conductor which will be studied in Section 4.

(v) The situation is the same if we express the correspondence in terms
of subgroups of Jg o containing the diagonal embedding of K since we can
go from one point of view to the other thanks to the identity N = Ny @ Uy,
which is self-explanatory. O

Note that in the correspondence of class field theory, the group N /g (Jr.)
does not characterize the extension L*? (in other words, although the equality
Nk (Jr) = Npwjg(Jpr) clearly implies L'*P = L”2P, the converse is false).
More precisely, Stern has given the following result (for the proof and the
study of some consequences for norms, see [St]).

3.5.2 Proposition. Let L' and L" be two finite extensions of K, and let L
be a Galois extension of K containing L' and L". Set:

G :=Gal(L/K), H':=Gal(L/L'), H":=Gal(L/L").

Denote by H|«] the set of primary elements (i.e., of order a prime power) of
a group H. Then the following conditions are equivalent:

(i) Npiyr(Jrr) € Npwjre(Jrr),

(i) K* N Np g (Jr) € K* N Npwy (),

(iii) Ny (L") N Npw g (L") is of finite index in Ny g (L"),

(iv) SL€JG sH'xs™1 C sLéJG sH'"[x s . O
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Finally, as in the local case (same proof), we have the following conse-
quence of 3.3.

3.5.3 Corollary (norm lifting theorem). Let L/K be a finite extension of
number fields and let M /K be an abelian extension.

If N is the subgroup of Jx corresponding to M, then the subgroup N’ of Jr,
corresponding to LM over L is given by:

{y € Jo. Npji(y) € N} = Nyl (V). 0

3.5.4 Proposition (relative decomposition and inertia groups). Let L/K be
a finite extension and let L' /K be a subextension. Denote by N and N’ the
subgroups of .J corresponding to L*® and L'* (so that N C N').

Under the isomorphisms D,(L**/K) ~ KX N/N and I,(L**/K) ~ U,N/N
(see 3.3.5), we then have:

D, (L*/L/**) ~ N'N KX /NN K},
I,(L*/L'**) ~ N'nU,/N NU,.

Proof. Indeed, we have the general exact sequence (see 1.2):
1 Dy (L /L) —— Dy(L™[K) —— Dy(L'™/K) — 1,
which can be written:
1—NNKSN)/N—— KN/N—— KSN'/N' — 1;

it is then immediate to check that N'N(K)N)/N ~ N'NK}/NNK). The
case of inertia groups is completely similar. [

3.6 Theorem (Galois action). Let M/K be a finite abelian extension of
number fields and let g be an automorphism group of K with fixed subfield k.
Let N := K*Ny;/k(Ju) be the norm group corresponding to M/K.
We have the following facts:

(i) M/k is Galois if and only if g acts on N;

(ii) M/k is abelian if and only if g is commutative and there exists
a subgroup n of Ji, containing the diagonal embedding of k™, such that
N = N;(}k(n), in which case M is the compositum of K with the abelian
extension of k corresponding to n.

Proof. (i) Let 7 be a k-isomorphism of M extending ¢ € g. By 3.3, (vi),
the group corresponding to 7M over 7K = K is equal to TN = tN (since
pTM/K(Ta:) =1 is equivalent to pM/K(:I:) = 1); thus the uniqueness theorem
indeed implies that 7M = M if and only if tN = N (i.e., g acts on N).

(ii) If M/k is abelian, g is commutative and there exists n in Jj, containing
k>, corresponding to M/k. By 3.5.3, we have N = Nl_(}k(n)
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Conversely, assume that g is commutative and that IV is of the form
N}l/k(n) Since by 1.4.3 and 1.4.4, for all m (built on the ramified places
in K/k), Ng/i(UpS,) contains UpS, for a suitable n in k, it follows that
Ng/r : Jk — Ji is an open map and so n, which contains Ng /1, (N) with N
open, is an open subgroup of Ji, hence of finite index since it contains k*.

Let k' be the abelian extension corresponding to n over k; since g is
commutative, the field K%' is the compositum of two abelian extensions of
k and corresponds, over K, to N;(I/k (n) = N. Hence, by uniqueness we have
KK =M. ]

This theorem is the starting point for a more general Galois study; for
instance, if M/k is Galois and [M : K] is prime to |g|, the action of g on
Ji /N or, equivalently, that of g on Gal(M/K), characterizes the semidirect
product Gal(M/k) = Gal(M/K) x g.

3.6.1 Example. Let K/Q be Galois with Galois group G =: g, and let H
(resp. ) be the restricted or the ordinary Hilbert class field (resp. class
group) of K (see 3.5.1, (ii)). If |G| and |(¥| are coprime, Gal(H/Q) ~ I x G
is characterized by the relations:

s'oppyw (@) o s ™" = ppy i (cl(s2)),

for any s’ extending s € G and any idele ¢ (with &(.) € J/K*U ~ (¥), which
become, in terms of Artin symbols that we will introduce in Subsection (b):

“ (o) = (Gew)

for any s’ extending s € G and any ideal a (with ¢/(+) € (¥). Thus the Galois
structure of (/ gives that of Gal(H/Q). Note that if ¢/ # 1, (! x G is never a
direct product since this is equivalent to ¢ = (¢, therefore to & = 1 because
of the assumption on the orders (hint: if the class c is fixed under G, then,

since Q is principal, 1 = I/L/K(C) = HG ¢® = cl®l; or use the fact that one
se
can write H = KM with M/Q abelian and unramified). 0J

The most complete achievement of Theorem 3.6 is then the Safarevic—Weil
theorem, 24 which characterizes the group extension:

1— Gal(M/K) —— Gal(M/k) —— g — 1,

which is of a cohomological nature, in terms of the fundamental class briefly
mentioned in 3.2.2. More precisely, the element of H?(g, Gal(M/K)) associ-
ated to this group extension is the image of the fundamental class under the

24 See [e, Ko3, Ch. 2, §7.1] and [i, Miy0, Koch] for the history of this result whose
name would aptly be “Safarevic-Hochschild-Nakayama—Jehne theorem”, as ex-
plained by Koch.
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composite of canonical maps:

Pnm/K

H*(g,Cx) —— H*(9,Cx /dx(N)) —— H?*(g, Gal(M/K)),

where N C Jk is the norm group corresponding to M /K.

b) Global Class Field Theory in K /K

To conclude, we want to show how the global reciprocity map behaves when
we take the inverse limit of the J/N (from the correspondence of 3.5), hoping
that this will not create some new and dreadful object; we will see that this
is not the case.

—ab
3.7 RECIPROCITY MAP IN K /K. By the general principles, we can go to
the limit as in the local case by writing that:

G = Gal(?ab/K) ~ lim J/N,
N

where N ranges in the set of open (or closed of finite index) subgroups of
J containing K*. As already explained, these subgroups N must necessarily

contain a subgroup of the form Uy = Ug%, @ U, where (see 1.5.2):

ua= [ v Jlum

vEP\T veT

ifm= HT pore, and where Uy := 6‘9 U, =~ (R*1)™ x (C*)™ is the connected
ve V|00
component of the unit element of J. Thus the group @ab is also of the form
(using reduced ideles):
lim Jo/No,
No

where Ny ranges in the set of open subgroups of Jy containing K *, of which
a cofinal subset is formed by the K*U§<;.

We are going to see however that these inverse limits can easily be written
in terms of quotients of J or Jy, which in practice avoids working in C or Cj.
3.7.1 Definition. Let p be the limit reciprocity map: p : J —— ﬁab,
defined for all € J by:

p(®@) = (pay/ (@) € lim Gal(M/K) = lim J/N,
M N

for the finite abelian extensions M /K, N denoting the norm group of M (i.e.,
the kernel of the reciprocity map p,, /K defined in 3.1). O
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The fundamental canonical exact sequence 1.5.2.2 (in terms of reduced
ideles):

1 — KU —— Jy —— ™ — 1,

shows that there exists a finite number of representative ideles zj € Jo,
1 <i < h:= |, such that Jo = {z}, 1 <i < h} KX U™
We have:

J/K*Us =~ Jo/K* ={z}, 1 <i<h} KX U™/K*,

which is represented by the set {z}, 1 < i < h}US™; we can then apply
[.5.5 to A = J, the subgroups N C J corresponding to the finite abelian
extensions M/K, B = K*Uy, and the compact set {z}, 1 <1i < h} U™,
and so we deduce that p is surjective (its kernel being trivially equal to QN ).

We have of course the analogous surjective map p : Jo —— é‘*b, defined
by p(@g) := (Ppr/ 5 (®0)) ar» Whose kernel is (1 No.

No
We thus have the following homeomorphisms:

7abN~ ~ ~ X T7Tes\ ~
G _<h7m J/N_J/QN_J/Q(K Urs) ~ C/D

:% Jo/No =~ JO/JQNO ~ JO/Q(KXU(;?;) ~ Cy/ Do,
where D := c€( N (KXU‘ffS)), Dy := d, ( N (KXUSe;)>, are the connected
m m ’
components of the unit element of C' and Cj respectively, and where we recall
that (see 1.4.2.5, 1.4.2.8, (ii)):

D= oe(ﬂ (EOTdU;eS)>7 Dy = ceo(rn] (EordUgfg;)).

m

3.7.2 Remark. Note that in general the U&ﬁﬂ do not form a fundamental
system of neighbourhoods of 1 in Jo; in a similar way, although the U§; form
such a fundamental system, this is not the case for the UL in J (because of

the archimedean factors), and only [} (K> UE) represents the closure of the
- ;

image of K* in Jy, so that we have:
Do = adhy(K*)/K* = adh,(E°)/E°".
However, we can write D = adh(K*Uy,)/K*. |
Summarizing these results, we obtain the following description of éab =

Gal(fab /K) by means of the usual reciprocity maps p,, /K for finite abelian
extensions M/K.
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3.7.3 Theorem. The infinite reciprocity map p:J —— @ab (resp. p :
Jog — @ab), which associates with @ € J (resp. @y € Jo), (Ppr/xc(®)) s

(resp. (pM/K(ccO))M, is surjective.

Thus p induces the canonical homeomorphisms:

G ~ J/adh(K*Us) =~ Jo/adhy (K ). 0

Of course, the composition of p and the restriction " — Gal(M/K) yields
the reciprocity map p,, K for any abelian extension M/K (finite or not).

3.7.4 Corollary. Taking quotients by the diagonal embeddings of K*, we
can write: b
C;’(l >~ C/D >~ CQ/Do,

where D = d(ﬂ (KXU;:S)) — adh(K*Us)/K*, Dy = do(Q (KXUS?Q)) =

m

adhy(K*)/K*. 0

3.8 INFINITE GLOBAL CLASS FIELD THEORY CORRESPONDENCE. The cor-
respondence for infinite idelic class field theory can be expressed in terms of
either:

e closed subgroups of J containing K * U,

e closed subgroups of C' containing D,

e closed subgroups of Jy containing K *,

e closed subgroups of Cy containing Dy.

In addition, the bijection between the set of abelian extensions of K and

the set of closed subgroups of Jy containing K* (for instance) is a Galois
correspondence having the properties (i) to (iv) of 3.5.

3.8.1 Remarks. (i) Under this correspondence, the decomposition and in-
ertia groups are still related to the images under p of the groups K¢ and U,
but this is not enough to identify them; in other words the computation of
K adhg(K*)/adhy(K*) or of K/K Nadhy(K™) is neither sufficient nor
a priori easy. It is however easy to see that we have p(U,) = I, (Fab /K) and
that p(K S ) is dense in D, (?ab /K). In addition there is a topological problem
since J induces on K¢ its usual topology (with neighbourhoods U}"), while
it is that induced by K.° (with neighbourhoods 77# @ U™) which is suitable

since D, (Xab /K) is obtained by an inverse limiting process (which we will
give in I11.4.12.5 following II1.4.5); recall also the problem that we have met
in 1.4.2.8, (iv). All this needs Theorem III.4.3 of Schmidt—Chevalley, which
uses the local-global principle 6.3.3 on powers. It is thus natural to delay the

study of all questions dealing with the global structure of Fab /K which are
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logically equivalent to the study of the properties of D and Dy, and will be
the object of the next chapter.

(ii) The group D is also called the universal norm group simply because it

corresponds to K" by infinite class field theory, and because it is contained
in the images in C of all the norm groups K*Np i Jy, of finite extensions
L of K. As we have already mentioned, D is the connected component of
the unit element of C' and also its maximal divisible subgroup. We will show
this last point in I11.4.15.1. Exactly the same things can be said about Dy
in Co. D

In terms of classes of reduced ideles, the above yields:
Co = {clo(xp), 1 <1 < h}.dy(U"),
and the exact sequence:
1 — do(US*) Dy /Dy — Co/Dy — A4 — 1,

shows that the study of Cy/Dy can be reduced to that of:
lo(Ug™) Do/ Do = K*Ug™ [ N(K*Ugss) = Ug™ [ N (B™053),
m m

which is Ug™ /adhy(E°™?) or, equivalently, the quotient of U§™/E°™ by the
connected component Dy.
We obtain the following result.

3.8.2 Theorem (global exact sequence of class field theory). We have the
exact sequence:

1 — U Jadhy (Bo) —2— G aed 1,

in which Ug™ /adhy(E°*) ~ Gal(K™ /H*") and "4 ~ Gal(H*"/K). [

For instance, if K is equal to Q or to a principal imaginary quadratic field,
this yields G ~ U§™ /io(n(K)).

The determination of the structures of adhy(E°*®) and Dy is the object
of Theorem 111.4.4.6.

The point of view of the notes of Artin—Tate [d, AT, Ch. 9, § 1], and before
of the book of Weil [h, We2, III], is to give explicitly the structure of D (in
particular for the computation of the cohomology of C' and of C/D). Our
point of view consists also in looking at the formulas:

G ~lim J/N =~ lim Jo/No =~ lim G/,

P
N No m
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which show how the finite case, which is amenable to numerical computations,
regularizes when one takes the limit, but there is no difficulty in expressing
and in proving certain results thanks to the properties of C/D or of Cy/Dy,
and we will do so when needed (for instance in Chapter III, Section 4, and
in the Appendix).

The structure of the inverse limit Jim (/{;* and especially those of its p-

m
Sylow subgroups are quite complex, and their arithmetic computation will
be the object of Chapter III.

3.8.3 Remark. It is interesting to note a difference between the local and
global cases. In the global case, the map:

p:J —— Gal(K*/K)
is surjective, while in the local case, the analogous map:
po = (o, K /K, : K —— Gal(K"/K,)

only has a dense image. This comes from the fact that in the local case
—=nr
K, /K, is infinite, contrary to the global case where H°™ /K is finite: indeed,

—nr

the relative Galois groups Gal(Fib /K, ) and Gal(fab JH) are the images

under the continuous maps p, and p of the compact groups U, and U§™,

but KX/U, ~ Z is not compact, contrary to Jo/K*US™ which is finite.

Note also that for any z, € K (seen as an idele), p(x,) corresponds to

pv(xv)| ., under the identification of D, (fab/K) with Gal((?ab)v/Kv).
E™)w

But we will prove in II1.4.5 that (Kﬂb)v = sz; thus we indeed have that

Pl corresponds to p,, which confirms the topological problems we have
K

mentionned at several occasions. U
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a) Global Norm Conductor — Properties

Let L/K be a finite extension of number fields; the use of generalized ideal
class groups implies that we must introduce the fundamental notion of a
global norm conductor. To begin with, recall that from our point of view, the
existence of a modulus m satisfying the condition:

Un® €N/ (JL),
which says that the group Ny, (Jr) is open, hence that the group:

K*Np/k(JL),
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is open with finite index in Jg, comes essentially from local class field theory
since, for every place v unramified in L/K we have, for the places w of L
above v:

Uv = NLw/KU(Uw)

(see 1.4.3, (ii)), and that for every place v ramified in L/K, there exists a
sufficiently large 7 such that for all w|v we have (see 1.4.4):

Ui c (Uv)[Lw:KU] - NLw/KU (Uw)~

The existence of m (also called an admissible modulus) trivially implies that

of a smallest admissible modulus since we have U, 't Uy, 2 = U;nin (ml’mQ), for
any v € Pl. The support of this modulus is contained in the set of places
ramified in L/K.2?5 We can thus state the following.

4.1 Theorem and Definition (global norm conductor). Let L/ K be a finite
extension of number fields.
There exists a smallest modulus fL/K =: | of K, such that:

Ur € K*Np g (J1).

This modulus is called the global norm conductor or the conductor of L/K . It
only depends on the maximal abelian subextension L*" /K of L/ K and hence
is also equal t0 f; ., /¢, the global norm conductor of L* /K (see 3.3.3). [

Note. According to our point of view, f is a nonzero integral ideal of K and in
particular does not involve any infinite places. Moreover, its support is contained
in the set of places ramified in L/K (even with the meaning of the above footnote)
since it is an admissible module for KNy x(Jr) which contains N,k (Jz). See
the more precise result 4.2.

4.1.1 Proposition (conductor of a compositum of fields). If L2 is the com-
positum, over K, of the extensions My, ..., M,, then its conductor is equal
to the l.c.m. of the conductors of the M; for 1 < i <n.

Proof. Immediate from Definition 4.1 and the fact that we have:

K*Np/k(Jp) = Z_Dl (KN, /e (Iar;)s
by 3.5, (ii). O

For example, if L/K is a p-elementary extension (i.e., Gal(L/K) ~
(Z/pZ)", p prime), its norm group and its conductor can be computed from

5 More precisely, in the non-Galois case we have U, C Nz, (J.) if and only if
Lib/Kv is unramified, so that this support is contained in the set of places v
such that all w|v ramify in L/K. For the sequel (abelian case), this information
is useless.
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the case of a cyclic extension of degree p; if p, C K, the result immediately
follows from 1.6.3, otherwise we can be reduced to the Kummer case because
of norm lifting Theorem 3.5.3.

4.1.2 Remark. If M is the intersection of the M;, we can only say that the
conductor of M divides the g.c.d. of the conductors of the M;; for example,
for K = Q, My = Q(v/~1), My = Q(+/2), we have f; = (4), f, = (8) (see
1.6.5), g.c.d.(f, f3) = (4), but M1 N My = Q. 0J

The global norm conductor has the following property (which comes from
the local case, as is shown by the proof of Lemma 4.2.1).

4.2 Theorem (of the conductor). Let L/K be a finite extension of number
fields and let | be its global norm conductor. Let v be a finite place of K.
Then v is ramified in L*" /K if and only if p,, divides § (i.e., the support of f
is equal to the set R of places which are ramified in L** /K ).

4.2.1 Lemma (computation of a global norm conductor). Let L/K be
a finite extension. Then § := fL/K is equal to the product of the local

v-conductors of L** /K, in other words f = 1_1[31 fo(L*P/K) (see 1.6, (ii)).
vePlg

Proof of the statements. In the fundamental Corollary 3.3.1 we have
observed that the norm groups N, (corresponding to (L*"),/K,) are the
NN K[, where N := K*Np,x(Jr); thus, using 1.4.3, (ii), it is clear that

UM C N, for all v (taking m, = 0 if v ¢ R), is equivalent to UL C N, for

m= HR p'v. This proves the result as well as the theorem of the conductor. []
ve

The above lemma gives a result which is essential for the practical com-
putation of a global conductor: indeed, in general we know a multiple of the
discriminant of L2P /K, so that we are reduced to a finite (explicit) number
of computations of local v-conductors of cyclic extensions by 4.1.1 (for this,
we use Formula 1.6.2).

We illustrate the above on an example showing that the local information
coming from the L2P/K, should not be mistaken for that coming from the
subextension L* /K, even when L/K is Galois.

Example. Consider the extension L = Q(+¥/7,5) of K = Q, in which the
ramified places are 3 and 7. For the place v = 7 of K, we obtain L2’ =
Q7(\3/7 ) which is a cyclic extension of degree 3 of Qr; it follows that we have
fran/r, = (7) (7 is tamely ramified in L2P/K,) while the global conductor

f=I1f,(L*/K), which is the conductor of L** /K = Q(5)/Q, is equal to (3)
v

(i.e., for v = 7 the local v-conductor of L*’/K is equal to 1, or equivalently,
we have L2P = Q7(¥/7), but (L?*), = Q7). 0]
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4.2.2 Exercise. Deduce from the proof of Lemma 4.2.1 the equivalence of
the following conditions:

Un®C N :=K*Np/g(Jp) and Uy® C Npav g (UrSh).
Answer. One direction is clear since N = K*Npan g (Jpan); for the other, it
suffices to check that NNU, = N,NU, = Ngav), /i, (U(pav), ), where Upan)
is the unit group of (L?P),,.
Beware that the results of 2.6 show that U € K*Np g (Jr) is in general
not equivalent to Ux® C Ny x (Uf*) = ].;[NL%b/KU(UL%b) since we have:

v

éab

(NLab/K(UEZSb) : l;INL,‘Eb/Kv(UL%b)> = 1:[ m ;
neither is it equivalent to Uy C Np, g (Jr), which means that for all v,
Uy C Npav /g, (Upen), since the index:

ab
Tes \ . _ €y
(NLab/K(ULisb) . I;INL%b/Ku(ULib)) — rv‘[ m7
can also be different from 1 (recall that ¢2P := ¢(L2°/K,) and 2P :=
e(L2P/K,)). This remark remains in the case where L/K is only Galois (use
the example given above). O

We also give the following classical property which is summarized under
the name “Fiihrerdiskriminantenproduktformel”.

4.2.3 Proposition. Let L/K be a finite extension of number fields.
Then the relative discriminant of the subextension L*® /K is:

DLab/K = I;Ifxa

where x ranges in the dual of G and where fy is the global norm conductor
of the subfield of L*" fixed under the kernel of x. 0]

4.2.4 NONABELIAN ARTIN CONDUCTORS. Recall, without any justification,
that these (abelian) conductors have the following Galois generalization which
comes from higher ramification theory. 26

Denote by ¥(I') the set of absolutely irreducible characters of a finite
group I'. Let L/K be a finite Galois extension with Galois group G, and let
Ly, /Ky, with Galois group G, be a completion of L/K at v € Ply and a
fixed wy|v; for any ¢ € ¥(G,,) we set:

3rt(,l/}) = p;nu,w7
26 [d, Se2, Ch. VI, §2; CF, Ch. VI, §4], [c, Neul, Ch. VII, §11].
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with:

Yo (v -— 3 w),

i>0 ! s€Gug,i

1
My g 1= —

v, %
where G, ; is the ith higher ramification group of L,,,/K, (in lower num-
bering) and g; := |G, i|. For an arbitrary character x we define f2'*(x) by
linearity, and this modulus is called the local v-conductor of the character x.
If 4 is of degree 1, the factor:

-1 3 (),

Gi SGGwO,qy

is equal to 0 or 1 depending on whether or not the restriction of ¢ to Gy, ; is
the unit character, and we recover the norm conductor of the cyclic extension
fixed under the kernel of ¢ (see [d, Se2, Ch. VI, §2, Prop. 5, Cor.]).

This gives the local Artin v-conductors for the extension L/K. We then
define the global Artin conductors, for any i € ¥(G), by:

)= IR Resy (1)),
vEPly
where Res, (1) is the restriction of 9 to Dy, (L/K) =~ G, (it does not depend
on the choice of w). We thus have the corresponding formula for the relative
discriminant of L/K (Artin-Hasse):

2 — H art 1/)(1).
wre= I w)
An important property of the Artin conductor is that it characterizes the
ramification for the extension L/K (and not only for the extension L*"/K),
but this is not anymore part of class field theory.

The reader can refer to [e, Ko3, Ch. 5, § 1] to have an overview on questions
dealing with Artin L-functions, whose study at s = 0 is the object of Stark’s
conjectures.

b) Artin’s Reciprocity Map — Reciprocity Law — Global
Computation of Hasse Symbols — Decomposition Law

To go from the idelic to the generalized class group point of view, we have
at our disposal the fundamental exact sequence of Theorem 1.5.1, relative to
the usual data T, m, and S prime to T":

S
1 — K*US/K* ~US/ES —— ¢ —-a8 — 1.

Furthermore, the above fundamental results (in idelic terms) for a finite ex-
tension L/K and a finite set S of noncomplex places of K unramified in
L** /K, are:
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() the exact sequence:

s
PL/K

1 — KX(S)Np/g(Jp)/K* —— C—5 G5 — 1,

with (S) := GBSKUX, where K*Np, g (Jr) is an open subgroup of J, and
ve
G = Gal(L**%/K);
(8) the existence theorem which says that, conversely, for any open sub-

group N of J containing the image of K*, there exists L/K such that we
indeed have:

s
PL/K

1 — N(S)/K* —— C 5 G*5 — 1.

We then see that we may successively:

(o) factor pf/K as a map from 3 to G*P for m multiple of the norm
conductor of L/K;

(') express the existence theorem in terms of subgroups of (5, which

will be equivalent to classifying abelian extensions of K by their conductor.

4.3 THE FUNDAMENTAL DIAGRAM FOR ARTIN AND RECIPROCITY MAPS.
The translation in terms of generalized class groups of the properties of the
global reciprocity map relies on the following commutative diagram, in which
L/K is a finite extension of number fields, m is any multiple of the norm
conductor f of L/K, and S is a finite set of noncomplex places of K, disjoint
from the set 7' containing the support of m. Recall that U3 = Uze$(S) and,
by our assumption on m, that we have:

Un® S K*Np g (J1)

we also recall that the map 3 defines the fundamental exact sequence of
[.5.1 and that o/3 is the canonical map:

IT — Cgi

This commutative diagram has the following form (where N denotes Ny, x):

1 1
l !
KXUS/K* —— K*XUS/K*
ps
1 — KX(S)N({Jp)/K* —— C EE, Gal(L*PS/K) — 1

N

| B
1 —  dSN({Ipr) —— @ oay

! !

1 1

Gal(L**%/K) — 1
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To show its validity, it is sufficient to define o/, /K since, as for pf K af /K will

be the composition of «; ,,- with the canonical projection G*» — Gabs 2T
The map Qe Must thus be such that Ap g ©Ym = PLjK:

ab
Recall that if @ =: (2.)0 € J, py (T) = I1 (M), and that

K> C Ker(pL/K); it follows that we can replace £ modulo K* by z, ., =:

(@))y € Jr.m,pos (see 1.4.3.3) so that we now have:

1w (®) = oy i) = [ () = T (22,

v vEPI\T

the symbols on T'U Pl,, being trivial since U™ C Npan/x (US) (see 4.2.2);

furthermore 7, (z ) is of the form % (a), where a := [] pZ(x’”) is prime
vePlo

m,pos

to T', and defined modulo Pr m pos (because of the choice of @, ). For v €
’ ab ab v(m;)

Plo\T, v is unramified in L**/K and we have (W) = (#)

(see 1.4, (vii), or 3.1.3, (vii) by density), so that we must set:

o(@) = [ (M>”

vEPlo

The diagram for S = () follows by computing v, (K*N(Jy)). The general
case is immediate by taking quotients with (.S).

ab
It is classical to lift ap i to I, denoting also the Frobenius (#)
ab
by (L /K

v

) for any finite place v unramified in L*P/K.

4.3.1 Definitions (Artin map and Artin group). (i) Let L/K be a finite
extension of number fields and let T" be a finite set of finite places containing
the set R of places ramified in L? /K. The Artin map (or Artin symbol) on
I7 is the map:

ap Iy —— G* = Gal(L™/K)
which sends a € It to:
<Lab/K> . H <Lab/K>vp(a)
a o p
(ii) Its kernel Ay /x r is called the Artin group of L**/K in I C Ig. O

T In accordance with our general principles, we have o /K =t O K, and similarly
for vy and for py .
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The diagram shows, by lifting &52°(N(I 1)) to I, the following.

4.3.2 Theorem. The kernel of the Artin map oy on Ir, T O R, is equal
to the subgroup:
PrwposNL x(IL,1),

for any m which is a multiple of the norm conductor § of L** /K. O

This shows that Prm posNr/x(Iz,7) is independent of m, as long as this
modulus is a multiple of f, a result which is not a priori clear.

4.3.3 Remark. As for the composite map af/K . Ip — G®P3 . its kernel
is equal to:

AE/K,T = Prmpos{S)Nr/k(IL, 1) = Prma. - (S0 )Nk (IL,1),

for any m multiple of f, where Ao := PI%\ Sso (see 1.4.4).
By definition, since Ai/K,T corresponds to L*”° /K, we have:

PT,m,pos< S >NL/K(IL,T) - PT,m,posNLab S/K(ILabS’T),
for any m multiple of the conductor of L*>5. O

4.4 ARTIN’S RECIPROCITY LAW. The canonical isomorphism:

«
I/ PrmposNr/x(IL,T) — g

defines the Artin reciprocity law. It is the ideal version of the idelic version
of the global reciprocity law asserting that K> is in the kernel of p, /K

4.4.1 TAKACGI GROUPS — ARTIN AND NORM CONDUCTORS. The groups:

Tr/k,7m = PrmposNr/x(IL,T),

which were introduced by Takagi to make explicit the congruence groups of
Weber (see Subsection (d)), are thus independent of the choice of m (multiple
of the norm conductor f of L/K); hence the canonical choice is that of:

Tr/K R = PrjposNr/x(IL,R),

where R is the support of f. This group is called simply the Takagi group
of L/K and “the groups” 17,k 7.m, the Takagi groups modulo m; they only
depend on L* /K, but the possibility of choosing m (multiple of f) may have
some practical importance. In particular, we have the equality (for any m
multiple of f):

PrmposNL/k(IL,7) = PromposNras /i (Iran 7).
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The identity Az k17 = To/k,7,m = PromposNr/x(Ir,7) is classically stated
by saying that:

“The Artin group is equal to the Takagi group”.

If we say that the (abelian!) Artin conductor of L/K is by definition the
smallest modulus f, of K, with support equal to R, such that Pr;, pos is
in the kernel of the Artin map g the above results show that f = f,.

We can thus speak of the conductor of L/K (or of L#?/K) without being
specific. The fact that Pr m, pos Prms,pos = Pr g c.d.(my,ms),pos>, Where m; and
my have supports contained in 7', can easily be checked directly thanks to the
chinese remainder theorem, but the idelic formulation in the introduction to
Subsection (a) is much more immediate; we thus obtain the existence of the
abelian Artin conductor (by choosing T' = R).

4.4.2 HisTORY. These statements in terms of ideal groups (the equality of
the Artin and Takagi groups, and the isomorphism I7/T7/k 1rm =~ G?b)
form the historical approach to the fundamental results of class field theory.
In particular, the only proof of the equality, valid for any number field:

(I : PT,m,posNL/K(IL,T)) = [Lab K],

was split in the difficult proofs of the first inequality of class field theory
(“>7, Takagi) and of the second inequality or universal equality (“<”, We-
ber (1897) using analytic methods, and Hasse-Scholz (1929) in the general
case). It is only later (1920/1924) that Artin introduced the map «ay .
constructed with the Frobenius symbols, and showed (1927), using ideas of
Cebotarev (the crossing with a cyclic cyclotomic field), that a 1k 8ave the
exact sequence:

1— PT,m,posNL/K(IL,T) Em— IT E—— Gab — ]_’

thus giving for the first time the general notion of a global reciprocity map;
the idelic version of Section 3 (Chevalley (1936/1940)) representing only the
translation in the other direction, showing that it is possible (although ap-
parently illogical but very useful) to go from a global approach of class field
theory to a local approach (after Hasse-Schmidt (1930)).

The direct proof of the existence of an Artin conductor for an abelian
extenion L/K, i.e., the existence of m such that ap K is trivial on Pr m pos
(or such that K*Ug® C Ker(py x) in idelic terms) uses very strongly the
properties of cyclotomic fields (in other words, essentially class field theory
for Q with which we must begin); although it is only a series of elementary
exercises (see [d, Langl, Ch.X, §2]), this proof is still considered as deep
since it involves the construction of abelian extensions of K satisfying certain
local conditions and giving already enough information on Gal(?ab /K). For
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instance, one of the key arguments is Lemma 1 of [d, Langl, Ch.X, §2]
which originates in Birkhoff-Vandiver (1907), of which several proofs have
been given by Chevalley in [h, Chel], Iyanaga in [h, Iy2], van der Waerden
(1934), Takagi (1948); this lemma states that if ¢ > 1 and e > 1 are integers
and p a prime number, there exists a prime number ¢ such that a modulo (g)
is of order equal to p°.

At this step, we should mention, among other interesting studies of
Kubota (like [Kub2, Kub3]), the paper [KO] of Kubota—Oka (2000) prov-
ing that Artin’s reciprocity law can be deduced from the case of cyclotomic
extensions and Kummer extensions. This paper is based on the Schmidt—
Chevalley theorem.

The necessity of performing such constructions shows that it seems im-
possible to give a naive proof of the fact that (to give a minimal example in
the case of conductor 1):

“p is a principal prime ideal of K = Q(\/E),
if and only if:
the Frobenius of p in K (v/5)/K is trivial”

(since K(v/5) is the Hilbert class field of K). This example may not be
completely convincing since it can be solved using genus theory (here Gauss’s
genus theory of quadratic forms, see 1V.4.2.10), which can be considered
as intermediate between naive and highly nontrivial. On the contrary, the
analogous result:

“p is a principal prime ideal of K = Q(v/—23),
if and only if:

the Frobenius of p in K (6)/K is trivial”

(where Irr(0, Q) := X3 — X — 1), seems faultless (see 5.2.1 for more details),
except that Q(v/—23) has no nontrivial units, and to stress even more the
origin of the difficulties for an arbitrary base field, we can cite Tate (from
[d, CF, Ch.VII, §6]) who asserts: “It may well be that it is the connected
component that prevents a simple proof of the reciprocity law in the general
case”. Indeed, we will see that Dy = 1 if and only if the Z-rank of E°? is
equal to zero (i.e., K is equal to Q or to an imaginary quadratic field, fields
for which questions having to do with reciprocity laws are indeed simpler).

Finally, we can replace Q(v/—23) by Q(+/79 ), whose Hilbert class field is
also of degree 3, and obtain the same conclusion.

The advantage of Artin’s formulation above is that in general we know
how to compute the Frobenius’ (in particular numerically). Thus, we are
going to give a global method for the computation of the symbols:
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LK
<u> reK*, ve Pl
v

4.4.3 COMPUTATION OF HASSE SYMBOLS BY GLOBAL MEANS. Call R
the set of (finite) places ramified in L*”/K, and let m be a multiple of the
conductor f (it does not matter if the support T' of m strictly contains R,
which will be the case if the conductor and its support are not precisely

known). Finally, set m =: [[ p™ with m, > 0.
veT
Let x € K*; fix a place v of K, and let us consider several cases:

(o) v € PIL,. By 3.1.3, (vii), we have:

(x, Lab/K> _ (Lab/K>V(I)7

where v(z) =0 (resp. 1) if i, (z) > 0 (resp. i, () < 0).
(8) v € Plp\T. Similarly, since v is unramified, we have:

(x’ Lab/K> _ (Lab/K>V(I).

(v) v € T. Let 2’ € K* be such that (chinese remainder theorem):
(i) iy (2'2~1) e UM,
(i) i, (z') € U, for each place v' € T, v’ # v,
(iii) 4, (z") > 0O for each place v' € PIS (i.e., each real place v’ complex-
ified in L2P/K).
Then, by the product formula we have:

(x’,L:b/K>_ 1 (Il’ﬁb/K)_l’

v’ €PLv'#v

z, Lab/K) _ (m', L* /K
v - v
v-conductor of L*" /K, we have:

and since ( ), by (i) and the definition of the local

-1

(5) - L ()

v’ €PLv'#v

let us compute the symbols occurring in the right hand side:
xz , Lab/K) _1

,U/

o if v/ € T\{v}, i, (z') € U} (by (ii)) and we have (
ab

o if v/ € Pl, ( Lok
v

or noncomplexified real, or v/(z') = 0 for v’ complexified real (by (iii)),

= 1if v’ is complex

’ ab
M = 1 since either (
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o if v’ € Ply\T, v’ is unramified and we can write (by 3.1.3, (vii)):

1‘/, Lab/K -1 Lab/K —v'(z") .
v’ - v’ '

finally, we have obtained:

<x,LZb/K>: 1 (Lt//K)Vl(“‘J).

v’ €Plp\T

It follows that if we write:
(@) = pya=pia

(we have v(z') = v(x) by (i) even when m, = 0), then a is prime to T by (ii)
and we obtain, since Ply\T does not contain v:

(2200 (K)o

v a

which finishes the hand computation of the Hasse symbol of an x € K* which
is not necessarily prime to the place v under consideration.

We will come back to this procedure in 7.5 for the practical computation
of Hilbert symbols.

4.4.3.1 Remarks. (i) The auxiliary element 2’ is called a v-associate (or a
p,-associate) of x.

(ii) In the case where v € T is unramified (i.e., v ¢ R), the above compu-
tation still yields (z') = px(z)a, a prime to T', but the v-associate z’ is then
such that aL/K((x’)) =1 (the Artin map is defined since here (2’) is prime
to R; moreover f|m’ := mp, ™ and (z') € Prn with i (2') > 0 on PIS;
since by definition L#*S = L2 for § = PIL \ PIS, the formula given in 4.3.3
vields Pr s pre © Prms posNpab /i ([0 1), giving the result), and we find
once again that by 3.1.3, (vii):

(=5 Ll ) =l = (Lab/ K )V(x).

v Po

(iii) If f is primary (i.e., a power of p, ), then any € K* (positive at the
complexified real places) is equal to its own v-associate, and we have:

v, [/K -1
o T - —v(z)
(255) =) :
4.4.3.2 Example. Let K = Q and let L = L*® = Q(v/5,v/—=3). Let us
15 ’(?5/(@). The conductor of L is equal to (15);

we must find 2z’ € Q* such that:

compute the Hasse symbol (
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/

T

E =1 mOd (3)7
' =1 mod (5),
x>0

x’ = 6 is suitable, so that a = (2) and:

(157 L/@) _ (L/@) B

3) (2)
But it is easy to see that (2) is inert in Q(v/5 ) and in Q(v/—3 ); the Frobenius
of (2) is thus a generator of Gal(L/Q(+/—15)). It follows that 15 is not a local

norm at (3).
Since the product formula is reduced here to:

(15, L/@> (15, L/@> L,
3) (5) ’
the symbol at (5) is the same, but the (3)-associate ' is not suitable anymore

b, 5L)/@)

which indeed gives the expected result.
Finally, if we omit the condition 2’ > 0, for instance for a (3)-associate
we can try:

for the direct computation of ( ; a (5)-associate is for example 40

2" = -39,
which yields a = (13); but the Frobenius of (13) being the generator of
Gal(L/Q(v/—3)), the result is false! O

4.4.3.3 Exercise (the case of cyclotomic fields). Let K = Q and let L =
Q(um); we assume that m is odd or divisible by 4. Describe the method for

the computation of (:r ’(5)/(@), x € Q*, for a prime divisor ¢ of m.
¢, L/Q y, L/Q .
Deduce the values of ( © ) and of ( © ) for y prime to /.

Characterize the 2 which are local norms at (¢) for L/Q.

Answer. The conductor of L/Q is equal to mZ (see 5.5); set m =: £*n and
x =: (’y with n and y prime to £. We must find 2’ = %y, with v/ € Q* such
that:

y' =y mod (£),

¢*y' = 1 mod (n),

y >0,
which can be achieved thanks to suitable extended Euclid relations. The
result is the Artin symbol:
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(&)

corresponding to the inverse of y’ € (Z/mZ)* under the usual canonical
isomorphism Gal(L/Q) ~ (Z/mZ)* (see 5.5.2).

It follows that (g’é)/(@) (take b =1, y = 1) is the lift of (L('LZZ))/Q) to

Gal(Q(ptm)/Q(tt4a)), and that for all y > 0 prime to ¢ (take b = 0), (y ’(i)/(@)

is the lift of (W) B to Gal(Q(m,)/Q(pn)). This should be compared

with the results of Exercise 3.4.3.
The rational number = = %y is a local norm at £ in L/Q if and only if
y' = 1 mod (m); but this is equivalent to:

y = 1 mod (£%),
¢ =1 mod (n).

We see that Ny := (2@ (1+(%Zy) and Ny := EfZeBZZ are the norm groups
of Q¢(ppa) and Qg(ptr), where f|b is the residue degree of ¢ in Q(u,)/Q
(smallest integer such that #/ = 1 mod (n)): use respectively 3.4.3, (i), and
the fact that Qg(u,)/Qy is unramified; the norm group of Qg(u,,) is then
Ny NNy = 7@ (1 + £°Z,) giving again the result. O

Let L/K be a finite extension of number fields and L'/ K a subextension
of L/K. Let S be a set of noncomplex places of K, disjoint from T 2O R;
we denote by S’ the set of places of L’ above those of S, and put G2b9 :=
Gal(L*® 9% /K). Let us state the functorial properties of the Artin map on:

a5 = I7/Prampos(S) = Ir/Prma. -(So),

with Ao == PI% \ Soo, which follow from those of p? /i (this is a simple
transcription of Theorem 3.3).

4.5 Theorem (properties of the Artin map). Let m with support contained
in T be a multiple of the norm conductor of L/K (i.e., of L**/K).
We have the following properties:
(i) We have the exact sequence:
aS
1 — da(Npyk(Inr)) —— U —= G5 — 1,

where o/ is the map Iy — C/3;
i) the composition of a3 ,,. and of the projection G**¥— Gal(L'**S/K
L/K ]

is equal to af//K;

(iii) for each place v € T, set m, := px(m); then the decomposition

group (resp. the inertia group, resp. the higher ramification group with
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upper index i > 1) of v € T in L*S/K is the image under OzE/K of
(PT\{'U},n‘q—“v,pos Ay ))NIT 28 (resp. ofPT7mLU7pOS, resp. of Pr s pi bos);ifv & T

My

is finite, the decomposition group of v is the image of {p,, ); if v € PI%, the de-
composition group of v for L** ¥ /K is the image under ag/K of Pr.m pir\{v};

(iv) for all o’ € Iy, p, prime to the norm conductor of L/L’, the image of

ab’ S’ ’ ab S
(—L //L> in G*P9 s (7L /K/
a NL//K(Cl )

Gal(L*®/L"**%) = af e (Npyk(Inr)) 5
(v) for all a € Ip, prime to the norm conductor of L/L', the image
of (%) under the transfer map (from G**5 to Gal(L?* 5" /L)) is
(Lab’ 'L

a/

) ; in particular, we have:

), where a’ is obtained by extending a to L';

(vi) for any Q-isomorphism 7 of L in Q, we have for all a € Ir:

LabS K LabS K
(*T /T > =To (7/ ) ot Yon TL*Y = (TL)abTS. O
Ta a

Note. In (iv) and (v), the set T' (which contains the set of places of L ramified in
L*/K) may be inadequate. Indeed, consider the following example (with K = Q):
L = Q(us, V18), L' = Q(u), T = {2}, for which L*® = L, L*> = L'Q(\/18) =
Q(us), L'* = L'; the ideal a’ = (3) is prime to T but its Artin Symbol in L/L’ does
not exist; the Artin Symbol of a = (3) exists in L*" /K but not its transfer. However,
this is not annoying since any element (of the above abelian Galois groups) is the
Artin Symbol of a suitable ideal.

4.5.1 Corollary. We have:

Ai® (N (In,r)) = A (Npaw i (I 1)) O

4.5.2 Corollary. We have the exact sequences:

res
[0

1 — " (N (UL,1)) ares 2, Gal(L*P/K) — 1,

ord
L/K

o
1 — a3 (N g (Ipr)) —— 94— Gal(L* ™ /K) — 1,

where L*P"¢/K is the maximal Pl -split (i.e., noncomplexified) abelian
subextension of L/ K. O

4.5.3 Example. In the particular case where the extension L*’/K has con-
ductor f = 1 (i.e., L*"/K is unramified but may be complexified; in other
words L2 C H™), we obtain, by taking 7' = (), the exact sequences:

28 Note that (PT\{U}, mos - (Do >) NIr = {(x) p;v(x), z € K }

T\{v}, 2 pos
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L — "™ (Ny/k (1)) e —5 Gal(L*/K) — 1,

aord
L/K

1 — oY Ny (1)) —— O —"5 Gal(L* "¢ /K) — 1,

which give a description of Gal(L*"/K) (resp. of Gal(L**"¢/K)) in terms of
usual ideal classes; this occurs only if the base field is not principal in the
restricted sense (resp. in the ordinary sense). U

We return to the general setting of Theorem 4.5. For this, let m with
support contained in T be a multiple of the conductor f of L/K, and let
At be the Artin group of L/K in Iy which we can take to be equal to

Trm = PT,anogNL/K(IL,T)- For each v € T' we set m, := pz(m).

4.5.4 Corollary (decomposition law of places in L**/K). We have:
(i) (ramification groups). From the Artin isomorphism I7 /A ~ G we
obtain, for each place v € T and all i > 1, the isomorphisms: ?°

Pr =

Y moy

vt posAr /A7 = Di(L*/K)

in particular, v € T is unramified in L*" /K if and only if we have:
Pr, s pos © Ar. 30

Similarly, v is tamely ramified in L*/K if and only if:
Pr, sy, pos € Ar.

(ii) (decomposition groups). For v € T, let a, be prime to T and such

that a, = pv(ui), Uwm € K;\{U} o (see 1.5.1.2); we then have the

isomorphism:
(ay >PT,,,%,IDOSAT/AT ~ D, (Lab/K) ;

ifv € Plg\T (v is thus unramified), we have:
<pv >AT/AT = Dv(Lab/K)v

and the residue degree f,(L*®/K) of v in L*®/K is equal to the order of the
class of p,, in It /Ar.

(iii) If v € PI%,, then v is noncomplexified in L*® /K if and only if:
Prmpos(v) = Prm pr\{vy C A7 O

29 See 1.1.1 for some notations about higher ramification.
30 Relate this with the characterization of the conductor given in 4.4.1.
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4.5.5 Remark. For the noncomplexification of a real place v, a necessary
and sufficient condition is that for an arbitrary element uy, , € K;ym’ P\ o}
such that i, (um,») < 0 then (um.) € Arp.

The case of an infinite place v € PI% can be treated directly if L2 is
known (but it is not anymore a class field theoretic proof): we have f, = 1
(resp. 2) if the extension i, (L) is real (resp. complex) for an arbitrary
wylv in L* (we have i,(K) C R since v is real). O]

4.6 DENsITY THEOREM (1926). The surjectivity of a; , can be shown
without using analytic arguments, and one can even prove a little more (see
[e, Ko3, Ch. 2, §4.4, Th. 2.70]); however, in practice it is better to consider it
through the density theorem which asserts that every class aPg jpos, @ prime
to f, contains an infinity of prime ideals, with density:

1
0]

Lab/K
p
number of prime ideals p of K, unramified in L*”/K, with density equal to:

Thus, for any o € G?P, we can have the equality ( ) = ¢, for an infinite

1

[L2P : K]

Note. One can find in [d, Langl, Ch. VIII, §4] the general Galois statement (the
Cebotarev theorem) which is in fact deduced, after an argument of Deuring (1934),
from the above abelian density theorem; see also [c, Narl, Ch. 7] and [e, Ko3, Ch. 1,
§6.7]. More precisely, this theorem was conjectured by Frobenius (1896), proved by
Cebotarev (1926), with a simplified proof by Schreier (1927); these proofs (using
cyclotomic fields) originate, as we have mentioned in 4.4.2, the fundamental proof
by Artin of his reciprocity law. The Cebotarev theorem is the following. Let L/K
be Galois with Galois group G, and let ¢t € G; then the set of unramified primes p of
K such that t = (L/TK), for a P|p in L, has a density equal to ﬁ [{sts™', s € G}|

(note that so (L‘g() os = (LS/—%{) as usual).

In terms of generalized class groups, the existence theorem takes the fol-
lowing form (we do not state once more the four usual properties which
characterize this correspondence; see 3.5, (i) to (iv)).

4.7 Theorem (global existence). Let m be a modulus of K built from T C
Ply. Then there exists a bijective Galois correspondence between the set of
subgroups Cy, of CU5$° (or of subgroups Ny, of It containing Pr w pos) and the
set of abelian extensions M of K, of conductor f dividing m.

The Artin map yields the equivalent two exact sequences:
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res
M/K

1 —Ch — U —— Gal(M/K) — 1,

are:;
M/K

1— Ny —— It —— Gal(M/K) — 1,

with Cm = Cgafs(NM/K(IM,T)) and Nm = PT,m,pos NM/K(IM,T)- D

The group Cy, (resp. Ny,) is called the class group (resp. the congruence
group) corresponding to M/K (but it is also a norm group in terms of ideal
classes).

4.7.1 Remarks. (i) The Artin group of the decomposition subfield of v in
M (with Artin group Ar) is given by:

<av >PT,m“—‘U,posATa <pv >ATa < (um,v) >AT7

depending on the situation (by 4.5.4, (ii), (iii), and 4.5.5); that of the inertia
subfield is given by:
PT,L,posAT~

my

(ii) The Artin group of the maximal v-tamely ramified subextension is:

PT AT.

m
Py, POS

(iii) If we want S-decomposition, we replace Nu := Pr m pos Nar/x (Inr,1)
by:
Prmpos{S) Naryx (Inr,7) := Prom,as - (So) Nagyx (I, 7)),
where Ay := PIL\ Seo. L
4.7.2 Corollary (norm lifting theorem). Let L/K be a finite extension of
number fields, let M /K be an abelian extension, and let m with support
contained in T be a modulus of K multiple of the conductor of M/K.

Then any modulus m’ of L, with support contained in the set of places of L
above those of T' and such that:

NL/K(PL,T,m’,pos) g PT,m,posa

is a multiple of the conductor of LM /L.
If C is the subgroup of (0'$° corresponding to M, then the subgroup C' of
S corresponding to LM over L is given by:

{dchm/(a/), Cll S IL,T, oéﬂﬁs(NL/K(a’)) S C} =: NZ/lK(C)
Proof. We check that the given condition is equivalent to:
Np/x(L*Ur) € K*XUR”.

It follows by 3.3, (iv), that the image of p;,,, (Ur%,/) in Gal(M/K) is:
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Pry e Ny (Urns)) € pay (K*UR®) =15

so that U, C Ker(p, ), / 1), which indeed shows that m’ is a multiple of
foayn- T he rest is then only a translation of global norm lifting Theorem

3.5.3 in terms of class groups. ]

We will return in 5.7 to the action of the norm in this context of general-
ized class groups.

It is clear that the fields corresponding to Cy = 1 (i.e., Njm = Pr m pos il
terms of ideal groups, Ny, = K> UL in terms of idele groups) play a crucial
role in the correspondence of class field theory; hence we are going to look in
more detail at these ray class fields.

85 Ray Class Fields — Hilbert Class Fields

Let K be a number field and let m be a modulus of K built on T C Ply. The
unique abelian extension of K corresponding to K™ U5® in the idelic version,
in other words to Prm pos in the ideal group version, is called the restricted
(or narrow) ray class field modulo m, and is denoted:

K(m) =: K(m)"* ;
thus, for this field we have Gal(K(m)™/K) ~ (/' and:
NK(“‘)rcs/K(JK(m)res) C KXUITS and NK(m)rcs/K(IK(m)res7T) C PT,m,pos-

For m = 1, we obtain K(1)'®, denoted H'®, and called the restricted
Hilbert class field. Hilbert had very early conjectured the existence of the
absolute (or wide) class field H°™ (for us the maximal P, -split subextension
of H™*, called the ordinary class field), and in this context, in which most of
the proofs are due to Furtwéngler, had predicted the main principles of class
field theory.

The extension H™/K (resp. H°"4/K) is thus the maximal unramified
(resp. unramified and noncomplexified) abelian extension of K, and we have:

Gal(H™ /K) ~ ', Gal(H/K) ~ ¢/°™,

a) Elementary Properties — Decomposition Law

We start by giving a number of elementary remarks which we divide in five
statements 5.1.1 to 5.1.5.

5.1 PROPERTIES OF RAY CLASS FIELDS. In the sequel we fix a modulus m
of K, with support T.
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5.1.1 CONDUCTOR OF A RAY Crass FIELD. The existence of a (norm or
Artin) conductor for any abelian extension of K implies that the conduc-
tor f of K(m)™® divides m (and is possibly not equal to it); we thus have
Ui C K*Ug*, hence K*Uj* = K*Uy*, which means (by uniqueness in
the correspondence of class field theory) that K(m)™ = K1, and is also
equivalent to the condition Prm pos = Pr jpos- In fact, it is simpler to say
that m is the conductor of K(m)™® if and only if, for all v € T, we have

"% # 05, which yields:

Py

v

~1
(E’;Les DBt < gp(‘m)tp(pﬁ) for all v € T,

using formula 1.4.5.1 (recall that gp(m)gp(pﬂv)*l = ¢, or ¢, — 1 depending on

whether v(m) > 1 or v(m) = 1, where ¢, = |F,|).

5.1.1.1 Example. For K = Q(v/3) and m = [, (a prime ideal above 11),
we find that [Km)™ : K(1)"] = 1: this is immediate from the fact that
E™s = () with £ := 24 /3, that Ef* = (£'%), and ¢(I;) = 10 (see 1.4.5.6,
(i)). Here, we have f = 1, in other words K(1,,)**® is equal to the restricted
Hilbert class field which is of degree 2 over K. L

5.1.1.2 Exercise. Assume that K is such that E™* is finite (so that K is
equal to Q or to an imaginary quadratic field). Characterize the moduli m
which are not conductors of any abelian extension of K.

Answer. We first note that m is a conductor if and only if K (m)"™* has con-
ductor m; hence the following general case (valid without any assumption
on K):

(0) If p|2 has residue degree equal to 1 in K/Q and if n is any modulus
not divisible by p,, then m := p, n is not a conductor.

Indeed, we have [K(m)*® : K(n)'*] = 1 since ¢, — 1 = 1.

The criterion giving the nonconductors m can be written: there exists
py|m such that:
(1) vim) =1 and ¢, — 1 < u,,
or:
(2) v(m) > 1 and ¢, < uy,
with u, = (B : EL®).
Po

For wu, = 1, the only possible solution corresponds to (1) and is relative
to case (0); this is the case for the field Q for which the nonconductors are
the 2nZ with n odd. Thus, we only need to consider the case u, > 1.

Assume now that K is an imaginary quadratic field different from Q(g,)
and Q(us). Since u,, = 2, this is equivalent to E% =(-1), En=1,orto
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pﬂv\Q, m ¢ 2. Case (1) yields the following moduli, in addition to those given
in case (0):

Ps, Ph, 2ps, 2p5, if 3 is split and 2 is not split,
Ps, 2P, if 3 is ramified and 2 is not split.

Similarly, case (2) yields the additional moduli:

p2, pi2, if 2 is split,
p3, if 2 is ramified.

For K = Q(py) or Q(p3), we proceed in the same way and we obtain the
following conductors (in addition to those coming from case (0) for Q(g,)):

pga P% Ps, p/5, forK:Q(/M%

(2). Ps: $3 205, Pro Py for K = Q). -
See also in [j, Coh2, Ch. 3, §5.2] an original algorithmic expression for conduc-
tors, discriminants and signatures of abelian extensions of a number field K.

5.1.2 ARTIN CONDUCTOR OF AN ABELIAN FIELD. More generally, by
uniqueness in the correspondence of class field theory and by definition of
the norm conductor for an abelian extension M of K, the smallest modulus
n such that:

M C K(n)res

is again the conductor of M /K, which gives a third definition of the conductor
widely used in the case of abelian extensions of Q (see 5.5, 5.5.1), and which
can be expressed as follows. Let m be a modulus with support 7" such that
M C K(m)™® (which in terms of Artin groups is equivalent to Prm pos C
At = Apnyg,r); then m is the conductor of M if and only if for each v € T,
A7 does not contain PT}%’pOS.

5.1.3 S-DECOMPOSITION. For any finite set S of noncomplex places of
K which is disjoint from T, the maximal S-split subextension K(m)® of
K(m)™ corresponds to K*(S)U = K*Us (in the idelic version), to
Prmpos(S) = Prm pi\s.. -(So) (in the ideal group version), and hence
we have:

Gal(Km)® /K) ~ &3 and Gal(K(m)™/Km)®) ~ (5(S)),

in the same sense as in 1.4.4.1, (ii).

When S = P, we obtain the field K =: Km)°'d which is the ray
class field modulo m in the ordinary sense, in other words the maximal non-
complexified subextension of K(m)™; it corresponds respectively to K> U
or to Pr y, and we have:
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Gal(Km)°*™/K) ~ gord

in certain contexts, we can also denote it by K(m)"°.
As in 5.1.1, the conductor § of K(m)® is a divisor of m which can be
characterized in an analogous manner; we simply replace E'%° and E° by

E% and ES.
Pu
When m = 1, we denote by H® the field K(1)°; it is the maximal S-split

subextension of the restricted Hilbert class field H™. We will call it the
S-split Hilbert class field.

Pu

5.1.4 NorM GROUPS. We have the following general diagram in which, be-
sides each field M, we have indicated the ideal group corresponding to it
by class field theory, then the idéle group, and for which the Artin (or reci-
procity) map induces the isomorphism Gal(M/K) ~ Iy /N (or J/N):

PT,pos Hres HresK( (m)res PT,m,pos
KXpres KX U&es
PT,pos< S> HS K(m)s PT,m,pos< S >
K*U?® K*Uz3
It

K
J

Recall that Prmpos(S) := Prm pr\s. -(So). Recall also the four exact
sequences induced by the reciprocity or Artin map, in the particular case of
ray class fields:

1— K*USS —— J —>Gal(K(m)res/K) — 1,

1 — K*XUS —— J —>Gal(K(m)S/K) — 1,
1 — Praumpos — Ir 7, Gal(Km)™ /K) — 1,
(

1 — Prmpos(S) —— Ir 2" Gal Km®/K) — 1.
5.1.5 INTERSECTION AND COMPOSITUM OF RAY CLASS FIELDS. As already
remarked, for m;, m, with supports contained in 7', we have:

PT,ml,pos PT,mz,Pos = PT,g.c.d.(ml,mg),posa

or in (clearer) idelic terms:
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KXURY KXURS = KXULE d (my ma)»
showing, by the usual Galois correspondence, that we always have:
K(m )™ N K(m,)™ = K(g.c.d.(m;,my)",
which is still true with S-splitting. On the contrary, the trivial inclusion:
K(m )" K(my)™ C K(l.e.m.(m;,m;))"

may not be an equality, as is shown by the following example.

5.1.5.1 Example. Let K = Q(v/2), m; = (4), m, = (3). Then we have
ares = @4 = 1, E =: E™ = (&) with ¢ = 34 2v/2, and in particular
€2 =1+ 16 + 121/2, which implies:

En, =FE?, En, = E* | Eqym, = E*,
and yields (see 1.4.5.6, (i)):
[K(m)™ : K] =4, [K(my)™ : K] =2, [K(m;m,)* : K] = 16,
thus showing that [K(m,m,)™ : K(m,)" K(m,)**] = 2. O

5.1.5.2 Exercise. Check that for arbitrary moduli m; and m,, the general
formula is (denoting to simplify notations by A and V the g.c.d. and l.c.m.
operators):

(Bxtms * Bx) _ (Bactam, © i)

K(m1Vm2)res . K(ml)resK(mQ)res — m1'/\m2 . — ml‘/\mQ .
| 1= B B~ (Bt Eitom,)

It is clear that there exists an identical formula in terms of S-split ray
class fields and S-units. 0J

It is useful to relate the above fact 5.1.5.2 with Proposition 4.1.1. In par-
ticular, we see that if m; and m, are the conductors of K(m,)"™® and K(m,)",
then m; V m, is the conductor of their compositum.

5.2 DECOMPOSITION LAW OF PLACES IN A RAY CLASS FIELD. The decom-
position law of places in K(m)™/K is especially simple and typical of class
field theory since it relates this information to questions about ideal classes
(see 4.5.4, and compare also with the idelic formulation in 3.3.5); recall that
here T is the support of m:

e If v is a finite place not belonging to T' (hence unramified), then its
residue degree in K(m)'/K is equal to the order of the class of p, in (/L =
I7/Pr m pos; it is totally split if and only if p, € Prm pos-
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e If v € T is unramified, this means that Km)™ = K(=)™5, where

my,

m, = p:’,(m), and the preceding statement is still valid if we perform the com-
re:

putations in Cé‘:_? = IT\{v}/PT\{v},ﬁ,pos ~ (i, the place v being totally
split if and only if p, € Pry(u}, 2 pos:

In particular (case m = 1) the residue degree of a finite place v in H*s/K
is equal to the order of the restricted class (i.e., in (**®) of p,; its residue
degree in H°™ /K is equal to the order of the ordinary class (i.e., in &Z°*%) of
p.. Hence, the prime ideals which are totally split in H"*/K (resp. H°"/K)
are those which are principal in the restricted (resp. ordinary) sense (see
below the example concerning Q(v/—23)).

e If v is a real place at infinity, then v is totally split in K(m)*/K if and
only if Pr oy pir\{v} € Prmpos- Thus this occurs if and only if there exists

£m € E94 such that:
iu(eq) > 0, for each real infinite place u # v,
iv(em) <0

(see 1.4.5.8, second part of (i) for S = 0 and 0o, = {v}).

e If v is a ramified finite place (i.e., dividing the conductor), we simply
perform the computations in the inertia field of v which is given explicitly in
Exercise 5.2.2; since this field is the ray class field K(;=)"*, this reduces the
computation of the residue degree of v to the preceding situation.

5.2.1 Example. Let K = Q(v/—23) and H = K(0,), where Irr(,, K) =
X3 — X — 1. The K-conjugates of 6, are:

0y, 91:\/1_23(393—“7 ;‘2390—2),
1 (. 9-/—23
92.77\/__23( 365+ 90+2).

We know from 1.6.3.3 that H is the Hilbert class field of K and, by 3.6.1,
that Gal(H/Q) is the dihedral group of order 6. We will illustrate the fact

that the Frobenius (HﬁfK) of a prime ideal p depends only on its class in the

class group of K (of order 3). For this, we select the generator o of Gal(H/K)
such that o(6,) = 6,.

It is easily checked that, for p # (v/—23), (#) is characterized by the

congruence:
H/K
(%) 0, = 05" mod p,
H/K

so that <T> =1, o0, 02, according as Gé\m =46,, 0,, 6, mod p. If p is inert

in K/Q, it is trivial that ( %) = 1 since H/Q is not cyclic, and we always

have 90N P =60, mod p; but such an ideal is principal for trivial reasons.
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Suppose now that p is split in K/Q. If p’ is the conjugate of p, the Galois
H/K) _ (H/K

—1
v . ) (which is in accordance with the

operation 3.6.1 gives (

principality of pp’).
For p, = (2, H'T‘/__B) we find #2 = 0, mod p, since 9+2ﬂ € p,, and

for ps = (3, @) we find 63 = 6, mod p; using the congruence /—23 =

—1 mod p, and the relation 63 = p+1. Thus (H/K) = o and (H/—K) =02
D) b3

In other words, the Artin symbol (H/ K) is trivial, and indeed, we have

Pabs
%ﬂ ), a principal ideal.

Paps = (
With p,43 = (13,4++/—23) we find 65° = 6, mod p,, so that (p_> =o.
13
We must verify that p,p}; is principal, which is indeed the case since
(=22 = pyp/; (and not p,p;y since /=23 = —4 mod p5 or, equiva-
lently, v/—23 = 4 mod p}3).
For all the split prime ideals p with Np < 59 we find <#> € {o, 0%}

and we verify that p is always in the “good” nontrivial class.
For the prime number 59, we find 63° = 6, mod ps,. This means that
(H/K) B (H/K
P59 P59

have N(6 4+ v/—23) = 59 which proves the claim). Note that 59 is the least
example giving nontrivial principal ideals.

) = 1 and that the prime ideals above 59 are principal (we

This gives a good idea of a reciprocity law since the splitting of the poly-
nomial f = X?— X —1 (into one (f3), two (f, f4), or three (f; f1 f1') irreducible
factors in Q,[X]) has been characterized by means of ray classes (i.e., multi-
plicative congruences). More precisely:

e (&) =-1implies f = f,f} (indeed, this is equivalent to (_723) =-1
(first reciprocity!), and therefore p = (p) is inert in K/Q and split in H/K);

e (%) =+1 and plp principal imply f = f, f{f1 (p is split in K/Q and
in H/K);

° (23) = +1 and p|p nonprincipal imply f = f; (p is split in K/Q and
inert in H/K).

One verifies that the first case is equivalent to:

p e jK/Q((ai) P@7(23)7p05), a; € {5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22},
and that the last one is equivalent to:
p € pPr U p3Px.

The problem has been “linearized” in an obvious way.

In terms of quadratic forms, we check that the norm form 2 +zy+6y? =
NK/Q(x + y@ ), x,y € Z, represents p # 23 if and only if X3 — X —1
has three roots in Q, (indeed, this is equivalent to p split and principal).
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The power of class field theory comes from the fact that it is impossible to
deduce the above rules from elementary properties of number fields and/or
polynomials. See [Wy] for other examples and comments. ]

5.2.2 Exercise (study of ramification in a ray class field). Let K be a
number field together with sets of places T and S.

(i) Let m be a modulus of K with support T, and let v € T'. Show that
if we set m, := px(m), then K(miv)s is the inertia field of v in the extension
Km® /K.

Deduce a formula for the ramification index of v in K(m)® /K.

Generalize by giving a description of Gal(K(m)®/K(n)SY>=), where d, C
P\ Soo, and where n = 1;[75 m, for t CT.

Compute also the residue degree of v in K(m)S/K.

(ii) Show that the maximal T-tamely ramified abelian extension (i.e.,
T-ramified and such that for every place v € T, the ramification index of v in
this extension is prime to the residue characteristic of v) is equal to K(m;.)"®
for my, 1= I1 Po-

veT

Answer. (1) We start with the case S = ), and give several approaches.

By the conductor theorem, v is unramified in K(;2-)™°, hence the inertia
field M of v in K(m)***/K contains K(;=)'; since M/K is unramified at v,
its conductor f is not divisible by p,, and since M C K(m)***, we have f|m
(see 5.1.2) hence f| n«%’ and we have M C K™ C K(;=)".

We can base a proof on the characterization of I,(K(m)"*/K) given in
4.5.4, (i), or 4.7.1, so that in this case the inertia field corresponds to the
group PT,va,pos-

The inertia group of v in Km)®/K is Gal(K(m)S/K(ﬁ)S); indeed, use
1.2.1 and the fact that:

Gal(K(m)™ /Km)®) and Gal(K(2)"/K(=)%)

are generated by the decomposition groups of the v € S in the corresponding
extensions.
In idelic terms, the inertia field of v in K(m)S/K corresponds to K* U“L?Uv
by 3.3, (iii), or 3.5.1, (ii); but clearly we have USU, = US, .
m

Formula 1.4.5.1, for n = % (in which case ¢(m) = ¢p(n)p(m,) since n and

m, are coprime) and o, = @,Uimmediately yields:

eo(Km)® /K) = (EZ;(%S)’

moy

for any v € T, which, for S = @ yields:

o(m,) )
(E’:ﬁ : E,ﬂfs)

v

ey (Kim)™ /K) =
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The same arguments show that for t C T, n = II m,, and do € PIE\Swo,
vet

the ray class field K(n)S“%> is the subfield of K(m)® fixed under the subgroup
generated by the inertia groups of the places of T\t and the decomposition
groups of the places of do

If v e Pit, by 1.4.5.1 for n = m and d., = {v}, we also obtain:

2 2

fo(Km)® /K) = = :
" (EsPTVES)  Jsen, (Ba0™)]

To obtain a formula for the residue degree of a finite place v not belonging
to T'U S, we use directly 3.3.5 by computing the image of KX in J/K*U3
so that we obtain:

fo Ky /K) = (KX + iy (BN U,

but it is still possible to perform a direct computation using 1.4.5.1, from
which we recover (see 5.2):

K S K _ |C€§’1| _ O€S
Jo(K(m)”/ )*W*K m(Po)) |

The idelic formulation is more convenient if the S U {v}-units are known, the
other one relies on a computation of generalized ideal classes (here the class
of p,); as always, the correspondence is justified by 1.5.1.

See also I11.1.1.6, (ii) for a slightly more general context.

(ii) The formula for e, immediately shows that K(m.)™ is T-tamely ram-

ified. Let L O K(m.)™ be the maximal T-tamely ramified abelian extension
of K. Let M be a finite extension of K(m..)'* in L and let m € (T )y be a
multiple of its conductor, with support T (my, is always the tame part of m);
if N corresponds to M, we have K*UL® C N. Since by 3.5.1, (ii) the idele
group corresponding to M is also equal to

[Iv.. N

we have HU1 K*U>» C HU1 N = N, giving K*U> C N, and showing
that we have M C K(mm)rCS which does not depend on the choice of m. This
shows that L = gM is finite and equal to the ray class field K(m..)™® (the

finiteness of L/K comes from 1.3.3.1 and of the finiteness of H™* /K, which
also implies that of ray class fields). In the same way, K(m..)° is the maximal
T-tamely ramified S-split abelian extension of K. ]

b) Rank Formulas — The Reflection Theorem

When we take limits on m, we must use slightly different notations. Let K
be a number field together with sets of places T' and S, and let (T )y be the
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monoid generated by the p, for v € T. By reference to the notion of Hilbert
class field when we use sets T and S which are not necessarily empty, we put
the following.

5.3 Notations. (i) From 5.1.2, we set:

H? = U EKm?,
me(T}N

which is the maximal T-ramified S-split abelian extension of K. We also use
the notation H7°™ (resp. Hy° ™) when So, = 0 (resp. Sao = PIL). 3!

(ii) From 5.2.2, (ii), we define:
5= U Kmw)®,

Mia

which is the maximal tamely ramified S-split abelian extension of K (the
tame moduli my, have an arbitrary support, are prime to the fixed set S, but
are squarefree). 0J

For a fixed finite T', the groups:
Gal(H?/K) ~ lim 5 = 3,

Pl
me(T )y

will be studied in great detail in Chapter I1I. Meanwhile, we can prove a num-
ber of properties on the p-ranks of these groups which had been mentioned
at the end of Section 4 of Chapter 1.

5.4 RANK FOrRMULAS. We start, in the following exercise, with the simplest
situation (i.e., without any Galois structure) which is an essential prelude to
the reflection theorem.

5.4.1 Exercise (Safarevic’s formula (1964), reflection formula (1998)). The
notations are those of 1.4.5, 1.4.6. For finite and disjoint sets T', S = SqgU S,
and for m € (T')y, Ao = Pl \ S, we set:
YTS7m ={ac€ K;pK;w’m A () = dPag,, a € I, ag, € (So0)},
Vii={ac K;pK;,A , (o) = dPag,,
(

aclr, ag, € (So), iv(a) € K7 VYveT},

0, := 1 or 0 according as K, contains , or not, 6 := 1 or 0 according as K
contains i, or not.

(i) Prove the formula:

31 Tn these definitions, T" is not assumed finite. When 7" = (§, we recover the S-split
Hilbert class field H®.
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rk, (Y70 4 /K fP) = vk, (%0 ) + 6 + [So| + 7y + 7y — L.
(ii) Show that for any sufficiently large modulus m € (T')y, we have
Yﬁm = V7, and deduce Safarevi¢’s rank formula:
rh, (Cl7) =l (V7 /K77 + vgp[KU + Qp]
+U§T‘5” — 08— [Sol +1 =1y — 1y + 5y | Accl,

where d, , is the Kronecker symbol equal to 1 if p =2 and to 0 otherwise.

(iii) We now assume that pu, C K and T,,US, = Pl,. Show that V7 /K ;P

is the radical of the maximal elementary Sp-ramified T'U A.-split abelian

p-extension denoted H;:)UA” [p], and deduce the reflection formula:

ke, (015095 — kg, (54 = |T| — | S| +U§ (K, 2 Qp] =11 =75+ 0, | Accl.

Find the corresponding formula when one removes the assumption
T,US, = Pl

(iv) (asked in [j, Coh2, Ch. 3, §6, Exer. 16]). Let K be a number field such
that (Ce(()i')j)g = 1; show that K is totally real.

Answer. (i) If a € Y22 (m = 1, Ay, = 0), we have a € K and () =
aPag, ; if we send « to the class of a in ar%0°rd | we obtain the exact sequence:

1 — ESU ord/(ESg ord)p Y’1§O ord/K;p pC€S° ord SN 17

where pC€S0 ord j5 the subgroup of 0 °'d formed by classes killed by p. By
the Dirichlet Theorem 1.3.7.1, the rank formula follows.

(ii) Let o € K; it is clear, by using the chinese remainder theorem, that if
iy(a) € K)P for each v € T, we have o € K;pr;m for all m with support T

to have equivalence, it is enough to choose m such that i,.(K; ) C S (Uy)?
’ veT

and we then have Yg w=VE.

Note. If u, C K, by 1.6.3.4, (iii), we can choose m = [ p, I[ preot?
veET\T,, ' veT)p

Let H; [p] be the maximal elementary p-subextension of HTQ (i.e., fixed
under ((/5)P); by 1.4.5.1, HZ[p]/K is finite. Assume that m € (T )y is such
that Yﬁm = V¥ and is a multiple of the conductor of HZ[p], so that rk,(C/3.) =
rk, (C/3). By 1.4.5, (ii) applied to n = 1 and do, = A, We obtain:

vk, (C15) = tk, (Q0S0 o) + ;Trkp(Uv) + 05 | Aol

—1k, (Y70 Y K 5P) + 1k, (ViE /K P)
= 1k, (V4 | K P) + gTrkp(U,,) — S0l =1y =y + 1 =6+ 8, | Al
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(using (i)). Since rk,(U,) = 0, (resp. 6, + [K, : Qp]) if v { p (resp. v|p) by
I.3.1.1, we obtain Safarevié’s formula with decomposition.

(iii) We have a € V¥ if and only if 4, (o) € K*P for each v € TUA,, and if
() = aPag,; this gives the TUA.-splitting and the P, USp-ramification (see
1.6.3); the equality Pl, = T, U S, implies the Syp-ramification. The converse
is trivial after noting that if /KX * P is an element of the radical of HgOUA” [p],
we may assume that « is prime to T'. The rank formula of (ii) then gives the
result.

More generally, set A, := Pl,\ (T, US,) and consider:

m*i= 1 py IT phee®t 11 pbee,

vES\Sp vES, vEA,

where, for v|p, e,y denotes the ramification index of v in K/Q(u,). Let us check
that K<< /Vj?) is the maximal elementary p-subextension of K (m*)TY4 If

a € Vj«g , the v-conductor computations made in 1.6.3 show that if v is tame
(i.e., if v € So\ Sp) the v-conductor of K (#/«)/K is f, = (1) or p,, and that
otherwise (i.e., if v € Pl,\T, = S, U A,) then f, = p?® ™1~ where r = 0 is
equivalent to v(a) # 0 mod (p); we thus obtain the inclusion:

K((/Vii?) C K(me)TUA

If K(¢/a) C K(m*)TY4> analogous considerations show that a € V2. We
thus obtain (using p, C K) the formula that we have already mentioned:

vl (595 — rk, (L9 4>) =
IT] = |Sol + 2. [Ky: Qp] =1y =15+ 85 | Asc-
veT)
(iv) For p =2, T = S = (), we have m* = (4) and:
rk, (CF%) — er(Cg‘(ﬁd) =—ry;
under the assumption of the question, we thus obtain the stronger result:

ro =0 and ko (C™) = 0. 0
The formulas of (iii) are only a particular case of the reflection theorem
whose statement we are going to give below. However, they already show the
symmetry which, in the Kummer case, roughly speaking exchanges ramifica-

tion and decomposition, except that for p = 2 and the places at infinity, we
obtain for instance (assuming that T U Sy = Pls):

er(Cgib;o ) — rkz(cegoord) = |T| - |So| + véz[Kv 1 Qo] — 7y
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5.4.2 REFLECTION PRINCIPLE. The most general statement assumes the
following definitions and facts, borrowed from the language of group repre-
sentations (use [Se4] and in particular Paragraph 12 for rationality questions;
see also 5.4.9.1 for some complements), and which we only recall briefly:

o Let g be a finite group of order prime to p. We denote by X,(g) the set
of Fp-irreducible characters of g, and for x € X,(g) we set:

€X = % Z X(s_l) S,
sEg

where v is an absolutely irreducible character such that x is equal to the sum
of the distinct F,,-conjugates of ¢ (which we denote by 1|x): an F,-conjugate
of 1 is of the form P", i > 0, where ¢P (s) := ¢(s?") for all s € g. We
thus obtain a fundamental system of central orthogonal idempotents of the
algebra F[g], thanks to the assumption that p 1t |g|.

We denote by V,, the F,-irreducible representation with character x. If g
is commutative, 1(1) = 1, V, is an Fj-vector space of dimension equal to the
order of p modulo the order of .

e For any Z[g] or Z,[g]-module M of finite type and any x € X,(g) we
set:
My = (M ® F,)e & (M/MP)x,
and we call x-rank of M the integer r :=rk, (M) such that:

”
M, ~7rV, ::i@lvx.

Therefore, we have rk, (M, ) = x(1)rk, (M).

e Assume that g, of order prime to p, is an automorphism group of K
(K containing p,), and let k := K9. If T and S are sets of places of K stable
under g, we denote by T and Sy the sets of places of k below those of T
and S. Finally, for any place u of k we denote by abuse of notation by d,
the decomposition group, in K/k, of a place v of K above u (thus d, is only
defined up to conjugation).

e Let w be the Teichmiiller character, i.e., the character defined by the
action of g on p, (if s € g, w(s) is the unique element a € F)’ such that
s(¢) = ¢ for all ¢ € pp). If x € X,(g) we set:

X =wx

where y71(s) := x(s71) for all s € g; we still have x* € X,(g) and this defines
the fundamental involution attached to the reflection principle (the mirror
involution).

o We then define for all x € X,(g) (with ¢|x) (see 5.4.9.1):

plT.8) = wWra(R) + 2 pust Ly Pu T~ O

- 2 Pu,x* — Y(1) 2 [k : Qp] - 52,p¢(1)|soo,k|

uESQYk UESp,kUAP.k
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X

= X pup t (1) X ke Q) - ZO Pus 00 =81

u€Ty u€ES
- w(l)r (k> - E% pu,x* + 521) (1>|AOO,]9|7
w ko0
where the 6 , denote Kronecker symbols and where:

pu,x |d |tz w( )7 pu,x* Z wd}_l(t)a

[du] ted.
Apk —Plkp\( kUSpk) Aso K —lec \Sook,

where PI}"C is the set of real places of k noncomplexified in K. Be careful
to dlstmgulsh between Pl . and Pl : in particular, we have the equality
|Soo k| + |[Aco k| = 71 (k) — r$(k), where r{(k) is the number of real places of

k which are complexified in K.

5.4.3 Remark. It is now important to comment on the relationship between
Kummer theory and class field theory which will give the reflection theorem
with characters. We use the notations of (Ch.I; §6), where the symbol * also
denotes the dual of a group. Let L/K be a p-elementary Kummer extension
of radical W and Galois group A. Then we have the “Spiegelungsrelation”,
which comes directly from 1.6.2, in view of the g-module action on a dual,
and which can be stated as follows for any x € X,(g):

Wy = (A")y- := Hom(A, pp)y- = (Ay)"
(canonical isomorphisms of g-modules), and yields the relation:
rk, . (W) =1k, (A).
More precisely, we remark that if L, is the subfield of L with radical W,
then Gal(L/L,) = @ A, yielding Gal(Ly/K) ~ Ay: from 1.6.2.1, we

check that W := {a € A AWye,a) =1} = @ A, since M(@®x*,a) =
A@,a®x) =1 for all @ € W if and only if a® = 1

We suppose that K is given together with sets of places T' and S; we do not
assume that Pl, = T,,US,. This leads to the context of Exercise 5.4.1, (iii), for

which we put m* := [ p, [ preot? H pher, with A, := Pl,\ (T,US,).
UESU\S UES vEA,

The reflection theorem then consists in the apphcatlon of the above to the
extension L := K (m*)TY?>p] for which the x*-component Wy« of the radical
W =Vs/ K;p will be computed using the y*-component of the class group
3. (see below), the x-component of A, then being nothing else than the
x-component of C€nT1L3A°° under the isomorphism of class field theory. |
5.4.4 Proposition. Let K be any number field together with sets of places
T and S, and p a prime. We have the exact sequences of IF,-vector spaces:

32 Use 1.6.1.2 to check that h®x* (a) = h(a®x) for all h € A*, a € A; then associate
with h°x* the restriction of h to A.
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1 — ESU ord/(ESD ord)p Y’1§O ord/K;p pC€S° ord N 1’

YRS —— @ U D (1)), — X — 1,
ve VEAS

where X = Ker(@?/(@%)ﬁ 5o ord/(cho ord)iﬂ)‘

Proof. The first exact sequence is given in the proof of 5.4.1, (i). For the
second one, see the proof of 1.4.5, (ii) with n = 1, doc = A, and with

m = HT pote sufficiently large in order to have U™ C (U,)?P for all v € T,
ve

a5 /()P = TG/ (A7)P, and Y = V7 (see 5.4.1, (ii)). O

Suppose now that K is given together with a group of automorphisms
g of order prime to p. We do not assume that p, C K. Then, the above
exact sequences give immediately a generalization of Safarevié’s formula, with
characters (noting that ,¢% °4 and (¢ ©rd /(@50 °*4)P have same character):

k. (OF) — 1k (V) = 1k, (EEBT U, gm{ﬂ}) —rk,. (BS0°r),

The right hand side is a straightforward computation (see 5.4.9.1) using
representation theory in the context of 2.3 and the S-unit Dirichlet—Herbrand
Theorem 1.3.7 (see in 5.4.7 the value of this expression which is a little more
complicated than p, (T, S) given above corresponding to the case y, C K).
If up C K, we can use the Kummer interpretation rk, . (W) = rk, (A) of the
Remark 5.4.3, with W = V,2/K; P and A = Cﬁaim“’, giving the reflection
theorem for which we recall the main notations.

Notations. For a number field K containing p,, given together with sets of
places T and S = Sy U S, we put:

T,:=TNPl, S,:=SNPFl,, A,:=P,\(T,US)), Ax := P \Sc,
T* :=TUAy, S :=S,UA, m := [I p, II prevtt I prev,
vESY\Sp  VES) vEA,

where, for v|p, e, denotes the ramification index of v in K/Q(up). We use
also the notations given in Paragraph 5.4.2.

5.4.5 Theorem (of T-S-reflection [Grl0, Ch.I, Th.5.18] (1998)). Let K
be a number field containing the group p, of pth roots of unity, and g an
automorphism group of K of order prime to p. We assume that T and S are
g-invariant sets.

Then for all x € X,(g), we have:

rkx* (ng’) - rkx(cerjrzi) = px(Tv S)a
and if, in addition, A, = (), then an:q* = /L. and we obtain:

rk, . (C7095%) — 1k (L0 4=) = p, (T, S). 0
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When A, = (), reflection is perfect in that the operation sending (7', S)
to (8%, T*) is an involution. When A, # (), we only have the inequality
rk, @ry) < rk,, (C/L7) since m* is not necessarily equal to the conductor of

HST [p] (the maximal p-elementary subextension of HST ). A simple sufficient
condition for equality is that p, ,. =0 for all u € Ap .
Similarly, using the inequality:

rk, (C52) > 1k, (),

which easily yields, using the involution (T, S, x) — (So, T U As, x*) for
the upper bound:

pX(T7 S) < rkx* (C€§~) - rkx(CKZSﬂOUAOQ) < Py (SO’ Ty AOO)?

we obtain classical inequalities (optimal for p # 2) which we indicate in the
case T = Sy = ) (for the proof of the specific result when p = 2, see 5.4.9).

5.4.6 Corollary (classical “Spiegelungssitze”: k = Q). Let K be a Galois
extension of Q, containing p,, of degree not divisible by p, and let x €
X,(Gal(K/Q)). For x # 1, w, we have the following inequalities:

(i) Case p # 2 (Leopoldt’s “Spiegelungssatz” [Le2] (1958)):

P(c) ;"b(” < rkx* (Ce) B I'kX(Cg) < P(c) ;w(l) ,

where c is the restriction to K of complex conjugation and |x; if in addition
K/Q is abelian and x is even (i.e., ¥(c) = 1), we have:

0 <rk, . (&) -1k, (&) < 1.
(ii) Case p = 2 (Armitage—Fréhlich-Serre, Taylor, Oriat [Orl] (1976)):
0 < vy (0 — ey () + rke () — rk, (@) < (1) 5
if K/Q is abelian, then when x # x~! we have the following two possibilities:
rk, -1 (A7) =1k, (@°*%y  and rk, (") = rk,, (Cordy 41,
rky 1 (CF%) =1k, 1 (@) + 1 and 1k (") =k, (A°Y),

1

and when xy = x~*, we have the equality:

rk, (") = vk, (€Y. 0O

5.4.6.1 Remark. If C is (for example) a generalized p-class group of K, the
x-component C¢x depends only on the faithful character x’ corresponding to
x and on the subfield K’ of K fixed under the kernel of y; in other words,
we have the following relation:
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CeX ~ (NK/K/C)EX/ — C/exr7

in which the analogous generalized p-class group C’ of K’ enters only via its
X'-component. All this is valid only in the semi-simple case p { |g|. For the
proof, use the relation (Noj)(C') = C'K'l = /| yielding the surjectivity of
N:= NK/K/ and the injectivity of j := jK/K/.

For instance, this applies to C = (c2¢5(S)),, in the p-Sylow of /3 :=
ares [ofies(S), whose x-component may be simplified according to the de-
composition of the v € S in K'/k, k = K9 (e.g., x # 1 and v nonsplit in
K'/k). OJ

5.4.6.2 Example 1 (case of the Scholz theorem [Scholz2], p = 3). Let K =
Q(Wd,v/=3),d >0, d ¢ Q*2, and C := (U )3. We have g = Gal(K/Q) ~
(Z/2Z)2. Tf x is the quadratic character whose kernel fixes Q(v/d), then
the kernel of x* fixes Q(v/—3d); thus Ci* (for instance) is isomorphic to

C&l\/g) ~ CQ( va) since Q(v/d) has only two characters (x’ and 1) for which
_ eyt e1 . . P ey ~ (% — 11

CQ(\/E) SC@W) ®CQ(\/E) with (in a similar way) CQ(\/E) ~ Cy 1! Of

course, Cp*" = Co/—3a)- O

In general, the C;}X are only particular components of the p-class groups of
the subfields of K.

5.4.6.3 Example 2. Let K = Q(up), p # 2, and let g = Gal(K/Q). We
easily obtain from 5.4.5 (with S = Pl,, T =0, x = 1):

Plp _
rk,, (%w)) =0

(since the unit character 1 leads to invariants of Q, we have rky (Zg(u,),p,) =
rk, (g, (py) = 173, and we check that p, (0, Pl,) = —1); but &(Pl,) = 1 in
Q(up) since Pl, = {v} with p, = (1 — ¢). Hence:

rk,, (Cg(p,)) =0

for all prime numbers p. L

For additional concrete examples, especially in the case p = 2, see [Gr10,
Ch.II]. For some arithmetical interpretations of the Spiegelungssatz, see
5.4.9.2.

To be complete on this representation-theoretic aspect, we also give the
generalization with characters of Safarevi¢’s formula proved in 5.4.1 which
does not need the assumption u, C K.

33 The maximal abelian p-ramified pro-p-extension of Q is, for p # 2, the cyclotomic
Zp-extension.
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5.4.7 Proposition (Safarevié’s formula with characters). Let p be a prime
number. Let g be an automorphism group of K of order prime to p, with
fixed field k. Let T and S = Sy U S, be two disjoint finite g-invariant sets of
finite and noncomplex places of K.

Then for any x € X,(g) we have:

rk ((07) = vk, (Vi /K7") + (1) ET: [Fu = Q] + g; 5

Upuw -1
u€Tp yWu X

- 5w,X6 - E pu,x + 61,)( - ’(/}(1)7"2(k) + 52,pw(1)‘Aoo,k|’

uEPl};?OCUS(],k
where:

Vii={ac K;ijf’Am, (a) = alag,,
aclp, ag, € <S()>, iU(OL) S K;q) Yv € T},
where the ¢, ;, denote Kronecker symbols, where wy, is the local Teichmiiller
character (possibly trivial) given by the action of d,, ~ Gal(K,/k,) on p,(K,)

(for v above u), 6, := 1 or 0 according as K, contains p, or not, and § :=1
or 0 according as K contains [, or not. ]

5.4.8 Exercise. Let K be a number field containing pu, for some integer
n > 2; assume that K is given together with sets of places T" and S such that
T U Sy contains all the places above the prime divisors of n. Consider:

VE = {ae KK, (a) =d'ag,
a€lr, ag, € (So), iv(a) € K" YveT}.
Show that the norm group of L := K( v/ V:ﬁ) is:

N = PSO7“7SOO . <T> 'Igo =: PSO,n,pos<T U A > 'Igo’
for any sufficiently large modulus n € (S )y, where Ay := Pl \ Seo.

Answer. Using arguments analogous to those of 5.4.1, (iii), one can show that
L is the maximal Sp-ramified T'U A-split extension of K, with exponent
dividing n. It is a finite extension. Since N = Ps,n.s.. - (T).Np/x(IL,5,),
for any n multiple of the conductor of L/K it is clear that:

NO = PSo,ﬂ,Soo . <T> 'Igo g N ]

since Ny corresponds to an Sp-ramified T'U A,.-split abelian extension with
exponent dividing n, the maximality of L gives the result. |

This Kummer situation is the starting point for the proof of the existence
theorem of global class field theory; for this, one shows that if K is an ar-
bitrary number field and M an abelian extension of exponent n of K then,
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for K’ := K(uy), we have (for suitable T and S and with self-explanatory

notations):
MK C K ({fVE )

we then descend to the extension M/K thanks to the type of reasoning used
in 3.6, (ii). Even though we have assumed the truth of the existence theorem,
this aspect is still interesting for us since it can be used algorithmically to
find M concretely starting from the class field data (conductor, Artin group);
this is one of the objectives of [j, Coh2, Ch.5] to which we refer.

The reader will have noted that we are in a reflection situation and that if
we want to come back to the usual situation, we must start from the radical
defined by Vg /4.

(5.4.9) ADDITIONAL MATERIAL. In 5.4.9.1, we will go into more details

about the computation of rkx*( v, & {:I:l}) - 1"1<X*(E’S0 ord) “and in
veT vEA

5.4.9.2, we will give some comments on the interpretation of the classical
reflection theorem. The notations are given in 5.4.2 and 5.4.5.

(5.4.9.1) p-RANKS COMPUTATIONS. We use the following properties of
representation theory of g over I, in the semi-simple case (i.e., pt|g|):

(1) In the exact sequence of Z,[g]-modules 1 - N — M — M/N — 1 we
suppose that N N MP? = NP; then this yields the exact sequence:

1— N/NP —— M/MP —— M/MPN — 1,

and by semi-simplicity: M @, F, ~ N @, F, @ (M/N) ®, Fp (isomorphism
of representations).

(ii) If the Z,[g]-module M is a free Z,-module of finite type, the F,-
representation M ®, F, ~ M/MP and the Q,-representation M ®, Q, have
the same character (see [Se4, §§14-16]).

(iii) If M is a finite Zy[g]-module then the F)-representations M /MP and
pM = {x € M, 2P = 1} are isomorphic: from the above reference, we know
that, in the semi-simple case, the representation theories over Z, and F,, are
“the same” by reduction modulo p, so that for any x € X,(g) we can write
the exact sequence of Z,[g]-modules:

1 — (M) Mo —L s (M*)P = (MP)> — 1
(the idempotents e, being those of Z,[g]); since M is finite, we get:
(M) | = [(M)*x] = [ME][(MP)™| 71 = [(M/MP)] =2 [(M/MP)y],
which proves that (M/MP?), and (,M), are isomorphic.
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(iv) Let d be a subgroup of g and V; the permutation representation
of g modulo d (Vg ~ Fplg] >t for instance); then the character of Vy is
ted

Indy(1y) = 2= Py X> where we recall that p, := ﬁ 2o (), Ylx. If d is
X€Xp(9) ted

normal in g, Vy is the regular representation of g/d, then p, = 1(1) (resp. 0)
if d C Ker(x) (resp. d € Ker(x)).

(v) Let d be a subgroup of g and W a representation of d whose character
is equal to the restriction of the Teichmiiller character w (since p, C K, then
p is such a representation). Then, the character of the representation V' of
g induced by W is (Ind§(14))*, and rk,.(V) = p,: indeed, the s; denoting
a complete system of representatives of g/d, by definition (see [Se4, §3.3,
Th. 12]) we have for all s € g:

Indy(w)(s) = 2 w(s;'ssi)= 2 w(s)

si€g/d si€g/d
s;lssi ed s;lssi €d

= w(s)Ind)(1q)(s) = w(s) Ind9(14)(s™1),

giving the first part of the claim; then, rk,.(V) is given by the scalar
product ((Ind%(14))*,¢*) with ¢* := wyy~! (note that ¢)* is also absolu-
tely irreducible), and an elementary computation yields ( (Ind%(14))*,¢*) =
(Ind}(14),% ). Therefore 1k, . (V) = p,.

Let uw € Pl i, and consider the induced representation Du, o F, of g;

v|u
from (i) with N = Glator(Uv) we have:
viuw
EIB U, ®F, ~ qator(Uv) oF, @ GIB(Uv/tor(Uv)) @ F,.
Using the log map defined in II1.2.2.1, which is a g-module homomor-
phism, injective on G‘B(Uv/tor(Uv)), we see from (ii) that the character of

DU, /tor(U,)) © F,, is the character of the Q,-representation &b K, which

vl|u vlu
is [ky : Qp] times the regular representation. The corresponding x*-rank is
thus [k, : Qplep* (1) = [ky = Qply(1).

Since pp C K, GP tor(Uy) ®F, is induced by tor(U,) ®F, whose character

is w; from (v), the character of the above representation of g is (Ind§ (14,))*,
where we recall that d,, is the decomposition group in K/k of a fixed place
vlu, and the x*-rank is p,, , .
Let u € Ply,. In this case Ul ® F, =1 and the character of DU, ® F, is
v|u
the character of the torsion part giving a x*-rank equal to p,, , .

Let u € Pl . In this case, @D{+1} ® F, is nontrivial only for p = 2 and

v|u
gives the regular representation since d,, = 1 (by assumption |g| is odd); this
yields a x*-rank equal to d, ,3(1).
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We now compute the y*-rank of £ °'d which is given by the Dirichlet—
Herbrand Theorem 1.3.7. We have:
k. (BSord)y = 3 > NEE T
TRy ( ) u€Ply o Pu,x +ueso,k Pu,x + w,X 1,x
We remark that if u is a complex infinite place of k or a real infinite place
of k, totally split in K/k, then p, . = 9(1) since d, = 1; if u is a real
infinite place of k, complexified in K/k, then p, . = 3(¢(1) +¥(cy)) where
¢y generates d,. Note that §,, . =4, , and d; ,. =9, -
We have obtained:

rkx* (yeeaT U, @ {:I:l}) = ug%é Pux Jrue%:;k[ku : Qp]w(l) + 52,pw(1)|AOO,k|’

VEA

and:

k- (B0 ) = ry (k)y(1 461y = Oy
I¥x ( ) = ra(k)( )+UEP12§USO,IQ Pux= F01,x = 0w x

This yields the second expression of p, (T, S) given at the end of 5.4.2.

Note. We have ; (Purx + Pux+) = DDk : Q] + 65,9(1)r1(k): we check

wEPl o

that puy + pPurs = 2(W(1) + ¥(cu) + ¥(1) + Y(cu)w(cu)); if cu = 1, this sum is
equal to 2¢(1); otherwise, if ¢, # 1 (which supposes p # 2), w(c,) = —1, and this
sum is equal to $(1); let r§(K) = [Pl 2 (pux + pune) — (Dl : @ =

k,oc0

(1) (2(ra (k) +r1 (k) =71 (k) +71 (k) = (1) (r1 (k) +2r2(k)) = P(1) (ri (k) =71 (k) =
92,59 (1)71 (k). Finally we use the relation [k : Q] = r1(k) + 2ry(k) = 2 [ku : Q] to

ulp
obtain the first expression of p, (T, S) (note that 7{(k) = 0 if p = 2 since |g| is odd,

and r{(k) = ri(k) if p # 2 since K D p,, is totally complex).

(5.4.9.2) INTERPRETATION OF THE REFLECTION THEOREM FOR USUAL
Crass GrouPs. We consider the case where p, =: (() C K, T =0, S =
Seo C PL; then the reflection theorem becomes for any x € X,(g):

rk . (C5=) — 1k, (Uge) = p, (0, Ss0), (1)
where m* := 1_‘[1356” = p(1 — ¢) is the modulus of p-primarity of K which
olp

characterizes the non-ramification at p of Kummer extensions of degree p
(review 1.6.3), and where Ay, := PIL\ Seo.

We can take the x-parts of the exact sequences given in the proof of 1.4.5,
(ii) (beware that the notations are permuted because of the reflection situa-
tion: m — m*, T+ Pl,, Soo — Aco, Ase — Soo); then since (U,/UL), = 1
for v|p, taking n =1, X, C S, we obtain:

rk, ((Uge) — tk, (QA=¥>) =
rkx(ﬁUj/(Uj)prevvg (1)) = 1l (VAT /YAS), (@)

p,m*
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where we recall that:
vl = {a € Kjy, (0) = a?),
Vi<t = {a € Y9, iy(a) > 0 Yo € S\ T},
YA = {a e Y9, iu(a) € (UNPUR™ Yolp, i(a) > 0 Vo € Sx}

(the subgroup of p-primary “A,-pseudo-units”); this group will be deno-
ted Y2 (and for simplicity, the indices Pl, will be omitted). Recall that

prim
yord = KxPYgrd is given by the exact sequence:
p

1 — B (B —— Yo K —— ot — 1, (3)
where (,C°"), ~ Cﬂird by (iii). Thus we easily obtain from (1) and (2):
Soo AcoUX 0\
rkX* (Cg ) _rkX(Cg - ) _px(wvsoo)
+rkX ( @ Uq}/(Ui )pre” veegoc{il}) o 1“kX (YAOOUEOO/Yp?iE)-

v|p

We now compute the y-rank of D U!/(U})PUP*. Consider the exact se-
vlp

quences:

L— U UL N (UL —— UL(U3) —— UL /(U3 U — 1,

v

and:

1 — U N (U,)? Urer —" sy, — 1,
where the map 7 associates with o = 1 + p(1 — ¢)n the root of unity ¢* with
ti=trp p (M) (see 1.6.3.5).
If s € dy, s() = 1+ p(1 — Cw(S))s(n) =14 p(l- ()1714:2(3)3(77)

1p(1=CJeo(s)s(n) mod p(1— ), thus ey, e (005) (1) = D(5)trys s, (1)

since w(s) € [F; therefore 7 is an homomorphism of d,-modules and the cha-
racter of the representation GP UPee JUP N (UL)? is induced by w; then, using
viu

5.4.9.1, (v), we get:

i (BUL/Whrur) = v (BUL/WY) — vk (Bure Uz 0 W)
= Pu,x* + [ku : Qp]"/}(l) ~ Pux* = [ku : Qp]w(1)7
and we get:
rk - (C5) — 1k, (A=)
=p,(0,8) + %{ku L QY (1) + 8y, P0(1)| B | — 1k, (VA= /i)

= Py (0, So0) + (1) ([k : Q] + 0y p| Do i]) — 1k (VA= T /Y20,
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Using the expression of p, (), Ss) and the relation [k : Q] = ry(k) + 2ry(k),
we finally obtain:

rk . ((5) =tk (AA=U5) =6, — 01 — 20 puy-

“x Lx u€Pl,
Fp(1) (ry (k) + ro (k) + 0y | Ao U Do i|) — v (YA=UZ /) o (4)

since rk, (YAMUZOO/Ypﬁ;‘;l) is the x-rank of the diagonal image of Y A=U¥e

in 6‘9 Ul/(uhrure @ {#£1}, we have the inequality:
v|p (USPIFN

ke, (VA=U5= Y ) < (1) ([k 2 Q6 | T i) (4)

We will explain the interest of such formulas (4), (4'), by giving two
classical examples which are not always well understood since, in general, in
(4) the term (1) ([k : Q405 | Xoo |) —1k, (YANUEM/YA"") is replaced by 0

prim

(for a lower bound) or by ¥ (1)([k : Q] + &, )| Xec x|) (for an upper bound),
giving again the Leopoldt’s Spiegelungssatz 5.4.6, (i) with inequalities.

For p = 2, to obtain the inequalities 5.4.6, (ii), we substract the equality

(4) with S, = PIL from the equality (4) with Soo = 0 (¥ = 0 in each

case); then we check that rkx(Yord/YO‘rd ) =1k, (YT /YIS ) is the x-rank of

prim prim

the quotient of the images of Y°'d and Y in @ U} /(UL PUPe.
vlp

ANALYSIS OF THE THEOREM OF SCHOLZ. We refer to 5.4.6.1 and 5.4.6.2 to
review that rk, () = rkj (@Q(ﬂ))’ k. (&) = rkg(CéQ(\/TM)).

Let E =: (&,(), where ¢ is the fundamental unit of Q(v/d); to simplify,
we merge the notation of an element with that of its class modulo K *3. Thus:

(E/E®) = (e), (E/E®)- =1,

(B/E®)w = (C), (B/E®)1=1;
Formulas (4), (4) yield (since p,, . = 0):

ks (Coy=3a)) — ks (Cog(vay) = 1~ ks (Y(va) /Yoy, prim)
with rk3(YQ(\/E)/YQ(\/E),prim) < 1. Let:
Y@(\/E)/Q(\/E)X?’ = (Y1, Yr ),
where r is the 3-rank of the class group of Q(v/d) (see (3)); we have:

rks (g /=5a)) — ks (Ug(va)) =1

if and only if the y; as well as € are 3-primary; otherwise Y@( Vd),prim is of
index 3 in YQ(\/E) and we have:
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vk (Clg(=3a)) = ks (P (va))-
If we only know that ¢ is 3-primary, then we have:
0 < ks (Clg(y=3a)) — rka(Clgva)) <15
oterwise, if we know that ¢ is not 3-primary, then:
rks (Clg(—5a)) = ks (Lg(va))-

Symmetrically, we can start from the character x* and write (with Poox = 1):

rk (Cg@(\/a)) — 1k (Cg(@(\/—f?»d)) = —rkg (YQ(\/_f?’d)/YQ(\/_f&i),prim)7

with rks (YQ(\/—_:M)/YQ(\/TM),prim) < 1, then we can put, in an analogous

manner, YQ(M)/Q(\/ —3d)*3 = (y},...,y. ), where ' is the 3-rank of the
class group of Q(v/—3d ), which gives the following reasoning. We have:

rks (%(\/3)) = rkg (Cg(@(\/_fiid ))

if and only if all the y, are 3-primary, otherwise Yo(v/=3a is of index 3

in Yy (,/=3q) and this yields:

),prim

I‘kg(CgQ(\/E)) — I‘kg(ch(\/_—gd)) = —1.

This methodology was initiated in: Bull. Soc. Math. France 100 (1972),
177-193; in this paper we gave many numerical examples.

ANALYSIS OF A RESULT OF HECKE. We are now concerned with the case
K = Q(up), p # 2, with ¢ = Gal(K/Q). For an even character x # 1 (i.e.,
x=wF keven, 1 <k <p—1), we have x* = wx ! = w'™* # w. Since

Pooy~ = 0, formulas (4), (4') yield:

rky+ () — 1k (&) = 1 =tk (Y/ Yrim) ,
with rky (Y/Ypim) < 1. Let (E/EP), =: (e, E?) denoted (e, ), and let:

(Y/KXP)X = <y17--'ayrx7€X>5

where 7, is the x-rank of the class group, and where all the numbers are
prime to p. Then:
rky () — 1k, () =1
if and only if all the elements y1, ..., yr, , €y are p-primary, otherwise, (Yprim/KXp)X
is of index p in (Y/ K XP)X and the p-ranks are equal.
If €, is p-primary, we only have 0 < rk,- () — rk, (&) < 1, otherwise
tky+ () = 1k, (V).
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The result of Hecke (1910) was (with classical notations) the inequality
rk, ((0T) < rk,(C/7) that we easily obtain from (4) by summation over the
even y # 1; the use of (4') yields 0 < 1k, (C/~)—1k,(C/T) < 252, Some insights
into representation aspects were given by Pollaczek (1924) after Kummer.

If we start from the odd character x* # w, we obtain, since p., , = 1:

rky (&) — rky= (&) = —rky (Y/Yprim)

then if (Y/KX”)X =: (y,... ,y}x* ), the reasoning is the same, but with

pseudo-units (which are not units) comming from an odd component.

We do not know examples with r, > 1 (see [(c), Wa, Ch.8, §3]). To
find an r, > 1, we must check that 7y~ > 1 and (when it is the case) that
Y5+ (generator of (Y/K*P),« when ry« = 1) is p-primary (the case ry~ > 2
automatically yields r, > 1); the first condition is equivalent to the triviality
modulo (p) of the generalized Bernoulli number b, or to the p-primarity
of the cyclotomic unit 7,, giving a probability equal to 1;34 the second

p
condition (when the first one is realized with 7, = 1) has also a probability

equal to 1 If we assume that these two conditions are independent, this gives

the probability 2% (for x fixed). We have neglected the case r,- > 2 whose

probability is less than % (the principal theorem of Ribet—Mazur—Wiles—
p

;1 but if b . =0 mod (p?), aY may

. . . € *
Kolyvagin implies that [/} | = b,
be cyclic), so that we can consider the probability Z% as a wide upper bound.

This heuristic reasoning, involving congruences, is more convincing than
the direct interpretation r, > 1 if and only if p|((ey) : (ny)) (principal

theorem of Ribet—-Mazur—Wiles—Kolyvagin—Greither), since we do not know
efficient heuristics for global p-powers; the above gives for p| ((ey ) : (7y)) &

probability less than 1% (see [Scho2] for the non-p-parts of the class goup).

But there are n := 2— 3 even characters # 1 for p > 3; perhaps they do

not have the same “weight” because of the subfields of “small” degree whose
p-class number can be limited. To be more precise, we may estimate the index
of irregularity i(p) (i.e., the number of odd characters x* giving ry~ > 1): it
seems clear that the density of prime numbers p, for which i(p) > 1, exists (its

34 The equivalence of these two conditions is classical and comes from the con-
gruence properties of p-adic L-functions. Let up, =: (), and for any a € Z
prime to p, let 0o € g be such that 04,(¢) = (*. By definition, we have

-1
byx = %25:1 X (o Na € Zy, and 1y := (1 — {)°x seen in (E/EP),, with the
-1
idempotent e, := ﬁ > (oo oa € Zylgl; for u = p, ey = 1, ¢ ¢ {1, w},
we have (Us/(Uy)PUP), ~ F,; since 1, is p-primary if and only if its image in
(UL/(UHPUP), is trivial, this gives one possibility out of p. In an analogous way,
the p-primarity of v} only depends on its image in (U, /(U})PUF)y-.
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value is discussed in [(c), Wa, Ch. 5, § 3] after the Theorem 5.17; see [Ri4] and
[BCEMS] for some numerical computations). In this context, the probability

that i(p) =¢>0is Cn( — ;)n Z(;) , for p > 3.

Since these values are in accordance with all numerical data, this “proves”
that the above phenomena can be neglected 35 which ylelds a number of

favourable cases p < B around > Z CZ (1 — 7>n l<1) (1 — (1 - g)z) =

p<B i=0 p p p

X (1-(1-2))< < X < ¥ <logllog(B) (of it is th
V=B 22 S S5 og(log(B)) (of course, it is then
equivalent to use directly the probablhty that p| ((ey) : (ny)) for at least

one character x). See in [Th2] a criterion for the p-triviality of this index.

In conclusion, the classical Kummer—Vandiver conjecture is probably false
for probabilistic reasons 3¢ (see [Iw5] for another approach with Gauss sums).

c) Class Field Theory Over Q

We come back to ray class fields by looking at the case where the base field
is Q.

5.5 RAy CrAss FIELDS ON THE FIELD OF RATIONAL NUMBERS. If K = Q,
any modulus is of the form mZ for m > 1, and the ray class field Q(m)™*
is simply the cyclotomic field Q(p.,) of mth roots of unity (see 5.5.1). Note
that (except for m = 1, 2, where Q(m)"® = Q), the place at infinity of Q is
complexified in Q(m)**/Q; the maximal real subfield of Q(m)*® is the field
Q(m){oo} =: Q(m ord : Q(m)"e.

The case of ray class ﬁelds over Q gives the simplest example in which
mZ is not always equal to the conductor of Q(m)™*: indeed, mZ (or simply
m) is the conductor of Q(m)** if and only if m is odd or divisible by 4 (this
follows from 5.1.1.2).

Using classical properties of cyclotomic fields (see [c, Wa, Ch. 2]), we can
now prove that Q(m)™ = Q(um).

5.5.1 Proposition. For any rational integer m > 1, we have:

Q(m)"™ = Q(pm)-

Proof. With the computation that we will give in 5.5.2, we already have:
Gal(Q(m)**/Q) ~ (Z/mZ)* ~ Gal(Q(um)/Q),

35 However, see [Sou] giving some insights into this aspect.

36 A more precise computation involving the Cohen-Lenstra—Martinet heuristics on
class groups would certainly give less than clog(log(B)) with ¢ < 1. Moreover,
discarding the small primes, we would obtain clog(log(B)) — ¢/, ¢ > 1, which
explains that only very large p can disprove the conjecture.
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so an inclusion will be sufficient. We will check that Q(,,) C Q(m)*®; for this
we may assume that m is a conductor. By 4.1.1, we are reduced to compute
the conductor of Q(u,.) where £" is the {-part of m (n > 1, n > 2 if £ = 2).
Then, since /¢ is the only ramified place, we see from 4.2.1 that this conductor
is that of Q¢(upn ). Part (i) of Exercise 3.4.3 computes the norm group, and
hence the conductor, equal to £™.

5.5.2 Remark. At the level of generalized class groups and of the Artin
map, we do not obtain directly the classical isomorphism:

Gal(Q(um)/Q) ~ (Z/mZ)".

Indeed, if we denote by T the support of mZ we obtain:

Gal(Q(m)res/@) ~ IT/PT,mZ,pos
={aZ, a € Q}}/{uZ, ue QF, u=1mod mZ, u> 0} ;

now consider the map (which is well defined):

Ir —— (Z/mZ)* ;
aZ +——  |a|+mZ

its kernel is the set of the aZ, a € QF such that |a|] = 1 mod mZ, hence
is equal to Prmz pos; since surjectivity is trivial, we obtain the expected
isomorphism (which is specific to the base field Q).

We recover the Artin map:

IT/PT,mZ,pos — Gal(@(m)res/(@)’

which sends ¢Z =: (¢), with ¢ positive prime number not dividing m, to the

Frobenius:
(Q(m)res/Q>
(£)
(which acts via ¢ — ¢* for any ¢ € p,,), by composing the above isomor-
phism:
IT/PTﬂ’nZ,pos — (Z/mZ)X )

with the one sending a + mZ € (Z/mZ)* for a € QF to the Artin symbol:
(@(m)“”/@)
® )

where b is a positive representative of a +mZ (and not |a| !). More generally,

ab ab
L /1()70r (L /K),
v p'u

we would like to insist on the fact that a Frobenius (

involves g, := |F,|, in other words a positive generator of Np, (and similarly,
Qmm/@)

by multiplicativity for the Artin symbol); for instance, for m =7, ( =)
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would be the Frobenius of 2, of order 3, while, choosing 5 as representative

of the class of —2 modulo (7), (%) is the Frobenius of 5, of order 6,

which is indeed the automorphism ¢ — ¢ 2. Going from a € Qf tob>01is
not necessary if we set:

(@(m)js/Q) _ (Q(wz()czzs/(@)

for any a > 0 prime to m, and:

(M) _ (M) —e

1 00

(complex conjugation), but this is a trick only valid for the base field Q. [J

5.6 CLASS FIELD THEORY CORRESPONDENCE. Thus, in the case of the base
field Q, the class field theory correspondence is the well-known Kronecker—
Weber theorem, of which a direct proof is not too difficult (such a proof is
given in [c, Wa, Ch. 14] and in [Neuml]). In other words, in the cyclotomic
field Q(um), there is a bijective Galois correspondence between the set of
subfields and the set of subgroups of (Z/mZ)*.

5.6.1 ARTIN GROUP OF ABELIAN EXTENSIONS OF Q. If L is an abelian
extension of Q with conductor fZ, for which we know H := Gal(Q(s)**s/L)
as a subgroup of (Z/fZ)*, then (denoting by R the support of f) the Artin
group of L/Q is equal to:

Apjg = {aZ, a € Qf, a >0, a+ fZ € H}.
It indeed contains Pg, t7 pos-

5.6.2 DECOMPOSITION LAw OF PRIME NUMBERS IN Q(m)™*/Q. By 5.2, we
need not consider prime divisors £ of m since the inertia field is Q(n)™, where
n is the largest divisor of m prime to /.

The residue degree of ¢ is then the order of the class £ +mZ in (Z/mZ)*
and the decomposition field is the field fixed under (¢ 4+ mZ). Thus, ¢ is
totally split in Q(m)**/Q if and only if £ = 1 mod mZ.

If the conductor of an abelian extension L is fZ, the residue degree of
21 fin L/Q is then the order of ¢ 4+ fZ modulo H.

5.6.3 ABELIAN CLOSURE OF Q. The Galois group of Q" = Q(x) (the field
generated by all the roots of unity) is:

G~ lm (z/mz)* ~2" = 11 7},
m>1 p prime
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whose structure is well known (we will find again this result in II1.4.1.11 in
an idelic way). The inertia groups correspond to each /o

Since Gal(Q(m)"**/Q) is the direct sum of the inertia groups of the ramified
primes, it is clear that it may be convenient to use duality to express the class
field theory correspondence and the law of decomposition of the places. This

leads to the notion of Dirichlet characters. We leave this to the reader (see
[c, Wa, Ch. 3]).

d) Congruence Groups

Before coming back to generalized class groups, we explain in this short sub-
section a classical formalism which is necessary when we cannot take quotients
by a suitable ray group, situation which we avoid since we assume the Artin
reciprocity law (or any equivalent statement) from the start.

The notion of congruence groups, used instead of idele class groups or
generalized class groups, introduced without any knowledge of the existence
of a norm or Artin conductor, is the following. Consider the groups Ny, (the
congruence groups) which are the subgroups of Ir containing Pr m pos, where
m is a modulus of K with support T" C Ply; we then define an equivalence
relation by:

N, m; ~ N, my>

for m,, m, with supports 731, T5, if and only if:
N, N Ip, = Ny, NIy,

In this context, class field theory consists in proving that there exists a bi-
jective Galois correspondence between finite abelian extensions of K and
equivalence classes of congruence groups; the conductor (of the extension
corresponding to the class) is then the g.c.d. of the m belonging to the class.
From the point of view that we have adopted here, this fact is quite clear for
the following reason: if f is the conductor of the abelian extension L/K and
if m, built on T, is a multiple of f, the congruence group relative to m is the
Takagi group:

Ny = PT,m,posNL/K(IL,T)~

The equivalence relation is a simple translation of the invariance of the quo-
tients I /Ny, when m ranges over all the multiples of f (see 4.3.2, 4.4.1).

However, this point of view can be convenient to define a priori subgroups
of It (containing Pr m poes), for instance by asking that certain ideals should
be norms; we must then algorithmically compute the conductor of this con-
gruence group and find the structure of the corresponding quotient group.
This is the point of view used in [j, Coh2, Ch. 3 and 4].
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e) Norm Action on Generalized Class Groups

Let L/K be a finite extension of number fields. It is useful to give the action
of the arithmetic norm for L/K on generalized class groups, using the fact
that it corresponds to restriction of automorphisms under the Artin map. By
perversity, we are going to start by looking at class groups in idelic terms (in
fact this is technically simpler).

Notation and assumption. Let m € (T')y, and let m’ be a modulus of L
built from the set of places of L above those of T, such that:

Nr/r(Urlw) € KXUgh,
where Ny, is the norm map from Jr, to Jk. L

We then have:

5.7 Proposition. For any finite set S of places of K, disjoint from T, we
have the following commutative diagram, where S’ denotes the set of places
of L above those of S:

! p !
as . < L Gal(Lw"S" /L)
NL/K restriction
P
i € = Gal(K(m)®/K)

Proof. In the idelic formulation (see 1.5.1):

res X rres res Xyrres
Lwm — JL/L UL,m” Km — JK/K UK,m )

by assumption we have the inclusion Ny, x (L*U%,) € K*US, or, equiv-
alently, NL/K(PL,TVmeOS) C Pk T.m,pos, showing that NL/K is defined as a

res

map from (I, to (%, and is also given by:

N k(5 (@) = A0 (N (a)),

for any ideal a’ of L prime to T. Furthermore, applying norm lifting Theorem
4.7.2 to the extension M := K(m)' and to the norm group N := K*U,

% on L, is equal to NZ}K(KXUfffm)

which contains L* U}, ,, once again by assumption; thus, we have:

the idele group corresponding to LK(m)

LEm)™ C Lm')™,

and hence the restriction:
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Gal(L(m")* /L) —— Gal(K(m)"*/K)
makes sense.
Finally, since NL/K( ) L;) C @ K (e, Npyx(($) € () and
we s’ IS

using the decomposition properties 1.2.5; all the above statements are still
valid in terms of S and S’-splitting.

The above diagram is thus well defined, and its commutativity again
comes from applying 4.5, (iv) to the extension L(m')S//K. O

5.7.1 Corollary. We have the diagram:
as .

//—\ /7
L — LKw’——  Lw)°

LNKm)~

(m) C Km)®
’ NCts
! .

where Gal(K(m)® /L N K(m)®) ~ Nz /k (Cgim/), In particular the norm map is
s
)

surjective if and only if L and K(w)” are linearly disjoint over K ; when this
is the case, |5 | divides |C/] .. 0J

5.7.2 Remarks. (i) We also have:
Gal(Lw")®' /L Km)®) =~ nCS
the kernel of the arithmetic norm Ny, ), equal to:
/
{oF (o), o prime to T, o3 (Np/k(a’)) = 1}.

(ii) Going to the limit but keeping T and S fixed (see 5.3), we obtain a
similar diagram, in which Ny, /g : Jp — J yields:

Npjk iUl gr = lm Jp /LU —— Uep = lim /KU,
me(T )y me(T )y

where, to simplify, we have chosen m’ := (m), the modulus obtained by

extending m to L, which is always suitable. ]

5.7.3 Remarks. (i) Without any difficulty we can even go completely to the
limit on 7" (for instance with S = §)) so as to obtain the corresponding abelian

closures K and fab, the norm, still coming from Ny, : J, — Jk, giving:
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NL/K : CL/DL — CK/DK.

In this case, since D = D[[?K] C Ny (Cr) by divisibility (see I11.4.15.1,
(1)), we get:

Np/k(CL/Dy) = Ny (Cp)/Di ~ Gal(K*"/L*),

and the norm is surjective if and only if L?® = K. But this is nothing else
than class field theory in L/K (see 3.7).

(ii) The usual particular cases (' = 0, S = 0, and S = PIL) can be
represented by an analogous diagram of finite extensions, such as:

aes
//__—\
L — LHE— — s
LNH HE

v

|
Cg[‘CS

K K

Here L N HF*/K is the maximal abelian subextension of L/K which is un-
ramified (at the finite places), and the norm map is surjective if and only if
this extension reduces to K. For the ordinary sense, we replace everywhere
“res” by “ord”; LN HY¥Y/K is then the maximal abelian subextension which
is unramified and noncomplexified, whose Galois group measures the surjec-
tivity defect of the norm on the ordinary class group of L. ]

5.7.4 Example. Assume that L is a quadratic extension of K and that there
exists a finite ramified place in L/K or a real place of K which is complexified
in L; consider the ordinary sense (T'=0, S = PIL):

L ———— LHp—— Hy
2
K ——— Hyd

Since L/ K is ramified or complexified in at least one place, we have LNH ‘;(rd =
K; hence the ordinary class number of K divides the ordinary class number
of L. Thus, we have the exact sequence:

Nr/x
1 — NP —— A —=agt — 1,

which is a simple translation of the classical equality (with notations which
are themselves classical):
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hy, = h, hy,

in which h7 is called the relative class number. O]

5.7.5 Remark. Note that this result is often stated for a field with complex
conjugation (or a CM field), in other words a totally complex field L which is
a quadratic extension of a totally real field K; in this context, h} and hy are
often denoted h; and h} (relative class number and real class number), but
this notation is amblguous since we do not necessarily have (¢, = Cﬁ ed;
in the usual Galois meaning for which /3 := {/(a) € Uz, d(a®) = c€( )il}
¢ denoting complex conjugation (the obstruction coming from the 2-Sylow
subgroups; see [Scho3], [Scho4]).

This is particularly interesting in the case of cyclotomic fields L = Q(r, ),
since in this case, although Q(tt)/Q(ptm )™ is unramified as soon as m (as-
sumed to be a nontrivial conductor) is not a prime power, we always have
the relation “h = h~ h™” (this nonramification property is proved in III.1.4.2
but can be checked in an elementary way). L

f) The Principal Ideal Theorem — Hilbert Towers

5.8 THE PRINCIPAL IDEAL THEOREM IN THE TAME CASE. Let K be a
number field together with sets of places T" and S. For the tame modulus
m = H p,, we consider the S-split ray class field K’ := Km)®, and we

denote by T’ and S’ the sets of places of K’ above those of T and S. Let
K" := K'(m )S for m' = HT p.» be the analogous ray class field over K.
,Ule ’

By 3.6, it is a Galois extension of K.

5.8.1 Lemma 1. The maximal abelian subextension K"** of K" in K" /K
is equal to K.

Proof. Set L := K"® DO K’. The extension K" /K is T-tamely ramified
(use 5.2.2, (ii) for the extensions K'/K and K”/K’, and multiplicativity of
ramlﬁcatlon indices); it follows that L/K is also T- tamely ramified and, once
again using 5.2.2, (ii), we have L C K’, proving equality. O

If G’ := Gal(K'/K) and G” := Gal(K"/K), we have:
G' = G"* and Gal(K"/K') = [G", G"].

We now state a purely algebraic but nontrivial classical result3” which
was the prelude to further development of the subject which, after Suzuki in
[Su], [i, Miy0, Suzuki], has been renewed by Gruenberg—Weiss in [GW] whose
main result we give a little later.

37 Works of Artin-Furtwingler (1930), Magnus (1934), Iyanaga (1930, 1934); see
[d, AT, Ch.13, §4] and [c, Neul, Ch. VI, 7.6].
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5.8.2 Lemma 2. Let G be a finite group whose commutator subgroup [G , G|
is commutative. Then the transfer map from G to [G, G] is trivial. O]

It then immediately follows, from property 4.5, (v) of the Artin map, that
for a number field K given together with sets of places T" and S, we have:

5.8.3 Theorem (principal ideal). For m = 1 p,, consider the S-split ray
veT

class field K' := K(m)®, and denote by T and S’ the sets of places of K’ above

those of T' and S.

Then for the ideal extension map jK,/K : Ik — Ik 1/, we have the

inclusion jK//K(IKT) C Prr a1/ w pos(S') where m’ = I1 pyr. In other
v €TV

words, the natural map jp, . : Cg%m — C@f(/,!m, is zero. 0]

When T = () and S = PI%, (for instance), the field K’ is the ordinary
Hilbert class field H'4, and we obtain the famous result (which was conjec-
tured by Hilbert from the very beginning of the theory), called the principal
ideal theorem, which states that the extension to H%4 of an ideal of K is
principal.

This theorem does not say precisely how this principalization takes place;
historically (see for instance Olga Taussky’s account in [i, Tau]), the Hilbert
Theorem 94 asserted that in any unramified cyclic extension M of K, the
capitulation kernel (i.e., the kernel of the transfer map for M/K or that
of extension of classes from K to M) is of order a multiple of [M : K].
Many partial results were then given (for instance those of Tannaka—Terada,
Furuya, Thiébaud), and we refer to [Miy3] and [i, Miy0, Suzuki] for a detailed
account of the main results on these problems, which seem to have reached
their optimal formulation with the results of [GW] which we simply state in
a less general situation.

5.8.4 Definition (Gruenberg—Weiss). Let G be a finite abelian group. We
say that a finite abelian group X is a transfer kernel for G if there exists an
exact sequence of the form 1 - A — H — G — 1, with A a finite abelian
group, such that:

X ~Ker (Ver: H/[H,H] —— A),
where as usual Ver denotes the transfer map (see 1.4.1). 0]
5.8.5 Theorem (Gruenberg-Weiss [GW] (2000)). Let X be a finite abelian

group of exponent dividing |G]|.
Then X is a transfer kernel for G if and only if |G| divides | X|. O]

We apply this to the following data: L/K is a subextension of HY¥/K,
H = Gal(HY/K), A= Gal(H®!/L), G = Gal(L/K), so the exact sequence:
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1— X —— a9 ~ H/[H, H| -5 A ~ a9,
implies that |G| divides |X| (i.e., in more colorful terms, the capitulation
kernel in L/K is of order a multiple of |G| = [L : K]). The condition that the
exponent of X is a divisor of |G| is here trivially satisfied since N, /i 0, K=

[L: K]in &%, For L = HYY we find again the principal ideal theorem.
More generally:

5.8.6 Corollary. Let L/K be an abelian T-tamely ramified S-split exten-
sion. Then for m = HT p, and m’' = HT Py In L, the capitulation kernel:
vE v eT’
Ker (C@;,m —_— Cgim/)

has order a multiple of [L : K].
Proof. Replace H‘;(rd and Hzrd by K(m)® and Lim"yS’ respectively. Il

5.9 HILBERT TOWERS. Of course the ideals of HY¢ are not necessarily prin-
cipal and one may ask if, by iteration, the tower of number fields:
KO.=KcKMDcC...Cc K .= K®,
- - - i>1
inductively defined by K(+1 .= HI‘?(?), is finite or not (finiteness being equiv-
alent to the existence of ny > 0 such that the class group of K (mo) ig trivial).
The field K () is called the Hilbert class fields tower (in the ordinary sense).
In a similar way, for any prime number p, we define the p-Hilbert class fields

tower K (%) (p) = L>JlK<i><p> C K with K@+ () = HS, (), and ask

for the same question. The notation K (°)(p) is legitimate since the maximal
pro-p-subextension of K(°) is solvable and thus coincide with the p-tower
and even with the maximal unramified (noncomplexified) pro-p-extension M
of K (hint: let My :=K C M; C--- C U M; = M with M;11/M; abelian;

i>1
for the inclusion M C K(°)(;), prove by induction that M; C K(i)(p)).
This second problem, which is just as famous, was solved in the negative
in 1964, thanks to a group-theoretical result of Safarevic. 38

5.9.1 Theorem (Golod-Safarevic-Gaschiitz-Vinberg). Let G be a pro-p-
group of finite rank (i.e., with a finite number of generators); let d(G) and
r(QG) be respectively the minimal number of generators and of relations defin-
ing the group G.3°

If G is a finite group, then we have r(G) > § (d(G))?%.

38 See in [d, CF, Ch.IX], [g, Se3, Ch.I, Ann.3; NSW, Ch.III, §9], the Golod-
Safarevi¢ theorem which was later improved in a number of ways such as the
Gaschiitz—Vinberg theorem and some results of Koch.

39 e, Ko3, Ch. 3, §§1.16, 2.7].
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It is then sufficient to exhibit an example for which d(G) is sufficiently
large compared with 7(G), for G := Gal(K () (»)/K), which class field theory
easily gives (see Exercise 5.9.5).

Note. We will introduce the notation Hi(p) for the maximal T-ramified S-split
pro-p-extension of K; as in the case T' = (), S = Pl (the p-Hilbert class fields
tower K<OO)(p) in the ordinary sense), F’]S"(p) is also the p-tower of the succes-
sive maximal T-ramified S-split abelian pro-p-extensions defined in 5.3, and the
maximal pro-p-subextension of the corresponding tower F; (same proof). The
groups G5 = Gal(ﬁi(p)/K) will be studied in the Appendix. Warning: ﬁf« may
be strictly contained in the maximal T-ramified S-split Galois extension of K (e.g.,
take k/Q with Galois group As and let T" be the set of ramified primes in k/Q; then
ENHr = Q with Hr #Q)

The above result (existence of infinite class fields towers) thus showed the
complexity of the unramified Galois closure of a number field, and showed
that the historical utopia of finding a finite extension of K whose principality
would reduce computations in K to ordinary element arithmetic was doomed
(see in 5.9.3 the proof that the existence of such an extension is equivalent
to the finiteness of the class fields tower).

Many infinite Hilbert class fields towers have been constructed (for in-
stance by Matsumura [Mat], Martinet [Marl], Schmithals [Schm], Schoof
[Schol], Maire [Mail]). Recently, tamely ramified class fields towers (or p-
towers) have also been studied in [Mail], both for number fields and for func-
tion fields, and have renewed the study of the Martinet constants on number
field discriminants, for which upper bounds are obtained from infinite towers
(see in the introduction of [HM1] a good historical review of the subject).
It is in the same paper [HM1] that Hajir—-Maire give improvements on these
constants, in this wider context, and for which many interesting questions
can be asked (see [HM2, HM3], [HM4] for additional results). We will give
in 5.9.4, (iii) a detailed example after [HM2] of such a computation, showing
also some links with genera theory.

Note (Martinet’s constants). Let K be a number field of signature (ry, 7). The
infinity type of K is the rational number [Krilw and its root discriminant is rd =
(dK/Q)l/[K:@], where dg q is the absolute value of the discriminant of K/Q. For
fixed t € QN [0, 1] and integers n > 1 such that number fields of degree n and
infinity type ¢ exist (i.e., such that tn € N and tn = n mod (2)), we let (after
[Marl], [HM1, §1.1]):

an(t) = min {rdge, [K:Q]=n, gy =1},

a(t) := liminf an,(t).

Let T be a finite set of finite places of K and let K =: Ko C K1 C -+ C Ko :=
'L>J1 K; be a tower of T-tamely ramified, noncomplexified extensions of K (the non-
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complexification insures that the infinity type is constant in the tower). Then, if

K /K is infinite, we easily obtain a(t) < rdg . HT(va)l/[K:Q].
ve

In the nontame case for p-towers, the moduli m (with fixed support T
such that T), # 0)) can take an infinite number of values, and the only canon-
ical tower is then that of the H% (p) (see 5.3) which are, in general, infinite
extensions of the base field; in addition, we will see in Section 2 of Chapter
IV that, in this context, the transfer map is on the contrary injective (under
the assumption that Pl, C T, Sy = (), for the ordinary sense, and assuming
the Leopoldt conjecture for p). It is however possible to ask that ramification
is bounded by observing that because of the reciprocity law we have a corre-
spondence between the natural filtration of the local unit groups with that of
higher ramification groups (in upper numbering); this is the study which has
been started in [HM3]. Hence this is quite a different context (even though
the problem of principalization under extensions can be asked in complete
generality), and which leads to difficult questions related to the theory of pro-
p-groups (for instance the conjecture of Fontaine-Mazur stated in [g, NSW,
Ch. X, §8]) which we will not describe (see [Haj| for an introduction to these
problems in the particular case of p-Hilbert towers).

5.9.2 Remarks. (i) The Hilbert class field is a particular solution to the
principalization problem of the ideal group of a field K; we will not expand
on this, but it is clear that the classes of K can principalize in many other
abelian extensions of K, and we now have quite a precise understanding of
the ideal extension map for the extension K /K (see [Gr9], [Kur], [Bos]).
For instance, from the above papers we can state the following results:

() Let K/Q be a real abelian extension of degree prime to p # 2. For
any Q,-irreducible character y of g := Gal(K/Q), let &, := ((k)p* where
ey € Zp|g] is the corresponding idempotent. Let 1| x; ¢ is of degree 1, of order

X
my prime to p, and Zy[gley = Zy[u,, | =t Ry; put ¢y =~ @Rx/pnm R,.

Then there exist infinitely many abelian extensions M/Q such that

Tx
Gal(KM/K) ~ @ D Z/p" L and e (@x)p) = 1.
(8) Let k be a non-totally real number field; then for all finite extension
K of k there exists an abelian extension M of k such that jKM/K(Cﬁ‘}(rd) =1

(7) For any totally real number field K there exists a real abelian extension
M of Q such that jKM/K(Cg%d) — 1.

In a forthcoming paper, Bosca proves () and (v) in a unified way: “if K/k
is totally split at a (real or complex) infinite place, then the ordinary class
group of K principalizes in an abelian compositum of K/k”. In [Bos], we also
find analogous results for the logarithmic class group defined in (Ch.III, § 7).
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In addition, if we do not request any Galois conditions, it is easy to
principalize (/%:¢ in a brutal way; setting /95 = (£°"(a;) ), <;<,, We simply
consider:

L:=K(w/ag,..., ¥/a,),
where ;" = (a;), o; € K*, 1 < <r, but this is far from class field theory
considerations.

(ii) Finally, concerning the construction of unramified extensions (for in-
stance), we have only mentioned the abelian case (Hilbert class fields) or
briefly the soluble case (p-Hilbert class fields towers); however, it is impor-
tant to note that a principal number field can have an infinite unramified
extension (Galois or non-Galois) (see various examples in [Mai3]; we repro-
duce such an example in Exercise 5.9.7).

5.9.3 Proposition. Let K be a number field and let L be an arbitrary finite
extension of K such that ¢4 = 1.
Then L contains the (finite) ordinary Hilbert class fields tower of K.

Proof. Consider the extension H4L of L which is abelian, unramified and
noncomplexified (see I1.1.2.5), hence equal to L.

By induction, seen as an extension of K*), L contains K*1 hence we
have K() =: K(m) C L. O

The extension L := K (") is the minimal solution to the problem “C/¢"d = 17.

—ord
Note that if there are several floors in the tower, then K(>) = H }); is
not contained in L2P.
There is an analogous result with sets T" and S for the corresponding

-5 . . ,
tower H j 7, relative to the existence of L such that C€E7T, =1.

5.9.4 Examples (from [Mail] and [HM2, §3.2] (1999/2000)). (i) The field
Q(v/53 x 131) has an infinite restricted Hilbert class fields tower but a finite
ordinary Hilbert class fields tower (see Exercise 5.9.6).

(ii) The number field (totally complex of degree 10):

Q(&, v/—3664 + 12563 — 22162 + 182€ — 80),
where £ is a root of the polynomial:
X% —2X% 4 3X3 —3X% - X +1,

has an infinite 2-class fields tower whose root discriminant is equal to 84.37 - - -
(see Exercise 5.9.8).

(iii) The number field Q(0) (totally complex of degree 12), where 6 is a
root of the polynomial:
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X124+ 339X10 —19752X8 — 2188735X % + 284236829 X *

+4401349506 X2 + 15622982921,

has an infinite 2-tower of number fields (tamely ramified at a place dividing 3)
with root discriminant bounded by 82.2- - -.

I thank F. Hajir and C. Maire for the authorization to reproduce the
details for this example and to use their source text (the notations being the
same as ours). We will see that cohomological computations of the Appendix
and genera theory (Chapter IV) are needed for the proof.

“The number field arithmetic which is at the heart of our construction
takes place in degree 6 number fields; computer packages such as PARI and
KANT make it easy to carry out these calculations. However, we would like
to present the examples in such a way that a reader armed with an ordinary
calculator can verify all of our claims. To this end, we provide (at the cost
of lengthening the presentation slightly) much supplementary data and a
method for verifying each step in the reasoning. We also provide some data
(such as class number, generators for the unit group) whose validity need not
be verified but which would aid the reader who wishes to check our claims
independently.

Let k = Q(&) where € is a root of f = 2% + 2% — 423 — 722 — 2 4+ 1. The
prime factorization of the discriminant of f is dy = —23-35509; thus, dy = d
is also the discriminant of k, and Zj, = Z[¢].

The roots of f are:

& = —0.761662453844681007917846097 - - -

& = —0.699537962843721299070572553 - - -

&3 = 40.295225713177299636689397098 - - -

&4 = +1.830157823416367310460200115 - - -

&5 = —0.332091559952632320080589281 - - -
+1.833942276050826293170694152 - - - /—1

&6 = —0.332091559952632320080589281 - - -
—1.833942276050826293170694152 - - - v/—1.

Thus, k has signature (4, 1). The restricted class number of k is 1. The
unit group of k is generated by {£, 4&° — 3¢ + 6£3 — 2062 — 13€ + 6, 6£° —
461 +9¢% — 3062 — 216+ 8, —&+ ¢ —28 4682 +¢ -1, —1}

Generators for some Zj-ideals of small norm are listed in the table below
where 7, = a5&° + a6 + 383 + ay€% + a,€ + a, generates a prime ideal
mZy of norm 7, and the coefficients of h, , the minimal polynomial of .,
are listed in descending powers.
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Ty as,ay, a3, 09,41, Qg hﬂr

T3 —6,4,-9,30,21, -7 1,0,-5,2,5,—-95,3

T —-9,6,—13,44,31,—12 1,1,—29,98,624, —449, -7
T3 -7,5,—11,36,23, -9 1,3,—4,—-24,-23,7,13
To | 5,-4,8,-26,—15,6 | 1,11,50,120,151,89,19
o | 5,-3,7,-24,-20,6 | 1,-3,-10,13,29, -8, —19
Tog —5,4,—-8,26,15,—9 1,7,20,30,16,—20, —23
7Té3 6,—4,9,—-30,—-22,6 1,6,11,0,—-30,—46, —23
Moo | 11,-8,17,-56,-35,16 | 1,-7,3,52, —82, 55, —29
ey | 7,-5.11,-36,-22,7 | 1,9,22,13, 15, 38, —31

The fact that 197, has two prime factors of residue degree 1 can be seen,
for instance, from the factorization of f over Fig: f(z) = (z + 7)(xz — 2)
(2 + 1423 + 222 + 112 + 4) mod 19. Similarly, f factors over Foz as f(z) =
(z + 10)%(x — 5) (23 + 822 + 19z + 4) mod 23. To see that the pairs m;q, 7]
and my3, hy generate different prime ideals, one can check that the minimal
polynomials of 7,4/7]¢ and 75 /7hs are not integral.

The element 7 = —671£% + 46764 — 994¢3 + 336062 + 2314¢ — 961
of Z; is totally negative. Its minimal polynomial is g(y) = % + 339y° —
19752y* — 2188735y + 284236829y + 4401349506y + 15622982921. The
ideal (n) factors into eight prime ideals of Zi; in fact, one can check that
1) = Ty 31T gMo3Tys Mgy, . We let K = k(/n), a totally complex field of
degree 12. A defining polynomial for K is g(y?). We note that 7 is congruent
to a square modulo 47y; explicitly, n = 32 + 4y with 8 = & + ¢4+ &3 4+ 1
and v = —173¢% + 112¢* — 270€3 + 815¢2 + 576¢ — 237. Thus, the relative
discriminant dgy, is simply (7)), and K/k is complexified at the four real
infinite places of k, ramified at the eight primes dividing 7, and nowhere else.
The root discriminant of K is:

rdy = rd,.(Ngpdgep) '/

= (23-35509)Y/6(7-13-19%-232.29 - 31)1/12 = 68.363 - - -

Consider t := {p} for the prime p = 737 of k above 3; p is inert in K/k.
We put T ={pZk}.”

Now we leave the text of [HM2] and give a direct (but similar) reasoning
for the infiniteness of the group Gx.r = Gi&% = G = Gal(Hg r(2)/K)
whose abelianization is isomorphic to ((x r)2. Suppose that Gk r is finite.

Recall that d := d(Gk 1) = tko(H (Gx 1, Z/2Z)) = rko(Cli 1), and that
r = r(Grr) = tko(H?*(Gr1,Z/2Z)). Then, from Corollary 3.8.2 of the
Appendix with E3 = Ef pz,, we obtain:

d<2+2V6<6.9

since ry =0, ry =6, and —1 # 1 mod pZx.
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Now we apply Corollary IV.4.5.1 to the extension K/k for the sets ¢ and
s = Pl ; since all elements of s are complexified in K, this gives:

11— EZTS/EETS NNg/u(Ji) = 25 (K/k) == (Gal(H /1 /K HY'Y))2 — 1,

where:
E,‘gfg ={e € B", £=1modp},

O3 (K [k) ~ {(au)ugt e @ D,(K/k) D L(k/k), [1o, = 1} ~ (2,/22)1
u€s ugtUs ugt
since, in K, four real infinite places of k are complexified and eight finite places
of k are ramified. Since d = rky(Gal(H 1/K)) > rky(Gal(H /i, /K HY'Y)),
we have:
d > 1ky (127 (K/k)) — tko(ERS) =11 —4 =7

because the numerical data above show that er(ng;i) = 4, a contradiction.
Therefore, K has an infinite 2-tower of number fields (tamely ramified at
a place dividing 3, unramified elsewhere) with a root discriminant bounded
by rdg x 9Y/12 =82.1- -, giving a(0) < 82.2---.
Note that the classical reasoning with class groups (i.e., ¢ = {}) and cor-
responding genera theory does not succeed in this case. |

5.9.5 Exercise (Colod-Safarevi¢’s first example). Show that the 2-class
fields tower of K = Q(v/—-2x3x5x7x11x13) is infinite (hint: use
the Example of Corollary IV.4.5.1 in K/Q, and Corollary 3.8.2 of the Ap-
pendix). 0J

5.9.6 Exercise. Consider the fields k¥ = Q(1/—131) whose class number is 5,
and put K = Q(v/53 x 131). Let M = Hy,(v/—53), where Hy, is the Hilbert
class field of k. Note that C/%¢8 ~ Z/27 x 7./27 and U324 ~ 7./27.

(i) Check that 53 is totally split in Hy/Q and that 2 is totally split in
Hy/k.

(ii) Deduce that rky(ps) > 9 (apply IV.4.5.1 in M/ Hy,).

(iii) Prove that the 2-class fields tower of M is infinite. Therefore, the class
fields tower of K, in the restricted sense, is infinite since M /K is unramified
(but not necessarily its 2-class fields tower!).

(iv) Using Corollary 3.8.1 of the Appendix, show that the class fields tower
of K in the ordinary sense is finite. Therefore, it is K (v/53).

For generalizations of such examples, see [Mail]. O

5.9.7 Exercise (after [Mai3] using PARI). Consider the totally real field F
associated to the irreducible polynomial:

X7 —3X% —13X° +28X* +42X3 —47X2% - 31X + 12,

whose discriminant is the prime number ¢ = 17380678572159893 (the Galois
group of the Galois closure of F'/Q is S7).
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Let ¢ = 1051, r = 16747, K = Q(\/.q.7 ), and M = FK.

(i) Check the decomposition of ¢, ¢, v in F'/Q (hint: ¢ splits into five
places of residue degree 1 and one place of ramification index 2; ¢ splits into
six places; r is totally split).

(ii) Deduce that M has an infinite 2-Hilbert class fields tower F?;d@) and

that M/K is unramified. Therefore, the Galois closure of F?\f[d(z) over K is
an infinite unramified Galois extension of K.

(iii) Prove that the Hilbert tower F(;;d of K is equal to the genus field
Q(V¢, \/g-7) of K (hint: check that the fields Q(v/¢) and Q(,/g.7) are
principal and that the class number of K is equal to 2). Note that the genus
field of K is thus principal and admits an infinite unramified extension.

For other similar constructions, see [Mai3]. O]

5.9.8 Exercise (after [HM2] using PARI). Consider the Example 5.9.4, (ii).
Let k = Q(§), K = k(y/1), with n = —36&* + 125¢% — 2212 4 182¢ — 80.
Show that the discriminant of k is —31391, that its signature is (3, 1), that
7 is totally negative and such that (n) = 7L m T 7131979 TagTag, With
the principle of notations of the Example 5.9.4, (iii). Deduce that K/k is
ramified at nine finite places and complexified at three real places, so that
d > 7. Conclude that the 2-Hilbert tower of KX cannot be finite. O

In the totally complex case, the historical example of Martinet (published
in 1978 in [Marl]) yields a root discriminant less than 92.4 in the following
way. Consider k = Q(111,v/2)", a totally real field of degree 10 in which 23
is totally split, and use K/k = k(v/—23)/k which is ramified at ten places
v|23 and complexified at ten real places.

§6 The Hasse Principle — For Norms — For Powers

6.1 AN INDEX COMPUTATION. The equality:
(Jre : K*Npyie(J)) = [L*: K],

which comes from the fundamental properties of the global reciprocity map
for a finite extension L/K will allow us to give a nontrivial example of the
local-global principle mentioned in the Introduction, the Hasse norm theorem.
For this, we will interpret this index as a product of suitable norm indices; this
computation, which is useful in practice only when L/K is a cyclic extension,
involves interesting arithmetic invariants (such as the order of the group of
ambiguous classes). For a cohomological approach see [d, Langl, Ch.IX].

6.1.1 Notations. Let L/K be a cyclic extension with Galois group G =:
(o), and write Ny, =: N. Recall that for S = 0, US =U, ES = E, and
% = & denote respectively the group of unit ideles in the restricted sense
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(U™s), the group of units in the restricted sense (E™), and the restricted
class group ((#**®) of K. In the computations below, to simplify notations we
omit these superscripts. ]

Finally, it will be necessary to check that each of the indices that we will
write below is finite (in particular by using the fact that Jy/L*Uy, ~ (¢;, and
Ji/K*Uk ~ Uk are finite).

Because of the inclusions K*N(Ur) € K*N(J) C Jg, we have the
equality:

(JK : KXN(UL))

(K*N(J) : K*N(UL))

(JK . KXN(JL)) =

(the finiteness of the numerator comes from that of Jx/K* Uk ~ (lx and
from that of Ux /N(UL) by local class field theory 1.4.3). We have the exact
sequence:

1 — K*NN(Jp)/K* "N(L*UL) — N(Jp)/N(L*UL) ——
K*N(JL)/K*N(UL) — 1,

since the kernel is equal to:

K*N(UL) NN(JL)/N(LXUL) ~ (K* N N(JL))N(UL)/N(L*UL)
~ K*NN(Jp)/K* N"N(L*Up) ;

thus, N(Jp)/N(L*UL) being finite as a quotient of (1, we obtain the formula:

(Jr : KXN(UL)(K* NN(J) : KX N"N(L*UL))
(N(J.) : N(L*UL)) ’

(JK : KXN(JL)) =

furthermore, the exact sequence:
1 — NJL LXUL — JL —_— N(JL)/N(LXUL) I 17

where NJr = {x € J., Nz = 1}, allows us to interpret the finite index
(N(Jr) : N(L*Up)) in the form:

D JiToLx
(Jp, i LU (Jr = Jg, 1_UUL) _
(NJLLXUL : JL LXUL)

It is here that class groups enter since, in the exact sequence:
1 — JIOLXUL JL* U, —— Jp /LU, —— Ji/JS LU, — 1,
Jr/L*Up ~Cp and J °LXUp/L*Ug ~ (Cl1)'~7; we thus have:
1 — (U) —— O —— J /] LU, — 1

and thanks to:
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1— ()Y —— U —— (U) 7 — 1,
this allows us to write:
(Jp: Jp77L*UL) = ()€,

which is equal to the number of invariant classes for the cyclic extension L/K
(also called the number of ambiguous classes); the (delicate) computation of
|(C1)€| yields the following result.

6.1.2 Lemma. For any cyclic extension L/ K with Galois group G, we have:

k| 11 e,
vEPly

(@)% = [L: K] (Ex : Ex NNL¥)’

where e, is the ramification index of v in L/K.*° O]

Therefore, we have obtained:
(JK : KXN(UL))
[(CL)“]
(KX NN(JL) : KX NN(L*UL))(nJp LU : JL°L*UL) 5

(JK : KXN(JL)) =

hOWQVGI", we can write:
(JK : KXN(UL)) = (JK : KXUK)(KXUK : KXN(UL))

(Uk : N(UL)) 7
(EK N EKﬂN(UL»

= |Uk|

since we have the exact sequence:
1— EK/EK ﬁN(UL) — UK/N(UL) —_— KXUK/KXN(UL) — 1.

By local class field theory (see 1.4.3, (ii)), the numerator is:
Uk :N(UL) = [] e
vE Plo
and the denominator can be written in the form:

(EK cExg N NLX)

(Ex : ExNN(UL)) = (Ex N"N(Up) : Ex N NLX)7

the inclusion Ex N NL* C Ex N N(Uyp) being an easy consequence of 2.5.4
(we have here Exx NN(UL) = Ex N"N(Jp)). Thus, the index (Jx : K*N(UL))
can be written:

49 Recall that classes and units are taken in the restricted sense; for the ordinary
sense, see 6.2.3.
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k| 11 e,
ve Pl

(i KENUL) = (e AN B ONUL) - B AONLY)

= (&) [L: K] (Ex NN(UL) : Ex NNL*)

using 6.1.2. Coming back to the expression for (Jx : K*NJp), we obtain:

(JK : KXNJL) = [L : K] (EKﬁNUL : EK ﬂNLX) X
(KX ﬂN(JL) K~ ﬂN(LXUL))(NJL LXUL : JiiaLXUL) ;

this index being equal to [L : K] (by the fundamental equality of global class
field theory), we therefore obtain:

(1) Exn N(UL) = Ex NNL*,

(ii) K* NN(Jp) = K* NN(L*Up),

(iit) nJp LXUp = J; °L*Uf.
Statement (iii) does not tell us much since xJ, = J;~ by the Hilbert The-
orem 90 for the idele group in a cyclic extension; this fact has an analog for
an arbitrary Galois extension L/K and can be written H'(G,Jr) = 1 (see
2.4). But one checks that (ii) can be written:

K*AN(JL) = KX NN(L*Up)
= NL* (Ex N N(UL))
= NL* (Ex NNL*) (by (i)
= NL*.

Thus we have proved the following result.

6.2 Theorem (Hasse’s norm theorem (1930)). Let L/ K be a cyclic extension
of number fields.

Then a necessary and sufficient condition for an x € K* to be the norm of an
element of L* is that x be a local norm everywhere for L/ K or, equivalently,
iv() = Np, /K, (Yo), Yo € LS, for allv € Pl.

The product formula tells us that this is equivalent to (#) =1 for all

noncomplex places v except an arbitrarily chosen one.

6.2.1 Remark. Since by 4.4.3 we know how to compute the Hasse symbols
(m, L/K

v
x € Np /g (L*); for this, we can omit the computation at an arbitrary place v,.

Recall also that it is sufficient to check this for the (finite) places which are
ramified in L/K (except one), as soon as we know that v(z) = 0 mod (f,)
for every place v (in particular for v € PIL), where f, is the residue degree
of v for L/K (see 1.4.3).

Note that Hasse’s theorem does not give us the solution y € L* such that
Ny, k(y) = x, but note that if y, is one of them, the others will be given by

) , in the cyclic case it is numerically possible to know whether or not
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Yy =yo2'79, 2z € L*. For an algorithmic point of view, see [Sim] or [j, Coh2,
Ch. 7, §5] where S-unit groups play a fundamental role. O

6.2.2 Exercise. Let L be a totally imaginary number field. It is known
(claimed by Hilbert (1902), proved by Siegel (1919)) that —1 is the sum of
1, 2, or 4 squares in L (with evident condition of minimality). Thus, if we
suppose that v/—1 ¢ L, —1 is the sum of 2 squares if and only if it is a norm
in L(v/-1)/L.

Prove that this is the case if and only if for all w|2 the local degree
[Ly : Qo] is even (hint: use the Hasse norm Theorem 6.2 in L(y/—1)/L, and
show that —1 is a local norm at the odd places of L; for w|2, use the norm
residue symbols (—1, L, (v/—1)/L,), then the local norm lifting Theorem
1.5.4 for K, = Qo, M = Qo(v/—1), and finally 1.6.5).

We can omit a place w,|2 and deduce that the corresponding local degree
is even! This is not surprising since here the product formula looks like:

2 [Lw: Qo] =[L:Q]=2ry(L) =0 mod (2).

w2

For instance, there is nothing to do for the field L generated by a root of
X4 4+2X +2. O

6.2.3 Remark (Chevalley’s ambiguous class formula (1933)). Classically,
the above index computations are done in the ordinary sense (U9, E°9,
and (°*?), which lead to a formula involving |((/$*)¥|, which itself involves
the “ramification” of real infinite places, and which for us can be written
(still for a cyclic extension L/K):

cszd| 11 e, 11 f,
‘(Cgord)G‘ . vEPlg vEPIE )
g [L: K] (BgD: BRI NNL (LX)

This formula occurs for the first time in complete generality in [h, Chel]
and relies on work of Herbrand on the unit group, more precisely on the
computation of the Herbrand quotient of E (see for instance [d, Langl,
Ch.IX, §1]), which is given by the formula:

(Er : Np/k(EL)) 2

(NEL:EL9) T [L:K]

where r{ is the number of real places of K complexified in L, and which is
the key of Chevalley’s formula.
It has been extended to the case of S-decomposition in [Ja2]. U

We also give without proof a more general formula which allows to perform
computations of invariant classes in cyclic extensions (see [Gr8]).
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6.2.4 Proposition (invariant class formula with unramified modulus). Let
L/K be a cyclic extension of number fields with Galois group G, and let
m= H P, my > 0, T disjoint from the set of places which are ramified in

L/K Let w’ be the extension of m to L. Let C' := I' Pp, 1w pos/ PL,Tm’ .pos C
C€f}sm,, where I' is an arbitrary sub-G-module of I, 7. We then have:

ans 11 €y
(G5 /CC | = AT} )
: [L: K] INL/x(C)] (A: ANNL, x(L%))

where A :={z € K7 ., (x) € Ny g (I')}. OJ

6.2.5 Remarks. (i) Recall that the action of Ny /x on C/f5,, is given in 5.7,
and implies that Ny /5 (C") makes sense.

(ii) By the Hasse norm Theorem 6.2, the term (A : ANNp, gk (L*)) is of
a local nature; it can be written (A : AN Ny, g (Jr)) and depends only on
the norm residue symbols at the ramified places since the condition (z) €
Nz k(I') defining A implies that these norm conditions are already satisfied
at the unramified places (by 1.4.3).

This remark is of course valid for Ex NNy g (L*) = Ex NN /k(Jr) in
the various ambiguous class formulas.

(iii) We obtain an expression for |(C€€ )€, where S’ C Pl is stable
under G, by choosing for C’ the G-module ( o€fsm, (S")) (in the sense explained
in 1.4.4.1, (ii)). 0J

The Hasse principle is a key tool in the proof of the Hasse-Minkowski
theorem on quadratic forms over number fields (see also the direct proofs of
[a, BSa; D; Sel]). The three-variable case is the object of Exercise 6.4 which
can also be found in [d, CF, Exer. 4] and which is given in all the books
dealing with the Hasse principle. The four-variable case is solved in 7.3.2.

When L/K is not cyclic, the Hasse principle is in general not true and its
defect group, which is essentially given in cohomological terms, is in fact an
algebraic invariant, related to the family of decomposition groups of ramified
places. To be complete on this, we simply give the following results of Scholz-
Tate involving Schur multipliers. 4!

Let L/K be Galois with Galois group G; for any noncomplex place v of
K we denote by w a place of L above v, fixed arbitrarily, and we denote by
D,, the decomposition group of w in L/K.

6.2.6 Proposition. We have a canonical isomorphism (where H=3 := Hs):

KX ONpc(Jn)/Np (LX) ~ H® G,Z/Inf(EPH— (Dw,Z)),

41 See [d, CF, Ch. VII, §11.4], [Scholz1], [Jeh], as well as the work of Razar [Ra]
which is the culmination of several approaches (Garbanati, Gerth, Gurak, ...).
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where, for (o), € D H™3(Dy,Z), we put Inf((ay)y) := [1Inf, (), Inf,
denoting the inflation map H~3(D,,,Z) — H3(G,Z). O

6.2.7 Remarks. (i) Since the group G is finite, by duality (see 2.4.1, (ii)),
we can express that the dual of K* NNy, /x(Jr)/Np k(L) is isomorphic to:

Ker(ReS : H?(G,Q/Z) —— @Hz(Dw,Q/Z))z

where Res := (Resy, ), is the family of restriction maps. Since Q is uniquely
divisible, its cohomology is trivial and we may replace the H?(+,Q/Z) by
the H3(+,Z). When v is unramified in L/K, D,, is cyclic (generated by the
Frobenius of w), and H3(D,,,Z) = H'(D,,Z) = 1, so that only the finite
ramified places enter in the definition of Inf and of Res.

(ii) Finally, when L/K is abelian, Razar has shown in [Ra] that we may
replace H3(G, Z) and H=3(D,,,Z) by A°G and A>D,,, respectively, which
in this case enables us to perform explicit computations and to immedi-
ately construct counterexamples to the Hasse principle (the simplest being
Q(+/13, v/17)/Q of Scholz, for which —1 is a local norm everywhere without
being a global norm; see [Scholz1] or [d, CF, Ch. VII, §11.4]).

(iii) For example, if L/K is abelian and if there exists a place v of K such
that D,, = G, then the Hasse principle for the norm is true in L/K.

In the case where G ~ Z/pZ x 7Z/pZ, the Hasse principle for the norm
holds in L/K if and only if there exists v such that D,, = G. O]

We will again meet the default group K* NNz /x(Jr)/Np/x (L) in the
section dealing with central class fields (Ch.IV, §4, (c), and Exercise IV.4.10).
This group is also called the knot group of the extension L/K, notion which
was introduced and studied by Scholz, then by Jehne.

6.3 LoCAL-GLOBAL PRINCIPLE FOR POWERS. Starting with Chapter III,
we will come back to the fine study of the elementary parts of class field theory

so as to obtain the structure of Gal(fab /K), and deduce a number of little-
known consequences. Meanwhile, in the following Theorem 6.3.3 the reader
will find the solution of an important local-global problem (the local-global
principle for powers) which only relies on the surjectivity of the Artin map
and on simple Kummer theory arguments which can found for the first time
in [SchFK] and in [Cheb, I], and which should not be considered as a result of
class field theory, although it is an essential tool for it.4? This result will be
crucial to explain in detail certain elements of the structure of Gal(?ab /K)
(for instance by means of the Schmidt—Chevalley Theorem I11.4.3 and the
Grunwald-Wang Theorem II1.4.16.4); note that it is the starting point for
the p-adic class field theory of Jaulent and for the study of the connected
component of the unit element of C' done by Artin—Tate and Weil. Finally,

12 See [d, AT, Ch.X, §1]; see also [e, Ko3, Ch.2, §1.12, Th.2.21].
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we mention that it exhibits the famous special case (which is an obstruction
at 2 of the corresponding Hasse principle), which shows once more to those
who are not yet convinced, that 2 is the most “interesting” prime number.

6.3.1 Notations. Let K be a number field %3, and let p® for some e > 1 be
a fixed power of a prime number p. We set (in a suitable algebraic closure):

e—k

Ppe =: (¢.) and P = (Ck), where (:=¢

for 0 < k < e. Denote by K’ the field K(u,.), and set G’ := Gal(K'/K)
which is isomorphic to a subgroup of (Z/pZ)*. O

6.3.2 Theorem. Let x € K* be such that x =: /", 2/ € K'*.
Then x = y?* for an y € K*, except in the following exceptional case:

e p=2, e>2,
o KNQuge) =Q(¢, +¢7 1Y), for2<n<e,
o x=(—1)2""z,.y*, witha,:= (2+¢, + Cn_l)2671 and y € K*.
In this case, (—1)*" "z, = (1 + )2 U

6.3.3 Theorem (local-global principle for powers). Let X' be a finite set of
places of K. Let x € K> be such that i,(z) € KP° for all places v ¢ X.
Then x = yP for an y € K*, except in the following X-special case:

*p=2 e=3,

o KNQ(uye) = QG + (1), for2<m <e,

o for all places v € Ply\ (X N Ply), K, contains one of the numbers:

L4 G Gupr +Gdrs VoL (Gupr +Gif),
o z=ux4.y>, with x, ::(2+Cn+C;1)2671 andy € K*. L

We give detailed proofs by the way of the following exercise in which the
reader will find many other properties and examples, as well as the study of
an idele s such that i(x,) = s2° in the special case (i.e., the X-special case
above for 3 = (). The notations are those of 6.3.1.

6.3.4 Exercise. Let 2 € K* be such that z =: 2/?°, for an 2/ € K'*.
() (case p # 2). In this case, G' =: (o) is cyclic.
(i) Show that H'(G',pu,.) = 1 (since p,,. is finite, its Herbrand quo-
tient ** is trivial and we have |[H'(G’, )| = \ufe//NK//K(upe)h thus, one
can show the equality ,ug;e/ = Ngv/ K(upe)7 but one can also show by a direct

computation that i, = u;)e_a, where g1, is the kernel of N/ in pre).

43 Result 6.3.2 is valid for any field of characteristic equal to 0; in particular it will
be used for the completions of the field K.
41 [d, Langl, Ch.IX, §1], [d, Se2, Ch. VIII, §4].
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(ii) From the equality z = 2/?° and the above results, deduce that
x =y forye K*.
B) (case p = 2, e > 2). In this case, G’ is isomorphic to a subgroup of
Y@ (5) in (Z/2°Z)*. Set Q := K N Qg ).

(i) Show that z € K*?" is still true if K contains Q(u,) or if for some
n > 3, Q is equal to the subfield Q! _5 of Q(uy.), of relative degree equal
to 2, different from Q,_2 := Q((,, + ¢, ') (see Fig.6.1) (thus there will only
remain the case where QQ = Q,,_2 for some n > 2).

(i) Show that in all other cases, we have z € (—1)K*2" "
From now on, we assume that Q = @, _s for e > n > 2; in particular
Ky := K(v/-1) is a quadratic extension of K containing fiy» and not fiy,:.
(iii) Show that, if the set of counterexamples (to z € K*2°) is not
empty, it is of the form x,K*2?" for an arbitrary solution z, (by abuse of
language we will say that the counterexample is unique).
(iv) Show that, for all n > 2:

2= (1+G)% € Q5 N (Qugn))*?", where Qu_z == Q((, +¢1Y),

and that it is also an element of — :E;_l

(v) Conclude by giving a characterization of the cases where K contains
a counterexample, and give its value. This will prove Theorem 6.3.2.

(
~1

{

(v) (Hasse principle for powers). In this question, p is once again an
arbitrary prime number and e an integer which is > 1. Let X' be a finite set
of noncomplex places of K, and let 2 € K* be such that i, (x) € KX?" for all
places v not belonging to X. Consider the Kummer extension K'( »/z)/K’.

(i) Check that there exists a place v{, of K', unramified in K'( #/z )/K’,
which is not above a place of X', whose Frobenius in K'( »/z)/K’ is a gen-
erator (density Theorem 4.6).

(ii) Deduce that z € K'*?°, and then that 2 € K*P°, except perhaps
in the case p = 2, for a particular case which one asks to characterize: it is
the Y-special case, where nonetheless we have x € K x2¢71

(iii) Let peJ (resp. ,<C) be the set of ideles (resp. of idele classes) of
order a divisor of p®, and let ¢ be the canonical map J — C. Deduce from
the above that ,C' = (peJ) except in the Y-special case for X' = () (then
simply called the special case), in which case 2:C = (d(s)).d(2]), with
d(8?) € d(ze-1J), c(8) & cl(:]) for a suitable idele s (see the data in the
proof of (ii) above). In other words, 2:C/cf(2<J) has order 2 in the special
case.

Answer. For statements («) and (3), we may assume that p1,,. ¢ K; note also
that uffe’ = up(K) is of the form pp for 0 < k <ee, with k > 1 for p = 2.

(a) () If k& = 0, the result is trivial. If & > 1, K N Q(uye) = Qg0
(indeed, between Q(x,.) and Q(s,,. ) there exist only the fields Q(s, ;) for
0<i<e—ksince k> 1), G’ has order pe*k, and we have:
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Irr(C, K) = X7 — ¢,

hence p . € Niger /g (pe)-

(ii) If # = 2’7", we have 1 = (2/177)P", hence 2/177 =: (' € \fie;
since H'(G', pye) = 1 (ie., yfipe = fipe 7), there exists ¢ € Hpe such tha:t
¢’ = ¢'79, and there exists y € K* such that 2/ = £y. We thus have z = y?".

We can also say that the exact sequence:

1 — [iye K'* p° K/xp"‘ — 1,
yields, since H'(G’, j1,,c) = 1, the surjective map:
K/XG — KX p° K/XpeG = KX mK/Xpe

so that K*P° = KX N K'*P".

(B) (i) If K contains Q(y,), we have Q = Q(u,) for & > 2, G’ is cyclic
of order 2% and we still have Irr((., K) = X2 - ¢x and the same result
(here we find that —(x € N/ (pge ), but ¢ = (=),

The following field diagram gives the structure of Q(pge)/Q:

Qluy2) 7/(@(.“23) oo Qgns) ﬁ(ﬂlgn) /(@w2n+1) .
@1 o i
/ /
Q=0Qo Q1 - Qn-s Qn—2 Qn-1
Fig. 6.1

If for some n > 3, @ = Q),_5 (which is the subfield of Q(uq.) fixed under
72n73
(=5

we have:

)), then necessarily n < e, the group G’ is cyclic of order 2=+ and

2c—n+1

Irr((, K) = X —wX* " 1,

where w := ¢, — (!, so that N/ (pge) = (—1) = py(K). In this case, we
still have z = y2°.

(ii) If we consider the equality z = /2" in K; := K(v/—1) C K/,
fact (i) shows that there exists y; € K;° such that * = y?"; hence, 2 =
Ng, /k(x) = (NKI/K(yl))Qe7 proving the existence of y := Ny, /x(y;) € K*
such that z = +¢2° .

(iii) Let 7 be the generator of Gal(K;/K). From the following exact
sequence of (7 )-modules:
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2° e
KlX2 — 1,

L — pign K
by taking invariants under (7 ), we obtain:

9e

1 — iy KX K*NKX* —— HY((7), pgn) — 1

since H'({(7), K{) = 1 (Theorem 90). Thus, the Herbrand quotient of pyn
being trivial:

KX MK KX o~ iy /iy o /N, 7 (o),

and so “the” counterexample happens if and only if Ny, /5 (¢n) = 1, hence
if and only if 7(¢,) = ¢, !, which means that Q(¢,, + ¢, 1) C K, ie., Q =
Q(¢,, + ¢, 1), which is indeed the case.

(iv) If n > 2, we have z,, := (1 + (,)?" € Q)_, since (1+ (;1)?" =
(GG +1))2" = (1 4+ ¢,)?"; furthermore, we have:

(14 Cn)? =1+ G+ 26 = (G + ¢, +2),
which shows that:

n—1 . _
Tn = _yi ) with Yn = 2+ Cn + Cn ! S QZ—Z

Note that z,, is not even a square in Q5

(v) Assume that K does not contain Q(u,) and is such that Q # Q! _o
for all n > 3. We thus have:

Q = Q,,—» for some n > 2.

Recall that K N pige = pign since K1 N Q(uge) contains Q(u,) and @Qy,—o,
hence Q(p5x), the only possible quadratic extension of @Q,_s.
If n = e, by “uniqueness” the counterexample in K is equal to:

2=z, =—y2  (equal to (1+¢)2 in K')

(indeed, if we had z = y** with y € K*, then —1 would be a square in K,
which is not the case).

If n < e, we have at our disposal the element x,, € QX _, (see (iv)) such
that:

on—1 X

Tn = — Y, y Up € Qn727
so that we can consider:

zi=22 " =42 (equal to (1 + ¢,)% in K') ;

x is the desired counterexample in K: indeed, if yf;_l = 9%,y € K*, then
y, = &y? €€ Hoe—1; but & € K, hence £ = £1 so we easily obtain:
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Y= £(Copr +Gt)s ifE=1,
y==EV—T1((py + ¢ ), ifE=—1.

But the field @,—2(y) € K is respectively equal to @,—1 and to Q)

n—1»
which means (since here n < e) that K N Q(uye) is not equal to Q,—_2, a
contradiction.
To summarize, the counterexample of Theorem 6.3.2 takes place if and
only if:
Kﬂ@(u%) = Q(C’n + C;1)7 2<n<e,

and it is given by:
vo= (-0 @24+ G

(equal to (1 + ¢,)% in K').

6.3.4.1 Examples. (i) If K does not contain Q(u,) and if we take e = 2,
we always obtain Q = Q = Qp (i.e., n = e =2), and:

x=x2=—4:(1—|—\/—1)4,

which is a 4th power in K(v/—1) but is not a square in K.
(ii) For e = 3, if K contains @; = Q(+/2) but does not contain Q(v/—1),
we obtain @ = @1 (i.e., n =e = 3), and:

p=ay= -2+ V2) = (1+6)",

with (3 =v=1, ¢+ ¢ = V2
(iii) Finally note that, when K does not contain Q(v/2) and e = 3, Q =
Qo, hence n = 2, we have:

r=ad=16= (14 V1) = (VB) = (V)
which is an 8th power in Q(ug) and only a 4th power in K. ]

Note. The case n = e > 2 is the only case where there exists a counterexample with
K'/K cyclic (of degree 2); we will see that the special case assumes the noncyclicity,
hence n < e with n > 2.

(v) (i) Since K'(»/x)/K' is cyclic, there exists an infinite number of
such places by the density theorem or simply the surjectivity of the Artin
map (but the finiteness assumption on X' is essential).

(ii) Let v be the place of K below v(. The extension K'( »y/x )/ K’ is split

at v}y (since i,(z) € KXP?°, a fortiori i;(,) (z) € K//7), hence the Frobenius
0

of v}y is equal to 1, and K'(»/x) = K’, hence x € K'*P°. We thus have

z e K*P° exceptif p=2,e>2, Q= Q,_o for some n such that 2 < n < e,
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and if (up to an element of K*27) z = (=1)2" "y2" . But since e > 2, in
the case z = —y2  we would have —1 € K2 for all places v ¢ X (since
yfe_l € K*?); this is impossible since /=1 ¢ K (choose v; ¢ X such that
the Frobenius of v, for K(v/—1)/K is of order 2, or simply note that this is
the reasoning used in (i) above for e = 1 with © = —1). We are thus in the
case where (see (), (v)):

Q:QH—Q; 2§’ﬂ<€,

which corresponds to the counterexample z = 22° " = 32° . It follows that

the extension K'/K contains the biquadratic subextension KQ(pgn41)/K
since e > n+ 1. In K’ we have:

z=(1+6)" =l +6Gh)Y = V=1 + i)

so that 1+ Cuy Gy + Cut1s V=1 ((uqq + Ci1) are generators over K of
KQ(pgn), KQn-1, KQ!, _4, respectively.

But if v is any place of K not dividing 2, it is split in at least one of
the three extensions KQ(pgn), KQn—1, and KQ/,_; (since v is unramified
in KQ(tty,41)/K and Gal(KQ(pigns1)/K) ~ (Z/2Z)?). It follows that for
such places i,(z) € KX (for instance if v|oo, the splitting takes place in
KQ,_1/K). Tt follows that our initial assumption (i,(z) € KX?" for all
v ¢ X)) is satisfied for x, except perhaps for the even places not belonging
to 2.

Finally, if v divides 2, i,(z) € K?* if and only if K, contains one of the
three quadratic extensions of Q,,_2 in Q(fty,11), in other words if v splits at
least partially in KQ(fty,+1)/K (apply the results of (o) and (8) to K, by
discussing over K, N Q(ptge)).

This defines the X-special case of Theorem 6.3.3, which is especially
tricky:

e p=2 e2>3

o KNQ(use) =Q(¢, + ¢ h), for some n such that 2 < n <e,

e for all places v € Ply\ X5, K, contains one of the numbers: 45

L4 Gy Gogr T Gdts VL (G + Gl
the defect to the Hasse principle relative to X' being due to:
z€xgK*Y, with y= (24, +¢ )2,
where ¢, = (2, is a generator of ji,,.

The minimal example is for K = Q, e = 3, n = 2, ) = Plsy, which is the
example x = 16 given in 6.3.4.1, (iii).

5 where the first one may be replaced by v/—1 since Qn—2(v/—1) = Q(uon).
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6.3.4.2 Notation. We introduce the set PI5° of the (“nonsplit”) places v|2
such that Gal(/, (ftyns1 )/ Ky) is isomorphic to Z/27Z x Z./2Z (or, equivalently,
Ko N Qpige) = Qu2): 0

We can say that the third condition of the X-special case is equivalent to
the condition:

o PIIsC 5,

according to the following diagram:

Pl
X, I\
pre | e |

This diagram means that we have (unfortunately, when PI3® # ()) discarded
the places v|2 which would have told us (for a local reason) that x is not a
2¢th power. In other words, to choose Xy D PI3® when PI5® # () is in practice
artificial, and the true special case corresponds to the fields K for which:

KNQ(py) = Q(¢, + ¢ 1), for some n such that 2 < n < e,

and whose places v|2 are all partially split in KQ(y,.1)/K (ie., PI3® = 0).

6.3.4.3 Remark (special case: the idele s). The Hasse principle for powers
consists precisely in choosing X' = (), in which case the last condition (cor-
responding to the existence of the special case, hence to the fact that the
principle is false) can be written:

o PI3® =1

In this case (24 ¢, + ¢, 1)?" is of the form s2""" where s is an idele whose
components s, are, at each place, one of the numbers (considered in K,):

L+ Gy Cogr + Gty Vo1 (Copr + Cot)-

For any e > n, we also have i(z,) := (2 + ¢, + ()2 = s2°. The idéle s
is not unique and is clearly defined only up to some element of 5n+1J (this
comes from the fact that if v is totally split in KQ(fig.+1)/K, we can choose
the component s, among three possibilities; this total splitting is equivalent
to Cn+1 € KU)

One should keep in mind that for all e > n, the idéle group ( s ) . 2eJ does
not depend on the choice of s. ]

(iii) Note (still in the special case with PI§® = ) that s? is of the form
Ci(2+¢, + ¢ 1), where ¢ € onJ, € ¢ 9n-1J: indeed, we have ¢ =: ((,), with
Co = Cn, or ( =1, or (, = —1 since:
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(1 + <n)2 = CnYns (gn-i,-l + C;Jil)Q = Yn, (ﬁ(<n+1 + C;Jil))z = —Yn,

with y, := 2+ ¢, + ¢, '; but by the Cebotarev theorem, we have equidistri-
bution of all possibilities. In other words:

C€(S) S 2"L+IC7 Og(s) ¢ 2710.
Finally, for all e > n:
d(8?) € d(ye-1J), d(s) ¢ c(s:])

(indeed, otherwise we would easily obtain y,, € =K *2, which is absurd).
Let = be an idele such that o/(z)?" = 1; there exists x € K* such that
xP" = i(z), so that i,(x) € KP* for all noncomplex places v. Thus, in general
we have P =: i(y)P", y € K*, which yields  =: ¢ i(y), where { € ,eJ is
an idele of the form ({y)y, With ¢, € pep(K,); the result follows in this case.
The special case gives the additional solutions z2° = s2*.i(y>"), which
proves the final result (independently of the choice of s). This finishes the
question () and the exercise. 0J

For use in Exercise 6.4 on quadratic forms below, we note that we have
shown that ¢ € K* is a square in K* if and only if it is a square locally at
almost every place of K since troubles can start only for 8th powers.

6.3.5 Remarks. (i) The existence of a counterexample to the equality:
KX mK(#pc)xpe _ pre

(Theorem 6.3.2) should not be mistaken with a Y-special case (Theorem
6.3.3), which is a counterexample to the Hasse principle for powers and which
is relative to the choice of X’; the former case is characterized by the following
conditions:

e p=2 e>2

hd KQQ(NQG) = Q(Cn Jr(r?l)v for2<n<e,
and concerns z := (—(2+ ¢, + (12" )27 ", which yields the minimal ex-
ample z = —4 (for K = Q and e = 2) which is never a special case. To avoid
any misunderstanding, this case has been called instead the exceptional case.

(ii) Note also that +(2 + ¢, + C;l)ykl is a 2"th power in each of the
three quadratic subextensions of KQ(fiy,+1)/K (the minus sign occurs only
for KQ(piyn)/K and the relation (24 ¢, + ;1) = —(1+¢,)2"). 0]

Finally, we give the following numerical example of a true special case.

6.3.6 Example. Let K = Q(+/7), p =2, and e = 3. Then K N Q(ug) = Q
(i.e., n = 2), so that we have the exceptional case with = 16 (we have
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16 = (14++v/=1)% = (v2)® = (vV=2)® in Q(ug)). From the above, we know
that i,(z) € K& for any place not dividing 2, and for the unique place v, of K
above 2, we have K,, = Q2(v/7) = Qa(v/—1) (i.e., PI5* = )), which implies
that 4, (z) € KX® (we could also have chosen K = Q(v/£14)). We thus have
a special case (i.e., X' = 0); therefore it is an absolute counterexample to the
Hasse principle for powers. O

We will speak of the special case only in this type of situation.

6.3.7 Exercise. Consider the special case of Example 6.3.6 above. Let ¢ be
the residue characteristic of v € Plg. Show that the idele s =: (s,), (see
6.3.4.3) can be chosen as follows. If / =2, s, =1+ /-1 il =7,s, = V2

if ¢=1mod (4), s, =1+ +v/—1, and if £ = —1 mod (4), s, = \/(—1)F 2.
Check that 1+ /=1, /2, /=2 are all possible for s, if and only if | F,| =

1 mod (8) (i.e., £ =1 mod (8), or £ # 1 mod (8) and ¢ = +5, +11, +13 mod
(28)). O

6.3.8 Exercise (another criterion for pth powers). Let S be a finite set of
noncomplex places of K such that ((55(S")))p = (C0%3), (in the sense of
1.4.4.1, (ii)), where S’ is the set of places of K’ := K(u,) above those of S.

Let x € K* satisfying the following conditions:
e (x)=aP, for an ideal a of K,
o iy(x) e K)SP for all v e SU P,

Show that z € K*P.

Answer. The assumption on S’ in K’ is equivalent to HIS{/, (p) = K'. But the
assumption (z) = af implies that K'(¢/z)/K’ is unramified outside p, and
the assumption i, (z) € K P for all v € SU P, implies that it is S’-split and
finally unramified; thus K’({¢/z) C Hj,, hence € K*? by the above and
6.3.2 for e = 1.

Here, the number of local conditions is finite, but the required conditions
assume the knowledge of the p-class group of K'.

We can also replace the conditions i,(x) € K P for v|p by the Kummer
nonramification conditions for places above p (use 1.6.3, (ii) in K). 0J

6.3.9 Remark. Let K be a number field and p a prime. Suppose we need
to prove that some o € K* is not a pth power in K. Then it is sufficient to
find a place v { p such that « is not congruent to a pth power modulo p,.
The local-global principle for powers implies that such a place always exists
but it does not give a bound for the number of tests. |

6.4 Exercise (quadratic forms in three variables). For a, b € K*, consider
the quadratic form:
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(@) X?—aY?-b2Z%

We will say that it represents 0 in K if there exist z, y, z € K (not all zero)
such that:
22 —ay® —b2% = 0.

Set L = K(y/a).
(i) Check that (g) represents 0 in K if and only if b € N /5 (L*).

(ii) Characterize the finite places of K which are ramified in L/K (see
1.6.3).

(iii) Check that, for unramified places v (finite or not), the local norm
condition i,(b) € Ny /k, (L)) (where L, = L, = K,(v/a), for any w|v) is
equivalent to v(b) = 0 mod (f,). For a concrete use of this, note that it is
necessary to check the local conditions only when v(b) is odd, and that then
we must have f, = 1, which is the case if and only if i, (a) € K2

To apply the Hasse principle, we can now assume that we are in the
case where the bad places are the finite ramified places (where one may be
omitted). It is then necessary to compute the symbols (i, (b), L, /K,) which

a,

can be identified with the quadratic Hilbert symbols (T) over K; the case

of odd places corresponds to regular Hilbert symbols and is given by a formula

(see 1.6.8 for n = 2), so there essentially remains the case of even places. These

b, L/K

symbols are also the Hasse symbols ( ) that we know how to compute

v

in terms of Frobenius’ thanks to the global approach explained in 4.4.3 which
thus reduces to the techniques of question (iii) since here the conductor f, K
is known by 1.6.3.

(iv) Let K = Q(v/2), a =2+ 32, and b = —15(1 + v/2); does the form
(q) represent 0 in K ?

(v) Specialize all the above to K = Q, taking into account the impor-
tant simplifications that we have in this case, and show that, for v # 2,

we have <a, b)
v

(—1)v(@v(®) gv(b) p=v(@) (a particular case of the general formula given in 1.6.8
and proved in 7.1.5). Although, because of the product formula it is not really
necessary to give a formula for the Hilbert symbol at v = (2), show that:

(a;}b> _ (7 1) e <u3>

where @/ = 27V@ g, 1 = 27O p o/ = gv®) pvla) — /v py—v(a) and
where:

(E) (quadratic residue symbol in F)), where u =
v

for a 2-adic unit «’.



202 II. Reciprocity Maps — Existence Theorems

Answer. The case where a is a square in K being solved trivially by a direct
study, we will implicitly assume that a is not a square; in this case, for any
solution, z is nonzero.

(i) We write:

2?2 — ay?

b= %)

=Nr/x (
(ii) An odd place v is ramified if and only if v(a) = 1 mod (2), an even
place is ramified if and only if t% = 1 mod (4) is not soluble for t € K*.
(iii) This is Corollary 1.4.3: if i,(b) € Ny, /., (LY) = Np, /i, (75U) C
7lv2U,, we indeed have v(b) = 0 mod (f,) (including the case 7, = —1 and

fv = 2 corresponding to a complexified real place v), and the converse comes
from the fact that, in the unramified case, U, € N /k, (Uw).

(iv) We have (a) = (v/2)(34+v/2) = pop, (the place 2 is ramified in K/Q
and the place 7 is split). It follows that the places of K which are ramified in
L/K are the places p, and p,.

Since b = —15(1 4+ /2 ) has even valuation at every place except perhaps
at places above oo, 3, and 5, we must see whether or not v(b) = 0 mod (f,)
is true for these places; we will simply check that if v(b) = 1 mod (2), then
fo =1 (splitting):

e the place oo splits in K/Q into two places vy, vy, and we have i, (b) <0
(ie., vi(b) = 1), 4,,(b) > 0 (ie., vyo(b) = 0). But we have i, (a) > 0 (v, is
split in L/K, hence f,, = 1);

e the place 3 is inert in K/Q, hence F,, = Fg, and since a = —1 mod (3),
the residual image of a is a square (i.e., i,(a) € KX2, hence f, = 1);

22

e the place 5 is also inert, F, = Fa5, and we find that a® = 1 mod (5),
hence that a is also a square at 5.

The remaining local norm conditions are for the even place p, (which we
can omit), and for v = p,. We can compute the Hasse symbol:

(b, pL7/K) _ <—15(1 +f), L/K>'

In fact, it defines a regular Hilbert symbol of order 2 which we will learn how
to compute in 7.1.5; with this result, we would obtain:

<a, b) = ((—1)V(a)v(b) av® b_"(a)) 2 —p3=1mod po.
P

Let us nonetheless directly compute this Hasse symbol knowing that the
conductor of L/K is (because of 1.6.3 which yields » = 0 in the computation
of the 2-part of the conductor):

2x2+1

f=p3""" pr = (4)papy-
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A p-associate b’ of b must satisfy (see 4.4.3, (7)):

b = bmod p, (since here v(b) = 0),
b =1 mod (4)p,,

iy, (b") > 0 (since only va|oo is complexified),

which for example yields b' = 17 + 121/2. Here V' happens to be a unit (this
was not done on purpose!); the ideal b (in the general formula (b') =: p;(b)b)
whose Artin symbol we must compute is thus the unit ideal, hence b is indeed
a local norm at p,.

The product formula tells us that b is also a local norm at p,. To double-

check this, we want to compute the symbol:

(b, ZK) _ <—15(1 +p\g§), L/K>’

which does not have any simple formula. We proceed as above, and we check
that 9 + 5v/2 is a p,-associate which yields b = py, split in L/K since the
residual image of a is a square.

Thus, the given quadratic form represents 0 in K.

(v) The norm conditions on b at the unramified odd places v = (¢) (i.e.,

IO
such that v(a) = 0 mod (2)) are therefore (by (iii)) ( ) = 1, includ-

ing for v = 0o; we thus indeed obtain (%) =1 in this case.

There remain the odd places v = (¢) such that v(a) = 1 mod (2) (i.e.,
the ramified finite odd places) for which we must check that b is in the norm
group of Qg(v/a)/Qq. Set a’ := al=¥(® and b’ := b0~V We use Exercise
1.6.5 which shows that b is a local norm at ¢ if and only if b € Ny (resp.

N3) when (_Z,) = 1 (resp. —1) (we see whether Qu(v/a) = Qu(v/—¢) or

/

Q¢(v/—£¢)). But b € N3 (resp. N3) is equivalent to (%) =1 (resp. (=1)®).
It follows that b is a local norm at £ if and only if:

(&) -(%)

hence (%) = 1 with the given formula for u since v(a) is odd.

The case of the place v = 2 can be obtained in analogous way by noting
that the Hilbert symbol and the explicit formulas that we must prove are
Fo-bilinear and symmetrical in ¢ and b, and thus we are reduced to the
computation of the six symbols:

(5) () () (%) () (557)
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where ¢ is an odd prime. The computation of these symbols is immediate
from the results of 1.6.5. In fact, the general properties of symbols (see 7.1.1
below) show that it is sufficient to compute:

() (=) (57 -

6.4.1 Remark. If the quadratic form X2 —aY? — b Z? does not represent
0 in K, it does not represent 0 in a nonzero even number of completions of
K (consider for instance X2 +Y? + Z2% in Q). O

87 Symbols Over Number Fields — Hilbert and
Regular Kernels

The notion of symbol, which can be set in the very general context of Milnor’s
K-theory, where the letter K # K does not denote a field but a functor (see
[Mil], [Sil]), is directly inspired from the Hilbert symbols that we have already
encountered in 1.6.7, 1.6.8, 6.4; hence we will start by giving more completely
their properties, obtain from this the general definition of symbols over a field,
and ask whether or not we know all the symbols over a number field.

Thanks to this, we will see that class field theory is only an (essential)
prelude to a larger theory which involves many invariants which we have
not met up to now; as already said, the only unified point of view on these
questions is of a cohomological nature (see [Schn], [Ta2]), and we refer to the
enormous bibliography devoted to higher K-theory.

7.1 Definitions (local Hilbert symbol). Let K be a number field. Then for
any place v of K we define the local Hilbert symbol at v:

('7 ‘)U : Kzf X Kzf —>M(KU)7

by:
(.’ﬂ y) . (yv KU(M\U/E)/KU) mﬁ
) v o %
for all z, y € K.\, where m,, := |u(K,)| and where (., K,("Vz)/K,) is the
norm residue symbol for the cyclic extension K,("vz )/K, (see 1.4). 0J

Note, once and for all, that if v is a complex place at infinity, then
(c, ')1) - 1

7.1.1 Proposition. The local Hilbert symbol (., o), has the following
properties:
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(i) it is Z-bilinear, nondegenerate as a bilinear map on K)/K;™ X
K /K ™ and continuous as a map on K x K;

(ii) it satisfies:

(x,1—2x), =1 forall z € K)\{1},
(x, x)v 1fora1]x€KX
v orallx, ye&€ antisymmetry) ;
! for all K} i

iii) we have (x, y), = 1 if and only if y is a norm in K, ("y/z )/K, (or

i 1 if and onlv if v i K (T K
is a norm in K,("V/y)/Ky,);

1v) 1n an extension , for any w|v 1n L we have, with evident notations:

iv) i ion L/ K, f in L we h ith evid i

(xz:bf 5 y/)w = (.’IJ, NL“’/K“ (yl))“

forallz € K andy' € L;

(v) for any isomorphism 7 of K, we have (7x, Ty)ry, = 7(x, y), for all
xz, ye K);

(vi) if v is unramified in K,("v/x)/K,, we have:

Frob (K, (") /K,) /T v()
RV

(l.a y)v = <
for all ye K.

Note. In (v), Tv is the place of 7K for which |ra|-. = |a|, for all a € K; afterwards,
by abuse of notation, 7 also denotes the isomorphism 7 : K, — (7K)r, coming

from K C G/?EKU/ — 7K C @(TK)TU , by density (the generalization of the

situation of 2.3.1), the embeddmgs @ i, on K and G? i, on TK being understood
v’ |e v’ |e

(here, ¢ denotes a prime number or co); then it is also the extension by continuity
of iry 0T oiy " on iy(K). Thanks to this, the expressions Tz, Ty, and 7(z, y), make
sense.

Proof of the proposition. (i) We have (z, yz), = (z, ¥)»(z, 2), because
of the multiplicativity of the norm residue symbol and of the 1som0rphism of
Kummer duality (see 1.6.1).

We have (xy, 2), = T(T ':;3), where 7 := (2, K,("Yzy)/K,); but 7 is
the restriction to K, ("y/zy) of o := (z, K,("Vz, "/y)/K,) by 1.4, (ii), and

we have:
o("Vwy) _o(Vr) o(Vy)
vy Ve VY
thus giving the result since the restrictions of ¢ to K,("v/z ) and to K, ("/y)
are the corresponding norm residue symbols of z.
Assume that (z, y), = 1 for all y € K; the surjectivity of the norm

v

residue symbol implies that K,("vz ) = K, so that z € K ™.
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If (x, y), =1 for all x € KX, we have (y, Kv(w{/ Ky )/Kv) =1 hence y
is a norm in Kv(mvx/ K, hence y € K™ (see 1.6.6).

Continuity comes from the fact that, if v and «' are sufficiently close
to 1 in U,, then u and u' are m,th powers in K, and we have trivially
(acu, yu/)v = (.73, y)v~

To prove some of the above properties, we may use the antisymmetry that
we will prove in full generality in 7.2.1.

(ii) Let us show that 1—x is the norm of an element of M := K, ("V/x ). If
d|m,, is the degree of M/K,, Kummer theory shows that there exists t € K
such that 2 = ¢"@, and we have M = K, (¥/t). Since for all ¢ € u(K,) we
have:

Nk, (1—€Vt) =1-¢%,

then denoting by ¢, a generator of u(kK,), it follows that:

Nugae,( 10600 ) = -t =10 =1

The relation (x, —x), = 1 as well as antisymmetry then follow from this (see

7.2.1).
Facts (iii), (iv), (v), and (vi) follow trivially from the corresponding prop-
erties 1.4 of the norm residue symbol. O

7.1.2 Remark. If m is a divisor of m,,, the symbol (., « )S,m) defined by:

(y, Ko(¥z)/Ky) Y

{x
for all z, y € K, is equal to (., .):TU since Va'm = {/z. By abuse of
language, it is called the local Hilbert symbol of order m. In common usage,
(m)
v

(z,y) € K x K —

we write simply (x, y), instead of (z, y)y ', the context being in general
sufficient to give the order of the symbols under study (for example m = 2
for the usual quadratic Hilbert symbol). The Hilbert symbol defined in 7.1
has maximal order with an evident meaning. O

Before going any further, it is necessary to introduce the regular Hilbert
symbol (which has the advantage of being explicit), and for this we give some
notations and definitions.

7.1.3 Notations. (i) Let v € Ply and let ¢ be the residue characteristic of v.
We know (see 1.3.1.1) that we have the decomposition:

:U/(KU) = /’[’qv—l S2) ,U/Z(KU)7

where g, := |F,| is a power of ¢ and where p1,(K,) = tor,(U}) is also of order
a power of £, which we will write here in the more descriptive form:
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p(Ky) =t p(Ky)"® @ M(Kv)l-

(ii) For v € PI%, we have u(K,) = 5 and we set, in accordance with the
fact that U} = R*T:

H(Kv)reg = Mo, ,U'(Kv)l = 1.

(iii) As is easily checked, u(K,)! = 1 for almost all places of K (indeed,
w(Ky,)t # 1 implies that K, contains u,, hence Q(4,), which implies that
¢ —1 < [K : Q]). The places v for which u(K,)! # 1 will be called the
irregular places of K. O

7.1.4 Definitions (regular Hilbert symbol). We define the regular or tame
Hilbert symbol at a noncomplex place v as the Hilbert symbol of order

|(K,)re8|, in other words as the symbol (e, «)58 = (., .)T}’, where
m} = |u(K,)*| (equal to qmj 1 in the finite case). 0]

7.1.5 Proposition (regular Hilbert symbol formula). For any z, y € K,
(x, )it is the component on u(K,) 8 of:

(— 1)V($)V(y) "Wy V@),

Note. For computations and when v is finite, it is equivalent to take the residual
image of the above expression since pu(Ky)™® = pg, 1 =~ F* (canonically), and for
a real infinite place v, it is the sign of this same expression, equal to (—l)v(z)v(y).

Proof of the proposition. The case of an infinite place v being trivial
directly, we assume that v is a finite place. We have:

Umil; — (xmi L Y)e = (v, Kv(%%)/Kv) %%_

To identify this Hilbert symbol, it is sufficient to compute (using bilinearity
and antisymmetry):

(z,y)

1 1 1
(w, u)o™, (u, m", (7, ),

for u, v’ € U, and for a uniformizer 7 of K,:
1
e by 7.1.1, (vi), we have (u, u')y"* = 1 since K, (*v/u)/K, is unramified;

G,—1
e in the same way, (u, W)Um’lj = Mv where o := Frob(K,(*vu)/K,);
u

q,—1

it follows that we have:

o("Va) _ (V)
%—\1/6 q“_\l/ﬂ

= u mod (),
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1
which shows that (u, 7)y " is the component of u on Hgy—1

1 1
e by 7.1.1, (ii), we have (7, —m), = 1, hence (7, 7)y* = (=1, T)y", s0
that we are reduced to the preceding situation with u = —1.

By “gluing the pieces together”, we obtain the desired formula. ]

Note. It is also possible to use symbols having an order dividing ¢, — 1 (v finite);
this is for instance the case for quadratic Hilbert symbols which are given, for any

p—1
odd place v, by the residual image of ((71)"(“)"(” a’® bf"(‘”) ) By abuse of
language, we will also say that they are regular symbols.

Note that the basic symbols (e, «)I° and (., «), coincide for almost
every place (the regular places).

We will see in 7.5 how to compute in practice the irregular Hilbert sym-
bols, which are finite in number; the numerical computations done in 6.4 for
some quadratic symbols are illustrations of this.

The above study motivates the general definition of a symbol on a field
k, with values in an abelian group A.

7.2 Definition (symbols on a field). Let k be a field, and let A be an abelian
group. A symbol (on k, with values in A) is a Z-bilinear map:

(o, 0) ¢ KX XEX —— A,
such that (z, y) =1 for all z, y € k*\{1} such that z +y = 1. U
If we consider the quotient group:
Ko(k) =k @k (z®@y; x, yc K*\{1}, s +y=1)

(second Milnor’s K-group of the field k), it is immediate to check that this
object satisfies the following universal property. For any symbol:

(o, o) : kXXkX—>A,

there exists a unique group homomorphism h : Ko(k) —— A, such that the
following diagram commutes:

('7’)

kX x kX — A
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the vertical arrow being the canonical map sending the pair (z, y) to the
image of x ® y; this map is not necessarily surjective, but its image generates
Ka(k).

We have denoted {z, y} the canonical image of © ® y in K3(k); by con-
struction, it is clear that {+, «} is itself a symbol with values in Ky (k).

7.2.1 Exercise. Show that any symbol (e, «) : k* x k* — A satisfies
(x, —x) =1 for all z € k*. Deduce that any symbol is antisymmetric.

Answer. If x = 1, we have (1, —1) = 1 by linearity on the first component.
Thus we may assume that x # 1. We then have the equalities:

R R N =
-1 1 \-1
:(x,l—x) (x,_—x> = (z, —x).

We then apply this property to the product zy, and we obtain:

1= (zy, —zy) = (v, —2y)(y, —7y)
= (z, —2)(z, y)(y, 2)(y, —y) = (=, Y)(y, ©),

so the antisymmetry follows. L

7.2.2 Examples. (i) If £ = K, (the completion of the number field K at a
finite place v), the local Hilbert symbol (., «), defines the group homomor-
phism:

hy Ko (Ky) —— p(Ky),

which is in fact an isomorphism, a result of Moore (see [e, Ko3, Ch. 2, §6.6]).

(ii) If k¥ = K, we can consider the symbol obtained by globalizing the
family of local Hilbert symbols in the following way:

(o, ¢) : KX x KX —— D uK,),
ve Plne

(z,y) L— ((lv (), i“(y))7))veplnc

where PI™¢ := PI\ PIS is the set of noncomplex places of K. This symbol
indeed takes its values in the direct sum since for any place v such that v(z) =
v(y) = 0, i,(y) is a unit and the extension K,("\/i,(x))/K, is unramified
except perhaps if the residue characteristic ¢ of v divides m,,, which happens
only for a finite number of places (the irregular places, i.e., those for which
K, contains fi,; see 7.1.3, (iii)). For convenience, this symbol will be called
the global Hilbert symbol. It defines the homomorphism:

h:Ky(K) — E@ (K.
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(iii) We can also define the global regular Hilbert symbol, from the local
regular Hilbert symbols (see 7.1.4, 7.1.5):

(o, )8 ¢ KXx KX —— @ puK,) s

vepne
which sends any pair (z, y) to ((iy(z), iv(y))f)eg)veplnc. Recall that for
v € Ply:
re m}, My
(o, )8 := (4, o)y, where m) :=|u(K,)"| = PR

The resulting homomorphism Ko (K) — @ p(K,)™®8 is denoted hres. [
vePne

7.3 Theorem. For all z, y € K*, we have in p(K) the product formula:
I1 it (o), i), ) = 1.
vEPIne

where m = |u(K)|, m, = |u(K,)|-

Proof. We have (zv(x) , Zv(y))
symbol:

(o), Ko Vo)) [K0) = (1), Ko (Vi) ) /1)

being the norm residue symbol in L, /K, for L := K( %/x ), which is abelian
over K, in terms of Hasse symbols 3.1.2 we obtain:

7 (1@, 1) ) = <M> Ve [ /3 e (K) ;

v

" = (iv(x ), iu(y)),, and the norm residue

hence, by the isomorphism of Kummer duality 1.6.1, the product formula (in

G = Gal(K (/7 )/K)):

v

H<y7K("\‘/5)/K> 1

v

is transformed into the analogous formula on the 4! ((zv (), iu(y)) U) (in

p(K)). O

7.3.1 Definitions (Hilbert symbols of K — product formula). If we set:

(B2) =it (Gt i) ) = (SRR w7 o e o

(Y v
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for all z, y € K*, then this defines ("U—'), which we call the v-Hilbert

symbol of K (defined on K* x K*); its order m is maximal. We then have
the simpler expression:

H (M) =1, forallz, y € K*,
vepe © Y

which is called the product formula for Hilbert symbols on K. O

Note. Do not confuse the symbol (e, o), defined on K, with values in u(K,),
with the symbol (*=*) defined on K with values in x(K). We have:

my

ivo(';.):(o, o)vm o 1y ON K* x K*.

7.3.2 Exercise (prescribed Hilbert symbols). Let K be a number field and
let m = |p(K)).

(i) For i = 1,...,r, let a; be fixed elements of K*, and let ((;,), with
i € p(K) be r families with finite support in PI"¢; assume that for each
v € PI" there exists x(v) € K> such that:

(ai,x(v))i i1 . 46
v — St — ety

and assume (product formula!) that:
I;ICM =1, i=1,...,n

Show that there exists x € K* such that for all v € PI¢:
(M> = Ci,v’ 1= 1,...,7’.

v

(ii) Deduce the Hasse-Minkowski theorem for quadratic forms in four
variables over K (hint: let a Y2+bZ2—(cT?+dU?), a, b, ¢, d € K*, be such
a quadratic form; check that there exists € K* for which z X2 —aY?2—b Z?
and z X2 — ¢T? — dU? represent 0 in K).

Answer. (1) Let A := (ay,...,a.), L: K( \/Z), and G := Gal(L/K).
Denote by s, € G the Hasse symbol ( L/ ) we thus have s, € D, :=
D,(L/K). We have:

z(v), K(y/ai)/K

v

(v = ( )mai—ci,vxl/a—z—

46 A necessary condition is that the order of (i,» must be a divisor of that of the
decomposition group of v in K( %/a; )/K since this decomposition group is an
image under the Hasse symbol and that K( 7/a; )/ K is cyclic; it is sufficient only

forr =1:for K =Q(v/—1),v|2, a1 =2, a2 = =2, {1, = —1, {2, = 1, x(v) does
not exist.
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for all v and i = 1,...,r, so that (s,), has finite support. Set s := [Is,; we
v

easily obtain s( x/a; ) = (HC7 v) Wa; = Wa;, 1 =1,...,r, hence s =1. We
s

can thus apply Theorem 3.4.4 on the converse of the product formula, and

so there exists z € K* such that:

(21)-..

for all v € PI"°. By construction we immediately have:

(“28) = 5ol W) W@ = G =1y

for all v € PI®°.

(ii) Consider the quadratic form:
(@) aY?+bZ% —(cT* +dU?), a, b, ¢, de K*,

and assume that it represents 0 in all the K. For all v there exist y,, 2., tv,
uy € K, (not all zero) such that:

Ty = ay? + bz? = ct? + du?,

in K, (we have omitted the embeddings i,).

If z, = 0, it is easy to see that the forms aY 24522 and ¢T?+dU? represent
any element of K, so we can find a solution y!, 2/, t!, w) which yields z, =
1, which we will now assume (for instance, since y, and t, cannot be equal
to zero, we take y! := (a1 +1)/2, t) = (¢t +1)/2, 2}, := z,(a™1 — 1)/2y,,
and u), = u,(c7t —1)/2t,).

Since az, = (ay,)? + abz?, we have (see 6.4):

1 = (amy, —ab), = (a, —a)y(a, b)y(Ty, —ab)y,

so that we obtain:

(—ab, )0 = (a, b)y =: (a’ b)

v
for all v, and similarly:

(—ed, 20)o = (¢, d)y = (c’ d).

v

For all v set:
Cl,v = (_a’b? xv)m C2,v = (_Cda :C’U)’ln

which satisfies the first assumption of (i) with a; = —ab, a, = —cd, for the
Giw» =1, 2 (the fact that x, € K,* does not matter since there also exists
x(v) € K* by approximation at v). Since for all v:
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(—ab, zy), = (G’Tb), (—cd, zy)y = (c, d),

v

by the product formula we have:

Moo =T(%7) =1 Meu=TI(57) -2

v v

It follows that there exists z € K* such that:

(F5) - ()= () (7)== ()

for all v, which can also be written:

(o) on ()

for all v. The forms X2 — aY? — bZ? and £ X? — ¢T? — dU? thus represent
0 in all the K, and hence in K. The result follows by equality of the two
expressions for x which one obtains from this.

Beware that we are not allowed to exclude a place in the statement; for
example, for K = Q:

Y2+ 272+ 372 + 502

represents 0 in all the completions of Q except in R. Indeed, for £ # 2 the
given form represents 0 in Qy (in each case, we put a suitable variable T or
U equal to zero, and write that —5 or —3 is a norm in Q,(v/—1)/Qy since it
is then a unit in an unramified local extension). For ¢ = 2, we check that —3
is a norm in Q(v/—1)/Qy (the norm group is (2) @ (5),, and —3 = 5" for
u = —1mod (4)). U]

7.4 POWER RESIDUE SYMBOL, nTH POWER RECIPROCITY LaAaw. Let K

be a number field, m the order of u(K) and n a divisor of m. We have just
defined the v-Hilbert symbol of K:

(T) D KX X KX ——s u(K)
@y — it (@), ww),")
which is essentially the same as the local Hilbert symbol of order m re-

stricted to i, (K), and which is also given by the action of the Hasse symbol
(M> on %/z. We will be using the Hilbert symbol of order n:

v

(55),= (59

7.4.1 Definition. For x € K*, we denote by R, the set of finite places of
K which are ramified in K(/z)/K (R, which depends on n, is contained
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in the set of places v such that v(z) # 0 mod (n), or dividing n). For v ¢ R,
we define via the Frobenius symbol:

(), - () u

v v

This defines an nth power residue symbol (including when v € PI) since, if
v ¢ Ry, we have:
(f) =1 if and only if 4,(z) € K"
vV/n
7.4.2 Remarks. (i) If v ¢ R, is a finite place, we also set (E) =: (i) ,
n

V/n Po
so that we can define by multiplicativity:

v(b)
(%)n =11 (%)n for all b € I, .
vEPly
Hence, in terms of Artin symbols, we have (since p,, C K):

(- (7).

(ii) We can also define an idelic version ( in a completely clear

TR

and analogous way, so that, for all y € K* prime to R, (identifying i(y)
with y) we get:
() TG
ysm o yepme MU
which thus involves the real infinite places. Note that in the literature, (E)

Y/n

usually means <i) . Il
(y)/n

Note. If n > 2, PIi, = () and the infinite places do not enter in the definition. If
n=2 (%)= (—l)v(z), and the properties of the more general symbol may be easily
deduced from the following.

7.4.3 Proposition. We have the following functorial properties of the nth
power residue symbol for n|m := |u(K)|, where x, y, are elements of K*:

0 (3).(9), = (), o

9 (),(2),~ (), 0 cem.

(iii) for any isomorphism 7 of K we have (—) = T(
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d
(iv) for any divisor d of n we have (E) = (f) ,ifbelg, ;
b/n b T
(v) let L be a finite extension of K; we have (%)Ln = (m)ﬂ, if
b e IL,R,,;
(vi) for any prime ideal p, prime to x and n, we have (E) =z mod p;

(vii) let N, C I, be the norm group corresponding to K ({/x)/K; then,

for b, ¢ € I, , we have (%) - (%) if and only if be™) € N,;

v(y)
(viii) for v ¢ R,, we have (x;y> = (E) " for all ye K*.
n

V/n

Proof. Use properties 4.5 of the Artin map and/or properties 7.1.1 of the
local Hilbert symbol, noting that i, <(£> ) = (iv(m)%, 7Tv) ifve R, [J
V/n

v
Then we can state:

7.4.4 Theorem. The nth power reciprocity law (n dividing |u(K)|) is given

by the relation: )
T\~ x,
0.6 T,

vin

for all x, y € K*, x and y coprime (i.e., for any place v, we have v(xz) = 0
or v(y) = 0, including the case v|oco if n = 2) and prime to n.

Proof. We compute the left hand side by using the definition of the symbols
(i) and by noting that the products can be restricted to the places not
n

dividing n (because of the relations v(z) = v(y) = 0 for v|n):

(2,6, =TI, I, ™

vin vin

then, treating the cases v(z) # 0 and v(y) # 0 for v { n separately 4" and
coming back to Hilbert symbols because of 7.4.3, (viii), this yields:

(0.6 T, T - T, -TE),

vin vin vin vn

v(z)#0 v(y)#0 v(zy)#0
since (M) = 1if v(zy) = 0, v t n; the theorem follows by using the
v n
product formula. ]

47 The case v(x) # 0 implies v(y) = 0 and, since v { n, this yields v ¢ R,; the case
v(y) # 0 is symmetrical.
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The nth power reciprocity law for the number field K is thus explicit
as soon as the right hand side is computed. Because of 7.5 below and the
continuity of the Hilbert symbols, using suitable representatives z, y € K*
of the finite groups U, /(U,)", v|n, we only need a finite number of numerical
computations (once for all). We thus obtain in particular the quadratic reci-
procity law of Jacobi (K = Q, n = 2; the signed form that we have obtained
being a slight generalization) by checking that:

z—1y—1
DG -E),=(-y " 7
xr/ \y 2 /2
for all rational z, y, coprime, odd, not both negative (see 6.4, (v)).

7.4.5 Remark. The above formula is false when the rationals = and y are
both negative; for example we have:

(5)E)-EEER)GE) -QE)E) -

although %‘”’7_1 = 6 which would give the value +1; in the general case for

K = Q, we must multiply the right hand side of the formula by (—1)¥@V(®) =
( B 1) sgn(;)—l sgn(y)—1

7.4.6 Proposition. If z € K* is such that v(z) = 0 for any place v not
dividing n, and if x € K* is prime to n, we have the supplementary formula:

()T,

vin

, where v is the valuation corresponding to v = co. [

Proof. We have:

(), =IC),"=IC). =TI, ~I(5), -

n
vin vin v|n

This can be applied to K = QQ and the quadratic case to prove that:

(3=(5A=(0

for any odd rational x.

For additional material on these reciprocity laws aspects, see [a, Kol],
[f, Leml], [Kub2], [KubO], [Wy].

7.5 COMPUTATION OF A HILBERT SYMBOL BY GLOBAL MEANS. As already
mentioned in 1.6.8, assume that we want to compute a local Hilbert symbol
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(z, y) of order n, with z, y € k™, where k is a finite extension of Q, containing
the group p, of nth roots of unity. The method consists in looking for a
number field K containing p.,, and such that K, = k for some place v|¢ of K.

In general it is an irregular symbol (i.e., |n), and by localizing the prob-
lem, we are reduced to the case where n = ¢" for h > 1. Then, if (K, v|()
is a solution, we consider here K as a subfield of £ and, by density, we are
reduced to the case where z, y € K* (this only involves the properties of

h x,y
k* deduced from the knowledge of kX /k**"); we then have (z, y) = (—)

v

(1KY,

which reduces to the computation of the Hasse symbol
We can even construct K containing p,, and having a unique (-adic place
v, in which case the Hilbert symbol (%) can be computed, because of the

product formula, by using only regular symbols: if k =: Q¢(u,.) (), a € Q,
of degree d over Qg(j1,,), we may assume that o € Q and that it has degree
d over Q(p,,) (Krasner’s lemma proven and illustrated in [b, Rob, Ch.3,
§1.5]), hence K := Q(u,,)(x) is a suitable field since v|¢ is split neither in
K/Q(pyn) (by our choice of ) nor in Q(p,,)/Q (totally ramified). However,
if this construction is numerically too delicate, it is still very much possible to

%), with L = K( 4/z) for K containing
Hn, if necessary by brutally adjoining these roots of unity, by the usual

method explained in 4.4.3; in this case, we do not need to assume that v|¢ is
unique (and in general we cannot). We then obtain an Artin symbol of the

L/K\!

form (T) , for some ideal b of K prime to a modulus m, multiple of the

conductor of L/K, m divisible by all the prime ideals dividing (z) and (¥¢),
from which we obtain:

o= () s 45 3),

in L/K. If p is a prime ideal of K dividing b, by definition of a Frobenius,
and since x and ¢ are prime to p, we know that:

compute the Hasse symbol (

(g)w = 2% mod ,

where ¢ := Np, which identifies (g)eh in 1,, (global). We thus obtain (%)eh
by multiplicativity.

If we are a priori in a given (global) field K containing y,,, and that we
want to compute (%), x, y € K*, where v|¢ is not unique, we can either

use the Hasse symbol, or change the global field K (note that x and y must
be reinterpreted in the new field by means of the common completion!). The

reader can practice on the field K := (@(\/—3 +/2, \/—3 -2, Ms).
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Let us give an example in the nonsplit case so as to apply both points of
view.

7.5.1 Example. Take k = Q(i), where i = /—1 and let us compute the
symbol of order 4:
(6,3+1).

We will choose K = Q(i), L = K(v/6) and begin by computing the Hasse
344, L/K

symbol (T)

Since 6 = —3i(1 +i)?, K(v6) = K(v/=3i), and by Kummer theory

(=3¢ = imod (4), which is not congruent to a square modulo (4)) we see
that v is ramified in K(v/6)/K, hence totally ramified in L/K. We then

check that:
14++vV—-3¢
T=
V6

is a uniformizer of L,. Using the higher ramification groups we find (by

, where v is the place of K above 2.

1

computing the valuations of 7! and 7% ! for a generator o of Gal(L/K))
that the conductor of L/K is equal to (24) (see 1.6.2). We then look for
y' € K such that:

/

Y

= 1mod (8
it med®)
y' =1 mod (3),
and we obtain for instance y' = —5 + 9i = (1 + 4)(2 + 7i) which yields

613 = —1

+
b = (2 + 7i) (a prime ideal above 53). Thus, we have (g

modulo b; hence:

(6,3+14)=(—1)"t=—1.

Beware that if b is not a prime ideal, we must come back to the (%)4 for p|b,
and conclude by multiplicativity.

The product formula is here reduced to (using prime ideals instead of
places):
(3+i, L/K) <3—|—i7 L/K) <3+z’, L/K) _1
Po Ps (3) ’

where py = (1 +1), p; = (2 — ), which can be written:

<6, 3—|—i) <6, 3—|—i) <6, 3+i) _

Po Ps (3) 7
in terms of Hilbert symbols of order 4. But the computation of regular sym-
bols yields:
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6,341
( +>56151modp5,
Ps

(6’ é; Z) = ((34+1))% = —1 mod (3),

giving once again the result in a nicer way.

However the first method is useful when x (= 6) is fixed and y varies:
setting y =: (1+14)™z, m € Z, z prime to p,, and using the chinese remainder
theorem, we obtain the general solution:

b=:(), 2/ :=92-8(:i—-1)",

where 2’ is defined modulo (24). The solution is then given by the Artin
symbol:
L/K\ "
(@)

Thus, let A C Iy for T = {p,, (3)} be the Artin group of K(+v/6); we check
that Iy = (py3) A, for p;5 := (34 2i), whose Frobenius sends v/6 to —i v/6,
so that (6, y) =1, —1, 4, —i, according to whether:

() e A, (3+2i)%A, (3+2i)A, (3+2i)°A=(3-2i)A.

If y = 9+ 324, we find 2’ = 1 mod (24), hence (6, y) = 1, although method
using the product formula needs the computation of four regular symbols.
The generalized class group It /Prp 24y has order 64, so that A/Pp 24y has
order 16 and can easily be computed.

Finally, since any class modulo Pr 24y contains an infinity of prime ideals,
we can look for b =: q prime, and then (6, y) is given by the residual image
of (6quf1 )71 mod g. For example, if y = 3 + 2¢ then 2’ = 19 4+ 18; which is
composite, but 2’ —24(1 +14) = —5 — 6i yields pg;, and (6'°)71 = 11 mod pg;
implies that (6, 3 + 2i) = —i. 0J

Note that the case n = 2 is particularly simple since K is easier to find
and that all the computations lead to quadratic residue symbols.

Let us come back to the general theory of symbols for a number field K.
The homomorphism:

hiKo(K) —— @ u(K,)

which comes from the global Hilbert symbol (see 7.2.2, (ii)) is therefore the
most precise possible for identifying Ko(K) as a function of known symbols.
The two main questions which can be asked about h are what are its kernel
and image. One is deep (Garland’s theorem given in 1971 in [Gal, for the
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finiteness of the kernel, which we will assume), the other is a nontrivial appli-
cation of the techniques of class field theory that we have developed. This is
Moore’s theorem on the characterization of the image, which we are going to
prove by following a paper of Jaulent written in [Jal] from the paper [ChaW]
of Chase-Waterhouse; see also [Mil, Th. 16.1]. With the above notations and
definitions 7.1.3, 7.2.2, we can then state:

7.6 Theorem (fundamental diagram of the Ky (1971/1972)). We have, for
any number field K, the following commutative diagram:

L WKy (K) —— K (K) —"— @ u(K,) —"— p(K) —1

| | Jom [

ord hres re
1 — RYYK) —— Ky(K) —— @ (K, —— 1
’UG nc

where 7((&,)y) = Hi;l(&%) for all (&), € @ wK,), m = |u(K),

vEPIne
my = |u(Ky)|, mb = |u(K,) = &1 for v finite, and where WKy (K)
g0 —

(resp. R34 (K)) denotes the kernel of the global Hilbert symbol h (resp. of
the global regular Hilbert symbol h*8).

Proof. The crucial point is to show that the set of families:

(§u)o € @ w(Ky),

vePIne

such that Hi;l (5,7_”) = 1, is contained in the image of h. By localizing the
v
problem, we can fix a prime number p and reduce to families in @l pp(Ky)
vE PIne

satisfying the product formula. Denote by X' the set formed by the places of
K dividing p, the real infinite places, and the irregular places (i.e., the places
v such that m! # 1) (X is finite).

Thus, let (&), € EB pp(K,) such that Hz;l(f:i) = 1. The first step
vEPIne v

consists in reducing to a situation where the (bad) places of X' do not occur.
For each v € X, there exist x,, y, € K such that (z,, y»), = & (we choose
x, such that K, ( %)/KU has degree m,, and we use the surjectivity of
the norm residue symbol to find y,). By approximation on X, we can find
x, y € K* such that:

(ip(2) , 1Y)y = (T, Yo )» = & for all v € X.

Since h({z, y}) belongs to a direct sum, replacing if necessary z (for ex-
ample) by a suitable power (prime to p), we may assume that h({z, y}) €
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@ tp(Ky) and that, on X, we still have (i,(x), t,(y))s = &. If we con-
vEPIne

sider:
(5/ )v = (g'U)U ,
! h({z, y})
it is an element of e@ pp(Ky) satisfying the product formula, and it is
vePlne

such that & =1 for all v € X. Hence, for the support X’ of (£]), the Hilbert
symbols are regular, and we are going to obtain the equality h({z’, 3'}) =
(&) for suitable 2’ and ¢y’ in K*.

For e := v,(m) > 0, consider now the cyclotomic field K¢y := K((, 1),
where as usual _ ; is a primitive p**th root of unity; it is a nontrivial cyclic
extension of K (of degree p if e > 1, of degree dividing p — 1 if e = 0). Let:

al = H p’t)v

veX’

which is an ideal of K prime to p (since & # 1 implies that v ¢ X), hence
prime to the ramified places of K. 1/K. By the Cebotarev Theorem 4.6,
there exists a prime ideal q of K, prime to XU X', such that the Artin symbol
(Keﬂ /K
a’q
we have:

) generates Gal(K.y1/K). Since on X’ we have regular symbols,

(51/) B ﬂ-u)v - 51/) fOI‘ all v E El,

the result being independent of the choice of a uniformizer w, of K, (see
7.1.5). By approximation on X’ U {q}, we can find 2’ € K* such that:

2’ =1 mod g,

iy(z') € e UL for allv e X',
We then have (again by 7.1.5):

(iv(z/)a ’/Tv)v - (f:,, 71—1;)1; = 511) for all v € Z/,

Let T be the union of Xy := X' N Ply with the set of finite places dividing

2/ (T is prime to q and to X’). Consider the modulus n = [ p”, for a
veT

sufficiently large integer n (in particular, we can assume that n is a multiple
of the conductor of K.41/K). By the Cebotarev theorem, there exists a prime
ideal [ prime to T'U X’ and such that o;(l) = fi2%(a’q), in ¢, so that we
can write:

!

a q = [ (y/)7 yl € K%(,n,pos‘
Now consider h({z’, y'}) = ((iv(z’), iy(y’))v)v:
e if v is an infinite place, we have (i,(x’), i,(y')), = 1 since i, (y") > 0;

e if v € X, because of the congruences imposed on z’, we have:

(iv(xl)a iv(y/))v = (5;; ; iv(y/))m
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but i,(y’) is a uniformizer of K, since v(y’) = v(a’) = 1, and by what we
have seen above:
(iv(xl) ) iv(yl))v = 51/; )
e if v corresponds to g, we obtain (i,(x'), i,(y')), = 1 since we have
chosen 2’ = 1 mod g;

e if v € T (the symbol is then not necessarily regular), we have
(iy(2"), iy(y"))w = 1 since i,,(y') € U (a local norm for n sufficiently large);

e if v is none of the above and if v does not correspond to [, we have
(iv(z"), iv(y'))y = 1 since i,(z") and i,(y’) are local units by definition of T
and v/, and the symbol is regular;

e finally, assume that v is the place corresponding to [; we have:

(5405)- (48 (5 - (29

since by assumption ¥’ = 1 mod n, and n is a multiple of the conductor of
K.1/K. Hence, (K‘EH/K) = (Kezllq/K) is by assumption a generator of

[
Gal(K¢41/K), which shows that [ is not split in K.11/K, hence that K, does

not contain ¢, , or, equivalently that v,(7=) = 0. Since 7= is a p-adic unit,
we deduce from this and the product formula that (i,(x'), i, (y')), = 1.

We have thus proved the first exact sequence of the diagram.
The surjectivity of h'® is equivalent to the fact that any element of

@ u(K,)™® (which can be written ((g}eg)mi)v since m} is prime to
vePIne

the order of (*°8) is the image under the surjection @ml of an element
(Co)w = (¢F8 . CL), of 691 w(K,) satisfying the product formula. Since the
ve Pne

component (¢!), belongs to the kernel of ®m., it is sufficient to check that

it is possible to find it so that (), € Ker(n), and this is equivalent to be
able to solve, for any ¢ € u(K):

L) ™ = ¢ with (o e @ p(Ko)"
Let us localize at a prime divisor p of m (the case p { m being trivial), take
¢ € pp(K), and consider vy|p; the inclusion i, (uy(K)) C pu(Ky,)" shows

that, taking the p-parts:
1

— = )
m /p m

P
and implies the existence of ¢} such that (Cﬁo)mwvbo = 1,,(C); we then set
¢l =1 for all v # v,.

This proves the two exact sequences of the diagram. L

The snake lemma applied to the fundamental diagram yields:
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7.6.1 Corollary. We have the exact sequence:
B
1 — RE(K) /WKy (K) —— @ p(K,)' —— p(K) — 1,

in which « is obtained from the restriction of h to R$™(K) and ﬁ is the
restriction of 7 to @ pu(K,)'. Thus (Ry4(K) : WKy (K)) = 1 ITm O
v v

This result indicates that everything can be reduced to the fundamental
invariant WKy (K), even though R$* can be more easily interpreted arith-

metically (see below).
We note that WKy (K) = R$™(K) if and only if for all prime number p:

1p(K) = D i (K,) 5
vlp
for applying this, it is sufficient to check the primes p for which there exists
an irregular place v|p. We will often encounter this condition (see for example
I11.4.2.5).

7.6.2 Definitions (Hilbert and regular kernels). The kernel of h (denoted
H(K) or WKy (K)) is called the Hilbert or wild kernel (in Ky(K))48, and
the kernel of h™8 (denoted R$*(K)), is called the regular or tame kernel. [J

Recall that R$™(K) is also equal to K$'(Zf ) and that this interpretation
of “Ra(K)” as the Ks of the ring of integers Zx of K is due to Quillen (1973)
and must be understood with the language of the general K-theory of rings
(see an arithmetic study of the regular and Hilbert kernels in [Keul], as a
prelude to numerous developments on this subject).

7.6.3 Remarks. (i) The notation R$™(K) = K$'4(Zk) represents the mod-
ification (introduced in 1986 in [Gr6]) coming from the consideration of the
real places at infinity in the definition of h'®; in other words, the classical
kernel Ro(K) = K3(Zk) must be understood as RY*(K) = K§*(Zx ), which
fortunately is compatible with the general system of notations that we have
adopted here. The difference between these two definitions is given precisely
by the following trivial exact sequence:

1 — KSYZg) —— Ko(Zx) —— (Z)22)" — 1,

but the existence of K$'4(Z) (and also probably the existence of more gen-
eral groups of the form KQS(ZK,T) for our usual sets of places T" and S, Zx 1
being the ring of T-integers of K) is essential.

(ii) The equality moh = 1 follows of course from the product formula 7.3
for Hilbert symbols, but the exactness that is obtained (Moore’s theorem)

48 The notation WK is to be preferred, instead of Ha, to avoid confusion with
homology groups, but we will continue to speak of the Hilbert kernel.
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says that this product formula is the unique relation between Hilbert symbols.
This property is called “uniqueness of reciprocity laws”.

(iii) The existence of WKo(K) (a finite group which is in general non-
trivial) means that there can exist symbols on K which do not come from
Hilbert symbols (and called exotic symbols because of this) 4°; but, although
class field theory gives quite good information on these kernels (see below),
up to now it has not been possible to exhibit (numerically) a single exotic
symbol !

It is easy to find fields for which WKs(K) # 1; for instance, we have
{~1,-1} # 1in WKy(K) if K = Q(\/d), d < 0,d = 2 mod (16) (see [Keu2]).
On the contrary, it is more difficult to characterize the cases where, for a given
p, the p-Sylow subgroup of this kernel is trivial. See for example the results of
Kolster-Movahhedi in [KM1] dealing (after a few particular cases of Thomas)
with the case of biquadratic fields for p = 2, the case of quadratic fields having
been treated before by Browkin—Schinzel, then revisited by Jaulent—Soriano.
Many other papers are concerned with the case p = 2 (Conner—Hurrelbrink,
Candiotti—Kramer, Berger, Hettling, Hutchinson, ...).

In [KM2] is given a characterization of the p-extensions of Q such that
the p-Sylow subgroup of the Hilbert kernel is trivial (p # 2).

In [Sor] is given an approach of the structure of the Hilbert kernel in a
Kummer situation. U

Thus many new questions related to the K-theory of number fields can
be asked, which are not the subject of this book. However, we will mention
some of the most classical results, since as mentioned in the introduction to
this section, they involve invariants which are directly linked with class field
theory (in particular through the reflection theorem).

7.7 LINKS BETWEEN CLASS FIELD THEORY AND K (K). The relationships
which exist between these K-theory kernels and class field theory are the
following.

7.7.1 LOGARITHMIC CLASS GROUP. Concerning WK (K'), under the fun-
damental assumption o, C K, the results of Jaulent can be summarized by
the relation:

WK (K) /WK (K)P = 1, © U,

where the p-group Cx (of logarithmic classes) is an invariant of class field
theory, related to Gross’s conjecture which we will state in I11.4.13, which can
be defined from the usual arithmetic of the number field K. °° This represents
the best practical approach to the Hilbert kernel since we have at our disposal

49 Such an exotic symbol is given by fo{e, s} for any group homomorphism f :
Ko(K) — € pu(K,), nontrivial on WKy (K).
50 [Jad; Ja5; Ja6], [JaSorl], [JaSor2], [Sor], [JaMi], [JaMai].
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the corresponding formalism, which is completely parallel with the (better-
known) one for class groups “(” or (a little less known) for the torsion groups
“T 7. Tt is therefore possible to perform numerical computations (as in [DS]).
See (Ch. 111, § 7) for a direct approach of the definition of the logarithmic class
group and the proof of the above property.

7.7.2 TATE’S RESULTS. For R$™(K), still when 1, C K, we have a Kummer
interpretation coming from the results of Tate published in 1976 in [Ta2],
which is given by the exact sequence:

1 — 1y ® Na(K) —— 1y @ Wi pr,pos —— RIK) — 1,

where Wi pi, pos = Rad(Hl%gj[p] /K) is the radical of the maximal abelian
p-ramified noncomplexified elementary p-extension of K, f being defined by:

flC@x)={C, =}
for all ¢ € pp, v € Wk p1, pos, and where:
No(K) :={z e K7, {¢, a} = 1}/K™P
(Tate’s kernel, where ¢; is a generator of ) is such that:

tp @ No(K) 2 (pp @ pip) & 17

Note. When the number field K is given together with an automorphism group g,
the fact that in these statements we write up, ® X (instead of ,X or X/XP) allows
us to have canonical isomorphisms of g-modules.

Tate’s exact sequence already yields:

7.7.2.1 Proposition. When K contains (i, we have:

k(RS (K) = 1k (A7) — (ra + 1), O

Note. Recall that H%i[p] has a conductor which divides m = l_llpﬁe”ﬂ, where
vlp

ey Is the ramification index of v in K/Q(up). Therefore, rkp((,'é})prlj) = rk, ().
Moreover, the radical of H%s(p) is {zK*?, € Kpb, (x) € IP(Plp)}.

Assuming the Leopoldt conjecture for p, the p-rank of R$'(K) is also
equal to the p-rank of the torsion group of Gal(Hj’,?S(p)/K) (see I11.2.1.1 for
S =P, T = Pl, and I111.4.2.2).

The reflection theorem 1.4.6, (ii), applied to 06%2, implies:
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7.7.2.2 Corollary. In the Kummer case we have:

rk, (RS (K)) = 1k, (G077 ™) + |PL,| — 1. O

7.7.3 TATE’S RESULTS IN THE NON-KUMMER CASE. In the general case, we
must introduce K’ := K (1,), use formulas with characters and the reflection
principle. More precisely, starting from Tate’s exact sequence, the reflection
theorem allows us to prove the following general formula.

7.7.3.1 Theorem. For any number field K, we have:
Pl res
v (R (K) = k1 (@™ ) + [{olp, do = 1}] = 4,
where w is the Teichmiiller character, d,, is the decomposition group of v in
K'/K, and § =1 or 0 according as j, C K or not. ]

7.8 p-REGULAR FIELDS. We have introduced in 1989, in [GrJ], the following
definition.

7.8.1 Definition. Number fields for which (R$™(K)), = 1 are called p-
regular. ]

These fields have a much simpler arithmetic since deep invariants vanish,
and for these fields we can even compute higher K-groups (as in [RQ] and a
few others). We will see in I11.4.1.10, I11.4.2.6, (i), and especially in (Ch.IV;
§3, (b)), the similar notion of p-rational fields and what class field theory says
about them. The above general formula shows that the p-regularity depends
on the w™!-component of the Pl,-class group (in the restricted sense) of
K' := K(up). We will see that the w-component is concerned with the p-
rationality and that the two notions coincide if and only if w? = 1. Then, if
K contains the maximal real subfield of Q(u,), p-regularity and p-rationality
will be equivalent notions (this condition is always satisfied for p = 2 and

p=3).

7.8.1.1 Example. The number field K D p, is p-regular (or p-rational) if
and only if p does not split in K/Q and ((¢**®),, is generated by means of the
single prime ideal of K above p (use 7.7.2.2). O]

We will now prove that Q is p-regular for all p. Thus for K = Q, we will
have:

WK>(Q) =Rg™(Q) =1, R¥™(Q) =~ Z/2Z.

The proof given below is a direct one and does not use the class field theory
results we have seen up to now; but it is also possible to check that the rank
formula above gives the result by analytical means.
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7.8.1.2 Theorem (Gauss’s first proof of the quadratic reciprocity law, re-
visited by Tate). The global regular Hilbert symbol induces the isomorphism:

K2(Q) = M(R) épergneu((@w = {:I:l} eper?me ]F;

0#£2 0#£2

Proof.%! The letters ¢, p, ¢ denote prime numbers, a, b, ¢ denote nonzero
elements of Z, and {a, b} is the image of (a, b) in Ko(Q). We use the reg-
ular Hilbert’s symbol h**8 : K5(Q) — {£1} @,u((@g)reg, where we replace

1(Qe)*e8 by F, (note that p(Q2)™8 =FS =1 and pu(Q2)! = (—1)); the first
factor corresponds to the place co. Put:

too = <{*1a 71}>,
to = ({a, b}, a,bel, oof),
t, = ({a, b}, a,be[l, ]), ¢ prime.

Note that Ko(Q) is generated by the {u, v}, u, v € Z\ {0}.

Lemma 1. We have K3 (Q) = to @ tg.

Proof. The bilinearity gives {a, b} = {|al, |b|}.s, where s is an element
of ({—1, —1}; {¢, =1}, ¢ > 0). But {¢, —c} = 1, which yields {¢, —1} =
{¢, ¢} € t;. The sum is direct since we have (%) =—land (@) =1,

proving the result.

Since by 7.1.5, h™8(to) = {£1} and h™8(t,) C ?FZX, it is equivalent to
prove that the restriction of h"™® to t, yields ¢, ~ E?IE‘Z

Lemma 2. Let p be fixed. Then the restriction of h**® to t, yields an iso-
morphism of t,, onto Z@ F,.
<p

Proof. We note that ¢, ~ F5 (indeed, {2, 2} = {2, —2}{2, 1 —2} =1). For

p # 2, let ¢ be the greatest prime number such that ¢ < p; we suppose, by

induction, that t, ~ EEB ;. Thus it is sufficient to prove that t,/t, ~ FJ
<q

under h'°g.
Consider the following two maps:
Qity/ty —— Ty, 0:F) ——t,/t,,

5! Inspired by a conference of Tate (Grenoble 1968): “Sur la premiere démonstra-
tion par Gauss de la loi de réciprocité”. See also [Tal, §3, (17)], [Mil, Th. 11.6],
[f, Lem1, Th.2.30].
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for which:

a, b\res % _
o({a, b)) == ( . ) €FX, 6(c) = {c, p} mod t,,
where c is the representative of ¢ € ) in [1, p[. Since:

(“_b)g = (1) @) %) @) o (p),
P

@ is trivial on ¢, since v,(a) = v,(b) = 0 for such a,b.
We will prove that ¢ o8 and 6o ¢ are the corresponding identity maps (it

is not a priori evident that 6 is a group homomorphism).
reg
We have po6(¢) = o({c, p}) = (%) = ¢ since v,(c) = 0. Then

0op({a, b}) = 9((%) g) = 0(c), where ¢ = (—1)vr(a)Vr(b) GVe(b) p @,
The case where a, b € [1, p[ is immediate since {a, b} € t,.If a < pand b = p,
then ¢ = a, thus 6(¢) = {a, p} mod t,. If a = p and b < p, then ¢ = 571,
and we have to verify that {p, b}{c, p} = = {p, be} € t,. Put be = 1 + dp;
the case b = 1 being trivial, suppose b > 1, thus 0 < d < p. Then we have
1={—=dp, 1 +dp} ={—dp, be} = {—d, b}{—d, c}{p, bec} giving the result
since {—1, u} = {u, u}. If a = b = p, then ¢ = —1, ¢ = p — 1, but we have
{p—1, p} ={-1, p} = {p, p}. This finishes the proof of the lemma. O

Taking the direct limit (i.e., the union ¢, = LZJte), the theorem follows. []

We now consider the Hilbert symbol (”2’) for the place 2; it takes its
values in ( —1). Since this Hilbert symbol is of order 2, we can write (=5%) =:
go{e, ¢}, where g: {il}g@ F)/F ? —— (—1), is such that:

2

9((y)oz) = goo(uoo>eg2 ge(uy),

with g : . g - . We then have g,(+) = ()%, d, = 0

= ez prye
or 1 depending only on v. Let a, b € Z\ {0}. Taking uo, = (%) and,

= ey

u, = (a,_b) mod F? for all £ # 2, which implies that (%) mod F)? is

l
the quadratic Hilbert symbol (a,zb)Q = (a,T})) T = +1, we get:
() = () (7)., oranavezipo

The uniqueness of the product formula readily gives 6, = 1 for all v # 2,
but of course, the point of view of Gauss was to prove the product formula,
giving easily the reciprocity law as we know it. For this, the computation
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1, -1\ . e . 0, -1
of ( 5 ) gives 000 = 1; if £ = 3 mod (4), the colljnputatlon of ( 5 )
gives §, = 1; if £ = 5 mod (8), the computation of ( ) gives ¢, = 1; for

)

¢ = 1mod (8), the computation is not easy since <€2b) = 1 for any b.
In this case, let p be the least prime ¢ = 1mod (8) such that §, = 0.

Gauss proved the existence of a prime ¢ < p such that (B> = —1 (see
q

[f, Lem1, Th.2.30]), yielding a contradiction to the computation of (p,Qq) =
S0 0

11 (fu) _ (u) (M) _ (2) since (u) —1.

2 \ L /2 q /2 \ p /2 q 2

Note. The isomorphism of Theorem 7.8.1.2 is not canonical, the image of h being
{(C)w € EQZ w(@Q,), Il¢,? = 1}. Since Mg = M2 = ™2 = 1, we can express
vEPlg v

Coos G2, or (3 by means of the other (,. Here, we “eliminate” the wild place.

7.8.2 Remark. Recall that the main theorem of Mazur-Wiles—Kolyvagin
on abelian extensions K of QQ yields, in the real case, the following analytical
expression for [R$"(K)| which had been conjectured by Birch-Tate (on this
subject, see [Grtl]):

IRS™ (K| = 2[K G (=) =2 wy [CRA(-1)],

where (- is the Dedekind zeta function of K, which must be interpreted
as the restricted zeta function (j° (see I1I1.2.6.5, (ii)), and w, is the largest
integer n such that Gal(K (u,)/K) is killed by 2

For K = Q, we have wy = 24, Cord( 1)=1 5Co°(=1) = — o, thus giving
R3(Q) = L. O
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