MULTIVARIATE DATA EXPLORATION

This chapter contains our first excursion away from the simple problems of univariate
samples and univariate distribution estimation. We consider samples of simultaneous
observations of several numerical variables. We generalize some of the exploratory
data analysis tools used in the univariate case. In particular, we discuss histograms
and kernel density estimators. Then we review the properties of the most important
multivariate distribution of all, the normal or Gaussian distribution. For jointly nor-
mal random variables, dependence can be completely captured by the classical Pear-
son correlation coefficient. In general however, the situation can be quite different.
We review the classical measures of dependence, and emphasize how inappropri-
ate some of them can become in cases of significant departure from the Gaussian
hypothesis. In such situations, quantifying dependence requires new ideas, and we
introduce the concept of copula as a solution to this problem. We show how cop-
ulas can be estimated, and how one can use them for Monte Carlo computations
and random scenarios generation. We illustrate all these concepts with an example
of coffee futures prices. The last section deals with principal component analysis, a
classical technique from multivariate data analysis, which is best known for its use in
dimension reduction. We demonstrate its usefulness on data from the fixed income
markets.

2.1 MULTIVARIATE DATA AND FIRST MEASURE OF DEPENDENCE

We begin the chapter with an excursion into the world of multivariate data, where
dependencies between variables are important, and where analyzing variables sepa-
rately would cause significant features of the data to be missed. We try to illustrate
this point by means of several numerical examples, but we shall focus most of our
discussion on the specific example of the daily closing prices of futures contracts
on Brazilian and Colombian coffee which we describe in full detail in Subsection
2.2.4 below. We reproduce the first seven rows to show how the data look like after
computing the daily log-returns.
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[,1] [,2]
[1,] -0.0232 -0.0146
[2,] -0.0118 -0.0074
[3,]1] -0.0079 -0.0074
[4,1] 0.0275 0.0258
[5,]1] -0.0355 -0.0370
[6,1] 0.0000 0.0000
[7,1 0.0000 -0.0038

Each row corresponds to a given day, the log return on the Brazilian contract being
given in the first column of that row, the log return of the Colombian contract being
given in the second one. As we shall see in Subsection 2.2.4, the original data came
with time stamps, but as we already explained in the previous chapter, the latter are
irrelevant in the static analysis of the marginal distributions. Indeed, for that purpose,
the dependence of the measurements upon time does not play any role, and we could
shuffle the rows of the data set without affecting the results of this static analysis.

The data set described above is an example of bivariate data. We consider ex-
amples of multivariate data sets in higher dimensions later in the chapter, but in the
present situation, the data can be abstracted in the form of a bivariate sample:

(CC17Z/1), (anyZ)v (vayS)a ~~~~~~ ) (xnvyn)v

of random variables with the same joint probability distribution. The goal of this
chapter is the analysis of the statistical properties of this joint distribution, and in
particular of the dependencies between the components X and Y of these couples.
Recall from Chapter 1 that if X and Y are real valued random variables, then their
joint distribution is characterized by their joint cdf which is defined by:

(z,y) — Fixy)(z,y) =P{X <z, Y <y} (2.1)

This joint distribution has a density f(x y)(z,y) if the joint cdf can be written as an
indefinite (double) integral:

Ty
Fixy(z,y) = / / fxw)(@'y') da'dy
in which case the density is given by the (second partial) derivative:

O*Fixyy(z,y)

f(X,Y)(fL”Z/) = 92y

Setting y = +o0 in (2.1) leads to a simple expression for the marginal density fx ()
of X. It reads:
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+oo
Fxla) = / Focr (@ )y
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and similarly

+oo
fr(y) = / Foory (@ y)da.

2.1.1 Density Estimation

The notions of histogram and empirical cdf used in the previous chapter can be gen-
eralized to the multivariate setting. Let us discuss the bivariate case for the sake of
definiteness. Indeed, one can divide the domain of the couples (x;,y;) into plaque-
ttes or rectangular bins, and create a surface plot by forming cylinders above these
plaquettes, the height of each cylinder being proportional to the number of cou-
ples (z;,y;) falling into the base. If the lack of smoothness of the one-dimensional
histograms was a shortcoming, this lack of smoothness is even worse in higher di-
mensions. The case of the empirical cdf is even worse: the higher the dimension, the
more difficult it becomes to compute it, and use it in a reliable manner. The main
drawback of both the histogram and the empirical cdf is the difficulty in adjusting to
the larger and larger proportions of the space without data points. However, they can
still be used effectively in regions with high concentrations of points. As we shall see
later in this chapter, this is indeed the case in several of the S-P1us objects used to
code multivariate distributions.

The Kernel Estimator

The clumsiness of the multivariate forms of the histogram is one of the main reasons
for the extreme popularity of kernel density estimates in high dimension. Given a
sample (1,Y1),- -, (Tn,y,) from a distribution with (unknown) density f(z,y),
the formal kernel density estimator of f is the function fb defined by:

o) = iz 3K (o) ] @2

where the function K is a given non-negative function of the couple (z,y) which
integrates to one (i.e. a probability density function) which we call the kernel, and
b > 0 is a positive number which we call the bandwidth. The interpretation of for-
mula (2.2) is exactly the same as in the univariate case. If (x, y) is in a region with
many data points (x;,y;), then the sum in the right hand side of (2.2) will contain
many terms significantly different from 0 and the resulting density estimate f,(z, )
will be large. On the other hand, if (z,y) is in a region with few or no data points
(24,y;), then the sum in the right hand side of (2.2) will contain only very small
numbers and the resulting density estimate fb(a:, y) will be very small. This intuitive
explanation of the behavior of the kernel estimator is exactly what is expected from
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any density estimator. Notice that the size of the bandwidth b regulates the extent to
which this statement is true by changing how much the points (x;, y;) will contribute
to the sum.

S-Plus Implementation

There is no function for multivariate histogram or kernel density estimation in the
commercial distribution of S-P1lus, so we added to our library the function kdest
which takes a bivariate sample as argument, and produces an S object (a data frame
to be specific) containing a column for the values of the density estimator, and two
columns for the values of the coordinates of the points of the grid on which the
estimate is computed. To be specific, if X and Y are numeric vectors with equal
lengths, the command:

> DENS <- kdest (X,Y)

produces a data frame with three columns. Selecting these three columns and using
one of the 3-D surface plot commands will produce a surface plot of the values of the
kernel density estimate over a regular grid of 256 x 256 points covering the range of
the bivariate vector (X,Y), i.e. at points of the (z, y)-plane for which z grows from
xmin to xmax and y grows from ymin to ymax in n = 256 regular increments. The
size of the grid and the default values of the bandwidth parameters can be specified
by the user. We illustrate the results of the (bivariate) kernel density estimation with
a couple of examples.

o The first example concerns part of a data set which we will study thoroughly in
the next chapter. The surface plot of Figure 2.1 is the result of running the command
kdest on two data vectors X and Y derived from the values of indexes computed
from the share values and the capitalizations of ENRON and DUKE over the period
ranging from January 4, 1993 to December 31, 1993. The well-separated bumps
show clearly that the observations (z;,y;) can be divided into several subsets which
can be discriminated from each other on the basis of the values of the two variables.
This situation is very much sought after in pattern recognition applications where the
goal is to subdivide the population into well-defined, and hopefully well separated,
clusters which can be identified by their local means, for example.

e Our second example concerns, once more, the daily closing values of the S&P
500 index. The goal is to estimate the joint probability density of the log-return com-
puted on a period of 5 days starting on a given day, and the log-return computed on a
period of 15 days ending the same day. The scatterplot of these two variables is given
in the left pane of Figure 2.2. From a central blob of points two sparse clouds extend
in the direction of the negative z-axis and the positive y-axis. The most interesting
feature of this scatterplot, however, is the following: the large positive values of the
5 days log-returns follow large negative values of the 15 days log-returns. Anticipat-
ing the discussion of the correlation coefficient introduced in the next subsection, we
suspect there being a negative correlation between the two returns: indeed comput-
ing the correlation between these two variables gives a value approximately equal to
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Fig. 2.1. Kernel density estimate for the utility data

—.5. The density estimate reproduced in the right pane shows that the central blob of
points appearing in the scatterplot is in fact formed by two separate narrow bumps.
But this density estimate fails to reproduce the trail of points in the right part of
the scatterplot. As we explained earlier, we believe that these points are responsi-
ble for the significant negative correlation, and we do not like seeing them ignored
by the kernel density estimator. The problem is very delicate. A smaller bandwidth
restores the presence of these points, but the surface would be so rough that the den-
sity estimate would be less instructive than the scatterplot itself. On the other hand
a larger bandwidth gives a smoother surface, but the latter becomes unimodal, wip-
ing out the signs of possible separate bumps near the center of the distribution. We
chose the bandwidth to reach a compromise between these extremes, but as we al-
ready explained, we lost the trail of days responsible for the negative correlation.
Unfortunately, the serious difficulties experienced in the analysis of this example are
typical of many of the real-life applications in which one would like to use density
estimation.

2.1.2 The Correlation Coefficient

Motivated by the previous discussion of the evidence of a possible linear dependence
between variables, we introduce the correlation coefficient between two random vari-
ables. This theoretical concept and its empirical counterpart are designed to capture
this type of linear dependence. It is the most widely-used measure of dependence
between two random variables. It is called the Pearson correlation coefficient. For



54

PDER15

0.1

027

037

2 MULTIVARIATE DATA EXPLORATION

0.2

0.17

0.0 7

200

N
.

A
i
)

!

v

ol

o
o
K
Xy

(O
o
““8“
““‘“‘
B

m
s
i
Xy

>

e

(3
i
o
()

(
XS
il
“‘\\\‘
(0 ‘\“

Y
(X
%

f,
$
(X
s

-
0

T
7
o
W

W
X

[N

0
i
o

s
0
5
B
$ \:‘

)

!
“““
‘|
\““‘
!
!
‘:“
(X

3
i\
&

i

A

T T T T T T
03 02 0.1 0.0 0.1 0.2
DER5

Fig. 2.2. Scatterplot (left) and kernel density estimate (right) for the 5 days & 15 days S&P
log-returns

random variables X and Y it is defined as:
cov{X,Y}

0Xx0y

pp{X,Y} = 2.3)

where the covariance cov{X, Y} is defined by:
cov{X, YV} =E{(X —E{X})(Y —E{Y})} = E{XY} - E{X}E{Y} (2.4)

and where o x and oy denote as usual the standard deviations of X and Y, respec-
tively, i.e.

ox = VE{(X - E{X})? = VE{X?} - E{X}? (2.5)

and similarly for oy . If X and Y have a joint density f(z,y) then the definition of
the covariance can be rewritten in terms of a double integral as:

corX.Y} = [ [ ayfo.y)dody - ( / xfx<:c)dx) ( / yfy(y)dy)-

Because of its frequent use, the subscript P is often dropped from the notation, and
the Pearson correlation coefficient is commonly denoted by p. The empirical analog
of this measure of dependence is defined for samples z1, ..., z, and y1, ..., y,. By
analogy with formula (2.3) it is defined as:

cov{X, Y}

MX. YV =
X, Y} rr

(2.6)

and it is called the empirical correlation between the samples. Here, the empirical
covariance cov{ X, Y} is defined by:
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n

— 1 1O
cov{X,Y} = o Z(ﬂfz‘ —T)(yi —Y) = o Z%‘yz‘ Ty 2.7
=1 =1

where we used the notations = and % for the sample means of x and y defined by:

i €X; and Y= i Yi, (2.8)
i=1 =1

and where the sample standard deviations 6 x and &y are defined by:

T =

Sl
S|

n

1 1
by — )2 — 2 _ =2
ox = fZ(xﬁx) = Ein - (2.9)
=1 1=1
and similarly for &y . Some of the properties of these correlation coefficients are well
known. Others are less so. We review them in order to emphasize the usefulness of

the correlation coefficient, and at the same time to stress its limitations.

Properties of the Correlation Coefficient

The most immediate properties of the correlation coefficient are:

e The real numbers p and p are always between —1 and +1
e p = 0 when the random variables X and Y are independent
e p=1whenY is a linear function of X.

These simple properties have lead to the following usage of the sample correlation
coefficient p. The samples are regarded as independent when p is small, while the
samples are regarded as strongly dependent when p is close to 1 or —1. We shall see
below that this practice is okay when the samples come from a multivariate normal
distribution, but it can be very misleading for other distributions.

The properties listed in the three bullets above are well known. Their intuitive
content is the main reason for the enormous popularity of the correlation coefficient
as a measure of dependence.

What is often overlooked is the fact that the Pearson correlation coefficient is
only a measure of linear dependence between two random variables. In fact, p mea-
sures the relative reduction of the response variation by a linear regression. Indeed,
anticipating our upcoming discussion on least squares linear regression, we can use
the following general formula

U2{Y} — ming, g, E{|Y - Bo — 51X‘2}
o {Y}

p{X, Y} =

to justify this claim. The numerator of the right hand side is the difference between
the variation in the variable Y, and the smallest possible remaining variation after
removing a linear function 3y + 31 X, of X. This formula gives the slope of the least
squares regression line of Y against X in terms of pp.
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Finally, we close this section with a very surprising property of the Pearson corre-
lation coefficient. Strangely enough, this property is little known despite its important
practical implications, especially in the world of financial models. If the marginal
distributions of X and Y are given, but no information is given on the nature of their
dependence or lack thereof, the possible values of the correlation coefficient p are
limited to an interval [p.min, Pmaz]- However, contrary to popular belief, this interval
is not always the whole interval [—1, +1]. There are cases for which this interval is
much smaller, even for frequently-used distributions. See for example Problems 2.3
and 2.7 at the end of this chapter, where the case of lognormal random variables is
analyzed in detail.

2.2 THE MULTIVARIATE NORMAL DISTRIBUTION

We start our analysis of multivariate statistical distributions with the case of the
well-known normal family. All the reasons we gave for the popularity of the uni-
variate normal distribution still hold in the multivariate case. Moreover, the possible
competition from other distribution families vanishes. Indeed, the normal family is
essentially the only one for which explicit analytic computations are possible. We
first give an abstract definition and concentrate on the interpretation of the conse-
quences of such a definition. Even though most of the explicit computations done in
the book will be limited to the bivariate case, we start with the general definition of
the multivariate normal distribution because of its widespread use in portfolio theory
where realistic situations involve very large numbers of instruments. Because of this
general setup, the discussion which follows is of rather abstract nature, and a quick
look at the contents of Appendix 1 at the end of the chapter may help with some of
the mathematics.

One says that k real valued random variables 71, ..., Zj are jointly normal, or
that their distribution is a multivariate normal distribution, if the joint density of Z1,
..., Z} 1s given by:

_ ! L w1,
f oz (21,0 2) = (27r)kdet(§3)exp< 2[z ul'E" [z u]) (2.10)

for some k x k invertible matrix 3 and a k-dimensional vector . In this formula
we used the notation Z for the k-dimensional vector whose components are the Z;’s.
The above definition is usually encapsulated in the notation:

7z~ Nk(,uv 2)

to signify that the random vector has the k-variate normal distribution with mean
vector 4 and variance/covariance matrix . This terminology is consistent with the
standard practice of probability calculus with random vectors and matrices, which
we recall in Appendix 1 at the end of the chapter. p is the £ x 1 vector of means
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i = E{Z;} and ¥ is the variance/covariance matrix whose entries are 3, ; =
cov{Z;, Z;}. Using the convention introduced in the appendix, this reads:

E{Z} =pu and Yz =3.

According to its definition (2.17), the entries of the covariance matrix Yz are the
covariances cov{Z;, Z; }, and consequently, the knowledge of all the marginal (bi-
variate) distributions of the couples (Z;, Z;) is enough to determine the entire joint
distribution. This particular property is specific to the multivariate normal distribu-
tion. It does not hold for general distributions. Moreover, the matrix calculus devel-
oped for random vectors in Appendix 1 implies that:

Z ~ Ne(1,®) when Z=p+3"Y2X and X~ Ni(0,I;) (2.11)

where I, denotes the k& x k identity matrix, and 3'/2 denotes the square root of the
symmetric nonnegative-definite matrix 3. See Problem 2.8 at the end of the chapter
for details on the definition and the first properties of this square root matrix. In other
words, starting from a random vector X with independent N (0, 1) components (see
the following remark) we can get to a vector Z with the most general multivariate
normal distribution just by linear operations: multiplying by a matrix and adding a
vector. This simple fact is basic for the contents of the following subsection.

Important Remark about Independence

If the random variables Z; are independent, then obviously all the covariances
cov{Z;, Z;} are zero when ¢ # j, and the variance/covariance matrix X'z is diagonal.
The converse is not true in general, even when the random variable Z;’s are normal
! See for example Problem 2.5 for a counter-example. But the converse is true when
the Z;’s are jointly normal ! This striking fact highlights what a difference it makes
to assume that the marginal distributions are normal, versus assuming that the joint
distribution is normal. The proof of this fact goes as follow: if X'z is diagonal, then:

1 tg1—1 (21 — Ml)2 (22 — M2)2 (2 — ,uk)2
—lz—pul'® —pl= =7 4 7= PE \ow PR
Sz = p'E [z — 4] 207t g T T

if we denote by 07, 03, . .., o2 the elements which appear on the diagonal of X'z. So

using the definition (2.10) of the multivariate normal distribution, this implies that:

f(21.25....20) (215 22, .. s 2k) = fz,(21) f2,(22) -+ [z, (20),

which in turn implies that the joint cdf is the product of the marginal cdf’s, proving
the desired independence property. So the conclusion is that:

For jointly normal random variables, independence is equivalent to the vari-
ance/covariance matrix being diagonal !

2.2.1 Simulation of Random Samples

We now show how one can use formula (2.11) to generate random samples from a
multivariate normal distribution. To that end, we assume that we are given a k x 1
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vector p of means, and a k x k variance/covariance matrix 3, and that we want to
generate a sample of size N from the distribution N (i, X). We proceed as follows:

1. We create a k x N-matrix whose columns are all identical, any column being a
copy of the mean vector y;

2. We generate a sample of size Nk from the standard normal distribution and
reshape this (N x k) x 1 vector into a k x N-matrix;

3. We compute a square root for the variance/covariance matrix, then we multiply
each column of the random matrix constructed in Step 2, by the square root of
the variance/covaiance matrix;

4. We add the matrix of means constructed in Step 1 to the random matrix con-
structed in Step 3 above.

Notice that Step 3 (which is the most involved) is not needed when 3 = I. The
details of this random generation algorithm are given in Problem 2.8 at the end of
the chapter. There, we show how to compute the square root of a covariance matrix
and we develop the code for a home grown function capable of generating samples
from a multivariate normal distribution. Writing this code is just for the sake of
illustration, since S-P1lus provides the function rmvnorm whose use we illustrate
in Subsection 2.2.3 below.

2.2.2 The Bivariate Case

In the bivariate case we have:
2
o 010
= M1 and 3= 1 P 12 2
H2 po102 05
and consequently, the joint density can be written as:

[PAPRICS PR— —
(Z1,22) 171> 22) = 27“7102\/@
exp ( 1 [(21 —m)?® (21— ) (22 — po) n (22 — N2)2D .

1— p? 202 0109 203

This formula shows that, if we know the marginal distributions of Z; and Z5, in
other words, if we know p1, 01, s and oo, then the joint distribution is entirely
determined by the correlation coefficient p. Also, we clearly see from this formula
that when p = 0 we have:

1 <_(21 —m)? (22— M2)2>

e _
2mo109

fiz.z)(21,22) = 202 202

1 ox (_ (21 — ,u1)2) 1 ox (_ (22 — M2)2>
T Voo O 207 ) \amor ¥ 203
= fZ1 (Zl)fZQ(ZQ)
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which shows the independence of Z; and Zs. So we recover the fact that if Z; and
Zy, are jointly Gaussian, their independence is equivalent to their being uncorrelated.
As we already pointed out, this fact is not true in general, not even when Z; and Z,
are (separately) Gaussian. See Problem 2.5 for a counterexample.

2.2.3 A Simulation Example

For the sake of illustration, we consider the case of the distribution of a couple of
(slightly correlated) normal random variables X and Y, and we generate one sample
of size n = 128 from the joint distribution of (X, Y"). We use the S-P1lus command:

> TSAMPLE<-rmvnorm(n=128,mean=rep(0,2),sd=rep(l,2),rho=.18)
> TDENS <- kdest (TSAMPLE[,1],TSAMPLE[,2])

The function rmvnorm is the multivariate analog of rnom. It is designed to gen-
erate multivariate normal samples. We chose the vector [0, 0] for the mean by us-
ing the command rep (0, 2) which creates a vector by repeating the number zero
twice, and we used the command rep(1,2) to specify that both components
have standard deviations equal to one. Finally, we decided on the correlation co-
efficient p = .18 by setting the parameter rho. We could have given the entire
variance/covariance matrix by specifying the parameter cov instead of giving the
vector of standard deviations and the correlation coefficient separately. See the help
file for details. The second command computes a kernel density estimator (with the
default kernel and bandwidth choices) and plots the resulting surface. The output

on 0080 0420

’1

Fig. 2.3. Kernel Density Estimator for a (Bivariate) Normal Sample

is given in Figure 2.3. We see that the unimodality of the density is violated by the
estimate which seems to indicate the presence of several bumps. Increasing the band-
width would resolve this problem, at the cost of a looser fit, by somewhat flattening
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the central bump. The poor quality of the estimation is to be blamed on the small
size of the sample: in general, the higher the dimension, the larger is the sample size
needed to get reasonable density estimates.

2.2.4 Let’s Have Some Coffee

We use Paul Erdos’ famous quote:

A mathematician is a machine that turns caffeine into theorems

as a justification for our interest in the price of coffee. As explained in the abstract
at the beginning of the chapter, we chose to illustrate the analysis of multivariate
distributions with a simple example of two quantities which are obviously correlated.
We use samples of log-returns of Brazilian and Colombian coffee spot prices. The
original data are plotted in Figure 2.4, which shows the daily spot prices of coffee
in Brazil and Colombia between January 9, 1986 and January 1, 1999. We do not

Erazilian
Colombian

lf:l Ll lgpl 1 IEED

! qul L JIun

T T T L LA LA LA NN S L B |
1986 1987 1988 1989 1990 1991 1982 1993 1984 1995 1995 1997 1998 1999

Fig. 2.4. Sequential plot of the daily prices of coffee in Brazil and Colombia from January 9,
1986 to January 1, 1999.

give the S-P1lus commands used to produce Figure 2.4 as they involve time series
objects which we will consider only in Part III of the book. The data of interest to
us in this section are contained in the S objects BCofLRet and CCofLRet. They
are the two columns of a data matrix given at the beginning of the first section of
this chapter. For each day of the period starting January 10, 1986 and ending January
1, 1999, we computed the logarithms of the daily returns from the nearest futures
contract active on that day. The scatterplot of these two variables is given in Figure
2.5. A close look at this scatterplot shows that many points are on the vertical axis and
on the horizontal axis. This means that quite often, the price does not change from
one day to the next, forcing the log returns to vanish on these days. The presence
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Fig. 2.5. Scatterplot of the daily log-returns of the coffee futures contracts in Brazil and
Colombia from January 10, 1986 to January 1, 1999.

of so many of these zeroes indicates that the probability distributions are singular,
in the sense that the cumulative distribution functions have jumps at 0. These jumps
can be a hindrance to the analysis, so we choose to remove them by removing the
zeroes from the data samples.

> NZ <- (BCofLRet != 0 & CCofLRet != 0)
> BLRet <- BCofLRet[NZ]
> CLRet <- CCofLRet[Nz]

The vector NZ created by the first command is a boolean vector with the same length
as BCofLRet and CCofLRet. It is true (equal to T) when both the daily Brazilian
and Colombian log-returns are non-zero. The next two commands show the power
of the sub-scripting capabilities of the S language. BLRet and CLRet are the vec-
tors obtained by keeping the entries of BCofLRet and CCofLRet whose indices
are those for which the value of Nz is T. The scatterplot of BLRet and CLRet is
reproduced in the left pane of Figure 2.6.

We shall work with this new bivariate sample from now on, but we should keep
in mind that, if we want to compute statistics of the actual log-returns, we need to
put the zeroes back. The command

> PNZ <- mean (NZ)
> PNZ
[1] 0.4084465
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gives the proportion of T’s in the vector NZ, and it should be viewed as an estimate
of the probability not to have a zero in the data. This probability could be used to
add a random number of zeroes should we need to create random samples from the
original distribution using samples from the modified distribution.

2.2.5 Is the Joint Distribution Normal?

The first question we address is the normality of the joint distribution of BLRet
and CLRet. Our first step is quite mundane: we compare graphically the joint (em-
pirical) distribution of BLRet and CLRet to the distribution of a bivariate normal
sample which has the same five parameters (i.e. means, standard deviations and cor-
relation coefficient). In order to do so, we first compute these parameters. We use the
commands:

XLIM <- c(-.4,.3)

YLIM <- c(-.2,.4)

Mu <- c(mean(BLRet), mean (CLRet))
Sigma <- var (cbind(BLRet,CLRet))
N <- length(BLRet)

VvV V.V V V

We defined the vectors XL.IM and YLIM as the limits of the ranges of BLRet and
CLRet, respectively. We use these values each time we want to make sure that the
scatterplot of BLRet and CLRet on one hand and the scatterplot of the simulated
data on the other are on the same scale. As defined, Mu is the mean vector since it
is defined as the vector of the means. Next we use the S-P1lus function cbind
to bind the columns BLRet and CLRet into one single matrix, then applying the
function var to this data matrix produces the variance/covatiance matrix of the
columns. So Sigma is the variance/covariance matrix, and N is the sample size.
We use the S-Plus function rmvnorm to generate the desired bivariate sample
(z1,¥1), .-, (xN,yn) of size N from the bivariate Gaussian distribution with mean
Mu and variance/covariance matrix Sigma.

CNsim <- rmvnorm (N,mean=Mu,cov=Sigma)
par (mfrow=c(2,1))

plot (BLRet,CLRet, x1im=XLIM, ylim=YLIM)
plot (CNsim,x1im=XLIM, ylim=YLIM)

par (mfrow=c(1,1))

V V.V V VvV

Notice that we could just as well have used as well the home-grown function vnorm
developed in Problem 2.8 at the end of the chapter. The results are given in Figure 2.6.
Both scatterplots comprise an ellipsoidal cloud of points around the origin. Clearly,
this cloud seems to be thinner for the coffee data. However, even if we were to
consider that the bulk of the distribution had been reproduced in a reasonable manner,
the presence of isolated points in the empirical coffee data is a distinctive feature
which has not been reproduced by the simulation. This is a clear indication that the
joint distribution of BLRet and CLRet is not normal. There are many reasons why
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Fig. 2.6. Comparison of the empirical scatterplot of the coffee log-returns after the removal of
the zeroes (left) and of the scatterplot of the sample of the same size simulated from a jointly
Gaussian distribution with the same mean and covariance structure (right).

this could be the case. In general, it is because at least one of the variables, BLRet or
CLRet, is not normal. But these variables could be normally distributed even when
the joint distribution is not normal. We now check that this is not the case by showing
that the marginal distributions of BLRet and CLRet are not normal either.

2.3 MARGINALS AND MORE MEASURES OF DEPENDENCE

Trying to fit a multivariate distribution to a multivariate sample, as we did when
trying to fit a bivariate normal distribution to the sample of BLRet and CLRet,
may be trying to tackle all the difficulties at once, and may be overwhelming. So
instead, we try the divide and conquer approach: we first consider the estimation of
the univariate marginal distributions separately, and only after this has been done, do
we consider the issue of dependence. In the case of a bivariate sample from a normal
distribution, this would amount to first estimating the means and the variances of the
two variables separately, and then estimating the correlation coefficient. Since we are
interested in more general distributions, possibly with marginals having heavy tails,
we may not be able to use the correlation coefficient as a way to quantify dependence.
To this end, we review the most commonly used statistics measuring the dependence
of two samples, and we prepare for the concept of copula which will be introduced
and analyzed in the next section.

As before, we try to sprinkle the presentation of the mathematical concepts with
numerical examples, and we still use the example of the coffee data for that.
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2.3.1 Estimation of the Coffee Log-Return Distributions

We use the graphical tools introduced in Chapter 1, as encapsulated in the S-Plus
function eda . shape defined in appendix at the end of the book, as part of the in-
troduction to S-P1lus. The results of the applications of the function eda . shape
to BLRet and CLRet are reproduced in Figure 2.7. In both cases one sees clearly
that they differ significantly from the results of Figure 7.27 obtained from a nor-
mal sample, in the introductory session to S-P1lus reproduced in appendix to this
book. The histograms and kernel density estimates vouch for a unimodular distri-
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Fig. 2.7. Exploratory Data Analysis of the Brazialian (left) and Colombian (right) coffee daily
log-returns for the period from January 9, 1986 to January 1, 1999 after removal of the zeroes.

bution, possibly with extended tails on both sides. The presence of tails which are
heavier than normal is confirmed by the boxplots, which show a very large number
of observations outside the box. However, when it comes to the tails, the clearest
diagnostic is given by the Q-Q plots. The departures from the Q-Q lines are a clear
indication that the tails are much heavier than the tails of the normal distributions
with the same means and variances, so fitting of a generalized Pareto distribution
may be appropriate. Since the analysis of the marginal distribution of the daily log
returns of the Colombian coffee is essentially the same, we only report the analysis
of the Brazilian coffee.

Remark. Similar results would have been obtained with the original log return sam-
ples (prior to the removal of the zeroes) since the zeroes affect only the center of the
distribution and not the tails. The main difference would appear in the density plots.
Indeed, these density plots would seem absent and this requires an explanation.
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A closer look at the command used in the code of the function eda.shape
reminds us that the plot of the density estimate is restricted to the inter-quantile
interval. If we compute this interval for the data at hand, we see that the lower and
the upper quantile are essentially 0. This explains why no graph would be produced
by the density estimator.

As in the case of our analysis of the S&P 500 daily log-returns, we use the func-
tion gpd. tail to fit a generalized Pareto distribution to both BLRet and CLRet.
This function requires information on the locations of the tails in the form of two
parameters telling the program where these tails should start. We explained how to
choose these thresholds from a Q-Q plot of the data. We emphasize now the use of
the function shape.plot as an alternative tool. In practice we recommend a com-
bination of the two approaches to pick values for these thresholds. The commands

par (mfrow=c(1,2))
shape.plot (BLRet, tail="lower")
shape.plot (BLRet, tail="upper")
par (mfrow=c(1,1))

vV V. V V

produce the results given in Figure 2.8. From these plots we decide that the estima-
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Fig. 2.8. Maximum likelihood estimates of the shape parameters as functions of the thresholds
for the left tail (left pane) and right tail (right pane) of the distribution of the daily log returns
of the Brazilian coffee.

tion of the upper tail could be done to the right of the value .04, while the estimation
of the lower tail could be done to the left of the value —.045. Among other things,
this will guarantee that each tail contains a bit more than 8% of the data, namely
more than 115 points, which is not unreasonable. With this choice we proceed to the
actual estimate of the GPD with the command:

> B.est <- gpd.tail (BLRet, upper = 0.04, lower = -0.045)
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The function gpd. tail creates Q-Q plots (reproduced in Figure 2.9) of excesses
over lower and upper thresholds against the quantiles of a GPD. As we have men-
tioned several times, if the left parts of these plots are approximately linear, the es-
timation of the tail is expected to be good. These empirical facts can be justified by
mathematical results which are beyond the scope of this book. Also, these mathe-
matical results require the independence of the successive entries in the data set. In
other words, our analysis ignores the serial dependence between the successive log
returns. This is usually not a great mistake, and also we have rigorous results to back
up this claim. We check graphically the quality of the fit with the plots of the tails on
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Fig. 2.9. Estimation of the distribution of the daily log returns of the Brazilian coffee by a
generalized Pareto distribution.

a logarithmic scale.

par (mfrow=c(1,2))

tailplot (B.est,tail="1lower")
title("Lower tail Fit")
tailplot (B.est, tail="upper")
title("Upper tail Fit")

par (mfrow=c(1,1))

V V.V V V YV

The results are given in Figure 2.10. Given the point patterns, the fit looks very
good. We perform the analysis of the heavy tail nature of the distribution of the daily
log-returns of the Colombian coffee in exactly the same way.

First Monte Carlo Simulations

Motivated by the desire to perform a simulation analysis of the risk associated with
various coffee portfolios containing both Brazilian and Colombian futures contracts,
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Fig. 2.10. Goodness of the fits for the left tail (left pane) and the right tail (right pane).

we proceed to the Monte Carlo simulation of samples of log-returns using the tools
developed in the previous chapter. The commands:

> BLRet.sim <- gpd.2g(runif (length(BLRet)),B.est)
> CLRet.sim <- gpd.2g(runif (length(CLRet)),C.est)

generate samples BLRet . sim and CLRet . sim of the same sizes as the original
data, and from the GPD’s fitted to the data. To make sure that these samples have
the right distributions, we check that their Q-Q plots against the empirical data are
concentrated along the main diagonal. This is clear from Figure 2.11 which was
produced with the S-P1us commands:

ggplot (BLRet, BLRet.sim)
abline(0,1)
agplot (CLRet,CLRet.sim)
abline(0,1)

VvV V. V V

So it is clear that the distributions of the simulated samples are as close as we can
hope for from the empirical distributions of the Brazilian and Colombian coffee log-
returns. Since they capture the marginal distributions with great precision, these sim-
ulated samples can be used for the computations of statistics involving the log-returns
separately. However, they cannot be used for the computations of joint statistics since
they do not capture the dependencies between the two log-returns. Indeed, the simu-
lated samples are statistically independent. This is clearly illustrated by plotting them
together in a scatterplot as in Figure 2.12. We need to work harder to understand bet-
ter the dependencies between the two log-return variables, and to be able to include
their effects in Monte Carlo simulations.
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Fig. 2.11. Empirical Q-Q plot of the Monte Carlo sample against the empirical coffee log-
return sample in the case of the Brazilian futures (left pane) and the Colombian futures prices

(right pane).
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Fig. 2.12. Scatterplot of the Colombian coffee log-returns against the Brazilian ones (left
pane), and scatterplot of the Monte Carlo samples (right pane).

2.3.2 More Measures of Dependence

Because of the limitations of the correlation coefficient p as a measure of the de-
pendence between two random variables, other measures of dependence have been
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proposed and used throughout the years. They mostly rely on sample order statis-
tics. For the sake of completeness, we shall quote two of the most commonly used:
the Kendall’s 7 and the Spearman’s p. Given two random variables X and Y/, their
Kendall’s correlation coefficient p (X,Y") is defined as:

pr(X,Y) =P{(X1 - X2)(Y1 = ¥2) > 0} = P{(X1 — X3)(Y1 —Y2) <0} (2.12)

provided (X7, Y7) and (X5, Y3) are independent random couples with the same joint
distribution as (X, Y"). Even though the notation px should be used for consistency,
we shall often use the notation 7(X, Y") because this correlation coefficient is usually
called Kendall’s tau.

The dependence captured by Kendall’s tau is better understood on sample data. Given
samples x1,...,x, and y1,. .., y,, the empirical estimate of the Kendall correlation
coefficient is given by:
pX¥) = 1 sign (i — )1 — 1))
2/ 1<i<j<n

which shows clearly that what is measured here is merely the relative frequency with
which a change in one of the variables is accompanied by a change in the same
direction of the other variable. Indeed, the sign appearing in the right hand side
is equal to one when x; — x; has the same sign as y; — y;, whether this sign is
plus or minus, independently of the actual sizes of these numbers. Computing this
coefficient with S-P1lus can be done in the following way:

> cor.test (BLRet,CLRet,method="k")$Sestimate
tau
0.71358

The Spearman rho of X and Y is defined by:
ps(X,Y) = p{Fx(X), Fy (Y)}, (2.13)

and its empirical estimate from sample data is defined as:

n

ps(X,Y) = n(niiQ—l) 3 (rank(xi) _ ";Ll> (rank(yi) - ”;Ll> .

=1

The value of this correlation coefficient depends upon the relative rankings of the x;
and the y;. However, the interpretation of the definition is better understood from the
theoretical definition (2.13). Indeed, this definition says that the Spearman’s corre-
lation coefficient between X and Y is exactly the Pearson’s correlation coefficient
between the uniformly distributed random variables F'x (X) and Fy (Y"). This shows
that Spearman’s coefficient attempts to remove the relative sizes of the values of X
among themselves, similarlty for the relative values of Y, and then to capture what
is left of the dependence between the transformed variables. We shall come back to
this approach to dependence below. Spearman’s rho is computed in S-Plus with
the command:
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> cor.test (BLRET, CLRET, method="s") Sestimate
rho
0.8551515

2.4 COPULAS AND RANDOM SIMULATIONS

The first part of this section elaborates on the rationale behind the introduction of
Spearman’s correlation coefficient. As a warm up to the introduction of the abstract
concept of copula, we consider first the practical implication of the first of the two
fundamental facts of the theory of random generation as presented in Section 1.6.
Because of Fact 1, which reads:

X rv.withedf Fx () = Fx(X) uniform on [0, 1],

we can transform the original coffee log-return data and create a bivariate sample
in the unit square in such a way that both marginal point distributions are uniform.
Indeed, the above theoretical result says that this can be done by evaluating each
marginal cdf exactly at the sample points. In some sense, this wipes out the depen-
dence of the point cloud pattern, seen for example in the left pane of Figure 2.6,
upon the marginal distributions, leaving only the intrinsic dependence between the
variables. We use our estimates of the distribution functions of the coffee log-returns
as proxies for the theoretical distributions.

U <- gpd.2p(BLRet, B.est)

V <- gpd.2p(CLRet, C.est)

plot (U, V)

EMPCOP <- empirical.copula(U,V)

vV V V V

The first two commands use the function gpd. 2p from the FinMetrics module,
to compute the estimate of the cdf of the GPD, identified by the object of class gpd,
at the points given in its first argument. Figure 2.13 shows the result of the above
plot command. As expected all the data points are in the unit square. Moreover, the
first coordinates of the points seem to be uniformly distributed on the unit interval
of the horizontal axis, as they should be according to Fact 1, which was recalled
above. Similarly for the second coordinates. The fact that the marginal distributions
are now uniform is a sign that the influences of the original marginal distributions
have been removed from the data. The only remaining feature is the way the numbers
u; and v; are paired, and we claim that the dependence between the two log-returns is
captured by the way these couplings are done. The dense point concentration around
the second diagonal of the unit square is a consequence of this pairing, and it should
be viewed as a graphical representation of the intrinsic dependence between the two
random variates.
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(1]

Fig. 2.13. Dependence between the coffee log-returns after removing the effects of the
marginal distributions.

2.4.1 Copulas

The above discussion motivates the following abstract definition for capturing the
dependence between several random variates. The analysis of the coffee data will be
continued in Subsection 2.4.4.

Definition 1. A copula is the joint distribution of uniformly distributed random vari-
ables.

If Uy,...,U, are U(0,1), then the function C from [0,1] x --- x [0,1] into [0, 1]
defined by:
C(ula'--7un) :P{Ul < ula"'7Un < U/n}

is a copula. Moreover, if X1, ..., X,, arer.v’s with cdf’s F'x,, ..., F'x, respectively,
then the copula of the uniform random variables

U, ZFXl(X1)7~-~;Un:FXn(Xn)

is called the copula of (X7, ..., X,,). Copulas are typically used in the bivariate case
n = 2, or for n very large. The case n large is of crucial importance for the analysis
of the risk of large portfolios of financial instruments whose distributions are not well
accounted for by normal distributions. Unfortunately, except for the normal and the
Student copulas no other single copula is available in high dimension for analysis.
However, despite this limitation, we present the first properties of copulas in the
general case. This choice is justified by the crucial importance of risk-management
applications. On the other hand, a complete analysis is possible in the case n = 2,
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that offers a complete description of all the possible forms of dependence between
two random variables. We take that up in Subsection 2.4.3 below.

First Properties of Copulas

It is straightforward to check that:

e (' does not change if one replaces any of the X;’s by a non-decreasing functions
of itself;

e The joint cdf can be recovered from the copula and the marginal cdf’s via the
formula:

Fix, . x)(@,...,z0) = C(Fx,(21),..., Fx, (zn));

e Cisuniqueif Fix, . x,)(71,...,2,) is continuous (no jumps).

Moreover:

e C(uy,...,uy,)is non-decreasing in each variable u; since it is a cdf;

e C(1,...,1,u;1,...,1) = u; for all ¢ since the marginal distributions of a cop-

ula are uniformly distributed;
o if u; < wj; for all 4, then:

Z o Z (_1)il+i.l+inc(ui17 T uin) > 0.
1<i1<2 1<i, <2

This last inequality is very technical. It is reproduced here only for the sake of com-
pleteness. It essentially formalizes mathematically the fact that a copula is a multi-
variate cdf, and as such, it has to satisfy some positivity and monotonicity properties.
It is instructive to visualize the meaning of this condition in the bivariate case n = 2
for which one can easily check that it holds true on a picture!

2.4.2 First Examples of Copula Families

The following are examples of copulas.

o Independent copula
Cznd(u1, N 7un) =UL " Up-

This is the copula of independent random variables.

© Gaussian copula For each p € [—1, 1] the function defined by:

e~ [s7=2pst+%]/2(1—p%) g o 14

1 @) P (u2)
CGauS&ﬂ(ul’ up) = m [oo ‘KOO

is a copula called the Gaussian copula with parameter p. This is the copula of ran-
dom variables which, whether or not their marginal distributions are Gaussian, de-
pend upon each other as jointly Gaussian random variables do. The family of nor-
mal copulas is parameterized by the parameter p € [—1,+1]. Figure 2.14 gives
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the surface plot of this copula when p = .7, i.e. the plot of the graph of the func-
tion (u,v) — Cgauss,.7(u,v), together with the plot of its density. The fact that
the marginals of a copula are uniform is clearly seen on this plot. Indeed, the facts
C(u, 1) = wand C(1,v) = v force edges of the surface to be linear (coinciding with
the second diagonal) and to meet at height 1 above the point (1, 1).

Varying the parameter p is a way of varying the degree of dependence between
the two random variables. Notice that two normal random variables X and Y may
not be jointly normal if their copula is not in the normal family. They are jointly nor-
mal when the copula is from the normal family, in which case the parameter p has a
simple interpretation since it is the correlation coefficient of X and Y. This interpre-
tation is not valid in general. Indeed, if X and Y have Cauchy marginal distributions,
their (Pearson) correlation coefficient does not exist since Cauchy random variables
do not have means or variances . . ., but nevertheless, it is quite possible for their cop-
ula to be in the Gaussian family, i.e. to be equal to Cgguss,, for some p € [—1,+1].
However, in this case, the parameter p cannot have the interpretation of correlation
coefficient. Notice that, even though we only gave the formula in the bivariate case,

Fig. 2.14. Surface plot of the normal copula with parameter p = .7 (right), and of its density
(left).

it is quite easy to define the Gaussian copula for any number of dimensions, the
parameter now being a correlation matrix instead of a mere scalar.

o For each 8 € [0, 1] the function

(= 176, (_ 1/8
CGumbel,B(“l,Ug):e [(=logu1)™/P+(—loguz)™ /"]

is a copula called the Gumbel (or logistic) copula with parameter 3. The Gumbel
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Fig. 2.15. Surface plot of the Gumbel copula with parameter 5 = 1.5 (right), and of its density
(left).

copula family is parameterized by the parameter 3, however the latter does not have
as nice an interpretation as the parameter p of the Gaussian copula family. Figure
2.15 gives the surface plot of this copula when 8 = 1.5 together with the plot of
its density. As before, varying the parameter is a way of varying the strength of
the dependence between two random variables. This family appears naturally in the
analysis of extreme events, as it is quite often the case that the copula of random
variables with heavy tail distributions is of this family.

A complete list of the parametric copula families supported by the library
EVANESCE and the module FinMetrics is given in Appendix 2, where the reader
will also find the defining formulae together with some of the most important prop-
erties of these families.

2.4.3 Copulas and General Bivariate Distributions

The goal of this subsection is to show how copulas and univariate cdf’s come together
to characterize ALL the models of bivariate statistical distributions.

All the copulas which we consider in this book have a density. In other words,
the copulas C'(u, v) will be differentiable, and the function:
92
dudv
will be the density of the copula. Notice that since we are dealing with bivariate

distributions, we need a second order derivative in order to get a density from its cdf.
Instead of limiting ourselves to distributions with uniform marginals, we can apply

C(u,v)

c(u,v) =
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this remark to a general bivariate distribution as well. This leads to some interesting
formulae.

Let us denote by F{x,y the joint cdf of a couple (X,Y") of random variables,
and let us denote by C| xy their copula. For the sake of simplicity we momentarily
drop the subscript (X, Y") from the notation. According to our definition, we have:

F(Z‘, y) = C(FX(x)7 FY(y)) (2.14)

if we denote by F'x and Fy the cdf’s of X and Y respectively. We can compute the
joint density f(x y) of X and Y by taking partial derivatives on both sides of (2.14).
We get:

82

flz,y) = 8xayF(x,y)

= o Ol ), By () X 2

which gives the following formula for the joint density of X and Y:

f(@,y) = c(Fx(x), Fy (y)) fx(x) fr(y) (2.15)

in terms of the density of their copula, their marginal cdf’s and their marginal densi-
ties. Obviously we used the formulae

fx@) = Lhe@)  ad @) = LR

dx dy
giving the densities of X and Y in terms of their respective cdf’s. Formula (2.15)
has the following interesting consequence. Contrary to what can be done with the
correlation coefficient (see Problem 2.3 and Problem 2.7 for the striking example of
the lognormal distributions), it is always possible to specify a bivariate distribution
by specifying:

e the marginal distributions
e acopula

without having to worry about the existence of the distribution, Moreover, as formu-
lae (2.14) and (2.15) show, formulae for the components can be used to get formulae
for the cdf and the density of the bivariate distribution. Figure 2.16 shows an exam-
ple where we computed the density of a joint distribution specified by the Gumbel
copula with parameter 1.4, and with the normal distribution N(3,4) and the Stu-
dent ¢-distribution 7'(3) as marginals. A bivariate distribution can be created with
the command bivd, and the function persp . dbivd can be used to produce a 3-D
surface plot of the density of a bivariate distribution. The plot of Figure 2.16 was
obtained with the S-P1us commands:

> BIV1 <- bivd(gumbel.copula(l.4), "norm", "t", c(3,4), 3)
> persp.dbivd (BIV1)
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Fig. 2.16. Surface plot of the density of the bivariate distribution with Gumbel copula with
parameter 1.4 and marginal distributions N (3, 4) and T'(3).

The function persp.pbivd produces a surface plot of the cdf of the bivariate
distribution, but these plots are not very instructive, especially for copulas, as we can
see from Figure 2.14 and Figure 2.15. Indeed, all these copula surface plots show a
tent tied at the level 0 on the segments going from the origin (0, 0) to the points (0, 1)
and (1,0), and it is also tied at the point (1, 1) where its value is always 1, and it is
linear on the two coordinate planes. These properties are mere re-statements of the
first properties of copulas given in Subsection 2.4.1. These constraints are common to
all the copula surface plots, so it is extremely difficult to differentiate between them
from the plots of their cdf’s. For this reason, one very often uses contour plots to get
a sense of the shape of the distribution and possibly to compare several copulas, or
more general bivariate distributions. The commands:

par (mfrow=c(1,2))

contour.dbivd (BIV1)

title("Density of the Bivariate Distribution BIV1")
contour.pbivd(BIV1)

title("CDF of the Bivariate Distribution BIV1")

par (mfrow=c(1,1))

V V.V V V YV

were used to produce the plots of Figure 2.17.

2.4.4 Fitting Copulas

Because of the serious difficulties resulting from the lack of data in the tails of the
marginal distributions, copulas are best estimated by parametric methods. In order



24

Copulas and Random Simulations 77

Density of the Bivarigte Distribution BIV1 COF of the Bivarizle Distribution BIV1

Fig. 2.17. Contour plot of the density (left) and the cdf (right) of the bivariate distribution with
Gumbel copula with parameter 1.4 and marginal distributions N (3, 4) and 7'(3).

to do so, we choose a family of copulas (see Appendix 2 for a list of the parametric
families supported by the library EVANESCE) and the module FinMetrics, and
we estimate the parameter(s) of the family in question by a maximum likelihood
standard estimation procedure. The function fit.copula which we use below
returns an object of class copula. family and creates a contour plot of level sets
of the empirical copula and of the fitted copula. Since it is so difficult to compare
copulas using only their graphs, in order to visualize the goodness of the fit, we
chose to put a selected ensemble of level sets for the two surfaces on the same plot.
Differences in these level curves can easily be interpreted as differences between
the two surfaces. The fitting procedure can be implemented in the case of the coffee
log-return data by the following commands.

> FAM <- "gumbel"
> ESTC <- fit.copula (EMPCOP, FAM)

Recall that EMPCOP was the S-P1lus object constructed as the empirical copula
of the Brazilian and Colombian coffee daily log-returns. The results are shown in
Figure 2.18. The level sets of the Gumbel copula fitted to the data are very close to
the level sets of the empirical copula. This graphical check shows that the fit is very
good.

2.4.5 Monte Carlo Simulations with Copulas

We learned in Chapter 1 how to generate random samples from a univariate distri-
bution, and we introduced and tested a set of tools to do just that, even when the
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Fig. 2.18. Contour plot of the empirical copula with the contours of the fitted Gumbel copula
superimposed.

distribution in question had to be estimated from data, and even when the distribu-
tion was suspected to have heavy tails. But as we saw earlier (recall Figure 2.12)
having separate univariate random samples is not enough if we want to have a real-
istic rendering of how the variables in a bivariate sample relate to each other.

In this subsection, we consider the problem of the generation of random samples
from a bivariate distribution, which we assume to be given by its marginal distribu-
tions and a copula. Let us imagine that we have a tool capable of producing bivariate
samples from a copula. We shall not enter into the details of the construction of such
a tool, we shall merely indicate that it can be built by aggregation of one dimensional
random generators for the various conditional distributions. The gory details of such
a construction are too technical for this book, so we shall leave them aside. Armed
with such a weapon, it is very simple to generate samples from all the distributions
having this specific copula as their own copula. Indeed, the first components of a ran-
dom sample from a copula form a univariate sample uniformly distributed on [0, 1].
So transforming this sample by computing the quantile function of the first marginal
distribution will turn this uniform sample into a sample from the first marginal dis-
tribution. This is an instance of our favorite method for generating random samples.
Similarly, transforming the second components (which also form a uniform sample,
by definition of a copula) by computing the quantile function of the second marginal
distribution will give a random sample from the second marginal distribution. Now,
by the very definition of the copula, these two univariate samples have not only the
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right marginals, but they also have the right copula! So put together, they form a
bivariate sample from the bivariate distribution we started with.

We implement this strategy on our example of the coffee log returns. The follow-
ing set of commands produces a bivariate sample of same size as the data, from our
estimation of the joint distribution of the coffee log-returns. Remember that this es-
timate is comprised of the estimates of the marginal distributions of the two random
quantities together with the parametric estimate of their copula.

> N <- length (BLRet)

> SD <- rcopula (ESTC,N)

> Xsim <- gpd.2g(SD$Sx, B.est)
> Ysim <- gpd.2g(SDSy, C.est)

We review the main steps of the simulation before commenting on the plots. The
function rcopula produces bivariate samples from the copula whose informa-
tion is encapsulated in the argument ESTC, which needs to be an object of class
copula.object. As usual, we extract the two columns of the N x 2 matrix SD
by means of the dollar signs $ followed by the lower case x for the first column,
and by the lower case y for the second column. By definition of a copula, SDSx
and SDSy are random samples uniformly distributed over the unit interval. Con-
sequently, the third and fourth commands result in samples Xsim and Ysim from
the GPD’s given by the gpd objects BEST and CEST. This is because we compute
quantile functions on uniform samples. We already used this trick several times to
generate random samples from a given distribution. But the situation is quite dif-
ferent from those earlier in that the uniform samples are paired by the copula used
to generate them. So the copula of the resulting bivariate sample is the copula we
started from. The loop is closed, and we have produced a bivariate sample with the
desired distribution. In the same way we produced Figure 2.12, we can place the
scatterplot of the simulated samples Xsim and Ysim to the right of the scatterplot
of the original samples BLRet and CLRet. The result is reproduced in Figure 2.19.
The differences with Figure 2.12 are striking. This plot shows that our model and the
ensuing simulations capture rather well the characteristics of the point distribution
in the plane. As further evidence, the numerical measures of dependence which we
introduced earlier confirm that the results are very satisfactory. This is clear from
the comparison of the values of the Kendall’s tau and Spearman’s rho statistics com-
puted for the empirical copula (directly from the data) and from the fitted copula.
We reproduce the commands and the results:

> print (ESTC)
Gumbel copula family; Extreme value copula.
Parameters
delta = 2.98875657681924
> Kendalls.tau (EMPCOP)
[1] 0.6881483
> Kendalls.tau(ESTC, tol = le-2)
[1] 0.6654127
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Fig. 2.19. Scatterplot of the Colombian coffee log-returns against the Brazilian ones (left
pane), and scatterplot of the Monte Carlo samples produced with the dependence as captured
by the fitted copula (right pane).

> Spearmans.rho (EMPCOP)

[1] 0.8356747
> Spearmans.rho (ESTC)
[1] 0.8477659

2.4.6 A Risk Management Example

Even though the practical example treated in this subsection is limited in scope, it
should not be underestimated. Indeed, the risk measures which we compute provide
values which are orders of magnitude different from the values obtained from the
theory of the Gaussian distribution. Relying on the normal theory leads to overly
optimistic figures ... and possibly to very bad surprises. Fitting heavy tail distri-
butions and using copulas give more conservative (and presumably more realistic)
quantifications of the risk carried by most portfolios.

We consider a simple example of risk management using the tools developed in
this chapter. The goal is to quantify the risk exposure of a portfolio. For the sake
of simplicity, we consider only a single period analysis, and we assume that the
portfolio is comprised of only two instruments. The initial value of the portfolio is:

Vo = n15’1 + 71252
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where n; and no are the numbers of units of the two instruments, which are valued
at Sp and S5 at the beginning of the period. Let us denote by S} and S}, their values
at the end of the period. Then the new value of the portfolio is:

V= nlS{ + TLQSé
=mS eX + n9Sy eY,

if we denote by X = log(S7/S1) and Y = log(S}/S2) the log returns on the
individual instruments. Notice that (just to keep in line with the example discussed
in this chapter) we could consider the portfolio to be composed of futures contracts
of Brazilian and Colombian coffee, in which case the random log-returns X and Y
are just the quantities studied so far. In any case, the log-return of the portfolio is

1% n1S1 X naSa v x v
—log( =) =1 e (a Y
& Og(V(J) Og<n151 F S € +n181 T 125, Og( 1€° +Aze )

if we use the notation \; and A5 for the fractions of the portfolio invested in the two
instruments.

Value-at-Risk ValR,

We now compute the value at risk of this portfolio. According to the discussion of
Chapter 1, for a given level ¢, Val?; was defined in relation to the capital needed to
cover losses occurring with frequency ¢, and more precisely, Val?, was defined as
the 100¢-th percentile of the loss distribution. i.e the solution r of the equation:

g=P{—-R>r}=P{R < —r} = Fgr(-r).

In order to solve for 7 in the above equation, we need to be able to compute the cdf
of the log-return R. The latter can be expressed analytically as:

P{—R>r} =P{log (A e* +Xae¥) < -1}

:// foxy) (@, y) dedy
{(z,y); A 1e”+Az2ev<e"}

—r—log A1 log(e™"/A2—A1/A2€")
_ / dx / o(Fx (), Fy (9)) fx (2) fy (y)dy

— 00 — 00

dv ¢(u, v)

Fx(—r—log A1) Fy (log(e™" /A2—A1/A2 eFJ;l(“)))
- |
0

0

Fx (—r—log A1) )
= /0 du %C(u, v)

_ Fol(u)
v=Fy (log(e="/A2—A1/X2e" X )

where we used several substitutions to change variables in simple and double in-
tegrals. Despite all these efforts, and despite the fact that we managed to reduce
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the computation to the evaluation of a single integral, this computation cannot be
pushed further in this generality. Even when we know more about the copula and
the marginal distributions, this integral can very rarely be computed explicitly. We
need to use numerical routines to compute this integral. In fact, we need to run these
routines quite a lot of times to solve the equation giving the desired value of r.

The function VaR.exp.portf was written to compute the value at risk fol-
lowing this strategy. But the user should be aware that this numerical procedure does
not converge all the time, and the results can be disappointing. A typical call to this
function looks like:

> VaR.exp.portf (0.01, range=c(0.016,0.08), copula=ESTC,
x.est=B.est, y.est=C.est,lambdal=0.5, lambda2=0.5)

We give it only for the sake of completeness.

Expected Shortfall E{O,}

We now compute the other measure of risk which we introduced in Chapter 1. The
analytic technicalities of the computation of the expected shortfall E{©,} (recall the
definition given in Chapter 1) are even more daunting than for the computation of the
value at risk Valz,. Just to give a flavor of these technical difficulties, we initialize
the process by:

E{O,} = E{—R| — R > VaR,}

1 [~VaR,
= g/ —rFr(dr)

—r—log A1 log(e™"/A2—X1/A2e")
/ i fx() | log (A1 ¢ + Ay e¥)

— 00 — 00

o(Fx(z), Fy (y)) fv(y)dy

where we have used the same notation as before. Unfortunately, it seems much more
difficult to reduce this double integral to a single one, and it seems hopeless to try to
derive reasonable approximations of the analytic expression of the expected shortfall
which can be evaluated by tractable computations. Following this road, we ended up
in a cul-de-sac.

Fortunately, random simulation of large samples from the joint distribution of
(X,Y") and Monte Carlo computations can come to the rescue and save the day.

Use of Monte Carlo Computations

We illustrate the use of Monte Carlo techniques by computing the VaR, and the
expected shortfall E{©,} of a portfolio of Brazilian and Colombian coffee futures
contracts. We solve the problem by simulation using historical data on the daily log-
returns of the two assets. The strategy consists of generating a large sample from the
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joint distribution of X and Y as estimated from the historical data, and computing for
each couple (x;, y;) in the sample, the value of R. Our estimate of the value at risk is
simply given by the empirical quantile of the set of values of R thus obtained. We can
now restrict ourselves to the values of R smaller than the negative of the ValRR, just
computed, and the negative of the average of these R’s gives the expected shortfall.
This is implemented in the function VaR . exp . sim whose use we illustrate in the
commands below.

> VaR.exp.sim(n=10000, Q=0.01, copula=ESTC, x.est=B.est,
yv.est=C.est, lambdal=0.7, lambda2=0.3)[1]
Simulation size
10000

> VaR.exp.sim(n=10000, Q=0.01, copula=ESTC, x.est=B.est,
v.est=C.est, lambdal=0.7, lambda2=0.3)][2]

VaR Q=0.01

0.09290721

> VaR.exp.sim(n=10000, Q=0.01, copula=ESTC, x.est=B.est,
v.est=C.est, lambdal=0.7, lambda2=0.3)[3]

ES 0=0.01

0.1460994

which produce the value at risk and the expected shortfall over a one-period horizon
of a unit portfolio with 70% of Brazilian coffee and 30% of Colombian coffee. Notice
that the function VaR. exp.sim returns a vector with three components. The first
one is the number of Monte Carlo samples used in the computation, the second is the
estimated value of the VaR while the third one is the estimated value of the expected
shortfall.

Comparison with the Results of the Normal Model

For the sake of comparison, we compute the same value at risk under the assumption
that the joint distribution of the coffee log-returns is normal. This assumption is
implicit in most of the VaR computations done in everyday practice. Our goal here
is to show how different the results are.

> Port <- c(.7,.3)
> MuP <- sum(Port*Mu)
> MuP
[1] -0.0007028017
> SigP <- sgrt(t(Port) %*% Sigma %*% Port)
> SigP
[,1]
[1,]1 0.03450331
> gnorm(p=.01,mean=MuP, sd=SigP)
[1] -0.08096951
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For the given portfolio Port, we compute the mean MuP and the standard deviation
S1gP of the portfolio return, and we compute the one percentile of the corresponding
normal distribution. We learn that only one percent of the time will the return be less
than 8% while the above computation was telling us that it should be expected to be
less than 9.2% with the same frequency. One cent on the dollar is not much, but for
a large portfolio, things add up!

2.5 PRINCIPAL COMPONENT ANALYSIS

Dimension reduction without significant loss of information is one of the main chal-
lenges of data analysis. The internet age has seen an exponential growth in the re-
search efforts devoted to the design of efficient codes and compression algorithms.
Whether the data are comprised of video streams, images, and/or speech signals, or
financial data, finding a basis in which these data can be expressed with a small (or
at least a smaller) number of coefficients is of crucial importance. Other important
domains of applications are cursed by the high dimensionality of the data. Artifi-
cial intelligence applications, especially those involving machine learning and data
mining, have the same dimension reduction problems. Pattern recognition problems
are closer to the hearts of traditional statisticians. Indeed, regression and statistical
classification problems have forced statisticians to face the curse of dimensionality,
and to design systematic procedures to encapsulate the important features of high di-
mensional observations in a small number of variables. Principal component analysis
as presented in this chapter, offers an optimal solution to these dimension reduction
issues.

2.5.1 Identification of the Principal Components of a Data Set

Principal component analysis (PCA, for short) is a data analysis technique designed
for numerical data (as opposed to categorical data). The typical situation that we
consider is where the data come in the form of a matrix [x; ;]i=1, ..~ j=1,. M Of
real numbers, the entry x; ; representing the value of the i-th observation of the j-
th variable. As usual, we follow the convention of labeling the columns of the data
matrix by the variables measured, and the rows by the individuals of the population
under investigation. Examples are plentiful in most data analysis applications. We
give below detailed analyses of several examples from the financial arena.

As we mentioned above, the /N members of the population can be identified with
the IV rows of the data matrix, each one corresponding to an M -dimensional (row)
vector of numbers giving the values of the variables measured on this individual. It
is often desirable (especially when M is large) to reduce the complexity of the de-
scriptions of the individuals and to replace the M descriptive variables by a smaller
number of variables, while at the same time, losing as little information as possible.
Let us consider a simple (and presumably naive) illustration of this idea. Imagine
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momentarily that all the variables measured are scores of the same nature (for exam-
ples they are all lengths expressed in the same unit, or they are all prices expressed
in the same currency, . . .) so that it would be conceivable to try to characterize each
individual by the mean, and a few other numerical statistics computed on all the
individual scores. The mean:

—_ Tat Tt + Ty

Ti. = i
can be viewed as a linear combination of the individual scores with coefficients 1 /M,
1/M, ..., 1/M. Principal component analysis, is an attempt to describe the indi-

vidual features in the population in terms of M linear combinations of the original
features, as captured by the variables originally measured on the IV individuals. The
coefficients used in the example of the mean are all non-negative and sum up to one.
Even though this convention is very attractive because of the probabilistic interpre-
tation which can be given to the coefficients, we shall use another convention for the
linear combinations. We shall allow the coefficients to be of any sign (positive as
well as negative) and we normalize them so that the sum of their squares is equal to
1. So if we were to use the mean, we would use the normalized linear combination
(NLC, for short) given by:

— 1 1 1
NIRRT v
The goal of principal component analysis is to search for the main sources of vari-
ation in the M -dimensional row vectors by identifying M linearly independent and
orthogonal NLC’s in such a way that a small number of them capture most of the vari-
ation in the data. This is accomplished by identifying the eigenvectors and eigenval-

ues of the covariance matrix C,, of the M column variables. This covariance matrix
is defined by:

$i2+"'+

N
. 1 _ . .
OJL[.]’.]/] = NZ(IU - J"J)(IU/ - x'j/)v ]7.]/ = 17 .. 'aMa
=1

where we used the standard notation:

Ty o+ -+ TN
N

for the mean of the j-th variable over the population of N individuals. It is easy
to check that the matrix C, is symmetric (hence diagonalizable) and non-negative
definite (which implies that all the eigenvalues are non-negative). One usually orders
the eigenvalues in decreasing order, say:

I’.j =

A1 2> Ay > > Ay 2> 0.

The corresponding eigenvectors are called the loadings. In practice we choose c;
to be a normalized eigenvector corresponding to the eigenvalue A1, co to be a nor-
malized eigenvector corresponding to the eigenvalue Ao, . .. , and finally cps to be a
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normalized eigenvector corresponding to the eigenvalue Ajs,and we make sure that
all the vectors c¢; are orthogonal to each other. This is automatically true when the
eigenvalues \; are simple. See the discussion below for the general case. Recall that
we say a vector is normalized if the sum of the squares of its components is equal to
1. If we denote by C' the M x M matrix formed by the M column vectors containing
the components of the vectors c1, ca, . .., cps in this order, this matrix is orthogonal
(since it it a matrix transforming one orthonormal basis into another) and it satisfies:

C, =C'DC

where we use the notation ¢ to denote the transpose of a matrix or a vector, and
where D is the M x M diagonal matrix with A1, Ao, . .., Az on the diagonal. Notice
the obvious lack of uniqueness of the above decomposition. In particular, if ¢; is a
normalized eigenvector associated to the eigenvalue ), so is —c;! This is something
one should keep in mind when plotting the eigenvectors c;, and when trying to find
an intuitive interpretation for the features of the plots. However, this sign flip is easy
to handle, and fortunately, it is the only form of non uniqueness when the eigenvalues
are simple (i.e. nondegenerate). The ratio:

Aj
M
Zj’:l Ajr

of a given eigenvalue to the trace of C; (i.e. the sum of its eigenvalues) has the inter-
pretation of the proportion of the variation explained by the corresponding eigenvec-
tor, i.e. the loading c¢;. In order to justify this statement, we appeal to the Raleigh-
Ritz variational principle from linear algebra. Indeed, according to this principle, the
eigenvalues and their corresponding eigenvectors can be characterized recursively in
the following way. The largest eigenvalue \; appears as the maximum:

= max 2'Cyx
z€RM ||z||=1

while the corresponding eigenvector c¢; appears as the argument of this maximization
problem:
¢ = arg max  2'Cya.
z€RM ||z||=1

If we recall the fact that 2*C,x represents the quadratic variation (empirical vari-
ance) of the NLC’s z'zy., x'xa.,..., z'xy., A\ can be interpreted as the maximal
quadratic variation when we consider all the possible (normalized) linear combi-
nations of the M original measured variables. Similarly, the corresponding (nor-
malized) eigenvector has precisely the interpretation of this NLC which realizes the
maximum variation.

As we have already pointed out, the first loading is uniquely determined up to a
sign change if the eigenvalue \; is simple. If this is not the case, and if we denote
by m; the multiplicity of the eigenvalue \;, we can choose any orthonormal set
{c1,+, ¢m, } in the eigenspace of A; and repeat the eigenvalue A\, mq times in the
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list of eigenvalues (and on the diagonal of D as well). This lack of uniqueness is not
a mathematical difficulty, it is merely annoying. Fortunately, it seldom happens in
practice ! We shall assume that all the eigenvalues are simple (i.e. non-degenerate)
for the remainder of our discussion. If they were not, we would have to repeat them
according to their multiplicities.

Next, still according to the Raleigh-Ritz variation principle, the second eigen-
value A\, appears as the maximum:

Ay = max zCLx
z€RM ||z||=1,zLcy

while the corresponding eigenvector co appears as the argument of this maximization
problem:
cy = arg max 2t Chx.
z€RM ||z||=1,zLcy

The interpretation of this statement is the following: if we avoid any overlap with
the loading already identified (i.e. if we restrict ourselves to NLC’s = which are
orthogonal to c;), then the maximum quadratic variation will be A, and any NLC
realizing this maximum variation can be used for co. We can go on and identify in
this way all the eigenvalues A; (having to possibly repeat them according to their
multiplicities) and the loadings c;’s.

Armed with a new basis of RM | the next step is to rewrite the data observations
(i.e. the N rows of the data matrix) in this new basis. This is done by multiplying
the data matrix by the change of basis matrix (i.e. the matrix whose columns are the
eigenvectors identified earlier). The result is a new N x M matrix whose columns are
called principal components. Their relative importance is given by the proportion of
the variance explained by the loadings, and for that reason, one typically considers
only the first few principal components, the remaining ones being ignored and/or
treated as noise.

2.5.2 PCA with S-Plus

The principal component analysis of a data set is performed in S-Plus with the
function pr incomp, which returns an object of class princomp that can be printed
and plotted with generic methods. Illustrations of the calls to this function and of the
interpretation of the results are given in the next subsections in which we discuss
several financial applications of the PCA.

2.5.3 Effective Dimension of the Space of Yield Curves

Our first application concerns the markets of fixed income securities which we will
introduce in Section 3.8. The term structure of interest rates is conveniently captured
by the daily changes in the yield curve. The dimension of the space of all possible
yield curves is presumably very large, potentially infinite if we work in the idealized
world of continuous-time finance. However, it is quite sensible to try to approximate
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these curves by functions from a class chosen in a parsimonious way. Without any a
priori choice of the type of functions to be used to approximate the yield curve, PCA
can be used to extract, one by one, the components responsible for the variations in
the data.

PCA of the Yield Curve

For the purposes of illustration, we use data on the US yield curve as provided by
the Bank of International Settlements (BIS, for short). These data are the result of
a nonparametric processing (smoothing spline regression, to be specific) of the raw
data. The details will be given in Section 4.4 of Chapter 4, but for the time being, we
shall ignore the possible effects of this pre-processing of the raw data. The data are
imported into an S-object named us . bis.yield which gives, for each of the 1352
successive trading days following January 3rd 1995, the yields on the US Treasury
bonds for times to maturity

x=0,1,2,3,4,5,5.5,6.5,7.5,8.5,9.5 months.
We run a PCA on these data with the following S-P1us commands:

> dim(us.bis.yield)
[1] 1352 11
> us.bis.yield.pca <- princomp (us.bis.yield)
> plot(us.bis.yield.pca)
[1] 0.700000 1.900000 3.100000 4.300000 5.500000
[6] 6.700000 7.900000 9.099999 10.299999 11.499999
> title("Proportions of the Variance Explained
by the Components")

The results are reproduced in Figure 2.20 which gives the proportions of the variation
explained by the various components. The first three eigenvectors of the covariance
matrix (the so-called loadings) explain 99.9% of the total variation in the data. This
suggests that the effective dimension of the space of yield curves could be three. In
other words, any of the yield curves from this period can be approximated by a linear
combination of the first three loadings, the relative error being very small. In order
to better understand the far reaching implications of this statement we plot the first
four loadings.

X <- ¢(0,1,2,3,4,5,5.5,6.5,7.5,8.5,9.5)

par (mfrow=c(2,2))
plot(X,us.bis.yield.pca$loadings|[,1],ylim=c(-.7,.7))
lines (X,us.bis.yield.pca$loadings|[,1])

plot (X,us.bis.yield.pca$Sloadings|[,2],ylim=c(-.7,.7))
lines (X,us.bis.yield.pca$loadings|[,2])
plot(X,us.bis.yield.pca$loadings|[,3],ylim=c(-.7,.7))
lines(X,us.bis.yield.pcaS$loadings|[,31)
plot(X,us.bis.yield.pca$loadings|[,4],ylim=c(-.7,.7))

V V V V V V V VYV
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Proportions of the Variance Explained by the Components
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Fig. 2.20. Proportions of the variance explained by the components of the PCA of the daily
changes in the US yield curve.

> lines(X,us.bis.yield.pca$loadings|[,4])
> par (mfrow=c(1,1))
> title("First Four Loadings of the US Yield Curves")

The results are reproduced in Figure 2.21. The first loading is essentially flat, so a
component on this loading will essentially represent the average yield over the matu-
rities, and the effect of this most-important component on the actual yield curve is a
parallel shift. Because of the monotone and increasing nature of the second loading,
the second component measures the upward trend (if the component is positive, and
the downward trend otherwise) in the yield. This second factor is interpreted as the
tilt of the yield curve. The shape of the third loading suggests that the third compo-
nent captures the curvature of the yield curve. Finally, the shape of the fourth loading
does not seem to have an obvious interpretation. It is mostly noise (remember that
most of the variations in the yield curve are explained by the first three components).
These features are very typical, and they should be expected in most PCA’s of the
term structure of interest rates.

The fact that the first three components capture so much of the yield curve may
seem strange when compared to the fact that some estimation methods, which we
discuss later in the book, use parametric families with more than three parameters!
There is no contradiction there. Indeed, for the sake of illustration, we limited the
analysis of this section to the first part of the yield curve. Restricting ourselves to
short maturities makes it easier to capture all the features of the yield curve in a
small number of functions with a clear interpretation.
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First Four Loadings of the US Yield Curves
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Fig. 2.21. From left to right and top to bottom, sequential plots of the first four US yield
loadings.

2.5.4 Swap Rate Curves

Swap contracts have been traded publicly since 1981. As of today, they are the most
popular fixed income derivatives. Because of this popularity, the swap markets are
extremely liquid, and as a consequence, they can be used to hedge interest-rate risk
of fixed income portfolios at a low cost. The estimation of the term-structure of swap
rates is important in this respect and the PCA which we present below is the first step
toward a better understanding of this term structure.

Swap Contracts and Swap Rates

As implied by its name, a swap contract obligates two parties to exchange (or swap)
some specified cash flows at agreed upon times. The most common swap contracts
are interest rate swaps. In such a contract, one party, say counter-party A, agrees to
make interest payments determined by an instrument P4 (say, a 10 year US Trea-
sury bond rate), while the other party, say counter-party B, agrees to make interest
payments determined by another instrument Pp (say, the London Interbank Offer
Rate — LIBOR for short) Even though there are many variants of swap contracts, in
a typical contract, the principal on which counter-party A makes interest payments
is equal to the principal on which counterparty B makes interest payments. Also, the
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payment schedules are identical and periodic, the payment frequency being quarterly,
semi-annually, . . . .

It is not difficult to infer from the above discussion that a swap contract is equiv-
alent to a portfolio of forward contracts, but we shall not use this feature here. In this
section, we shall restrict ourselves to the so-called plain vanilla contracts involving
a fixed interest rate and the 3 or 6 months LIBOR rate.

We will not attempt to derive here a formula for the price of a swap contract,
neither will we try to define rigorously the notion of swap rate. These derivations
are beyond the scope of this book. See the Notes & Complements at the end of the
chapter for references to appropriate sources. We shall use only the intuitive idea of
the swap rate being a rate at which both parties will agree to enter into the swap
contract.

PCA of the Swap Rates

Our second application of principal component analysis concerns the term struc-
ture of swap rates as given by the swap rate curves. As before, we denote by M
the dimension of the vectors. We use data downloaded from Data Stream. Itis
quite likely that the raw data have been processed, but we are not quite sure what
kind of manipulation is performed by Data Stream, so for the purposes of this
illustration, we shall ignore the possible effects of the pre-processing of the data. In
this example, the day ¢ labels the rows of the data matrix. The latter has M = 15
columns, containing the swap rates with maturities 7' conveniently labeled by the
times to maturity x = 1" — ¢, which have the values 1,2,...,10,12, 15, 20, 25, 30
years in the present situation. We collected these data for each day ¢ of the period
from May 1998 to March 2000, and we rearranged the numerical values in a matrix
R = [rijli=1,....N, j=1,...,m. Here, the index j stands for the time to maturity, while
the index ¢ codes the day the curve is observed.

The data is contained in the S object swap. The PCA is performed in S-Plus
with the command:

> dim(swap)
[1] 496 15
> swap.pca <- princomp (swap)
> plot (swap.pca)
[1] 0.700000 1.900000 3.100000 4.300000 5.500000
[6] 6.700000 7.900000 9.099999 10.299999 11.499999
> title("Proportions of the Variance Explained by

the Components")
YEARS <- ¢(1,2,3,4,5,6,7,8,9,10,12,15,20,25,30)
par (mfrow=c (2,2))
plot (YEARS, swap.pca$loadings|[,1],ylim=c(-.6,.6))
lines (YEARS, swap.pcaSloadings([,1])
plot (YEARS, swap.pca$Sloadings|[,2],ylim=c(-.6,.6))
lines (YEARS, swap.pcas$loadings|[,2])
plot (YEARS, swap.pca$Sloadings|[,3],ylim=c(-.6,.6))

V V V V V V YV
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lines (YEARS, swap.pcaSloadings[,3])

plot (YEARS, swap.pca$Sloadings|[,4],ylim=c(-.6,.6))
lines (YEARS, swap.pcasloadings|[,4])

par (mfrow=c(1,1))

title("First Four Loadings of the Swap Rates")

V V.V V V

Figure 2.22 gives the proportions of the variation explained by the various compo-
nents, while Figure 2.23 gives the plots of the first four eigenvectors.

Proportions of the Variance Explained by the Components

0984

0.29% 1 1 1 1 1 1 1 1

Comp. 1Comp. 2Comp 3Comp 4Comp. SComp, 6Comp TComp, SComp, Comp, 10

Fig. 2.22. Proportions of the variance explained by the components of the PCA of the daily
changes in the swap rates for the period from May 1998 to March 2000.

Looking at Figure 2.23 one sees that the remarks made above, for the interpre-
tation of the results in terms of a parallel shift, a tilt and a curvature component, do
apply to the present situation as well.

Since such an overwhelming proportion of the variation is explained by one sin-
gle component, it is often recommended to remove the effect of this component from
the data, (here, that would amount to subtracting the overall mean rate level) and to
perform the PCA on the transformed data (here, the fluctuations around the mean
rate level).

APPENDIX 1: CALCULUS WITH RANDOM VECTORS AND MATRICES

The nature and technical constructs of this chapter justify our spending some time
discussing the properties of random vectors (as opposed to random variables) and
reviewing the fundamental results of the calculus of probability with random vectors.
Their definition is very natural: a random vector is a vector whose entries are random
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Fig. 2.23. From left to right and top to bottom, sequential plots of the eigenvectors (loadings)
corresponding to the 4 largest eigenvalues. Notice that we changed the scale of the horizontal
axis to reflect the actual times to maturity.

variables. With this definition in hand, it is easy to define the notion of expectation.
The expectation of a random vector is the (deterministic) vector whose entries are
the expectations of the entries of the original random vector. In other words,

X E{X1}

it X= then E{X}=

E{X,}

Notice that, if B is an n-dimensional (deterministic) vector then:

E{X + B} =E{X} +B. (2.16)
Indeed:
E{X;+ b} E{X1}+ b,
E{X +B} = : - : —E{X}+B
E{X, + b,} E{X,.}+bn

where we used the notation b; for the components of the vector B. The notion of
variance (or more generally of second moment) appears somehow less natural at
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first. We define the variance/covariance matrix of a random vector to be the (deter-
ministic) matrix whose entries are the variances and covariances of the entries of the
original random vector. More precisely, if X is a random vector as above, then its
variance/covariance matrix is the matrix Y'x defined by:

o? cov(X1, Xa) -+ cov(Xy, X,)
cov(Xa, X1) o3 < cov(Xa, Xp)
Yx = . : ) ) ; (2.17)

cov(X,, X1) cov(X,,, Xa) -+ o2
In other words, on the i-th row and the j-th column of Y 'x we find the covariance of
X; and X ;. For the purposes of this appendix, we limit ourselves to random variables
of order 2 (i.e. for which the first two moments exist) so that all the variances and
covariances make perfectly good mathematical sense. Note that this is not the case
for many generalized Pareto distributions, and especially for our good old friend the
Cauchy distribution.
The best way to look at the variance/covariance matrix of a random vector is
the following. Using the notation Z* for the transpose of the vector or matrix Z, we
notice that:

X1 —
X — E{X}][X - E{X}]' = : (X1 — sy X — pin]
X" — Mn
(X1 —)? (X1 —pa)(X2 — p2) - (X1 — pa)(Xn — pin)
B (X2 — p2) (X1 — p1) (X2 — p2)? s (X = p2) (X — pn)
(X0 = ) (X1 = j11) (X = ) (Ko = piz) -+ (X = pin)?

if we use the notation p; = E{X,} to shorten the typesetting of the formula. The

variance/covariance matrix X'x is nothing more than the expectation of this random
matrix, since the expectation of a random matrix is defined as the (deterministic)
matrix whose entries are the expectations of the entries of the original random ma-
trix. Consequently we have proven that, for any random vector X of order 2, the
variance/covariance matrix X'x is given by the formula:

Ix = E{[X — E{X}][X - E{X}]'}. (2.18)

Notice that, if the components of a random vector are independent, then the vari-
ance/covariance matrix of this random vector is diagonal since all the entries off the
diagonal must vanish due to the independence assumption.

Some Useful Formulae

If X is an n-dimensional random vector, if A is an m X n deterministic matrix and
B is an m-dimensional deterministic vector, then:
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E{AX + B} = AE{X} + B (2.19)

as can be checked by computing the various components of the m-dimensional vec-
tors on both sides of the equality sign. Notice that formula (2.16) is merely a partic-
ular case of (2.19) when m = n and A is the identity matrix. In fact, formula (2.19)
remains true when X is an n x p random matrix and B is an m X p deterministic
matrix. By transposition one gets that

E{XA +B} =E{X}A +B (2.20)

holds whenever X is an n X p random matrix and A and B are deterministic matrices
with dimensions p X m and n x m respectively. Using (2.19) and (2.20) we get:

Yax+B = AXxA! (2.21)
A proof of this formula goes as follows:

Sax+p = E{[AX + B - E{AX + B}][AX + B - E{AX + B}]'}
= E{[AX - E{X})][AX - E{X})]'}
= E{A[X - E{X}][X - E{X}]'A"}
= AE{[X — E{X}][X - E{X}]} A
— ASxA!

Similar formulae can be proven for the variance/covariance matrix of expressions of
the form AXB + C when X is a random vector or a random matrix and when A,
B and C are deterministic matrices or vectors whose dimensions make the product
meaningful.

Warning: Remember to be very cautious with the order in a product of matrices. Just
because one can change the order in the product of numbers, does not mean that it
is a good idea to do the same thing with a product of matrices, as the results are in
general (very) different !!!

APPENDIX 2: FAMILIES OF COPULAS

There are many parametric families of copulas, and new ones are created every
month. For the sake of completeness, we review those implemented in the S-Plus
library EVANESCE. They can be organized in two main classes.

<o Extreme value copulas are copulas of the form

C(z,y) = exp {log(my) A (llogg((;;))] :

where A : [0,1] — [0.5,1], is a convex function, and max(t,1 —¢t) < A(t) < 1 for
all t € [0,1].
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< Archimedean copulas are copulas of the form
_ ¢(x)
Clz,y) =9 1[(25% + oy A< ;
(z,y) (o() + o(y)) 5@ + 00)
where ¢(t) is a valid Archimedean generator (convex and decreasing on (0, 1) ), and
A'is as above.

We now list the most commonly used parametric families of copulas:

e Bivarate Normal, "normal"
> normal.copula(delta)

C(z,y) = Ps (@_l(x)7¢_1(y)) )

0 <6 < 1, where o1 is the quantile function of the standard normal distribution,
and Ps is the cdf of the standard bivariate normal with correlation §

e Frank Copula, "frank"

> frank.copula(delta)

n—(1—e )1 - 6“))

C(z,y) = —61log ( ;

O§5<oo,andn:1—e_5.

e Kimeldorf and Sampson copula, "kimeldorf.sampson"
> kimeldorf.sampson.copula(delta)

Olay) = (@ +y 0 =177,

0<6<oo.

e Gumbel copula, "gumbel "
> gumbel.copula (delta)

1/6
Ola.y) = exp (— [(~logz)’ + (~logy)’] "°).
1 < § < 0. This is an extreme value copula with the dependence function
A(t) = (£ + (1 —t)°)/2.

e Galambos , "galambos"
> galambos.copula(delta)

— _s1—1/0
Ca,y) = wyexp ([(~logz) ™" + (~logy) ] "*),
0 < 6 < oo. This is an extreme value copula with the dependence function

At) =1— (0 4+ (1 —t)~%)~9,
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e Hiisler and Reiss, "husler.reiss"
> husler.reiss.copula(delta)

oo (ceo[p o (2)] 52 3+ s (2)

0<d<oo, = —logzx,y = —logy, and @ is the cdf of the standard normal
distribution. This is an extreme value copula with the dependence function

At) =1 & [51 + %Mog <1t_t)] L(1-Da {51 - %Mog (L)}

e Twan, "twan"
> twan.copula(alpha, beta, r)
This is an extreme value copula with the dependence function

At =1-B+(B—a)+{a"t" + 5 (1-t)}"7,

0<a, B<1,1<r<co.
¢ BB1, "bbl"
> bbl.copula(theta, delta)

Clz,y) = (1 F =1 + (v - 1)5]1/5)—1/0

8 > 0,0 > 1. This is an Archimedean copula with the Archimedean generator
_ 5

o(t) = (t77—1)".

¢ BB2, "bb2"

> bb2.copula(theta, delta)

Clz,y) = [1 +0 ' log (e%‘*e) LT 1)} v

6 > 0,6 > 0. This is an Archimedean copula with the Archimedean generator
o(t) = "D 1.

e BB3, "bb3"

> bb3.copula(theta, delta)

C(x,y) = exp ( [5*1 log (ew 45 1)} 1/9) |

0>1,0>0z=—logz, y = —logy. This is an Archimedean copula with the
Archimedean generator ¢(t) = exp {5 (—logt)’} — 1.
e BB4, "bb4 "

> bb4.copula(theta, delta)

O = (" +v 1= [0 ) 7 - 1)‘6}(%)
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# > 0,6 > 0. This is an Archimedean copula with the Archimedean generator
¢(t) = t~% — 1 and the dependence function A(t) = 1 — (7% + (1 —¢)7%)~71/%
(same as for B7 family).

¢ BBS, "bb5"

> bbb5.copula(theta, delta)

_ 1/6
C(z,y) = exp <— [5:9 + 3% — (i:*% + g—ea) 1/5} > ’

0>0,0>1,% = —logz,§ = —logy. This is an extreme value copula with the
dependence function

A(t) = [tf) () — (00 (1 t)*59)*1/5} 1/9.

¢ BB6, "bb6"

> bb6.copula (theta, delta) Thisisan Archimedean copula with the gen-
erator ¢(t) = [—log (1 — (1 — t)a)]6 0>1,6>1.

e BB7, "bb7"

> bb7.copula(theta, delta)

This is an Archimedean copula with the generator

st)=(1-(1-)"=1, 0#>1,5>0.

e B1Mix, "normal .mix"

> normal.mix.copula(p, deltal, delta2)

BI)(

Bl
Cle,y) =pCs> () + (L —p) CL ) (x,y),

0 <p,d1,02 <1, where CEB] ) (z,y) is a bivariate normal copula (family ”normal”).

PROBLEMS

@ Problem 2.1 This problem is based on the data contained in the script fileutilities.asc.

Opening it in S-Plus, and running it as a script creates a matrix with two columns. Each
row corresponds to a given day. The first column gives the log of the weekly return on an index
based on Southern Electric stock value and capitalization, (we’ll call that variable X ), and
the second column gives, on the same day, the same quantity for Duke Energy (we’ll call that
variable Y ), another large utility company.

1. Compute the means and the standard deviations of X and'Y', and compute their correlation
coefficients.

2. We first assume that X and Y are samples from a jointly Gaussian distribution with pa-
rameters computed in question 1. Compute the q-percentile with ¢ = 2% of a the variables
X+Yand X -Y.

3. Fit a generalized Pareto distribution (GPD) to X and 'Y separately, and fit a copula of the
Gumbel family to the empirical copula of the data.
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4. Generate a sample of size N (where N is the number of rows of the data matrix) from the
Jjoint distribution estimated in question 3.

4.1. Use this sample to compute the same statistics as in question 1 (i.e. means and stan-
dard deviations of the columns, as well as their correlation coefficients), and compare the
results to the numerical values obtained in question 1.

4.2. Compute, still for this simulated sample, the two percentiles considered in question
2, compare the results, and comment.

@ Problem 2.2 This problem is based on the data contained in the script file SPfutures.asc
which creates a matrix SPFUT with two columns, each row corresponding to a given day.
The first column gives, for each day, the log return of a futures contract which matures three
weeks later, (we’ll call that variable X ), and the second column gives, on the same day, the
log return of a futures contract which matures one week later (we’ll call that variable Y").
Question 2 is not required for the rest of the problem. In other words, you can answer questions
3 and 4 even if you did not get question 2.

1. Compute the means and the standard deviations of X and Y, and compute their correlation
coefficients.

2. We first assume that X and 'Y are samples from a jointly Gaussian distribution with param-
eters computed in part 1. For each value o = 25%, o = 50% and o« = 75% of the parameter
a, compute the g-percentile with ¢ = 2% of the variable X + (1 — @)Y

3. Fit a generalized Pareto distribution (GPD) to X and 'Y separately, and fit a copula of the
Gumbel family to the empirical copula of the data.

4. Generate a sample of size N (where N is the number of rows of the data matrix) from the
Joint distribution estimated in question 3.

4.1. Use this sample to compute the same statistics as in question 1 (i.e. means and stan-
dard deviations of the columns, as well as their correlation coefficients) and compare to the
numerical values obtained in question 1.

4.2. Compute, still for this simulated sample, the three percentiles considered in question
2, and compare the results.

@ Problem 2.3 1. Construct a vector of 100 increasing and regularly spaced numbers starting
from .1 and ending at 20. Call it SIG2. Construct a vector of 21 increasing and regularly
spaced numbers starting from —1.0 and ending at 1.0. Call it RHO.

2. For each entry o2 of SIG2 and for each entry p of RHO:

e Generate a sample of size N = 500 from the distribution of a bivariate normal vector
Z = (X,Y), where X ~ N(0,1), and Y ~ N(0,c?), and the correlation coefficient of X
and'Y is p (the S object you create to hold the values of the sample of Z’s should be a 500 x 2
matrix);

e Create a 500 X 2 matrix, call it EXPZ, with the exponentials of the entries of Z (the
distributions of these columns are lognormal as defined in Problem 2.7);

e Compute the correlation coefficient, call it p, of the two columns of EXPZ
3. Produce a scatterplot of all the points (02, p) so obtained. Comment.

@ Problem 2.4 This elementary exercise is intended to give an example showing that lack of
correlation does not necessarily mean independence!
Let us assume that X ~ N(0,1) and let us define the random variable Y by:

Y = —(IX| - v/2/n)

1—-2/m
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1. Compute E{| X |}
2. Show that Y has mean zero, variance 1, and that it is uncorrelated with X.

@ Problem 2.5 The purpose of this problem is to show that lack of correlation does not imply
independence, even when the two random variables are Gaussian !!!
We assume that X, €, and €2 are independent random variables, that X ~ N(0,1), and that
P{e; = —1} = P{e; = +1} = 1/2 for i = 1, 2. We define the random variable X1 and Xo
by:

X1 :€1X, and X2 :62X.

1. Prove that X1 ~ N(0,1), X ~ N(0,1) and that p{ X1, X2} = 0.
2. Show that X1 and X2 are not independent.

@ Problem 2.6 The goal of this problem is to prove rigorously a couple of useful formulae for
normal random variables.
1. Show that, if Z ~ N(0,1), ifo > 0, and if f is ANY function, then we have:

E{f(2)e"?} = " PE{f(Z + o)},
and use this formula to recover the well known fact
E{e} = et/

whenever X ~ N(u,0?).
2. We now assume that X and Y are jointly-normal mean-zero random variables and that h
is ANY function. Prove that:

E{e*h(Y)} = E{e* }E{h(Y 4 cov{X,Y})}.

@ Problem 2.7 The goal of this problem is to prove rigorously the theoretical result illustrated
by the simulations of Problem 2.3.
1. Compute the density of a random variable X whose logarithm log X is N (u, 02). Such a
random variable is usually called a lognormal random variable with mean 1 and variance
o2

Throughout the rest of the problem we assume that X is a lognormal random variable

with parameters 0 and 1 (i.e. X is the exponential of an N (0, 1) random variable) and that
Y is a lognormal random variable with parameters 0 and o (i.e. Y is the exponential of an
N(0, 02) random variable). Moreover, we use the notation pmin and pmaz introduced in the
last paragraph of Subsection 2.1.2.

2. Show that pmin = (€77 — 1)/+1/(e — 1)(e°® — 1).
3. Show that Pmaz = (60 — 1)/ (6 _ 1)(60.2 — 1)

4. Check that limy — 0o Prmin = liMg— 00 Pmaz = 0.

@@ Problem 2.8 The first question concerns the computation in S-Plus of the square root of

a symmetric nonnegative-definite square matrix.
1. Write an S-function, call it msqrt, with argument A which:

e checks that A is a square matrix and exits if not;

® checks that A is symmetric and exits if not;

e diagonalizes the matrix by computing the eigenvalues and the matrix of eigenvectors
(hint: check out the help file of the function eigen if you are not sure how to proceed);

o checks that all the eigenvalues are nonnegative and exits, if not;
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o returns a symmetric matrix of the same size as A, with the same eigenvectors, the eigen-
value corresponding to a given eigenvector being the square root of the corresponding eigen-
value of A.

The matrix returned by such a function msqrt is called the square root of the matrix A and
it will be denoted by A

The second question concerns the generation of normal random vectors in S-Plus. In
other words, we write an S-P1lus function to play the role of the function rnorm in the case
of multidimensional random vectors. Such a function does exist in the S-P1lus distribution. It
is called mvrnorm. The goal of this second question is to understand how such a generation
method works.

2. Write an S-function, call it vinorm, with arguments Mu, Sigma and N which:

e checks that Mu is a vector, exits if not, and otherwise reads its dimension, say L;

® checks that Sigma is an LxL symmetric matrix with nonnegative eigenvalues and exits,
if not;

e creates a numeric array with N rows and L columns and fills it with independent random
numbers with the standard normal distribution N (0, 1);

e treats each row of this array as a vector, and multiplies it by the square root of the matrix
Sigma (as computed in question 1.1 above) and adds the vector Mu to the result;

e returns the random array modified in this way.

The array produced by the function vnorm is a sample of size N of L-dimensional random
vectors (arranged as rows of the matrix outputted by vnorm) with the normal distribution
with mean Mu and variance/covariance matrix Sigma. Indeed, this function implements the
following simple fact reviewed during the lectures:

If X is an L-dimensional normal vector with mean O and covariance matrix given by the
L x L identity matrix (i.e. if all the L entries of X are independent N (0, 1) random variables),
then:

Y =p+ XV2X

is an L-dimensional normal vector with mean v and variance/covariance matrix X.

NOTES & COMPLEMENTS

This chapter concentrated on multivariate distributions and on dependence between random
variables. The discussion of the various correlation coefficients is modeled after the standard
treatments which can be found in most multivariate statistics books. The originality of this
chapter lies in the statistical analysis of the notion of dependence by way of copulas. The
latter are especially important when the marginal distributions have heavy tails, which is the
case in most financial applications as we saw in the first chapter. The recent renewal of interest
in the notion of copula prompted a rash of books on the subject. We shall mention for example
the monograph [65] of R.B. Nelsen, or the book of D. Drouet Mari and S. Kotz [29]. We refer
the interested reader to their bibliographies for further references on the various notions of
dependence and copulas.

The S-P1lus methods used in this chapter to estimate copulas and generate random sam-
ples from multivariate distributions identified by their copulas were originally developed for
the library EVANESCE [17] developed by J. Morrisson and the author. As explained in the
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Notes & Complements of Chapter 1 this library has been included in the S+FinMetrics
module of the commercial S-P1lus distribution.

To the best of my knowledge, the first attempt to apply principal component analysis to the
yield curve is due to Litterman and Scheinkmann [57]. Rebonato’s book [70], especially the
short second chapter, and the book [3] by Anderson, Breedon, Deacon, Derry, and Murphy,
are good sources of information on the statistical properties of the yield curve. Discussions
of interest rate swap contracts and their derivatives can also be found in these books. The
reader interested in a statistical discussion of the fixed income markets with developments in
stochastic analysis including pricing and hedging of fixed income derivatives, can also consult
the monograph [21]. An application of PCA to variable selection in a regression model is
given in Problem 4.17 of Chapter 4.

The decomposition of a data set into its principal components is known in signal analysis
as the Karhunen-Loéve decomposition, and the orthonormal basis of principal components
is called the Karhunen-Loeve basis. This basis was identified as optimal for compression pur-
poses. Indeed, once a signal is decomposed on this basis, most of the coefficients are zero or
small enough to be discarded without significantly affecting the information contained in the
signal. Not surprisingly, the optimality criterion is based on a form of the entropy of the set of
coefficients. PCA is most useful for checking that data do contain features which are suspected
to be present. For this reason, some authors suggest to remove by regression the gross features
identified by a first PCA run, and to then run PCA on the residuals. PCA has been successfully
used in many applications, especially in signal and image analysis. For example, the Notes &
Complements to Chapter 5 contain references to studies using PCA in brain imaging.
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