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Modeling of
Dynamic Business Systems

His driving curiosity was apparent when, in his last media interview, he told the
Boston Globe last year that his work on the shuttle commission had so aroused his in-
terest in the complexities of managing a large organization like NASA that if he were
starting his life over, he might be tempted to study management rather than physics.
—~Quotation from the obituary of Richard P. Feynman

in the Boston Globe, 16 February 1988

2.1 Introduction

The eminent theoretical physicist, Richard P. Feynman, served on the committee
that investigated the Challenger disaster in 1986. As a physicist, Feynman was
used to the complexities associated with the world of subatomic particles or the
motions of stars and galaxies. However, his experience on the committee opened
his eyes to the complexities of managing a modern organization, as is shown by
the quotation from Feynman’s obituary in the Boston Globe.

Feynman recognized that managing an organization had become a complex
problem and, for a person with his intellectual curiosity, the management of such
organizations provided a stimulating area of study.

But where does this complexity come from? An organization is basically a sys-
tem, which can be defined as “a regularly interacting or interdependent group of
items composing a unified whole.”

Organizations are composed of a number of interconnected component parts
(many of which are people). Like any other system, in order to operate success-
fully, these component parts must work in a coordinated fashion. The intercon-
nections must be managed. Therefore, the difficulty in operating an organization
is directly related to the complexity of individual interconnections and to the
number of interconnections that must be managed. Both the number and com-
plexity of the interconnections have changed over time, in part because of the fol-
lowing trends:

* Business size—many organizations have grown in size (through mergers and
acquisitions) in order to compete or satisfy the ever-growing expectations of
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22 2. Modeling of Dynamic Business Systems

shareholders.! Indeed, “merger mania” has been common over recent years.
These mergers or acquisitions mean that more interconnections must be man-
aged in order for the new organization to be successful and reap the benefits of
the growth in size.

* Globalization—this has added the issues of language, culture, currency, local
legal regulations, and so forth, which has made some of the individual inter-
connections more complex.

e Improving efficiency—the pressure to improve the bottom line ultimately
leads to fewer resources being available to buffer components from each other.
The typical example here is the impact of removing inventory from supply
chains. With lower inventories, an organization has greater difficulty reacting
to unexpected production delays, customer demands, and so on. This means
that components of the organization that could previously be treated as inde-
pendent must now be coordinated in order that unexpected situations can be
handled successfully.

» Competition/customer expectations—customers expect more and more every
day. They have more choice in what is available to them and they can switch
suppliers on a whim. In bygone days, a company could survive if communica-
tions between research and development, manufacturing, marketing, and sales
were poor. But this is clearly no longer the case.

» Technological advances—for example, improvements in the field of communi-
cations mean that now it is easy to connect parts of the organization. Use of the
Internet in business is a testimony to this. Although these connections may give
an organization an advantage initially when they are set up, eventually the or-
ganization changes so that it depends on these connections to operate. The
Y2K situation was a global-scale example of this dependency not only on indi-
vidual computers but also on the networks and interconnections they manage.

Whatever the reason for growth in organizational complexity, it is a fact of life
and it must be managed. What exactly do we mean by managing a system? The
dictionary defines management in general as “the judicious use of means (re-
sources) to achieve an end.”

This can be translated into a business context as the optimal allocation of re-
sources to achieve the goals of the business.” Therefore, the key question that
must be asked continuously in order to manage an organization is this: If we allo-
cate our resources in a certain way, what will the impact be on the organization’s
performance? Given a range of options for allocating resources, we can then
choose the option that gives the best results. Put another way, we must be able to
predict the performance of an organization under a given set of conditions. Man-
agement thus reduces to the ability to predict the future performance of the or-

1. Examples are AOL/Time Warner or Pfizer/Warner-Lambert Pharmacian.
2. And as Goldratt and Cox (1992) point out in The Goal, the end in mind for any business
organization is to make money!
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ganization under a given set of conditions.? Furthermore, in order to make a pre-
diction, a manager must create a model of the system.

A model of a system is simply a representation of the system that anyone can use
to predict the performance of the system—without having to use the actual system.
Such models can range from simple mental models to sophisticated computer sim-
ulations. The value of a model is not measured by its sophistication but by its abil-
ity to predict the real system performance. In this book, we provide readers with
insights and tools to model and then predict the performance of an organization so
that they can improve their capability of managing the organization. We approach
this objective with a definite strategy, which can be outlined as follows:

Break up the organization into smaller, more manageable parts.

Choose an appropriate modeling technique.

Build the model.

Validate the model by predicting known historical behavior.

Make new predictions.

Propose and implement changes to the organization using the new predic-
tions.

SANAIE I o

Steps 1 and 2 will be discussed in this chapter. In particular, we will look at the
role of dynamic modeling in business.

2.2 Making the organization more manageable: Systems
and processes

Given the complex nature of the entire organization when viewed as a single sys-
tem, it is natural to try to break the system into smaller, more manageable units
using organizing principles. For example, organizing by skill set leads to an or-
ganization in which activities emphasize functional abilities. The business has en-
gineering activities, financial activities, and so forth. A business that is supply
chain-focused will organize by product or product group.

In general, no single organizing principle will suffice for the whole business—
the business is just too complex. More often, multiple organizing principles are
used, which leads to the concept of the matrix organization. People working in
such a matrix organization will see their roles from multiple perspectives. For ex-
ample, a person might be an engineer from a functional perspective but a member
of a product team from a supply chain perspective. This can present a difficult
work environment for people because it may appear that their loyalties are di-
vided. Am I an engineer first or a supply-chain person first? Hammer (1996, 128)
discusses the issues around the matrix organization, where he refers to manage-
ment with this organizing principle as “notorious matrix management.”

3. Of course, these conditions may involve assumptions about the world outside the organ-
ization.
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In more recent years, the strategy of using process as the key organizing princi-
ple has received more attention. In fact, Hammer (1996, xii) has said that in his
definition of reengineering—‘‘the radical re-design of business processes for dra-
matic improvement”—the original emphasis was on the word radical but it really
should have been on the word process. On top of this, most if not all of the major
quality improvement approaches focus on process, defined in the dictionary as “a
series of actions, activities or operations conducing to an end,” as the key orga-
nizing principle.*

This process focus is also the organizing principle favored in this book. To
apply this approach, we must break up the system into its component processes.
For example, consider the system consisting of an automobile, the driver, the
road, other drivers and pedestrians, and environmental conditions. Within this
system, the driver wants to drive from point A to point B. The driver can identify
a number of processes to help accomplish this overall goal: starting the car, accel-
erating the car, braking, keeping the car in the lane, avoiding other traffic, and so
on. Similarly, looking at a business system or organization, we can identify the
major processes within the organization and study these processes individually.

There are many ways to break an organization into its major processes. The one
favored by the authors is to start by looking at the value chain of the organization.
This allows us to identify the main value adding processes, which add value to the
products or services that the organization sells to customers to make money. A
typical value chain is shown in figure 2.1.

Therefore, we have major processes for market research, product development,
and so on. These processes are still large. Typically, these major processes will be
subdivided into smaller processes. For example, process development might be
broken into processes such as manufacturing route selection, process optimiza-
tion, validation, and so forth.

Next, we can consider the business value adding processes. These are processes
that must be executed in order for the value chain to operate successfully but do
not add any value to the products or services of the organization. For example, in
manufacturing, production must be planned, people must be trained, safety must
be managed, and so on.

Finally, we must identify the non-value adding processes. These are processes
that add no value but consume resources. (Consequently, the organization would
prefer not to have to do them). This group includes rework processes, inspection
processes, and so on.

Be aware that breaking down the organization into its component processes
does not solve the interdependency problem. It is still there, and it shows up in the
way the processes are interconnected. Outputs of one process become inputs to
other processes. In analyzing a particular process, we must know of any other
connected processes so that we can take account of them in our analyses. In ana-

4. For example, the six-sigma approach developed by Motorola and popularized by GE.
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FIGURE 2.1. Typical value chain for an organization

lyzing a process, it is helpful to have a common description of a business process.
A simple but useful general description of a process is the supplier input process
output key stakeholder (SIPOKS) description, shown in figure 2.2.

In this model, the flow of the process is from suppliers who give us the required
inputs to our process. These inputs are used in the process. The process then pro-
duces a set of outputs that are used by the key stakeholders. This model is dis-
cussed fully by Scholtes (1998). In his description, he uses “customer” instead of
“key stakeholder,” giving the acronym is SIPOC. However, using the notion of a
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FIGURE 2.2. The SIPOKS description of a general process

key stakeholder is more general than that of a customer. A stakeholder is defined
as any group that is impacted or interested in the performance of the process and
the word key denotes the important stakeholders. Thus, a customer is an obvious
key stakeholder. Also, the public may be a key stakeholder. If the organization po-
tentially can pollute the environment, then the public will be keenly interested in
the performance of the process from an environmental perspective. The key
stakeholders are the ultimate evaluators of organizational and/or process perfor-
mance. In general, we can divide the key stakeholders into three groups:

1. Compliance Key Stakeholders—these groups regulate the operation of an or-
ganization. They represent and protect the public. Examples are the Environ-
mental Protection Agency (EPA), the Food and Drug Administration (FDA),
and the Occupational Health and Safety Administration (OSHA). Being com-
pliant means meeting all key stakeholder requirements.

2. Effectiveness Key Stakeholders—these are the customers of the product
and/or services provided by the organization. Being effective means meeting
all customer requirements.

3. Efficiency Key Stakeholders—this group includes management and share-
holders who are interested in the financial performance of the organization.
Being efficient means using resources efficiently. Of course, this group real-
izes that the financial performance depends on being compliant and effective
as well and will be interested in them, too. We will return to the stakeholders
again when we discuss performance measures in chapter 3.

Once we have defined a process according to a description like SIPOKS, we
can create a model of the process.

2.3 Creating and using a model

It would be nice if people could create system models and make predictions from
them using their mental capabilities alone. However, in general, the human mind
does not have the capability to make predictions from a model using pure mental
reasoning alone. Processes have inherent computational complexities that prevent
the human mind from being able to take a model and infer behavior from it. For
this reason, people need help. Traditionally, this help has come in the form of
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mathematical modeling methods. More recently, computer-based modeling tech-
niques have become more popular, and we use the latter approach in this book.
The advantage of using computer-based techniques is that people can create so-
phisticated models without having advanced mathematical knowledge. In this
book, we purport that there are four different types of complexity in a real system
as shown in figure 2.3.

The following discussion will focus on each of the four types of computational
complexity: size of solution space, physics, uncertainty, and structure.

Size of the Solution Space

Here the number of possible configurations of the resources available to the man-
ager is immense, but only one of these configurations leads to an optimal system.
The system manager is faced with the task of identifying the one optimal config-
uration from the immense number of possibilities. One of the classic problems in
this area is the Traveling Salesperson Problem (TSP). In the TSP, a salesperson
must make a trip regularly to a number of cities to visit customers. Starting from
a home city, the salesperson visits each customer city just once, ending up back
at the home city again. In order to achieve the goal of minimizing time on the
road, the salesperson must find the most time-efficient route. The salesperson

Size of
Solution
Space

Types of
Computational
Complexity

FIGURE 2.3. Types of computational complexity
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knows the time it takes to travel between each city. Suppose that 19 customer
cities are on the route. There are 19! (factorial 19)° possible ways to visit all the
cities, ending back at the starting point. How is the salesperson going to choose
the optimal route? One could try to enumerate all the possibilities. However, even
if the salesperson could evaluate one million tours a second, it would take 3,857
years to evaluate all routes. Clearly, entire enumeration is not a practical option.
Models that incorporate this type of complexity are referred to as normative mod-
els. These models allow us to answer this question: “If we want the system to give
a certain output, how should the system be set up; that is, how should the inputs
be specified?” This is an optimization problem and arises in many areas in busi-
ness—from scheduling a factory to optimizing an entire supply chain. Among the
tools available to help manage this complexity are linear and nonlinear program-
ming and integer programming. For more details, see Winston (1994).

Physics

Here the basic relationships in the system are complex. This usually means that
we must be able to represent complex physical relationships in order to predict
the system behavior. An example would be an engineer trying to understand the
behavior of a complicated series of chemical reactions. The engineer may have to
use complicated relationships from chemistry and thermodynamics to specify the
relationships and, hence, predict the system behavior. Generally the models used
to represent these relationships are referred to as predictive models.

Uncertainty

Here some aspects of the inputs are not fixed or known. Uncertainty in an input
implies that there is a probabilistic aspect to input. Uncertainty can show up in
two distinct ways.

An input may be uncertain if it varies every time an activity or task is repeated,
because it is not possible to repeat an activity exactly the same every time. For
example, the time it takes typically to complete a task would have some uncer-
tainty associated with it. The best we can do is to say that the task time will be
within some range with some probability. So we might be able to say that there is
a 90 percent chance that a task time is in the range of 5 to 10 minutes. This type
of uncertainty is referred to as random variation: we say that the input has random
variability associated with it.®

By contrast, an input can also have uncertainty associated with it if it has a def-
inite value but that value is unknown to us. This lack of knowledge may be be-
cause we do not have enough information about the input or because the input is
based on an event that will happen in the future. An example of the former could

5.19'=1%x2%x3x%...x17x18x 19 =1.216451004088 x 10'.
6. In fact, the impact of random variation is so important that Hopp and Spearman (1996)
include a chapter titled “The Corrupting Influence of Variability.”
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be the average salary of people in a certain country. Unless we get the data for
each person and calculate the average, we must take a sample of people and esti-
mate the average. An example of the latter case is the price of a stock at some fu-
ture date. We can guess what it might be and make a decision based on that guess,
and when the date actually occurs, the stock will have a definite value.

Irrespective of the type of uncertainty involved, models that incorporate this
type of complexity are called stochastic models. In this book, the models that we
will discuss will involve only random variation. In order to create such models,
we must be able to describe the uncertainty in the input. This involves the use of
probability distributions. Although readers can use this book without getting in-
volved in the details of these probability distributions, it is beneficial to under-
stand these distributions and where they tend to occur. This will ensure that in-
correct probability distributions are not used when readers create their own
models. Appendix C contains a discussion of some of the more common proba-
bility distributions, where they occur, and how they can be implemented in ithink.

Note that Hopp et al. (1996) make the important point that any source of vari-
ability, whether it is random or deterministic, will have an impact on the perfor-
mance of a process. Such deterministic sources of variation can be related to
nonuniform staffing levels, production levels, and so on. Dynamic models make
it easy to separate the impact of these two sources of variation. One can simply
turn off all sources of random variation and run the model to see the best perfor-
mance possible if all random variation could be removed (remembering that this
is an interesting ideality only). In this book, we consider the impact of both ran-
dom and deterministic sources of variation.

Structural Complexity

In this case, the structure of the system makes it difficult to see what the output of
the system might look like. Structure refers to the relationships between the vari-
ous parts of system. The outputs of the system depend on these relationships, and
the evolution of the outputs in time becomes complex because of these relation-
ships. However, it is known that people cannot look at the structure of a system
and reliably predict its evolution in time.” Three major structural relationships
that can exist in a system make it difficult to predict the behavior of a system over
time. These are feedback, time delays, and nonlinearity.

Following are definitions and some brief discussion of how each of these ele-
ments can affect a system.

Feedback

Feedback occurs when a variable within a process is used to modify the value of
another variable in the process. The variable is “fed back” from one part of a pro-
cess to another. This feedback can be of two types: reinforcing feedback, which

7. See Senge 1990.
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causes a variable to increase or decrease in a sustained fashion, or balancing feed-
back, which causes a variable to return to a target value if a change has moved it
away from target. Suppose that a company’s profits go up. Then it has more
money to invest in research that leads to new products, new sales, and more prof-
its. Of course the opposite could also happen. A decrease in profits leads to less
investment in research, fewer new products, fewer new sales, and hence reduced
profits. Now, suppose a manager controls costs closely. If costs rise above plan,
the gap is noted and activities are put in place to reduce the costs. If the costs go
below plan, the system might look for ways to use the extra cash for unfunded ac-
tivities. Balancing feedback is critical to the notion of management controls. Such
controls are used by management to keep performance at a target (expenses on
budget, projects on track, and so forth).

Time Delays

In real systems, a time delay always occurs between taking an action and seeing
the result of this action. Many people consider time delays to be one of the primary
difficulties in managing systems. When managers make changes to a system to
create improvement, normal business pressures force them to look for instant re-
sults. When this does not happen, they feel compelled to keep doing other things
that may undermine the original action. The original action may have been the
right thing to do; they just did not give it enough time to see the results. In effect,
such managers end up tampering with the system. Also, they may erroneously con-
clude that the original action was incorrect and reverse their original decision.

Nonlinearity

A linear relationship is one where the sensitivity of an output to an input is con-
stant over the entire range of possible values of the input. Suppose a change of
one unit of input changes the output by 2 units: then the sensitivity would be 2/1
= 2. If this value of 2 does not change as the input value is changed, then the rela-
tionship is linear. A linear relationship is an idealization. It is a useful approxima-
tion to the real world. In general, relationships will be nonlinear (although the
error introduced by assuming linearity may be negligible). Relationships involv-
ing people are notoriously nonlinear. For example, if the gap between actual per-
formance and target is small, a manager may well ignore the gap. This may con-
tinue until a threshold value is reached. Then the manager takes a huge action.

These three elements of system structure make it difficult to predict how a sys-
tem will behave over time. That is, it is difficult to predict the dynamics of the
system. Models used to predict the behavior of a system over time are referred to
as descriptive models. In particular, models used to predict the dynamics of a sys-
tem are referred to as dynamic models or simulations. We set up the model struc-
ture, give it a set of initial conditions, and then run the model (simulation) to see
the predicted behavior.
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While all four types of computational complexity (size of solution space,
physics, uncertainty, and system structure) appear in business organizations, the
main focus of this book is on system structure. We focus on business organiza-
tions as comprising of processes whose dynamics must be modeled so that per-
formance can be predicted. Random variation is included because it can have a
significant impact on the dynamics. In general, any relationships between vari-
ables are described with simple mathematical formulas to avoid any computa-
tional complexity because of physics. An example of optimization is included in
appendix D, which is based on the models used in chapter 8, but the reader can
omit this appendix if desired.

To justify our claim that structure and random variation introduces computa-
tional complexity, we now discuss two examples illustrating these complexities.

2.4 Structural complexity: A market share model

In order to show how structural complexity can make it difficult to predict the be-
havior of a system, consider a marketing department that is getting ready to
launch a new product. The department wants to study the process by which the
product is taken up by the market. The total marketplace for the product is given
the value of 1 so that uptake in the marketplace is represented by a number from
0 (no uptake) to 1 (maximum uptake). The market uptake, or market share, is rep-
resented by the variable M. The time horizon of the model is divided into equally
spaced segments, and the model should predict the value of the market share at a
period T+1, M., ,, from the market share at period T, M. Initially, the company
intends to invest in creating a small seed market, so that M = M at time 0.

Once the product is launched, two opposing mechanisms will change the mar-
ket share from its initial value of M,;:

* As the product gets used, satisfied users of the product will spread the word so
that the value of M, will be proportional to M;.

* As the market uptake grows, less of the marketplace remains. It becomes
harder to gain more share. This means that the value of M, will be propor-
tional to (1 — Mp).

We can summarize this model with the following equation:
M,,, =RM, (1 -M,) =RM, - RM,2 0<M;<1 2.1

The first term is the growth term for the market share and the second term is the
decay term. R is a constant that will vary from system to system. It is a combina-
tion of how much effort the company puts into marketing the product and how
much resistance there is to growth as the market share gets closer to 1. If the com-
pany invests in marketing the product or if the resistance to growth is large, then
R will be large. Equation 2.1 is nonlinear because of the M. squared term. Equa-
tion 2.1 is now cast into a model as shown in figure 2.4.
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The market share at time T is represented as a stock, MT. This stock is set up so
that it cannot go negative and its initial value is set to the value of the converter
M, Every time period, an amount DELTA M is added to this stock. The equation
for this flow connector follows:

R¥MT*(1 — MT) — MT

This is equation 2.1 with M, subtracted from both sides. Note that the flow con-
nector is configured to be a biflow because the population can decrease as well as
increase. The constant R is represented by a converter with a constant value. Fig-
ure 2.4 illustrates the feedback in the market share model. The current value of
the market share is fed back to determine the market share at the next time period.
The parameter R is now seen to represent the strength of the feedback. That is, the
larger the value of R, the greater the amount of feedback. Figure 2.5 shows the
profile for the population M over 500 time periods with M set to 0.1 and R set to
0.9 (profile 1) and 2.5 (profile 2).

This chart shows that in both cases the market share quickly reaches a steady
state value. In fact, it is easy to predict this value directly from equation 2.5 by
setting M., = M =M_. This gives the following equation:

M_=RM_(1-M_) whichsimplifiesto M_=@®-1/R  (2.2)

From this it can be seen that if R < =1 then the steady state value M_ is 0,
which is in agreement with profile 1 in figure 2.5. This means that if the effort
that the company puts into the product is low, then the market share will decay to

DELTA M MT

@‘ R h'

FIGURE 2.4. Model for market share equation 2.1

8. The equation for the steady-state market share gives a value < 0; but, because the mar-
ket share cannot be negative, the model gives a steady state value of 0.
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FIGURE 2.5. Profiles of market share M, = 0.1 and R =0.9 and 2.5

the point that the product loses all market share. This certainly makes sense. Set-
ting R to value of 2.5 gives X_ = 0.6 as seen in figure 2.5, in agreement with pro-
file 2 in figure 2.5. This means that if the marketing effort is large enough, even-
tually a constant market share is obtained where the resistance to growth in the
marketplace balances the growth effort. Again, this appears to be a reasonable re-
sult.

At this stage, it appears that the system as defined by equation 2.1 or the model
in figure 2.4 is simple. So where is the complexity? If our understanding of the role
of feedback is correct, then increasing the amount of feedback may introduce com-
plex behavior in the system. To increase the amount of feedback, we must increase
the value of R. Figure 2.6 shows the profile for the market share with R set to 3.9.

Now the complexity is revealed. The steady-state value for the population with
this value of R should be (3.9-1)/3.9 = 0.744. However, there is no evidence from
figure 2.6 that a steady state will ever be reached. The reader can increase the
amount of time periods in the model to verify this. The profile in figure 2.6 is
reminiscent of random variation but there is no random variation in the model. In
fact, the market share profile shows evidence of chaotic behavior.? It is difficult to
imagine how a profile as complex as that shown in figure 2.6 could be predicted
by looking at the simple structure in figure 2.4. Essentially, the high value of R
means that the market share keeps bouncing quickly between high and low val-
ues. It is as if the high growth and resistance means that the market is never still

9. For more information on chaos, see Gleick 1998.
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FIGURE 2.6. Profile of market share with R =3.9 and X, =0.1

long enough for a steady state to be reached. Detailed analysis of the behavior of
the model shows that the reason for the complex behavior at the higher values of
R is the nonlinear term in equation 2.1.!° So it is the combination of the nonlin-
earity and feedback in the model that leads to the complex behavior.

It must be pointed out that the profile in figure 2.6 would never be seen in a real
marketing situation. No sane organization would ever have a product marketed
with this profile. What the model does point out, however, is that if the marketing
department uses an aggressive marketing plan, or if the product takes off quickly,
the initial fast growth rate may turn to decay rapidly. Perhaps we have seen some
of this behavior in the rapid growth and demise of the dot-com companies.!!

We can add further complexity to the system in figure 2.4 by adding time de-
lays. These time delays can occur because the market may not react immediately
to changes. The time delay for the growth term and the decay terms may be dif-
ferent. Consequently, separate time delays are added to the model. The modified
model for this system is shown in figure 2.7.

Converters have been added between the stock and the flow to allow for the
time delay. Following are equations in the delay converters:

DELAY(MT,GROWTH_DELAY_TIME)
DELAY(MT,DECAY_DELAY_TIME)

10. Bequette 1998.
11. Senge (1990) discusses the case of the rapid growth and subsequent demise of the Peo-
ple’s Express airline company, which also may be an example of this behavior.
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FIGURE 2.7. Market share model with time delay

By increasing the value of the converters—GROWTH_DELAY_TIME and
DECAY_DELAY_TIME—we can increase the amount of time delay in the
model. The equation in the inflow is

R*GROWTH_DELAYED-R*DECAY_DELAYED*DECAY_DELAYED-MT!?

We will now look at the behavior of the model for the three cases, R = 0.9, 2.5,
and 3.9. Figure 2.8 shows the profile with R = 0.9 and with delays of 10 in both
growth and decay.

Comparing figure 2.8 to profile 1 in figure 2.5 shows that the time delays have
not changed the profile by much. The steady state value is still 0. The only impact
of time delays appears to be that the decay to O is slower when time delays are
present. In effect, the time delays slowed the response of the market. This makes
sense. By running the model with different combinations of the time delay values,
readers can also verify that having different values for the time delays does not
change the general behavior of the market share profile.

Figure 2.9 shows the profile for the case of R =2.5 and both time delays set to 10.

12. Readers should satisfy themselves that the last term, MT, should not be delayed.
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FIGURE 2.8. Market share model with R = 0.9 and delays of 10 time periods

Again, we see that the behavior in figure 2.9 is the same as for profile 2 in figure
2.5, except that it takes longer to reach the steady-state value. Further investiga-
tion shows, however, that this situation only holds when the time delays in both
growth and decay are the same. If the time delays are different from each other
(even by 1 time period only) then the profiles become unstable and the market
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FIGURE 2.9. Market share model with R =2.5 and delays of 10 time periods
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share profile oscillates in ever-increasing cycles. Readers should verify this by
running the model with various combinations of the time delays. It would appear
that when a time delay is present, it introduces instability into the model. When
both time delays are the same, they effectively cancel each other out. It should not
surprise us that the time delays have a different impact on the behavior of the
model. After all, the growth time delay enters through a linear term and the decay
time delay enters through a nonlinear term.

Figure 2.10 shows the market share profile for R = 3.9 with both time delays set
to 10. As in the previous two cases, if the growth and decay time delays are the
same, the basic profile is the same as when there was no time delay. The only im-
pact of the time delay is to slow down the response of the market. In figure 2.10,
this slowing down is seen as a stretching out of the oscillations. If the time delays
are not the same, then the market share profiles depend on the relative values of
the time delays. It is left as an exercise to the readers to investigate the impact of
the time delays by running the model.

This analysis can be summarized with the following learning point.

Learning Point: The structure of a system (feedbacks, time delays, nonlin-
earities) adds computational complexity to a system and makes it difficult,
if not impossible, for a person to infer the dynamic behavior of a system by
mental modeling alone.

It should be pointed out that the earlier model for market share (figure 2.7) is
not presented as an accurate model for market share dynamics. As we have al-
ready said, all models are only approximations to the real world. The ultimate jus-
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FIGURE 2.10. Market share model with R = 3.9 and delays of 10 time periods
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tification for any model will be its usefulness to the user. Various modifications to
the model presented here could be proposed and investigated. In particular, con-
sider a model where the growth rate term and decay rate term have different con-
stants, R, and R,, instead of a single constant, R. This modification could be made
in two ways, as shown by equations 2.3 and 2.4:

MT+I:R]MT 1_MT :RIMT_ﬁM; OSMTS1 (23)
R R
R, 2

M., =RM, —?MT =RM,-RM; 0<M, <1 (2.4)

These two models are basically the same. These models are not analyzed here.
However, the second model is included as model 2.7a to enable readers to inves-
tigate their properties as a function of R, R, and the time delays.

2.5 Complexity due to random variation: An order
control process

In order to understand how random variation can make it difficult to predict the
behavior of a system, consider the following example. You are employed in an
order entry process in which orders arrive from customers and are processed. The
downstream part of the process can only handle one order per minute, but orders
do not necessarily enter the process at this rate. It is your job to adjust the up-
stream part of the process so that the rate of flow of orders moving downstream is
one/minute. Based on the input order flow rate, you are able to adjust the rate to
get it back to 1. A model for this system is shown in figure 2.11.

The base order input rate is modeled using the stock BASE INPUT RATE. It
might seem strange that a rate is modeled as a stock. In theory, this model could
be set up using only flows and converters. However, within the ithink architec-
ture, this would show up as problem with a circular reference.!*> The converter
INPUT RATE VARIATION allows us to add a change to the input rate, so that the
converter ORDER INPUT RATE adds the variation to the BASE INPUT RATE.
The actual input rate that the process sees is the converter ORDER INPUT RATE.
It is this number that must be kept at the target. Once a change occurs because of
the value in INPUT RATE VARIATION, we must decide on an adjustment. This
adjustment should depend on how far the ORDER INPUT RATE is from target.
The equation in the INPUT RATE ADJUSTMENT converter is

IF TIME < =500 THEN 0 ELSE (TARGET - ORDER_INPUT_RATE)

13. See MODEL 2.11A.STM for an example of trying to make this model work without a
stock.
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ADJUSTING INPUT RATE ~ BASE INPUT RATE

€3¢ O :»

INPUT RATE VARIATION

ORDER INPUT RATE
INPUT RATE ADJUSTMENT

TARGET

FIGURE 2.11. Model for the order rate adjustment process

The reason for the IF statement with TIME < = 500 is that we will not turn on
any adjustment strategy until time = 500 minutes. This will allow us to see the im-
pact of the adjustments on ORDER INPUT RATE. Once the order input rate is off
target, an adjustment will be made. Note that the measurement and control of
ORDER INPUT RATE is considered to be part of the process because you cannot
understand the behavior of the process without understanding how the process is
being adjusted when it is off target.

To show how the model reacts to a change, we use the equation STEP(0.5,200)
in INPUT RATE VARIATION. This will cause the order input rate to jump from
1.0 to 1.5 orders/minute at the 200th minute. The profile for ORDER INPUT
RATE is shown in figure 2.12.

The input order rate stays at 1.5 until the 500th minute, when the adjustment
strategy is engaged. The input order rate is immediately adjusted back to the tar-
get of 1.0. The reader is invited to try different functions for the input rate varia-
tion to see the impact of the adjustment strategy. The behavior of the order input
rate is easy to understand, and it behaves as expected.

Now we modify the input variation using the function RANDOM(-0.5,0.5).
This function adds random variation that is uniform in the range —0.5 to +0.5. The
resultant profile for the order input rate is shown in figure 2.13.

Until the 500th minute, the order input rate varies randomly about the target of
1.0. Because the additional variation is in the range —0.5 to +0.5, the input order
rate varies in the range 0.5 to 1.5. It remains in this range until the 500th minute,
when the adjustment strategy is engaged. We would now expect the variation in
order input rate to be reduced and eliminated. The graph shows a completely dif-
ferent behavior. Not only is the variation not reduced, it actually increases! The
data in figure 2.13 are also contained in table 2.13 in the model. If these data are
copied into a spreadsheet, the standard deviation of the data can be calculated for
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FIGURE 2.12. Profile for order input rate with a step change at t = 200 minutes

the time periods before and after 500 minutes. The values thus obtained are .29
before and 0.40 after. This represents an increase of 40 percent in the standard de-
viation. Thus, the addition of an adjustment strategy that was designed to elimi-
nate the variation actually increased it. This leads to another learning point.

Learning Point: When a measure is subject to random sources of variation,
it is not possible to reduce the variation in the parameter by making adjust-
ments based solely on the last value of the parameter. Such adjustment
strategies actually increase the variation!

In fact, this principle is a key part of the process adjustment strategies used in
statistical process control (SPC).'* It is not difficult to see how a lack of under-
standing of this principle can impact a manager. When random variation exists in
the process measure, the measure will never be on target. If the manager responds
to every gap by taking a control action, the manager only ends up making things
worse! Suppose the measure represents the average unit cost over a month and is
reported on a monthly basis. The value this month is $12, whereas last month it
was $11.50. The manager is asked to explain why costs have risen, and therefore
tries to find some reason for the increase—in effect, valuable people resources
must be used to track down the problem. However, any actions the manager
might take based on just this one measurement could actually make things worse.

14. For example, see McConnell 1997 or Deming 1986.
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FIGURE 2.13. Profile for order input rate with random variation

Suppose next month the unit cost drops, as it might because the measurement is
affected by random variation. Then the manager might attribute this drop to inter-
ventions that were made during the month. This convinces the manager to take
further action because the interventions appear to be working. The following
month, the manager is expecting the unit costs to drop again, but instead the value
increases again. Now the manager is confused. More interventions must be iden-
tified—and quickly. What the manager is failing to realize is that the control sys-
tem being used is reacting to pure random variation. The only change that will re-
sult is that the variation in the measure will increase.

Of course, the manager cannot simply ignore the values of the unit cost alto-
gether. Some of the changes in the unit cost might represent a genuine trend in the
unit cost. For example, a drop in productivity may result in an upward trend in the
unit cost. This is a genuine signal to which the manager should react as soon as
possible. Therefore, the manager needs a way to separate the real upward trend
from the “normal” background random variation and must be able to do this as
soon as possible after the trend has started, or the business will suffer a loss in
profitability for a longer period of time. Again, the ability to differentiate between
trends and random variation is the subject of statistical process control.

Learning Point: In order to operate a business as successfully as possible, a
manager must be able to differentiate between changes in a measure due to
genuine trends in the measure and random variation in the measure.

Figure 2.11 shows the feedback that is involved in the control strategy used for
the input order rate. The value of the order input rate is fed back to calculate the
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ADJUSTING INPUT RATE ~ BASE INPUT RATE
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FIGURE 2.14. Model for the order rate adjustment process with time delay

adjustment. There is no time delay involved. The model in figure 2.14 is similar
to figure 2.11 except that a time delay has been added.'

The model in figure 2.14 contains the time delay explicitly. However, the pres-
ence of random variation is equivalent to a time delay when the monitoring of a
process for control is part of the process. Consider figure 2.11 again, in which the
system changed at t = 500. The change in the profile was immediate and there
would be no discussion as to where the change occurred. However, what about
figure 2.13, which has random variation included? How quickly could we decide
that an increase in variation had occurred? Figure 2.15 shows the same profile as
figure 2.13, except that it shows only the range t = 490 to t = 510.

Now it is more difficult to answer this question: “Where did the change occur?”
Perhaps by time 503 or 504, one might be prepared to say that a change in the
amount of random variation has occurred. This delay in our ability to detect a
change will delay our ability to react to that change. Thus in effect, the random
variation has introduced a time delay into the process.

Learning Point: Random variation in a process introduces a time delay in
our ability to monitor change in a process.

2.6 Further benefits of dynamic modeling

There are other benefits that can be gained from the dynamic modeling of busi-
ness processes. These include the following:

15. This model will not be discussed here and is provided to readers so that they can assess
the impact of the time delay.
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FIGURE 2.15. Profile for order input rate with random variation

* Find possible emergent properties of a system. Even though managers have
been working with particular systems for a considerable time, they may not have
seen all the possible ranges of behaviors that a system can exhibit. This emergent
behavior may take a long time to occur in the actual system, that is, in real time.
Dynamic models provide a way to explore such emergent behavior because such
models can cover these real-time spans in the short time it takes to run the model.
We can model five years of behavior in 60 seconds of real time!

* Provide quantitative assessments of qualitative ideas. Generally, most systems
are only understood at a qualitative level. A model can allow the user to turn qual-
itative understanding into quantitative understanding. For example, we all quali-
tatively understand that compounding interest can cause an investment to grow
rapidly over time. However, without a model, we cannot quantitatively under-
stand just how large it will grow.

* Allow the identification of the most important parameters in a system. In any
real system or process, many inputs are typical. In theory, all of the inputs can
have an impact on the output. However, if we have to monitor all of the inputs to
manage the outputs, we are in big trouble. We hope that we can use the Pareto
Principle. This principle states that 80 percent of the output is affected by 20 per-
cent of the inputs. Said another way, all inputs are not created equally. In general,
there will be a subset of these inputs that have the greatest impact on the output.
If we know what inputs are in this subset, we can focus on these inputs. But how
are we to identify these inputs? If we have a model available for the process, we
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can perturb each input and see how it affects the output. Then we can rank the in-
puts in terms of their impact on the output and pick those that have the highest im-
pact. This is called a sensitivity analysis. We will say more about this in chapter 3.

* Allow testing of “what-if?” scenarios. When planning how we can improve a
process, we generally propose some specific improvement actions and then set up
some tests to see which action leads to the biggest improvement. In effect, we set
up some experiments and carry out some “what-if”” scenarios. Traditionally, such
experiments have been physical in nature. We set up a physical model of the sys-
tem or process and test the changes on the physical model. This can be an expen-
sive way to test, however. If we have good computer model of the system or pro-
cess, the computer model becomes the equivalent of the physical model. The
main expense for the computer model is typically the initial set up. After that,
testing these “what-if” scenarios is relatively cheap.

* Facilitate communication through both model results and the model structure. After
“what-if”” scenario tests have been carried out, it is important that results of the test-
ing can be communicated easily to those who are interested but have not been in-
volved in the testing directly. Models can be useful to communicate the structure of
a system and the results obtained from testing. Also, and perhaps just as important,
models help show people why the actions taken lead to the results obtained.

* Provide a system memory. When we learn something about how a system works,
we may be able to use this immediately to create improvement. As well as the im-
mediate use of learning, it is also important that we provide some way to archive
the learning so that sometime in the future, the information is easily available. It is
not unusual in organizations to find situations where an issue arose because some-
thing that was once learned was forgotten. Models provide a way to create system
memory. A model can be set up to contain current knowledge about a system or
process. Any changes to the system or process must be tested in the model, and if
the real system or process is modified, then the model is modified as well.

* Use as a training tool. It would be great if we could train a person on a process
and then be sure that this person would always work on the process. However, in
reality, people move around an organization and new people must be trained. A
model can be invaluable in helping train to new people, especially if the model is
also being used as an important part of the overall learning strategy as described
in the previous paragraph. In fact, a popular idea today is the management flight
simulator. A model of a system is created and then set up so that a user can inter-
act with the model to make decisions and see the impact of these decisions. The
model is set up to give feedback when the user takes actions that are not opti-
mal.'¢ By running the model multiple times, the user can try different approaches
to managing the system. Of course, if wrong decisions are made, only a virtual

16. High Performance Systems, the company that produces the ithink software, also pro-
duces what they refer to as learning environments—these are essentially the same as man-
agement flight simulators
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business is affected. It is better to make these mistakes on this virtual system than
on the real system!

* Facilitates the formation of a dynamic hierarchy of exploration within a group.
In many situations, getting management to commit to giving resources to create a
detailed model of a system is difficult. They want to see some benefit before they
make the commitment. A compromise can be reached by starting with a high-
level model that has just enough detail to make the model useful. Then as man-
agement sees the usefulness of the model, they might commit resources to add
more detail to the model. In fact, reluctance on the part of management has some
positive benefit. By forcing us to start off at a high level, we get a feel for where
greater detail will be most useful. Sometimes, addition of detail to a certain part
of a model may involve a lot of work but add little or nothing to our understand-
ing. Knowing how much detail to add to a model in order to make it useful is a
skill that can be obtained only through experience.

2.7 Organizing principle of this book

The remainder of this book focuses on the application of dynamic modeling to
business systems. Chapter 3 is devoted to the modeling of performance measures.
In keeping with the approach of starting simple and then expanding to more com-
plicated models, chapter 4 discusses the simplest process possible, a single-step
process. Then, between chapters 5 and 10, we expand this to cover multistep
processes, supplier and customer interfacing, multiple business objectives, and
supply chains. Think of this as expanding the simple process in a single dimen-
sion. In chapter 11, we show how to expand into a second dimension by consid-
ering the relationship between strategy and tactics. Finally, in chapter 12 we con-
sider how organizations improve their process performance. Improvement is a
process in itself; it can be modeled like any other process.

Validation of models will not be covered in this book. Readers will do this as
they apply models to their own organizations. Instead, we will use the models
presented throughout this book to explain the general behavior of organizations.
The principles that we uncover can be applied to the many different types of or-
ganizations found in business today.

Model Equations

MODEL 2.4.1TM

{ INITIALIZATION EQUATIONS }
MO =0.1

INIT MT = MO

R=09

DELTA_M =R*MT*(1-MT)—MT

{ RUNTIME EQUATIONS }
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MT(t) = MT(t—dt) + (DELTA_M) * dt
DELTA_M = R*MT*(1-MT)—MT

MODEL 2.7.1TM

{ INITIALIZATION EQUATIONS }

M0 =0.1

INIT MT = MO

R=05

GROWTH_DELAY_TIME =0

GROWTH_DELAYED = DELAYMT,GROWTH_DELAY_TIME)
DECAY_DELAY_TIME =0

DECAY_DELAYED = DELAY(MT,DECAY_DELAY_TIME)
DELTA_M = R*GROWTH_DELAYED-R*DECAY_DELAYED*DECAY _
DELAYED-MT

{ RUNTIME EQUATIONS }

MT(t) = MT{(t - dt) + (DELTA_M) * dt

GROWTH_DELAYED = DELAY(MT,GROWTH_DELAY_TIME)
DECAY_DELAYED = DELAY(MT,DECAY_DELAY_TIME)
DELTA_M = R*GROWTH_DELAYED-
R*DECAY_DELAYED*DECAY_DELAYED-MT

MODEL 2.11.ITM

{ INITIALIZATION EQUATIONS }

TARGET=1.0

INIT BASE_INPUT_RATE = TARGET
INPUT_RATE_VARIATION = RANDOM(-0.5,+0.5)
ORDER_INPUT_RATE = BASE_INPUT_RATE +
INPUT_RATE_VARIATION

INPUT_RATE_ADJUSTMENT = IF TIME < =500 THEN 0 ELSE
(TARGET- ORDER_INPUT_RATE)

ADJUSTING_INPUT_RATE = INPUT_RATE_ADJUSTMENT

{ RUNTIME EQUATIONS }

BASE_INPUT_RATE(t) = BASE_INPUT_RATE(t—dt) +
(ADJUSTING_INPUT_RATE) * dt

INPUT_RATE_VARIATION = RANDOM(-0.5,+0.5)
ORDER_INPUT_RATE = BASE_INPUT_RATE +
INPUT_RATE_VARIATION

INPUT_RATE_ADJUSTMENT = IF TIME < =500 THEN 0 ELSE
(TARGET- ORDER_INPUT_RATE)

ADJUSTING_INPUT_RATE = INPUT_RATE_ADJUSTMENT

MODEL 2.14.ITM
{ INITIALIZATION EQUATIONS }
TARGET=1.0
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INIT BASE_INPUT_RATE = TARGET

INPUT_RATE_VARIATION = RANDOM(-0.5,+0.5)

ORDER_INPUT_RATE = BASE_INPUT_RATE +
INPUT_RATE_VARIATION

DELAY_TIME =0

ORDER_INPUT_RATE_DELAYED =
DELAY(ORDER_INPUT_RATE,DELAY_TIME)
INPUT_RATE_ADJUSTMENT = IF TIME < =500 THEN 0 ELSE (TARGET-
ORDER_INPUT_RATE_DELAYED)

ADJUSTING_INPUT_RATE = INPUT_RATE_ADJUSTMENT/DT

{ RUNTIME EQUATIONS }

BASE_INPUT_RATE(t) = BASE_INPUT_RATE(t—dt) +
(ADJUSTING_INPUT_RATE) * dt

INPUT_RATE_VARIATION = RANDOM(-0.5,+0.5)
ORDER_INPUT_RATE = BASE_INPUT_RATE +
INPUT_RATE_VARIATION

ORDER_INPUT_RATE_DELAYED =
DELAY(ORDER_INPUT_RATE,DELAY_TIME)
INPUT_RATE_ADJUSTMENT = IF TIME < =500 THEN 0 ELSE (TARGET-
ORDER_INPUT_RATE_DELAYED)

ADJUSTING_INPUT_RATE = INPUT_RATE_ADJUSTMENT/DT
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