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Introduction to Balanced Incomplete Block
Designs

1.1 What Is Design Theory?

Combinatorial design theory concerns questions about whether it is possible
to arrange elements of a finite set into subsets so that certain “balance” prop-
erties are satisfied. Types of designs that we will discuss include balanced
incomplete block designs, t-designs, pairwise balanced designs, orthogonal
Latin squares, and many more. Many of the fundamental questions are ex-
istence questions: Does a design of a specified type exist? Modern design
theory includes many existence results as well as nonexistence results. How-
ever, there remain many open problems concerning the existence of certain
types of designs.

Design theory has its roots in recreational mathematics. Many types of
designs that are studied today were first considered in the context of math-
ematical puzzles or brain-teasers in the eighteenth and nineteenth centuries.
The study of design theory as a mathematical discipline really began in the
twentieth century due to applications in the design and analysis of statistical
experiments. Designs have many other applications as well, such as tourna-
ment scheduling, lotteries, mathematical biology, algorithm design and anal-
ysis, networking, group testing, and cryptography.

This work will provide a mathematical treatment of the most important
“classical” results in design theory. This roughly covers the period from 1940
to 1980. In addition, we cover some selected recent topics in design theory
that have applications in other areas, such as bent functions and resilient
functions.

Design theory makes use of tools from linear algebra, groups, rings and
fields, and number theory, as well as combinatorics. The basic concepts of
design theory are quite simple, but the mathematics used to study designs is
varied, rich, and ingenious.
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1.2 Basic Definitions and Properties

Definition 1.1. A design is a pair (X,A) such that the following properties are
satisfied:

1. X is a set of elements called points, and
2. A is a collection (i.e., multiset) of nonempty subsets of X called blocks.

If two blocks in a design are identical, they are said to be repeated blocks.
This is why we refer to A as a multiset of blocks rather than a set. A design is
said to be a simple design if it does not contain repeated blocks.

If we want to list the elements in a multiset (with their multiplicities), we
will use the notation [ ]. If all elements of a multiset have multiplicity one,
then the multiset is a set. For example, we have that [1, 2, 5] = {1, 2, 5}, but
[1, 2, 5, 2] �= {1, 2, 5, 2} = {1, 2, 5}. The order of the elements in a multiset is
irrelevant, as with a set.

Balanced incomplete block designs are probably the most-studied type
of design. The study of balanced incomplete block designs was begun in the
1930s by Fisher and Yates. Here is a definition:

Definition 1.2. Let v, k, and λ be positive integers such that v > k ≥ 2. A (v, k, λ)-
balanced incomplete block design (which we abbreviate to (v, k, λ)-BIBD) is a
design (X,A) such that the following properties are satisfied:

1. |X| = v,
2. each block contains exactly k points, and
3. every pair of distinct points is contained in exactly λ blocks.

Property 3 in the definition above is the “balance” property. A BIBD is
called an incomplete block design because k < v, and hence all its blocks are
incomplete blocks.

A BIBD may possibly contain repeated blocks if λ > 1. The use of the
letter “v” to denote the number of points is an artifact of the original motiva-
tion for studying BIBDs, namely to facilitate the design of agricultural exper-
iments. “v” was an abbreviation for “varieties”, as in “varieties of wheat”.

We give a few examples of BIBDs now. To save space, we write blocks in
the form abc rather than {a, b, c}.

Example 1.3. A (7, 3, 1)-BIBD.

X = {1, 2, 3, 4, 5, 6, 7}, and
A = {123, 145, 167, 246, 257, 347, 356}.

This BIBD has a nice diagrammatic representation; see Figure 1.1. The blocks
of the BIBD are the six lines and the circle in this diagram.
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Fig. 1.1. The Fano Plane: A (7, 3, 1)-BIBD

Example 1.4. A (9, 3, 1)-BIBD.

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and
A = {123, 456, 789, 147, 258, 369, 159, 267, 348, 168, 249, 357}.

This BIBD can also be presented diagrammatically; see Figure 1.2. The 12
blocks of the BIBD are depicted as eight lines and four triangles. Observe
that the blocks can be separated into four sets of three, where each of these
four sets covers every point in the BIBD.

Example 1.5. A (10, 4, 2)-BIBD.

X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, and
A = {0123, 0145, 0246, 0378, 0579, 0689, 1278, 1369, 1479, 1568,

2359, 2489, 2567, 3458, 3467}.

Example 1.6. Let A consist of all k-subsets of X. Then (X,A) is a
(

v, k,
(v−2

k−2

))
-

BIBD.

Example 1.7. A (7, 3, 2)-BIBD containing a repeated block.

X = {0, 1, 2, 3, 4, 5, 6}, and
A = [123, 145, 167, 246, 257, 347, 356,

123, 147, 156, 245, 267, 346, 357].
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Fig. 1.2. A (9, 3, 1)-BIBD

We now state and prove two basic properties of BIBDs.

Theorem 1.8. In a (v, k, λ)-BIBD, every point occurs in exactly

r =
λ(v − 1)

k − 1

blocks.

Proof. Let (X,A) be a (v, k, λ)-BIBD. Suppose x ∈ X, and let rx denote the
number of blocks containing x. Define a set

I = {(y, A) : y ∈ X, y �= x, A ∈ A, {x, y} ⊆ A}.

We will compute |I| in two different ways.
First, there are v − 1 ways to choose y ∈ X such that y �= x. For each such

y, there are λ blocks A such that {x, y} ⊆ A. Hence,

|I| = λ(v − 1).

On the other hand, there are rx ways to choose a block A such that x ∈ A.
For each choice of A, there are k − 1 ways to choose y ∈ A, y �= x. Hence,

|I| = rx(k − 1).

Combining these two equations, we see that

λ(v − 1) = rx(k − 1).

Hence rx = λ(v − 1)/(k − 1) is independent of x, and the result follows. ��
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The value r is often called the replication number of the BIBD.

Theorem 1.9. A (v, k, λ)-BIBD has exactly

b =
vr
k

=
λ(v2 − v)

k2 − k

blocks.

Proof. Let (X,A) be a (v, k, λ)-BIBD, and let b = |A|. Define a set

I = {(x, A) : x ∈ X, A ∈ A, x ∈ A}.

We will compute |I| in two different ways.
First, there are v ways to choose x ∈ X. For each such x, there are r blocks

A such that x ∈ A. Hence,
|I| = vr.

On the other hand, there are b ways to choose a block A ∈ A. For each choice
of A, there are k ways to choose x ∈ A. Hence,

|I| = bk.

Combining these two equations, we see that

bk = vr,

as desired. ��
Sometimes we will use the notation (v, b, r, k, λ)-BIBD if we want to

record the values of all five parameters.
Since b and r must be integers, these two theorems allow us to conclude

that BIBDs with certain parameter sets do not exist. We state the following
obvious corollary of Theorems 1.8 and 1.9.

Corollary 1.10. If a (v, k, λ)-BIBD exists, then λ(v − 1) ≡ 0 (mod k − 1) and
λv(v − 1) ≡ 0 (mod k(k − 1)).

For example, an (8, 3, 1)-BIBD does not exist because λ(v − 1) = 7 �≡
0 (mod 2). As another example, let us consider the parameter set (19, 4, 1).
Here, we see that λv(v − 1) = 342 �≡ 0 (mod 12). Hence a (19, 4, 1)-BIBD
cannot exist.

A more general use of Corollary 1.10 is to determine necessary conditions
for families of BIBDs with fixed values of k and λ. For example, it is not hard
to show that a (v, 3, 1)-BIBD exists only if v ≡ 1, 3 (mod 6).

One of the main goals of combinatorial design theory is to determine nec-
essary and sufficient conditions for the existence of a (v, k, λ)-BIBD. This is a
very difficult problem in general, and there are many parameter sets where
the answer is not yet known. For example, it is currently unknown if there
exists a (22, 8, 4)-BIBD (such a BIBD would have r = 12 and b = 33). On the
other hand, there are many known constructions for infinite classes of BIBDs
as well as some other necessary conditions that we will discuss a bit later.
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1.3 Incidence Matrices

It is often convenient to represent a BIBD by means of an incidence matrix.
This is especially useful for computer programs. We give the definition of an
incidence matrix now.

Definition 1.11. Let (X,A) be a design where X = {x1, . . . , xv} and A =
{A1, . . . , Ab}. The incidence matrix of (X,A) is the v × b 0 − 1 matrix M =
(mi,j) defined by the rule

mi,j =
{

1 if xi ∈ Aj
0 if xi �∈ Aj.

The incidence matrix, M, of a (v, b, r, k, λ)-BIBD satisfies the following
properties:

1. every column of M contains exactly k “1”s;
2. every row of M contains exactly r “1”s;
3. two distinct rows of M both contain “1”s in exactly λ columns.

Example 1.12. Consider the (9, 3, 1)-BIBD presented in Example 1.4. The inci-
dence matrix of this design is the following 9 × 12 matrix:

M =



1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0 1 0 0 1
0 1 0 1 0 0 0 0 1 0 1 0
0 1 0 0 1 0 1 0 0 0 0 1
0 1 0 0 0 1 0 1 0 1 0 0
0 0 1 1 0 0 0 1 0 0 0 1
0 0 1 0 1 0 0 0 1 1 0 0
0 0 1 0 0 1 1 0 0 0 1 0


.

We need a few more definitions before stating the next theorem. Suppose
In denotes an n × n identity matrix, Jn denotes the n × n matrix in which
every entry is a “1”, and un denotes the vector of length n in which every
coordinate is a “1”. Finally, for a matrix M = (mi,j), define the transpose of M,
denoted MT , to be the matrix whose (j, i) entry is mi,j.

Theorem 1.13. Let M be a v × b 0 − 1 matrix and let 2 ≤ k < v. Then M is the
incidence matrix of a (v, b, r, k, λ)-BIBD if and only if MMT = λJv + (r − λ)Iv
and uv M = kub.

Proof. First, suppose (X,A) is a (v, k, λ)-BIBD, where X = {x1, . . . , xv} and
A = {A1, . . . , Ab}. Let M be its incidence matrix. The (i, j)-entry of MMT is
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b

∑
h=1

mi,hmj,h =
{

r if i = j
λ if i �= j.

Hence, from properties 2 and 3 enumerated above, every entry on the main
diagonal of the matrix MMT is equal to r, and every off-diagonal entry is
equal to λ, so MMT = λJv + (r − λ)Iv.

Furthermore, the ith entry of uv M is equal to the number of “1”s in col-
umn i of M. By property 1, this equals k. Hence, uv M = kub.

Conversely, suppose that M is a v × b 0 − 1 matrix such that MMT =
λJv + (r − λ)Iv and uv M = kub. Let (X,A) be the design whose incidence
matrix is M. Clearly we have |X| = v and |A| = b. From the equation uv M =
kub, it follows that every block in A contains k points. From the equation
MMT = λJv + (r − λ)Iv, it follows that every pair of points occurs in exactly
λ blocks, and every point occurs in r blocks. Hence, (X,A) is a (v, b, r, k, λ)-
BIBD. ��

We will show that the converse part of the theorem above does not hold
if the second condition is omitted. Incidence matrices satisfying the first con-
dition are equivalent to a certain type of design, which we define now.

Definition 1.14. A pairwise balanced design (or PBD) is a design (X,A) such
that every pair of distinct points is contained in exactly λ blocks, where λ is a positive
integer. Furthermore, (X,A) is a regular pairwise balanced design if every point
x ∈ X occurs in exactly r blocks A ∈ A, where r is a positive integer.

A PBD (X,A) is allowed to contain blocks of size |X| (i.e., complete blocks). If
(X,A) consists only of complete blocks, it is said to be a trivial pairwise balanced
design. If (X,A) contains no complete blocks, it is said to be a proper pairwise
balanced design .

We state the following variation of Theorem 1.13 without proof.

Theorem 1.15. Let M be a v × b 0− 1 matrix. Then M is the incidence matrix of
a regular pairwise balanced design having v points and b blocks if and only if there
exist positive integers r and λ such that MMT = λJv + (r − λ)Iv.

Here is an example to illustrate Theorem 1.15.

Example 1.16. Consider the following 6 × 11 matrix:

M =


1 0 1 1 1 0 0 0 0 0 0
1 0 0 0 0 1 1 1 0 0 0
1 0 0 0 0 0 0 0 1 1 1
0 1 1 0 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1 0 0 1

 .

This matrix M is the incidence matrix of the following regular pairwise bal-
anced design:
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X = {1, 2, 3, 4, 5, 6}, and
A = {123, 456, 14, 15, 16, 24, 25, 26, 34, 35, 36}.

Here v = 6, b = 11, r = 4, and λ = 1. The design is not a BIBD because the
blocks do not all have the same size—there are two blocks of size three and
nine blocks of size two.

It is easily verified that MMT = Jv + 3Iv = λJv + (r − λ)Iv. However,

u6M = (3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2),

so u6 M �= kub for any integer k.

Suppose that (X,A) is a design with |X| = v and |A| = b. Let M be the
v × b incidence matrix of (X,A). The design having incidence matrix MT

is called the dual design of (X,A). Suppose that (Y,B) is the dual design of
(X,A); then |Y| = |A| = b and |B| = |X| = v. Properties of dual designs of
BIBDs are summarized in the following theorem.

Theorem 1.17. Suppose that (X,A) is a (v, b, r, k, λ)-BIBD, and let (Y,B) be the
dual design of (X,A). Then the following properties hold:

1. every block in B has size r,
2. every point in Y occurs in exactly k blocks in B, and
3. any two distinct blocks Bi, Bj ∈ B intersect in exactly λ points.

Example 1.18. Suppose that (X,A) is the (9, 3, 1)-BIBD presented in Example
1.4. Then (Y,B) is the dual design of (X,A), where

Y = {1, 2, 3, 4, 5, 6, 7, 8, 9, T, E, V}, and
B = {147T, 158E, 169V, 248E, 257V, 268T, 348V, 359T, 367E}.

It is easy to verify that every block in B has size four, every point in Y occurs
in exactly three blocks in B, and every pair of distinct blocks in B intersect in
exactly one point.

1.4 Isomorphisms and Automorphisms

We begin with a definition.

Definition 1.19. Suppose (X,A) and (Y,B) are two designs with |X| = |Y|.
(X,A) and (Y,B) are isomorphic if there exists a bijection α : X → Y such
that

[{α(x) : x ∈ A} : A ∈ A] = B.

In other words, if we rename every point x ∈ X by α(x), then the collection of blocks
A is transformed into B. The bijection α is called an isomorphism.
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Example 1.20. Here are two (7, 3, 1)-BIBDs, (X,A) and (Y,B):

X = {1, 2, 3, 4, 5, 6, 7}, and
A = {123, 145, 167, 246, 257, 347, 356};

Y = {a, b, c, d, e, f , g}, and
B = {abd, bce, cdf , deg, aef , bfg, acg}.

Suppose we define the bijection α as α(1) = a, α(2) = b, α(3) = d, α(4) = c,
α(5) = g, α(6) = e and α(7) = f . Then, when we relabel the points in X using
α, the blocks of A become the following:

123 → abd

145 → acg

167 → aef

246 → bce

257 → bfg

347 → cdf

356 → deg.

Thus α is an isomorphism of the two BIBDs.

We need to clarify how isomorphisms affect BIBDs having repeated
blocks. Suppose that (X,A) and (Y,B) are two (v, k, λ)-BIBDs, and suppose
that α : X → Y is an isomorphism of these two designs. Suppose further that
(X,A) contains c copies of the block A. Then it must also be the case that
(Y,B) contains c copies of the block {α(x) : x ∈ A}.

We can describe isomorphism of designs in terms of incidence matrices
as follows.

Theorem 1.21. Suppose M = (mi,j) and N = (ni,j) are both v × b incidence ma-
trices of designs. Then the two designs are isomorphic if and only if there exists a
permutation γ of {1, . . . , v} and a permutation β of {1, . . . , b} such that

mi,j = nγ(i),β(j)

for all 1 ≤ i ≤ v, 1 ≤ j ≤ b.

Proof. Suppose that (X,A) and (Y,B) are designs having v× b incidence ma-
trices M and N, respectively. Suppose that X = {x1, . . . , xv}, Y = {y1, . . . , yv},
A = {A1, . . . , Ab}, and B = {B1, . . . , Bb}.

Suppose first that (X,A) and (Y,B) are isomorphic. Then, there exists a
bijection α : X → Y such that [{α(x) : x ∈ A} : A ∈ A] = B. For 1 ≤ i ≤ v,
define

γ(i) = j if and only if α(xi) = yj.
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Since α is a bijection of X and Y, it follows that γ is a permutation of
{1, . . . , v}.

Next, there exists a permutation β of {1, . . . , b} that has the property that

{α(x) : x ∈ Aj} = Bβ(j)

for 1 ≤ j ≤ b. Such a permutation exists because α is an isomorphism of
(X,A) and (Y,B).

Now, we have

mi,j = 1 ⇔ xi ∈ Aj

⇒ yγ(i) ∈ Bβ(j)

⇔ nγ(i),β(j) = 1.

Conversely, suppose we have permutations γ and β such that mi,j =
nγ(i),β(j) for all i, j. Define α : X → Y by the rule

α(xi) = yj if and only if γ(i) = j.

Then it is easily seen that

{α(x) : x ∈ Aj} = Bβ(j)

for 1 ≤ j ≤ b. Hence, α defines an isomorphism of (X,A) and (Y,B). ��

A permutation matrix is a 0 − 1 matrix in which every row and every col-
umn contain exactly one entry equal to “1”. The following corollary of The-
orem 1.21 provides an alternate characterization of isomorphic designs. The
proof is left to the reader.

Corollary 1.22. Suppose M and N are incidence matrices of two (v, b, r, k, λ)-
BIBDs. Then the two BIBDs are isomorphic if and only if there exists a v × v permu-
tation matrix, say P, and a b × b permutation matrix, say Q, such that M = PNQ.

In general, determining whether or not two designs are isomorphic is a
difficult computational problem. There are v! possible bijections between two
sets of cardinality v. To show that two designs are not isomorphic, it must be
shown that none of the v! possible bijections constitutes an isomorphism.
Since v! grows exponentially quickly as a function of v, it soon becomes im-
practical to actually test every possible bijection. Fortunately, there are more
sophisticated algorithms than testing every possibility exhaustively, and iso-
morphism testing is practical for relatively large designs.

Suppose (X,A) is a design. An automorphism of (X,A) is an isomorphism
of this design with itself. In this case, the bijection α is a permutation of X such
that

[{α(x) : x ∈ A} : A ∈ A] = A.

Of course, the identity mapping on X is always a (trivial) automorphism, but
a design may have other, nontrivial automorphisms.
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Example 1.23. Let (X,A) be the following (7, 3, 1)-BIBD:

X = {1, 2, 3, 4, 5, 6, 7}, and
A = {123, 145, 167, 246, 257, 347, 356}.

Suppose we define the permutation α as follows: α(1) = 1, α(2) = 2, α(3) =
3, α(4) = 5, α(5) = 4, α(6) = 7, and α(7) = 6. Then, when we relabel the
points in X using α, the blocks of A become the following:

123 → 123
145 → 145
167 → 167
246 → 257
257 → 246
347 → 356
356 → 347.

Thus α is an automorphism of the BIBD.

It is often convenient to present a permutation α on a set X using the
disjoint cycle representation. Each cycle in this representation has the form

(x α(x) α(α(x)) · · · )
for some x ∈ X. Eventually, we get back to x, creating a cycle. The cycles thus
obtained are disjoint, and they have lengths that sum to |X|. The order of the
permutation α is the least common multiple of the lengths of the cycles in the
disjoint cycle representation. A fixed point of α is a point x such that α(x) = x;
note that fixed points of α correspond to cycles of length one in the disjoint
cycle representation of α.

The permutation α in the example above has the disjoint cycle represen-
tation (1)(2)(3)(4 5)(6 7). It is a permutation of order 2 that contains three
fixed points.

It is easy to show that the set of all automorphisms of a BIBD (X,A)
forms a group under the operation of composition of permutations. This
group is called the automorphism group of the BIBD and is denoted Aut(X,A).
Aut(X,A) is a subgroup of the symmetric group S|X| (where Sv is the group
consisting of all v! permutations on a set of v elements). Note that a sub-
group of Sv is called a permutation group, so automorphism groups of designs
are examples of permutation groups.

Example 1.24. The (7, 3, 1)-BIBD (X,A) in the previous example has another
automorphism, β = (1 2 4 3 6 7 5). The composition γ = α ◦ β is defined as
γ(x) = β(α(x)) for all x ∈ X. It can be checked that γ = (1 2 4)(3 6 5)(7).
Thus γ is an automorphism of the BIBD because it is the composition of two
automorphisms.

(X,A) has many other automorphisms. In fact, it turns out that Aut(X,A)
is a group of order 168.
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1.4.1 Constructing BIBDs with Specified Automorphisms

In this section, we describe a method that can often be used to determine
the existence or nonexistence of a (v, k, λ)-BIBD having specified automor-
phisms.

Let Sv denote the symmetric group on a v-set, say X. For a positive integer
j ≤ v, let

(X
j

)
denote the set of all

(v
j

)
j-subsets of X. For a subset Y ⊆ X and

for a permutation β ∈ Sv, define

β(Y) = {β(x) : x ∈ Y}.

Suppose that G is a subgroup of Sv. Let j ≤ v be a positive integer, and
for A, B ∈

(X
j

)
, define A ∼j B if β(A) = B for some β ∈ G. It is not hard

to prove that ∼j is an equivalence relation on
(X

j

)
. The equivalence classes

of this relation are called the j-orbits of X with respect to the group G. The
j-orbits comprise a partition of the set

(X
j

)
, and β(A) = B for some β ∈ G if

and only if A and B are in the same orbit of G.
The well-known Cauchy-Frobenius-Burnside Lemma provides a method

of computing the number of j-orbits of X. For each β ∈ G, define

fix(β) =
∣∣∣∣{A ∈

(
X
j

)
: β(A) = A

}∣∣∣∣ .
We state the following lemma without proof.

Lemma 1.25 (Cauchy-Frobenius-Burnside Lemma). The number of j-orbits of
X with respect to the group G is exactly

1
|G| ∑

β∈G
fix(β).

Suppose that O1, . . . ,On are the k-orbits, and P1, . . . ,Pm are the 2-orbits
of X with respect to the group G. We define an n × m matrix, denoted Ak,2,
as follows. For 1 ≤ j ≤ m, choose any 2-subset Yj ∈ Pj. Then, for 1 ≤ i ≤ n,
the i, j entry of Ak,2, denoted ai,j, is defined as follows:

ai,j = |{A ∈ Oi : Yj ⊆ A}|.

It can be shown that the definition of ai,j does not depend on the particular
orbit representatives Yj that are chosen; this follows immediately from the next
lemma.

Lemma 1.26. Suppose that O1, . . . ,On are the k-orbits, and P1, . . . ,Pm are the 2-
orbits of X with respect to the group G. Suppose that Y, Y′ ∈ Pj for some j, and
suppose 1 ≤ i ≤ n. Then

|{A ∈ Oi : Y ⊆ A}| = |{A ∈ Oi : Y′ ⊆ A}|.
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Proof. There exists β ∈ G such that β(Y) = Y′. For each A ∈ Oi such that
Y ⊆ A, it holds that Y′ ⊆ β(A). β is a permutation, so β(A) �= β(B) if
A �= B. Therefore, for each A ∈ Oi such that Y ⊆ A, we obtain a block
A′ = β(A) ∈ Oi such that Y′ ⊆ A′, and the blocks β(A), where A ∈ Oi and
Y ⊆ A, are all distinct. Therefore

|{A ∈ Oi : Y ⊆ A}| ≤ |{A ∈ Oi : Y′ ⊆ A}|.

The inequality in the opposite direction follows by interchanging the roles
of Y and Y′, and replacing β by β−1. Combining the two inequalities, the
desired result is proven. ��

Here now is the main result of this section.

Theorem 1.27 (Kramer-Mesner Theorem). There exists a (v, k, λ)-BIBD hav-
ing G as a subgroup of its automorphism group if and only if there exists a solution
z ∈ Zn to the matrix equation

zAk,2 = λum, (1.1)

where z has nonnegative entries.

Proof. We give a sketch of the proof. First, suppose that z = (z1, . . . , zn) is a
nonnegative integral solution to equation (1.1). Define

A =
n⋃

i=1

ziOi.

The notation above is a multiset union; it means that A is formed by taking
zi copies of every block in Oi for 1 ≤ i ≤ n. It is easy to see that (X,A) is a
(v, k, λ)-BIBD having G as a subgroup of its automorphism group.

Conversely, suppose that (X,A) is the desired BIBD. Then A necessarily
must consist of a multiset union of the orbits Oi, 1 ≤ i ≤ n. Let zi denote
the number of times each of the blocks of the orbit Oi occurs in A; then z =
(z1, . . . , zn) is a nonnegative integral solution to equation (1.1). ��

As an additional remark, we observe that the BIBD in Theorem 1.27 is
simple if and only if the vector z ∈ {0, 1}n.

Example 1.28. We use the technique described above to construct a (6, 3, 2)-
BIBD having an automorphism of order 5. Suppose that α = (0 1 2 3 4)(5)
and G = {αi : 0 ≤ i ≤ 4}. It is easy to see that there are three 2-orbits of
X = {0, 1, 2, 3, 4, 5}, namely

P1 = {01, 12, 23, 34, 40},
P2 = {02, 13, 24, 30, 41}, and
P3 = {05, 15, 25, 35, 45}.
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Also, there are four 3-orbits:

O1 = {012, 123, 234, 340, 401},
O2 = {013, 124, 230, 341, 402},
O3 = {015, 125, 235, 345, 405}, and
O4 = {025, 135, 245, 305, 415}.

The matrix A3,2 is as follows:

A3,2 =


2 1 0
1 2 0
1 0 2
0 1 2

 .

The equation zA3,2 = 2u3 has exactly two nonnegative integral solutions:
z = (1, 0, 0, 1) and z = (0, 1, 1, 0). Each of these solutions yields a (6, 3, 2)-
BIBD having α as an automorphism.

Here is a more interesting example, in which the orbits do not all have
the same size.

Example 1.29. We construct a (9, 3, 1)-BIBD having a certain automorphism of
order six. Suppose that α = (0 1 2 3 4 5)(6 7 8) and G = {αi : 0 ≤ i ≤ 5}. The
permutations in G are as follows:

α = (0 1 2 3 4 5)(6 7 8),
α2 = (0 2 4)(1 3 5)(6 8 7),
α3 = (0 3)(1 4)(2 5)(6)(7)(8),
α4 = (0 4 2)(1 5 3)(6 7 8),
α5 = (0 5 4 3 2 1)(6 8 7), and
α0 = (0)(1)(2)(3)(4)(5)(6)(7)(8).

Lemma 1.25 can be used to compute the number of 2- and 3-orbits. First
we consider 2-orbits. It is not hard to see that fix(α) = fix(α2) = fix(α4) =
fix(α5) = 0, fix(α3) = 6, and fix(α0) =

(9
2

)
= 36. Therefore, the number of

2-orbits is (36 + 6)/6 = 7.
Now we turn to 3-orbits. It is not hard to check that fix(α) = fix(α5) = 1,

fix(α2) = fix(α4) = 3, fix(α3) = 10, and fix(α0) =
(9

3
)

= 84. Therefore, the
number of 3-orbits is (84 + 10 + 2(3) + 2(1))/6 = 17.

We leave it as an exercise for the reader to construct the A3,2 matrix and
solve the matrix equation. It turns out that there is a solution; the following
(9, 3, 1)-BIBD, consisting of four of the 3-orbits, has α as an automorphism:

orbit orbit size
018 126 237 348 456 507 6

036 147 258 3
024 135 2

678 1
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The total number of blocks is 12, as it must be.

It is, in general, a nontrivial task to construct an Ak,2 matrix if the set X
is even of moderate size. It is a considerably more difficult problem to find
the desired integral solution to the matrix equation (and of course there is no
guarantee that the sought-after solution even exists). The known algorithms
to find nonnegative integral solutions of matrix equations have exponential
complexity and may require enormous amounts of computing time to run to
completion. Nevertheless, this approach to finding designs having specified
automorphisms has been very useful in practice in discovering previously
unknown designs.

1.5 New BIBDs from Old

In this section, we give two simple methods of constructing new BIBDs from
old. The first construction can be called the “sum construction”. Given two
BIBDs on the same point set, it involves forming the collection of all the
blocks in both designs.

Theorem 1.30 (Sum Construction). Suppose there exists a (v, k, λ1)-BIBD and
a (v, k, λ2)-BIBD. Then there exists a (v, k, λ1 + λ2)-BIBD.

Corollary 1.31. Suppose there exists a (v, k, λ)-BIBD. Then there exists a (v, k, sλ)-
BIBD for all integers s ≥ 1.

Note that the BIBDs produced by Corollary 1.31 with s ≥ 2 are not simple
designs, even if the initial (v, k, λ)-BIBD is simple. For λ > 1, construction of
simple BIBDs is, in general, more difficult than construction of BIBDs with
repeated blocks.

To illustrate an application of the sum construction, let us consider (16, 6, λ)-
BIBDs. We will see in the next section that there does not exist a (16, 6, 1)-
BIBD. However, both a (16, 6, 2)-BIBD and a (16, 6, 3)-BIBD are known to ex-
ist. By application of the sum construction, it then follows that there exists a
(16, 6, λ)-BIBD if and only if λ > 1.

The second construction is called “block complementation”. Suppose
(X,A) is a BIBD, and we replace every block A ∈ A by X\A. The result
is again a BIBD, as stated in the following theorem.

Theorem 1.32 (Block Complementation). Suppose there exists a (v, b, r, k, λ)-
BIBD, where k ≤ v − 2. Then there also exists a (v, b, b − r, v − k, b − 2r + λ)-
BIBD.

Proof. Suppose (X,A) is a (v, b, r, k, λ)-BIBD. We will show that

(X, {X\A : A ∈ A})
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is a BIBD. Clearly, this design has v points and b blocks, every block contains
v − k ≥ 2 points, and every point occurs in b − r blocks. Hence, we just need
to show that every pair of points occurs in exactly b − 2r + λ blocks.

Let x, y ∈ X, x �= y. Define

a1 = |{A ∈ A : x, y ∈ A}|,
a2 = |{A ∈ A : x ∈ A, y �∈ A}|,
a3 = |{A ∈ A : x �∈ A, y ∈ A}|, and
a4 = |{A ∈ A : x, y �∈ A}|.

Then it is easy to see that

a1 = λ,
a1 + a2 = r,
a1 + a3 = r, and

a1 + a2 + a3 + a4 = b.

These four equations may be solved easily to obtain

a4 = b − 2r + λ,

as desired. ��

For example, the complement of a (7, 3, 1)-BIBD is a (7, 4, 2)-BIBD, and the
complement of a (9, 3, 1)-BIBD is a (9, 6, 5)-BIBD. In view of Theorem 1.32, it
suffices to study BIBDs with k ≤ v/2.

1.6 Fisher’s Inequality

We have already discussed two necessary conditions for the existence of a
(v, k, λ)-BIBD, namely Theorems 1.8 and 1.9. Another important necessary
condition is known as “Fisher’s Inequality”.

Theorem 1.33 (Fisher’s Inequality). In any (v, b, r, k, λ)-BIBD, b ≥ v.

Proof. Let (X,A) be a (v, b, r, k, λ)-BIBD, where X = {x1, . . . , xv} and A =
{A1, . . . , Ab}. Let M be the incidence matrix of this BIBD, and define sj to
be the jth row of MT (equivalently, sj

T is the jth column of M). Note that
s1, . . . , sb are all v-dimensional vectors in the real vector space Rv.

Define S = {sj : 1 ≤ j ≤ b} and define S = span(sj : 1 ≤ j ≤ b). S is the
subspace of Rv spanned by the sj’s; it consists of the following vectors:

S =

{
b

∑
j=1

αjsj : α1, . . . , αb ∈ R

}
.
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In other words, S consists of all linear combinations of the vectors s1, . . . , sb.
We will prove that S = Rv; i.e., the b vectors in S span the vector space

Rv. Since Rv has dimension v and is spanned by a set of b vectors, it must be
the case that b ≥ v.

Our task is thus to show that S = Rv. For 1 ≤ i ≤ v, define ei ∈ Rv to
be the vector with a “1” in the ith coordinate and “0”s in all other coordi-
nates. The vectors e1, . . . , ev form a basis for Rv, so every vector in Rv can
be expressed as a linear combination of these v vectors. Therefore, to show
that S = Rv, it suffices to show that ei ∈ S for 1 ≤ i ≤ v (i.e., that each basis
vector ei can be expressed as a linear combination of vectors in S).

First, we observe that
b

∑
j=1

sj = (r, . . . , r), (1.2)

from which it follows that

b

∑
j=1

1
r

sj = (1, . . . , 1). (1.3)

Next, fix a value i, 1 ≤ i ≤ v. Then we have

∑
{j:xi∈Aj}

sj = (r − λ)ei + (λ, . . . , λ). (1.4)

Since λ(v− 1) = r(k− 1) and v > k, it follows that r > λ, and hence r−λ �= 0.
Then we can combine equations (1.3) and (1.4) to obtain

ei = ∑
{j:xi∈Aj}

1
r − λ

sj −
b

∑
j=1

λ

r(r − λ)
sj. (1.5)

Equation (1.5) gives a formula expressing ei as a linear combination of
s1, . . . , sb, as desired. ��

Note that the conclusion of Theorem 1.33, b ≥ v, can be stated in other,
equivalent ways, such as r ≥ k and λ(v − 1) ≥ k2 − k.

As an example, consider the parameter set (16, 6, 1). In a (16, 6, 1)-BIBD,
we would have r = 3, but it would then be the case that r < k, which is
impossible. Hence, a (16, 6, 1)-BIBD does not exist.

Theorem 1.33 can easily be generalized to regular pairwise balanced de-
signs. We have the following.

Theorem 1.34. In any nontrivial regular pairwise balanced design, b ≥ v.

Proof. By examining the proof of Theorem 1.33, it can be seen that the fact
that all blocks have the same size is not used in the proof. Therefore, Fisher’s
Inequality holds for regular pairwise balanced designs in which r > λ. It
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is easy to see that a regular PBD has r > λ if and only if it is not a trivial
PBD. Therefore we conclude that Fisher’s Inequality is valid for all nontrivial
regular PBDs. ��

In fact, Fisher’s Inequality holds for all nontrivial pairwise balanced de-
signs (not just the regular ones), but a slightly different proof is required. We
will return to this topic in Chapter 8.

1.7 Notes and References

Fisher’s Inequality was first proven in 1940 by the famous statistician Ronald
Fisher [45]. There are many proofs of this result; we have chosen to employ
a linear-algebraic proof technique that will be used to prove several other
results later in this book.

The Kramer-Mesner Theorem was proven in 1975 in [71]. It has since been
used to find many previously unknown designs. For a nice survey of com-
putational techniques in design theory, see Gibbons [47].

There are several reference books and textbooks on combinatorial design
theory. The book “Combinatorial Designs” by Wallis [115] is a fairly easy-to-
read general introduction. Two other good introductory textbooks are “Com-
binatorial Designs and Tournaments” by Anderson [2] and “Design Theory”
by Lindner and Rodger [77]. A more advanced book that contains a great deal
of useful information is the two-volume work also entitled “Design Theory”
by Beth, Jungnickel, and Lenz [9, 10]. The reader can also profitably consult
“Design Theory” by Hughes and Piper [61] and “Combinatorics of Exper-
imental Design” [107] by Street and Street (however, these two books are
currently out of print).

The “CRC Handbook of Combinatorial Designs”, edited by Colbourn and
Dinitz [27], is an enormous, encyclopedic reference work that is a valuable
resource for researchers. This book also has an on-line Web page located at
the following URL: http://www.emba.uvm.edu/˜dinitz/hcd.html.
“Contemporary Design Theory, A Collection of Surveys”, edited by Dinitz
and Stinson [41], is a collection of twelve surveys on various topics in design
theory.

Two books that explore the links between combinatorial design the-
ory and other branches of combinatorial mathematics are “Designs, Codes,
Graphs and Their Links” by Cameron and van Lint [20] and “Combinatorial
Configurations: Designs, Codes, Graphs” by Tonchev [110].

Several “general” combinatorics textbooks contain one or more sections
on designs. Three books that are worth consulting are “Combinatorics: Top-
ics, Techniques, Algorithms”, by Cameron [19]; “Combinatorial Theory (Sec-
ond Edition)”, by Hall [53]; and “A Course in Combinatorics (Second Edi-
tion)”, by Van Lint and Wilson [79].
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Much recent research on combinatorial designs can be found in the Jour-
nal of Combinatorial Designs, which has been published by John Wiley & Sons
since 1993.

1.8 Exercises

1.1 What is the value of b in a (46, 6, 1)-BIBD (if it exists)?
1.2 What is the value of r in a (65, 5, 1)-BIBD?
1.3 For all integers k and v such that 3 ≤ k ≤ v/2 and v ≤ 10, determine

the smallest integer λ such that the parameter set (v, k, λ) satisfies the
necessary conditions stated in Corollary 1.10.

1.4 For an integer k ≥ 2, let λ∗(k) denote the minimum integer such that
the conditions stated in Corollary 1.10 are satisfied for all integers v >
k.

(a) Compute λ∗(k) for k = 3, 4, 5 and 6.
(b) Prove that

λ∗(k) =

{(k
2

)
if k is even

k(k − 1) if k is odd.

1.5 Let M be the incidence matrix of a (v, b, r, k, 1)-BIBD and define N =
MT M. Denote N = (ni,j). Prove that

ni,j =

{
k if i = j
0 or 1 if i �= j.

1.6 Construct a regular pairwise balanced design on six points that con-
tains exactly four blocks of size three.

1.7 Give a complete proof of Theorem 1.15.
1.8 Give a complete proof of Theorem 1.17.
1.9 (a) Prove that no (6, 3, 2)-BIBD can contain repeated blocks.

(b) Prove that all (6, 3, 2)-BIBDs are isomorphic.
1.10 Give a complete proof of Corollary 1.22.
1.11 Show that all (7, 3, 1)-BIBDs are isomorphic by the following method.

(Fill in the details of the proof.)
(a) Without loss of generality, we can take the points to be {1, . . . , 7},

and let the blocks containing the point 1 be {1, 2, 3}, {1, 4, 5}, and
{1, 6, 7}.

(b) Find all ways to complete this structure to a (7, 3, 1)-BIBD.
(c) Then show that all the designs obtained are isomorphic.

1.12 Find an isomorphism π of the two (9, 3, 1)-BIBDs (X,A) and (Y,B),
and give a complete verification that the two BIBDs are isomorphic.

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}
A = {123, 147, 159, 168, 258, 267, 249, 369, 348, 357, 456, 789}
Y = {a, b, c, d, e, f , g, h, i}
B = {abe, acd, afi, agh, bcf , bdg, bhi, ceh, cgi, dfh, dei, efg}.
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Hint: Observe that if π(x) = α, π(y) = β, {x, y, z} ∈ A, and {α, β, γ} ∈
B, then it must be the case that π(z) = γ.

1.13 Suppose we arrange the elements of a set X = {0, . . . , 15} in a 4 × 4
array A as follows:

A =


0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

 .

For each x, 0 ≤ x ≤ 15, suppose we define a block Bx consisting of
the elements in the same row or column of A as x, excluding x. Then
define a set of blocks B = {Bx : 0 ≤ x ≤ 15}. We are going to study the
design (X,B).

(a) Prove that this design is a (16, 6, 2)-BIBD.
(b) Construct the incidence matrix of this BIBD.
(c) Prove that the mapping α(x) = (x + 4) mod 16 is an automor-

phism of this BIBD.
(d) Prove that this BIBD has automorphisms of orders 2, 3, and 4.

1.14 Suppose that α is an automorphism of order p of a (v, k, 1)-BIBD, where
p is prime. Let α f denote the number of fixed points in α.

(a) Prove that α f ≡ v (mod p).
(b) Suppose that 2 ≤ α f ≤ k − 1. Prove that k ≥ p + 2.
(c) As a corollary, prove that a (7, 3, 1)-BIBD cannot have an auto-

morphism of order 5.
1.15 Let G be the permutation group of order 3 on the set X = {1, . . . , 7}

that is generated by the permutation α = (1 2 3)(4 5 6)(7).
(a) Use Lemma 1.25 to compute the number of 2- and 3-orbits of X

with respect to G.
(b) Use Theorem 1.27 to find all (7, 3, 1)-BIBDs having α as an au-

tormorphism.
1.16 Referring to Example 1.29, carry out the following computations.

(a) Construct all the 2-orbits and 3-orbits.
(b) Construct the A3,2 matrix.
(c) Find all solutions to the matrix equation zA3,2 = u7.

1.17 Construct (9, 3, 1)-BIBDs having the following permutations as auto-
morphisms.

(a) (1)(2 3 4 5 6 7 8 9).
(b) (1)(2)(3)(4 5 6)(7 8 9).
(c) (1)(2)(3)(4 5)(6 7)(8 9).

1.18 (a) Construct a (7, 4, 2)-BIBD.
(b) Determine the incidence matrix of this BIBD.
(c) For the incidence matrix that you have computed, express the

vector e3 as a linear combination of the vectors s1, . . . , s7 using
(1.5). Then verify that the resulting linear combination indeed
yields the vector e3.
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1.19 Let B0 be a block in a (v, k, 1)-BIBD, say (X,B).
(a) Find a formula for the number of blocks B ∈ B such that |B ∩

B0| = 1.
(b) Use your formula to show that b ≥ k(r − 1) + 1 if a (v, k, 1)-BIBD

exists.
(c) Using the facts that vr = bk and v = r(k − 1) + 1, deduce that

(r− k)(r− 1)(k− 1) ≥ 1, and hence r ≥ k, which implies Fisher’s
Inequality.

1.20 Let B0 be a block in a (v, k, 1)-BIBD, say (X,B). Let x ∈ X\B0, and show
that there are at least k blocks that contain x and intersect B0. From this,
deduce that r ≥ k, which implies Fisher’s Inequality.
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