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How to Recognize Whether a Natural
Number is a Prime

In the article 329 of Disquisitiones Arithmeticae, Gauss (1801) wrote:

The problem of distinguishing prime numbers from com-
posite numbers and of resolving the latter into their prime
factors is known to be one of the most important and
useful in arithmetic. . . . The dignity of the science itself
seems to require that every possible means be explored
for the solution of a problem so elegant and so celebrated.

The first observation concerning the problem of primality and fac-
torization is clear: there is an algorithm for both problems. By this, I
mean a procedure involving finitely many steps, which is applicable
to every number N and which will indicate whether N is a prime,
or, if N is composite, which are its prime factors. Namely, given the
natural number N , try in succession every number n = 2, 3, . . . up to
[
√
N ] (the largest integer not greater than

√
N) to see whether it di-

vides N . If none does, then N is a prime. If, say, N0 divides N , write
N = N0N1, so N1 < N , and then repeat the same procedure with N0
and with N1. Eventually this gives the complete factorization into
prime factors.

What I have just said is so evident as to be irrelevant. It should,
however, be noted that for large numbers N , it may take a long time
with this algorithm to decide whether N is prime or composite.
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This touches the most important practical aspect, the need to
find an efficient algorithm—one which involves as few operations as
possible, and therefore requires less time and costs less money to be
performed.

It is my intention to divide this chapter into several sections in
which I will examine various approaches, as well as explain the re-
quired theoretical results.

I The Sieve of Eratosthenes

As I have already said, it is possible to find if N is a prime using
trial division by every number n such that n2 ≤ N .

Since multiplication is an easier operation than division, Eratos-
thenes (in the 3rd century BC) had the idea of organizing the com-
putations in the form of the well-known sieve. It serves to determine
all the prime numbers, as well as the factorizations of composite
numbers, up to any given number N . This is illustrated now for
N = 101.

Do as follows: write all the numbers up to 101; cross out all the
multiples of 2, bigger than 2; in each subsequent step, cross out all
the multiples of the smallest remaining number p, which are bigger
than p. It suffices to do it for p2 < 101.

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

101

Thus, all the multiples of 2, 3, 5, 7 <
√

101 are sifted away. The
number 53 is prime because it remained. Thus the primes up to 101
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are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97, 101.

This procedure is the basis of sieve theory, which has been devel-
oped to provide estimates for the number of primes satisfying given
conditions.

II Some Fundamental Theorems on Congruences

In this section, I intend to describe some classical methods to test
primality and to find factors. They rely on theorems on congruences,
especially Fermat’s little theorem, the old theorem of Wilson, as well
as Euler’s generalization of Fermat’s theorem. I shall also include
a subsection on quadratic residues, a topic of central importance,
which is also related with primality testing, as I shall have occasion
to indicate.

A Fermat’s Little Theorem and Primitive Roots

Modulo a Prime

Fermat’s Little Theorem. If p is a prime number and if a is an
integer, than ap ≡ a (mod p). In particular, if p does not divide a
then ap−1 ≡ 1 (mod p).

Euler published the first proof of Fermat’s little theorem.

Proof. It is true for a = 1. Assuming that it is true for a, then, by
induction, (a+ 1)p ≡ ap + 1 ≡ a+ 1 (mod p). So the theorem is true
for every natural number a.

The above proof required only the fact that if p is a prime number
and if 1 ≤ k ≤ p− 1, then the binomial coefficient

(
p
k

)
is a multiple

of p.
Note the following immediate consequence: if p � a and pn is the

highest power of p dividing ap−1 − 1, then pn+e is the highest power
of p dividing ap

e(p−1) − 1 (where e ≥ 1); in this statement, if p = 2,
then n must be at least 2.

It follows from the theorem that for any integer a, which is not a
multiple of the prime p, there exists the smallest exponent h ≥ 1,
such that ah ≡ 1 (mod p). Moreover, ak ≡ 1 (mod p) if and only if h
divides k; in particular, h divides p−1. This exponent h is called the
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order of a modulo p. Note that a mod p, a2 mod p, . . . , ah−1 mod p,
and 1 mod p are all distinct.

It is a basic fact that for every prime p there exists at least one
integer g, not a multiple of p, such that the order of g modulo p is
equal to p− 1. Then, the set {1 mod p, 2 mod p, . . . , gp−2 mod p} is
equal to the set {1 mod p, 2 mod p, . . . , (p− 1) mod p}.

Every integer g, 1 ≤ g ≤ p− 1, such that g mod p has order p− 1,
is called a primitive root modulo p. I note this proposition:

Let p be any odd prime, k ≥ 1, and S =
∑p−1

j=1 j
k. Then

S ≡
{

−1 mod p, when p− 1 | k,
0 mod p, when p− 1 � k.

Proof. Indeed, if p − 1 divides k, then jk ≡ 1 (mod p) for j =
1, 2, . . . , p− 1; so S ≡ p− 1 ≡ −1 (mod p). If p− 1 does not divide
k, let g be a primitive root modulo p. Then gk �≡ 1 (mod p). Since
the sets of residue classes {1 mod p, 2 mod p, . . . , (p − 1) mod p}
and {g mod p, 2g mod p, . . . , (p− 1)g mod p} are the same, then

gkS ≡
p−1∑
j=1

(gj)k ≡
p−1∑
j=1

jk ≡ S (mod p).

Hence (gk − 1)S ≡ 0 (mod p) and, since p does not divide gk − 1,
then S ≡ 0 (mod p).

The determination of a primitive root modulo p may be effected
by a simple method indicated by Gauss in articles 73, 74 of Disqui-
sitiones Arithmeticae.

Proceed as follows:

Step 1. Choose any integer a, 1 < a < p, for example, a = 2, and
write the residues modulo p of a, a2, a3, . . . . Let t be the smallest
exponent such that at ≡ 1 (mod p). If t = p−1, then a is a primitive
root modulo p. Otherwise, proceed to the next step.

Step 2. Choose any number b, 1 < b < p, such that b �≡ ai (mod p)
for i = 1, . . . , t; let u be the smallest exponent such that bu ≡ 1
(mod p). It is simple to see that u cannot be a factor of t, otherwise
bt ≡ 1 (mod p); but 1, a, a2, . . . , at−1 are t pairwise incongruent
solutions of the congruence Xt ≡ 1 (mod p); so they are all the
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possible solutions, and therefore b ≡ am (mod p), for some m, 0 ≤
m ≤ t− 1, which is contrary to the hypothesis. If u = p− 1, then b
is a primitive root modulo p. If u �= p− 1, let v be the least common
multiple of t, u; so v = mn with m dividing t, n dividing u, and
gcd(m,n) = 1. Let a′ ≡ at/m (mod p), b′ ≡ bu/n (mod p) so c = a′b′

has order mn = v modulo p. If v = p− 1, then c is a primitive root
modulo p. Otherwise, proceed to the next step, which is similar to
step 2.

Note that v > t, so in each step either one reaches a primitive root
modulo p, or one constructs an integer with a bigger order modulo p.
The process must stop; one eventually reaches an integer with order
p− 1 modulo p, that is, a primitive root modulo p.

Gauss also illustrated the procedure with the example p = 73, and
found that g = 5 is a primitive root modulo 73.

The above construction leads to a primitive root modulo p, but
not necessarily to the smallest integer gp, 1 < gp < p, which is a
primitive root modulo p.

The determination of gp is done by trying successively the various
integers a = 2, 3, . . . and computing their orders modulo p. There is
no uniform way of predicting, for all primes p, which is the smallest
primitive root modulo p. However, several results were known about
the size of gp. In 1944, Pillai proved that there exist infinitely many
primes p, such that gp > C log log p (where C is a positive constant).
In particular, lim supp→∞ gp = ∞. A few years later, using a very
deep theorem of Linnik (see Chapter 4) on primes in arithmetic pro-
gressions, Fridlender (1949), and independently Salié (1950), proved
that gp > C log p, for some constant C and infinitely many primes p.
On the other hand, gp does not grow too fast, as proved by Burgess
in 1962:

gp ≤ Cp1/4+ε

(for ε > 0, a constant C > 0, and p sufficiently large).
Grosswald made Burgess’ result explicit in 1981: if p > ee

24
then

gp < p0.499.
The proof of the weaker result (with 1/2 in place of 1/4), attrib-

uted to Vinogradov, is in Landau’s Vorlesungen über Zahlentheorie,
Part VII, Chapter 14 (see General References).

The proof of the following result is elementary (problem proposed
by Powell in 1983, solution by Kearnes in 1984):
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For any positive integer M , there exist infinitely many primes p
such that M < gp < p−M .

As an illustration, the following table gives the smallest primitive
root modulo p, for each prime p < 1000.

Table 1. The smallest primitive root modulo p

p gp p gp p gp p gp p gp p gp

2 1 127 3 283 3 467 2 661 2 877 2
3 2 131 2 293 2 479 13 673 5 881 3
5 2 137 3 307 5 487 3 677 2 883 2
7 3 139 2 311 17 491 2 683 5 887 5

11 2 149 2 313 10 499 7 691 3 907 2

13 2 151 6 317 2 503 5 701 2 911 17
17 3 157 5 331 3 509 2 709 2 919 7
19 2 163 2 337 10 521 3 719 11 929 3
23 5 167 5 347 2 523 2 727 5 937 5
29 2 173 2 349 2 541 2 733 6 941 2

31 3 179 2 353 3 547 2 739 3 947 2
37 2 181 2 359 7 557 2 743 5 953 3
41 6 191 19 367 6 563 2 751 3 967 5
43 3 193 5 373 2 569 3 757 2 971 6
47 5 197 2 379 2 571 3 761 6 977 3

53 2 199 3 383 5 577 5 769 11 983 5
59 2 211 2 389 2 587 2 773 2 991 6
61 2 223 3 397 5 593 3 787 2 997 7
67 2 227 2 401 3 599 7 797 2
71 7 229 6 409 21 601 7 809 3

73 5 233 3 419 2 607 3 811 3
79 3 239 7 421 2 613 2 821 3
83 2 241 7 431 7 617 3 823 3
89 3 251 6 433 5 619 2 827 2
97 5 257 3 439 15 631 3 829 2

101 2 263 5 443 2 641 3 839 11
103 5 269 2 449 3 643 11 853 2
107 2 271 6 457 13 647 5 857 3
109 6 277 5 461 2 653 2 859 2
113 3 281 3 463 3 659 2 863 5

A simple glance at the table suggests the following question: Is
2 a primitive root for infinitely many primes? More generally, if the
integer a �= ±1 is not a square, is it a primitive root modulo infinitely
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many primes? This is a difficult problem and I shall return to it in
Chapter 4.

B The Theorem of Wilson

Wilson’s Theorem. If p is a prime number, then

(p− 1)! ≡ −1 (mod p).

Proof. This is just a corollary of Fermat’s little theorem. Indeed,
1, 2, . . . , p − 1 are roots of the congruence Xp−1 − 1 ≡ 0 (mod p).
But a congruence modulo p cannot have more roots than its degree.
Hence,

Xp−1 − 1 ≡ (X − 1)(X − 2) · · · (X − (p− 1)) (mod p).

Comparing the constant terms, −1 ≡ (−1)p−1(p − 1)! = (p − 1)!
(mod p). (This is also true if p = 2.)

Wilson’s theorem gives a characterization of prime numbers. In-
deed, if N > 1 is a natural number that is not a prime, thenN = mn,
with 1 < m,n < N − 1, so m divides N and (N − 1)!, and therefore
(N − 1)! �≡ −1 (mod N).

However, Wilson’s characterization of the prime numbers is not of
practical value to test the primality of N , since there is no known
algorithm to rapidly compute N !, say, in logN steps.

C The Properties of Giuga and of Wolstenholme

Now, I shall consider other properties that are satisfied by prime
numbers.

The property of Giuga

First, I note that if p is a prime, then by Fermat’s little theorem (as
already indicated)

1p−1 + 2p−1 + · · · + (p− 1)p−1 ≡ −1 (mod p).

In 1950, Giuga asked whether the converse is true: If n > 1 and n
divides 1n−1 +2n−1 + · · ·+(n−1)n−1 +1, then is n a prime number?
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It is easy to show that n satisfies Giuga’s condition if and only if,
for every prime p dividing n, p2(p− 1) divides n− p. Indeed, writing
n = pt, Giuga’s condition becomes

A = 1 +
pt−1∑
j=1

jpt−1 ≡ 0 (mod p),

while the condition that p2(p − 1) divides pt − p is equivalent to
the conjunction of both conditions: p | t − 1 and p − 1 | t − 1. But
pt− 1 = (p− 1)t+ (t− 1); hence, by Fermat’s little theorem,

A ≡ 1 +
pt−1∑
j=1

jt−1 ≡ 1 + tS (mod p),

where S =
∑p−1

j=1 j
t−1. Hence,

A ≡
{

1 − t (mod p), when p− 1 | t− 1
1 (mod p), when p− 1 � t− 1.

Thus, if A ≡ 0 (mod p), then p−1 | t−1 and p | t−1. But, conversely,
these latter conditions imply that A ≡ 0 (mod p) and p � t, so n is
squarefree and therefore A ≡ 0 (mod n).

It follows at once that n ≡ p ≡ 1 (mod p − 1); so, if p | n, then
p− 1 | n− 1. A composite number n having this property is called a
Carmichael number.

In Section IX, I shall indicate that this condition is severely restric-
tive. At any rate, it is now known that if there exists a composite
integer n satisfying Giuga’s condition, then n must have at least
12000 digits; see Bedocchi (1985) and Borwein, Borwein, Borwein &
Girgensohn (1996).

The property of Wolstenholme

In 1862, Wolstenholme proved the following interesting result: If p is
a prime, p ≥ 5, then the numerator of

1 +
1
2

+
1
3

+ · · · +
1

p− 1
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is divisible by p2, and the numerator of

1 +
1
22 +

1
32 + · · · +

1
(p− 1)2

is divisible by p.
For a proof, see Hardy & Wright (1938, p. 88, General References).

Based on this property, it is not difficult to deduce that if n ≥ 5 is a
prime number, then (

2n− 1
n− 1

)
≡ 1 (mod n3).

Is the converse true? This question, still unanswered today, has
been asked by J.P. Jones for many years. An affirmative reply would
provide an interesting and formally simple characterization of prime
numbers.

The problem leads naturally to the following concepts and ques-
tions. Let n ≥ 5 be odd, and let

A(n) =
(

2n− 1
n− 1

)
.

For each k ≥ 1 we may consider the set

Wk = {n odd, n ≥ 5 | A(n) ≡ 1 (mod nk)}.

Thus W1 ⊃ W2 ⊃ W3 ⊃ W4 ⊃ . . . . From Wolstenholme’s theorem,
every prime number greater than 3 belongs to W3. Jones’ question
is whether W3 is just the set of these prime numbers.

A prime number belonging to W4 is called a Wolstenholme prime.
Only two Wolstenholme primes are known today: 16843, indicated
by Selfridge & Pollack in 1964, and 2124679, discovered by Crandall,
Ernvall and Metsänkylä in 1993. In 1995, McIntosh determined by
calculation that there is no other Wolstenholme prime p < 5 × 108.

The set of composite integers in W2 contains the squares of Wol-
stenholme’s primes. McIntosh conjectured that these sets coincide
and verified that this is true up to 109: the only composite n ∈ W2,
n < 109, is n = 283686649 = 168432.

It is believed, and was suggested by McIntosh, that there exist
infinitely many Wolstenholme primes. The proof of this assertion
would be very difficult.
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D The Power of a Prime Dividing a Factorial

In 1808, Legendre determined the exact power pm of the prime p
that divides a factorial a! (so pm+1 does not divide a!).

There is a very nice expression of m in terms of the p-adic devel-
opment of a:

a = akp
k + ak−1p

k−1 + · · · + a1p+ a0,

where pk ≤ a < pk+1 and 0 ≤ ai ≤ p − 1 (for i = 0, 1, . . . , k). The
integers a0, a1, . . . , ak are the digits of a in base p.

For example, in base 5, 328 = 2 × 53 + 3 × 52 + 3, so the digits of
328 in base 5 are 2, 3, 0, 3. Using the above notation:

Legendre’s Theorem.

m =
∞∑
i=1

[
a

pi

]
=
a− (a0 + a1 + · · · + ak)

p− 1
.

Proof. By definition a! = pmb, where p � b. Let a = q1p + r1 with
0 ≤ q1, 0 ≤ r1 < p; so q1 = [a/p]. The multiples of p, not bigger
than a, are p, 2p, . . . , q1p ≤ a. So pq1(q1!) = pmb′, where p � b′. Thus
q1 + m1 = m, where pm1 is the exact power of p which divides q1!.
Since q1 < a, by induction,

m1 =
[
q1
p

]
+
[
q1
p2

]
+
[
q1
p3

]
+ · · · .

But [
q1
pi

]
=
[
[a/p]
pi

]
=
[
a

pi+1

]
,

as may be easily verified. So

m =
[
a

p

]
+
[
a

p2

]
+
[
a

p3

]
+ · · · .
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Now, I derive the second expression, involving the p-adic digits of
a = akp

k + · · · + a1p+ a0. Then[
a

p

]
= akp

k−1 + · · · + a1,[
a

p2

]
= akp

k−2 + · · · + a2,

...[
a

pk

]
= ak.

So
∞∑
i=0

[
a

pi

]
= a1 + a2(p+ 1) + a3(p2 + p+ 1) + · · ·

+ ak(pk−1 + pk−2 + · · · + p+ 1)

=
1

p− 1
{
a1(p− 1) + a2(p2 − 1) + · · · + ak(pk − 1)

}
=

1
p− 1

{
a− (a0 + a1 + · · · + ak)

}
.

In 1852, Kummer used Legendre’s result to determine the exact
power pm of p dividing a binomial coefficient(

a+ b

a

)
=

(a+ b)!
a!b!

,

where a ≥ 1, b ≥ 1.
Let

a = a0 + a1p+ · · · + atp
t,

b = b0 + b1p+ · · · + btp
t,

where 0 ≤ ai ≤ p− 1, 0 ≤ bi ≤ p− 1, and either at �= 0 or bt �= 0. Let
Sa =

∑t
i=0 ai, Sb =

∑t
i=0 bi be the sums of p-adic digits of a, b. Let

ci, 0 ≤ ci ≤ p− 1, and εi = 0 or 1, be defined successively as follows:

a0 + b0 = ε0p+ c0,

ε0 + a1 + b1 = ε1p+ c1,
...

εt−1 + at + bt = εtp+ ct.
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Multiplying these equations successively by 1, p, p2, . . . and adding
them:

a+ b+ ε0p+ ε1p
2 + · · · + εt−1p

t

= ε0p+ ε1p
2 + · · · + εt−1p

t + εtp
t+1 + c0 + c1p+ · · · + ctp

t.

So, a+ b = c0 + c1p+ · · · + ctp
t + εtp

t+1, and this is the expression
of a+ b in the base p. Similarly, by adding those equations:

Sa + Sb + (ε0 + ε1 + · · · + εt−1) = (ε0 + ε1 + · · · + εt)p+ Sa+b − εt.

By Legendre’s result

(p− 1)m = (a+ b) − Sa+b − a+ Sa − b+ Sb

= (p− 1)(ε0 + ε1 + · · · + εt).

Hence the following result:

Kummer’s Theorem. The exponent of the exact power of p di-
viding

(
a+b
a

)
is equal to ε0 + ε1 + · · · + εt, which is the number of

“carry-overs” when performing the addition of a, b, written in the
base p.

This theorem of Kummer was rediscovered by Lucas in 1878. In
1991, Frasnay extended the result replacing integers by p-adic inte-
gers.

The results of Legendre and Kummer have found many applica-
tions, in p-adic analysis, and also, for example, in Chapter 3, Sec-
tion III.

E The Chinese Remainder Theorem

Even though my paramount interest is in prime numbers, there is no
way to escape dealing with arbitrary integers also—which essentially
amounts, in many questions, to the simultaneous consideration of
several primes, because of the decomposition, in a unique way, of
integers into the product of prime powers.

One of the keys connecting results for integers n, and for their
prime power factors, is very old; indeed, it was known to the ancient
Chinese, and it is therefore called the Chinese remainder theorem.

However, according to A. Zachariou (private communication) it
was known even before them by the Greeks, but since the Greeks
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discovered so many theorems, I will keep the traditional name for
this one. I am sure that every one of my readers knows it already:

If n1, n2, . . . , nk are pairwise relatively prime integers, greater than
1, and if a1, a2, . . . , ak are any integers, then there exists an integer
a such that 


a ≡ a1 (mod n1)
a ≡ a2 (mod n2)

...
a ≡ ak (mod nk).

Another integer a′ also satisfies the same congruences as a if and
only if a ≡ a′ (mod n1n2 · · ·nk). So, there exists a unique integer a,
as above, with 0 ≤ a < n1n2 · · ·nk.

The proof is indeed very simple; it is in many books and also in a
short note by Mozzochi (1967).

The Chinese remainder theorem has numerous applications. It is
conceivable that one of these might have been the way the Chinese
generals counted their troops:

Line up 7 by 7! (Not factorial of 7, but a SCREAMED
military command.)

Line up 11 by 11!
Line up 13 by 13!
Line up 17 by 17!

Counting only the remainders in the incomplete rows, the intelligent
generals could know the exact number of their soldiers.1

Here is another application of the Chinese remainder theorem. If
n = p1p2 · · · pk is a product of distinct primes, if gi is a primitive
root modulo pi (for each i), if g is such that 1 ≤ g ≤ n − 1 and
g ≡ gi (mod pi) for every i = 1, 2, . . . , k, then the order of g modulo
pi is pi − 1 for each i = 1, 2, . . . , k and the order of g modulo n is∏k
i=1(pi − 1).

1In between us, this may never have been practiced. The existence of intelligent
generals remains a wide open question.
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F Euler’s Function

Euler generalized Fermat’s little theorem by introducing the totient
or Euler’s function.

For every n ≥ 1, let ϕ(n) denote the number of integers a, 1 ≤
a < n, such that gcd(a, n) = 1. Thus, if n = p is a prime, then
ϕ(p) = p− 1; also

ϕ(pk) = pk−1(p− 1) = pk
(

1 − 1
p

)
.

Moreover, if m,n ≥ 1 and gcd(m,n) = 1, then ϕ(mn) = ϕ(m)ϕ(n),
that is, ϕ is a multiplicative function. Hence, for any integer n =∏
p p

k (product for all primes p dividing n, and k ≥ 1), then

ϕ(n) =
∏
p

pk−1(p− 1) = n
∏
p

(
1 − 1

p

)
.

Another simple property is: n =
∑

d|n ϕ(d).
Euler proved the following:

Euler’s Theorem. If gcd(a, n) = 1, then aϕ(n) ≡ 1 (mod n).

Proof. Let r = ϕ(n) and let b1, . . . , br be integers, pairwise incon-
gruent modulo n, such that gcd(bi, n) = 1 for i = 1, . . . , r.

Then ab1, . . . , abr are again pairwise incongruent modulo n and
gcd(abi, n) = 1 for i = 1, . . . , r. Therefore, the sets {b1 mod n, . . . , br
mod n} and {ab1 mod n, . . . , abr mod n} are equal. Now,

ar
r∏
i=1

bi ≡
r∏
i=1

abi ≡
r∏
i=1

bi (mod n).

Hence,

(ar − 1)
r∏
i=1

bi ≡ 0 (mod n) and so ar ≡ 1 (mod n).

Just like for Fermat’s little theorem, it follows also from Euler’s
theorem that there exists the smallest positive exponent e such that
ae ≡ 1 (mod n). It is called the order of a modulo n. If n is a prime
number, this definition coincides with the previous one. Note also
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that am ≡ 1 (mod n) if and only if m is a multiple of the order e of
a mod n; thus, in particular, e divides ϕ(n).

Once again, it is natural to ask: Given n > 2 does there always
exist an integer a, relatively prime to n, such that the order of a
mod n is equal to ϕ(n)? Recall that when n = p is a prime, such
numbers exist, namely, the primitive roots modulo p. If n = pe, a
power of an odd prime, it is also true. More precisely, the following
assertions are equivalent:

(i) g is a primitive root modulo p and gp−1 �≡ 1 (mod p2);

(ii) g is a primitive root modulo p2;

(iii) for every e ≥ 2, g is a primitive root modulo pe.

Note that 10 is a primitive root modulo 487, but 10486 ≡ 1 (mod
4872), so 10 is not a primitive root modulo 4872. This is the smallest
example illustrating this possibility, when the base is 10. Another
example is 14 modulo 29.

However, if n is divisible by 4p, or pq, where p, q are distinct odd
primes, then there is no number a, relatively prime to n, with order
equal to ϕ(n). Indeed, it is easy to see that the order of a mod n is
at most equal to λ(n), where λ(n) is the following function, defined
by Carmichael in 1912:

λ(1) = 1, λ(2) = 1, λ(4) = 2,

λ(2r) = 2r−2 (for r ≥ 3),

λ(pr) = pr−1(p− 1) = ϕ(pr) for any odd prime p
and r ≥ 1,

λ
(
2rpr11 p

r2
2 · · · prss

)
= lcm

{
λ(2r), λ(pr11 ), . . . , λ(prss )

}
(lcm denotes the least common multiple).

Note that λ(n) divides ϕ(n), but may be smaller, and that there
is an integer a, relatively prime to n, with order of a mod n equal to
λ(n).

I shall use this opportunity to study Euler’s function in more de-
tail. First I shall consider Lehmer’s problem, and thereafter the val-
ues of ϕ, the valence, the values avoided, the average of the function,
etc.
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Lehmer’s problem

Recall that if p is a prime, then ϕ(p) = p − 1. In 1932, Lehmer
asked whether there exists any composite integer n such that ϕ(n)
divides n− 1. This question remains open and its solution seems as
remote today as it was when Lehmer raised it seven decades ago.
If the answer is negative, it will provide a characterization of prime
numbers.

What can one say, anyway, when it is not possible to solve the
problem? Only that the existence of composite integers n, for which
ϕ(n) divides n− 1, is unlikely, for various reasons:

(a) any such number must be very large (if it exists at all);

(b) any such number must have many prime factors
(if it exists at all);

(c) the number of such composite numbers, smaller than any given
real number x, is bounded by a very small function of x.

Thus, Lehmer showed in 1932 that if n is composite and ϕ(n)
divides n − 1, then n is odd and square-free, and the number of
its distinct prime factors is ω(n) ≥ 7. Subsequent work by Schuh
(1944) gave ω(n) ≥ 11. In 1970, Lieuwens showed that if 3 | n, then
ω(n) ≥ 213 and n > 5.5 × 10570; if 30 � n, then ω(n) ≥ 13.

Record

In 1980, Cohen and Hagis showed that if n is composite and ϕ(n)
divides n − 1, then n > 1020 and ω(n) ≥ 14. Wall (1980) showed
that if gcd(30, n) = 1, then ω(n) ≥ 26, while if 3 | n, the best result
is still Lieuwens’.

In 1977, Pomerance showed that for every sufficiently large posi-
tive real number x, the number L(x) of composite n such that ϕ(n)
divides n− 1 and n ≤ x, satisfies

L(x) ≤ x1/2(log x)3/4.

Moreover, if ω(n) = k, then n < k2k
.
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Values of Euler’s function

Not every even integer m > 1 is a value of Euler’s function—a fact
which is not difficult to establish. For example, Schinzel showed in
1956 that, for every k ≥ 1, 2 × 7k is not a value of Euler’s function.

In 1976, Mendelsohn showed that there exist infinitely many primes
p such that, for every k ≥ 1, 2kp is not a value of the function ϕ.
Concerning interesting values assumed by Euler’s function, Erdös in
1946 proposed as a problem to show that for every k ≥ 1 there exists
n such that ϕ(n) = k!. A solution by Lambek was proposed in 1948;
the same result was given later by Gupta (1950).

The next results tell how erratic is the behaviour of Euler’s func-
tion. Thus, in 1950, Somayajulu showed that

lim sup
n→∞

ϕ(n+ 1)
ϕ(n)

= ∞ and lim inf
n→∞

ϕ(n+ 1)
ϕ(n)

= 0.

This result was improved by Schinzel and Sierpiński, see Schinzel
(1954): the set of all numbers ϕ(n+1)/ϕ(n) is dense in the set of all
real positive numbers.

Schinzel & Sierpiński (1954) and Schinzel (1954) also proved the
following:

For every m, k ≥ 1, there exist n, h ≥ 1 such that

ϕ(n+ i)
ϕ(n+ i− 1)

> m and
ϕ(h+ i− 1)
ϕ(h+ i)

> m

for i = 1, 2, . . . , k. It is also true that the set of all numbers ϕ(n)/n
is dense in the interval (0, 1).

The valence of Euler’s function

Now I shall examine the “valence” of Euler’s function; in other words,
how often a value ϕ(n) is assumed. In order to explain the results in
a systematic way, it is better to introduce some notation. If m ≥ 1,
let

Vϕ(m) = #{n ≥ 1 | ϕ(n) = m}.
What are the possible values of Vϕ(m)? I have already said that

there are infinitely many even integers m for which Vϕ(m) = 0. It
is also true that if m = 2 × 36k+1 (k ≥ 1), then ϕ(n) = m exactly
when n = 36k+2 or n = 2 × 36k+2. Hence, there are infinitely many
integers m such that Vϕ(m) = 2.
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It is not difficult to show that Vϕ(m) �= ∞ for every m ≥ 1.
Schinzel gave a simpler proof (in 1956) of the following result of

Pillai (1929):
sup{Vϕ(m)} = ∞.

In other words, for every k ≥ 1 there exists an integer mk such that
there exist at least k integers n with ϕ(n) = mk.

The above result is weaker than the long-standing conjecture of
Sierpiński: For every integer k ≥ 2 there exists m > 1 such that
k = Vϕ(m). With very sophisticated methods, this conjecture has
now been proved by Ford (1999).

Carmichael’s conjecture

The conjecture that dominates the study of the valence of ϕ was
proposed by Carmichael in 1922: Vϕ does not assume the value 1.
In other words, given n ≥ 1, there exists n′ ≥ 1, n′ �= n, such that
ϕ(n′) = ϕ(n).

This conjecture was studied by Klee, who showed in 1947 that it
holds for every integer n such that ϕ(n) < 10400. Masai & Valette
(1982), using Klee’s method, showed that ϕ(n) < 1010000. In 1994,
still basically using Klee’s method, but with extensive calculations,
Schlafly & Wagon have brilliantly increased the lower bound for a
counterexample to Carmichael’s conjecture: if Vϕ(n) = 1, so n >

10107
. With much more powerful methods, Ford (1998) further im-

proved the lower bound to reach n > 101010
.

An article about Carmichael’s conjecture, also written by Wagon,
had appeared earlier in The Mathematical Intelligencer (1986). Nu-
merical evidence points to the truth of Carmichael’s conjecture. How-
ever, Pomerance (1974) has shown the following: Suppose that m is
a natural number such that if p is any prime and p−1 divides ϕ(m),
then p2 divides m. Then Vϕ(ϕ(m)) = 1.

Of course, if there exists a number m satisfying the above con-
dition, then Carmichael’s conjecture would be false. However, the
existence of such a number m is far from established, and perhaps
unlikely.

The most important recent work on Carmichael’s conjecture is due
to K. Ford (1998). For every x > 0 let E(x) = #{n | 1 ≤ n < x such
that there exists k > 1 with ϕ(k) = n} and E1(x) = #{n | 1 ≤ n < x
such that there exists a unique k with ϕ(k) = n}. Carmichael’s
conjecture says that E1(x) = 0 for every x > 0. Ford showed that if
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Carmichael’s conjecture is false, then there exists C > 0 such that
for every sufficiently large x we have E(x) ≤ C E1(x). It follows that
Carmichael’s conjecture is equivalent to the statement

lim inf
x→∞

E1(x)
E(x)

= 0.

Ford also showed that E1(101010
) = 0.

Finally, in variance with Carmichael’s conjecture, it is reasonable
to expect that every s > 1 is a value of Vϕ; this was conjectured
by Sierpiński. As a matter of fact, I shall indicate in Chapter 6,
Section II, that this statement follows from an unproved and very
interesting hypothesis.

And how about the valence of the valence function Vϕ? I have
already said that there exist infinitely many m that are not values of
ϕ, for which Vϕ(m) = 0. So Vϕ assumes the value 0 infinitely often.

This was generalized by Erdös in 1958: If s ≥ 1 is a value of Vϕ,
then it is assumed infinitely often. (Try to phrase this statement
directly using Euler’s function, to see whether you understand my
notation.)

The growth of Euler’s function

I have not yet considered the growth of the function ϕ. Since ϕ(p) =
p − 1 for every prime p, then lim supϕ(n) = ∞. Similarly, from
ϕ(p) = p− 1, lim supϕ(n)/n = 1.

I shall postpone the indication of other results about the growth
of ϕ until Chapter 4: they depend on methods that will be discussed
in that chapter.

G Sequences of Binomials

The preceding considerations referred to congruences modulo a given
integer n > 1, and a was any positive integer relatively prime to n.

Another point of view is very illuminating. This time, let a > 1
be given, and consider the sequence of integers an − 1 (for n ≥ 1),
as well as the companion sequence of integers an + 1 (for n ≥ 1).
More generally, if a > b ≥ 1 with gcd(a, b) = 1, one may consider
the sequences an − bn (n ≥ 1) and an + bn (n ≥ 1).

A first natural question, with an immediate answer, is the follow-
ing: to determine all primes p, such that there exists n ≥ 1 for which
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p divides an − bn. These are primes p not dividing ab because a, b
are relatively prime. Conversely, if p � ab, if bb′ ≡ 1 (mod p) and n is
the order of ab′ mod p, then p divides an − bn.

It is more complicated for the binomials an + bn. If p �= 2 and
there exists n ≥ 1 such that p divides an + bn, then p � ab(a − b).
The converse is false; for example, 7 does not divide 2n +1 for every
n ≥ 1.

Primitive prime factors

If n ≥ 1 is the smallest integer such that p divides an − bn (resp.
an + bn), then p is called a primitive prime factor of the sequence
of binomials in question. In this case, by Fermat’s little theorem, n
divides p− 1; this was explicitly observed by Legendre.

So, every prime p � ab appears as a primitive factor of some bi-
nomial an − bn. Does, conversely, every binomial have a primitive
factor?

In 1892, Zsigmondy proved the following theorem, which is very
interesting and has many applications:

If a > b ≥ 1 and gcd(a, b) = 1, then every number an − bn has a
primitive prime factor—the only exceptions being a − b = 1, n = 1;
26 − 1 = 63; and a2 − b2, where a, b are odd and a + b is a power
of 2.

Equally, if a > b ≥ 1, then every number an + bn has a primitive
prime factor—with the exception of 23 + 1 = 9.

The special case, where b = 1, had been proved by Bang in 1886.
Later, this theorem, or Bang’s special case, was proved again, some-
times unknowingly, by a long list of mathematicians: Birkhoff &
Vandiver (1904), Carmichael (1913), Kanold (1950), Artin (1955),
Lüneburg (1981), and probably others.

The proof is definitely not so obvious; however, it is very easy to
write up such sequences and watch the successive appearance of new
primitive prime factors.

It is interesting to consider the primitive part t∗n of an−bn; namely,
write an − bn = t∗nt′n with gcd(t∗n, t′n) = 1 and a prime p divides t∗n if
and only if p is a primitive factor of an − bn.

By experimenting numerically with sequences an − bn, it is ob-
served that, apart from a few initial terms, t∗n is composite. In fact,
Schinzel indicated the following theorem in 1962.
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Let k(m) denote the square-free kernel of m, that is, m divided by
its largest square factor. Let

e =

{
1, if k(ab) ≡ 1 (mod 4),
2, if k(ab) ≡ 2 or 3 (mod 4).

If n/ek(ab) is integral and odd, and if n > 1, then an − bn has at
least two distinct primitive prime factors, with only a few exceptions
(of which the largest possible is n = 20). When n > 1 and b = 1, the
exceptions are:

if a = 2 : n = 4, 12, 20;
if a = 3 : n = 6;
if a = 4 : n = 3.

Therefore, there are infinitely many n such that the primitive part
of an − bn is composite.

Schinzel also proved that if ab = ch with h ≥ 3, or h = 2 and k(c)
odd, then there are infinitely many n such that the primitive part of
an − bn has at least three prime factors.

For the sequence of binomials an + bn, it follows at once that if
n/ek(ab) is odd, and n > 10, then the primitive part of an + bn is
composite. Just note that each primitive prime factor of a2n − b2n is
also a primitive prime factor of an + bn.

Here are some questions that are very difficult to answer:

Are there infinitely many n such that the primitive part of an− bn

is prime?

Are there infinitely many n such that the primitive part an − bn

is square-free?

And how about the seemingly easier questions:

Are there infinitely many n such that the primitive part t∗n of
an − bn has a prime factor p such that p2 does not divide an − bn?

Are there infinitely many n such that t∗n has a square-free kernel
k(t∗n) �= 1?

These questions, for the special case when b = 1, are ultimately
related, in a very surprising way, to Fermat’s last theorem!
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The largest prime factor

It is also an interesting problem to estimate the size of the largest
prime factor of an − bn, where a > b ≥ 1 and gcd(a, b) = 1. The
following notation will be used: P [m] designates the largest prime
factor of m ≥ 1.

It is not difficult to show, using Zsigmondy’s theorem, that P [an−
bn] ≥ n+ 1 when n > 2.

In 1962, Schinzel showed that P [an− bn] ≥ 2n+1 in the following
cases, with n > 2: 4 � n, with exclusion a = 2, b = 1, n = 6; k(ab) | n
or k(ab) = 2, with exclusions a = 2, b = 1, n = 4, 6, or 12.

Erdös conjectured in 1965 that limn→∞ P [2n − 1]/n = ∞. De-
spite very interesting work, this conjecture has not yet been settled
completely; but there are very good partial results, which I report
now.

In 1975, using Baker’s inequalities for linear forms of logarithms,
Stewart showed the following. Let 0 < r < 1/ log 2, and let Sr be
the set of integers n having at most r log log n distinct prime factors
(the set Sr has density 1); then

lim
n→∞
n∈Sr

P [an − bn]
n

= ∞.

How fast does the expression increase? This was answered by Stew-
art in 1977, with sharper inequalities of Baker’s type:

P [an − bn]
n

> C
(log n)λ

log log logn
,

where λ = 1 − r log 2, C > 0 is a convenient constant, and n ∈ Sr.
Stewart also showed that, for every sufficiently large prime p,

P [ap − bp]/p > C log p (C > 0). The special case of Mersenne num-
bers 2p − 1 had been established in 1976 by Erdös and Shorey.

There is also a close connection between the numbers an − 1, the
values of the cyclotomic polynomials, and primes in certain arith-
metic progressions, but I cannot explain everything at the same
time—so be patient and wait until I consider this matter again in
Chapter 4, Section IV.
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H Quadratic Residues

In the study of quadratic diophantine equations, developed by Fer-
mat, Euler, Legendre, and Gauss, it was very important to determine
when an integer a is a square modulo a prime p > 2.

If p > 2 does not divide a, and if there exists an integer b such
that a ≡ b2 (mod p), then a is called a quadratic residue modulo p;
otherwise, it is a nonquadratic residue modulo p.

Legendre introduced the following practical notation:

(
a

p

)
= (a | p) =

{
+1 if a is a quadratic residue modulo p,
−1 otherwise.

It is also convenient to define (a | p) = 0 when p divides a.
I shall now indicate the most important properties of the Legendre

symbol. References are plentiful—practically every book in elemen-
tary number theory.

If a ≡ a′ (mod p), then (
a

p

)
=
(
a′

p

)
.

For any integers a, a′: (
aa′

p

)
=
(
a

p

)(
a′

p

)
.

So, for the computation of the Legendre symbol, it suffices to calcu-
late (q | p), where q = −1, 2, or any odd prime different from p.

Euler proved the following congruence:(
a

p

)
≡ a(p−1)/2 (mod p).

In particular,

(−1
p

)
=

{
+1 when p ≡ 1 (mod 4),
−1 when p ≡ −1 (mod 4),

and (
2
p

)
=

{
+1 when p ≡ ±1 (mod 8),
−1 when p ≡ ±3 (mod 8).
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The computation of the Legendre symbol (q | p), for any odd prime
q �= p, can be performed with an easy, explicit, and fast algorithm
(needing only Euclidean division), by using Gauss’ reciprocity law :(

p

q

)
=
(
q

p

)
(−1)

p−1
2 × q−1

2 .

The importance of Legendre’s symbol was such that it prompted
Jacobi to consider the following generalization, now called the Jacobi
symbol. Again, references are abundant, for example, Grosswald’s
book (1966, 2nd edition 1984), or (why not?) my own book (1972,
enlarged edition 2001).

Let a be a nonzero integer, and let b be an odd integer, such that
gcd(a, b) = 1. The Jacobi symbol (a | b) is defined as an extension
of Legendre’s symbol, in the following manner. Let b =

∏
p|b p

ep > 0
(with ep ≥ 1). Then(

a

b

)
=
∏
p|b

(
a

p

)ep

,

(
a

−b
)

=




(
a

b

)
, if a > 0,

−
(
a

b

)
, if a < 0.

Therefore, (a | b) is equal to +1 or −1. Note that

(a
1

)
=
(
a

−1

)
= +1 when a > 0.

Here are some of the properties of the Jacobi symbol (under the
assumptions of its definition):(

aa′

b

)
=
(a
b

)(a′

b

)
,( a

bb′
)

=
(a
b

)( a
b′
)

(−1
b

)
= (−1)(b−1)/2 =

{
+1 if b ≡ 1 (mod 4),
−1 if b ≡ −1 (mod 4),(

2
b

)
= (−1)(b

2−1)/8 =

{
+1 if b ≡ ±1 (mod 8),
−1 if b ≡ ±3 (mod 8).
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For the calculation of the Jacobi symbol, the key result is the
reciprocity law, which follows easily from Gauss’ reciprocity law for
the Legendre symbol:

If a, b are relatively prime odd integers, then(
a

b

)
= ε

(
b

a

)
(−1)

a−1
2 × b−1

2 ,

where

ε =

{
+1 if a > 0 or b > 0
−1 if a < 0 and b < 0.

Finally, if b ≥ 3, and if a is a square modulo b, then (a | b) = +1.

III Classical Primality Tests Based on Congruences

After the discussion of the theorems of Fermat, Wilson, and Euler, I
am ready. For me, the classical primality tests based on congruences
are those indicated by Lehmer, extending or using previous tests by
Lucas, Pocklington, and Proth. I reserve another section for classical
tests based on recurring sequences.

Wilson’s theorem, which characterizes prime numbers, might seem
very promising, but it has to be discarded as a practical test, since
the computation of factorials is very time consuming.

Fermat’s little theorem says that if p is a prime and a is any natural
number not a multiple of p, then ap−1 ≡ 1 (mod p). However, I note
right away that a crude converse of this theorem is not true—because
there exist composite integers N , and a ≥ 2, such that aN−1 ≡ 1
(mod N). I shall devote Section VIII to the study of these numbers,
which are very important in primality questions.

Nevertheless, a true converse of Fermat’s little theorem was dis-
covered by Lucas in 1876. It says:

Test 1. Let N > 1. Assume that there exists an integer a > 1 such
that:

(i) aN−1 ≡ 1 (mod N),

(ii) am �≡ 1 (mod N) for m = 1, 2, . . . , N − 2.

Then N is a prime.
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Defect of this test: it might seem perfect, but it requires N − 2
successive multiplications by a, and finding residues modulo N—too
many operations.

Proof. It suffices to show that every integer m, 1 ≤ m < N , is prime
to N , that is, ϕ(N) = N − 1. For this purpose, it suffices to show
that there exists a, 1 ≤ a < N , gcd(a,N) = 1, such that the order
of a mod N is N − 1. This is exactly spelled out in the hypothesis.

In 1891, Lucas gave the following test:

Test 2. Let N > 1. Assume that there exists an integer a > 1 such
that:

(i) aN−1 ≡ 1 (mod N),

(ii) am �≡ 1 (mod N) for every m < N , such that m divides N−1.

Then N is a prime.

Defect of this test: it requires the knowledge of all factors of N−1,
thus it is only easily applicable when N − 1 can be factored, like
N = 2n + 1, or N = 3 × 2n + 1.

The proof of Test 2 is, of course, the same as that of Test 1.

In 1967, Brillhart & Selfridge made Lucas’ test more flexible; see
also the paper by Brillhart, Lehmer & Selfridge in 1975:

Test 3. Let N > 1. Assume that for every prime factor q of N − 1
there exists an integer a = a(q) > 1 such that

(i) aN−1 ≡ 1 (mod N),

(ii) a(N−1)/q �≡ 1 (mod N).

Then N is a prime.

Defect of this test: once again, it is necessary to know the prime
factors of N − 1, but fewer congruences have to be satisfied.

An observant reader should note that, after all, to verify that
aN−1 ≡ 1 (mod N) it is necessary in particular to calculate, as
one goes, the residue of an modulo N (for every n ≤ N − 1), and so
the first Lucas test could have been used. The point is that there is
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a fast algorithm to find the power an, hence also an mod N , without
computing all the preceding powers. It runs as follows.

Write the exponent n in base 2:

n = n02k + n12k−1 + · · · + nk−12 + nk,

where each ni is equal to 0 or 1, and n0 = 1.
Define the integers r0, r1, r2, . . . successively, putting r0 = a and,

for j ≥ 0:

rj+1 =

{
r2j if nj+1 = 0,
ar2j if nj+1 = 1.

Then an = rk.
So, it is only necessary to perform at most 2k operations, which

are either a squaring or a multiplication by a. If the computation is
of an mod N , then it is even easier; at each stage rj is to be replaced
by its residue modulo N . Now, k is equal to[

log n
log 2

]
.

Therefore, if n = N − 1, then only about

2
[
logN
log 2

]

operations are needed to find aN−1 mod N , and there is no require-
ment of computing all powers an mod N .

Why don’t you try calculating 21092 mod 10932 in this way? You
should find 21092 ≡ 1 (mod 10932)—if you really succeed! This has
nothing to do directly with primality—but it will appear much later,
in Chapter 5.

I return to Brillhart and Selfridge’s Test 3 and give its proof.

Proof of Test 3. It is enough to show that ϕ(N) = N−1, and since
ϕ(N) ≤ N − 1, it suffices to show that N − 1 divides ϕ(N). If this
is false, there exists a prime q and r ≥ 1 such that qr divides N − 1,
but qr does not divide ϕ(N). Let a = a(q) and let e be the order of
a mod N . Thus e divides N − 1 and e does not divide (N − 1)/q,
so qr divides e. Since aϕ(N) ≡ 1 (mod N), then e divides ϕ(N), so
qr | ϕ(N), which is a contradiction, and concludes the proof.
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In the section on Fermat numbers, I will derive Pepin’s primality
test for Fermat numbers, as a consequence of Test 3.

To make the primality tests more efficient, it is desirable to avoid
the need to find all prime factors of N − 1. So there are tests that
only require a partial factorization of N − 1. The basic result was
proved by Pocklington in 1914, and it is indeed very simple:

Let N −1 = qnR, where q is a prime, n ≥ 1, and q does not divide
R. Assume that there exists an integer a > 1 such that :

(i) aN−1 ≡ 1 (mod N),

(ii) gcd(a(N−1)/q − 1, N) = 1.

Then each prime factor of N is of the form mqn + 1, with m ≥ 1.

Proof. Let p be a prime factor of N , and let e be the order of a
mod p, so e divides p−1; by condition (ii), e cannot divide (N−1)/q,
because p divides N ; hence, q does not divide (N−1)/e; so qn divides
e, and a fortiori, qn divides p− 1.

The above statement looks more like a result on factors than a
primality test. However, if it may be verified that each prime factor
p = mqn + 1 is greater than

√
N , then N is a prime. When qn is

fairly large, this verification is not too time consuming.
Pocklington gave also the following refinement of his result above:

Let N − 1 = FR, where gcd(F,R) = 1 and the factorization of F
is known. Assume that for every prime q dividing F there exists an
integer a = a(q) > 1 such that :

(i) aN−1 ≡ 1 (mod N),

(ii) gcd(a(N−1)/q − 1, N) = 1.

Then each prime factor of N is of the form mF + 1, with m ≥ 1.

The same comments apply here. So, if F >
√
N , then N is a prime.

This result is very useful to prove the primality of numbers of cer-
tain special form. The old criterion of Proth (1878) is easily deduced:

Test 4. Let N = 2nh+1 with h odd and 2n > h. Assume that there
exists an integer a > 1 such that a(N−1)/2 ≡ −1 (mod N). Then N
is prime.
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Proof. N −1 = 2nh, with h odd and aN−1 ≡ 1 (mod N). Since N is
odd, then gcd(a(N−1)/2 − 1, N) = 1. By the above result, each prime
factor p ofN is of the form p = 2nm+1 > 2n. ButN = 2nh+1 < 22n,
hence

√
N < 2n < p and so N is prime.

In the following test (using the same notation) it is required to
know that R (the nonfactored part of N − 1) has no prime factor
less than a given bound B. Precisely:

Test 5. Let N − 1 = FR, where gcd(F,R) = 1, the factorization of
F is known, B is such that FB >

√
N , and R has no prime factors

less than B. Assume:

(i) For each prime q dividing F there exists an integer a = a(q) > 1
such that aN−1 ≡ 1 (mod N) and gcd(a(N−1)/q − 1, N) = 1.

(ii) There exists an integer b > 1 such that bN−1 ≡ 1 (mod N) and
gcd(bF − 1, N) = 1.

Then N is a prime.

Proof. Let p be any prime factor of N , let e be the order of b modulo
N , so e divides p − 1 and also e divides N − 1 = FR. Since e does
not divide F , then gcd(e,R) �= 1, so there exists a prime q such that
q | e and q | R; hence, q | p − 1. However, by the previous result of
Pocklington, F divides p − 1; since gcd(F,R) = 1, then qF divides
p − 1. So p − 1 ≥ qF ≥ BF >

√
N . This implies that p = N , so N

is a prime.

The paper of Brillhart, Lehmer & Selfridge (1975) contains other
variants of these tests, which have been put to good use to determine
the primality of numbers of the form 2r+1, 22r±2r+1, 22r−1±2r+1.

I have already said enough and will make only one further com-
ment: these tests require prime factors of N − 1. Later, using linear
recurring sequences, other tests will be presented, requiring prime
factors of N + 1.
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IV Lucas Sequences

Let P , Q be nonzero integers.
Consider the polynomial X2 − PX + Q; its discriminant is D =

P 2 − 4Q and the roots are

α
β

}
=
P ± √

D

2
.

So 

α+ β = P,
αβ = Q,

α− β =
√
D.

I shall assume that D �= 0. Note that D ≡ 0 (mod 4) or D ≡ 1
(mod 4). Define the sequences of numbers

Un(P,Q) =
αn − βn

α− β
and Vn(P,Q) = αn + βn, for n ≥ 0.

In particular, U0(P,Q) = 0, U1(P,Q) = 1, while V0(P,Q) = 2,
V1(P,Q) = P .

The sequences

U(P,Q) = (Un(P,Q))n≥0 and V (P,Q) = (Vn(P,Q))n≥0

are called the Lucas sequences associated to the pair (P,Q). Special
cases had been considered by Fibonacci, Fermat, and Pell, among
others. Many particular facts were known about these sequences;
however, the general theory was first developed by Lucas in a semi-
nal paper, which appeared in Volume I of the American Journal of
Mathematics, 1878. It is a long memoir with a rich content, relating
Lucas sequences to many interesting topics, like trigonometric func-
tions, continued fractions, the number of divisions in the algorithm
of the greatest common divisor, and also, primality tests. It is for this
latter reason that I discuss Lucas sequences. If you are curious about
the other connections that I have mentioned, look at the references
at the end of the book and/or consult the paper in the library.

I should, however, warn that despite the importance of the pa-
per, the methods employed are often indirect and cumbersome, so
it is advisable to read Carmichael’s long article of 1913, where he
corrected errors and generalized results.
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The first thing to note is that, for every n ≥ 2,{
Un(P,Q) = P Un−1(P,Q) −QUn−2(P,Q),
Vn(P,Q) = P Vn−1(P,Q) −QVn−2(P,Q).

(just check it). So, these sequences deserve to be called linear re-
curring sequences of order 2 (each term depends linearly on the
two preceding terms). Conversely, if P , Q are as indicated, and
D = P 2 − 4Q �= 0, if W0 = 0 (resp. 2), W1 = 1 (resp. P ), if
Wn = PWn−1 − QWn−2 for n ≥ 2, then Binet showed (in 1843)
that

Wn =
αn − βn

α− β
(resp. Wn = αn + βn) for n ≥ 0;

here α, β are the roots of the polynomial X2 − PX + Q. This is
trivial, because the sequences of numbers

(Wn)n≥0 and
(
αn − βn

α− β

)
n≥0

(resp. (αn + βn)n≥0),

have the first two terms equal and both have the same linear second-
order recurrence definition.

Before I continue, here are the main special cases that had been
considered before the full theory was developed.

The sequence corresponding to P = 1, Q = −1, U0 = U0(1,−1) =
0, and U1 = U1(1,−1) = 1 was first considered by Fibonacci, and it
begins as follows:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,
377, 610, 987, 1597, 2584, 4181, 6765, . . .

These numbers appeared for the first time in a problem in Fibo-
nacci’s Liber Abaci, published in 1202. It was also in this book that
Arabic figures were first introduced in Europe. The problem, now re-
produced in many elementary books, concerned rabbits having cer-
tain reproductive patterns. I do not care for such an explanation. As
regards rabbits, I rather prefer to eat a good plate of “lapin chasseur”
with fresh noodles.

The companion sequence of Fibonacci numbers, still with P = 1,
Q = −1, is the sequence of Lucas numbers: V0 = V0(1,−1) = 2,
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V1 = V1(1,−1) = 1, and it begins as follows:

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322,
521, 843, 1364, 2207, 3571, 5778, 9349, 15127, . . .

If P = 3, Q = 2, then the sequences obtained are

Un(3, 2) = 2n − 1 and Vn(3, 2) = 2n + 1, for n ≥ 0.

These sequences were the cause of many sleepness nights for Fermat
(see details in Sections VI and VII). The sequences associated to
P = 2, Q = −1, are called the Pell sequences; they begin as follows:

Un(2,−1) : 0, 1, 2, 5, 12, 29, 70, 169, 408, 985,
2378, 5741, 13860, . . .

Vn(2,−1) : 2, 2, 6, 14, 34, 82, 198, 478, 1154,
2786, 6726, 16238, 39202, . . .

Lucas noted a great similarity between the sequences of numbers
Un(P,Q) (resp. Vn(P,Q)) and (an−bn)/(a−b) (resp. an+bn), where
a, b are given, a > b ≥ 1, gcd(a, b) = 1 and n ≥ 0. No wonder, one is
a special case of the other. Just observe that for the pair (a+ b, ab),
D = (a− b)2 �= 0, α = a, β = b, so

Un(a+ b, ab) =
an − bn

a− b
, Vn(a+ b, ab) = an + bn.

It is clearly desirable to extend the main results about the sequence
of numbers (an − bn)/(a− b), an + bn (in what relates to divisibility
and primality) for the wider class of Lucas sequences.

I shall therefore present the generalizations of Fermat’s little the-
orem, Euler’s theorem, etc., to Lucas sequences. There is no essen-
tial difficulty, but the development requires a surprising number of
steps—true enough, all at an elementary level. In what follows, I
shall record, one after the other, the facts needed to prove the main
results. If you wish, work out the details. But I am also explicitly giv-
ing the beginning of several Lucas sequences, so you may be happy
just to check my statements numerically (see the tables at the end
of the section).

First, the algebraic facts, then the divisibility properties. To sim-
plify the notations, I write only Un = Un(P,Q), Vn = Vn(P,Q).
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We have the following algebraic properties:

(IV.1) Un = PUn−1 −QUn−2 (n ≥ 2), U0 = 0, U1 = 1,
Vn = PVn−1 −QVn−2 (n ≥ 2), V0 = 2, V1 = P.

(IV.2) U2n = UnVn,

V2n = V 2
n − 2Qn.

(IV.3) Um+n = UmVn −QnUm−n,
Vm+n = VmVn −QnVm−n (for m ≥ n).

(IV.4) Um+n = UmUn+1 −QUm−1Un,

2Vm+n = VmVn +DUmUn.

(IV.5) DUn = 2Vn+1 − PVn,

Vn = 2Un+1 − PUn.

(IV.6) U2
n = Un−1Un+1 +Qn−1,

V 2
n = DU2

n + 4Qn.
(IV.7) UmVn − UnVm = 2QnUm−n (for m ≥ n),

UmVn + UnVm = 2Um+n.

(IV.8) 2n−1Un =
(
n

1

)
Pn−1 +

(
n

3

)
Pn−3D +

(
n

5

)
Pn−5D2 + · · · ,

2n−1Vn = Pn +
(
n

2

)
Pn−2D +

(
n

4

)
Pn−4D2 + · · · .

(IV.9) If m is odd and k ≥ 1, then

D(m−1)/2 Umk = Ukm −
(
m

1

)
QkUk(m−2) +

(
m

2

)
Q2kUk(m−4) − . . .

±
(

m

(m− 1)/2

)
Q

m−1
2 k Uk,

V m
k = Vkm +

(
m

1

)
QkVk(m−2) +

(
m

2

)
Q2kVk(m−4) + · · ·

+
(

m

(m− 1)/2

)
Q

m−1
2 k Vk.

If m is even and k ≥ 1, then

Dm/2Umk =
[
Vkm −

(
m

1

)
QkVk(m−2) +

(
m

2

)
Q2kVk(m−4) − · · ·
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+(−1)m/2
(
m

m/2

)
Q(m/2)kV0

]
− (−1)m/2

(
m

m/2

)
Q(m/2) k,

V m
k =

[
Vkm +

(
m
1

)
QkVk(m−2) +

(
m
2

)
Q2kVk(m−4) + · · ·

+
(
m

m/2

)
Q(m/2)kV0

]
−
(
m

m/2

)
Q(m/2)k.

(IV.10) Um = Vm−1 +QVm−3 +Q2Vm−5 + · · · + (last summand),
where

last summand =

{
Q(m−2)/2 P if m is even,
Q(m−1)/2 if m is odd.

Pm = Vm +
(
m

1

)
QVm−2 +

(
m

2

)
Q2Vm−4 + · · · + (last summand),

where

last summand =




(
m

m/2

)
Qm/2 if m is even,(

m

(m− 1)/2

)
Q(m−1)/2 P if m is odd.

The following identity of Lagrange, dating from 1741, is required
for the next property:

Xn + Y n = (X + Y )n − n

1
XY (X + Y )n−2

+
n

2

(
n− 3

1

)
X2Y 2(X + Y )n−4

− n

3

(
n− 4

2

)
X3Y 3(X + Y )n−6 + · · ·

+ (−1)r
n

r

(
n− r − 1
r − 1

)
XrY r(X + Y )n−2r ± · · · ,

where the sum is extended for 2r ≤ n. Note that each coefficient is
an integer.
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(IV.11) If m ≥ 1 and q is odd,

Umq = D(q−1)/2 U qm +
q

1
QmD(q−3)/2 U q−2

m

+
q

2

(
q − 3

1

)
Q2mD(q−5)/2 U q−4

m + · · ·

+
q

r

(
q − r − 1
r − 1

)
QmrD(q−2r−1)/2U q−2r

m + · · ·

+ last summand,

where the last summand is

q

(q − 1)/2

(
(q − 1)/2
(q − 3)/2

)
Q

q−1
2 m Um = q Q

q−1
2 m Um.

Now, I begin to indicate, one after the other, the divisibility prop-
erties, in the order in which they may be proved.

(IV.12) Un ≡ Vn−1 (mod Q),

Vn ≡ Pn (mod Q).

Hint : Use (IV.10) or proceed by induction.

(IV.13) Let p be an odd prime, then

Ukp ≡ D
p−1
2 Uk (mod p)

and, for e ≥ 1,
Upe ≡ D

p−1
2 e (mod p).

In particular,

Up ≡
(
D

p

)
(mod p).

Hint : Use (IV.9).

(IV.14) Vp ≡ P (mod p).

Hint : Use (IV.10).

(IV.15) If n, k ≥ 1, then Un divides Ukn.

Hint : Use (IV.3).
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(IV.16) If n, k ≥ 1 and k is odd, then Vn divides Vkn.

Hint : Use (IV.9).

Notation. If n ≥ 2 and if there exists r ≥ 1 such that n divides Ur,
denote by ρ(n) = ρ(n,U) the smallest such r.

(IV.17) Assume that ρ(n) exists and gcd(n, 2Q) = 1. Then n | Uk
if and only if ρ(n) | k.
Hint : Use (IV.15) and (IV.7).

It will be seen that ρ(n) exists, for many—not for all—values of
n, such that gcd(n, 2Q) = 1.

(IV.18) If Q is even and P is even, then Un is even (for n ≥ 2) and
Vn is even (for n ≥ 1).

If Q is even and P is odd, then Un, Vn are odd (for n ≥ 1).
If Q is odd and P is even, then Un ≡ n (mod 2) and Vn is even.
If Q is odd and P is odd, then Un, Vn are even if 3 divides n, while

Un, Vn are odd, otherwise.
In particular, if Un is even, then Vn is even.

Hint : Use (IV.12), (IV.5), (IV.2), (IV.6), and (IV.1).

Here is the first main result, which is a companion of (IV.18) and
generalizes Fermat’s little theorem:

(IV.19) Let p be an odd prime.
If p | P and p | Q, then p | Uk for every k > 1.
If p | P and p � Q, then p | Uk exactly when k is even.
If p � P and p | Q, then p � Uk for every k ≥ 1.
If p � P , p � Q, and p | D, then p | Uk exactly when p | k.
If p � PQD, then p | Uψ(p), where ψ(p) = p− (D | p), and (D | p)

denotes the Legendre symbol.

Proof. If p | P and p | Q, by (IV.1) p | Uk for every k > 1.
If p | P = U2, by (IV.15) p | U2k for every k ≥ 1. Since p � Q, and

U2k+1 = PU2k −QU2k−1, by induction, p � U2k+1.
If p � P and p | Q, by induction and (IV.1), p � Uk for every k ≥ 1.
If p � PQ and p | D, by (IV.8), 2p−1Up ≡ 0 (mod p) so p | Up.

On the other hand, if p � n, then by (IV.8), 2n−1Un ≡ nPn−1 �≡ 0
(mod p), so p � Un.
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Finally the more interesting case: assume p � PQD.
If (D | p) = −1, then by (IV.8)

2pUp+1 =
(
p+ 1

1

)
P p +

(
p+ 1

3

)
P p−2D + · · ·

+
(
p+ 1
p

)
PD(p−1)/2 ≡ P + PD(p−1)/2 ≡ 0 (mod p),

so p | Up+1.
If (D | p) = 1, there exists C such that P 2 − 4Q = D ≡ C2

(mod p); hence, P 2 �≡ C2 (mod p) and p � C. By (IV.8), noting that

(
p− 1

1

)
≡ −1 (mod p),

(
p− 1

3

)
≡ −1 (mod p), . . .

we see that

2p−2Up−1 =
(
p− 1

1

)
P p−2 +

(
p− 1

3

)
P p−4D

+
(
p− 1

5

)
P p−6D2 + · · · +

(
p− 1
p− 2

)
PD(p−3)/2

≡ −[P p−2 + P p−4D + P p−6D2 + · · · + PD(p−3)/2]

≡ −P
(
P p−1 −D(p−1)/2

P 2 −D

)

≡ −P P p−1 − Cp−1

P 2 − C2 ≡ 0 (mod p).

So p | Up−1.

If I want to use the notation ρ(p) introduced before, some of the
assertions of (IV.19) may be restated as follows:

If p is an odd prime and p � Q, then:
If p | P , then ρ(p) = 2.
If p � P , p | D, then ρ(p) = p.
If p � PD, then ρ(p) divides ψ(p).

Don’t conclude hastily that, in this latter case, ρ(p) = ψ(p). I shall
return to this point, after I list the main properties of the Lucas
sequences.
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For the special Lucas sequence Un(a + 1, a), the discriminant is
D = (a− 1)2; so if p � a(a2 − 1), then(

D

p

)
= 1 and p | Up−1 =

ap−1 − 1
a− 1

,

so p | ap−1 − 1 (this is trivial if p | a2 − 1)—which is Fermat’s little
theorem.

(IV.20) Let e ≥ 1, and let pe be the exact power of p dividing Um.
If p � k and f ≥ 1, then pe+f divides Umkpf .

Moreover, if p | Q and pe �= 2, then pe+f is the exact power of p
dividing Umkpf , while if pe = 2 then Umk/2 is odd.

Hint : Use (IV.19), (IV.18), (IV.11), and (IV.6).

And now the generalization of Euler’s theorem:

If α, β are roots of X2 − PX +Q, define the symbol:

(
α, β

2

)
=




1 if Q is even,
0 if Q is odd, P even,

−1 if Q is odd, P odd

and for p �= 2: (
α, β

p

)
=
(
D

p

)
(so it is 0 if p | D). Put

ψα,β(p) = p−
(
α, β

p

)

for every prime p, also

ψα,β(pe) = pe−1ψα,β(p) for e ≥ 1.

If n =
∏
p|n p

e, define the Carmichael function

λα,β(n) = lcm{ψα,β(pe)}
(where lcm denotes the least common multiple), and define the gen-
eralized Euler function

ψα,β(n) =
∏
p|n

ψα,β(pe).
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So λα,β(n) divides ψα,β(n).
It is easy to check that ψa,1(p) = p−1 = ϕ(p) for every prime p not

dividing a; so if gcd(a, n) = 1, then ψa,1(n) = ϕ(n) and also λa,1(n) =
λ(n), where λ(n) is the function, also defined by Carmichael, and
considered in Section II.

And here is the extension of Euler’s theorem:

(IV.21) If gcd(n,Q) = 1, then n divides Uλα,β(n); hence, also n
divides Uψα,β(n).

Hint : Use (IV.19) and (IV.20).

It should be said that the divisibility properties of the companion
sequence (Vn)n≥1 are not so simple to describe. Note, for example,

(IV.22) If p � 2QD, then Vp−(D|p) ≡ 2Q
1
2 [1−(D|p)] (mod p).

Hint : Use (IV.5), (IV.13), (IV.19), and (IV.14).

This may be applied to give divisibility results for Uψ(p)/2 and
Vψ(p)/2.

(IV.23) Assume that p � 2QD. Then

p | Uψ(p)/2 if and only if
(
Q | p) = 1,

p | Vψ(p)/2 if and only if
(
Q | p) = −1.

Hint : For the first assertion, use (IV.2), (IV.6), (IV.22) and the con-
gruence (Q | p) ≡ Q(p−1)/2 (mod p). For the second assertion, use
(IV.2), (IV.19), the first assertion, and also (IV.6).

For the next results, I shall assume that gcd(P,Q) = 1.

(IV.24) gcd(Un, Q) = 1 and gcd(Vn, Q) = 1, for every n ≥ 1.

Hint : Use (IV.12).

(IV.25) gcd(Un, Vn) = 1 or 2.

Hint : Use (IV.16) and (IV.24).

(IV.26) If d = gcd(m,n), then Ud = gcd(Um, Un).
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Hint : Use (IV.15), (IV.7), (IV.24), (IV.18), and (IV.6). This proof
is actually not so easy, and requires the use of the Lucas sequence(
Un(Vd, Qd)

)
n≥0.

(IV.27) If gcd(m,n) = 1, then gcd(Um, Un) = 1.

No hint for this one.

(IV.28) If d = gcd(m,n) and m/d, n/d are odd, then
Vd = gcd(Vm, Vn).

Hint : Use the same proof as for (IV.26).

And here is a result similar to (IV.17), but with the assumption
that gcd(P,Q) = 1:

(IV.29) Assume that ρ(n) exists. Then n | Uk if and only if ρ(n) | k.
Hint : Use (IV.15), (IV.24), and (IV.3).

I pause to write explicitly what happens for the Fibonacci numbers
Un and Lucas numbers Vn; now P = 1, Q = −1, D = 5.

Property (IV.18) becomes the law of appearance of p; even though I
am writing this text on Halloween’s evening, it would hurt me to call
it the “apparition law” (as it was badly translated from the French loi
d’apparition; in all English dictionaries “apparition” means “ghost”).
Law of apparition (oops!, appearance) of p:

p | Up−1 if (5 | p) = 1, that is, p ≡ ±1 (mod 10),
p | Up+1 if (5 | p) = −1, that is, p ≡ ±3 (mod 10).

Property (IV.19) is the law of repetition.
For the Lucas numbers, the following properties hold:

p | Vp−1 − 2 if (5 | p) = 1, that is, p ≡ ±1 (mod 10),
p | Vp+1 + 2 if (5 | p) = −1, that is, p ≡ ±3 (mod 10).

Jarden showed in 1958 that, for the Fibonacci sequence, the func-
tion

ψ(p)
ρ(p)

=
p− (5 | p)
ρ(p)

is unbounded (when the prime p tends to infinity).
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This result was generalized by Kiss & Phong in 1978: there exists
C > 0 (depending only on P , Q) such that ψ(p)/ρ(p) is unbounded,
but still ψ(p)/ρ(p) < C[p/(log p)] (when the prime p tends to infin-
ity).

Now I shall indicate the behaviour of Lucas sequences modulo a
prime p.

If p = 2, this is as described in (IV.18). For example, if P , Q are
odd, then the sequences (Un mod 2)n≥0, (Vn mod 2)n≥0 are equal to

0, 1, 1, 0, 1, 1, 0, 1, 1, 0, . . . .

It is more interesting when p is an odd prime.

(IV.30) If p � 2QD and (D | p) = 1, then

Un+p−1 ≡ Un (mod p),
Vn+p−1 ≡ Vn (mod p).

Thus, the sequences (Un mod p)n≥0, (Vn mod p)n≥0 have period p−1.

Proof. By (IV.4), Un+p−1 = UnUp − QUn−1Up−1; by (IV.19), ρ(p)
divides p − (D | p) = p − 1; by (IV.15), p | Up−1; this is also true if
p | P , p � Q, because then p− 1 is even, so p | Up−1, by (IV.19). By
(IV.13),

Up ≡ (D | p) ≡ 1 (mod p).

So Un+p−1 ≡ Un (mod p).
Now, by (IV.5), Vn+p−1 = 2Un+p − PUn ≡ 2Un+1 − PUn ≡ Vn

(mod p).

The companion result is the following:

(IV.31) Let p � 2QD, let e be the order of Qmod p. If (D | p) = −1,
then

Un+e(p+1) ≡ Un (mod p),

Vn+e(p+1) ≡ Vn (mod p).

Thus, the sequences (Un mod p)n≥0, (Vn mod p)n≥0 have period
e(p+ 1).
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Proof. If p � P , then by (IV.19), (IV.15),

p | Up−(D|p) = Up+1 .

This is also true when p | P .
By (IV.22), Vp+1 ≡ 2Q (mod p). Now I show, by induction on

r ≥ 1, that Vr(p+1) ≡ 2Qr (mod p).
If this is true for r ≥ 1, then by (IV.4)

2V(r+1)(p+1) = Vr(p+1)Vp+1 +DUr(p+1)Up+1 ≡ 4Qr+1 (mod p),

so V(r+1)(p+1) ≡ 2Qr+1 (mod p). In particular, Ve(p+1) ≡ 2Qe ≡ 2
(mod p). By (IV.7),

Un+e(p+1)Ve(p+1) − Ue(p+1)Vn+e(p+1) = 2Qe(p+1) Un ,

hence 2Un+e(p+1) ≡ 2Un (mod p) and the first congruence is estab-
lished.

The second congruence follows using (IV.5).

It is good to summarize some of the preceding results, in terms of
the sets

P(U) = {p prime | there exists n such that Un �= 0 and p | Un},
P(V ) = {p prime | there exists n such that Vn �= 0 and p | Vn}.
These are the sets of prime divisors of the sequences U = (Un)n≥1

and V = (Vn)n≥1, respectively.
The parameters (P,Q) are assumed to be nonzero, relatively prime

integers and the discriminant is D = P 2 − 4Q �= 0.
A first case arises if there exists n > 1 such that Un = 0; equiva-

lently, αn = βn, that is α/β is a root of unity. If n is the smallest such
index, then Ur �= 0 for r = 1, . . . , n−1 and Unk+r = αnkUr (for every
k ≥ 1), so P(U) consists of the prime divisors of U2 · · ·Un−1. Simi-
larly, P(V ) consists of the prime numbers dividing V1V2 · · ·Vn−1Vn.

The more interesting case is when α/β is not a root of unity, so
Un �= 0, Vn �= 0, for every n ≥ 1. Then P(U) = {p prime | p does not
divide Q}.

This follows from (IV.18) and (IV.19). In particular, for the se-
quence of Fibonacci numbers, P(U) is the set of all primes.

Nothing so precise may be said about the companion Lucas se-
quence V = (Vn)n≥1. From U2n = UnVn (n ≥ 1) it follows that P(V )
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is a subset of P(U). From (IV.18), 2 ∈ P(V ) if and only if Q is odd.
Also, from (IV.24) and (IV.6), if p �= 2 and if p | DQ, then p �∈ P(V ),
while if p � 2DQ and (Q | p) = −1, then p ∈ P(V ) [see (IV.23)]; on
the other hand, if p � 2DQ, (Q | p) = 1, and (D | p) = −(−1 | p),
then p �∈ P(V ). This does not determine, without a further anal-
ysis, whether a prime p, such that p � 2DQ, (Q | p) = 1, and
(D | p) = (−1 | p) belongs, or does not belong, to P(V ). At any
rate, it shows that P(V ) is also an infinite set.

For the sequence of Lucas numbers, with P = 1, Q = −1, D = 5,
the preceding facts may be explicitly stated as follows:

if p = 3, 7, 11, 19 (mod 20), then p ∈ P(V );
if p ≡ 13, 17 (mod 20), then p �∈ P(V ).
For p ≡ 1, 9 (mod 20), no decision may be obtained without a

careful study, as, for example, that done by Ward in 1961. Already
in 1958 Jarden had shown that there exist infinitely many primes
p, p ≡ 1 (mod 20), such that p �∈ P(V ), and, on the other hand,
there exist also infinitely many primes p, p ≡ 1 (mod 40), such that
p ∈ P(V ).

Later, in Chapter 5, Section VIII, I shall return to the study of
the sets P(U), P(V ), asking for their density in the set of all primes.

In analogy with the theorem of Bang and Zsigmondy, Carmichael
also considered the primitive prime factors of the Lucas sequences,
with parameters (P,Q): p is a primitive prime factor of Uk (resp. Vk)
if p | Uk (resp. p | Vk), but p does not divide any preceding number
in the sequence in question.

The proof of Zsigmondy’s theorem is not too simple; here it is
somewhat more delicate.

Carmichael showed that if the discriminant D is positive, then for
every n �= 1, 2, 6, Un has a primitive prime factor, except if n = 12
and P = ±1, Q = −1.

Moreover, if D is a square, then it is better: for every n, Un has a
primitive prime factor, except if n = 6, P = ±3, Q = 2.

Do you recognize that this second statement includes Zsigmondy’s
theorem? Also, if P = 1, Q = −1 the exception is the Fibonacci
number U12 = 144.

For the companion sequence, if D > 0, then for every n �= 1, 3, Vn
has a primitive prime factor, except if n = 6, P = ±1, Q = −1 (the
Lucas number V6 = 18). Moreover, if D is a square, then the only
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exception is n = 3, P = ±3, Q = 2, also contained in Zsigmondy’s
theorem.

If, however, D < 0, the result indicated is no longer true. Thus,
as Carmichael already noted, if P = 1, Q = 2, then for n = 1, 2, 3,
5, 8, 12, 13, 18, Un has no primitive prime factors.

Schinzel showed the following in 1962:

Let (Un)n≥0 be the Lucas sequence with relatively prime parameters
(P,Q) and assume that the discriminant is D < 0. Assume that α/β
is not a root of unity. Then there exists n0 (depending on P , Q ),
effectively computable, such that if n > n0, then Un has a primitive
prime factor.

Later, in 1974, Schinzel proved the same result with an absolute
constant n0—independent of the Lucas sequence. This was a remark-
able result.

Making use of the methods of Baker, Stewart determined in 1977
that if n > e452267, then Un has a primitive prime factor. Moreover,
Stewart also showed that if n is given (n �= 6, n > 4), there are only
finitely many Lucas sequences, which may be determined explicitly
(so says Stewart, without doing it), for which Un has no primitive
prime factor.

It is interesting to consider the primitive part U∗
n of Un:

Un = U∗
nU

′
n with gcd(U∗

n, U
′
n) = 1

and p divides U∗
n if and only if p is a primitive prime factor of Un.

In 1963, Schinzel indicated conditions for the existence of two (or
even e > 2) distinct primitive prime factors. It follows that if D > 0
or D < 0 and α/β is not a root of unity, there exist infinitely many
n such that the primitive part U∗

n is composite.
Can one say anything about U∗

n being square-free? This is a very
deep question. Just think of the special case when P = 3, Q = 2,
which gives the sequence 2n − 1 (see my comments in Section II).
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Table 2. Fibonacci and Lucas numbers

P = 1, Q = −1

Fibonacci numbers Lucas numbers

U(0) = 0 U(1) = 1 V (0) = 2 V (1) = 1
U(2) = 1 V (2) = 3
U(3) = 2 V (3) = 4
U(4) = 3 V (4) = 7
U(5) = 5 V (5) = 11
U(6) = 8 V (6) = 18
U(7) = 13 V (7) = 29
U(8) = 21 V (8) = 47
U(9) = 34 V (9) = 76
U(10) = 55 V (10) = 123
U(11) = 89 V (11) = 199
U(12) = 144 V (12) = 322
U(13) = 233 V (13) = 521
U(14) = 377 V (14) = 843
U(15) = 610 V (15) = 1364
U(16) = 987 V (16) = 2207
U(17) = 1597 V (17) = 3571
U(18) = 2584 V (18) = 5778
U(19) = 4181 V (19) = 9349
U(20) = 6765 V (20) = 15127
U(21) = 10946 V (21) = 24476
U(22) = 17711 V (22) = 39603
U(23) = 28657 V (23) = 64079
U(24) = 46368 V (24) = 103682
U(25) = 75025 V (25) = 167761
U(26) = 121393 V (26) = 271443
U(27) = 196418 V (27) = 439204
U(28) = 317811 V (28) = 710647
U(29) = 514229 V (29) = 1149851
U(30) = 832040 V (30) = 1860498
U(31) = 1346269 V (31) = 3010349
U(32) = 2178309 V (32) = 4870847
U(33) = 3524578 V (33) = 7881196
U(34) = 5702887 V (34) = 12752043
U(35) = 9227465 V (35) = 20633239
U(36) = 14930352 V (36) = 33385282
U(37) = 24157817 V (37) = 54018521
U(38) = 39088169 V (38) = 87403803
U(39) = 63245986 V (39) = 141422324
U(40) = 102334155 V (40) = 228826127
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Table 3. Numbers 2n − 1 and 2n + 1

P = 3, Q = 2

Numbers 2n − 1 Numbers 2n + 1

U(0) = 0 U(1) = 1 V (0) = 2 V (1) = 3
U(2) = 3 V (2) = 5
U(3) = 7 V (3) = 9
U(4) = 15 V (4) = 17
U(5) = 31 V (5) = 33
U(6) = 63 V (6) = 65
U(7) = 127 V (7) = 129
U(8) = 255 V (8) = 257
U(9) = 511 V (9) = 513
U(10) = 1023 V (10) = 1025
U(11) = 2047 V (11) = 2049
U(12) = 4095 V (12) = 4097
U(13) = 8191 V (13) = 8193
U(14) = 16383 V (14) = 16385
U(15) = 32767 V (15) = 32769
U(16) = 65535 V (16) = 65537
U(17) = 131071 V (17) = 131073
U(18) = 262143 V (18) = 262145
U(19) = 524287 V (19) = 524289
U(20) = 1048575 V (20) = 1048577
U(21) = 2097151 V (21) = 2097153
U(22) = 4194303 V (22) = 4194305
U(23) = 8388607 V (23) = 8388609
U(24) = 16777215 V (24) = 16777217
U(25) = 33554431 V (25) = 33554433
U(26) = 67108863 V (26) = 67108865
U(27) = 134217727 V (27) = 134217729
U(28) = 268435455 V (28) = 268435457
U(29) = 536870911 V (29) = 536870913
U(30) = 1073741823 V (30) = 1073741825
U(31) = 2147483647 V (31) = 2147483649
U(32) = 4294967295 V (32) = 4294967297
U(33) = 8589934591 V (33) = 8589934593
U(34) = 17179869183 V (34) = 17179869185
U(35) = 34359738367 V (35) = 34359738369
U(36) = 68719476735 V (36) = 68719476737
U(37) = 137438953471 V (37) = 137438953473
U(38) = 274877906943 V (38) = 274877906945
U(39) = 549755813887 V (39) = 549755813889
U(40) = 1099511627775 V (40) = 1099511627777
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Table 4. Pell numbers

P = 2, Q = −1

Pell numbers Companion Pell numbers

U(0) = 0 U(1) = 1 V (0) = 2 V (1) = 2
U(2) = 2 V (2) = 6
U(3) = 5 V (3) = 14
U(4) = 12 V (4) = 34
U(5) = 29 V (5) = 82
U(6) = 70 V (6) = 198
U(7) = 169 V (7) = 478
U(8) = 408 V (8) = 1154
U(9) = 985 V (9) = 2786
U(10) = 2378 V (10) = 6726
U(11) = 5741 V (11) = 16238
U(12) = 13860 V (12) = 39202
U(13) = 33461 V (13) = 94642
U(14) = 80782 V (14) = 228486
U(15) = 195025 V (15) = 551614
U(16) = 470832 V (16) = 1331714
U(17) = 1136689 V (17) = 3215042
U(18) = 2744210 V (18) = 7761798
U(19) = 6625109 V (19) = 18738638
U(20) = 15994428 V (20) = 45239074
U(21) = 38613965 V (21) = 109216786
U(22) = 93222358 V (22) = 263672646
U(23) = 225058681 V (23) = 636562078
U(24) = 543339720 V (24) = 1536796802
U(25) = 1311738121 V (25) = 3710155682
U(26) = 3166815962 V (26) = 8957108166
U(27) = 7645370045 V (27) = 21624372014
U(28) = 1845756052 V (28) = 52205852194
U(29) = 44560482149 V (29) = 126036076402
U(30) = 107578520350 V (30) = 304278004998
U(31) = 259717522849 V (31) = 734592086398
U(32) = 627013566048 V (32) = 1773462177794
U(33) = 1513744654945 V (33) = 4281516441986
U(34) = 3654502875938 V (34) = 10336495061766
U(35) = 8822750406821 V (35) = 24954506565518
U(36) = 21300003689580 V (36) = 60245508192802
U(37) = 51422757785981 V (37) = 145445522951122
U(38) = 124145519261542 V (38) = 351136554095046
U(39) = 299713796309065 V (39) = 847718631141214
U(40) = 723573111879672 V (40) = 2046573816377474
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Table 5. Numbers U(4, 3) and V (4, 3)

P = 4, Q = 3

Numbers Companion numbers

U(0) = 0 U(1) = 1 V (0) = 2 V (1) = 4
U(2) = 4 V (2) = 10
U(3) = 13 V (3) = 28
U(4) = 40 V (4) = 82
U(5) = 121 V (5) = 244
U(6) = 364 V (6) = 730
U(7) = 1093 V (7) = 2188
U(8) = 3280 V (8) = 6562
U(9) = 9841 V (9) = 19684
U(10) = 29524 V (10) = 59050
U(11) = 88573 V (11) = 177148
U(12) = 265720 V (12) = 531442
U(13) = 797161 V (13) = 1594324
U(14) = 2391484 V (14) = 4782970
U(15) = 7174453 V (15) = 14348908
U(16) = 21523360 V (16) = 43046722
U(17) = 64570081 V (17) = 129140164
U(18) = 193710244 V (18) = 387420490
U(19) = 581130733 V (19) = 1162261468
U(20) = 1743392200 V (20) = 3486784402
U(21) = 5230176601 V (21) = 10460353204
U(22) = 15690529804 V (22) = 31381059610
U(23) = 47071589413 V (23) = 94143178828
U(24) = 141214768240 V (24) = 282429536482
U(25) = 423644304721 V (25) = 847288609444
U(26) = 1270932914164 V (26) = 2541865828330
U(27) = 3812798742493 V (27) = 7625597484988
U(28) = 11438396227480 V (28) = 22876792454962
U(29) = 34315188682441 V (29) = 68630377364884
U(30) = 102945566047324 V (30) = 205891132094650
U(31) = 308836698141973 V (31) = 617673396283948
U(32) = 926510094425920 V (32) = 1853020188851842
U(33) = 2779530283277761 V (33) = 5559060566555524
U(34) = 8338590849833284 V (34) = 16677181699666570
U(35) = 25015772549499853 V (35) = 50031545098999708
U(36) = 75047317648499560 V (36) = 150094635296999122
U(37) = 225141952945498681 V (37) = 450283905890997364
U(38) = 675425858836496044 V (38) = 1350851717672992090
U(39) = 2026277576509488133 V (39) = 4052555153018976268
U(40) = 6078832729528464400 V (40) = 12157665459056928802
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V Primality Tests Based on Lucas Sequences

Lucas began, Lehmer continued, others refined. The primality tests
of N , to be presented now, require the knowledge of prime factors of
N+1, and they complement the tests indicated in Section III, which
needed the prime factors of N − 1. Now, the tool will be the Lucas
sequences. By (IV.18), if N is an odd prime, if U = (Un)n≥0 is a
Lucas sequence with discriminant D and N � DPQ, then N divides
UN−(D|N). So, if the Jacobi symbol (D | N) = −1, then N divides
UN+1.

However, I note right away (as I did in Section III) that a crude
converse does not hold, because there exist composite integersN , and
Lucas sequences (Un)n≥0 with discriminant D, such that N divides
UN−(D|N). Such numbers will be studied in Section X.

It will be convenient to introduce for every integer D > 1 the
function ψD, defined as follows:

If N =
∏s
i=1 p

ei
i , let

ψD(N) =
1

2s−1

s∏
i=1

pei−1
i

(
pi −

(
D

pi

))
.

Note that if (Un)n≥0 is a Lucas sequence with discriminant D, if
α, β are the roots of the associated polynomial, then the function
ψα,β considered in Section IV is related to ψD as follows:

ψα,β(N) = 2s−1ψD(N).

As it will be necessary to consider simultaneously several Lucas
sequences with the same discriminant D, it is preferable to work with
ψD, and not with the functions ψα,β corresponding to the various
sequences.

Note, for example, that if U(P,Q) has discriminant D, if P ′ =
P + 2, Q′ = P +Q+ 1, then also U(P ′, Q′) has discriminant D.

It is good to start with some preparatory and easy results.

(V.1) If N is odd, gcd(N,D) = 1, then ψD(N) = N − (D | N) if
and only if N is a prime.

Proof. If N is a prime, by definition ψD(N) = N − (D | N). If
N = pe with p prime, e ≥ 2, then ψD(N) is a multiple of p, while
N = (D | N) is not.
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If N =
∏s
i=1 p

ei
i , with s ≥ 2, then

ψD(N) ≤ 1
2s−1

s∏
i=1

pei−1
i (pi + 1) = 2N

s∏
i=1

1
2

(
1 +

1
pi

)

≤ 2N × 2
3

× 3
5

× · · · ≤ 4N
5

< N − 1,

since N > 5.

(V.2) If N is odd, gcd(N,D) = 1, and N−(D | N) divides ψD(N),
then N is a prime.

Proof. Assume that N is composite. First, let N = pe, with p prime,
e ≥ 2; then ψD(N) = pe − pe−1(D | p). Hence,

pe − pe−1 < pe − 1 ≤ N − (D | N) ≤ ψD(N) = pe − pe−1(D | p),

so (D | p) = −1 and N − (D | N) = pe ± 1 divides ψD(N) =
pe + pe−1 = pe ± 1 + (pe−1 ∓ 1), which is impossible.

If N has at least two distinct prime factors, it was seen in (V.1)
that ψD(N) < N − 1 ≤ N − (D | N), which is contrary to the
hypothesis. So N must be a prime.

(V.3) If N is odd, U = U(P,Q) is a Lucas sequence with discrim-
inant D, and gcd(N,QD) = 1, then N | UψD(N).

Proof. Since gcd(N,Q) = 1, then by (IV.12), N divides λα,β(N),
where α, β are the roots of X2 − PX +Q. If N =

∏s
i=1 p

ei
i , then

λα,β(N) = gcd
{
pei−1
i

(
pi −

(
D

pi

))}

= 2gcd
{

1
2
pei−1
i

(
pi −

(
D

pi

))}

and λα,β(N) divides

2
s∏
i=1

1
2
pei−1
i

(
pi −

(
D

pi

))
= ψD(N).

By (IV.15), N divides UψD(N).
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(V.4) If N is odd, U = U(P,Q) is a Lucas sequence with dis-
criminant D such that (D | N) = −1, and N divides UN+1, then
gcd(N,QD) = 1.

Proof. Since (D | N) �= 0, then gcd(N,D) = 1. If there exists a
prime p such that p | N and p | Q, since p � D = P 2 − 4Q, then
p � P . By (IV.18) p � Un for every n ≥ 1, which is contrary to the
hypothesis. So gcd(N,Q) = 1.

One more result which will be needed is the following:

(V.5) Let N be odd and q be any prime factor of N + 1. Assume
that U = U(P,Q) and V = V (P,Q) are the Lucas sequences asso-
ciated with the integers P , Q, having discriminant D �= 0. Assume
gcd(P,Q) = 1 or gcd(N,Q) = 1. If N divides U(N+1)/q and V(N+1)/2,
then N divides V(N+1)/2q.

Proof.

N + 1
2

=
N + 1

2q
+
N + 1
q

u with u =
q − 1

2
.

By (IV.4):

2V(N+1)/2 = V(N+1)/2qV[(N+1)/q]u +DU(N+1)/2qU[(N+1)/q]u.

By (IV.15), N divides U[(N+1)/q]u so N divides V(N+1)/2qV[(N+1)/q]u.
If gcd(P,Q) = 1, by (IV.21) gcd(U[(N+1)/q]u, V[(N+1)/q]u) = 1 or 2,

hence gcd(N,V[(N+1)/q]u) = 1, so N divides V(N+1)/2q.
If gcd(N,Q) = 1 and if there exists a prime p dividing N and

V[(N+1)/q]u, then by (IV.6) p also divides 4Q; since p is odd, then
p | Q, which is a contradiction.

Before indicating primality tests, it is easy to give sufficient con-
ditions for a number to be composite:

Let N > 1 be an odd integer. Assume that there exists a Lucas
sequence (Un)n≥0 with parameters (P,Q), discriminant D, such that
gcd(N,QD) = 1, (Q | N) = 1, and N � U 1

2 [N−(D/N)]. Then N is
composite.

Similarly, assume that there exists a companion Lucas sequence
(Vn)n≥0, with parameters (P,Q), discriminant D, such that N � QD,
(Q | N) = −1 and N � V 1

2 [N−(D/N)]. Then N is composite.
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Proof. Indeed, if N = p is an odd prime not dividing QD, and if
(Q | p) = 1, then p | Uψ(p)/2, and similarly, if (Q | p) = −1, then
p | Vψ(p)/2, as stated in (IV.23). In both cases there is a contradiction.

Now I am ready to present several tests; each one better than the
preceding one.

Test 1. Let N > 1 be an odd integer and N +1 =
∏s
i=1 q

fi
i . Assume

that there exists an integer D such that (D | N) = −1, and for every
prime factor qi of N+1, there exists a Lucas sequence (U (i)

n )n≥0 with
discriminantD = P 2

i −4Qi, where gcd(Pi, Qi) = 1, or gcd(N,Qi) = 1
and such that N | U (i)

N+1 and N � U
(i)
(N+1)/qi

. Then N is a prime.

Defect of this test: it requires the knowledge of all the prime factors
of N + 1 and the calculation of U (i)

n for n = 1, 2, . . . , N + 1.

Proof. By (V.3), (V.4), N | U (i)
ψD(N) for every i = 1, . . . , s. Let

ρ(i)(N) be the smallest integer r such that N | U (i)
r . By (IV.29) or

(IV.22) and the hypothesis, ρ(i)(N) | (N + 1), ρ(i)(N) � (N + 1)/qi,
and also ρ(i)(N) | ψD(N). Hence qfi

i | ρ(i)(N) for every i = 1, . . . , s.
Therefore, (N + 1) | ψD(N) and by (V.2), N is a prime.

The following test needs only half of the computations:

Test 2. Let N > 1 be an odd integer and N +1 =
∏s
i=1 q

fi
i . Assume

that there exists an integer D such that (D | N) = −1, and for every
prime factor qi of N+1, there exists a Lucas sequence (V (i)

n )n≥0 with
discriminantD = P 2

i −4Qi, where gcd(Pi, Qi) = 1 or gcd(N,Qi) = 1,
and such that N | V (i)

(N+1)/2 and N � V
(i)
(N+1)/2qi

. Then N is a prime.

Proof. By (IV.2), N | U (i)
N+1. By (V.5), N � U

(i)
(N+1)/qi

. By the test 1,
N is a prime.

The following tests will require only a partial factorization ofN+1.

Test 3. Let N > 1 be an odd integer, let q be a prime factor of N+1
such that 2q >

√
N + 1. Assume that there exists a Lucas sequence

(Vn)n≥0, with discriminant D = P 2 − 4Q, where gcd(P,Q) = 1 or
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gcd(N,Q) = 1, and such that (D | N) = −1, and N | V(N+1)/2,
N � V(N+1)/2q. Then N is a prime.

Defect of this test: it needs the knowledge of a fairly large prime
factor of N + 1.

Proof. Let N =
∏s
i=1 p

ei
i . By (IV.2), N | UN+1, so by (IV.29) or

(IV.22), ρ(N) | (N + 1). By (V.5), N � U(N+1)/q; hence, ρ(N) �
(N + 1)/q, therefore q | ρ(N). By (V.4) and (V.3), N | UψD(N), so
ρ(N) divides ψD(N), which in turn divides N

∏s
i=1(pi − (D | pi)).

Since q � N , then there exists pi such that q divides pi − (D | pi),
thus pi ≡ (D | pi) (mod 2q). In conclusion, pi ≥ 2q − 1 >

√
N and

1 ≤ N/pi <
√
N < 2q − 1, and this implies that N/pi = 1, that is,

N is a prime.

The next test, which was proposed by Morrison in 1975, may be
viewed as the analogue of Pocklington’s test indicated in Section III:

Test 4. Let N > 1 be an odd integer and N + 1 = FR, where
gcd(F,R) = 1 and the factorization of F is known. Assume that
there exists D such that (D | N) = −1 and, for every prime qi

dividing F , there exists a Lucas sequence (U (i)
n )n≥0 with discriminant

D = P 2
i − 4Qi, where gcd(Pi, Qi) = 1 or gcd(N,Qi) = 1 and such

that N | U (i)
N+1 and gcd(U (i)

(N+1)/qi
, N) = 1. Then each prime factor p

of N satisfies p ≡ (D | p) (mod F ). If, moreover, F >
√
N + 1, then

N is a prime.

Proof. From the hypothesis, ρ(i)(N) | (N + 1); a fortiori, ρ(i)(p) |
(N + 1). But p � U

(i)
(N+1)/q, so ρ(i)(p) | (N + 1)/qi, by (IV.29) or

(IV.22). If qifi
is the exact power of qi dividing F , then qfi

i | ρ(i)(p),

so by (IV.18), qfi
i divides p− (D | p), and this implies that F divides

p− (D | p).
Finally, if F >

√
N + 1, then p+ 1 ≥ p− (D | p) ≥ F >

√
N + 1;

hence, p >
√
N . This implies that N itself is a prime.

The next result tells more about the possible prime factors of N .

(V.6) Let N be an odd integer, N +1 = FR, where gcd(F,R) = 1
and the factorization of F is known. Assume that there exists a
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Lucas sequence (Un)n≥0 with discriminant D = P 2 − 4Q, where
gcd(P,Q) = 1 or gcd(N,Q) = 1 and such that (D | N) = −1,
N | UN+1, and gcd(UF , N) = 1. If p is a prime factor of N , then
there exists a prime factor q of R such that p ≡ (D | p) (mod q).

Proof. ρ(p) | (p− (D | p)) by (IV.18) and ρ(p) | (N +1). But p � UF ,
so ρ(p) � F . Hence, gcd(ρ(p), R) �= 1 and there exists a prime q such
that q | R and q | ρ(p); in particular, p ≡ (D | p) (mod q).

This result is used in the following test:

Test 5. Let N > 1 be an odd integer and N + 1 = FR, where
gcd(F,R) = 1, the factorization of F is known, R has no prime
factor less than B, where BF >

√
N + 1. Assume that there exists

D such that (D | N) = −1 and the following conditions are satisfied:

(i) For every prime qi dividing F , there exists a Lucas sequence
(U (i)

n )n≥0, with discriminantD = P 2
i −4Qi, where gcd(Pi, Qi) =

1 or gcd(N,Qi) = 1 and such thatN | U (i)
N+1 and gcd(U (i)

(N+1)/qi
,

N) = 1.

(ii) There exists a Lucas sequence (U ′
n)n≥0, with discriminant D =

P ′2 − 4Q′, where gcd(P ′, Q′) = 1 or gcd(N,Q′) = 1 and such
that N | U ′

N+1 and gcd(U ′
F , N) = 1.

Then N is a prime.

Proof. Let p be a prime factor of N . By Test 4, p ≡ (D | p) (mod
F ) and by the preceding result, there exists a prime factor q of R
such that p ≡ (D | p) (mod q). Hence, p ≡ (D | p) (mod qF ) and so,

p+ 1 ≥ p− (D | p) ≥ qF ≥ BF >
√
N + 1.

Therefore, p >
√
N and N is a prime number.

The preceding test is more flexible than the others, since it requires
only a partial factorization of N + 1 up to a point where it may be
assured that the nonfactored part of N+1 has no factors less than B.

Now I want to indicate, in a very succinct way, how to quickly
calculate the terms of Lucas sequences with large indices. One of the
methods is similar to that used in the calculations of high powers,
which was indicated in Section III.
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Write n = n02k + n12k−1 + · · · + nk, with ni = 0 or 1 and n0 = 1;
so k = [(logn)/(log 2)]. To calculate Un (or Vn) it is necessary to
perform the simultaneous calculation of Um, Vm for various values
of m. The following formulas are needed:{

U2j = UjVj ,

V2j = V 2
j − 2Qj ,

[see formulas (IV.2)]

{
2U2j+1 = V2j + PU2j ,

2V2j+1 = PV2j +DU2j .
[see formulas (IV.5)]

Put s0 = n0 = 1, and sj+1 = 2sj + nj+1. Then sk = n. So, it
suffices to calculate Usj , Vsj for j ≤ k; note that

Usj+1 = U2sj+nj+1 =

{
U2sj or
U2sj+1,

Vsj+1 = V2sj+nj+1 =

{
V2sj or
V2sj+1.

Thus, it is sufficient to compute 2k numbers Ui and 2k numbers
Vi, that is, only 4k numbers.

If it is needed to know Un modulo N , then in all steps the numbers
may be replaced by their least positive residues modulo N .

The second method is also very quick. For j ≥ 1,(
Uj+1 Vj+1
Uj Vj

)
=
(
P −Q
1 0

)(
Uj Vj
Uj−1 Vj−1

)
.

If

M =
(
P −Q
1 0

)
,

then (
Un Vn
Un−1 Vn−1

)
= Mn−1

(
U1 V1
0 2

)
.

To find the powers of M , say Mm, write m in binary form and
proceed in the manner followed to calculate a power of a number.

If Un modulo N is to be determined, all the numbers appearing
in the above calculation should be replaced by their least positive
residues modulo N .
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To conclude this section, I would like to stress that there are many
other primality tests of the same family, which are appropriate for
numbers of certain forms, and use either Lucas sequences or other
similar sequences.

Sometimes it is practical to combine tests involving Lucas se-
quences with the tests discussed in Section III; see the paper of
Brillhart, Lehmer & Selfridge (1975). As a comment, I add (half-
jokingly) the following rule of thumb: the longer the statement of
the testing procedure, the quicker it leads to a decision about the
primality.

The tests indicated so far are applicable to numbers of the form
2n− 1 (see Section VII on Mersenne numbers, where the test will be
given explicitly), but also to numbers of the form k× 2n− 1 (see, for
example, Inkeri’s paper of 1960 or Riesel’s book, 1985).

In 1998, H.C. Williams published a book dedicated to a historical
and mathematical study of the work of Lucas. His authoritative and
thorough treatment is recommended to anyone who wants to learn
more than I could include in my succinct presentation.

VI Fermat Numbers

For numbers having a special form, there are more suitable methods
to test whether they are prime or composite.

The numbers of the form 2m + 1 were considered long ago.
If 2m + 1 is a prime, then m must be of the form m = 2n, so it is

a Fermat number, Fn = 22n
+ 1.

The Fermat numbers F0 = 3, F1 = 5, F2 = 17, F3 = 257,
F4 = 65537 are primes. Fermat believed, and tried to prove, that
all Fermat numbers are primes. Since F5 has 10 digits, in order to
test its primality, it would be necessary to have a table of primes
up to 100 000 (which was unavailable to him) or to derive and use
some criterion for a number to be a factor of a Fermat number. This,
Fermat failed to do.

Euler showed that every factor of Fn (with n ≥ 2) must be of the
form k × 2n+2 + 1 and thus he discovered that 641 divides F5:

F5 = 641 × 6700417.

Proof. It suffices to show that every prime factor p of Fn is of the
form indicated. Since 22n ≡ −1 (mod p), then 22n+1 ≡ 1 (mod p),
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so 2n+1 is the order of 2 modulo p. By Fermat’s little theorem 2n+1

divides p − 1; in particular, 8 divides p − 1. Therefore the Legen-
dre symbol is 2(p−1)/2 ≡ (2 | p) ≡ 1 (mod p), and so 2n+1 divides
(p− 1)/2; this shows that p = k × 2n+2 + 1.

Since the numbers Fn increase very rapidly with n, it becomes
laborious to check their primality.

Using the converse of Fermat’s little theorem, as given by Lucas,
Pepin obtained in 1877 a test for the primality of Fermat numbers.
Namely:

Pepin’s Test. Let Fn = 22n
+ 1 (with n ≥ 2) and k ≥ 2. Then, the

following conditions are equivalent:

(i) Fn is prime and (k | Fn) = −1.

(ii) k(Fn−1)/2 ≡ −1 (mod Fn).

Proof. If (i) is assumed, then by Euler’s criterion for the Legendre
symbol

k(Fn−1)/2 ≡
(
k

Fn

)
≡ −1 (mod Fn).

If, conversely, (ii) is supposed true, let a, 1 ≤ a < Fn, be such that
a ≡ k (mod Fn). Since a(Fn−1)/2 ≡ −1 (mod Fn), then aFn−1 ≡ 1
(mod Fn). By Test 3 in Section III, Fn is prime. Hence(

k

Fn

)
≡ k(Fn−1)/2 ≡ −1 (mod Fn).

Possible choices of k are k = 3, 5, 10, because Fn ≡ 2 (mod 3),
Fn ≡ 2 (mod 5), Fn ≡ 1 (mod 8); hence, by Jacobi’s reciprocity law(

3
Fn

)
=
(
Fn
3

)
=
(

2
3

)
= −1,(

5
Fn

)
=
(
Fn
5

)
=
(

2
5

)
= −1,(

10
Fn

)
=
(

2
Fn

)(
5
Fn

)
= −1.

This test is very practical in application. However, if Fn is com-
posite, the test does not indicate any factor of Fn.
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Lucas used it to show that F6 is composite, and in 1880, at the
age of 82, Landry showed that

F6 = 274177 × 67280421310721.

Landry never described how he factored F6. In a historical recon-
stitution, Williams (1993) gives indications, obtained from clues in
Landry’s letters and work, of the method used by Landry.

But the best of the story is a recent “coup de théâtre”. In a bi-
ography of Clausen by Biermann (1964), it is stated that in a letter
to Gauss of January 1, 1855, Clausen (who was known as an able
calculator and an important astronomer) already gave the complete
factorization of F6. In this letter, which remains in the library of the
University of Göttingen, Clausen also expressed his belief that the
larger of the two factors was the largest prime number known at that
time. Curiously, the corresponding remark in Biermann’s biography
remained widely unnoticed for many years.

Generally, the factorization of Fermat numbers known to be com-
posite has been the object of intensive research. In the following table
we give the current state of this matter. The notation Pn indicates
a prime number of n digits, while Cn denotes a composite number
having n digits.

Table 6. Completely factored Fermat numbers

F5 = 641 × 6700417
F6 = 274177 × 67280421310721
F7 = 59649589127497217 × 5704689200685129054721
F8 = 1238926361552897 × P62
F9 = 2424833 ×

7455602825647884208337395736200454918783366342657 × P99
F10 = 45592577 × 6487031809 ×

4659775785220018543264560743076778192897 × P252
F11 = 319489 × 974849 × 167988556341760475137 ×

3560841906445833920513 × P564

Notes.

F5 : Euler (1732)

F6 : factor 1 Clausen (unpublished, 1855), Landry and Le Lasseur (1880)

F7 : Morrison and Brillhart (1970)
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F8 : factor 1 Brent and Pollard (1980)

F9 : factor 1 Western (1903),
other factors A.K. Lenstra and Manasse (1990)

F10 : factor 1 Selfridge (1953), factor 2 Brillhart (1962),
other factors Brent (1995)

F11 : factors 1 and 2 Cunningham (1899), other factors Brent (1988),
primality of factor 5 Morain (1988)

It is quite difficult to keep track of all the new results that accu-
mulate rapidly, but also to remain acquainted with the most recent
methods developed for the factorization of such numbers. In this re-
gard, the articles of Brent (1999), and of Brent, Crandall, Dilcher
& van Halewyn (2000) are very informative. I thank W. Keller for
keeping me up-to-date on developments concerning the Fermat num-
bers.

Table 7. Incomplete factorizations of Fermat numbers

F12 = 114689 × 26017793 × 63766529 × 190274191361 ×
1256132134125569 × C1187

F13 = 2710954639361 × 2663848877152141313 ×
3603109844542291969 × 319546020820551643220672513 × C2391

F15 = 1214251009 × 2327042503868417×
168768817029516972383024127016961 × C9808

F16 = 825753601 × 188981757975021318420037633 × C19694
F17 = 31065037602817 × C39444
F18 = 13631489 × 81274690703860512587777 × C78884
F19 = 70525124609 × 646730219521 × C157804
F21 = 4485296422913 × C631294
F23 = 167772161 × C2525215

Table 8. Composite Fermat numbers without known factor

F14 : Selfridge and Hurwitz (1963)
F20 : Buell and Young (1987)
F22 : Crandall, Doenias, Norrie and Young (1993),

independently by Carvalho and Trevisan (1993)
F24 : Mayer, Papadopoulos and Crandall (1999)

The smallest Fermat numbers of unknown character are: F33, F34,
F35, F40, F41, F44, . . . .
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Records

A. The largest known Fermat prime is F4 = 65537.

B. The largest known composite Fermat number is F2145351, which
has the factor 3×22145353+1. This 645817-digit factor was discovered
by J.B. Cosgrave and his Proth-Gallot Group at St. Patrick’s Col-
lege (Dublin, Ireland) on February 21, 2003. Programs of P. Jobling,
G. Woltman and Y. Gallot were essential for the discovery.

C. As of the end of May 2003, there was a total of 214 Fermat
numbers known to be composite.

Here are some open problems:

(1) Are there infinitely many prime Fermat numbers?

This question became significant with the famous result of Gauss
(see Disquisitiones Arithmeticae, articles 365, 366—the last ones in
the book—as a crowning result for much of the theory previously
developed). He showed that if n ≥ 3 is an integer, and if the regular
polygon with n sides may be constructed by ruler and compass, then
n = 2kp1p2 · · · ph, where k ≥ 0, h ≥ 0 and p1, . . . , ph are distinct odd
primes, each being a Fermat number.

In 1844, Eisenstein proposed, as a problem, to prove that there
are indeed infinitely many prime Fermat numbers. I should add,
that already in 1828, an anonymous writer stated that

2 + 1, 22 + 1, 222
+ 1, 2222

+ 1, 2222
2

+ 1, . . .

are all primes, and added that they are the only prime Fermat num-
bers (apart from 223

+ 1). However, Selfridge discovered in 1953 a
factor of F16, which therefore is not a prime, and this fact disproved
that conjecture.

(2) Are there infinitely many composite Fermat numbers?

Questions (1) and (2) seem beyond the reach of present-day meth-
ods and, side by side, they show how little is known on this matter.

(3) Is every Fermat number square-free (i.e., without square
factors)?
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It has been conjectured, for example by Lehmer and by Schinzel,
that there exist infinitely many square-free Fermat numbers.

It is not difficult to show that if p is a prime number and p2 divides
some Fermat number, then 2p−1 ≡ 1 (mod p2)—this will be proved in
detail in Chapter 5, Section III. Since Fermat numbers are pairwise
relatively prime, if there exist infinitely many Fermat numbers with
a square factor, then there exist infinitely many primes p satisfying
the above congruence.

I shall discuss this congruence in Chapter 5. Let it be said here
that it is very rarely satisfied. In particular, it is not known whether
it holds infinitely often.

Sierpiński considered in 1958 the numbers of the form Sn = nn+1,
with n ≥ 2. He proved that if Sn is a prime, then there exists m ≥ 0
such that n = 22m

, so Sn is a Fermat number:

Sn = Fm+2m .

It follows that the only numbers Sn which are primes and have less
than 3 × 1020 digits, are 5 and 257. Indeed, if m = 0, 1 one has
F1 = 5, F3 = 257; if m = 2, 3, 4 or 5, we have F6, F11, F20 and F37,
which are composite numbers. For m = 5, one obtains F70, which is
not known to be prime or composite. Since 210 > 103, then

F70 > 2270
> 21021

= (210)1020
> 103×1020

.

The primes of the form nn+1 are very rare. Are there only finitely
many such primes? If so, there are infinitely many composite Fer-
mat numbers. But all this is pure speculation, with no basis for any
reasonable conjecture.

The recent book by 3 authors (Kř́ıžek, Luca & Somer), entitled
17 Lectures on Fermat’s Last (oops) Numbers, contains 257 pages of
very interesting facts around the Fermat numbers. With the rapid
progress in the study of these numbers, I ask to my readers: How
many pages will have the next book on Fermat numbers?

VII Mersenne Numbers

If a number of the form 2m − 1 is a prime, then m = q is a prime.
Even more, it is not a difficult exercise to show that if 2m − 1 is a
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prime power, it must be a prime, and so m is a prime. [If you cannot
do it alone, look at the paper of Ligh & Neal (1974).]

The numbersMq = 2q−1 (with q prime) are called Mersenne num-
bers, and their consideration was motivated by the study of perfect
numbers (see the addendum to this section).

Already at Mersenne’s time, it was known that some Mersenne
numbers were prime, others composite. For example, M2 = 3, M3 =
7, M5 = 31, M7 = 127 are primes, while M11 = 23 × 89. In 1640,
Mersenne stated that Mq is also a prime for q = 13, 17, 19, 31, 67,
127, 257; he was wrong about 67 and 257, and he did not include 61,
89, 107 (among those less than 257), which also produce Mersenne
primes. Yet, his statement was quite astonishing, in view of the size
of the numbers involved.

The obvious problem is to recognize if a Mersenne number is a
prime, and if not, to determine its factors.

A classical result about factors was stated by Euler in 1750 and
proved by Lagrange (1775) and again by Lucas (1878):

If q is a prime q ≡ 3 (mod 4), then 2q + 1 divides Mq if and only
if 2q + 1 is a prime; in this case, if q > 3, then Mq is composite.

Proof. Let n = 2q + 1 be a factor of Mq. Since 22 �≡ 1 (mod n),
2q �≡ 1 (mod n), 22q − 1 = (2q + 1)Mq ≡ 0 (mod n), then by Lucas
test 3 (see Section III), n is a prime.

Conversely, let p = 2q + 1 be a prime. Since p ≡ 7 (mod 8), then
(2 | p) = 1, so there exists m such that 2 ≡ m2 (mod p). It follows
that 2q ≡ 2(p−1)/2 ≡ mp−1 ≡ 1 (mod p), so p divides Mq.

If, moreover, q > 3, then Mq = 2q − 1 > 2q + 1 = p, so Mq is
composite.

Thus if q = 11, 23, 83, 131, 179, 191, 239, 251, then Mq has the
factor 23, 47, 167, 263, 359, 383, 479, 503, respectively.

Around 1825, Sophie Germain considered, in connection with Fer-
mat’s last theorem, the primes q such that 2q + 1 is also a prime.
These primes are now called Sophie Germain primes, and I shall
return to them in Chapter 5.

It is also very easy to determine the form of the factors of Mersenne
numbers:

If n divides Mq (q > 2), then n ≡ ±1 (mod 8) and n ≡ 1 (mod q).
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Proof. It suffices to show that each prime factor p of Mq is of the
form indicated.

If p divides Mq = 2q − 1, then 2q ≡ 1 (mod q); so by Fermat’s
little theorem, q divides p− 1, that is, p− 1 = 2kq (since p �= 2). So(

2
p

)
≡ 2(p−1)/2 ≡ 2qk ≡ 1 (mod p),

therefore p ≡ ±1 (mod 8), by the property of the Legendre symbol
already indicated in Section II.

The primality of M13 and M17 was determined by Cataldi using
trial division. Euler also used trial division to show that M31 is a
prime, but he could spare many calculations, in view of the above
mentioned form of factors of Mersenne numbers. In this respect, see
Williams & Shallit (1994).

The best method presently known to find out whether Mq is a
prime or a composite number is based on the computation of a
recurring sequence, indicated by Lucas (1878), and Lehmer (1930,
1935); see also Western (1932), Hardy & Wright (1938, p. 223), and
Kaplansky (1945). However, explicit factors cannot be found in this
manner.

If n is odd, n ≥ 3, then Mn = 2n− 1 ≡ 7 (mod 12). Also, if N ≡ 7
(mod 12), then the Jacobi symbol(

3
N

)
=
(
N

3

)
(−1)(N−1)/2 = −1.

Primality test for Mersenne numbers. Let P = 2, Q = −2, and
consider the associated Lucas sequences (Um)m≥0, (Vm)m≥0, which
have discriminant D = 12. Then N = Mn is a prime if and only if
N divides V(N+1)/2.

Proof. Let N be a prime. By (IV.2)

V 2
(N+1)/2 = VN+1 + 2Q(N+1)/2 = VN+1 − 4(−2)(N−1)/2

≡ VN+1 − 4
(−2
N

)
≡ VN+1 + 4 (mod N),

because (−2
N

)
=
(−1
N

)(
2
N

)
= −1,
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since N ≡ 3 (mod 4) and N ≡ 7 (mod 8). Thus it suffices to show
that VN+1 ≡ −4 (mod N).

By (IV.4), 2VN+1 = VNV1 + DUNU1 = 2VN + 12UN ; hence, by
(IV.14) and (IV.13):

VN+1 = VN + 6UN ≡ 2 + 6(12 | N) ≡ 2 − 6 ≡ −4 (mod N).

Conversely, assume thatN divides V(N+1)/2. ThenN divides UN+1

[by (IV.2)]. Also, by (IV.6) V 2
(N+1)/2 − 12U2

(N+1)/2 = 4(−1)(N+1)/2;
hence gcd(N,U(N+1)/2) = 1. Since gcd(N, 2) = 1, then by the Test 1
(Section V), N is a prime.

For the purpose of calculation, it is convenient to replace the Lu-
cas sequence (Vm)m≥0 by the following sequence (Sk)k≥0, defined
recursively as follows:

S0 = 4, Sk+1 = S2
k − 2;

thus, the sequence begins with 4, 14, 194, . . . . Then the test is
phrased as follows:

Mn = 2n − 1 is prime if and only if Mn divides Sn−2.

Proof. S0 = 4 = V2/2. Assume that Sk−1 = V2k/22k−1
; then

Sk = S2
k−1 − 2 =

V 2
2k

22k − 2 =
V2k+1 + 22k+1

22k − 2 =
V2k+1

22k .

By the test, Mn is prime if and only if Mn divides

V(Mn+1)/2 = V2n−1 = 22n−2
Sn−2,

or equivalently, Mn divides Sn−2.

The repetitive nature of the computations makes this test quite
suitable. In this way, all examples of large Mersenne primes have been
discovered. Lucas himself showed, in 1876, thatM127 is a prime, while
M67 is composite. Not much later, Pervushin showed that M61 is also
a prime. Finally, in 1927 (published in 1932) Lehmer showed that
M257 is also composite, settling one way or another, what Mersenne
had asserted. Note that M127 has 39 digits and was the largest prime
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known before the age of computers. In this competition this was the
longest lasting record!

The Mersenne primes with q ≤ 127 were discovered before the
computer age. A. Turing made, in 1951, the first attempt to find
Mersenne primes using an electronic computer; however, he was un-
successful. In 1952, Robinson carried out Lucas’ test using a com-
puter SWAC (from the National Bureau of Standards in Los Ange-
les), with the assistance of D.H. and E. Lehmer. He discovered the
Mersenne primes M521, M607 on January 30, 1952—the first such
discoveries with a computer. The primes M1279, M2203, M2281 were
found later in the same year.

The Lucas-Lehmer primality test for Mersenne numbers Mq, when
q is large, requires much calculation. To face this situation, the work
has to be done by teams, using very powerful computers. Moreover,
one uses programs especially created for the purpose. A great role
is played by multiplication done via the fast Fourier transform, in-
vented by Schönhage & Strassen in 1971. The programs of Crandall
and Woltman have been determinant in the discovery of large primes.

The GIMPS (“Great Internet Mersenne Prime Search”), organized
by Woltman, has as its aim to discover large Mersenne primes. Any-
one, so willing, may participate with his personal computer. He will
receive the software and an interval of prime exponents as his terri-
tory for search. Presently the project has recruited several thousands
participants.

In a not so distant past the gold and diamond prospectors sac-
rificed family and friends going to inhospitable places, jungles with
snakes, disease infested marshes, or high mountains with cliffs and
snow, all this in search of the precious discovery which would make
them rich. The modern searcher of Mersenne primes lives a trans-
posed but similar adventure. The location of his findings cannot be
anticipated; lucky the one who first finds IT. No riches, but fame.
My metaphore is not so different from reality. I suggest you learn
the ways to the 38th Mersenne prime in Woltman’s own description
(1999)—the captain explorer tells . . .

Record

The first 38 Mersenne primes are shown in Table 9. The largest
known Mersenne prime, with q = 13466917, has 4053946 digits.
Its discovery, which occurred on November 14, 2001, is credited to
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M. Cameron, G.F. Woltman, S. Kurowski, and to GIMPS. The fact
is that Cameron found that prime working on a segment assigned to
him by GIMPS.

Note that this Mersenne prime is currently the largest known
prime, and only the second megaprime known, i.e., a prime with
one million digits at least.

It should be remarked that the prime M110503 was found only after
M132049 and M216091 were known. So it may happen that the next
Mersenne prime to be found has q < 13466917, since not all of the
primes q below this limit have been tested to see if Mq is a prime.

On the other hand, the search for Sophie Germain primes q of the
form q = k × 2N − 1 (so, 2q + 1 is also a prime) yields, as already
indicated, composite Mersenne numbers Mq.

Record

The largest Mersenne number Mq known to be composite has q =
2540041185×2114729−1 and was found by D. Underbakke, G.F. Wolt-
man and Y. Gallot in January 2003. The prime q is the largest known
Sophie Germain prime (see Chapter 5, Section II).

Riesel’s book (1985) has a table of complete factorization of all
numbers Mn = 2n − 1, with n odd, n ≤ 257. A more extensive table
is in the book of Brillhart et al. (1983, 1988; see also the third edition,
2002).

Just as for Fermat numbers, there are many open problems about
Mersenne numbers:

(1) Are there infinitely many Mersenne primes?

(2) Are there infinitely many composite Mersenne numbers?

The answer to both questions ought to be “yes”, as I will try to jus-
tify. For example, I will indicate in Chapter 6, Section A, after (D5),
that some sequences, similar to the sequence of Mersenne numbers,
contain infinitely many composite numbers.

(3) Is every Mersenne number square-free?
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Table 9. Mersenne primes Mq with q < 7000000

q Year Discoverer

2 – –
3 – –
5 – –
7 – –

13 1461 Anonymous*
17 1588 P.A. Cataldi
19 1588 P.A. Cataldi
31 1750 L. Euler
61 1883 I.M. Pervushin
89 1911 R.E. Powers

107 1913 E. Fauquembergue
127 1876 E. Lucas
521 1952 R.M. Robinson
607 1952 R.M. Robinson

1279 1952 R.M. Robinson
2203 1952 R.M. Robinson
2281 1952 R.M. Robinson
3217 1957 H. Riesel
4253 1961 A. Hurwitz
4423 1961 A. Hurwitz
9689 1963 D.B. Gillies
9941 1963 D.B. Gillies

11213 1963 D.B. Gillies
19937 1971 B. Tuckerman
21701 1978 L.C. Noll and L. Nickel
23209 1979 L.C. Noll
44497 1979 H. Nelson and D. Slowinski
86243 1982 D. Slowinski

110503 1988 W.N. Colquitt and L. Welsh, Jr.
132049 1983 D. Slowinski
216091 1985 D. Slowinski
756839 1992 D. Slowinski and P. Gage
859433 1993 D. Slowinski and P. Gage

1257787 1996 D. Slowinski and P. Gage
1398269 1996 J. Armengaud, G.F. Woltman and GIMPS
2976221 1997 G. Spence, G.F. Woltman and GIMPS
3021377 1998 R. Clarkson, G.F. Woltman,

S. Kurowski and GIMPS
6972593 1999 N. Hajratwala, G.F. Woltman,

S. Kurowski and GIMPS

*See Dickson’s History of the Theory of Numbers, Vol. I, p. 6.
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Rotkiewicz showed in 1965 that if p is a prime and p2 divides some
Mersenne number, then 2p−1 ≡ 1 (mod p2), the same congruence
which already appeared in connection with Fermat numbers having
a square factor.

I wish to mention two other problems involving Mersenne numbers,
one of which has been solved, while the other one is still open.

Is it true that if Mq is a Mersenne prime, then MMq is also a prime
number?

The answer is negative, since despite M13 being prime, MM13 =
28191 − 1 is composite; this was shown by Wheeler, see Robinson
(1954). Note that MM13 has more than 2400 digits. In 1976, Keller
discovered the prime factor

p = 2 × 20644229 ×M13 + 1 = 338193759479

of the Mersenne number MM13 , thus providing an easier proof that
it is composite; only 13 squarings modulo p are needed to verify that
2213 ≡ 2 (mod p). This has been communicated to me by Keller in a
letter.

The second problem, proposed by Catalan in 1876 and reported
in Dickson’s History of the Theory Numbers, Vol. I, p. 22, is the
following. Consider the sequence of numbers

C1 = 22 − 1 = 3 = M2 ,

C2 = 2C1 − 1 = 7 = M3 ,

C3 = 2C2 − 1 = 127 = M7 ,

C4 = 2C3 − 1 = 2127 − 1 = M127 ,

· · · · · · · · · · · · · · ·
Cn+1 = 2Cn − 1
· · · · · · · · · · · · · · ·

Are all numbers Cn primes? Are there infinitely many which are
prime? At present, it is impossible to test C5, which has more than
1037 digits!

I conclude with the interesting conjecture of Bateman, Selfridge
& Wagstaff (1989), concerning the Mersenne primes.
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Conjecture. Let p be an odd natural number (not necessarily a
prime). If two of the following conditions are satisfied, so is the third
one:

(a) p is equal to 2k ± 1 or to 4k ± 3 (for some k ≥ 1).

(b) Mp is a prime.

(c) (2p + 1)/3 is a prime.

In a private communication, H. and R. Lifchitz informed that the
conjecture holds for all p < 720000. In this range, the only primes
satisfying the three conditions are p = 3, 5, 7, 13, 17, 19, 31, 61, 127.
It is conceivable that these are the only primes for which the above
three conditions hold.

Addendum on Perfect Numbers

I shall now consider perfect numbers and tell how they are related
to Mersenne numbers.

A natural number n > 1 is said to be perfect if it is equal to the
sum of all its aliquot parts, that is, its divisors d, with d < n. For
example, n = 6, 28, 496, 8128 are the perfect numbers smaller than
10000.

Perfect numbers were already known in ancient times. The first
perfect number 6 was connected, by mystic and religious writers,
to perfection, thus explaining that the Creation required 6 days, so
PERFECT is the world.

Euclid showed, in his Elements, Book IX, Proposition 36, that if
q is a prime and Mq = 2q − 1 is a prime, then N = 2q−1(2q − 1) is a
perfect number.

In a posthumous paper, Euler proved the converse: any even per-
fect number is of the form indicated by Euclid. Thus, the knowledge
of even perfect numbers is equivalent to the knowledge of Mersenne
primes.

And what about odd perfect numbers? Do they exist? Not even one
has ever been found! This is a question which has been extensively
searched, but its answer is still unknown.

Quick information on the progress made toward the solution of the
problem may be found in Guy’s book (new edition 1994), quoted in
General References. More recent facts are also mentioned below.
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The methods to tackle the problem have been legion. I believe it
is useful to describe them so the reader will get a feeling of what to
do when nothing seems reasonable. The idea is to assume that there
exists an odd perfect number N and to derive various consequences,
concerning the number ω(N) of its distinct prime factors, the size of
N , the multiplicative form, and the additive form of N , etc. I shall
review what has been proved in each count.

(a) Number of distinct prime factors ω(N)
Hagis (1980, announced in 1975) proved that ω(N) ≥ 8. The same
result was also obtained by Chein (1979) in his thesis.

In 1983, Hagis and, independently, Kishore proved that if 3 � N ,
then ω(N) ≥ 11.

Another result in this line was given by Dickson in 1913: for every
k ≥ 1 there are at most finitely many odd perfect numbers N , such
that ω(N) = k. In 1949, Shapiro gave a simpler proof.

Dickson’s theorem was generalized in 1956 by Kanold, for numbers
N satisfying the condition σ(N)/N = α (α is a given rational number
and σ(N) denotes the sum of all divisors of N). The proof involved
the fact that the equation aX3 − bY 3 = c has at most finitely many
solutions in integers x, y. Since an effective estimate for the number
of solutions was given by Baker, with his celebrated method of linear
forms in logarithms, it became possible for Pomerance to show in
1977 (taking α = 2), for every k ≥ 1: If the odd perfect number N
has k distinct prime factors, then

N < (4k)(4k)
2k2

.

In 1994, Heath-Brown sharpened substantially the result of Pomer-
ance: If an odd perfect number N has k distinct prime factors, then

N < 44k
.

Improving further, Cook (1999) showed that the base 4 may be re-
placed by 1951/7 = 2.123 . . . .

(b) Lower bound for N

Brent, Cohen & te Riele (1991) have established that if N is an odd
perfect number, then N > 10300. Previously, in 1989, Brent & Cohen
showed that N > 10160, and in 1973 Hagis proved that N > 1050.
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In 1976, Buxton & Elmore claimed that N > 10200, but this state-
ment has not been substantiated in detail, so it should not be ac-
cepted. In 1999, Grytczuk & Wojtowicz published a far larger lower
bound for N , but F. Saidak found a flaw in the proof, and this was
acknowledged by the authors in 2000.

(c) Multiplicative structure of N

The first result is by Euler: N = pek2, where p is a prime not dividing
k, and p ≡ e ≡ 1 (mod 4).

There have been numerous results on the kind of number k. For
example, in 1972 Hagis & McDaniel showed that k is not a cube.

(d) Largest prime factor of N

In 1998, Hagis & Cohen showed that N must have a prime factor
greater than 106. Earlier, in 1975, Hagis & McDaniel had proved
that the largest prime factor of N should be greater than 100110.

For prime-power factors, Muskat showed in 1966 that N must have
one which is greater than 1012.

(e) Other prime factors of N

In 1975, Pomerance showed that the second largest prime factor of
N should be at least 139. That limit was raised to 103 by Hagis
(1981) and to 104 by Iannucci (1999). In 2000, Iannucci also showed
that the third largest prime factor of N exceeds 100.

In 1952, Grün showed that the smallest prime factor p1 ofN should
satisfy the relation p1 <

2
3ω(N) + 2.

In his thesis, Kishore (1977) showed that if i = 2, 3, 4, 5, 6, the ith
smallest prime factor of N is less than 22i−1

(ω(N) − i+ 1).
In 1958, Perisastri proved that

1
2
<
∑
p|N

1
p
< 2 log

π

2
.

This has been sharpened by Suryanarayana (1963), Suryanarayana
& Hagis (1970), and Cohen (1978).

(f) Additive structure of N

In 1953, Touchard proved that N ≡ 1 (mod 12) or N ≡ 9 (mod 36).
An easier proof was later given by Satyanarayana (1959).
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(g) Ore’s conjecture

In 1948, Ore considered the harmonic mean of the divisors of N ,
namely,

H(N) =
τ(N)∑

d|N
(1/d)

,

where τ(N) denotes the number of divisors of N .
If N is a perfect number, then H(N) is an integer; indeed, whether

N is even or odd, this follows from Euler’s results.
Actually, Laborde noted in 1955, that N is an even perfect number

if and only if
N = 2H(N)−1(2H(N) − 1

)
,

hence H(N) is an integer, and in fact a prime.
Ore conjectured that if N is odd, then H(N) is not an integer.

The truth of this conjecture would imply, therefore, that there do
not exist odd perfect numbers.

Ore verified that the conjecture is true if N is a prime-power or if
N < 104. Since 1954 (published only in 1972), Mills checked its truth
for N < 107, as well as for numbers of special form, in particular, if
all prime-power factors of N are smaller than 655512.

Pomerance (unpublished) verified Ore’s conjecture when ω(N) ≤
2, by showing that if ω(N) ≤ 2 and H(N) is an integer, then N is
an even perfect number (kindly communicated to me by letter).

The next results do not distinguish between even or odd perfect
numbers. They concern the distribution of perfect numbers. The idea
is to define, for every x ≥ 1, the function V (x), which counts the
perfect numbers less or equal to x:

V (x) = #{N perfect | N ≤ x}.

The limit limx→∞ V (x)/x represents a natural density for the set
of perfect numbers. In 1954, Kanold showed the limx→∞ V (x)/x = 0.
Thus, V (x) grows to infinity slower than x does.

The following more precise result of Wirsing (1959) tells how
slowly V (x) grows: there exist x0 and C > 0 such that if x ≥ x0
then

V (x) ≤ e(C log x)/(log log x).
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Earlier work was done by Hornfeck (1955, 1956), Kanold (1957),
and Hornfeck & Wirsing (1957), who had established that for every
ε > 0 there exists a positive constant C such that V (x) < Cxε.

All the results that I have indicated about the problem of the
existence of odd perfect numbers represent a considerable amount
of work, sometimes difficult and delicate. Yet I believe the problem
stands like an unconquerable fortress. For all that is known, it would
be almost by luck that an odd perfect number would be found. On
the other hand, nothing that has been proved is promising to show
that odd perfect numbers do not exist. New ideas are required.

I wish to conclude this overview of perfect numbers with the fol-
lowing results of Sinha (1974)—the proof is elementary and should
be an amusing exercise (just get your pencil ready!): 28 is the only
even perfect number that is of the form an + bn with n ≥ 2, and
gcd(a, b) = 1. It is also the only even perfect number of the form
an + 1, with n ≥ 2. And finally, there is no even perfect number of
the form

an
n..

.n

+ 1

with n ≥ 2 and at least two exponents n.
Looking back, perfect numbers are defined by comparing N with

σ(N), the sum of its divisors. Demanding just that N divides σ(N)
leads to the multiply perfect numbers. Numbers N with 2N < σ(N)
are called abundant, while those with 2N ≥ σ(N) are called deficient.

Let s(N) = σ(N) − N , the sum of aliquot parts of N , that is,
the sum of proper divisors of N . Since some numbers are abundant
and others are deficient, it is natural to iterate the process of getting
s(N), namely, to build the sequence s(N), s2(N), s3(N), . . . , where
sk(N) = s

(
sk−1(N)

)
. This leads to many fascinating questions, as

they are described in Guy’s book. Because of space limitations, I am
forced to abstain from discussing these matters.
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VIII Pseudoprimes

In this section I shall consider composite numbers having a property
which one would think that only prime numbers possess.

A Pseudoprimes in Base 2 (psp)

A problem, commonly attributed to the ancient Chinese, was to as-
certain whether a natural number n must be a prime if it satisfies
the congruence

2n ≡ 2 (mod n).

On this subject, there are legends and speculations. One should
be prudent before making preemptory statements. In view of what
one believes to be the knowledge about numbers in ancient China, it
seems difficult to conceive that such a question could even be formu-
lated. Siu Man-Keung, a mathematician from Hong Kong interested
in the history of mathematics, wrote to me:

This myth originated in a paper by J.H. Jeans, in the
Messenger of Mathematics, 27, 1897/8, who wrote that
“a paper found among those of the late Sir Thomas Wade
and dating from the time of Confucius” contained the
theorem that 2n ≡ 2 (mod n) holds if and only if n is
a prime number. However, in a footnote to his monu-
mental work Science and Civilisation in China, Vol. 3,
Chap. 19 (Mathematics), J. Needham dispels Jeans’ as-
sertion, which is due to an erroneous translation of a
passage of the famous book The Nine Chapters of Math-
ematical Art.

This mistake has been perpetuated by several Western scholars.
In Dickson’s History of the Theory of Numbers, Vol. I, p. 91, it is
quoted that Leibniz believed to have proved that the so-called Chi-
nese congruence indicated above implies that n is prime. The story
is also repeated, for example, in Honsberger’s very nicely written
chapter “An Old Chinese Theorem and Pierre de Fermat” in his
book Mathematical Gems, Vol. I, (1973).

There is now a better founded version of the events. In a more
recent letter (February 1992), Siu wrote:



VIII. Pseudoprimes 89

I have just seen the doctoral thesis, written in Chinese,
of Han Qi, on the mathematics in the Qing period, en-
titled Transmission of Western Mathematics during the
Kangxi Kingdom and its Influence Over Chinese Math-
ematics, Beijing, 1991. The author points out new evi-
dence concerning “the old Chinese theorem”. According
to Han, this “theorem” is due to Li Shan-Lan (1811–
1882), a well-known mathematician of the Qing period
(thus the statement is not so old). Li mentioned his cri-
terion to Alexander Wylie, who was his collaborator in
the translation of Western texts. Wylie, who probably did
not understand mathematics, presented Li’s criterion in
a note “A Chinese theorem” to the journal Notes and
Queries on China, Hong Kong, 1869 (1873).

In the succeeding months, at least four readers have writ-
ten comments on the work of Li; one of the readers pointed
out that Li’s statement was wrong. Among the readers
there was a certain J. von Gumpach, a German who
later became a colleague of Li in Beijing. Apparently,
Gumpach told Li of his mistake. As a result, in a later
publication on number theory (1872), Li Shan-Lan deleted
any reference to his criterion. However, in 1882, Hua
Heng-Fang, another well-known mathematician of the
Qing period, published a treatise on numbers in which
he included Li’s criterion as if it were correct. This might
help to explain why the Western historians of Chinese
mathematics were led to think that the criterion might
be an old Chinese theorem. Han Qi has announced that
he will publish an article on this question, with more
details.

I take this opportunity to thank Siu Man-Keung for this well-
founded and interesting information.

Concerning the works of Li Shan-Lan you may wish to consult the
book of Li Yan and Du Shiran, in an English translation of 1987.

After these comments of historical character, I return to the prob-
lem concerning the congruence 2n ≡ 2 (mod n), which might be ap-
propriately called, if not as a joke, the “pseudo-Chinese congruence
on pseudoprimes”.
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The first counterexample to the conjecture was obtained in 1819,
so much earlier than the events in China. Sarrus showed that 2341 ≡ 2
(mod 341), yet 341 = 11 × 31 is a composite number. In particular,
a crude converse of Fermat’s little theorem is false.

Other composite numbers with this property are, for example: 561,
645, 1105, 1387, 1729, 1905.

A composite number n satisfying the congruence 2n−1 ≡ 1 (mod
n) is called a pseudoprime, or also a Poulet number since that was
the focus of his attention. In particular, Poulet computed, as early
as 1926, a table of pseudoprimes up to 5 × 107, and in 1938 up to
108; see references in Chapter 4.

Every pseudoprime n is odd and also satisfies the congruence 2n ≡
2 (mod n); conversely, every odd composite number satisfying this
congruence is a pseudoprime.

Clearly, every odd prime number satisfies the above congruence,
so if 2n−1 �≡ 1 (mod n), then n must be composite. This is useful as
a first step in testing primality.

In order to know more about primes, it is natural to study the
integers for which 2n−1 ≡ 1 (mod n).

Suppose I would like to write a chapter about pseudoprimes for
the Guinness Book of Records. How would I organize it?

The natural questions should be basically the same as those for
prime numbers. For example: How many pseudoprimes are there?
Can one tell whether a number is a pseudoprime? Are there ways of
generating pseudoprimes? How are the pseudoprimes distributed?

As it turns out, not surprisingly, there are infinitely many pseu-
doprimes, and there are many ways to generate infinite sequences of
pseudoprimes.

The simplest proof was given in 1903 by Malo, who showed that if
n is a pseudoprime, and if n′ = 2n−1, then n′ is also a pseudoprime.
Indeed, n′ is obviously composite, because if n = ab with 1 < a,
b < n, then

2n − 1 = (2a − 1)
(
2a(b−1) + 2a(b−2) + · · · + 2a + 1

)
.

Also n divides 2n−1−1, hence n divides 2n−2 = n′−1; so n′ = 2n−1
divides 2n

′−1 − 1.
In 1904, Cipolla gave another proof, using the Fermat numbers:
If m > n > · · · > s > 1 are integers and N is the product of

the Fermat numbers N = FmFn · · ·Fs, then N is a pseudoprime
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if and only if 2s > m. Indeed, the order of 2 modulo N is 2m+1,
which is equal to the least common multiple of the orders 2m+1,
2n+1, . . . , 2s+1 of 2 modulo each factor Fm, Fn, . . . , Fs of N . Thus
2N−1 ≡ 1 (mod N) if and only if N − 1 is divisible by 2m+1. But
N − 1 = FmFn · · ·Fs − 1 = 22s

Q, where Q is an odd integer. Thus,
the required condition is 2s > m.

As it was indicated in Chapter 1, the Fermat numbers are pairwise
relatively prime, so the above method leads to pairwise relatively
prime pseudoprimes. One can also obtain pseudoprimes having an
arbitrarily large number of prime factors.

Cipolla presented another method that will be described below.
In 1936, Lehmer found a very simple method to generate infinitely

many pseudoprimes, each one being the product of two distinct
primes p, q. Namely, let k ≥ 5 be an arbitrary odd integer, let p
be a primitive prime factor of 2k − 1, and let q be a primitive prime
factor of 2k + 1. Then pq is a pseudoprime. Thus, for every m ≥ 1
there exist at least m pseudoprimes n = pq such that

n ≤ (
22m+3 − 1

)(22m+3 + 1
3

)
=

42m+3 − 1
3

.

There also exist even composite integers satisfying the congruence
2n ≡ 2 (mod n)—they may be called even pseudoprimes. The small-
est one is m = 2 × 73 × 1103 = 161038, discovered by Lehmer in
1950. In 1951, Beeger showed the existence of infinitely many even
pseudoprimes; each one must have at least two odd prime factors.

How “far” are pseudoprimes from being primes? From Cipolla’s
result, there are pseudoprimes with arbitrarily many prime factors.
This is not an accident. In fact, in 1949 Erdös proved that for ev-
ery k ≥ 2 there exist infinitely many pseudoprimes, which are the
product of exactly k distinct primes.

In 1936, Lehmer gave criteria for the product of two or three dis-
tinct odd primes to be a pseudoprime: p1p2 is a pseudoprime if and
only if the order of 2 modulo p2 divides p1 − 1 and the order of
2 modulo p1 divides p2 − 1. If p1p2p3 is a pseudoprime, then the
least common multiple of ord(2 mod p1) and ord(2 mod p2) divides
p3(p1 + p2 − 1) − 1.

Here is an open question: Are there infinitely many integers n > 1
such that 2n−1 ≡ 1 (mod n2)? This is equivalent to each of the
following problems (see Rotkiewicz, 1965):
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Are there infinitely many pseudoprimes that are squares?

Are there infinitely many primes p such that 2p−1 ≡ 1 (mod p2)?

This congruence was already encountered in the question of square
factors of Fermat numbers and Mersenne numbers. I shall return to
primes of this kind in Chapter 5, Section III.

On the other hand, a pseudoprime need not be square-free. The
smallest such examples are 1 194 649 = 10932, 12 327 121 = 35112,
3 914 864 773 = 29 × 113 × 10932.

B Pseudoprimes in Base a (psp(a))

It is also useful to consider the congruence an−1 ≡ 1 (mod n), for
a > 2. If n is a prime and 1 < a < n, then the above congruence
holds necessarily. So, if, for example, 2n−1 ≡ 1 (mod n), but, say,
3n−1 �≡ 1 (mod n), then n is not a prime.

This leads to the more general study of the pseudoprimes in base
a (or a-pseudoprimes) which are the composite integers n > a such
that an−1 ≡ 1 (mod n).

In 1904, Cipolla also indicated how to obtain a-pseudoprimes. Let
a ≥ 2, let p be any odd prime such that p does not divide a(a2 − 1).
Let

n1 =
ap − 1
a− 1

, n2 =
ap + 1
a+ 1

, n = n1n2;

then n1 and n2 are odd and n is composite. Since n1 ≡ 1 (mod 2p)
and n2 ≡ 1 (mod 2p), then n ≡ 1 (mod 2p). From a2p ≡ 1 (mod n)
it follows that an−1 ≡ 1 (mod n), so n is an a-pseudoprime.

Since there exist infinitely many primes, then there also exist in-
finitely many a-pseudoprimes (also when a > 2).

There are other methods in the literature to produce very quickly
increasing sequences of a-pseudoprimes.

For example, Crocker proceeded as follows in 1962. Let a be even,
but not of the form 22r

, with r ≥ 0. Then, for every n ≥ 1, the
number aa

n
+ 1 is an a-pseudoprime.

In 1948, Steuerwald established the following infinite sequence of
a-pseudoprimes. Let n be an a-pseudoprime, which is prime to a−1.
For example, for a prime q, put a = q + 1 and let p be a prime such
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that p > a2 − 1; as in the Cipolla construction, let

n1 =
ap − 1
a− 1

≡ ap−1 + ap−2 + · · · + a+ 1 ≡ p (mod q),

n2 =
ap + 1
a+ 1

≡ ap−1 − ap−2 + · · · + a2 − a+ 1 ≡ 1 (mod q),

so n = n1n2 ≡ p (mod q). Let now f(n) = (an − 1)/(a − 1) > n.
Then f(n) is also an a-pseudoprime. Indeed,

f(n) =
an1n2 − 1
an2 − 1

× an2 − 1
a− 1

is composite. Since n is prime to a−1 and an−1 ≡ 1 (mod n), then n
divides (an− a)/(a− 1) = f(n)− 1. Thus f(n) divides an− 1, which
divides af(n)−1−1, hence f(n) is an a-pseudoprime. The process may
be iterated, noting that f(n) is prime to a− 1:

f(n) =

[
(a− 1) + 1

]n − 1
a− 1

= (a− 1)n−1 +
(
n

1

)
(a− 1)n−2

+ · · · +
(

n

n− 2

)
(a− 1) + n ≡ n (mod a− 1),

so f(n) is an a-pseudoprime that is prime to a−1. This process leads
to an infinite increasing sequence of a-pseudoprimes n < f(n) <
f(f(n)) < f(f(f(n))) < · · · , which grows as n, an, aa

n
aa

an

, . . . .
The method of Lehmer indicated above, applied to binomials ak − 1
and ak + 1, produces a-pseudoprimes which are the product of two
distinct prime factors.

From these considerations it follows that it is futile to wish to
discover the largest a-pseudoprime.

In 1958, Schinzel showed that for every a ≥ 2, there exist in-
finitely many pseudoprimes in base a that are products of two dis-
tinct primes.

In 1971, in his thesis, Lieuwens extended simultaneously this result
of Schinzel and Erdös’ result about pseudoprimes in base 2: for every
k ≥ 2 and a > 1, there exist infinitely many pseudoprimes in base a,
which are products of exactly k distinct primes.

In 1972, Rotkiewicz showed that if p ≥ 2 is a prime not dividing
a ≥ 2, then there exist infinitely many pseudoprimes in base a that
are multiples of p; the special case when p = 2 dates back to 1959,
also by Rotkiewicz.
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It may occur that a number is a pseudoprime for different bases,
like 561 for the bases 2, 5, 7. Indeed, Baillie & Wagstaff and Monier
showed independently, in 1980, the following result: Let n be a com-
posite number, and let Bpsp(n) be the number of bases a, 1 < a < n,
with gcd(a, n) = 1, for which n is an a-pseudoprime. Then

Bpsp(n) =
{∏

p|n
gcd(n− 1, p− 1)

}
− 1.

It follows that if n is an odd composite number, which is not
a power of 3, then n is a pseudoprime for at least two bases a,
1 < a ≤ n− 1.

It will be seen in Section IX that there exist composite numbers
n, which are pseudoprimes for all bases a, 1 < a < n, with gcd(a, n)
= 1.

Here is a table, from the paper by Pomerance, Selfridge & Wagstaff
(1980), which gives the smallest pseudoprimes for various bases, or
simultaneous bases.

Table 10. Smallest pseudoprimes for several bases

Bases Smallest psp
2 341 = 11 × 31
3 91 = 7 × 13
5 217 = 7 × 31
7 25 = 5 × 5

2, 3 1105 = 5 × 13 × 17
2, 5 561 = 3 × 11 × 17
2, 7 561 = 3 × 11 × 17
3, 5 1541 = 23 × 67
3, 7 703 = 19 × 37
5, 7 561 = 3 × 11 × 17

2, 3, 5 1729 = 7 × 13 × 19
2, 3, 7 1105 = 5 × 13 × 17
2, 5, 7 561 = 3 × 11 × 17
3, 5, 7 29341 = 13 × 37 × 61

2, 3, 5, 7 29341 = 13 × 37 × 61

As I have said, if there exists a such that 1 < a < n and an−1 �≡ 1
(mod n), then n is composite, but not conversely. This gives therefore
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a very practical way to ascertain that many numbers are composite.
There are other congruence properties, similar to the above, which
give also easy methods to discover that certain numbers are compos-
ite.

I shall describe several of these properties; their study has been
justified by the problem of primality testing. As a matter of fact,
without saying it explicitly, I have already considered these proper-
ties in Sections III and V. First, there are properties about the con-
gruence am ≡ 1 (mod n), which lead to the Euler a-pseudoprimes
and strong a-pseudoprimes. In another section, I will examine the
Lucas pseudoprimes, which concern congruence properties satisfied
by terms of Lucas sequences.

C Euler Pseudoprimes in Base a (epsp(a))

According to Euler’s congruence for the Legendre symbol, if a ≥ 2,
p is a prime and p does not divide a, then(

a

p

)
≡ a(p−1)/2 (mod p).

This leads to the notion of an Euler pseudoprime in base a (epsp(a)),
proposed by Shanks in 1962. These are odd composite numbers n,
such that gcd(a, n) = 1 and the Jacobi symbol satisfies the congru-
ence (a

n

)
≡ a(n−1)/2 (mod n).

Clearly, every epsp(a) is an a-pseudoprime.
There are many natural questions about epsp(a) which I enumer-

ate now:

(e1) Are there infinitely many epsp(a), for each a?

(e2) Are there epsp(a) with arbitrary large number of distinct prime
factors, for each a?

(e3) For every k ≥ 2 and base a, are there infinitely many epsp(a),
which are equal to the product of exactly k distinct prime
factors?

(e4) Can an odd composite number be an epsp(a) for every possible
a, 1 < a < n, gcd(a, n) = 1?
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(e5) For how many bases a, 1 < a < n, gcd(a, n) = 1, can the
number n be an epsp(a)?

In 1986, Kiss, Phong & Lieuwens showed that given a ≥ 2, k ≥ 2,
and d ≥ 2, there exist infinitely many epsp(a), which are the product
of k distinct primes and are congruent to 1 modulo d.

This gives a strong affirmative answer to (e3), and therefore also
to (e2) and (e1).

In 1976, Lehmer showed that if n is odd composite, then it cannot
be an epsp(a), for every a, 1 < a < n, gcd(a, n) = 1. So the answer
to (e4) is negative.

In fact, more is true, as shown by Solovay & Strassen in 1977:
a composite integer n can be an Euler pseudoprime for at most
1
2ϕ(n) bases a, 1 < a < n, gcd(a, n) = 1. This gives an answer to
question (e5). The proof is immediate, noting that the residue classes
a mod n, for which (a | n) ≡ a(n−1)/2 (mod n) form a subgroup of(
Z/n

)× (group of invertible residue classes modulo n), which is a
proper subgroup (by Lehmer’s result); hence it has at most 1

2ϕ(n)
elements—by dear old Lagrange’s theorem.

Let n be an odd composite integer. Denote by Bepsp(n) the number
of bases a, 1 < a < n, gcd(a, n) = 1, such that n is an epsp(a).
Monier showed in 1980 that

Bepsp(n) = δ(n)
∏
p|n

gcd
(
n− 1

2
, p− 1

)
− 1.

Here

δ(n) =




2 if v2(n) − 1 = min
p|n

{v2(p− 1)},

1
2 if there exists a prime p dividing n such that

vp(n) is odd and v2(p− 1) < v2(n− 1),
1 otherwise,

and for any integer m and prime p, vp(m) denotes the exponent of
p in the factorization of m, that is, the p-adic value of m.

D Strong Pseudoprimes in Base a (spsp(a))

A related property is the following: Let n be an odd composite in-
teger, let n − 1 = 2sd, with d odd and s ≥ 1; let a be such that
1 < a < n, gcd(a, n) = 1.
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Then n is called a strong pseudoprime in base a (spsp(a)) if ad ≡ 1
(mod n) or a2rd ≡ −1 (mod n) for some r, 0 ≤ r < s.

Note that if n is a prime, then it satisfies the above condition for
every a, 1 < a < n, gcd(a, n) = 1.

Selfridge showed (see the proof in Williams’ paper, 1978) that
every spsp(a) is an epsp(a). There are partial converses.

By Malm (1977): if n ≡ 3 (mod 4) and n is an epsp(a), then n is
a spsp(a).

By Pomerance, Selfridge & Wagstaff (1980): if n is odd, (a | n) =
−1 and n is an epsp(a), then n is also a spsp(a). In particular, if
n ≡ 5 (mod 8) and n is an epsp(2), then it is a spsp(2).

Concerning the strong pseudoprimes, I may ask questions (s1)–
(s5), analogous to the questions about Euler pseudoprimes posed in
Section VIII, C.

In 1980, Pomerance, Selfridge & Wagstaff proved that for every
base a > 1, there exist infinitely many spsp(a), and this answers in
the affirmative question (s1), as well as (e1). I shall say more about
this in the study of the distribution of pseudoprimes (Chapter 4,
Section VI).

For base 2, it is possible to give infinitely many spsp(2) explicitly,
as I indicate now.

If n is a psp(2), then 2n − 1 is a spsp(2). Since there are infinitely
many psp(2), this gives explicitly infinitely many spsp(2); among
these are all composite Mersenne numbers. It is also easy to see that
if a Fermat number is composite, then it is a spsp(2).

Similarly, since there exist pseudoprimes with arbitrarily large
numbers of distinct prime factors, then (s2), as well as (e2), have
a positive answer; just note that if p1, p2, . . . , pk divide the pseudo-
prime n, then 2pi − 1 (i = 1, . . . , k) divides the spsp(2) 2n − 1.

In virtue of Lehmer’s negative answer to (e4) and Selfridge’s result,
then clearly (s4) has also a negative answer. Very important—as I
shall indicate later, in connection with the Monte Carlo primality
testing methods—is the next theorem by Rabin, corresponding to
Solovay & Strassen’s result for Euler pseudoprimes. And it is tricky
to prove:

If n > 4 is composite, there are at least 3(n − 1)/4 integers a,
1 < a < n, for which n is not a spsp(a). So, the number of bases
a, 1 < a < n, gcd(a, n) = 1, for which an odd composite integer is
spsp(a), is at most (n− 1)/4. This answers question (s5).
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Monier (1980) has also determined a formula for the number
Bspsp(n), of bases a, 1 < a < n, gcd(a, n) = 1, for which the odd
composite integer n is spsp(a). Namely:

Bspsp(n) =
(

1 +
2ω(n)ν(n) − 1

2ω(n) − 1

)(∏
p|n

gcd(n∗, p∗)
)

− 1,

where

ω(n) = number of distinct prime factors of n,
ν(n) = min

p|n
{
v2(p− 1)

}
,

vp(m) = exponent of p in the factorization of m
(any natural number),

m∗ = largest odd divisor of m− 1.

Just for the record, the smallest spsp(2) is 2047 = 23 × 89. It is
interesting and also useful to know the smallest strong pseudoprimes
to several bases simultaneously. Their knowledge is used in strong
primality testing.

Given k ≥ 1, denote by tk the smallest integer which is a strong
pseudoprime for the bases p1 = 2, p2 = 3, . . . , pk, simultaneously.
Then the calculations of Pomerance, Selfridge & Wagstaff (1980),
extended by Jaeschke (1993), provide the following values:

t2 = 1 373 653 = 829 × 1657,
t3 = 25 326 001 = 2251 × 11251,
t4 = 3 215 031 751 = 151 × 751 × 28351,
t5 = 2 152 302 898 747 = 6763 × 10627 × 29947,
t6 = 3 474 749 660 383 = 1303 × 16927 × 157543,
t7 = t8 = 341 550 071 728 321 = 10670053 × 32010157.

Jaeschke’s work also showed that there are only 101 numbers be-
low 1012 which are strong pseudoprimes for the bases 2, 3, and 5,
simultaneously. Since their complete list is fairly large, I reproduce
only the one published by the three Knights of Numerology, which
is restricted to numbers less than 25 × 109.
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Table 11.
Numbers less than 25 × 109, which are spsp in bases 2, 3, 5

psp to base
Number 7 11 13 Factorization

25 326 001 no no no 2251 × 11251
161 304 001 no spsp no 7333 × 21997
960 946 321 no no no 11717 × 82013

1 157 839 381 no no no 24061 × 48121
3 215 031 751 spsp psp psp 151 × 751 × 28351
3 697 278 427 no no no 30403 × 121609
5 764 643 587 no no spsp 37963 × 151849
6 770 862 367 no no no 41143 × 164569

14 386 156 093 psp psp psp 397 × 4357 × 8317
15 579 919 981 psp spsp no 88261 × 176521
18 459 366 157 no no no 67933 × 271729
19 887 974 881 psp no no 81421 × 244261
21 276 028 621 no psp psp 103141 × 206281

To this table, I add the list of pseudoprimes up to 25 × 109 which
are not square-free and their factorizations:

1 194 649 = 10932,

12 327 121 = 35112,

3 914 864 773 = 29 × 113 × 10932,

5 654 273 717 = 10932 × 4733,

6 523 978 189 = 43 × 127 × 10932,

22 178 658 685 = 5 × 47 × 79 × 10932.

With the exception of the last two, the numbers in the above list
are strong pseudoprimes.

Note that the only prime factors to the square are 1093 and 3511.
The occurrence of these numbers will be explained in Chapter 5,
Section III.
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IX Carmichael Numbers

In a short article which remained unnoticed, Korselt considered in
1899 a more rare kind of numbers; they were also introduced in-
dependently by Carmichael in 1912, who first studied their proper-
ties. Since his article was noted, such numbers came to be called
Carmichael numbers. By definition, they are the composite numbers
n such that an−1 ≡ 1 (mod n) for every integer a, 1 < a < n, such
that a is relatively prime to n. The smallest Carmichael number is
561 = 3 × 11 × 17.

I shall now indicate a characterization of Carmichael numbers.
Recall that I have introduced, in Section II, Carmichael’s function
λ(n), which is the maximum of the orders of a mod n, for every a,
1 ≤ a < n, gcd(a, n) = 1; in particular, λ(n) divides ϕ(n).

Carmichael showed that n is a Carmichael number if and only if
n is composite and λ(n) divides n− 1. (It is the same as saying that
if p is any prime dividing n, then p− 1 divides n− 1.)

It follows that every Carmichael number is odd and is the product
of three or more distinct prime numbers.

Explicitly, if n = p1p2 · · · pr (product of distinct primes), then n
is a Carmichael number if and only if pi − 1 divides (n/pi) − 1 (for
i = 1, 2, . . . , r). Therefore, if n is a Carmichael number, then also
an ≡ a (mod n), for every integer a ≥ 1.

Schinzel noted in 1959 that for every a ≥ 2 the smallest pseudo-
prime ma in base a satisfies necessarily ma ≤ 561. Moreover, there
exists a such that ma = 561. Explicitly, let pi (i = 1, . . . , s) be
the primes such that 2 < pi < 561; for each pi let ei be such that
pei
i < 561 < pei+1

i ; let gi be a primitive root modulo pei
i , and by the

Chinese remainder theorem, let a be such that a ≡ 3 (mod 4) and
a ≡ gi (mod pei

i ) for i = 1, . . . , s. Then ma = 561.
Carmichael and Lehmer determined the smallest Carmichael num-

bers:

561 = 3 × 11 × 17 15841 = 7 × 31 × 73 101101 = 7 × 11 × 13 × 101
1105 = 5 × 13 × 17 29341 = 13 × 37 × 61 115921 = 13 × 37 × 241
1729 = 7 × 13 × 19 41041 = 7 × 11 × 13 × 41 126217 = 7 × 13 × 19 × 73
2465 = 5 × 17 × 29 46657 = 13 × 37 × 97 162401 = 17 × 41 × 233
2821 = 7 × 13 × 31 52633 = 7 × 73 × 103 172081 = 7 × 13 × 31 × 61
6601 = 7 × 23 × 41 62745 = 3 × 5 × 47 × 89 188461 = 7 × 13 × 19 × 109
8911 = 7 × 19 × 67 63973 = 7 × 13 × 19 × 37 252601 = 41 × 61 × 101
10585 = 5 × 29 × 73 75361 = 11 × 13 × 17 × 31
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I consider now the following questions, which are of course closely
related:

(1) Are there infinitely many Carmichael numbers?

(2) Given k ≥ 3, are there infinitely many Carmichael numbers
having exactly k prime factors?

The first problem was solved in 1992, in the affirmative, in a bril-
liant paper by Alford, Granville & Pomerance that appeared in 1994;
see also the expository paper by Pomerance (1993).

It is believed that the answer to the second question is also affir-
mative, but this has yet to be established. For example, it is not even
known if there exist infinitely many Carmichael numbers, which are
products of exactly three primes. In this respect, there is a result of
Duparc (1952) (see also Beeger, 1950):

For every r ≥ 3, there exist only finitely many Carmichael numbers
with r prime factors, of which the smallest r− 2 factors are given in
advance. I shall return to these questions in Chapter 4.

In 1939, Chernick gave the following method to obtain Carmichael
numbers. Let m ≥ 1 and

M3(m) = (6m+ 1)(12m+ 1)(18m+ 1).

If m is such that all three factors above are prime, then M3(m) is
a Carmichael number. This yields Carmichael numbers with three
prime factors. But obviously we do not know if there exist infinitely
many integers m having that property.

Similarly, if k ≥ 4, m ≥ 1, let

Mk(m) = (6m+ 1)(12m+ 1)
k−2∏
i=1

(9 × 2im+ 1).

If m is such that all k factors are prime numbers and, moreover,
2k−4 divides m, then Mk(m) is a Carmichael number with k prime
factors.

This method, or variants of it, have been used to produce Carmi-
chael numbers which are large or have many prime factors.

I note: Wagstaff in 1980 (321 digits), Atkin in 1980 (370 digits),
Woods & Huenemann in 1982 (432 digits), Dubner in 1985 (1057
digits), Dubner in 1989 (3710 digits).
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While these examples have only a few prime factors, Yorinaga
(1978) determined Carmichael numbers with up to 15 prime factors.

The search for large Carmichael numbers with many prime factors
continued. In 1994 (published in 1996), Löh & Niebuhr constructed a
Carmichael number with 16142049 digits and 1101518 prime factors.

Record

The largest known Carmichael number was determined by W.R. Al-
ford and J. Grantham in 1998; it has 20163700 digits and 1371497
prime factors. Also, this number has the following additional prop-
erty: for every k with 62 ≤ k ≤ 1371435 it is divisible by a Carmichael
number having exactly k prime factors.

This unpublished record was kindly communicated to me by the
authors.

Stimulated by a deeper understanding of this kind of computa-
tions, Alford, Granville & Pomerance (1994) established the thruth
of this old conjecture: There exist infinitely many Carmichael num-
bers.

Concerning the calculation of Carmichael numbers, Pinch has pro-
duced, in 1998, the complete list of these numbers up to 1016. I shall
discuss his findings in Chapter 4, Section VI, B.

The distribution of Carmichael numbers will be studied in Chap-
ter 4, Section VIII.

Addendum on Knödel Numbers

For every k ≥ 1, let Ck be the set of all composite integers n > k
such that if 1 < a < n and gcd(a, n) = 1, then an−k ≡ 1 (mod n).

Thus, C1 is the set of Carmichael numbers. For k ≥ 2, the numbers
Ck were considered by Knödel in 1953. Even before it was proved that
there exist infinitely many Carmichael numbers, Ma̧kowski proved in
1962:

For each k ≥ 2, the set Ck is infinite.

Proof. For every a, 1 < a < k, gcd(a, k) = 1, let ra be the order of
a modulo k. Let r =

∏
ra (product for all a as above). So ar ≡ 1

(mod k).
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There exist infinitely many primes p such that p ≡ 1 (mod r); see
Chapter 4, Section IV, for a proof of this very useful theorem. For
each such p > k, write p− 1 = hr, and let n = kp. Then n ∈ Ck.

Indeed, let 1 ≤ a < n, gcd(a, n) = 1, so gcd(a, k) = 1; hence

an−k = ak(p−1) = akhr ≡ 1 (mod k),

an−k = ak(p−1) ≡ 1 (mod p).

Since p � k, then an−k ≡ 1 (mod n), showing that n = kp is in Ck.

It follows from the above proof that if k = 2, then 2p ∈ C2 for
every prime p > 2. If k = 3, then 3p ∈ C3 for every prime p > 3; this
last fact was proved by Morrow in 1951.

X Lucas Pseudoprimes

In view of the analogy between sequences of binomials an−1 (n ≥ 1)
and Lucas sequences, it is no surprise that pseudoprimes should have
a counterpart involving Lucas sequences. For each parameter a ≥ 2,
there were the a-pseudoprimes and their cohort of Euler pseudo-
primes and strong pseudoprimes in base a. In this section, to all
pairs (P,Q) of nonzero integers will be associated the corresponding
Lucas pseudoprimes, the Euler-Lucas pesudoprimes, and the strong
Lucas pseudoprimes. Their use will parallel that of pseudoprimes.

Let P , Q be nonzero integers, D = P 2 − 4Q and consider the
associated Lucas sequences (Un)n≥0, (Vn)n≥0.

Recall (from Section IV) that if n is an odd prime, then:

(X.1) If gcd(n,D) = 1, then Un−(D|n) ≡ 0 (mod n).

(X.2) Un ≡ (D | n) (mod n).
(X.3) Vn ≡ P (mod n).

(X.4) If gcd(n,D) = 1, then Vn−(D|n) ≡ 2Q(1−(D/n))/2 (mod n).

If n is an odd composite number and the congruence (X.1) holds,
then n is called a Lucas pseudoprime (with the parameters (P,Q)),
abbreviated lpsp(P,Q).

It is alright to make such a definition, but do these numbers exist?
If so, are they worthwhile to study?
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A Fibonacci Pseudoprimes

To begin, it is interesting to look at the special case of Fibonacci
numbers, where P = 1, Q = −1, D = 5. In this situation, it is more
appropriate to call Fibonacci pseudoprimes the lpsp(1,−1).

The smallest Fibonacci pseudoprimes are 323 = 17×19 and 377 =
13 × 29; indeed, (5 | 323) = (5 | 377) = −1 and it may be calculated
that U324 ≡ 0 (mod 323), U378 ≡ 0 (mod 377).

E. Lehmer showed in 1964 that there exist infinitely many Fi-
bonacci pseudoprimes; more precisely, if p is any prime greater than 5,
then U2p is a Fibonacci pseudoprime.

Property (X.2) was investigated by Parberry (in 1970) and later
by Yorinaga (1976).

Among his several results, Parberry showed that if gcd(h, 30) = 1
and condition (X.2) is satisfied by h, then it is also satisfied by
k = Uh; moreover, gcd(k, 30) = 1 and, if h is composite, clearly
Uh is also composite. This shows that if there exists one composite
Fibonacci number Un such that Un ≡ (5 | n) (mod n), then there
exist infinitely many such numbers. As I shall say (in a short while)
there do exist such Fibonacci numbers.

Actually, this also follows from another result of Parberry: If p is
prime and p ≡ 1 or 4 (mod 15), then n = U2p is odd composite
and it satisfies both properties (X.1) and (X.2). In particular, there
are infinitely many Fibonacci pseudoprimes which, moreover, satisfy
(X.2). (Here I use the fact—to be indicated later in Chapter 4, Sec-
tion IV—that there exist infinitely many primes p such that p ≡ 1
(mod 15), resp. p ≡ 4 (mod 15).)

If p �≡ 1 or 4 (mod 15), then (X.2) is not satisfied, as follows
from various divisibility properties and congruences indicated in Sec-
tion IV.

Yorinaga considered the primitive part of the Fibonacci number
Un. If you remember, I have indicated in Section IV that every Fi-
bonacci number Un (with n �= 1, 2, 6, 12) admits a primitive prime
factor p—these are the primes that divide Un, but do not divide Ud,
for every d, 1 < d < n, d dividing n. Thus Un = U∗

n × U ′
n, where

gcd(U∗
n, U

′
n) = 1 and p divides U∗

n if and only if p is a primitive prime
factor of Un.

Yorinaga showed that if m divides U∗
n (with n > 5) then Um ≡

(5 | m) (mod m).
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According to Schinzel’s result (1963), discussed in Section IV,
there exist infinitely many integers n such that U∗

n is not a prime.
So, Yorinaga’s result implies that there exist infinitely many odd
composite n such that the congruence (X.2) is satisfied.

Yorinaga published a table of all 109 composite numbers n up to
707000, such that Un ≡ (5 | n) (mod n). Some of these numbers
also give Fibonacci pseudoprimes, like n = 4181 = 37 × 113, n =
5777 = 53 × 109, and many more. Four of the numbers in the table
give pseudoprimes in base 2:

219781 = 271 × 811,
252601 = 41 × 61 × 101,
399001 = 31 × 61 × 211,
512461 = 31 × 61 × 271.

Another result of Parberry, later generalized by Baillie & Wagstaff,
is the following:

If n is an odd composite number, not a multiple of 5, if congruences
(X.1) and (X.2) are satisfied, then{

U(n−(5|n))/2 ≡ 0 (mod n) if n ≡ 1 (mod 4),
V(n−(5|n))/2 ≡ 0 (mod n) if n ≡ 3 (mod 4).

In particular, since there are infinitely many composite integers n
such that n ≡ 1 (mod 4), then there are infinitely many odd com-
posite integers n satisfying the congruence U(n−(5|n))/2 ≡ 0 (mod n).

The composite integers n such that Vn ≡ 1 (mod n) (where (Vk)k≥0
is the sequence of Lucas numbers) have also been studied. They have
been called Lucas pseudoprimes, but this name is used here with a
different meaning.

In 1983, Singmaster found the following 25 composite numbers
n < 105 with the above property:

705, 2465, 2737, 3745, 4181, 5777, 6721,
10877, 13201, 15251, 24465, 29281, 34561,
35785, 51841, 54705, 64079, 64681, 67861,
68251, 75077, 80189, 90061, 96049, 97921.
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B Lucas Pseudoprimes (lpsp(P, Q))

I shall now consider lpsp(P,Q) associated to arbitrary pairs of pa-
rameters (P,Q). To stress the analogy with the pseudoprimes in base
a, the discussion should follow the same lines, but it will be clear
that much less is known about these numbers. For example, there
is no explicit mention of any algorithm to generate infinitely many
lpsp(P,Q), when P , Q are given—except the results mentioned for
Fibonacci pseudoprimes.

However, in his thesis in 1971, Lieuwens stated that for every
k ≥ 2, there exist infinitely many Lucas pseudoprimes with given pa-
rameters (P,Q), which are the product of exactly k distinct primes.

It is quite normal for an odd integer n to be a Lucas pseudoprime
with respect to many different sets of parameters. Let D ≡ 0 or 1
(mod 4), let Blpsp(n,D) denote the number of integers P , 1 ≤ P ≤ n,
such that there exists Q, with P 2 − 4Q ≡ D (mod n) and n is a
lpsp(P,Q). Baillie & Wagstaff showed in 1980 that

Blpsp(n,D) =
∏
p|n

{
gcd

(
n−

(
D

n

)
, p−

(
D

p

))
− 1

}
.

In particular, if n is odd and composite, there exists D and, cor-
respondingly, at least three pairs (P,Q), with P 2 − 4Q = D and
distinct values of P modulo n, such that n is a lpsp(P,Q).

Another question is the following: If n is odd, for how many dis-
tinct D modulo n, do there exist (P,Q) with P 2 −4Q ≡ D (mod n),
P �≡ 0 (mod n), and n is a lpsp(P,Q)? Baillie & Wagstaff also dis-
cussed this matter when n = p1p2, where p1, p2 are distinct primes.

C Euler-Lucas Pseudoprimes (elpsp(P, Q)) and

Strong Lucas Pseudoprimes (slpsp(P, Q))

Let P , Q be given, D = P 2 − 4Q, as before. Let n be an odd prime
number. If gcd(n,QD) = 1, it was seen in Section V that

(el)

{
U(n−(D|n))/2 ≡ 0 (mod n) when (Q | n) = 1,
V(n−(D|n))/2 ≡ D (mod n) when (Q | n) = −1.

This leads to the following definition. An odd composite integer n,
such that gcd(n,QD) = 1, satisfying the above condition is called a
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Euler–Lucas pseudoprime with parameters (P,Q), abbreviated
elpsp(P,Q).

Let n be an odd composite integer, with gcd(n,D) = 1, let n−
(D | n) = 2sd, with d odd, s ≥ 0. If

(sl)

{
Ud ≡ 0 (mod n), or
V2rd ≡ 0 (mod n) for some r, 0 ≤ r < s,

then n is called a strong Lucas pseudoprime with parameters (P,Q),
abbreviated slpsp(P,Q). In this case, necessarily, gcd(n,Q) = 1.

If n is an odd prime, and gcd(n,QD) = 1, then n satisfies the con-
gruences (el) and (sl) above. It is also clear that if n is an elpsp(P,Q)
and gcd(n,Q) = 1, then n is a lpsp(P,Q).

What are the relations between elpsp(P,Q) and slpsp(P,Q)? Just
as in the case of Euler and strong pseudoprimes in base a, Baillie &
Wagstaff showed that if n is a slpsp(P,Q), then n is an elpsp(P,Q)—
this is the analogue of Selfridge’s result.

Conversely, if n is an elpsp(P,Q) and either (Q | n) = −1 or
n−(D | n) ≡ 2 (mod 4), then n is a slpsp(P,Q)—this is the analogue
of Malm’s result.

If gcd(n,Q) = 1, n is a lpsp(P,Q), Un ≡ (D | n) (mod n) and if,
moreover, n is an elpsp(P,Q), then n is also a slpsp(P,Q). The spe-
cial case for Fibonacci numbers was proved by Parberry, as already
indicated.

Previously, I mentioned the result of Lehmer, saying that no odd
composite number can be an epsp(a), for all possible bases. Here is
the analogous result of Williams (1977): Given D ≡ 0 or 1 (mod 4),
if n is an odd composite integer, and gcd(n,D) = 1, there exist P , Q,
nonzero integers, with P 2 − 4Q = D, gcd(P,Q) = 1, gcd(n,Q) = 1,
and such that n is not an elpsp(P,Q).

With the present terminology, I have mentioned already that Par-
berry had shown, for the Fibonacci sequence, that there exist in-
finitely many elpsp(1,−1).

This has been improved by Kiss, Phong & Lieuwens (1986): Given
(P,Q) such that the sequence (Un)n≥0 is nondegenerate (that is,
Un �= 0 for every n ≥ 0), given k ≥ 2, there exist infinitely many
elpsp(P,Q), each being the product of k distinct primes. Moreover,
given also d ≥ 2, if D = P 2 − 4Q > 0, then the prime factors may
all be chosen to be of the form dm+ 1 (m ≥ 1).
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As for Fibonacci numbers, I now consider the congruences (X.2)
and also (X.3), (X.4). It may be shown that if gcd(n, 2PQD) = 1
and if n satisfies any two of the congruences (X.1) to (X.4), then it
satisfies the other two.

In 1986, Kiss, Phong & Lieuwens extended a result of Rotkiewicz
(1973) and proved: Given P,Q = ±1 (but (P,Q) �= (1, 1)), given
k ≥ 2, d ≥ 2, there exist infinitely many integers n, which are Euler
pseudoprimes in base 2, and which satisfy the congruences (X.1) to
(X.4); moreover, each such number n is the product of exactly k
distinct primes, all of the form dm+ 1 (with m ≥ 1).

D Carmichael–Lucas Numbers

Following the same line of thought that led from pseudoprimes to
Carmichael numbers, it is natural to consider the following numbers.

Given D ≡ 0 or 1 (mod 4), the integer n is called a Carmichael–
Lucas number (associated to D), if gcd(n,D) = 1 and for all nonzero
relatively prime integers P , Q with P 2 −4Q = D and gcd(n,Q) = 1,
the number is an lpsp(P,Q).

Do such numbers exist? A priori, this is not clear. Of course, if
n is a Carmichael–Lucas number associated to D = 1, then n is a
Carmichael number.

Williams, who began the consideration of Carmichael–Lucas num-
bers, showed in 1977:

If n is a Carmichael–Lucas number associated to D, then n is the
product of k ≥ 2 distinct primes pi such that pi − (D | pi) divides
n− (D | n).

Note that 323 = 17 × 19 is a Carmichael–Lucas number (with
D = 5); but it cannot be a Carmichael number, because it is the
product of only two distinct primes.

Adapting the method of Chernick, it is possible to generate many
Carmichael–Lucas numbers. Thus, for example, 1649339 = 67×103×
239 is such a number (with D = 8).
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XI Primality Testing and Factorization

I reserve the last section to treat a burning topic, full of tantalizing
ideas and the object of intense research, in view of immediate direct
applications.

Immediate direct applications of number theory! Who would dream
of it, even some 40 years ago? Von Neumann yes, not me, not many
people. Poor number theory, the Queen relegated (or raised?) to be
the object of a courtship inspired by necessity not by awe.

In recent years, progress on the problems of primality testing and
factorization have been swift. More and more deep results of number
theory have been invoked. Brilliant brains devised clever procedures,
not less brilliant technicians invented tricks, shortcuts to implement
the methods in a reasonable time—and thus, a whole new branch of
number theory is evolving.

In previous sections of this chapter, I have attempted to develop
the foundations needed to present in a lucid way the main proce-
dures for primality testing. But this was doomed to failure. Indeed,
with the latest developments I would need, for example, to use facts
about the theory of Jacobi sums, algebraic number theory, elliptic
curves, abelian varieties, etc. This is far beyond what I intend to
discuss. It is more reasonable to assign supplementary reading for
those who are avidly interested in the problem. Happily enough,
there are now many excellent expository articles and books, which I
will recommend at the right moment.

Despite the shortcomings just mentioned, I feel that presenting
an overview of the question, even one with gaps, will still be useful.
Having apologized, I may now proceed with my incomplete treat-
ment.

First, money: how much it costs to see the magic. Then, I shall
discuss more amply primality tests, indicate some noteworthy recent
factorizations, to conclude with a quick description of applications
to public key cryptography. I will be happy if the presentation which
follows will make my reader thirsty. Thirsty to know more about
what he has read here, and for this purpose, I recommend the books
of Williams (1998) and of Crandall & Pomerance (2001).
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A The Cost of Testing

The cost of applying an algorithm to a number N is proportional
to the time required and, in turn, it depends on the machine, the
program, and the size of the number.

The operations should be counted in an appropriate way, since
it is clear that addition or multiplication of very large numbers is
more time consuming than if the numbers were small. So, in the last
analysis, the cost is proportional to the number of operations with
digits—such indivisible operations are called bit operations. Thus,
for the calculation, the input is not the integer N , but the number
of its digits in some base system, which is then proportional to logN .

The algorithm runs in polynomial time if there exists a polyno-
mial f(X) such that, for every N , the time required to perform the
algorithm on the number N is bounded by f(logN). An algorithm,
not of polynomial time, whose running time is bounded by f(N)
(for every N) where f(X) is a polynomial, is said to have an expo-
nential running time, since N = elogN . An algorithm can only be
economically justified if it runs in polynomial time.

The theory of complexity of algorithms deals specifically with the
determination of bounds for the running time. It is a very elabo-
rate sort of bookkeeping, which requires a careful analysis of the
methods involved. Through the discovery of clever tricks, algorithms
may sometimes be simplified into others requiring only a polynomial
running time.

It may be said that the main problem faced in respect to primality
testing (and many other problems) is the following:

Does there exist an algorithm to perform the test, which runs in
polynomial time?

This problem has just been solved in the affirmative, as I shall
discuss soon at the appropriate place. But first, I will consider other
tests for primality, which do not run in polynomial time, and yet are
very practical for actual testing.

All this should not be confused with the following.
If a number N is known to be composite, this fact may be proved

with only one operation. Indeed, it is enough to produce two numbers
a, b, such that N = ab, so the number of bit operations required is
at most (logN)2. Paraphrasing Lenstra, it is irrelevant whether a,
b were found after consulting a clairvoyant, or after three years of
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Sundays, like Cole’s factorization of the Mersenne number M67:

267 − 1 = 193707721 × 761838257287.

If p is known to be a prime, what is the number of bit opera-
tions required to prove it? This is not so easy to answer. In 1975,
Pratt showed that it suffices a C(log p)4 bit operations (where C is
a positive constant).

In 1987, Pomerance applied the Hasse-Weil theorem on the number
of points on elliptic curves defined modulo some integer n. He was
able to show that if p is known to be a prime, then a proof of this
fact may be done involving at most C log p multiplications modulo p.
This was better than all the other earlier certification proofs.

B More Primality Tests

I return once more to primality testing. There are many kinds of
tests, and according to the point of view, they may be classified as
follows: {

Tests for numbers of special forms
Tests for generic numbers

or {
Tests with full justification
Tests with justification based on conjectures

or {
Deterministic tests
Probabilistic or Monte Carlo tests.

In the sequel, I shall encounter tests of each of the above kinds.
If sufficiently many prime factors of N−1 or N+1 are known, the

tests indicated in Sections III and V run in polynomial time on the
number of digits of the input. These are special purpose primality
tests, each one being very effective for numbers of appropriate form.

In contrast, a general purpose primality test is applicable to any
number and is not specifically designed to handle more effectively
any one kind of number.

The justification of a primality test ought to be based on theo-
rems of number theory. But there are cases where no justification is
known without appealing to unproved conjectures, like some form of
Riemann’s hypothesis.
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Many of the tests are deterministic and the steps are all prescribed
in advance. In other tests, there are random choices made in some
steps during the testing.

When a number N is submitted to a primality test, the desired
output is one of the following two answers: “N is a prime,” or “N
is composite.” However, there are tests leading to the following out-
puts: “N is composite,” or “N satisfies a property shared by prime
numbers.” Since there are measures of probability attached to the
test, these are called probabilistic or Monte Carlo tests.

If it has been ascertained that a number N has a high probability
of being a prime, it is customary to call such a number a probable
prime. Of course, it should be borne in mind that a number N > 1
is either prime or composite. The designation of “probable prime”
reflects the lack of knowledge, at a given moment, of the exact kind
of number, prime, or composite.

Once a test is performed and the number is designated to be a
prime, often after extensive calculations, usually subjected to the
hazards of human or machine errors, it is of the utmost importance
to ratify the result obtained. A second or third repetition of the
test, preferably performed with different programs and on different
machines, giving the same output is reassuring enough—but not a
proof that the output is correctly given.

In this respect, the most desirable feature is a certificate of pri-
mality, when the number is declared a prime; this certificate would
be a proof of primality for the number. — Now I wish to discuss a
few—very few—of the methods to test primality.

Trial division

For numbers that are not of a special form, the very naive primality
test is by trial division of N by all primes p <

√
N . It will be seen in

Chapter 4 that, for any large integer N , the number of primes less
than

√
N is about 2

√
N/ logN (this statement will be made much

more precise later on); thus there will be at most C
√
N/ logN oper-

ations (where C > 0 is a constant), which tells that the running time
could be C

√
N/ logN . So this procedure does not run in polynomial

time on the input.

Miller’s test

In 1976, Miller proposed a primality test, which was justified using
a generalized form of Riemann’s hypothesis. I will not explain the
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exact meaning of this hypothesis or conjecture, but in Chapter 4, I
shall discuss the classical Riemann’s hypothesis.

To formulate Miller’s test, which involves the congruences used
in the definition of strong pseudoprimes, it is convenient to use the
terminology introduced by Rabin.

LetN be an integer,N−1 = 2sd, with s ≥ 0, d odd. Let 1 < a < N
with gcd(a,N) = 1. Then a is said to be a witness for N when ad �≡ 1
(mod N) and a2rd �≡ −1 (mod N) for every r, 0 ≤ r < s.

If N has a witness, it is composite. If N is composite, if 1 <
a < N , gcd(a,N) = 1, and a is not a witness, then N is a spsp(a).
Conversely, if N is odd and N is a spsp(a) then a is not a witness
for N .

In this terminology, it suffices to show that no integer a, 1 < a <
N , gcd(a,N) = 1, is a witness, in order to deduce that N is prime.
Since N is assumed to be very large, this task is overwhelming! It
would be wonderful just to settle the matter by considering small
integers a, and checking whether any one is a witness for N . Here is
where the generalized Riemann’s hypothesis is needed. It was used
to show:

Miller’s test. Let N be an odd integer. If there exists a, such that
gcd(a,N) = 1, 1 < a < 2(logN)2, which is a witness for N , then N
is composite. Otherwise, N is a prime.

I should add here that for numbers up to 25 × 109, because of the
calculations reported in Section VIII, the only composite integer N
that is a strong pseudoprime simultaneously to the bases 2, 3, 5, 7,
is the number 3 215 031 751. So if N < 25 × 109 is not this number,
and 2, 3, 5, 7 are not witnesses, then N is a prime. As shown by
Jaeschke (1993), this is also true up to N < 118 670 087 467.

This test may be easily implemented on a pocket calculator.
The number of bit operations for testing whether a number is a

witness for N is at most C(logN)5, where C is a positive constant.
So, this test runs in polynomial time on the input, provided the
generalized Riemann’s hypothesis is assumed true.

In 1979, Lenstra published a streamlined version of Miller’s test,
which he discussed again in his paper of 1982. See also the nice
expository paper by Wagon (1986).
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The APR test

The primality test devised by Adleman, Pomerance & Rumely (1983),
usually called the APR test, represents a breakthrough. To wit:

(i) It is a deterministic general purpose primality test; thus, it is
applicable to arbitrary natural numbers N , without requiring
the knowledge of factors of N − 1 or N + 1.

(ii) The running time t(N) is almost polynomial; more precisely,
there exist effectively computable constants 0 < C ′ < C, such
that

(logN)C
′ log log logN ≤ t(N) ≤ (logN)C log log logN .

(iii) The test is justified rigorously, and for the first time ever in
this domain, it was necessary to appeal to deep results in the
theory of algebraic numbers. The test involves calculations with
roots of unity and the general reciprocity law for the power
residue symbol. (Did you notice that I have not explained these
concepts? It is far beyond what I plan to treat.)

Up to 2002, the APR test had the best running time among all
deterministic general purpose primality tests.

Soon after its publication, Cohen & Lenstra (1984) modified the
APR test, making it more flexible, using Jacobi sums in the proof
(instead of the reciprocity law), and having the new test programmed
for practical applications. It was the first primality test in existence
that could routinely handle numbers of up to 200 decimal digits, the
test being executed in about ten minutes, while numbers of up to
100 digits were treated in about 45 seconds.

In 1987, Cohen & Lenstra, Br. (Brother, not Junior), tested a
number of 247 digits (a prime factor of 2892+1), in about 15 minutes.

A presentation of the APR test was made by Lenstra in the Sémi-
naire Bourbaki, Exposé 576 (1981). It was also discussed in papers
of Lenstra (1982) and Nicolas (1984), as well as in the important
book by Cohen (1993).

Tests with elliptic curves

In 1986, Atkin presented his own new primality test which used
elliptic curves over finite fields, the first test of this kind. It runs
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in random polynomial time, it is fully justified, and if the output
is “prime”, it comes assorted with a list of numbers from which it
is easily verified, without performing all the calculations again, that
the number is indeed a prime. Such a list of intermediate results is
called just a certificate for the prime number.

Atkin & Morain (1993) published a long paper devoted to their
method, called ECPP (“elliptic curve primality proving”), which is
described in its various aspects. The algorithm has been refined by
Morain, who succeeded to prove, and to certify, the primality of
various interesting numbers having more than 1000 digits. Other,
most effective implementations of the test are currently being used.

Due to its complexity, I shall not even try to indicate the basic
steps of the ECPP algorithm.

Record

The largest number proved prime by using a general purpose primal-
ity test (rigorously justified and applicable to an arbitrary number),
is a 5878 digit number 16282536 . . . 36478311, which has the special
property that it is preceded by a row of 233821 composite numbers.

The certification of this prime, completed in February 2003, was
accomplished by J.L. Gómez Pardo, using the ECPP implementa-
tion of M. Martin. The computations required 3581 hours (about 21
weeks) on one of the fastest available PCs. The produced certificate
is a text file containing nearly 5 800 000 characters (please count how
many books, more boring than this one, would be needed to contain
them). Using the existing certificate, primality of the number can be
verified within less than two days.

To illustrate the extraordinary progress that has been achieved in
the performance of the ECPP method during the past years, here
are the previous records:

Prime number Digits Date

105019 + (32 × 75 × 1111) 5020 September 2001
103999 + 4771 4000 May 2001

(3481223 − 1)/347 3106 January 2001
(301789 − 1)/29 2642 October 2000

(27331 − 1)/458072843161 2196 October 1997
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Except for the last one, these records were due to the brothers
G. and M. La Barbera and to Martin. The last prime, which is the
second and largest factor of the Mersenne number

M7331 = 458072843161 × P2196,

was verified by E. Mayer and F. Morain using Morain’s ECPP pro-
gram.

To feel how well a general purpose primality test performs, it is
a good idea to apply the test to random numbers, namely, numbers
whose digits were obtained by repeatedly spinning a wheel with ten
possible positions. Some numbers which appear in nature, like the
ubiquitous constant π, seem to have randomly distributed digits in
their decimal part.

Indeed, in September 1999 more than 206 billion decimal digits
of π were calculated by Y. Kanada and his coworkers. A statistical
analysis confirms that any given succession of digits appears as often
as it should be expected from randomness. In particular, Caldwell
& Dubner (2000) analysed the occurrence of primes made out of a
sequence of successive digits of π, obtaining a remarkable agreement.

More recently, in December 2002, Kanada announced that he had
calculated 1.2411 trillion digits of π; for details, see Bailey (2003).
This brings to a true story, not to be forgotten. Ludolph van Ceulen
became famous for having calculated 35 correct digits of π (published
posthumously in 1615). These digits were inscribed in his epitaph. I
wish long life to Kanada—his epitaph will create problems.

Monte Carlo methods

Early in this century, the casino in Monte Carlo attracted the aris-
tocracy and adventurers, who were addicted to gambling. Tragedy
and fortune were determined by the spinning wheel.

I read with particular pleasure the novel by Luigi Pirandello,
telling how the life of Mattia Pascal was changed when luck favored
him, both at Monte Carlo and in his own Sicilian village. But Monte
Carlo is not always so good. More often, total ruin, followed by sui-
cide, is the price paid!

As you enter into the Monte Carlo primality game, and if your
Monte Carlo testing will be unsuccessful, I sincerely hope that you
will not be driven to suicide.
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I wish to mention three Monte Carlo tests, due to Baillie & Wag-
staff (1980), Solovay & Strassen (1977) and Rabin (1976, 1980). In
each of these tests a number of witnesses a are used, in connec-
tion with congruences like those satisfied by psp(a), epsp(a), spsp(a)
numbers.

I describe briefly Rabin’s test, which is very similar to Miller’s.
Based on the same idea of Solovay & Strassen, Rabin proposed the
following test:

Step 1. Choose, at random, k > 1 small numbers a, such that
1 < a < N and gcd(a,N) = 1.

Step 2. Test, in succession, for each chosen basis a, whether N
satisfies the condition in the definition of a strong pseudoprime in
base a; writing N − 1 = 2sd, with d odd, s ≥ 0, either ad ≡ 1 (mod
N) or a2rd ≡ −1 (mod N) for some r, 0 ≤ r < s.

If an a is found for which the above condition does not hold, then
declare N to be composite. In the other case, the probability that N
is a prime, when certified prime, is at least 1 − 1/4k. So, for k = 30,
the likely error is at most one in 1018 tests.

You may wish to sell prime numbers—yes, I say sell—to be used
in public key cryptography (be patient, I will soon come to this
application of primality and factorization). And you wish to be sure,
or sure with only a negligible margin of error, that you are really
selling a prime number, so that you may advertise: “Satisfaction
guaranteed or money back.”

On the basis of Rabin’s test, you can safely develop a business and
honestly back the product sold.

The recent AKS test

In August 2002, Agrawal, Kayal & Saxena posted in their website
a paper containing an algorithm for primality testing which is for
general purpose, deterministic, fully justified and runs in polynomial
time. This solved the long-standing problem mentioned earlier in this
subsection.

The theoretical basis of the test is a proposition which, except at
one step, involves only arguments dealing with simple polynomials
with coefficients in integers modulo N , and a binomial. The crucial
step, presently required, is a deep theorem of Fouvry pertaining to
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sieve theory. I like to state this theorem (not in the stronger original
form):

Let θ = 0.6687 . . . > 2/3. For every x > 2 there exists a prime p
such that xθ < p < x, and there exists k, not a multiple of 3, such
that 2kp+ 1 ≤ x and 2kp+ 1 is a prime.

It is reasonable to hope that the test will be suitably modified
and perhaps become dependent on a less profound theorem than
Fouvry’s.

As for the running time (with fast multiplication), it was originally
evaluated as essentially (logN)12, and lately lowered to (logN)7.5.
An analysis of the running time may also be found in Morain’s pre-
print (2002).

I have asked Agrawal to prepare a short presentation of the AKS
algorithm, which I reproduce here. I am thankful for his collabora-
tion.

The central idea in the new primality testing algorithm is the fol-
lowing identity characterizing primes:

N is prime if and only if (1 −X)N ≡ 1 −XN (mod N).

The simplest way of verifying this identity efficiently is to choose a
random small degree polynomial Q(X) and check the identity mod-
ulo Q(X). With high probability the result will be correct. This gives
a very simple randomized polynomial time algorithm.

To get a deterministic algorithm, one way is to show that if the
identity is false, then modulo only a “few” small degree polynomi-
als Q(X) the check will fail. And one of the simplest sets of such
polynomials is Q(X) = Xr − 1 for small degrees r.

In what follows, let P1(X) ≡ P2(X) (mod Xr − 1, n) denote the
identity of the remainders of P1(X) and P2(X) after division by
Xr − 1 and after dividing the coefficients by n. Then the following
weaker version of the above statement is proved:

N = pk (where p is a prime) if and only if (a − X)N ≡ a − XN

(mod Xr − 1, p) for a “few” values of a and r.

In fact, r can be fixed to be a specific value. The characterization
immediately gives a deterministic and efficient primality test as the
identity can be verified modulo N (but not modulo p, of course),
and the standard method can be used to handle the case when N is
a non-trivial power of p.
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One direction of the equivalence is trivial to show. To prove the
other direction use is made of the following facts:

(i) If (a − X)N ≡ a − XN (mod Xr − 1, p) for several values of
a, then for any polynomial g(X) in the multiplicative group
generated by the corresponding linear polynomials (a − X),
the following property holds:

g(X)N ≡ g(XN ) (mod Xr − 1, p).

This gives exponentially many polynomials g(X) satisfying the
identity, provided the order of p modulo r is large, and this can
be ensured using existing results in sieve theory.

(ii) If g(X)N ≡ g(XN ) (mod Xr − 1, p), as above, and g(X)p ≡
g(Xp) (mod Xr − 1, p) (trivially), then for any s = nipj ,

g(X)s ≡ g(Xs) (mod Xr − 1, p).

(iii) Since powers of X are reduced modulo Xr − 1, there exist s
and t, s �= t, such that

g(X)s ≡ g(Xt) (mod Xr − 1, p).

This is not possible when both s and t are smaller than the
size of the group in (i), but this is ensured, as noted above, by
known results in sieve theory.

C Titanic and Curious Primes

In an article of 1983/84, Yates coined the expression “titanic prime”
to name any prime with at least 1000 digits. In the paper with the
suggestive title Sinkers of the Titanics (1984/85), Yates compiled a
list of the largest known titanic primes. By January 1, 1985, he knew
581 titanic primes, of which 170 had more than 2000 digits. These
were listed in the paper.

In September 1988, Yates’ list comprised already 876 titanic
primes. The Six of Amdahl (J. Brown, L.C. Noll, B. Parady, G. Smith,
J. Smith & S. Zarantonello) announced at the beginning of 1990 the
discovery of 550 new titanic primes.

It is not surprising that these primes have special forms, a few
being Mersenne primes, others being of the form k × 2n ± 1, or k ×
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bn + 1 (b > 2). The reason is simply that there are more efficient
primality testing algorithms for numbers of these forms.

In 1992, Yates called gigantic all primes with at least 10000 dig-
its. For primes with 1 000 000 or more digits, we use the expression
megaprimes; as it was mentioned, the largest Mersenne primes are
megaprimes. After Yates’ death, C. Caldwell became the keeper of
the titanic primes, gigantic primes, and other jewels. But he is also
the author and manager of a very informative and up-to-date In-
ternet site about “matters primes”. I benefited from visiting this
site—it is not less interesting than the San Diego Zoo.

The rapid progress of primality testing increased these lists, almost
every day. At the end of 2002, the 5000 largest known primes (the
only ones displayed in Caldwell’s list) had more than 30000 digits.
It would be futile to try to report these numbers. Since there are
already more known titanic, gigantic and megaprimes than the total
number of lines of this book, I do not have bad conscience with this
omission. However, it would be unforgivable to hide the following
curiosities from you.

A palindromic number (in base 10) is an integer N = a1a2 . . .
an−1an with decimal digits ai (0 ≤ ai ≤ 9) such that a1 = an,
a2 = an−1, . . . . Due to the survival of the old mysticism attached
so often to numbers (perfect numbers, amicable numbers, abundant
numbers, etc.), the palindromic numbers still command the attention
of numerologists.

For many years, Dubner has been finding larger and larger palin-
dromic prime numbers, keeping safe his title of record man until
2001, when he found the prime 1039026 + 4538354 × 1019510 + 1, with
39027 digits.

Record

The largest known palindromic prime is 10104281−1052140−1, a num-
ber with 104281 digits. It was found in January 2003 by D. Heuer us-
ing a program called PrimeForm, whose developers include C. Nash,
Y. Gallot and G. Woltman.

An earlier record by Dubner, was a number that might be called
a triply palindromic prime: 1035352 + 2049402 × 1017673 + 1; it has
35353 digits—a number which is again a palindromic prime, with 5
digits, and where 5 is again a palindomic prime!
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We may consider the following, apparently silly problem: Given
k ≥ 4, to determine a sequence N1, N2, . . . , Nk, where each Ni is
a palindromic prime and Ni+1 is the number of digits of Ni (for
i = 1, . . . , k − 1).

For the description of the subsequent pearls, the following notation
is useful: (23)4, for example, means 23232323, and (1)15 means that
the digit 1 is repeated 15 times; and so on.

Records

A. The largest known prime, all of whose digits are prime numbers
(2, 3, 5, 7), is

72323252323272325252 × 103120 − 1
1020 − 1

+ 1

= (72323252323272325252)156 + 1.

It has 3120 digits and was discovered by Dubner in 1992.

B. The largest known prime with all digits equal to 0 or 1 is
1(0)153971110111(0)153971, with 30803 digits. It is also a palindrome
and was discovered by Dubner in 1999.

C. The largest known primes with initial digit d (of course, not
divisible by 3), followed by n digits equal to 9, are:

d n Year
1 55347 2002
2 49314 2002
4 21456 2001
5 34936 2001
7 49808 2002
8 48051 2000

Most of these primes were discovered by E.J. Sorensen. Only the last
one was found by Dubner. In each case Gallot’s program was used.

D. The largest known prime with all digits odd is the number
1(9)55347 listed in the previous topic.

E. The largest known prime number with the largest number of
digits equal to 0 is 105994 × 10105994 + 1 and was discovered by
G. Löh and Y. Gallot in 2000.
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F. The most exotic curious prime is

(1)1000(2)1000(3)1000(4)1000(5)1000(6)1000(7)1000(8)1000(9)1000(0)66451.

This prime has 15646 digits and was discovered, of course, by Dubner
(in 2000).

G. And last (but surely least): The smallest prime with 1000 digits
is 10999 + 7. Its primality was verified by P. Mihăilescu in 1998.

D Factorization

The factorization of large integers is a hard problem: there is no
known algorithm that runs in polynomial time. It is also an impor-
tant problem, because it has found a notorious application to public
key cryptography.

Nevertheless, I shall not discuss here the methods of factorization—
this would once again lead me too far from the subject of records on
prime numbers. The best I can do is to quote some books and re-
search papers, which may serve as an Ariadne thread in the labyrinth.
Recommended books are, in chronologocal order, the following.

The volume by Brillhart, Lehmer, Selfridge, Tuckerman & Wag-
staff (1983) contains tables of known factors of bn ± 1 (b = 2, 3,
5, 6, 7, 10, 11, 12) for various ranges of n. For example, the table
of factors of 2n − 1 extends for n < 1200; for larger bases b, the
range is smaller. The second edition of the book, which appeared
in 1988, contains 2045 new factorizations, reflecting the important
progress accomplished in those few years, both in the methods and
in the technology. The recent third edition includes another 2332
new factorizations.

This collective work, also dubbed “the Cunningham project”, was
originally undertaken to extend the tables published by Cunningham
& Woodall in 1925. It is likely that this activity will go on unabated.
Heaven is the limit!

The book of Riesel (1985) discusses factorization (and primality)
at length. It also contains tables of factors of Fermat numbers, of
Mersenne numbers, of numbers of the forms 2n+1, 10n+1, of repunits
(10n−1)/9, and many more. It is a good place to study techniques of
factorization, which are exposed in a coherent and unified way. Due
to its deserved success, a second updated edition has appeared in
1994, which also contains a description of the elliptic curve factoring
method.
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In 1989, Bressoud published an undergraduate text on factoriza-
tion and primality. It contains not only the standard background,
but also the quadratic sieve and elliptic curve methods.

Among the expository papers, the following deserve attention:
Guy (1975) discusses the methods now considered classical; Williams
(1984) covers about the same ground, being naturally more up to
date—it is pleasant reading. Dixon (1984) writes about factoriza-
tion as well as on primality. The lecture notes of a short course by
Pomerance (1984) contain an annotated bibliography.

To quote more technical papers, the use of elliptic curves in fac-
toring may be read, first hand, in the paper by Lenstra (1987); the
paper of the brothers Lenstra of 1990 is also of fundamental impor-
tance. More recently, I indicate a paper on the number field sieve,
by the brothers Lenstra, Manasse & Pollard (1993).

Just as an illustration, and for the delight of lovers of large num-
bers, I will give now explicit factorizations of some Mersenne, Fermat,
and other numbers; for the older references, see Dickson’s History of
the Theory of Numbers, Vol. I, pp. 22, 29, 377, and Archibald (1935):

M59 = 259 − 1 = 179951 × 3203431780337,

by Landry in 1869;

M67 = 267 − 1 = 193707721 × 761838257287,

by Cole in 1903, already mentioned;

M73 = 273 − 1 = 439 × 2298041 × 9361973132609,

the factor 439 by Euler, the other factors by Poulet in 1923;

F6 = 226
+ 1 = (1071 × 28 + 1) × (262814145745 × 28 + 1)

= 274177 × 67280421310721,

by Clausen in 1856.

The above factorizations were obtained before the advent of com-
puters!

More recently, the following factorizations were obtained:

M113 = 2113 − 1 = 3391 × 23279 × 65993 × 1868569
× 1066818132868207,
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the smallest factor by Reuschle in 1856, and the remaining factors
by Lehmer in 1947;

M193 = 2193 − 1 = 13821503 × 61654440233248340616559
× 14732265321145317331353282383,

by Naur (1983) and, independently, by Pomerance & Wagstaff in
1983. The next factorization has direct historical connection with
Mersenne himself (see Section VII):

M257 = 2257 − 1 = 535006138814359
× 1155685395246619182673033
× 374550598501810936581776630096313181393,

by Penk and by Baillie, who found, respectively, the first and the two
last factors in 1979, resp. 1980; note that already in 1927, Lehmer had
shown that M257 is composite, without however finding any factor.

Turning to Fermat numbers, we have:

F7 = 227
+ 1 = 59649589127497217 × 5704689200685129054721,

by Morrison & Brillhart in 1970 (published in 1971);

F8 = 228
+ 1 = 1238926361552897

× 93461639715357977769163558199606896584051237541638188580280321,

by Brent & Pollard in 1980 (published in 1981).
The Fermat number F11 has been completely factored in 1988. Two

small prime factors were long well-known; two more prime factors
were found by Brent (with the elliptic curve method), who indicated
that the 564-digit cofactor was probably a prime; this was shown to
be the case by F. Morain.

The number F9 was factored in 1990 by A.K. Lenstra and M.S.
Manasse. It could not resist the number field sieve method. The
most recently factored Fermat number is F10; the factorization was
completed by Brent in 1995.

All this, and much more, was said in the sections dealing with
Fermat and Mersenne numbers.

In a paper of 1988, dedicated to Dov Jarden, Brillhart, Montgom-
ery & Silverman gave the known factors of Fibonacci numbers Un
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(for n odd, n ≤ 999) and of Lucas numbers Vn (for n ≤ 500). The
factorizations were complete to n ≤ 387 and n ≤ 397, respectively.
In April 2003, Montgomery reported that the factorizations of Un
and Vn had been finished for all n ≤ 1000. This pushes much further
the work which had been done by many other numerologists, among
whom Jarden (see the third edition of his book, 1958).

Here are some more noteworthy factorizations, which at their time
represented an important step forward:

10103 + 1
11

= 1237 × 44092859 × 102860539 × 984385009

× 612053256358933 × 182725114866521155647161
× 1471865453993855302660887614137521979,

factorization completed by Atkin and Rickert in 1984.
A.K. Lenstra and M.S. Manasse were “pleased to announce a first

factorization of a 100-digit number by a general purpose factorization
algorithm” (October 12, 1988); such an algorithm factors a number
N in a deterministic way, based solely on the size of N , and not on
any particular property of its factors; in its worst case, the running
time for factorization is nearly the same as the average running time.

The happy number was

11104 + 1
118 + 1

= 86759222313428390812218077095850708048977

× 108488104853637470612961399842972948409834611525790577216753.

The number field sieve method was used to completely factor the
138-digit number 2457 + 1, which is equal to 3 × P49 × P89, Pn
denoting a prime with n digits. This was one of the good successes
of the special number field sieve (SNFS) method, achieved by A.K.
Lenstra and M.S. Manasse in November 1989; newspapers reported
this feat, sometimes at front page!

In 1992, A.K. Lenstra and D. Bernstein factored the 158-digit
Mersenne number M523 into two prime factors with 69 and 90 digits
respectively, using an SNFS implementation on two massively par-
allel supercomputers.

An extraordinary factorization was announced in April 1999 by a
group calling itself The Cabal. Using SNFS again, they factored the
repunit number (10211−1)/9 into a product P93×P118, establishing
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a record for the largest penultimate prime factor ever found. This was
the collective effort of S. Cavallar, B. Dodson, A. Lenstra, P. Leyland,
W. Lioen, P. Montgomery, H. te Riele and P. Zimmermann.

In the following subsection I shall discuss public key cryptography,
where numbers are involved which should be extremely difficult to
factorize.

For a deeper understanding of primality and factorization, I warmly
recommend the new book by Crandall & Pomerance (2001). It con-
tains the most important methods and proofs and was written by
two renowned authorities in the subject.

Anyone interested in primality testing, factorization, or similar
calculations with very large numbers needs, of course, access to high-
speed sophisticated computers of the latest generation. There is still
pioneering work to be done in the development of gadgets adaptable
to personal computers. These will allow us to reach substantial re-
sults in the comfort of home. If it is snowing outside—as is often the
case in Canada—you may test your prime, keeping warm feet.

E Public Key Cryptography

Owing to the proliferation of means of communication and the need
to send messages—like bank transfers, love letters, instructions for
buying stocks, secret diplomatic information, as, for example, reports
of spying activities—it has become very desirable to develop a safe
method of coding messages. In the past, codes have been kept secret,
known only to the parties sending and receiving the messages, but
it has often been possible to study the intercepted messages and
crack the code. In simpler cases, it would be enough to study the
frequency of symbols in the message. In war situations, this had
disastrous consequences.

Great progress in cryptography came with the advent of public
key crypto-systems. The main characteristics of the system are its
simplicity, the public key, and the extreme difficulty in cracking it.
The idea was proposed in 1976 by Diffie & Hellman, and the ef-
fective implementation was proposed in 1978 by Rivest, Shamir, &
Adleman. This crypto-system is therefore called the RSA-system. I
shall describe it now.

Each letter or sign, including blank space, corresponds to a 3-
digit number. In the American Standard Code for Information In-
terchange (ASCII), this correspondence is the following:
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— A B C D E F G H
032 065 066 067 068 069 070 071 072

I J K L M N O P Q
073 074 075 076 077 078 079 080 081

R S T U V W X Y Z
082 083 084 085 086 087 088 089 090

Each letter or sign of the message is replaced by its corresponding
3-digit number, giving rise to a number M , which represents the
message.

Each user A of the system lists in a public directory his key, which
is a pair of positive integers: (nA, sA). The first integer nA is a prod-
uct of two primes, nA = pAqA, which are chosen to be large and are
kept secret. Moreover, sA is chosen to be relatively prime with both
pA − 1, qA − 1.

To send a message M to another user B, A encrypts M—the way
to encode M depends on who will receive it. Upon receiving the
encoded message from A, the user B decodes it using his own secret
decoding method.

In detail, the process goes as follows. If the message M ≥ nB, it
suffices to break M into smaller blocks; so it may be assumed that
M < nB. If gcd(M,nB) �= 1, a dummy letter is added to the end of
M , so that for the new message, gcd(M,nB) = 1.
A sends to B the encoded message EB(M) = M ′, 1 ≤ M ′ < nB,

where M ′ is the residue of MsB modulo nB: M ′ ≡ M sB (mod nB).
In order to decode M ′, the user B calculates tB, 1 ≤ tB < (pB −

1)(qB − 1) = ϕ(nB), such that tBsB ≡ 1 (mod ϕ(nB)); this is done
once and for all. Then

DB(M ′) = M ′tB ≡ M sBtB ≡ M (mod nB),

so B may read the message M . How simple!
In truth, as it always happens, some technical problems appear.

They are discussed in specialized books and numerous articles. Here
I adopt a simplistic point of view, illustrated with an example. To
make it easier, the message is encoded by groups of two letters—
which is not what happens in practice.

Now put your hand in your pocket and pick up your little calcula-
tor. Below is an encoded message which a certain person is sending to
an individual whose public key is (n, s), where n = 156287, s = 181:
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151474036925076974117964029299026654036925101743109701
095179152070068045055176008329001574149966031533117864
154599013907031533013986012353068045133750126510137349
117864113338128986117864110052047607001574010738003772
096642117864070838109145011098117864028600117864056547
117864083567041271109145056006

You don’t know the secret prime factors of n. Can you decode the
message? The answer is printed somewhere in this book.

I shall now say a little bit on how to crack the crypto-system. It
is necessary to discover ϕ(nA) for each user A. This is equivalent to
the factorization of nA. Indeed, if pA, qA are known, then ϕ(nA) =
(pA − 1)(qA − 1). Conversely, putting p = pA, q = qA, n = nA, from
ϕ(n) = (p− 1)(q − 1) = n+ 1 − (p+ q), (p+ q)2 − 4n = (p− q)2 (if
p > q), then

p+ q = n+ 1 − ϕ(n),
p− q =

√
[n+ 1 − ϕ(n)]2 − 4n,

and from this, p, q are expressed in terms of n, ϕ(n).
There is much more to be said about the RSA crypto-system:

(a) how to send “signed” messages, so that the receiver can un-
mistakably identify the sender;

(b) how to choose well the prime factors of the numbers nA of
the keys, so that the cracking of the system is unfeasible with
currently known means.

In relation to (b), it is of foremost importance for the protection of
the message that the public key can not be factorized. So, how many
digits should the key have in order to make the potential factoring
time prohibitive?

To test this point, various keys have been proposed to mathemati-
cians as a factoring challenge. Among them was the following 512-bit
number, called RSA-155 to indicate that it has 155 decimal digits:

RSA-155 =
10941738641570527421809707322040357612003732945449
20599091384213147634998428893478471799725789126733
24976257528997818337970765372440271467435315933543
33897
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This number had carefully been generated as a possible key for
the Rivest-Shamir-Adleman method. The challenge to factorize it
was broken in August 1999 by a team of scientists from six different
countries, led by H. te Riele. They used the general number field
sieve to disclose the following two 78-digit prime factors:

10263959282974110577205419657399167590071656780803
8066803341933521790711307779,

10660348838016845482092722036001287867920795857598
9291522270608237193062808643

This breakthrough showed, much earlier than expected when the
practical use of the RSA method was started, that the popular key-
size of 512 bits is no longer safe. As a result, 768-bit keys (about 230
digits) are now recommended as the minimum for achieving reliable
security. Their two prime factors p, q, chosen at random, should be
of equal size.

The current RSA factoring challenge includes, in a notation in-
dicating number of bits, the numbers RSA-576 (174 decimal dig-
its) through RSA-2048 (617 digits). Rewards range from $10,000 to
$200,000 (US Dollars).

For all these questions, the reader may consult the original pa-
pers of Rivest, Shamir & Adleman (1978), and of Rivest (1978).
There are, of course, many expository papers and books on the sub-
ject. See the paper by Couvreur & Quisquater (1982) as well as—
pardon me the other writers of nice expository papers—the books
of Riesel (1985), Koblitz (1987), Bressoud (1989), Coutinho (1999),
and Wagstaff (2003). And, for example, the lecture notes of Lemos
(1989), which are written in Portuguese—it is like studying cryp-
tography in an encrypted language. Perhaps all this at Copacabana
Beach.
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