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Abstract We study the relationship between partial continuous higher type functionals
defined by minimisation on the one hand and recursion on the other hand. We
prove that already at type level two minimisation is weaker than recursion.

1. Introduction

There are two well-known ways of extending the schemata for the primitive
recursive functions such that all partial recursive functions are obtained. One
is recursion the other is minimisation. In Kleene (1959a) both are extended
to higher types: recursion via the schemata (S1-S9) and minimisation via u-
recursion. Kleene showed that at type two (S1-S9) and u-recursion coincide,
but already at type three the latter is weaker than the former. In Bergstra (1976)
it is proved that also on the total continuous functionals (Kleene 1959b, Kreisel
1959) the schemata (S1-S9) are weaker than recursive continuity (having a re-
cursive associate). These results were based on an interpretation of computa-
tions on total (continuous) functionals, whereas it is now common to interpret
them on the partial continuous functionals. Normann showed that this makes
a difference by proving that under the new interpretation (S1-S9) is as pow-
erful as recursive continuity when restricted to the total continuous functional
(Normann 2000). To be precise Normann works with the functional language
PCF (Plotkin 1977), which however, as essentially shown in Platek (1966), is
equivalent to (S1-S9) on the partial continuous functionals.

In this paper it is shown that the relationship between minimisation and
recursion is affected by the choice of the underlying domain, too. We prove
that already at type level two minimisation is weaker than recursion. From our
result we deduce that at those types minimisation is not only denotationally but
also operationally weaker than PCF.
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After giving in section 2 the basic definitions we present in 3 as a starter
a new short proof that every computable monotone functions of type level one
is u-recursive in the parallel OR, a result first proved in Trakhtenbrot (1976).
Section 4 contains the main result already discussed above, and in section 5 we
conclude by discussing some open problems arising at higher types.

2. Partial continuous functionals

The hierarchy of partial continuous functionals is a family of effective Scott-
Ershov-domains (Scott 1982, Griffor, Lindstrdm and Stoltenberg-Hansen
1993) defined by

Dl = NL) DO = B_L, Dp—)G = Dp —?Dcy

where N| :=NU{Ll}and B, :=BU{Ll} (B= {t,ff}) are the flat domains of
partial integers and boolean values respectively. D —» E denotes the domain of
continuous functions from D to E, i.e. the exponential in the cartesian closed
category of Scott-Ershov domains and continuous functions. We let D be the
union of the Dy. By a functional (of type p) we mean an element of D (D).
When writing f: p we mean that f is a functional of type p. A functional
of type p is called computable if it is a computable element of the effective
Scott-Ershov domain Dy, i.e. its compact approximations are recursively enu-
merable. .

We let T range over the base types tand 0. A type p1 — (p2 — ... — (pn —
G)...) will often be written p; — p2 — ... = p, — © or simply p — 6. An
iterated application f(x1)... (x,) will also be written fx; ...x, or f(xi,...,x,).
Forp=p — twedefine L,: pby L,(%) := L. The level of a type p is defined
as usual by lev(1) = lev(o) := 0, lev(p — o) := max(lev(p) + 1,lev(c)). The
level of a functional f € Dy, is the level of p. A functional g € D is explicitly
definable from a set of functionals F C D if g can be defined from elements of
J by application and A-abstraction.

In the following we will frequently omit type information as long as it can
be recovered from the context.

A functional of type level < 1 will be called a monotone function. The fol-
lowing monotone functions will be used frequently (see also Plotkin (1977)).
We let i, j,m,n, k range over natural numbers.

ifrro—=1—-1—1 ifi(t,x,y) =x ifi(f,x,y) =y, if(L,x,y) = L

Z:1—o0 Z(0):=t, Z(n+1) =, Z(L):= L
(+1):1—=1 (+D)(n) :==n+1,(+1)(L) =1L
(—=1):1—=1 (—=1)(0) =0, (-1){n+1):=n(-1)(L):=1L

The set {0,if,Z, (+1),(—1)} is called the set of basic functions.
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Recursive definitions in D are modelled by the fixed point operators
YP: (p - p) - P:

Y(f) := the least fixed point of f = U{f"(J_p) | n e N}

A functional is definable in the functional programming language PCF (Plotkin
1977) iff it is explicitly definable from the basic functions and the fixed point
operators.

A functional is u-recursive if it is explicitly definable from the basic func-
tions, the primitive recursor R11— 1 =1 —=1) 5121,

R(x,4,0) :=x, R(x,h,n+1):=h(nR(x,hn)), R(xhL):=1,
and the minimisation functional u: (1 — 0) — 1,
u(f) :=nif f(n) =tand f(7) =fffori <n, up(f):= L otherwise

A functional g is u-recursive in a set of functionals F if there are fi,... ., fxr €T
and a u-recursive functional / such that g = h(fi,...,fy). The notions ‘PCF-
definable in’ and ‘computable in’ are defined similarly.

The following implications are well-known:

u-recursive = PCF-definable = computable

Of course these implications also hold when relativised to a set of functionals.

A strict function is a monotone function f such that f(¥) = L whenever
x; = L for some i. It follows from ordinary recursion theory that a strict func-
tion is computable iff it is g-recursive. .

3. Monotone functions

In Sazonov (1975) it is proved that a monotone function is PCF-computable iff
it is an effectively sequential function (Vuillemin 1975). In Trakhtenbrot (1976)
it is shown that the effectively sequential functions are precisely those definable
from computable strict functions and if; by composition. Since computable
strict functions are u-recursive we have:

Theorem 1 (Sazonov, Trakhtenbrot) A monotone function is PCF-definable
iff it is u-recursive.

The monotone function parallel or OR: 0 — 0 — 0 is defined by
OR(tt,x) = OR(x, 1) = tt, OR(ff, f{) = ff, OR(x,y) = L otherwise.

Note that OR(tt, L) = OR(L,t) = t, but OR(L, L) = L. Hence OR is not
sequential and therefore not PCF-definable (although computable, trivially).
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