
2
Multivariate Data and the Forward
Search

Unlike the other chapters in the book, this chapter contains little data
analysis. The emphasis is on theory and on the description of the search. In
the first half of the chapter we provide distributional results on estimation,
testing and on the distribution of quantities such as squared Mahalanobis
distances from samples of size n. The second half of the chapter focuses on
the forward search

We start in §2.1 by recalling the univariate normal distribution. Sections
2.2 and 2.3 outline estimation and hypothesis testing for the multivariate
normal distribution. As we indicated in Chapter 1, forward plots of Maha-
lanobis distances are one of our major tools. Since the distribution theory
for these distances seems, to us, not to be clear in the literature, we devote
§2.4 to §2.6 to deriving the distribution using results on the deletion of
observations. As a pendant, in §§2.7 and 2.8, we derive this distribution
first using an often quoted result of Wilks and then for regression with a
multivariate response. The subject of the following three sections is also re-
gression. In §2.9 we introduce added variables which provide useful results
for tests for transformations. These results are applied in §2.10 to the mean
shift outlier model to provide an alternative derivation of deletion results
which is useful in the analysis of spatial data, Chapter 8. This part of the
chapter closes in §2.11 where we outline seemingly unrelated regression, a
simplification of the results for multivariate regression when each model
contains the same explanatory variables.

A general discussion of the forward search is in §2.12. Three aspects
of the search require special attention: how to start, how to progress and
what to monitor. These three are treated in detail in §§2.13 and 2.14. The



32 2. Multivariate Data and the Forward Search

final theoretical section is on the modifications necessary, particularly to
the starting procedure, when we have multivariate regression data. The
chapter concludes with suggestions for background reading. We do not
discuss in detail alternatives to the forward search. In particular §§4.6 and
4.7 of Atkinson and Riani (2000) contain examples in which the forward
search breaks the masking which defeats backwards deletion methods. In
this regard, we rest our case.

We close our introduction to this chapter, by recalling our advice in the
Preface: “If you feel you know enough statistical theory for your present
purposes, continue to Chapter 3.”

2.1 The Univariate Normal Distribution

2.1.1 Estimation

Let y = (y1, . . . , yn)T be a random sample of n observations from a uni-
variate normal distribution with mean µ and variance σ2. Then the density
of the ith observation is

f(yi; µ, σ2) =
1√

2πσ2
exp{−(yi − µ)2/(2σ2)}.

Sometimes we write this distribution as yi ∼ N(µ, σ2). The loglikelihood
of the n observations is

L(µ, σ2; y) = −
n∑

i=1

(yi − µ)2/(2σ2) − (n/2) log(2πσ2).

The maximum likelihood estimator of µ is

µ̂ = ȳ =
n∑

i=1

yi/n,

the sample mean. The sum of squares about the sample mean

S(µ̂) =
n∑

i=1

(yi − µ̂)2 =
n∑

i=1

(yi − ȳ)2 =
n∑

i=1

y2
i − nȳ2,

leads to estimation of σ2. The residual mean square estimator is

s2 = S(µ̂)/(n − 1),

which is unbiased. Maximum likelihood produces the biased estimator

σ̂2 = S(µ̂)/n.



2.1 The Univariate Normal Distribution 33

Obviously
s2 =

n

n − 1
σ̂2.

An alternative way of writing the distribution of the yi is

yi = µ + εi,

where now the independent errors εi ∼ N(0, σ2). These errors are estimated
by the least squares residuals

ei = ε̂i = yi − ȳ. (2.1)

2.1.2 Distribution of Estimators

The sample mean from a normal distribution is itself normally distributed

ȳ ∼ N(µ, σ2/n)

and the residual sum of squares has a scaled chi-squared distribution, so

S(µ̂) = nσ̂2 = (n − 1)s2 ∼ σ2χ2
n−1. (2.2)

The least squares residual ei (2.1) is a linear combination of normally dis-
tributed random variables, so is itself normally distributed, with mean zero.
The variance can easily be shown (Exercise 2.2) to be σ2(1−1/n). Therefore

n

n − 1
e2

i ∼ σ2χ2
1. (2.3)

For multivariate data we are interested in the distribution of squared Ma-
halanobis distances which, in the univariate case, reduce to the squared
scaled residual

d2
i = e2

i /s2 = (yi − ȳ)2/s2. (2.4)

For a sample from a normal population, ȳ and s2 are independently dis-
tributed, leading for example to the t distribution for the statistic for testing
hypotheses about the value of µ. However yi and s2 are not independent
of each other and the distribution of d2

i requires some derivation. Since

n∑
i=1

e2
i =

n∑
i=1

(yi − ȳ)2 = (n − 1)s2

it follows that
n∑

i=1

d2
i =

n∑
i=1

e2
i /s2 = n − 1,

so the d2
i must have a distribution with a limited range. The results of

Cook and Weisberg (1982, p. 19) show that this distribution is, in fact,
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a scaled beta. In §2.6 we obtain the related result for the multivariate
Mahalanobis distance. But a couple of preliminary distributional results
for the univariate case are helpful.

If both µ and σ2 are known

(yi − µ)2/σ2 ∼ χ2
1. (2.5)

If now µ is still assumed known, but σ2 is estimated by s2
ν , an estimate on

ν degrees of freedom which is independent of yi,

(yi − µ)2/s2
ν ∼ F1,ν = t2ν , (2.6)

given the identity between the square of a t random variable and an F
variable on 1 and ν degrees of freedom. Both the chi-squared and the F
distributions are often used as asymptotic approximations to the distri-
bution of the squared Mahalanobis distances, for example in probability
plotting. One source for s2

ν would be the results of a set of readings differ-
ent from those for which the Mahalanobis distances were being calculated,
but taken from the same population. A second source is to use the deletion
estimate s2

(i) in which the ith observation is excluded from the data. As a
result, the estimate of σ2 is independent of yi. This is the path we follow
to find the distribution of the Mahalanobis distance for multivariate data.
The deletion results that we need are gathered in §2.5.

2.2 Estimation and the Multivariate Normal
Distribution

2.2.1 The Multivariate Normal Distribution

For multivariate data let yi be the v × 1 vector of responses forming the
observation from unit i, with yij the observation on response j. There are
n observations, so the data form a matrix Y of dimension n × v, with ith
row yT

i . The mean of yi, i = 1, . . . , n is the v × 1 vector µ and the v × v
covariance matrix of the data is Σ. If yi has a v-variate normal distribution,
the density is

f(yi; µ, Σ) = |2πΣ|−1/2 exp{−(yi − µ)T Σ−1(yi − µ)/2}. (2.7)

The multiplicative constant before the exponent may also be written as
(2π)−v/2|Σ|−1/2. Sometimes we write this distribution as yi ∼ Nv(µ, Σ),
omitting the v if the dimension is obvious.

The loglikelihood of the n observations is

L(µ, Σ; y) = −(n/2) log |2πΣ| −
n∑

i=1

(yi − µ)T Σ−1(yi − µ)/2. (2.8)
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The maximum likelihood estimator of the vector µ is now

µ̂ = ȳ =

(
n∑

i=1

yi1/n, . . . ,
n∑

i=1

yiv/n

)T

.

Alternatively, if J is an n × 1 vector of ones with Y , as before, n × v,

µ̂T = JT Y/n. (2.9)

This vector of sample means has a normal distribution

µ̂ ∼ Nv(µ, Σ/n).

2.2.2 The Wishart Distribution

The matrix of sums of squares and products about the sample means is the
v × v matrix S(µ̂) with elements

Sjk(µ̂) =
n∑

i=1

(yij − µ̂j)(yik − µ̂k). (2.10)

In (2.2) the residual sum of squares had a scaled chi-squared distribution.
The multivariate generalization is that

S(µ̂) ∼ Wv(Σ, n − 1), (2.11)

the v-dimensional Wishart distribution on n − 1 degrees of freedom. Just
as the chi-squared distribution can be defined in terms of sums of squares
of independent normal random variables, so the Wishart distribution is de-
fined in terms of sums of squares and products of independent multivariate
normal random variables.

If the rows yT
i of the n × v matrix Y are distributed as Nv(0, Σ), M =

Y T CY ∼ Wv(Σ, n). We need two results to extend this definition to the
sample sum of squares and products matrix (2.10). The first is that M =
Y T CY ∼ Wv(Σ, r) if and only if C is symmetric and idempotent, where r
= tr C = rank C.

The second extension is to variables with non-zero mean. We now let yi

be distributed Nv(µi, Σ). Then, in addition to the idempotency condition,
M = Y T CY ∼ Wv(Σ, r) if and only if E(CY ) = 0.

Some derivations are in Mardia, Kent, and Bibby (1979), particularly
§3.4 and Exercise 3.4.20.

To verify that this condition is satisfied for S(µ̂) (2.10) it is convenient
to use the matrix notation introduced in (2.9). We write

S(µ̂) =
n∑

i=1

(yi − µ̂)(yi − µ̂)T = ET E, (2.12)
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where E is the n× v matrix of residuals. Then with Ŷ the n× v matrix of
fitted values,

E = Y − Ŷ

= Y − Jµ̂T

= Y − JJT Y/n

= (I − H)Y = CY,

where H = JJT /n. As a result

C = I − JJT /n. (2.13)

Since C is symmetric and idempotent (Exercise 2.3)

S(µ̂) = ET E = Y T CT CY = Y T CY,

a quadratic form in Y , similar to those following the Wishart distribution.
But we also require that E(CY ) = 0. Since

E(Y ) = JµT , (2.14)

and
CJ = J − JJT J/n = J − J = 0,

it follows straightforwardly that

E(CY ) = CE(Y ) = CJµT = 0.

Further, since tr C = n− 1, the distributional result stated in (2.11), that
S(µ̂) ∼ Wv(Σ, n − 1), holds.

2.2.3 Estimation of Σ

The maximum likelihood estimator of Σ is (Exercise 2.7)

Σ̂ = S(µ̂)/n, (2.15)

which is biased. The unbiased, method of moments, estimator we denote

Σ̂u = S(µ̂)/(n − 1). (2.16)

From (2.11) we have the distributional results that

nΣ̂ = (n − 1)Σ̂u = S(µ̂) ∼ Wv(Σ, n − 1). (2.17)
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2.3 Hypothesis Testing

2.3.1 Hypotheses About the Mean

The maximum likelihood estimator of the means µ̂ was defined in (2.9)
as the vector of sample means of each response. We derive the maximum
likelihood test of the hypothesis

Dµ = c, (2.18)

where D is an s × v matrix of full row rank s and c an s × 1 vector of
constants, both specified by the null hypothesis. One hypothesis sometimes
of interest is that all means have the same unspecified value, when s = v−1
(Exercise 2.8).

The maximum likelihood estimator of Σ was defined in (2.15) as Σ̂ =
S(µ̂)/n = ET E/n. Substitution of this estimator, together with µ̂, into
(2.8) yields the maximised loglikelihood

L(µ̂, Σ̂; y) = −(n/2) log |2πΣ̂| −
n∑

i=1

(yi − µ̂)T Σ̂−1(yi − µ̂)/2

= −(n/2) log |2πΣ̂| − n tr E(ET E)−1ET /2
= −(n/2) log |2πΣ̂| − nv/2. (2.19)

Let the null hypothesis (2.18) be that µ = µ0. The residuals under this
hypothesis are E0 yielding via (2.12) a maximum likelihood estimator Σ̂0

of Σ. The maximised loglikelihood (2.19) becomes

L(µ̂0, Σ̂0; y) = −(n/2) log |2πΣ̂0| − nv/2.

Then the differences of maximised loglikelihoods

TLR = 2{L(µ̂, Σ̂; y) − L(µ̂0, Σ̂0; y)} = n log(|Σ̂0|/|Σ̂|), (2.20)

has asymptotically a chi-squared distribution on v degrees of freedom when
the null hypothesis is true. This statistic is the likelihood ratio test for the
hypothesis µ = µ0. It is sometimes, here and elsewhere, referred to as the
likelihood ratio test and is particulary used in Chapter 4 where we are
testing hypotheses about transformations of the data.

2.3.2 Hypotheses About the Variance

Most of the examples in the first five chapters of the book are for data in
which there is one multivariate normal population, although the data on
Swiss bank notes appears to consist of two, or perhaps three, populations.
In Chapter 6 on discriminant analysis we have at least two populations, the
analysis of which is simplified if all populations have the same covariance
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matrix. One of the aims of data transformations in discriminant analysis is
to achieve such equality of covariance matrices. We now present a test of
this hypothesis.

Suppose there are g groups of v dimensional observations, with nl obser-
vations in the lth group. The maximum likelihood estimator of Σ in group
l is denoted Σ̂l and the pooled estimator over all groups is

g∑
l=1

nlΣ̂l/n, where n =
∑g

l=1 nl . (2.21)

The likelihood ratio test for the hypothesis Σ1 = . . . = Σg = Σ is (Exer-
cise 2.10)

TLR = n log

∣∣∣∣∣
∑g

l=1 nlΣ̂l

n

∣∣∣∣∣−
g∑

l=1

nl log
∣∣∣Σ̂l

∣∣∣ . (2.22)

Asymptotically (2.22) will have a null chi-squared distribution on (g −
1)v(v + 1)/2 degrees of freedom. An asymptotically equivalent statistic
with improved distributional properties for small samples was found by
Box (1949) who scaled (2.22) with the numbers of observations replaced by
the degrees of freedom, giving the statistic

TLR(r) = r

(
ν log |Σ̂W | −

g∑
l=1

νl log |Σ̂ul|
)

, (2.23)

where

Σ̂W =
1
ν

g∑
l=1

νlΣ̂ul

=

∑g
l=1

∑nl

il=1(yil
− yl)(yil

− yl)T∑g
l=1 νl

is the within groups unbiased estimator of the covariance matrix. Strictly
we should write Σ̂Wu, but we always divide this sum of squares by the
degrees of freedom. The notation yil

shows that observation i belongs to
group l. The factor r in equation (2.23), calculated to improve the chi-
squared approximation, is given by

r = 1 − 2v2 + 3v − 1
6(v + 1)(g − 1)

(
g∑

l=1

ν−1
l − ν−1

)
. (2.24)

In (2.24) the degrees of freedom are

νl = nl − 1 and ν =
g∑

l=1

νl = n − g
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for a model in which only a constant µ is fitted to each mean. Further
degrees of freedom are lost if the covariance matrices are calculated from
residuals from regression (§2.8).

With this result on the test of equality of covariance matrices we have
the results we need on estimation of µ and Σ and for testing hypotheses
about their values. All are based on aggregate statistics summed over the
data. One use of the forward search is to see how these quantities vary
as we increase the number of observations in the subset. We shall look
at forward plots of several test statistics, particularly, in Chapter 4 on
transformations. But now we consider some statistical properties of the
Mahalanobis distances for individual observations.

2.4 The Mahalanobis Distance

This book contains many forward plots of Mahalanobis distances. As we
shall see, these can be highly informative about the structure of the data.
In this and the succeeding four sections, we derive a series of results about
the distribution of the squared distances which, unlike the distances them-
selves, have a tractable distribution. If we require numerical values for the
distribution of the distances themselves, we can proceed as we shall do
in the construction of the boundaries for the forward plot of distances in
Figure 3.6, using the square root of the values from the distribution of the
squared distances. In Figure 3.6 these are taken from the asymptotic chi-
squared distribution of the squared distances shown in Figure 3.7. Here we
find the exact distribution of the squared distances.

The squared population Mahalanobis distance of the ith observation,
that is the distance when µ and Σ are both known, is

d2
i (µ, Σ) = (yi − µ)T Σ−1(yi − µ) ∼ χ2

v, (2.25)

the generalization of the univariate result in (2.5). If Σ in this expression is
replaced by Σ̂ν , an unbiased estimator of Σ on ν degrees of freedom which
is independent of yi, the distance

d2
i (µ, Σ̂ν) = (yi − µ)T Σ̂−1

ν (yi − µ) ∼ T 2(v, ν), (2.26)

where T 2(v, ν) is Hotelling’s T 2 with parameters v and ν. This is the gen-
eralization of the result for the univariate squared scaled residual in (2.6)
which followed a squared t, or F , distribution. Here the F distribution
arises since

T 2(v, ν) =
νv

ν − v + 1
Fv,ν−v+1. (2.27)

Hotelling’s T 2 distribution is described in §3.5 of Mardia, Kent, and Bibby
(1979).
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In the analysis of examples in this book we use the squared Mahalanobis
distance

d2
i = (yi − µ̂)T Σ̂−1

u (yi − µ̂) = eT
i Σ̂uei, (2.28)

or its square root di, in which both the mean and variance are estimated.
As was argued above for the squared scaled residual (2.4), the distribution
of this squared distance is affected by the lack of independence between yi

and the estimators of µ and Σ.
We obtain the distribution of the squared Mahalanobis distance in two

steps using the deletion of observations. If µ and Σ are estimated with ob-
servation i deleted, the results of (2.26) and (2.27) indicate that the deletion
distance will follow an F distribution. We find an expression for the squared
distance (2.28) as a function of this deletion distance and then rewrite the
F distribution as a scaled beta to obtain the required distribution. We start
with deletion results.

2.5 Some Deletion Results

2.5.1 The Deletion Mahalanobis Distance

Let µ̂(i), often read as “mu hat sub i”, be the estimator of µ when obser-
vation i is deleted and, likewise, let Σ̂u(i) be the unbiased estimator of Σ
based on the n − 1 observations when yi is deleted. The squared deletion
Mahalanobis distance is

d2
(i) = (yi − µ̂(i))T Σ̂−1

u(i)(yi − µ̂(i)) = eT
(i)Σ̂

−1
u(i)e(i). (2.29)

We first find an expression for the residual e(i).
Consider just the jth response. Then the residual for yij , when yi is

excluded from estimation, is

eij(i) = yij − ȳ·j(i)

= yij − (
n∑

l=1

ylj − yij)/(n − 1)

= (nyij − nȳ·j)/(n − 1). (2.30)

So, for the vector of residuals in (2.29)

e(i) = ei +
ei

n − 1
=

n

n − 1
ei. (2.31)



2.5 Some Deletion Results 41

We also need the residual for any other observation yl, when yi is ex-
cluded. In a similar manner to (2.30)

elj(i) = ylj − ȳ·j(i)

= ylj − (
n∑

l=1

ylj − yij)/(n − 1)

= ylj − ȳ·j + (yij − ȳ·j)/(n − 1)
= elj + eij/(n − 1). (2.32)

Now, for the vector of responses

el(i) = el + ei/(n − 1).

These results yield expressions for the change in the sum of products
S(µ̂) and so in Σ̂u(i) on the deletion of yi. For all observations, an element
of S(µ̂) can, from (2.12), be written as

S(µ̂)jk =
n∑

l=1

eljelk.

When observation i is deleted, the residuals change and one term is lost
from the sum. Then

S(µ̂)jk(i) =
n∑

l �=i=1

elj(i)elk(i)

=
n∑

l �=i=1

{elj + eij/(n − 1)} {elk + eik/(n − 1)}

=
n∑

l=1

eljelk − neijeik/(n − 1),

since the residuals sum to zero over l. Therefore

S(µ̂)(i) = S(µ̂) − neie
T
i /(n − 1) = ET E − neie

T
i /(n − 1). (2.35)

The unbiased deletion estimator of Σ is

Σ̂u(i) = S(i)(µ̂)/(n − 2). (2.36)

To find Σ̂−1
u(i) we need a general preliminary result.

2.5.2 The (Bartlett)-Sherman-Morrison-Woodbury Formula

The estimator of Σ is a function of the matrix of sums of squares and prod-
ucts S(µ̂)(i) defined in (2.35). Since we require the inverse of this matrix,
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we need an explicit expression for (ET E−αeie
T
i )−1. In the development of

deletion methods for diagnostics in regression similar results are provided
by the Sherman-Morrison-Woodbury formula, sometimes with the name of
Bartlett added. It is customary to state the result and then to confirm it
gives the correct answer. See, for example Atkinson and Riani (2000, p. 23
and Exercise 2.11). Here we give a constructive derivation due to M. Knott.

Let X be n×v, with ith row xT , and let C = XT X . A simplified version
of the required inverse is

(XT X − xxT )−1 = (C − xxT )−1 = B, (2.37)

so that
BC − BxxT = I. (2.38)

Postmultiplication of (2.38) by C−1 and x, followed by rearrangement leads
to

Bx = C−1x/(1 − xT C−1x).

Substitution for Bx in (2.38) together with postmultiplication of both sides
by C−1, leads to the desired result

(C − xxT )−1 = C−1 + C−1xxT C−1/(1 − xT C−1x), (2.40)

on the assumption that all necessary inverses exist. A similar derivation
can be used to obtain the more general result in which xT is replaced by a
matrix of dimension m × v, resulting from the deletion of m rows of X .

2.5.3 Deletion Relationships Among Distances

Let C = ET E. Then
Σ̂u = C/(n − 1)

and, from (2.28), the Mahalanobis distance

d2
i = (n − 1)eT

i C−1ei. (2.42)

It is convenient to write

eT
i C−1ei = d2

i /(n − 1) as gi and α = n/(n− 1).

From (2.35) and (2.40)

S−1(µ̂)(i) = (C − αeie
T
i )−1

= C−1 + αC−1eie
T
i C−1/(1 − αeT

i C−1ei). (2.44)

Then
eT

i S−1(µ̂)(i)ei = gi + αg2
i /(1 − αgi) = gi/(1 − αgi).
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Finally we combine the definition of d2
(i) (2.29) with that of Σ̂u(i), the

unbiased deletion estimator of Σ to obtain

d2
(i) =

(n − 2)n2

(n − 1)2
eT

i S−1(µ̂)(i)ei

=
(n − 2)n2

(n − 1)3
d2

i

1 − nd2
i /(n − 1)2

. (2.46)

The inversion of this relationship provides an expression for d2
i as a function

of the squared deletion distance

d2
i =

(n − 1)3d2
(i)

n2(n − 2) + n(n − 1)d2
(i)

. (2.47)

2.6 Distribution of the Squared Mahalanobis
Distance

In the deletion Mahalanobis distance Σ is estimated on ν = n − 2 degrees
of freedom. So, from (2.27), the distance with known mean d2

i (µ, Σ̂ν) in
(2.26) has the scaled F distribution

d2
i (µ, Σ̂ν) ∼ v(n − 2)

n − v − 1
Fv,n−v−1.

But the squared deletion distance is a quadratic form in yi − ȳ(i) whereas
in (2.26) we have a quadratic in yi − µ. But, as in (2.3), the variance of
yi − ȳ(i) is n/(n − 1) times that of yi − µ. The distribution of the deletion
Mahalanobis distance is then given by

d2
(i) ∼

n

(n − 1)
v(n − 2)

(n − v − 1)
Fv,n−v−1. (2.49)

To find a compact expression for the distribution of the squared Maha-
lanobis distance it is helpful to write the F distribution as a scaled ratio of
two independent chi-squared random variables

Fv,n−v−1 =
χ2

v/v

χ2
n−v−1/(n − v − 1)

.

Then, from (2.49)

d2
(i) ∼

n(n − 2)
n − 1

χ2
v

χ2
n−v−1

,
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where, again, the two chi-squared variables are independent. It then follows
from (2.47) that the distribution of the Mahalanobis distance is given by

d2
i ∼ (n − 1)2

n

χ2
v

χ2
v + χ2

n−v−1

.

We now apply two standard distributional results. The first is that

χ2
ν = Γ

(
ν

2
,
1
2

)
.

The second is that if X1 and X2 are independently Gamma(p, λ) and
Gamma(q, λ), then X1/(X1 + X2) ∼ Beta(p, q). We finally obtain

d2
i ∼ (n − 1)2

n
Beta

(
v

2
,
n − v − 1

2

)
. (2.52)

For moderate n the range of this distribution is approximately (0, n) rather
than the unbounded range for the F distribution of the deletion distances.

This result derives the exact distribution of the individual squared Ma-
halanobis distances. That the distribution is bounded follows from the re-
lationship

n∑
i=1

d2
i = v(n − 1), (2.53)

the proof of which is left to the exercises. A summary of the distributional
results for various Mahalanobis distances is in Table 2.1

2.7 Determinants of Dispersion Matrices and the
Squared Mahalanobis Distance

We now outline an alternative derivation of the distribution of the Maha-
lanobis distance due to Wilks (1963). As a measure of outlyingness of a
multivariate observation he proposed the scatter ratio

Ri = |S(i)(µ̂)|/|S(µ̂)|

and showed that

Ri ∼ Beta
(

n − v − 1
2

,
v

2

)
.

To relate this ratio of determinants to the Mahalanobis distance we need
the standard result for the n × p matrix X

|XT X − xxT | = |XT X |{1 − xT (XT X)−1x}, (2.56)
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where here xT is one of the rows of X and it is assumed that (XT X)−1

exists (Rao 1973, p. 32). We now apply this relationship to the matrix of
residuals.

We recall (2.35)

S(µ̂)(i) = S(µ̂)−neie
T
i /(n−1) = ET E−neie

T
i /(n−1) = C−neie

T
i /(n−1).

Then, in (2.56)

|S(µ̂)(i)| = |S(µ̂)|{1 − neT
i C−1ei/(n − 1)},

so that Wilks’ result becomes

1 − n

n − 1
eT

i C−1ei ∼ Beta
(

n − v − 1
2

,
v

2

)
.

Next we recall that if the random variable X ∼Beta(α, β), 1−X ∼Beta(β, α),
when, invoking the notation of (2.42), we obtain

n

(n − 1)2
d2

i ∼ Beta
(

v

2
,
n − v − 1

2

)
,

which is (2.52).

2.8 Regression

In many of the examples in this book the data, perhaps after transforma-
tion and the removal of outliers, follow the multivariate normal distribution
(2.7) in which each observation yij on the jth response has mean µj . How-
ever, in some examples, the mean has a regression structure. The simplest,
considered in this section, is when the regressors for each of the v responses
are the same. Then (2.14) becomes

E(Y ) = XB, (2.57)

where Y is n × v, X is the n × p matrix of regression variables and B is a
p×v matrix of parameters. The v×v covariance matrix of the data remains
Σ. Then, for an individual observation

E(yij) = µij = xT
i βj , (2.58)

where xT
i is the ith row of X and βj the jth column of B.

We now consider estimation of B and Σ. If there are different sets of
explanatory variables for the different responses, so that we write Xj , rather
than the common X , estimation of B requires knowledge, or an estimate,
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of Σ. This is the subject of the next section. Here, with a common X , each
estimate β̂j is found from univariate regression of yCj on X , that is

β̂j = (XT X)−1XT yCj . (2.59)

The matrix of residuals E has elements

eij = yij − xT
i β̂j , (2.60)

and the sum of squares and products matrix is

S(β̂) = ET E. (2.61)

In an extension of (2.11) this matrix again has a Wishart distribution

S(β̂) ∼ Wv(Σ, n − p). (2.62)

To prove this result in a manner analogous to that of §2.2.2 requires the
use of some standard results in regression. Here we use notation similar to
that of Atkinson and Riani (2000, Chapter 2).

The hat matrix H is defined as

H = X(XT X)−1XT , (2.63)

so called because the matrix of fitted values Ŷ = HY . The ith diagonal
element of H is

hi = xT
i (XT X)−1xi. (2.64)

The theorems relating to the Wishart distribution of the matrix of the sum
of squares and products are analogous to those in §2.2.2 with the matrix
C (2.13) replaced by the symmetric idempotent matrix I − H .

The maximum likelihood estimator of Σ is basically unchanged,

Σ̂ = S(β̂)/n,

which is biased. The unbiased, method of moments, estimator becomes

Σ̂u = S(β̂)/(n − p). (2.66)

To find the distribution of the Mahalanobis distance, we again use dele-
tion methods. A standard result in regression diagnostics for the change in
the residual sum of squares on deletion of an observation (Atkinson and Ri-
ani 2000, p. 26, eq. 2.48) can be written in our notation for the jth response
as

n∑
l �=i=1

e2
lj(i) =

n∑
l=1

e2
lj − e2

ij/(1 − hi),

so that (2.35) becomes

S(β̂) = S(β̂)(i) − eie
T
i /(1 − hi) = ET E − eie

T
i /(1 − hi). (2.67)
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For a model in which only the mean is fitted, hi = 1/n and (2.67) reduces
to (2.35). The unbiased deletion estimator of Σ for the regression model is

Σ̂u(i) = S(β̂)(i)/(n − p − 1). (2.68)

The deletion Mahalanobis distance (2.29) is a function of this matrix and
of the residuals

yi − µ̂(i) = yi − β̂T
(i)xi.

The standard result for the deletion estimator β̂(i) in regression (for exam-
ple (2.94) or Atkinson and Riani 2000, p. 23) shows that

yi − β̂T
(i)xi = ei/(1 − hi). (2.69)

In the deletion distance Σ is estimated with n − p − 1 degrees of freedom.
Then the distance with known mean d2

i (µ, Σ̂n−p−1) in (2.26) has a scaled
F distribution

d2
i (µ, Σ̂n−p−1) ∼ v(n − p − 1)

n − v − p
Fv,n−v−p.

But the squared deletion distance is a quadratic form in ei/(1 − hi). The
variance of each element of ei is (1 − hi) times that of the corresponding
element of yi, so the vector has variance 1/(1 − hi) times that of yi − µ in
(2.26). The distribution of the deletion Mahalanobis distance is therefore
now given by

d2
(i) ∼

1
(1 − hi)

v(n − p − 1)
(n − v − p)

Fv,n−v−p. (2.71)

The next stage in the argument is to find the relationship between the
distance d2

i and the deletion distance. As before, let C = ET E. Then

Σ̂u = C/(n − p)

and the squared Mahalanobis distance is

d2
i = (n − p)eT

i C−1ei. (2.72)

If now we write

eT
i C−1ei = d2

i /(n − p) as gi and α = 1/(1 − hi),

application of (2.44) leads to

eT
i S−1

(i) (β̂)ei =
d2

i

n − p − d2
i /(1 − hi)

.

The combination of this result with the definition of the unbiased deletion
estimator Σ̂u(i) in (2.36) together with the residuals ei/(1−hi) (2.69) yields
the required relationship

d2
(i) =

(n − p − 1)
(1 − hi)2(n − p)

d2
i

1 − d2
i /{(n − p)(1 − hi)} , (2.75)
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which reduces to (2.46) when the linear model contains just a mean, that is
when p = 1 and hi = 1/n. The inversion of this relationship again provides
an expression for d2

i as a function of the squared deletion distance

d2
i =

(1 − hi)2(n − p)d2
(i)

(n − p − 1) + (1 − hi)d2
(i)

. (2.76)

To find the distribution of this squared Mahalanobis distance we start
from (2.71) proceeding as in §2.6. The distribution of the deletion distance
(2.71) is again written as the distribution of the ratio of two independent
chi-squared random variables

d2
(i) ∼

n − p − 1
1 − hi

χ2
v

χ2
n−v−p

.

It now follows from (2.76) that the distribution of the Mahalanobis distance
is given by

d2
i ∼ (n − p)(1 − hi)

χ2
v

χ2
v + χ2

n−v−p

.

Finally, we again use the relationship between beta and gamma random
variables employed in §2.6 to obtain

d2
i ∼ (n − p)(1 − hi) Beta

(
v

2
,
n − v − p

2

)
. (2.79)

so that the range of support of the distribution of d2
i depends upon hi. For

some balanced experimental designs, such as two-level factorials, all hi are
equal when all n observations are included in the subset and so

∑
hi = p,

when each hi = p/n. Then the distribution (2.79) reduces to

d2
i ∼ (n − p)2

n
Beta

(
v

2
,
n − v − p

2

)
.

However, the distances will not all have the same distribution in the rest
of the search. A more complicated instance of unequal leverages is when
we include in the model a constructed variable for transformation of the
response §4.4, the value for which depends on each observed yij . But then
fitting the regression model requires estimation of Σ. We discuss the result-
ing regression procedure in §2.11.

2.9 Added Variables in Regression

The previous section concludes our work on the distribution theory of
squared Mahalanobis distances. In this and the next section we describe
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some more general properties of regression models. For the moment we
continue with multiple regression when the matrix of explanatory variables
is the same for all responses, that is when (2.57) holds. Each response is
then analysed separately using univariate regression. Our purpose is to pro-
vide some background to the development of approximate score tests for
transformation of the data developed in §4.4. Even if the means of the data
do not contain any regression structure, which is the usual situation, the
algebra of added variables described in this section provides a convenient
way of using the forward search to assess transformations.

The underlying idea is that multiple regression can be performed as a
series of simple linear regressions on single explanatory variables, although
both the response and the regression variable have to be adjusted for the
variables already in the model. We then perform a regression of residuals
on residuals. To begin the derivation of the results we extend the univari-
ate regression model to include an extra explanatory variable, the added
variable w, so that the model is

E(y) = Xβ + wγ, (2.81)

where y is n×1, β is p×1 and γ is a scalar. We find explicit expressions for
the least squares estimate of γ and the statistic for testing its value. Added
variables are important in the development of regression diagnostics, where
they are used to provide graphical representations (added variable plots)
for the importance of individual observations to evidence for regression on
w. They are also important in providing tests for transformations and in the
development of regression diagnostics using the mean shift outlier model,
which is briefly introduced in the next section. These uses are described in
Atkinson and Riani (2000, §2.2), where full details are given. In this book,
since few of our examples include regression, we give a brief summary of
the method, which is used in §4.13 where we select a regression model.

An expression for the estimate γ̂ of γ in (2.81) can be found explicitly
from the normal equations for this partitioned model

XT Xβ̂ + XT wγ̂ = XT y (2.82)

and
wT Xβ̂ + wT wγ̂ = wT y. (2.83)

If the model without γ can be fitted, (XT X)−1 exists and (2.82) yields

β̂ = (XT X)−1XT y − (XT X)−1XT wγ̂. (2.84)

Substitution of this value into (2.83) leads, after rearrangement, to

γ̂ =
wT (I − H)y
wT (I − H)w

=
wT Ay

wT Aw
. (2.85)
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Since A = (I − H) is idempotent, γ̂ can be expressed in terms of the two
sets of residuals

e =
∗
y = (I − H)y = Ay

and ∗
w = (I − H)w = Aw (2.86)

as
γ̂ =

∗
w

T
e/(

∗
w

T ∗
w). (2.87)

Thus γ̂ is the coefficient of linear regression through the origin of the resid-
uals e on the residuals of the new variable w, both after regression on the
variables in X .

To calculate the t statistic requires the variance of γ̂. Since, like any
least squares estimate in a linear model, γ̂ is a linear combination of the
observations,

var γ̂ = σ2 wT AT Aw

(wT Aw)2
=

σ2

wT Aw
= σ2/(

∗
w

T ∗
w). (2.88)

Calculation of the test statistic also requires s2
w, the residual mean square

estimate of σ2 from regression on X and w, given by (Atkinson and Riani
2000, eq. 2.28)

(n − p − 1)s2
w = yT y − β̂T XT y − γ̂wT y

= yT Ay − (yT Aw)2/(wT Aw). (2.89)

The t statistic for testing that γ = 0 is then

tw =
γ̂√{s2

w/(wT Aw)} . (2.90)

If w is the explanatory variable xk, (2.90) is an alternative way of writing
the usual t test for xk in multiple regression. But the usual regression t
tests are hard to interpret in the forward search, decreasing markedly as the
search progresses; Figure 3.4 of Atkinson and Riani (2000) is one example.
The problem arises in multiple regression because the search orders the
observations using all variables including xk. We obtain t tests for xk with
the correct distributional properties by taking xk as w in (2.81) with X all
the other explanatory variables. The forward search orders the data by all
variables except xk. Because of the orthogonal projection in (2.86), the t
test (2.90) is unaffected by the ordering of the observations in the search. A
fuller discussion is in Atkinson and Riani (2002a). Our example is in §4.7.

2.10 The Mean Shift Outlier Model

In §2.5 we obtained some deletion results for Mahalanobis distances using
results derived from the (Bartlett)-Sherman-Morrison-Woodbury formula



52 2. Multivariate Data and the Forward Search

(2.40). In this section we sketch how the mean shift outlier model can be
used to obtain deletion results for the more general case of regression, using
the relationships for added variables derived in the previous section. The
standard results for deletion in regression are summarized, for example, by
Atkinson and Riani (2000, §2.3).

Formally the model is similar to that of (2.81). We write

E(y) = Xβ + q(i)φ, (2.91)

where the n × 1 vector q(i) is all zeroes apart from a single one in the
ith position and φ is a scalar parameter. Observation i therefore has its
own parameter and, when the model is fitted, the residual for observation
i will be zero; fitting (2.91) thus yields the same residual sum of squares as
deleting observation i and refitting.

To show this equivalence requires some properties of q(i). Since it is a
vector with one nonzero element equal to one, it extracts elements from
vectors and matrices, for example:

q(i)T e = ei, XT q(i) = xi and q(i)T Hq(i) = hi. (2.92)

Then, from (2.85),

φ̂ =
q(i)T Ay

q(i)T Aq(i)
=

ei

1 − hi
. (2.93)

If the parameter estimate in the mean shift outlier model is denoted β̂q, it
follows from (2.84) that

β̂q = (XT X)−1XT y − (XT X)−1XT q(i)φ̂,

so that, from (2.93)

β̂q − β̂ = −(XT X)−1xiei/(1 − hi). (2.94)

Comparison of (2.94) with standard deletion results shows that β̂q = β̂(i),
confirming the equivalence of deletion and a single mean shift outlier.

The expression for the change in residual sum of squares comes from
(2.89). If the new estimate of σ2 is s2

q we have immediately that

(n − p − 1)s2
q = yT Ay − {yT Aq(i)}2/{q(i)T Aq(i)}

= (n − p)s2 − e2
i /(1 − hi), (2.95)

where s2
q = s2

(i), the deletion estimate.
The mean shift outlier model likewise provides a simple method of finding

the effect of multiple deletion. We first need to extend the results on added
variables in §2.9 to the addition of m variables, so that Q is an n × m
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matrix and γ an m × 1 vector of parameters. We then apply these results
to the mean shift outlier model

E(y) = Xβ + Qφ,

with Q a matrix that has a single one in each of its columns, which are oth-
erwise zero, and m rows with one nonzero element. These m entries specify
the observations that are to have individual parameters or, equivalently,
are to be deleted.

2.11 Seemingly Unrelated Regression

When there are different linear models for the v responses, the regression
model for the jth response can be written

E(yCj ) = Xjβj, (2.96)

where yCj is the n×1 vector of responses (jth column of matrix Y ). Here Xj

is an n×p matrix of regression variables, as was X in (2.57), but now those
specifically for the jth response, and βj is a p×1 vector of parameters. In our
applications we do not need the more general theory in which the number
of parameters pj in the model depends upon the particular response. The
extension of the theory to this case is straightforward, but is not considered
here.

Because the explanatory variables are no longer the same for all responses
the simplification of the regression in §2.8 no longer holds: the covariance Σ
between the v responses has to be allowed for in estimation and independent
least squares is replaced by generalized least squares. The model for all n
observations can be written in the standard form of (2.57) by stacking the
equations under each other. In this form the model is that for a vector of
nv observations on a heteroscedastic univariate response variable and the
vector of parameters β is of dimension pv × 1. If we let Ψ be the nv × nv
covariance matrix of the observations, generalized least squares yields the
parameter estimator

β̂ = (XT Ψ−1X)−1XT Ψ−1Y, (2.97)

with covariance matrix

var β̂ = (XT Ψ−1X)−1, (2.98)

where X is nv × pv. In the particular form of generalized least squares
resulting from stacking equations of the form of (2.96) the parameters for
each response are different, the estimates being related only through co-
variances of the yCj . This special structure is known as seemingly unrelated
regression (Zellner 1962).
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In all there are nv observations. When the data are stacked the covariance
matrix Ψ is block diagonal with n blocks of the v× v matrix Σ. As a result
of the block diagonal structure the calculation of the parameters β can be
achieved without inversion of an nv × nv matrix.

There are p∗ = vp parameters to be estimated. Let X∗ be the n × p∗

matrix of explanatory variables formed by copying each column of the Xj

in order - first all the elements of the first column of each Xj , then all the
second columns and so on up to the last columns of each Xj . The elements
of X∗ are x∗

ij . If β∗ is the p∗ × 1 vector of parameters, calculation of the
least squares estimates requires the p∗ × p∗ covariance matrix Ψ. Let J be
a vector of ones of dimension n × 1. Then

Ψ−1 = JJT ⊗ Σ−1, (2.99)

a matrix containing n×n copies of Σ−1. In (2.99) ⊗ denotes the Kronecker
product. The vector of parameter estimates can then be written in the
seemingly standard least squares form β̂∗ = A−1B where

Ajk =
∑n

i=1 x∗
ijΨ

−1
jk x∗

ik

Bj =
∑n

i=1

∑v
k=1 x∗

ijΨ
−1
jk yik.

(2.100)

Although the pattern is clear, the matrices do not combine according to
dimensions and the summations are over the n observations rather than
the nv of the stacked data. Discussion of seemingly unrelated regression is
to be found in many textbooks on econometrics, for example §2.9 of Harvey
(1990).

Because (2.100) contains Ψ, estimation of Ψ, or equivalently Σ, is re-
quired for the procedure to be operational. The estimation proceeds in two
or more steps:

1. Obtain Σ̂0, an estimate of Σ, from the independent regressions as in
(2.61), but with yCj regressed on Xj.

2. Seemingly unrelated regression using (2.100) with Ψ̂−1 in (2.99) cal-
culated using Σ̂−1

0 .

3. Iteration in the estimation of Ψ is possible, starting with the esti-
mate of Σ obtained from Step 2 and repeating the seemingly unre-
lated regression calculations until there is no significant change in the
estimates of the covariance matrices.

Much of the emphasis so far in this chapter has been on the distribu-
tion of the statistics we have calculated, particularly the Mahalanobis dis-
tances. However, such results are not available for the seemingly unrelated
regression procedure of this section. Under the assumption of normally dis-
tributed errors, the estimate in β from generalized least squares in (2.97)
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has the normal distribution. But with Ψ estimated from the data, the dis-
tribution is not readily determined. If the exact distribution is important,
recourse may be had to simulation. But, we use the asymptotic results
which apply when Ψ is known.

2.12 The Forward Search

Examples of the forward search were given in Chapter 1. During these we
monitored the behaviour of the minimum Mahalanobis distance for units
not in the subset as the data were fitted to increasingly large subsets. In this
chapter we have introduced further quantities that can be monitored during
the forward search. We now briefly describe the search, which is made up
of three steps: the first is the choice of an initial subset, the second the way
in which we progress in the forward search and the third is the monitoring
of the statistics during the progress of the search. In subsequent sections
we discuss in some detail how to start the search and what quantities it is
interesting to monitor. Here we discuss its properties.

The purpose of the forward search is to identify observations which are
different from the majority of the data and to determine the effect of these
observations on inferences made about the correct model. There may be
a few outliers or it may be, as in the data on Swiss bank notes, that the
observations can be divided into groups, so that it is appropriate to fit a
different model to each group. Although it is convenient to refer to such
observations as “outliers”, they may well form a large part of the data
and indicate unsuspected structure. Such structure is often impossible to
detect from a model fitted to all the data. The effect of the outliers is
masked and backwards methods using the deletion of observations fail to
show any important features.

If the values of the parameters of the model were known, there would
be no difficulty in detecting the outliers, which would have large Maha-
lanobis distances. The difficulty arises because the outliers are included in
the data used for fitting the model, leading to parameter estimates which
can be badly biased. In particular, the estimates of the elements of the
covariance matrix can be seriously inflated, so masking the existence of
outlying observations. Many methods for outlier detection therefore seek
to divide the data into two parts, a larger “clean” part and the outliers.
The clean data are then used for parameter estimation. The forward search
provides subsets of increasingly large size which are designed to exclude the
outliers until there are no clean data remaining outside the subset. At this
point outliers start to be used in estimation, when test statistics and Ma-
halanobis distances may change appreciably.

Some methods for the detection of multiple outliers therefore use very
robust methods to sort the data into a clean part and potential outliers.
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An example is the use of the resampling algorithm of Rousseeuw and van
Zomeren (1990) for the detection of multivariate outliers using the mini-
mum volume ellipsoid. The algorithm selects random samples of size v + 1
from which the vector of means µ and the covariance matrix Σ are esti-
mated. The process is repeated many times, perhaps one thousand, and the
estimates chosen which give the smallest ellipsoid containing approximately
half the data. The resulting parameter estimates are very robust. However
Woodruff and Rocke (1994) show that such estimators, although very ro-
bust, have higher variance than those based on larger subsets. Such larger
subsets are therefore more reliable when used in outlier detection proce-
dures, provided they are outlier free. See also Hawkins and Olive (2002).

In the forward search for multivariate data we find such larger initial
subsets of outlier free observations by starting from m0 observations which
are not outlying at a specified level in any univariate or bivariate boxplot.
The properties of robust bivariate boxplots are described in the next sec-
tion. We then increment this set starting subset by selecting observations
that have small Mahalanobis distances and so are unlikely to be outliers.
In some versions of the forward search, for example Hadi (1992) and Hadi
and Simonoff (1993), the emphasis is on using the forward search to find a
single set of parameter estimates and of outliers. These are determined by
the point at which the algorithm stops, which may be either determinis-
tic or data dependent. The emphasis in this book is very different: at each
stage of the forward search we use information such as parameter estimates
and plots of Mahalanobis distances to guide us to a suitable model.

At some stage in the forward search let the set of m observations used in
fitting be S

(m)
∗ . The mean and estimated covariance matrix of this subset

are µ̂∗
m and Σ̂∗

um. From these parameter estimates we can calculate a set of n

squared Mahalanobis distances d∗2im. Suppose that the subset S
(m)
∗ is clear of

outliers. There will then be n−m observations not used in fitting that may
contain outliers. We do not seek to identify these outliers by a formal test.
Our interest is in the evolution, as m goes from m0 to n, of quantities such
as Mahalanobis distances, test statistics and other diagnostic quantities.
We also look at the sequence of parameter estimates and related quantities
such as the eigenvectors of Σ̂∗

um. We monitor changes that occur, which
can always be associated with the introduction of a particular group of
observations, in practice usually one observation, into the subset of size
m used for fitting. Interpretation of these changes is complemented by
examination of changes in the forward plot of Mahalanobis distances.

Given that we have fitted the model to a subset of dimension m ≥ m0,
the forward search moves to dimension m + 1 by selecting the m + 1 units
with the smallest squared Mahalanobis distances, the units being chosen
by ordering all squared distances d∗2im, i = 1, . . . , n. In most moves from m
to m + 1 just one new unit joins the subset. It may also happen that two
or more units join S

(m)
∗ as one or more leave. However our experience is
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that such an event is unusual, only occurring when the search includes one
unit that belongs to a cluster of outliers. At the next step the remaining
outliers in the cluster seem less outlying and so several may be included at
once. Of course, several other units then have to leave the subset.

Remark 1: The search starts with a robustified estimator of µ and Σ
found by use of a bivariate boxplot. Let this estimator of µ be µ̂∗

0 and let
the estimator at the end of the search be µ̂∗

n = µ̂. In the absence of outliers
and systematic departures from the model

E(µ̂∗
0) = E(µ̂) = µ;

that is, both parameter estimates are unbiased estimators of the same quan-
tity. The same property holds for the sequence of estimates µ̂∗

m produced
in the forward search. Therefore, in the absence of outliers, we expect esti-
mates of the mean to remain sensibly constant during the forward search.
However, because of the way in which we select the observations for in-
clusion in the subset, those with smaller Mahalanobis distances will be
selected first. As a result the estimate of Σ, unlike that of µ, will increase
during the forward search. Therefore, unless outliers are present, the dis-
tances d∗2im will trend steadily downwards during the search. The use of the
scaled distances defined in (2.104) overcomes this tendency. A comparison
of plots of scaled and unscaled distances is in Figure 2.5.

Remark 2: Now suppose there are k outliers. Starting from a clean subset,
the forward procedure will include these towards the end of the search,
usually in the last k steps. Until these outliers are included, we expect
that the conditions of Remark 1 will hold and that plots of Mahalanobis
distances will remain reasonably smooth until the outliers are incorporated
in the subset used for fitting. The forward plot of scaled distances for
the data on municipalities in Emilia-Romagna, Figure 3.24, is a dramatic
example in which the pattern is initially stable, but changes appreciably at
the end of the search when the two gross outliers enter.

Remark 3: If there are indications that the data should be transformed,
it is important to remember that outliers in one transformed scale may
not be outliers in another scale. If the data are analyzed using the wrong
transformation, the k outliers may enter the search well before the end.

The search avoids the initial inclusion of outliers and provides a natural
ordering of the data according to the specified null model. In our approach
we use a robust starting point combined with unbiased estimators during
the search that are multiples of the maximum likelihood estimators. The es-
timators are therefore fully efficient for the multivariate normal model. The
zero breakdown point of these estimators is an advantage for the forward
search. The introduction of atypical influential observations is signalled by
sharp changes in the curves that monitor Mahalanobis distances and test
statistics at every step. In this context, the robustness of the method does
not derive from the choice of a particular estimator with a high breakdown
point, but from the progressive inclusion of units into a subset which, in the
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first steps, is outlier free. As a result of the forward search, the observations
are ordered according to the specified null model and it becomes clear how
many of them are compatible with a particular specification. Our approach
enables us to analyze the inferential effect of the atypical units (“outliers”)
on the results of statistical analyses.

Remark 4: The procedure is not sensitive to the method used to select
an initial subset; even if outliers are included at the start they are often
removed in the first few steps. For example, two forms of robust bivariate
boxplot are described in the next section, either of which can be used to
provide an initial subset. For speed of calculation we use the less robust.
Although the first steps of the search may depend on which of the two
methods is used to find the initial subset, the later stages are independent
of it. What is important in the procedure is that the initial subset is either
free of outliers or breaks the masking of outliers which are masked in the
complete set of n observations. The removal of outliers is visible in some
searches where there are sometimes numerous interchanges in the first few
steps. Examples in which the search recovers from a start that contains
outliers include Exercise 3.4 and Figure 7.20. An example for spatial data
in which the search recovers from a start that is not very robust is given
by Cerioli and Riani (1999).

2.13 Starting the Search

We now describe two methods for finding a “central” part of the data by
looking at two dimensional projections. Both methods fit curves to bivariate
scatter plots. These fitted curves can provide useful extra information when
they are included in scatterplot matrices. In the first section we describe
the babyfood data which are used here to illustrate the construction of the
boxplots and, in §§4.2 and 4.7, to illustrate the transformation of multivari-
ate data. The two methods of construction are described in §§2.13.2 and
2.13.3. Finally, in §2.13.4, we discuss the use of the intersection of these
bivariate central parts in starting the forward search.

2.13.1 The Babyfood Data

Box and Draper (1987, p. 265) present part of a larger set of data on the
storage of a babyfood. The data are in Table A.5. Unlike other data that
we have so far seen, these include five explanatory variables. There are 27
readings on four responses which are the initial viscosity of the babyfood
and its viscosity after three, six and nine months storage. The distribution
of viscosity, a non-negative property, is highly skewed and we can expect
that the data will require transformation. The ratios of the maximum to
the minimum of each response in Table 4.1 reinforce this expectation. We



2.13 Starting the Search 59

discuss the transformation of these data in some detail in Chapter 4. Here
we only look at a scatterplot of the first two responses, both transformed
and untransformed, to show the effect of data skewness on the construction
of the two kinds of robust contour.

2.13.2 Robust Bivariate Boxplots from Peeling

A method for using the peeling of points from convex hulls to find a central
part of the data is described by Zani, Riani, and Corbellini (1998). Once
the central part of the data has been found, smooth contours are found by
the use of B-splines (Micula 1998, de Boor 2002). The method is virtually
non-parametric, in that almost no distributional assumptions are made in
deriving the fitted B-spline. The method can be described in three steps.

Step 1 The Inner Region. The inner region is the two dimensional
extension of the interquartile range of the univariate boxplot, where it is
often called a “hinge”. In one dimension we take the length of the box
between the first and third quartiles, which therefore contains 50% of the
values. In two dimensions we look for a similar region centred on a robust
estimator of location, containing a fixed percentage of the data. A natural,
nonparametric way of finding a central region in two-dimensions is to use
convex hull peeling. The most extreme group of observations in a multi-
variate sample can be thought of as those lying on the convex hull, with
those on the convex hull of the remaining sample, the second most extreme
group and so on. The output of the peeling is a series of nested convex
polygons (hulls). We call the (1− α)%-hull the biggest hull containing not
more than (1−α)% of the data (the points on the boundary belong to the
hull). Usually, even if the outermost hulls assume very different shapes and
are influenced by outliers, the 50%-hull seems to capture the underlying
correlation of the two variables.

Since each convex hull contains several observations, the nominal 50%-
hull found by peeling may contain less than 50% of the data, the effect being
greater if the sample size is small. It also might not be smooth. To overcome
this problem we fit a B-spline curve to the 50%-hull found by peeling. The
inner region is therefore formed by those units which lie inside or on the
boundary of the B-spline curve superimposed on the 50%-hull.

As an illustration of our method we use the scatterplot of the logged
values of the first two variables in the babyfood data. There are 27 ob-
servations. Panel (a) of Figure 2.1 shows the outermost hull, which passes
through seven points. Panel (b) shows this hull together with the second
hull, also passing through seven points, so that 13 remain. The third hull,
of five points in Panel (c), is the 50% hull, since it is the largest containing
not more than 50% of the data. Inside it are eight data points. In Panel
(d) a B-spline curve is fitted to the 50% hull. This inner region seems free
from outliers and is robust, while keeping the correlation in the data and
allowing for different spreads in the various directions. It is worth noting
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FIGURE 2.1. Logged babyfood data, y1 and y2: the first three convex hulls con-
taining respectively 7, 7 and 5 points. Panel (d) shows the B-spline fitted to the
50% hull of five points and the robust centre, marked + almost coincident with
an observation

that the fitted spline contains only seven data points, since one observation,
with coordinates 5.15 and 5.47, lies inside the 50% hull, but outside the
spline.

Step 2 The Robust Centroid. We find a robust bivariate centroid
using the componentwise arithmetic means of the observations inside the
inner region defined by the fitted spline. In this way we exploit both the ef-
ficiency properties of the arithmetic mean and the natural trimming offered
by the hulls. This mean of the values of logged y1 and logged y2 is marked
with a cross in Panel (d) of Figure 2.1. This cross gives the appearance of
being near the centre of the nearly elliptical spline.

A useful requirement of estimators of location is affine invariance (for
example Woodruff and Rocke 1994) ensuring that different rescalings of
the individual variables leave the estimator of location unchanged. If we
require such a property of our estimator we need to take the mean of the
observations over the convex hull, rather than over the fitted B-spline.
References to other ways of finding robust bivariate centres are given at
the end of the chapter.
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FIGURE 2.2. Logged babyfood data, y1 and y2: scaling the convex hull. The
resulting 99% hull indicates four outliers

Step 3 The Outer Region. Once we have found a robust bivariate
centre and a curve asymptotically containing half the data (a bivariate
“hinge”) we require a method for constructing contours at other levels. To
find a small subset for starting the search we may need contours with a
nominal content of less than 50%. But, if interest is in a contour which dis-
criminates between “good” and “bad” observations, a much higher nominal
content will be needed. If we were using Mahalanobis distances to mea-
sure the remoteness of the observations, these contours would be ellipses
which would be found analytically. However, with the metric provided by
the bivariate hinge, we have to proceed numerically. We find the contours
by scaling the hinge, following the procedure suggested by Goldberg and
Iglewicz (1992) as modified by Zani et al. (1998).

The left-hand panel of Figure 2.2 shows the method of scaling. Let O be
the centre of the data found in Step 2 and let X , Y and Z be three points
on the 50% contour. Then, if X ′, Y ′ and Z ′ are three points on rays from
O on the scaled contour, we require that the ratios

OX ′

OX
=

OY ′

OY
=

OZ ′

OZ
= c, (2.101)

say. For outlier detection c will be appreciably greater than one.
To find suitable values of c, Goldberg and Iglewicz (1992) use an approx-

imate F distribution for the Mahalanobis distance

d2
i ∼ {2(n − 1)/(n− 2)}F2,n−2, (2.102)

which is close to the distribution of the deletion Mahalanobis distance
(2.49). The theoretical 50% contour for the babyfood data in Figure 2.2
corresponds to an F value, on 2 and 25 degrees of freedom, of 0.7127. The
value for the 99% contour is 5.568. The ratio of these two is 7.813. But



62 2. Multivariate Data and the Forward Search

we are concerned with distance, not squared distances, so the value of c in
(2.101) is

√
7.813 = 2.795.

In a conservative approach to outlier detection we might seek to declare
any ambiguous points as outliers, thereby obtaining a central part of the
data which has a reduced probability of being contaminated. A possibil-
ity here is to replace the F distribution with the asymptotic chi-squared
distribution of the distances. In this case the value of 2.795 becomes 2.58.
Zani et al. (1998) use this approximation to the distribution of squared
Mahalanobis distances combined with simulation to allow for the effect of
peeling on the content of the hinge. The value of 2.58 increases slightly to
2.68. This final value is a compromise between the 2.795 based on the F
distribution and the 2.58 from the chi-squared approximation. (In Table 2
of Zani et al. (1998) the values are of c−1, the extension of the ray beyond
the 50% fitted spline). This approximate 99% contour is plotted in both
panels of Figure 2.2. In the right-hand panel some possible outliers in this
two-dimensional projection of the data are identified.

Use of the exact beta distribution (2.52) for scaling is recommended if it
really is desired to use the bivariate boxplot for bivariate outlier detection.
However, we use the forward search for outlier detection for any dimension
v, at the same time obtaining information on the inferential importance of
each observation. Our interest in the boxplots is to select an initial subset,
when several values of c may be tried, until a satisfactory value is found
for m0.

The convex hulls in Figure 2.1 and the nearly elliptical contours in
Figure 2.2 suggest that the logged data are approximately normally dis-
tributed. It is interesting to see what happens when we repeat the procedure
using untransformed data.

Figure 2.3 shows the four convex hulls fitted to the data in the peeling
process to find the 50% hull. These hulls are quite different in shape from
the hulls for the transformed data, several being quadrilateral. Since they
mostly only contain four observations, four hulls have to be peeled to obtain
the 50% hull, rather than three for the transformed data.

Figure 2.4 shows the fitted B-spline and the nominal 99% contour found
by scaling up. Because the data are concentrated in the lower-left hand
corner of the figure, the 50% curve is relatively small. As a result sev-
eral observations lie outside the 99% curve found by scaling up. The skew
distribution of the data leads to the detection of many apparent outliers.

2.13.3 Bivariate Boxplots from Ellipses

The bivariate boxplots calculated from B-splines provide a useful tool for
a preliminary examination of the data. They are however over elaborate as
a means of finding a central part of the data which can serve as a starting
point for the forward search. In this section we present a computationally
simpler method in which ellipses with a robust centroid are fitted to the
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FIGURE 2.3. Untransformed babyfood data, y1 and y2: four convex hulls have
to be peeled to obtain the 50% hull as opposed to three for the transformed data
in Figure 2.1

data. Our description follows Riani and Zani (1997) who use a version of
the “quelplot” of Goldberg and Iglewicz (1992).

The robust centroid of the ellipse is found as the componentwise median
of the two variables in the scatterplot. Let this be µ̃. The shape of the con-
tours is based on a covariance matrix in which the univariate medians are
used, but which is otherwise calculated in the usual way. That is, the mean
in (2.10) is replaced by µ̃ to give a 2×2 matrix with elements proportional
to

Sjk(µ̃) =
n∑

i=1

(yij − µ̃j)(yik − µ̃k).

The combination of centroid and covariance estimate gives Mahalanobis
distances for each observation and a family of ellipses which need to be
scaled. The 50% ellipse is that which passes through the point with the
median Mahalanobis distance, and so contains exactly 50% of the data. As
a matter of minor detail, we use the F distribution for scaling this ellipse.
As was stated above, the theoretical value of c for this 50% contour for
the babyfood data is 0.7127. Contours for other levels are then found by
scaling this ellipse.
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FIGURE 2.4. Untransformed babyfood data, y1 and y2: the scaled 99% convex
hull indicates seven outliers

A scatterplot matrix of these ellipses for the original babyfood data is
in Figure 4.6 and for the log-transformed data in Figure 4.5. The inter-
pretation of the plots is similar to that for Figures 2.4 and 2.2, with the
untransformed data exhibiting many more outliers.

The method of constructing boxplots based on peeling was described
above in Section 2.13.2 as virtually non-parametric. It is not completely
non-parametric since the F or χ2 distribution used to find the scaling c
is based on the assumption of bivariate normality. The method based on
ellipses in this section is hardly non-parametric at all; apart from the use
of the median as a measure of location, the theory is based entirely on
the normal distribution. Even so, this boxplot is both a useful tool for the
examination of data and a method for finding an initial subset, even in
data with many outliers.

2.13.4 The Initial Subset

We find an initial subset of m0 observations from the intersection of units
inside a contour of specified content, where we have to adjust the content
to yield, at least roughly, the required number of observations. We also
eliminate any univariate outliers. The magnitude of the contour depends
on the parameter θ giving the scaling

d2
i (θ) = {2(n− 1)/(n − 2)}θ. (2.103)
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The relationship between θ and the scaling c follows from the approxi-
mate F distribution for Mahalanobis distances defined in (2.102). For ex-
ample, a value of θ = 1 corresponds to the 61.8% point of the F distribution
on 2 and 25 degrees of freedom. Usually we have to use smaller values to
obtain a sufficiently small value for m0. An example showing the variation
of m0 with θ is in §4.2.

The value of m0 is not critical. It should be small enough so that the
initial subset contains no masked outliers, but large enough that the initial
stages of the search are fairly stable, apart from any initial interchanges.
For examples in which we are fitting multivariate models without any struc-
ture in the means, a value around 2v is often suitable. The procedure is
generally robust to the choice of the value of m0 and allows us to start
with a somewhat larger subset if the percentage of contamination permits.
Since the method does not involve complicated iterative procedures, there
is no computational burden in finding the starting point. As the size of the
initial subset can easily be increased or decreased by changing the value
of θ, we usually try several values and check whether the last third or so
of each search from the various starting points is the same. As we have
seen, it is often towards the end of the search that we obtain information
about unsuspected structure and outliers for observations basically from
a single normal population. However, if there are several populations, as
in the Swiss bank note data, the earlier parts of the search are also infor-
mative. For example, Figure 3.30 will show the effect of two populations
around m = 100 when n = 200. Larger initial subsets than 2v are required
for models in which there are more than v parameters to be estimated, for
example when we are determining transformations.

We find the initial subset from the intersection in all v(v−1)/2 bivariate
scatterplots and v univariate boxplots of units within the contour specified
by θ. This subset will exclude any observations which are outlying in one
or two dimensions. However it will not exclude observations that are not
outlying in one or two dimensions but are outlying in three or more. Al-
though it is not difficult to construct such observations, they seem to be
rare in practice. Any problem they might cause can be simply reduced by
decreasing the value of θ. However, in general, even if one or two have been
included in the intimal subset, they are detected in the early stages of the
search, their large Mahalanobis distance causing them to leave the subset.
We do indeed sometimes observe several interchanges in the first two or
three steps of the search. All that we require is that the construction of the
initial subset reveals outliers which are masked in the whole data set. They
do not need to be excluded from the initial subset, merely to be unmasked
in it.
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2.14 Monitoring the Search

At each step in the forward search we calculate all squared distances d∗2im,
i = 1, . . . , n for m0 ≤ m ≤ n. Many of our most informative plots are based
on the Mahalanobis distances d∗im, rather than on the squared distances.
We plot these as m increase from m0 to n. Such plots are called “forward”
plots.

Mahalanobis Distances. We plot all n distances d∗im for each value
of m. This plot is informative about the behaviour of individual units, the
distances for which can be followed throughout the search.

Scaled Mahalanobis Distances. At the beginning of the search the
few central units may give a very small estimate of the covariance matrix.
Consequently, units not in the subset may have very large distances, which
decrease as the search proceeds. The result is that the eye tends to focus
on the early part of the search, whereas important information is usually
in the last third or so, where the outliers, if any, enter and cause changes
in inferences.

Virtually constant residual plots in regression were obtained by Atkin-
son and Riani (2000), for example Figure 1.4, by scaling the least squares
residuals eim at subset size m by sn, the error mean square estimate of σ2

at the end of the search. These scaled residuals can be written as

eim

sn
=

eim

sm

sm

sn
.

The Mahalanobis distances

d∗im = (eT
imΣ̂−1

umeim)0.5

are scaled by the square root of the estimated covariance matrix. If we had
independent observations with constant variance σ2, Σ would be a diagonal
matrix and

|Σ| = σ2v.

So the generalization of the scaled residuals is the scaled distance

d∗im ×
(
|Σ̂um|
|Σ̂un|

)1/2v

, (2.104)

where we rename Σ̂u as Σ̂un to stress that the estimator is calculated at
the end of the search from all n observations.

As Figure 2.5 shows, for the Swiss bank note data, this rescaling increases
emphasis on the right-hand end of the forward plot. The upper panel is the
forward plot of the scaled distances: in the lower panel the distances are
not scaled. In this example the plot of scaled distances seems superior
in all parts of the search. Although quite stable, these scaled distances
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FIGURE 2.5. Swiss bank notes, starting with the first 20 observations on genuine
notes: forward plots of Mahalanobis distances - upper panel scaled and, lower
panel, unscaled

are somewhat less stable than scaled residuals in regression. This is not
surprising since the regression structure means that the residuals fluctuate
much less than those here from a structureless sample. We discuss the upper
panel in some detail in Chapter 3 as Figure 3.30.
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Ordered Mahalanobis Distances. As we saw, for example in Fig-
ure 1.17, we find it informative to plot particular ordered Mahalanobis
distances. We discuss three useful plots. But we begin with some results
about ordered distances and the forward search.

The progress of the search depends on ordering the squared Mahalanobis
distances. From the subset S

(m−1)
∗ we calculate the n squared distances

d∗2i,m−1, i = 1, . . . , n, and order them to obtain the n distances d∗2[i],m−1.

The new subset S
(m)
∗ at step m then consists of the units corresponding to

the m ordered distances d∗2[1],m−1 to d∗2[m],m−1. The units corresponding to
the ordered distances are then divisible into two sets. Let U[i],m denote the
unit with the ith ordered Mahalanobis distance at step m. Then

U[1],m−1, . . . , U[m],m−1 ∈ S
(m)
∗

and
U[m+1],m−1, . . . , U[n],m−1 /∈ S

(m)
∗ .

To move to the new subset S
(m+1)
∗ we form the n distances d∗2im and

order them. It is not certain that all the units which were in S
(m)
∗ will be

in S
(m+1)
∗ . There are three cases which need to be distinguished:

1. Normal Progression. If

d∗[m]m = max d∗i,m i ∈ S
(m)
∗ ,

the next unit to join will be U[m+1]m which /∈ S
(m)
∗ with distance

d∗[m+1]m;

2. Inversion. Now suppose that

d∗[m+1]m = max d∗i,m i ∈ S
(m)
∗ .

Then U[m+1]m will remain in the subset. But there must be a unit,
say UNEW /∈ S

(m)
∗ for which

d∗NEW,m ≤ d∗[m]m.

This unit will join the subset while U[m+1]m will remain in the subset.
The minimum distance among units not in the subset will obviously
be d∗NEW,m ≤ d∗[m]m;

3. Interchange. An interchange occurs when two or more new units
enter the subset, when one or more must leave. Instead of the one new
unit UNEW when inversion occurs we have a set SNEW , containing
at least two members, such that

i ∈ SNEW if d∗i,m ≤ d∗[m+1]m ∩ i /∈ S
(m)
∗ .
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Then the minimum distance among units not in the subset can be
written as

d∗NEW,m = min d∗i,m i ∈ SNEW .

To obtain an upper bound for this distance let the number of units
in SNEW be nNEW (≥ 2). Then

d∗NEW,m ≤ d∗[m+2−nNEW ]m.

The smallest distance among units not in the subset is monitored up to
step n − 1.

Largest Distance among Units in the Subset. Here we monitor

max d∗i,m i ∈ S
(m)
∗ ,

the largest distance among units in the subset. For normal progression this
will be d∗[m]m. As we have seen above, for inversion the distance is d∗[m+1]m;
it will be larger than this when an interchange occurs. The forward plot
of this largest distance will show a peak when the first outlier is included.
The peak is therefore one step later than it is for the preceding plot of the
smallest distance not in the subset. The largest distance is monitored up
to step n.

In general, when there is one outlier, the size of the peak in the plot
of the largest distance amongst units in the subset is smaller than that
in the plot of the smallest distance among units not in the subset. This
arises because d∗2i,m for units not belonging to the subset has an unbounded
distribution, whereas that for the maximum over units in the subset is the
maximum of m scaled beta distributions.

“Gap” Plot. The forward plots of the minimum and maximum dis-
tances trend upwards, which can sometimes obscure interpretation. In the
gap plot we look at the difference of the two preceding quantities, that is

min
i/∈S

(m)
∗

d∗i,m − max
i∈S

(m)
∗

d∗i,m. (2.105)

For normal progression this difference is

d∗[m+1]m − d∗[m]m, (2.106)

where both distances are calculated using the same subset of size m. If
there is an inversion, an upper bound on the value is

d∗[m]m − d∗[m+1]m,

the negative of the value for normal progression. The bound is even more
negative if there is an interchange, the magnitude depending on the value
of nNEW . We plot both the true difference (2.105), which can be negative
and the difference in order statistics (2.106), which is always positive.
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FIGURE 2.6. Swiss bank notes starting with the first 20 observations on genuine
bank notes: forward plots of, dotted line, minimum distances of units not in the
subset and, solid line, of the ordered distance d∗

[m+1]m. There is an indication of
appreciable interchange around m = 100

As an example of these plots, Figure 2.6 shows the forward plot of the
minimum distance amongst units not in the subset for the Swiss bank note
data, which we have seen in Figure 1.17, together with the forward plot of
d∗[m+1]m. These two are the same for much of the search, but different at the
beginning and around m = 100. Both regions in which some interchanges
are occurring. The earlier one is associated with instability at the beginning
of the search. The later reflects the interchanges which occur as units from
the group of forgeries start to enter the subset, with the appreciable change
in covariance matrix and distances that we saw in Figures 1.16 and 2.5.

Covariance Matrix. The estimate of the covariance matrix Σ does not
remain constant during the forward search as observations are sequentially
selected that have small Mahalanobis distances. To see how the variance is
increasing we can look at forward plots of the ratios

tr Σ̂um/ tr Σ̂un or |Σ̂um|/|Σ̂un|. (2.107)

In the absence of outliers these ratios increase smoothly. Non-monotonic
increase of the curve is evidence of the existence of masked outliers which
are preventing the unambiguous ordering of the data by its closeness to the
model. Large increases at the end of the search are more easily interpreted
as being due to isolated outliers.
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In addition to the magnitude of the covariance matrices, we also look at
the evolution of their structure, through forward plots of the eigenvalues
and also of the eigenvectors for two dimensional subsets of the data. The
proportion of the total variation in the data explained by each eigenvalue
is an important property for principal components analysis in Chapter 5

Parameter Estimates. The means of most of the sets of multivari-
ate data analysed in this book are without structure. However, if there is
regression structure, it is interesting to look at forward plots of the param-
eter estimates of the linear models for the various responses. Forward plots
of the estimated transformation parameters are crucial in our strategy for
determining the correct transformation of data outlined in §4.6, whatever
the structure of the means.

2.15 The Forward Search for Regression Data

If, as in Section 2.8, there is a regression structure in the means of the
multivariate observations, we need to allow for this in finding a central
set of observations to form the starting point for the forward search. We
describe a method for the case when the regressors for all responses are the
same.

2.15.1 Univariate Regression

An appealing feature of the multivariate regression model (2.57) was that
estimation was by independent least squares on each response. We proceed
by using a series of v forward searches, one on each of the responses, to
order the univariate observations by their closeness to the regression model.
We then take the intersection of the units in these ordered sets to give us
approximately the required m0 observations in the initial subset. To start,
we sketch the forward search for univariate regression models. Many of the
principles are the same as those in the search for multivariate data. The
details are in Chapter 2 of Atkinson and Riani (2000).

For the univariate linear regression model E(Y ) = Xβ, with X of rank
p, let b be any estimate of β. With n observations the residuals from this
estimate are ei(b) = yi − xT

i b, (i = 1, . . . , n). The least median of squares
estimate β̂∗

p is the value of b minimizing the median of the squared residuals
e2

i (b). Thus β̂∗
p minimizes the scale estimate

σ2(b) = e2
[med](b), (2.108)

where e2
[k](b) is the kth ordered squared residual. In order to allow for

estimation of the parameters of the linear model the median is taken as

med = [(n + p + 1)/2], (2.109)
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the integer part of (n + p + 1)/2.
The parameter estimate satisfying (2.108) has, asymptotically, a break-

down point of 50%. Thus, for large n, almost half the data can be outliers,
or come from some other model and LMS will still provide an unbiased
estimate of the regression line. This is the maximum breakdown that can
be tolerated. For a higher proportion of outliers there is no longer a model
that fits the majority of the data.

The definition of β̂∗
p in (2.108) gives no indication of how to find such

a parameter estimate. Since the surface to be minimized has many local
minima, approximate methods are used. Rousseeuw (1984) finds an ap-
proximation to β̂∗

p by searching only over elemental sets, that is, subsets
of p observations, taken at random. We follow this procedure. Depending
on the dimension of the problem we find the starting point for the forward
search either by sampling 1,000 subsets or by exhaustively evaluating all
subsets. We take as our initial subset for each response that yielding the
minimum value in (2.108), so obtaining an outlier free start for our forward
search.

For regression models we have v searches, one for each response. In a gen-
eralisation of the previous notation, suppose at some stage in the forward
search the set of m observations used in fitting response j is S

(m)
∗j . The

parameters of the linear model are estimated by least squares yielding the
parameter estimates β̂∗

jm. From these parameter estimates we can calculate
a set of n residuals e∗ijm. The forward search for the jth response moves to
dimension m+1 by selecting the m+1 units with the smallest squared least
squares residuals, the units being chosen by ordering all squared residuals
e∗2ijm, i = 1, . . . , n. As with the search for multivariate data, most moves
from m to m+1 introduce just one new unit to the subset although it may
happen that two or more units join S

(m)
∗ as one or more leave.

The procedure is again not sensitive to the method used to select an
initial subset, even if unmasked outliers are included at the start. For ex-
ample, the least median of squares criterion (2.108) for regression can be
replaced by that of least trimmed squares (LTS). This criterion provides
estimators with better properties than LMS estimators. They are found by
minimizing the sum of the smallest h squared residuals

Sh(b) =
h∑

i=1

e2
[i](b), (2.110)

for some h with [(n + p + 1)/2] ≤ h < n. The rate of convergence of LTS
estimates is n−1/2 as opposed to n−1/3 for LMS. But, for the moderate sized
datasets of the size considered in Atkinson and Riani (2000), the largest
having 200 observations, there seems to be little difference in the abilities
of the two methods to detect outliers and so to provide a clean starting
point for the forward search.
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2.15.2 Multivariate Regression

To adapt the searches for univariate regression to multivariate regression
we need to find a starting point and to describe how the search moves
forward.

As a result of the univariate forward search on response j we have, for
each m, a subset of observations S

(m)
∗j which are used for fitting the jth

model. For any particular value of m, say k, the subsets S
(k)
∗j , j = 1, . . . , v,

will contain some observations in common, but they will not in general
be identical, except when k = n. To find an initial subset of size m0 we
consider the observations in common in these subsets. Let there be m(k)
such observations, that is

m(k) = S
(k)
∗1 ∩ . . . ∩ S

(k)
∗v . (2.111)

We start with k = m0 and increase k until the first time when there are
at least m0 common units in the intersection. These units form the initial
subset.

The v forward searches order the observations by their closeness to the
fitted univariate models. If there were no interchanges during the search, we
would have a single list of the order in which observations on each response
enter the subset and S

(m)
∗j would consist of the first m units on this list.

However, when there is an interchange, some units leave S
(m)
∗j , and it is not

true that
S

(m)
∗j ⊂ S

(m+1)
∗j .

The lists of units used in (2.111) to calculate m(k) therefore need to include
information on units which leave the subsets as the search progresses in
addition to those which enter.

Once we have an initial subset of m0 units, the search progresses much
as it did in the absence of regression in §2.12. Given S

(m)
∗ individual regres-

sions are fitted to the v responses. From the parameter estimates we can
calculate the n × v matrix of residuals with elements e∗ijm and so the set
of n squared Mahalanobis distances d∗2im. The search moves to dimension
m + 1 by selecting the m + 1 units with the smallest squared Mahalanobis
distances, the units being chosen by ordering the squared distances d∗2im,
i = 1, . . . , n.

2.16 Further Reading

There are numerous books on multivariate analysis, many of which provide
important background reading for the multivariate normal distribution and
associated inferential and data analysis procedures on which our book is
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based. Since the analysis of multivariate data requires numerical comput-
ing, there is a time trend in the books towards data analysis and also the
plotting of data. There is also a trend away from mathematics, which may
reflect an increasing cultural impatience with mathematical manipulation
for its own sake. Whatever the reasons for the latter trend, our book seems
to us extreme in following both these tendencies.

The theory is presented by Morrison (1967). Anderson (1984) gives the
matrix algebra in great detail. Muirhead (1982) focuses on distribution the-
ory, without any mention of data. We have already mentioned the mathe-
matically less advanced books of Flury and Riedwyl (1988), Flury (1997)
and Johnson and Wichern (1997). A useful reference for mathematical re-
sults is Mardia, Kent, and Bibby (1979) as is Seber (1984). Krzanowski
(2000) describes both applications and theory. The two parts of Krzanowski
and Marriott (1994) and Krzanowski and Marriott (1995) cover respec-
tively distributions, ordination and inference and classification, covariance
structures and repeated measurements.

Throughout we deal with data which presumably arise from several mul-
tivariate normal distributions, perhaps, of course, with outliers. There may
also be explanatory variables, which may be discrete or continuous. How-
ever we do not consider data in which some of the multivariate responses
have discrete distributions. Much of the literature apparently about discrete
multivariate data analysis is concerned with the analysis of contingency
tables in which there is a Poisson response and categorical explanatory
variables. An example is Agresti (2002). The forward search for Poisson
generalized linear models described in Atkinson and Riani (2000, §6.10 -
§6.12) extends to such data. Chapter 3 of Fahrmeir and Tutz (2001) de-
scribes methods for multicategorical responses, again based on generalized
linear models.

To conclude this section, we provide some references to detailed points.
An expression for the effect of deletion of observation k on the ith Maha-
lanobis distance, which is a generalization of (2.46) and (2.47), is given by
Riani and Zani (1997). The result of Wilks (1963) used in §2.7 as the start
of an alternative derivation of the distribution of the squared Mahalanobis
distance, is described by Barnett and Lewis (1994, p. 288). It is used by
Penny (1996a) to derive the distribution of an outlier test. Further discus-
sion of her results is in Fung (1996b) and Penny (1996b). Campbell (1985)
presents a succinct summary of these deletion and distributional results.
Grubbs (1950) gives the univariate result on Beta distributions for a simple
sample and considers the distribution of the order statistics.

The methods of starting the search described in §§2.13.2 and 2.13.3 em-
ploy only two of the many methods that have been investigated for finding
bivariate centres. Small (1990) provides a survey on multidimensional me-
dians. The lengthy review of Liu, Parelius, and Singh (1999) and associated
discussion provides many references on finding robust centres using the idea
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of data “depth”. A more recent reference is Van Aelst, Rousseeuw, Hubert,
and Struyf (2002) who apply robust regression to this problem.
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2.17 Exercises

In all exercises y is a v-variate random variable with E(y) = µ and cov(y) =
Σ. Unless otherwise stated, the normality of y may also be assumed.

Exercise 2.1 Show, without assuming normality, that E{(y−µ)T Σ−1(y−
µ)} = v.

Exercise 2.2 Show that the variance of the residual ei (2.1) is as given in
§2.1.2. What distributional assumptions did you make?

Exercise 2.3 The distribution of the sum of squares and products matrix
S(µ̂) (2.10) depends on the projection matrix C (2.13). Show that C is
symmetric and idempotent and prove the result claimed at the end of §2.2.2.

Exercise 2.4 When µ is known, the squared Mahalanobis distance d2
i (µ, Σ̂ν)

is defined in (2.26). Derive the distribution of this quantity when v = 1 and
Σ̂ν = s2.

Exercise 2.5 Find the distribution of the scaled squared residual about the
mean, which is called d2

i in (2.4).

Exercise 2.6 An extension of Exercise 2.5. Let ei = yi−xT
i β̂ be the resid-

ual from univariate regression as in §2.9. Find the distribution of the scaled
squared residual e2

i /s2. You may find equation (2.95) helpful. Relate your
answer to that you found for Exercise 2.5.

Exercise 2.7 Show that:
1) the loglikelihood of the n observations is

L(µ, Σ; y) = −(n/2) log |2πΣ| −
n∑

i=1

(yi − µ)T Σ−1(yi − µ)/2;

2) the maximum likelihood estimators of µ and of the covariance matrix Σ
are given by:

µ̂ = ȳ =

(
n∑

i=1

yi1/n, . . . ,

n∑
i=1

yiv/n

)T

and
Σ̂ = S(µ̂)/n;

3) the maximised multivariate normal loglikelihood is given by (equation 2.19)

−(n/2) log |2πΣ̂| − nv/2.

Exercise 2.8 Find the form of the matrix D when the test of equality of
the v means is formulated as Dµ = c (equation 2.18). What is the row rank
of D?
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Exercise 2.9 In order to test H0 : µ = µ0 versus H1 : µ �= µ0 the usual
test statistic is

T 2 = n(y − µ0)T Σ̂−1
u (y − µ0).

The quantity T 2 has Hotelling’s T 2 distribution with dimension v and de-
grees of freedom n − 1. We reject H0 if T 2 ≥ T 2

α,v,n−1 and accept H0 oth-
erwise. Show the connection between T 2 and the corresponding likelihood
ratio test (equation 2.20).

Exercise 2.10 Suppose there are g groups of v dimensional normal ob-
servations. Find the likelihood ratio test of the equality of the covariance
matrices of the g groups. When is this important?

Exercise 2.11 Verify the (Bartlett)-Sherman-Morrison-Woodbury formula
(equation 2.40). Show that the inverse of A − UV T is given by {A−1 +
A−1U(Im − V T A−1U)−1V T A−1}, when the dimensions are: A is p × p,
with U and V p×m. Apply this formula for the deletion of m rows of X.

Exercise 2.12 Find
∑m

i=1 d∗2im, where the distances are calculated for the
subset S

(m)
∗ . Give bounds for

∑n
i=1 d∗2im when there is no inversion or in-

terchange in going from S
(m)
∗ to S

(m+1)
∗ . Suggest a data configuration for

which your lower bound is achieved. What happens to your lower bound
when there is an inversion and when there is an interchange?

Exercise 2.13 The hat matrix H is defined in equation (2.63). Prove it
is (a) symmetric and (b) idempotent. (c) Find tr(H). For what model is C
(equation 2.13) the hat matrix?

Exercise 2.14 The explanatory variables in the first 16 rows of the baby-
food data have coded levels of 1 and −1. The experimental design is a 25−1

fractional factorial. If x5 is omitted, the design is a full 24 factorial. Suppose
a first-order model, including a constant term, is fitted to the results of a
full 2k factorial experiment. Calculate the values of the leverage measures
hi (equation 2.64) and confirm that the value of the sum of the leverage
measures

∑n
i=1 hi agrees with the result you found in Exercise 2.13.

How does your answer change when some interaction terms of the form
xixj are included in the model?

Exercise 2.15 Figure 1.16 in Chapter 1 is a forward plot, for the Swiss
bank note data, of the elements of the estimated covariance matrix for a
search starting from 20 observations on genuine notes. The left panel of
Figure 2.7 is a forward plot of the determinant of this matrix. The right
panel shows the trace. Relate these two figures to one another and give rea-
sons for the difference between the two panels of Figure 2.7. What different
features of the data are revealed by the two panels?
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FIGURE 2.7. Swiss bank notes starting with the first 20 observations on genuine
bank notes: forward plots of the estimated covariance matrix; left panel, the
determinant and, right panel, the trace

2.18 Solutions

Exercise 2.1

E(y − µ)T Σ−1(y − µ) = E tr(y − µ)T Σ−1(y − µ)
= trΣ−1E(y − µ)(y − µ)T

= trΣ−1Σ
= trIv

= v.

Exercise 2.2

var(ei) = var(yi − y)
= var(yi) + var(y) − 2cov(yi, y)

= σ2 +
σ2

n
− 2

n
cov(yi,

n∑
i=1

yi)

= σ2 +
σ2

n
− 2σ2

n

=
n − 1

n
σ2.

Note that no distributional assumptions have been made.
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Exercise 2.3
A matrix C is symmetric when C = CT . We have that

CT = (I − JJT /n)T = (I − JJT /n) = C

A matrix C is idempotent when CC = C. We have that

CC = (I − JJT /n)(I − JJT /n) = I − JJT /n − JJT /n + nJJT /n2

= I − JJT /n = C.

Note that

rank(C) = trC = trI − trJT J/n = trI − tr(n/n) = n − 1.

Given that C is symmetric and idempotent with rank (n− 1) we have that

S(µ̂) = Y T CY

is distributed as Wv(Σ, n − 1).

Exercise 2.4
We have to find the distribution of

(yi − µ)2

s2
,

which be rewritten as

(yi − µ)2

s2
= (n − 1)

(yi − µ)2/σ2

(yi − µ)2/σ2 +
∑n

j �=i=1(yj − µ)2/σ2
. (2.112)

It is straightforward to see that

(yi − µ)2

s2
∼ (n − 1)

χ2
1

χ2
1 + χ2

n−1

.

Given that the χ2
1 in the denominator is independent of the χ2

n−1, the
resulting distribution is Beta, that is

(yi − µ)2

s2
∼ (n − 1)Beta

(
1
2
,
n − 1

2

)
.

Exercise 2.5
Equation (2.4) can be rewritten as

(yi − y)2

s2
=

(n − 1)2

n

(yi−y)2

((n−1)/n)σ2
∑

n
i=1(yi−y)2

σ2
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Now, given that (n−1)s2 can be decomposed as the sum of two quantities,

(n − 1)s2 =
n∑

i=1

(yi − y)2 =
n

n − 1
(yi − y)2 +

n∑
j �=i=1

(yj − y(i))
2,

where y(i) =
∑n

j �=i=1 yj/(n − 1), we obtain

(yi − y)2

s2
=

(n − 1)2

n

(yi−y)2

((n−1)/n)σ2

(yi−y)2

((n−1)/n)σ2 +
∑n

j �=i=1(yj−y(i))
2

σ2

. (2.113)

From equation (2.113) and exercise (2.2) it follows that

(yi − y)2

s2
∼ (n − 1)2

n

χ2
1

χ2
1 + χ2

n−2

.

We now have to prove that the χ2
1 which appears both in the numerator

and the denominator
n

n − 1
(yi − y)2

σ2
∼ χ2

1

is independent of the χ2
n−2 of the denominator∑n

j �=i=1(yj − y(i))2

σ2
∼ χ2

n−2.

The proof we give has two steps. First we write the χ2 variables as idem-
potent quadratic forms. Then, we show that the product of the matrices
of the two quadratic forms is equal to zero so we conclude that the two
random variables are independent. The numerator of equation (2.113) can
be rewritten as

n

n − 1
(yi − y)2 = yT Q1y,

where y = (y1, . . . , yn)T , Q1 = n
n−1q(i)q(i)T (In−JJT /n), and q(i) is a vec-

tor which has a 1 in ith position and 0 elsewhere: q(i) = (0, . . . , 0, 1, 0 . . . , 0)T .
Q1 is symmetric and idempotent with trace (rank) equal to 1. On the other
hand,

n∑
j �=i=1

(yj − y(i))
2 = yT Q2y,

where Q2 = In−q(i)q(i)T −{J−q(i)}{J−q(i)}T /(n−1). Q2 is symmetric
and idempotent with trace (rank) equal to n − 2. Since

{In − q(i)q(i)T }q(i) = 0 and {J − q(i)}T q(i) = 0,
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it follows that Q1Q2 = 0. We thus conclude that the two χ2 random vari-
ables are independent. Using the independence argument between the two
χ2 random variables and the relationship between Gamma and Beta,

(yi − y)2

s2
∼ (n − 1)2

n

χ2
1

χ2
1 + χ2

n−2

∼ (n − 1)2

n
Beta

(
1
2
,
n − 2

2

)
. (2.114)

Note that (2.114) is just the special case of (2.52) for v = 1.

Exercise 2.6
We now require the distribution of

e2
i /s2 = k

e2
i /{σ2(1 − hi)}∑n

j=1 e2
j/σ2

, (2.115)

where

k = (n − p)(1 − hi). (2.116)

Since
var ei = σ2(1 − hi),

e2
i

σ2(1 − hi)
∼ χ2

1.

From (2.95)
(n − p)s2 = (n − p − 1)s2

(i) + e2
i /(1 − hi).

The residual sum of squares (n − p − 1)s2
(i) ∼ σ2χ2

n−p−1 independently of

yi and of β̂(i). But, from (2.94),

ei = (1 − hi)(yi − xT
i β̂(i)).

Thus e2
i and s2

(i) are independent and

e2
i /s2 ∼ k

χ2
1

χ2
1 + χ2

n−p−1

∼ k Beta
(

1
2
,
n − p − 1

2

)
,

since the two χ2 variables are independent, with k defined in (2.116). This
is the result in (2.79) for v = 1.

The result of Exercise 2.5 (2.114) is obtained when just the mean is fitted,
so that p = 1 and hi = 1/n.

Exercise 2.7
Since the yi’s are independent (because they arise from a random sample)
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the likelihood function (joint density) Lik(µ, Σ; y) is the product of the
densities of the yi’s

Lik(µ, Σ; y) =
n∏

i=1

f(yi; µ, Σ)

=
n∏

i=1

1
(
√

2π)v|Σ|1/2
exp{−(yi − µ)T Σ−1(yi − µ)/2}

=
1

(
√

2π)nv|Σ|n/2
exp{−

n∑
i=1

(yi − µ)T Σ−1(yi − µ)/2}.

The log likelihood is given by:

L(µ, Σ; y) = −(n/2) log |2πΣ| −
n∑

i=1

(yi − µ)T Σ−1(yi − µ)/2. (2.117)

This solves part 1) of the exercise. As concerns part 2), in order to derive
the expressions for the maximum likelihood estimators of µ and Σ, we first
write the quadratic form in equation (2.117) in a way that facilitates finding
the maximum. Since a scalar quantity is equal to its trace,

n∑
i=1

(yi − µ)T Σ−1(yi − µ) =
n∑

i=1

tr(yi − µ)T Σ−1(yi − µ)

= trΣ−1
n∑

i=1

(yi − µ)(yi − µ)T . (2.118)

Now, by adding and subtracting y in the sum in the right hand side
of (2.118), we obtain

n∑
i=1

(yi − µ)(yi − µ)T =
n∑

i=1

(yi − y + y − µ)(yi − y + y − µ)T

=
n∑

i=1

(yi − y)(yi − y)T + n(y − µ)(y − µ)T

= S(µ̂) + n(y − µ)(y − µ)T . (2.119)

The other two terms in equation (2.119) vanish because
∑n

i=1(yi − y) = 0.
Using (2.119) and (2.118) in (2.117) we obtain

L(µ, Σ; y) = −nv

2
log 2π − n

2
log |Σ|

−1
2
trΣ−1{S(µ̂) + n(y − µ)(y − µ)T }

= −nv

2
log 2π − n

2
log |Σ| (2.120)

−1
2
tr(Σ−1S(µ̂)) − n

2
(y − µ)T Σ−1(y − µ). (2.121)
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To find the maximum likelihood estimator for µ we differentiate L(µ, Σ; y)
in (2.121) with respect to µ and set the resulting expression equal to 0:

∂L(µ, Σ; y)
∂µ

= −0 − 0 − 0 + n(Σ−1y − Σ−1µ) = 0

which gives
µ̂ = y.

It is clear that µ̂ = y maximizes log L(µ, Σ; y) with respect to µ because
the last term in (2.121) is ≤ 0 and the term vanishes for µ̂ = y. Before
differentiating log L(µ, Σ; y) to find Σ̂, we substitute µ = y in (2.121) and
rewrite log |Σ| in terms of Σ−1 to obtain

L(µ̂, Σ; y) = −nv

2
log 2π +

n

2
log |Σ−1| − 1

2
tr{Σ−1S(µ̂)}. (2.122)

We now differentiate (2.122) with respect to Σ−1, remembering that

∂tr(AB)
∂A

= B + BT − diag(B)

and that
∂ log |A|

∂A
= 2A−1 − diag(A−1).

We obtain

∂L(µ̂, Σ; y)
∂Σ−1

= −0 + nΣ − n

2
diag(Σ) − S(µ̂) +

1
2
diagS(µ̂) = 0, (2.123)

whence
Σ̂ − 1

2
diag(Σ̂) =

1
n
{S(µ̂) − 1

2
diagS(µ̂)}

or
Σ̂ =

S(µ̂)
n

.

Note that we solved (2.123) for Σ rather than Σ−1, even though we differen-
tiated with respect to Σ−1. Otherwise we would have obtained {S(µ̂)/n}−1

as the maximum likelihood estimator for Σ−1. We have exploited the prop-
erty of invariance of maximum likelihood estimators.

For part 3) of the exercise, we have from equation (2.122) that the log-
likelihood maximized with respect to µ̂ and Σ̂ is

L(µ̂, Σ̂; y) = −nv log
√

2π +
n

2
log |Σ̂−1| − 1

2
tr(Σ̂−1S(µ̂))

= −nv log
√

2π +
n

2
log |Σ̂−1| − nv

2
= −n

2
log(2π)v − n

2
log |Σ̂| − nv

2
= −n

2
log |2πΣ̂| − nv

2
.
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Exercise 2.8
In order to test the hypothesis of equality of means, the matrix D and the
vectors c and µ are

1 −1 0 0 . . . 0 0
0 1 −1 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . −1 0
0 0 0 0 . . . 1 −1

 ,

c = (0, . . . , 0)T and µ = (µ1, . . . , µv)T . The first row of the matrix D
imposes the constraint µ1 − µ2 = 0, the second µ2 − µ3 = 0, ..., the last
µv−1 − µv = 0. D in this case has dimension (v − 1) × v and has full row
rank.

Exercise 2.9
We start by rewriting the expression which defines the likelihood ratio test
(2.20)

TLR = n log(|Σ̂0|/|Σ̂|).
Given that nΣ̂0 can be decomposed as

nΣ̂0 =
n∑

i=1

(yi −µ0)(yi − µ0)T =
n∑

i=1

(yi − y)(yi − y)T + n(y − µ0)(y − µ0)T ,

TLR = n log

{∣∣∣∣∣
n∑

i=1

(yi − y)(yi − y)T

n
+

n(y − µ0)(y − µ0)T

n

∣∣∣∣∣ /|Σ̂|
}

= n log
{∣∣∣Σ̂ + (y − µ0)(y − µ0)T

∣∣∣ /|Σ̂|
}

.

Now, since |A+bbT | = |A|(1+bT A−1b), we can rewrite the former equation
as

TLR = n log
|Σ̂|
{
1 + (y − µ0)T Σ̂−1(y − µ0)

}
|Σ̂|

= n log
{
1 + n(y − µ0)T Σ̂−1

u (y − µ0)/(n − 1)
}

= n log
{
1 + T 2/(n − 1)

}
.

This implies that the likelihood ratio test is a monotone function of Hotelling’s
T 2 statistic.



2.18 Solutions 85

Exercise 2.10
We have a random sample of size ni from each of Nv(µl, Σl; y). l = 1, 2, . . . , g.
The likelihood function is

Lik(µ1, µ2, . . . , µg, Σ1, Σ2, . . . ,Σg, y) =
∏g

l=1 Lik(µl, Σl; y ∈ group l)

= 1
(
√

2π)nv

∏g
l=1 |Σl|nl/2 exp

[− 1
2 trΣ−1

l

{
nlΣl + nl(yl − µl)(yl − µl)T

}]
.

The maximum likelihood estimate of µl (v×1 vector of means for group l) is
yl under both H0 and H1 because there is no restriction on the population
means. The maximum likelihood estimate of Σl is

∑g
l=1 nlΣ̂l/n under H0

where n =
∑g

l=1 nl. Under the alternative H1, the maximum likelihood
estimate of Σl is Σ̂l. So the maximized likelihood in the two cases is:

max
H1

Lik =
1

(
√

2π)nv

g∏
l=1

∣∣∣Σ̂l

∣∣∣−nl/2

exp (−nlv/2) ,

max
H0

Lik =
1

(
√

2π)nv

∣∣∣∣∣
g∑

l=1

nlΣ̂l/n

∣∣∣∣∣
−n/2

exp (−nv/2) .

The maximized loglikelihoods are

L1 = max
H1

L = −nv

2
log 2π − 1

2

g∑
l=1

nl log
∣∣∣Σ̂l

∣∣∣− nv/2,

L0 = max
H0

L = −nv

2
log 2π − n

2
log

∣∣∣∣∣
g∑

l=1

nlΣ̂l/n

∣∣∣∣∣− nv/2.

The likelihood ratio test (2L1 − 2L0) is equal to

n log |
g∑

l=1

nlΣ̂l/n| −
g∑

l=1

nl log |Σ̂l|.

Exercise 2.11
We must show that the product of (C − xxT ) with the right hand side
of (2.40) gives the identity matrix

(C − xxT )
(

C−1 +
C−1xxT C−1

1 − xT C−1x

)
=

Ip − xxT C−1 +
xxT C−1

1 − xT C−1x
− xxT C−1xxT C−1

1 − xT C−1x
=

Ip +
−xxT C−1 + xxT C−1xT C−1x + xxT C−1 − xxT C−1xxT C−1

1 − xT C−1x
=

Ip +
xxT C−1xT C−1x − xxT C−1xT C−1x

1 − xT C−1x
= Ip.
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For the generalization of the Sherman-Morrison-Woodbury formula, we
have to show that the product of (A − UV T ) with {A−1 + A−1U(Im −
V T A−1U)−1V T A−1} gives the identity matrix.

(A − UV T ){A−1 + A−1U(Im − V T A−1U)−1V T A−1} =
Ip + U(Im − V T A−1U)−1V T A−1 − UV T A−1

−UV T A−1U(Im − V T A−1U)−1V T A−1 =
Ip − UV T A−1 + U(Im − V T A−1U)(Im − V T A−1U)−1V T A−1 =

Ip − UV T A−1 + UV T A−1 = Ip.

This generalization can be applied to the deletion of m rows of matrix X
because XT

(m)X(m) can be written as XT
(m)X(m) = XT X − XmXT

m.

Exercise 2.12
We start with m = n. From (2.28)

d2
i = (yi − µ̂)T Σ̂−1

u (yi − µ̂),

where, from (2.16)

Σ̂u = S(µ̂)/(n − 1) =

{
n∑

i=1

(yi − µ̂)(yi − µ̂)T

}
/(n − 1).

Then

n∑
i=1

d2
i = (n − 1) tr

n∑
i=1

(yi − µ̂)T S(µ̂)−1(yi − µ̂)

= (n − 1) tr
n∑

i=1

S(µ̂)−1(yi − µ̂)(yi − µ̂)T

= (n − 1) tr Iv = (n − 1)v.

Thus
∑m

i=1 d∗2im = (m − 1)v.
Since there is no limit on how remote a unit not included in the subset

can be, the upper bound on
∑n

i=1 d∗2im = ∞. If all units sit exactly on an
ellipsoid, all d∗2im will be equal and the sum = n(m − 1)v/m. If there is no
inversion or interchange and all units in S

(m)
∗ sit on the ellipsoid, units not

in S
(m)
∗ must have distances greater than the average value (m−1)v/m and

so
∑n

i=1 d∗2im ≥ n(m− 1)v/m. If all units are on the ellipsoid, the choice of
units to include or exclude would be arbitrary, the decision having no effect
on Mahalanobis distances. With an inversion, exactly one unit will have a
smaller distance than the m comprising S

(m)
∗ . The minimum value of this

distance is zero, so
∑n

i=1 d∗2im ≥ (n − 1)(m − 1)v/m. With an interchange,
if all units in the subset have the same Mahalanobis distance, at least two
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units must have values less than the average; the maximum number of units
with zero distances is n − m. In this case,

∑n
i=1 d∗2im ≥ (m − 1)v. The step

of the search going from S
(m)
∗ to S

(m+1)
∗ will then destroy this structure

and the sum of all the distances will increase.

Exercise 2.13
(a) HT = (X(XT X)−1XT )T = X(XT X)−1XT = H .
(b) HH = X(XT X)−1XT X(XT X)−1XT = X(XT X)−1XT .
(c) tr H =

∑n
i=1 hi = tr {X(XT X)−1XT } = tr (XT X)(XT X)−1 = tr Ip =

p.
When X contains only the constant term, that is X = J .

H = J(JT J)JT =
1
n

JJT .

The vector of residuals e can be written as

e = (I − H)y = (I − 1
n

JJT )y = Cy.

So, C is the hat matrix for the model which contains only the constant
term.

Exercise 2.14
There are p = k+1 columns in X , the column for the constant term, which
is a vector of ones, and k columns, one for each variable in the model,
which contain 2k−1 entries of +1 and the same number of −1 entries. The
columns are mutually orthogonal, so

XT X = diag (n, . . . , n) and (XT X)−1 = diag (1/n, . . . , 1/n),

where n = 2k.
The hat matrix H = X(XT X)−1XT is n× n. The leverage measures hi

are the diagonal terms of H :

hi =
p∑

j=1

x2
ij/n = p/n = (k + 1)/n.

Then
∑n

i=1 hi = p, in agreement with the results of Exercise 2.13.
The interaction terms give additional columns of X formed by multipli-

cation of columns i and j. These columns are, as before, orthogonal to all
others. So p increases to some larger value p+, when all hi = p+/n.

Exercise 2.15
The trace of the estimated covariance matrix is a function only of the vari-
ances of the variables; the determinant also includes the correlations. The
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right panel of Figure 2.7 shows that the inclusion of units from the sec-
ond group causes an appreciable increase in the variances of the variables
(signalled by a sudden change of slope in the trace). The left panel of Fig-
ure 2.7 shows that the increase of the variances due to the initial inclusion
of the units from the group of forgeries is partially counterbalanced by the
increase in the covariances. Due to this compensation, the overall effect on
the determinant seems to be negligible compared to that on the variances
(see the left panel of Figure 2.7). This conclusion is in agreement with
what we had already seen in Figure 1.16. This figure showed that around
m = 105 - m = 110 there was not only a big increase in the variances of
variables 4, 5, 6, but also an increase in absolute values of the covariances
between variables 6 and 4, and between variables 6 and 5.
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