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0.1 Processes with Fast Markov Modulations

0.1.1 Model Formulation

We consider here a two-scale system with the “slow” dynamics given by a one-
dimensional conditionally Gaussian process X¢ with the drift modulated by a
“fast” finite-state Markov process 6. When 6° is in the state 7 the process X*
behaves like the Wiener process with drift . If 6° is stationary, it is natural to
expect that the process X¢ approximates in distribution the Wiener process
with drift obtained by averaging of \* with weights proportional to the time
spent by 6° in corresponding states.

Combining techniques based on the bounds for the total variation distance
in terms of the Hellinger processes with methods of singular perturbations
we prove a strong limit theorem for the slow variable even in the case of
nonhomogeneous Markov modulations and establish a bound for the rate of
convergence in the total variation norm. Notice that the model specification
does not involve singular perturbed stochastic equations but they appear
immediately when we look for an intrinsic description of the slow variable
dynamics.

Let (2,G,G = (Gi),P) be a stochastic basis with a one-dimensional
Wiener process w and a nonhomogeneous Markov process 6° = (65 )< tak-

ing values in the finite set {1,2,..., K'}. The small parameter ¢ takes values
in ]0, 1].
We shall consider the process X¢ given by
dX; = XN Jpdt + dw, X§ =0, (0.1.1)
where A := (A,..., M€)* is a fixed (column) vector and J& = (J1=, ... JK&)*

is a vector with components J%¢ := Itp-—iy. In other words, (0.1.1) is just a
convenient abbreviation for

t+ K
Xte:/ Z)\il{eizi}ds—i—wt. (0.1.2)
0 =1 &

Let p® := (p*<, ..., p%)* := EJ¢ be the initial distribution of 6. Notice
that in the theory of Markov processes it is convenient to represent distri-
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butions as row vectors; to make notations of our model consistent with the
further development we deviate here from this tradition.

We assume that the transition intensity matrices of 6° have the form
Q5 = ¢ 'Q; where Q = (Q;) is a continuous matrix function with the
following properties:

(1) for any t € [0,T] there is a unique probability distribution

= (mfye )
satisfying the equation
Qime =0, (0.1.3)

i.e. zero is a simple eigenvalue and 7} is the corresponding left eigenvector of
the matrix Qy;

(2) m = (m) is a continuous function;

(3) there exists x > 0 such that for any ¢ € [0, T

Re A(Q:) < —2k (0.1.4)

where A(Q:) runs the set of nonzero eigenvalues of Q.

The above hypotheses need some comments. We recall that a transition
intensity matrix is a matrix with nonnegative elements except those in the
diagonal and the sum of the elements in each row is equal to zero (hence,
zero is always an eigenvalue). It is a well-known fact (see, e.g., [17]) that
all other eigenvalues of such a matrix have strictly negative real parts and
there are left eigenvectors which are probability distributions spanning the
eigenspace corresponding to the zero eigenvalue. Thus, the assumption (1) is,
actually, the requirement that zero is of multiplicity one while the properties
(2) and (3) follow from (1) and continuity of @Q;. In a probabilistic language
the property (1) means that for any fixed ¢ the matrix Q; can be viewed as
the transition intensity matrix of an irreducible homogeneous Markov process
and 7 is its invariant distribution. In particular, if () does not depend on t,
the process 0° is ergodic.

0.1.2 Asymptotic Behavior of Distributions

Let P% be the distribution of X*© in the space C[0,T] and Ry be the distri-
bution of the process X = (X;)i<r given by

dXt = )\*ﬂ'tdt + dU}t7 XO = 0, (015)
i.e. of the Wiener process with drift \*m,.

Theorem 0.1.1 (a) lir%Var (P% — Rr) =0.
e—

(b) If Q = (Q4) is a continuously differentiable function then
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Var (P5 — Ry) < C(1 + 65)dxe'/? (0.1.6)

where 6y := max X\ — min A\’ and C is a constant depending only on Q and
T.

(c) If Q does not depend on t and m = p° there is a simpler bound
Var (P§ — Ry) < Co2el/2. (0.1.7)

Proof. Let F¢ be the filtration generated by X¢ and null sets and let J¢ be
the F¢-optional projection of J¢, i.e. F¢-optional process such that

J: = E(J:|F5)

for any F¢-stopping time 7.
Put

t t t
@y = XE —/ N JEds = w, +/ A JEds —/ A JEds. (0.1.8)
0 0 0

Then w is an Fe-adapted Wiener process (this simple observation is known
as the innovation theorem) and X¢ can be represented as a diffusion-type
process with N

dX{ = XN Jpdt +dw,, X;=0, (0.1.9)

(see, e.g., [66], Th. 7.12). According to [66], Th. 9.1, J¢ satisfies the filtering
equation N N N N
dJ: = e Qi Jsdt + ¢(J9)dws, Jo = pt, (0.1.10)

where R L
o(J;) = diag A Jp — JL(JE ) (0.1.11)
and diag A is the diagonal matrix with A; := ;.
Let |.|1 be the absolute norm of a matrix (or a vector), that is, the sum
of the absolute values of its components. It is easily seen that

K K
[T =D JEEIN = JEAL < DT85 = b
=1 i=1
and hence R R
[B(JD)I? < |o(JF)IF < 63 (0.1.12)

Applying for the pair of measures P and R the upper bound in (A.3.3)
we get that
Var (P& — Ry) < 4\/Eh%, (0.1.13)

where the Hellinger process h® is given by

L[t
he = g/ (N (JE — 7s))?ds. (0.1.14)
0
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For any a = (a!,...,a®) with > a’ = 0 we have
aX =Y a' Tasp N+ a'TicopX < |al/2(max X' —min \) = (1/2)]aldy.

Thus, N N N
N (TS = 7)| < (1/2)65]J5 — 7sl1 < (1/2)0x|J5 — s

|
and we get by virtue of (0.1.14) that
€ 1 2 ! Te 2
Ehi < —=6FE [ |J; —7s|” ds. (0.1.15)
3227 )
Put 2¢ := J¢ — . It follows from (0.1.3) and (0.1.10) that
¢ t
z = 25 + 871/ Q25 ds +/ o(J35) dws — (7 — o). (0.1.16)
0 0

Let us consider the subspace £ := {z € R¥ : 2*1 =0} where
1:=(1,..., )~

Clearly, £ is an invariant subspace for every operator (J; and the restriction
Ay of Q¢ to L has the same eigenvalues as @), except zero. Thus, we can view
(0.1.16) as the operator equation in R¥~1. If the function @ is continuous
differentiable, (0.1.16) can be written as

dzf = e Azidt + ¢(J5 )diy + 7odt, 25 = p° — m, (0.1.17)

and this we consider as a matrix equation in R¥~! (by choosing an orthonor-
mal basis in £). By the Cauchy formula we have

t t
z; = P°(t,0)2§ —|—/ P (t, 8)p(JZ) dws —|—/ &°(t, 8)7rs ds (0.1.18)
0 0
where @°(t,s) is the fundamental (or transition) matrix corresponding to
e~ 1A, i.e. the solution of the equation

De (t
0¥ (ts) _ e A (L, 8)dt, D°(s,s) = 1.
ot
Using the exponential inequality

|8°(t, 5)| < ce "(t=8)/2 (0.1.19)

(see Proposition A.2.3) and taking into account (0.1.12) we easily obtain the
following bounds:
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|P°(t,0)25|> < c2|pf — mole™2FY/e, (0.1.20)
t 2
/ & (t, s)p(J5) divs
0

¢ N 2
E B [ )Pl ds < 850, 0a2)
0 K

2

t t 2 c2e2
| wa s as| <l ( / |@E<t,s>|ds> < #1255 (0.1.22)
0 0 K

where ||7 |7 1= sup, < |7¢].
From (0.1.18) and (0.1.20)—(0.1.22) we get that for some constant C

T
/ E|zE)2ds < C*(1 +63)e (0.1.23)
0
and, in the homogeneous case with p* = m,
T
/ E|z5)? ds < C?63e. (0.1.24)
0
Now the assertion (b) is evident in view of (0.1.13) and (0.1.15).
In the case of the assertion (a) where the function @ (and hence ) is
supposed to be only continuous the equation (0.1.16) cannot be written as

(0.1.17) and the usual Cauchy formula is not applicable. Nevertheless, we can
represent z as follows:

¢
2 = ®°(t,0)z25 —|—/ P (t, 8)p(JZ) dws + 1§ (0.1.25)
0
where
t @a
r; = &°(t,0)(m — 7o) +/ W(ﬂ't — mg) ds. (0.1.26)
0

Arguing as above we infer from (0.1.24) the bound
T
| Bl ds < e+ 157l)
0

and it remains to show that ||r¢||7 — 0 as € — 0. But taking into account

the relation
OP= (t, s)

0s

(which follows from the semigroup property) and using the exponential in-
equality we obtain that

= 1A D (L,s), P°(t,t) =1,

t
[rf| < cef"t/€|7rt — mo| + csfl||A||T/ eiﬁ(tfs)/ehrt — 7| ds.
0

The uniform convergence of r¢ to zero follows now from Lemma A.2.4. O
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Conclusion. The bounds of Theorem 0.1.1 hold by virtue of properties of the
equation (0.1.16) which is a singularly perturbed stochastic equation
because it can be written as

edzi = Aszidt + o(e)G(2%)dwy + o(e)bedt (0.1.27)

with o(¢) = o(1) as ¢ — 0. It is important to note that the matrix function
A; admits the exponential bound (0.1.19). Another essential feature is that
the parameter o(e) := ¢ at the diffusion coefficient tends to zero faster than
/€ providing the convergence of trajectories to zero. Singularly perturbed
stochastic equations of this type and, especially, more general systems in-
volving also “slow” variables are the objects of principal interest of this book.
Some techniques developed in the sequel will be used in Section 6.2 where we
present a more deep analysis of our model and show that the bounds (0.1.6)
and (0.1.7) give the correct order of convergence in € by calculating the limit
of eY/?Var (P — Rr).

0.2 The Liénard Oscillator Under Random Force

In this section we discuss briefly an important example of a two-scale stochas-
tic system, namely, the Liénard oscillator driven by random force. This classic
model arises in a mathematical description of the motion of a small particle in
a viscous media. On an intuitive level, it can be described by the second-order
equation

et +d—h(x) =w (0.2.1)

where w is a white noise and ¢ is a small positive parameter. The standard
reduction transforms it to the system of two equations of the first order

i=v, (0.2.2)
eb = —v+ h(z) +w.

The rigorous formulation can be given by the following system of stochastic
equations in the usual Ito sense where we exhibit explicitly the dependence
on €:

dxf = vidt, xf=x°, (0.2.4)

edvi = —vidt + h(t,x5)dt + dwy, v5 = 0°. (0.2.5)

Here w is a Wiener process and the initial condition can be random.

It is worth noting that this system is quite specific: the equation for the
position x° does not contain a diffusion term, while the equation for the
velocity v® does not involve a small parameter at diffusion. For h = 0 the
process v° is simply the Ornstein—Uhlenbeck process. Therefore, in general,
we cannot expect the convergence of v°. Nevertheless, it is easy to prove that
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under mild assumptions on h the position process ¢ converges uniformly on
any compact interval in probability to the process z (in the literature referred
to as the Smoluchowski-Kramers approximation) satisfying the stochastic
equation

dxy = h(t, ze)dt + dwy, 9 = x°. (0.2.6)

We give here a bit more precise result of this kind assuming that the
processes ¢, v, and w are n-dimensional.

Proposition 0.2.1 Let T € Ry, p € [1,00[. Assume that z°,v° € LP(S2)
and h satisfies on [0,T] x R™ the global Lipschitz condition and the linear
growth condition. Then there exists a constant C (depending on p and T')

such that
lim (E][° — z|[P)YP < Cy/e|Ing] (0.2.7)

where ||.||7 is the norm in C[0,T].

Proof. Put Af := 2§ — x;. Using the Cauchy formula we “resolve” (0.2.5)
and obtain the representation

1 /° 1 /°
vs = e /%00 + —/ e~ mW/Ep (u, 22 ) du + —/ e~ W/ e, (0.2.8)
€Jo €Jo

Substituting it into (0.2.4), we get from (0.2.4) and (0.2.6) that

A =e(1—e VoW 4+ (5 + 65 40 (0.2.9)

t s
(o= / (1/ e~ W/ (h(u, %) — h(u,xu))du) ds,
0 \¢Jo
t 1 s t
& = / (—/ 6(5“)/€h(u,xu)du) ds —/ h(s,xs)ds,
0 \¢Jo 0
1 t s
nf = _/ (/ e—(s—u)/edwu) ds — Wt-
€Jo 0

By virtue of the Fubini theorems

where

t
4;:/ (1— e /%) (h(u,25) — h(u, .))du, (0.2.10)
0
t
gf:/ e~ W/ h(u, z,)du, (0.2.11)
0
t
77§=—/ e—(=/2 gy (0.2.12)
0

By assumption, there is a constant L such that
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|h(t,y1) — h(t,y2)| < Llyr —y2| VYt €[0,T], y1,y2 € R,

and
|h(t,y)| < L(1+Jy]) Vt€[0,T], y e R".

Using this we deduce from (0.2.9)—(0.2.11) that for every t <T

t
14| < elv] +L/ 1A% ludu + Le(1 + [[z]|7) + |[n°||7
0

and, hence, by the Gronwall-Bellman lemma
14%]17 < (elv®| + LA+ [[zllz) + [[7°||z) e (0.2.13)

This bound implies the result. Indeed, we assume that the initial conditions
are random variables belonging to LP(f2). Due to the linear growth and global
Lipschitz conditions ||x||7z € LP(£2) for all finite p. It remains to notice that
for some constant C, we have

(Bl |)? ~ Cp/elnel, & —0, (0.2.14)
see Chapter 1. O

Remark. Notice that the equation (0.2.5) for the fast variable does not con-
tain the small parameter at diffusion and, thus, the model looks different from
the basic one considered in this book. However, if we choose for analysis of
(0.2.1) the so-called Liénard coordinates by putting u = e + x, the resulting
system will be

edxy = (—x¢ + u)dt, (0.2.16)

with the diffusion coefficient of the fast variable equal to zero. The general
theory of Chapter 4 includes this case if & is Lipschitz.

Comment. It would be more consistent with the modern methodology to
start with the models (0.2.4), (0.2.5) each defined on its own probability space
and indexed (together with its Wiener process) by the parameter . The phys-
ically meaningful question is the convergence of the distribution of 2° in the
space C[0, T] to that of x. To do this, there is a powerful method to construct
a realization of processes on a single probability space and prove the conver-
gence of z° to z (as random variables with values in C[0,T]) in probability.
We start, actually, from the point where this transfer has been done. Does
||z¢ — z||r converge to zero almost surely? The positive answer, in view of
the bound (0.2.13), seems obvious. But take care: (0.2.13) holds only a.s. and
the exceptional set may depend on ¢. In fact, for the process n° we cannot
ensure even the convergence ||n°||r to zero a.s. because stochastic integrals
are defined up to P-null sets. To make this question mathematically correct
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(and admitting the positive answer) we should construct a good realization
of the whole family to ensure the continuity of paths ||A®||r and ||n¢]||r for
€ > 0. For this simple model it is not difficult. For instance, integrating by
parts we get that for every e > 0

t
n; = wy — 5_1/ e~ (t=9)/2 ds
0

almost surely for all . The right-hand side of this formula can be used to
define the appropriate version of n°.

0.3 Filtering of Nearly Observed Processes

The problem of nonlinear filtering consists in estimating a stochastic process
(a signal) that is not directly observed. A lot of studies are devoted to the
practically important case where the process is nearly observed. This is an
asymptotic setting in which computable asymptotic filters can be easily stud-
ied. The aim of this section is to provide a simple illustrative example where
the singular perturbed stochastic equations appear in a natural way.

Let us consider the model described by two processes z (unobservable
signal) and y° (observations), both, for simplicity, n-dimensional, given by

dxy = fidt + ordw®,  x9 = 2°, (0.3.1)
dys = xpdt + edw?, 5 =1°, (0.3.2)

where w® and wY are independent Wiener processes in R, and f and o are
continuous processes of corresponding dimensions adapted to the filtration
generated by w”. The parameter ¢ €]0, 1] is small; it formalizes the fact that
noises in the signal and observations are of different scales and the signal-to-
noise ratio is large.

A filter is any process adapted with respect to the filtration of y*. Engi-
neers are looking often for filters which approximate = in some sense. Such
filters may not perform so well as but are easier to implement.

Let us consider the filter ¢ admitting the following representation:

dz5 = frdt — e 1 Ay(dy; — T dt), (0.3.3)

where the continuous vector-valued process fe (assumed to be a function
of y°), the continuous function A with values in the set of n X n matrices,
and the initial condition can be viewed as filter parameters. We assume that
there is a constant x > 0 such that for Re A\(A;) < —2k for all t. For the error
process A® := ¢ — z we get from (0.3.1)—(0.3.3) the equation

dA; = e VA ALdE + (Ff — fo)dt + Godity, A = TG — 2°, (0.3.4)
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where Gy := (A;AF + oyof)'/? and

¢ ¢
Wy 1= —/ G Agdw? —/ G losduw®
0 0

is a Wiener process in R"™.
Let ®°(t, s) be the fundamental matrix defined by the linear equation

0% (t,5)

T ArD° (t,s8), P°(s,s)=1. (0.3.5)

Using the Cauchy formula we can write the solution of (0.3.4) as

AS = &°(1,0) (25 — 2%) + /o e (¢, s)(fj — fs)ds + & (0.3.6)

where .
& = / D (t, s)Gsdis. (0.3.7)
0
The process & is the solution of
ed&y = Ay&idt + eGrduy, €5 = 0. (0.3.8)

For us it is important to note that the asymptotic behavior of the approxi-
mate filter is determined by properties of solutions of a singularly perturbed
stochastic equation (with a small parameter at the diffusion term of order ).

Using the exponential bound for |®°(¢, s)| (see Lemma A.2.2) we obtain
that

t
45| < Ce /2|55 — 2|+ C / TR flds + (€5 (03.9)
0

This implies the following less precise but simpler inequality which gives a
clear idea of the filter behavior:

45| < Ce™™/# (3G — a®| + Cen 1= = [lls + 145 (0.3.10)

where ||.||¢+ denotes the uniform norm on [0, ¢].

In the particular case of constant A and o we have &°(t,s) = elt=*)4/¢,
the process £° is Gaussian, and e~ 1/2£; converges in distribution as € — 0 to
the centered Gaussian vector with covariance matrix

o0
Sa= / eE"AAA* + oo*)e" N dr. (0.3.11)
0

Assuming, e.g., that |Zf§| is bounded and 51/2||f57f||t converges to zero in
probability as e — 0 we infer from (0.3.6) that e~/ (25 —x;) is asymptotically
Gaussian with zero mean and covariance Sy4.
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In a more specific situation of scalar processes (n = 1) with the filter
parameter A = —y > 0 we have Sy := (42 + 02)/(27). If ¢ > 0 is known
one can attain the smallest value of asymptotic variance S4 = ¢ by choosing
v =o0.

In the vector model with a known nondegenerated matrix o it is reason-
able to choose A = —(00*)/2 and get the limit covariance S4 = (o0*)/2. To
justify such a choice we notice that for any symmetric negative definite ma-
trix B commuting with oo* the difference Sp — (00*)'/? is positive definite
because, in this case,

1 1
Sp = —5371(32 + (00%)) = (00*)V/? — 5371(3 + (60")V%?  (0.3.12)
and the last term is negative definite.
One can expect that the filter will exhibit a better performance also in a
non-asymptotic sense (i.e. for realistic values of the signal-to-noise ratio) if

ﬁs tracks f;. We return to this model in Sections 6.3 and 6.4.

0.4 Stochastic Approximation

The stochastic approximation theory, initially developed for discrete-time
models but now treated more and more often in a very general semimartingale
setting, deals with the problems of estimating a root of an unknown function
F on the basis of observations of a controlled random process 8 = 67. We
consider here a rather particular continuous-time white-noise model which,
nevertheless, covers several approximation procedures studied in the litera-
ture. Our aim is to show that, being rescaled, it comes into the framework
of the theory of singularly perturbed stochastic differential equations which
allows us to analyze stochastic approximation procedures in a systematic and
transparent way and get asymptotic expansions of estimators.
Let 8 = 67 be given on [tg, oo by the SDE

d@t = ’th(Ht)dt + ’ytdwt, 9150 = 90, (041)

where w is a Wiener process in R™, the function F' : R® — R" is contin-

uously differentiable, the “control” v = (7¢)¢>0 is a nonnegative continuous

deterministic function, and the initial condition is posed at some point g > 0.
We assume that F satisfies the following hypotheses:

H.0.4.1 There is a unique root 6, of the equation
F@) =0

and
0—0.)F@) <0 VOeR"\{0.}. (0.4.2)
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H.0.4.2 The real parts of all eigenvalues of the matrix
A= F'(0,)
are strictly negative: Re A(4) < —2x < 0.

Resembling the standard problems of optimal control, the model has spe-
cific features: it is not completely specified since F' is unknown (but some
extra information on F may be available) and the class of controls is quite
restrictive. For these reasons, the traditional paradigm of stochastic approx-
imation does not formulate the optimal control problem by stipulating in a
precise way an objective function but uses instead the ideology and concepts
of mathematical statistics. There is a vast literature devoted to analysis, for
particular stochastic procedures +, of the asymptotic behavior as T'— oo of
01 or, more recently, of the average

. 1 T
= sds, 4.
Or T4 ), 0sds (0.4.3)

as statistical estimators of .. For instance, the continuous-time version of
the classic Robbins-Monro procedure claims that 67 is a strongly consistent
estimator of 6. Its precise formulation is as follows.

Proposition 0.4.1 Assume that H.0.4.1 holds and

(o) o0
/ Yo du = 00, 72 du < oo. (0.4.4)
to to
Then
tlim 0; =0, a.s. and in L*. (0.4.5)
—00

Proof. Put Uy := 6; — 0,. Then
dUy = F(0¢)vedt + vidwy, 6y, = 6o,

and, by the Ito formula,

t t
U2 = |Ut0|2+2/ U;F(es)%ds+2Mt+/ +2ds (0.4.6)

to to

where .
M, ::/ Ul vysdws.

to
Notice that U F(6s) < 0 by (0.4.2) and hence the first integral in the right-
hand side of (0.4.6) defines a decreasing process. Localizing the stochastic
integral M and taking the expectation, we get, with help of the Fatou lemma,
that
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o0
B < EUL + [ 2.

to

It follows that

E{M) s :/ E|U,|*~2%ds < <E|Ut0|2+/ ’yfds)/ Y2ds < oo

to to to

by the second relation in (0.4.4). The square integrable martingale M
bounded in L? converges a.s. to a finite limit. Thus, the processes on the
right-hand side of (0.4.6) converge at infinity to finite limits (a.s.). The con-
tinuity of F' and the relation H.0.4.2 imply that for every r € |0, 1] there is
a constant ¢, > 0 such that

(0 —0"YF(0) < —c,

when r < |6 — 6*| < 1/r. The divergence of the integral of + implies that
on the set {lim |U;| > 0} the first integral in (0.4.6) diverges to —oo. Hence,
U, converges to zero a.s. At last, || M]];,.co € L? and the process |U|?, being
bounded by a square integrable random variable, converges to zero in L2?. O

We consider here two stochastic approximation procedures and study
asymptotic expansions of the estimator (0.4.3). The first procedure, depend-
ing on a parameter p € ]1/2, 1[, corresponds to the choice

vy =1 " (047)
and t; = tl(T) =Tr (T) with

1 1
ri(T) := (7T = A=t (0.4.8)

The second one, with the characteristics marked by the superscript ©, is given
by
Int

2= 4.
f}/t et1n3t (0 9)
with )
r{(T) := T (0.4.10)

where In,, denotes the n-times-iterated logarithm.

Theorem 0.4.2 Suppose that F € C3 and H.0.4.1, H.0.4.2 are fulfilled.
Then for the procedure given by (0.4.7), (0.4.8) we have

1 1 1 1

0 =0,
T +&r — T Ts

where h € R™, &r is a centered Gaussian random vector with covariance
matriz converging to (A*A)~Y, and Ry — 0 in probability as T — oco.
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Theorem 0.4.3 Suppose that F € C3 and H.0.4.1, H.0.4.2 are fulfilled.
Then for the procedure given by (0.4.9), (0.4.10) we have

-~ , 1 InT o, InT
where h € R™, £ is a centered Gaussian random vector with covariance
matriz converging to (A*A)~Y, and R — 0 in probability as T — oo.

Remark 1. The vector h in the above theorems depends only on F. In
the scalar case we have h = (1/4)A~2F"(0,). The explicit expression in the
general case can be found in Section 2.4.

Remark 2. An inspection of (0.4.11) makes plausible the idea that the third
term on its right-hand side is responsible for the bias of the estimator. Obvi-
ously, for sufficiently large T

1T
1-p)T° = ——.
perﬁ%(,l[ 2 elnT

Thus, the minimum over p € ]1/2, 1] of the third term on the right-hand side
of (0.4.11) coincides with the corresponding terms in (0.4.12). This observa-
tion explains our interest in the second procedure. Indeed, under a certain
auxiliary condition E|Rr| and E|R%| converge to zero, see Theorem 0.4.6
below.

We prove the above results in Chapter 2 providing here only the reduction
to the framework of singular perturbations.

First, let us consider the procedure with the function ~; defined by (0.4.7).
A simple rescaling leads to a problem on the interval with a fixed right ex-

tremity. Indeed, put 6, := 6,.7. Then, by virtue of (0.4.1), on the interval
[tO/Tv 1]

0, = yrTF (0, )yedr + yr T *y.diby, Oy 7 = 6o, (0.4.13)

1/2q,.p is a Wiener process. Obviously,

~ 1 L
Or = / 0,-dr.
1-— T1 o)

Now we reparameterize the problem by introducing instead of the large pa-
rameter T the small parameter

where W, (=T~

1 1

Then
1

m. (0.4.15)

T=T()=
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Setting y := éTT(E), we rewrite (0.4.13) as the singularly perturbed stochastic
equation

edys = F(yS)ydr + fe'/?~,dib,, Yto/T(e) = bos (0.4.16)
where
8= /e = c(1/2)p/(1=p) (0.4.17)
With this new parameterization @\T becomes equal to
1 1
U= T /7‘f yrdr (0.4.18)
where 1
r{ = S (0.4.19)

Theorem 0.4.3 has the following equivalent form:

Theorem 0.4.4 Suppose that F € C3 and H.0.4.1, H.0.4.2 are fulfilled.
Then for the model (0.4.14)-(0.4.19)

1
75 =0, + Y23 + h1—62 + R3? (0.4.20)
—p
where h € R™, &% is a centered Gaussian random wvector with covariance
matriz converging to (A*A)~t, and R — 0 in probability as ¢ — 0.

One can notice that the small parameters are involved in (0.4.16) in a very
simple, multiplicative, way. The only particular feature is that the starting
time depends on e and the function v has a singularity at zero which is
integrable. The coefficient 1/(1 — p) in (0.4.20) is equal to the integral of v
over [r§,1] up to o(1).

Similarly, the rescaling of the model with ~v° defined in (0.4.9) results in
the stochastic equation on [to/T), 1]

b, = ~NopTF(0,)dr +~2p T 2dw,, 0y )7 = . (0.4.21)
For sufficiently large T' we define the function € = ¢(T) by putting

o 1 _1ln3T
8T e lnT’

£: (0.4.22)

Let T'(¢) be the inverse of the above function. We rewrite (0.4.21) as
edys = F(yo)vedr + Be'idior, 1) = bo, (0.4.23)

where
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. _1In(T(e) IngT(e)
T Y T (e) g (rT(e))

(0.4.24)

and
1
8=, /'yT(E) = 7—€T(€)' (0.4.25)

Again §T is equal to

1 t
Ui = = /TT yeodr (0.4.26)
but now 1
{=—". 4.2
T I, T(e) (04.27)

The corresponding equivalent version of Theorem 0.4.3 is

Theorem 0.4.5 Suppose that F € C3 and H.0.4.1, H.0.4.2 are fulfilled.
Then for the model (0.4.22)-(0.4.27)

U5 =0, + %28+ hBF?Ing T(e) + R Ing T'(¢) (0.4.28)

where h € R™, £¢ is a centered Gaussian random vector with covariance
matriz converging to (A*A)~!, and R>¢ — 0 in probability as ¢ — 0.

Of course, more systematic notations require the superscript ° at T'(¢), £,
etc, but we skip it for obvious reasons.
Remark. Clearly, the equations (0.4.16) and (0.4.23) are of the same struc-
ture. However, in the latter case the function «; has a singularity at zero
like 1/ which is not integrable and which yields in the term Inz T'(¢) after
integrating over the interval [r§, 1].

To get a convergence of residual terms we add to our assumption the
following hypothesis on a “global” behavior of F':

H.0.4.3 There exists a bounded matrix-valued function A(y;,y2) such
that for all y1, yo

F(y1) — F(y2) = A(y1,92)(y1 — v2) (0.4.29)

and
A1, y2)z < —klz[> VzeR" (0.4.30)
for some constant x > 0.

Clearly, H.0.4.3 implies the Lipschitz and linear growth condition. In the
one-dimensional case this hypothesis holds if F € C! and F’ < —k < 0.

Theorem 0.4.6 Suppose that F € C3, the second derivative F" is bounded
and satisfies the Lipschitz condition, and the conditions H.0.4.1-H.0.4.3
are fulfilled. Then E|R¢| = o(1) and E|R%¢| = o(1) as € — 0.
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As a corollary we obtain, under the assumptions of Theorem 0.4.6, that

" 111
EOr =0, + h—— = + —o(1), 431
T + 1—pr+TPO() (0.4.31)
" T T
E62 =0, + henT + nTo(l) (0.4.32)

as T' — oo.
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