
B. Divisibility

We will denote by d(n) the number of positive divisors of n, by σ(n) the
sum of those divisors, and by σk(n) the sum of their kth powers, so that
σ0(n) = d(n) and σ1(n) = σ(n). We use s(n) for the sum of the aliquot
parts of n, i.e., the positive divisors of n other than n itself, so that
s(n) = σ(n)−n. The number of distinct prime factors of n will be denoted
by ω(n) and the total number, counting repetitions, by Ω(n).

Iteration of various arithmetic functions will be denoted, for example,
by sk(n), which is defined by s0(n) = n and sk+1(n) = s(sk(n)) for k ≥ 0.

We use the notation d | n to mean that d divides n, and e � n to mean
that e does not divide n. The notation pk‖n is used to imply that pk | n but
pk+1 � n. By [m, n] we will mean the consecutive integers m, m + 1, . . . , n.

B1 Perfect numbers.

A perfect number is such that n = s(n). Euclid knew that 2p−1(2p − 1)
was perfect if 2p − 1 is prime. For example, 6, 28, 496, . . . ; see the list
of Mersenne primes in A3. Euler showed that these were the only even
perfect numbers.

The existence or otherwise of odd perfect numbers is one of the more
notorious unsolved problems of number theory. Euler showed that they
have shape pαm2 where p is prime and p ≡ α ≡ 1 (mod 4). Touchard
showed that they were of shape 12m + 1 or 36m + 9.

The lower bound for an odd perfect number has now been pushed to
10300 by Brent, Cohen & te Riele. Brandstein has shown that the largest
prime factor is > 500000 and Hagis that the second largest is > 1000.
Cohen has shown that it contains a component (prime power divisor) >
1020, and Sayers that there are at least 29 prime factors (not necessarily
distinct). Iannucci & Sorli improve this to Ω(n) ≥ 37.

Pomerance has shown that an odd perfect number with at most k dis-
tinct factors is less than

(4k)(4k)2
k2

but Heath-Brown has much improved this by showing that if n is an odd
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number with σ(n) = an, then n < (4d)4
k

, where d is the denominator
of a and k is the number of distinct prime factors of n. In particular, if
nk is an odd perfect number with k distinct prime factors, then n < 44k

.
Roger Cook further improves this to nk < C4k

where C = 3512/511 ≈ 3.006
and, for k = 8, to n8 < D48

with D = 216/15 ≈ 2.094 if 195 | n8 or
D = 1951/7 ≈ 2.123 otherwise. A recent claim by Nielsen is that nk < 24k

.
Starni has shown that if n = pαM2 is an odd perfect number with p

prime, p ⊥ M , p ≡ α ≡ 1 mod 4, α + 2 prime, (α + 2) ⊥ (p − 1), then
M2 ≡ 0 mod α + 2.

Iannucci has shown that the second largest prime divisor of an odd
perfect number exceeds 104, that the third largest exceeds 102, and (with
Sorli) that there are at least 37 not necessarily distinct prime factors.

John Leech asks for examples of spoof odd perfect numbers, like Des-
cartes’s

327211213222021

which is perfect if you pretend that 22021 is prime.
Greg Martin offers the following ‘proof’ that 4680 is perfect. Write 4680

as 23 · 32 · (−5) · (−13). Then σ(4680) =
(1 + 2 + 22 + 23)(1 + 3 + 32)(1 + (−5))(1 + (−13)) = 9360 = 2 · 4680.

He asks: if you allow σ(−pn) =
∑n

j=0(−p)j , are there others? Dennis Eich-
horn and Peter Montgomery found −84 = 22(3)(−7) and −120 = 23(3)(−5)
and noted that σ((−2)5(3)(7)) = (−2)5(3)(7). Martin also defines σ̃(pr) =
pr − pr−1 + pr−2 − · · · + (−1)r, and asks about σ̃-(k)-perfect numbers. For
k = 2 there are 2, 12, 40, 252, 880, 10880, 75852. For k = 3 there are at
least 40, including 30240 and 210345411 · 132 · 31 · 61 · 157 · 521 · 683.

Are there σ̃-k-perfect numbers with k ≥ 4?
Are there infinitely many σ̃-k-perfect numbers?
Are there any odd σ̃-3-perfect numbers? Such a number must be a

square.
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B2 Almost perfect, quasi-perfect, pseudoper-
fect, harmonic, weird, multiperfect and hyper-
perfect numbers.

Perhaps because they were frustrated by their failure to disprove the exis-
tence of odd perfect numbers, numerous authors have defined a number of
closely related concepts and produced a raft of problems, many of which
seem no more tractable than the original.

For a perfect number, σ(n) = 2n. If σ(n) < 2n, n is called deficient.
A problem in Abacus was to prove sum of divisors that every number n > 3
is the sum of two deficient numbers, or to find a number that was not. If
σ(n) > 2n, then n is called abundant. If σ(n) = 2n− 1, n has been called
almost perfect. Powers of 2 are almost perfect; it is not known if any
other numbers are. If σ(n) = 2n + 1, n has been called quasi-perfect.
Quasi-perfect numbers must be odd squares, but no one knows if there are
any. Masao Kishore shows that n > 1030 and that ω(n) ≥ 6. Hagis &
Cohen have improved these results to n > 1035 and ω(n) ≥ 7. Cattaneo
originally claimed to have proved that 3 � n, but Sierpiński and others
have observed that his proof is fallacious. Kravitz, in a letter, makes a
more general conjecture, that there are no numbers whose abundance,
σ(n) − 2n, is an odd square. In this connexion Graeme Cohen writes that
it is interesting that

σ(223252) = 3(223252) + 112

and that if σ(n) = 2n+k2 with n ⊥ k, then ω(n) ≥ 4 and n > 1020. He has
also shown that if k < 1010 then ω(n) ≥ 6, and that if k < 44366047 then
n is primitive abundant (see below). Later, relaxing the condition n ⊥ k,
he finds the solution

n = 2 · 32 · 2388972, k = 32 · 23 · 1999

and five solutions n = 22 · 72 · p2, with
p = 53 277 541 153941 358276277
k = 7 · 29 5 · 7 · 23 5 · 7 · 43 5 · 7 · 103 · 113 5 · 7 · 227 · 229 · 521

He verifies that the first of these last five is the smallest integer with
odd square abundance. Sidney Kravitz has since sent two more solutions,

n = 23 · 32 · 16572, k = 3 · 11 · 359,



B. Divisibility 71

n = 24 · 312 · 79922201791288932, k = 44498798693247589.

In the latter, 31 divides k. Erdős asks for a characterization of the large
numbers for which |σ(n) − 2n| < C for some constant C. For example,
n = 2m: for other infinite families, see Ma̧kowski’s two papers.

Wall, Crews & Johnson showed that the density of abundant numbers
lies between 0.2441 and 0.2909. In an 83-08-17 letter Wall claimed to have
narrowed these bounds to 0.24750 and 0.24893. Erdős asks if the density
is irrational.

Paul Zimmerman reports that Marc Deléglise has improved the bounds
for the density of abundant numbers to 0.2477 ± 0.0003.
http://www.mathsoft.com/asolve/constant/abund/abund.html

Sándor has shown that, for sufficiently large n, there is a deficient num-
ber between n and n + (lnn)2.

Sierpiński called a number pseudoperfect if it was the sum of some
of its divisors; e.g., 20 = 1 + 4 + 5 + 10. Erdős has shown that their
density exists and says that presumably there are integers n which are not
pseudoperfect, but for which n = ab with a abundant and b having many
prime factors: can b in fact have many factors < a?

For n ≥ 3 Abbott lets l = l(n) be the least integer for which there are
n integers 1 ≤ a1 < a2 < . . . < an = l such that ai|s =

∑
ai for each i (so

that s is pseudoperfect). He can show that l(n) > nc1 ln ln n for some c1 > 0
and all n ≥ 3 and that l(n) < nc2 ln ln n for some c2 > 0 and infinitely many
n.

Call a number primitive abundant if it is abundant, but all its proper
divisors are deficient, and primitive pseudoperfect if it is pseudoper-
fect, but none of its proper divisors are. If the harmonic mean of all the
divisors of n is an integer, Pomerance called n a harmonic number.
A. & E. Zachariou call these “Ore numbers” and they call primitive pseu-
doperfect numbers “irreducible semiperfect”. They note that every multi-
ple of a pseudoperfect number is pseudoperfect and that the pseudoperfect
numbers and the harmonic numbers both include the perfect numbers as
a proper subset. The last result is due to Ore. All numbers 2mp with
m ≥ 1 and p a prime between 2m and 2m+1 are primitive pseudoperfect,
but there are such numbers not of this form, e.g., 770. There are infinitely
many primitive pseudoperfect numbers that are not harmonic numbers.
The smallest odd primitive pseudoperfect number is 945. Erdős can show
that the number of odd primitive pseudoperfect numbers is infinite. He
showed that, for sufficiently large n, the number of primitive abundant
numbers less than n was bounded above and below by functions of the
form n exp(−c

√
lnn ln lnn). Ivić showed that the constants could be taken

to be 12− 1
2 − ε and 6

1
2 + ε and Avidon improved these to 1 − ε and 2

1
2 + ε.

Garćıa extended the list of harmonic numbers to include all 45 which
are < 107, and he found more than 200 larger ones. The least one, apart
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from 1 and the perfect numbers, is 140. Are any of them squares, apart
from 1? Are there infinitely many of them? If so, find upper and lower
bounds on the number of them that are < x. Kanold has shown that their
density is zero, and Pomerance that a harmonic number of the form paqb

(p and q primes) is an even perfect number. If n = paqbrc is harmonic, is
it even?

Which values does the harmonic mean take? Presumably not 4, 12, 16,
18, 20, 22, . . . ; does it take the value 23? Ore’s own conjecture, that every
harmonic number is even, implies that there are no odd perfect numbers!

Cohen has listed all 52 harmonic numbers of the form 2am, where m is
odd and squarefree and 1 ≤ a ≤ 11; 45 of them have a = 8. He also shows
that there are just 13 harmonic numbers n with H(n) = nd(n)/σ(n) ≤ 13:

H(n) = 1 2 3 5 6 5 8 9 11 10 7 13 13
n = 1 6 28 140 270 496 672 1638 2970 6200 8128 105664 2128191

Bateman, Erdős, Pomerance & Straus show that the set of n for which
σ(n)/d(n) is an integer has density 1, that the set for which σ(n)/d(n)2 is
an integer has density 1

2 , and that the number of rationals r ≤ x of the
form σ(n)/d(n) is o(x). They ask for an asymptotic formula for

1
x

∑
1

where the sum is taken over those n ≤ x for which d(n) does not divide σ(n).
They also note that the integers n for which d(n) divides s(n) = σ(n) − n,
have zero density, because for almost all n, d(n) and σ(n) are divisible by
a high power of 2, while n is divisible only by a low power of 2.

David Wilson, in a 98-08-27 email, conjectured that σ(n) �= kn+5. Dan
Hoey lists the following values of n for which σ(n) = kn + r and suggests
that their numbers are finite when r is odd.

r Values of n for which σ(n) ≡ r mod n

2 20, 104, 464, 650, 1952, 130304, 522752
3 4, 18
4 9, 12, 70, 88, 1888, 4030, 5830, 32128, 521728, 1848964
6 25, 180, 8925
7 8, 196
8 10, 49, 56, 368, 836, 11096, 17816, 45356, 77744, 91388,

128768, 254012, 388076, 2087936, 2291936
9 15

Benkoski has called a number weird if it is abundant but not pseudo-
perfect. For example, 70 is not the sum of any subset of

1 + 2 + 5 + 7 + 10 + 14 + 35 = 74

There are 24 primitive weird numbers less than a million: 70, 836, 4030,
5830, 7192, . . . . Nonprimitive weird numbers include 70p with p prime and
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p > σ(70) = 144; 836p with p = 421, 487, 491, or p prime and ≥ 557; also
7192 · 31. Some large weird numbers were found by Kravitz, and Benkoski
& Erdős showed that their density is positive. Here the open questions are:
are there infinitely many primitive abundant numbers which are weird? Is
every odd abundant number pseudoperfect (i.e., not weird)? Can σ(n)/n
be arbitrarily large for weird n? Benkoski & Erdős conjecture “no” in
answer to the last question and Erdős offers $10 and $25 respectively for
solutions to the last two questions.

He also asks if there are extra-weird numbers n for which σ(n) > 3n,
but n is not the sum of distinct divisors of n in two ways without repeti-
tions. For example, 180 does not qualify, because although σ(180) = 546,
180=30+60+90 and is the sum of all its other divisors except 6.

One definition of a practical number, m, is for every n, 1 ≤ n ≤ σ(m)
to be expressible as the sum of distinct divisors of m. E.g., 6 is practical,
since 4=1+3, 5=2+3, 7=1+6, 8=2+6, 9=3+6, 10=1+3+6, 11=2+3+6,
12=1+2+3+6. Erdős showed in 1950 that the practical numbers have zero
asymptotic density. It is known that if P (x) is the number of practical
numbers less than x, then

x exp(−α(ln lnx)2) � P (x) � x/(lnx)β

for some positive constants α and β. The lower bound is due to Margen-
stein and the upper bound to Hausman & Shapiro. Melfi has shown that
every even number is the sum of two practical numbers and that there are
infinitely many practical numbers m such that m ± 2 are also practical.

Numbers have been called multiply perfect, multiperfect or k-fold
perfect if σ(n) = kn with k an integer. For example, ordinary perfect
numbers are 2-fold perfect and 120 is 3-fold perfect. Dickson’s History
records a long interest in such numbers. Lehmer has remarked that if n is
odd, then n is perfect just if 2n is triperfect.

Selfridge and others have observed that there are just six known 3-
perfect numbers and they come from 2h − 1 for h = 4, 6, 9, 10, 14, 15. For
example, the third one is illustrated by

σ(28 · 7 · 73 · 37 · 19 · 5) = (29 − 1)(23)(37 · 2)(19 · 2)(5 · 22)(2 · 3).

It appears that there may be a similar explanation for the 36 known 4-
perfect numbers, the last of which was published by Poulet as long ago as
1929.

For many years the largest known value of k was 8, for which Alan
L. Brown gave three examples and Franqui & Garćıa two others.

In late 1992 and early 1993, half a dozen examples with k = 9 had
already been found by Fred Helenius. The smallest is
2114 · 335 · 517 · 712 · 114 · 135 · 173 · 198 · 232 · 292 · 312 · 374 · 41 · 43 · 472 · 53 ·
·612 · 67 · 71 · 73 · 792 · 832 · 892 · 97 · 103 · 109 · 127 · 1312 · 151 · 157 · 167 · 1792 ·
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·197 · 211 · 227 · 331 · 347 · 367 · 379 · 443 · 523 · 599 · 709 · 757 · 829 · 1151 · 1699 ·
·1789 · 2003 · 2179 · 2999 · 3221 · 4271 · 4357 · 4603 · 5167 · 8011 · 8647 · 8713 ·
·14951 · 17293 · 21467 · 29989 · 110563 · 178481 · 530713 · 672827 · 4036961 ·
·218834597 · 16148168401 · 151871210317 · 2646507710984041

On 97-05-13 Ron Sorli found a 10-fold perfect number, and George
Woltman found an 11-fold one on 2001-03-13.

In 1992 we knew of 700 k-perfect numbers with k ≥ 3. In January,
1993, this number leapt to about 1150 from the discoveries of Fred Helenius
which included 114 7-perfect, 327 8-perfect and two 9-perfect numbers. He
continued to find dozens of new ones each month, so that it is even less
possible to keep this section of the book up-to-date than it is elsewhere; in
March 1993 the total neared 1300; a postscript of a 93-09-08 letter from
Schroeppel gave 1526; by the time he mailed it next day it was 1605. At
the end of 2002, there were 8! known multiperfect numbers. These include
1 (for k = 1) and 39 Mersenne primes (k = 2). The numbers of others are

k = 3 4 5 6 7 8 9 10 11 Total
6 36 65 245 516 1134 2074 923 1 5000

Can k be as large as we wish? Erdős conjectured that k = o(ln lnn).
It has even been suggested that there may be only finitely many k-perfect
numbers for each k ≥ 3. The first five numbers in the above table may well
be complete.

If n is an odd triperfect number, then McDaniel, Cohen, Kishore,
Bugulov, Kishore, Cohen & Hagis, Reidlinger, and Kishore have respec-
tively shown that ω(n) ≥ 9, 9, 10, 11, 11, 11, 12, and 12. Beck & Najar,
Alexander, and Cohen & Hagis have shown that n > 1050, 1060, 1070. Co-
hen & Hagis have shown that the largest prime factor of n is at least 100129
and that the second largest is at least 1009.

Shigeru Nakamura writes that Bugulov showed, in 1966, that odd k-
perfect numbers contain at least ω distinct prime factors, where (k, ω) =
(3, 11), (4,21), (5,54) [incorrectly stated in MR 37 #5139 & rNT A32-96].
Nakamura claims to prove that for an even k-perfect number,

ω > max{k3/81 + 5
3 , k5/2500 + 2.9, k10/(14 · 108) + 2.9999}

and for an odd k-perfect number,

ω > max{k5/60 + 47
12 , k5/50 − 20.8, 737k10/109 + 11.5}.

These improve the results of Cohen & Hendy and of Reidlinger; he also
gives the improvements (k, ω) = (4, 23), (5,56), (6,142), (7,373) to those of
Bugulov.

Minoli & Bear say that n is k-hyperperfect if n = 1 + k
∑

di, where
the summation is taken over all proper divisors, 1 < di < n, so that
kσ(n) = (k+1)n+k−1. For example, 21, 2133 and 19521 are 2-hyperperfect
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and 325 is 3-hyperperfect. They conjecture that there are k-hyperperfect
numbers for every k.

Cohen & te Riele call numbers (m, k)-perfect if σm(n) = kn; e.g.,
perfect numbers are (1, 2)-perfect, multiperfect numbers are (1, k)-perfect;
(2, 2)-perfect numbers have been called superperfect and (2, k)-perfect num-
bers multiply superperfect. They tabulate all (m, k)-perfect numbers n for
(m, n) = (2, < 109), (3, < 2 · 108), (4, < 108) and prove that the equa-
tion σ2(2n) = 2σ2(n) has infinitely many solutions. They ask: for any
fixed m, are there infinitely many (m, k)-perfect numbers? and: is every n
(m, k)-perfect for some m? For n ∈ [1, 400] they list the least such m.

Eswarathasan & Levine define a(n)/b(n) =
∑

i = 1n1/i with a(n) ⊥
b(n) and a(0) = 0, and for p prime consider the sets J(p) = {n ≥ 0 : p |
a(n)} and I(p) = {n ≥ 0 : p does not divide b(n)}. Then J(2) = {0},
J(3) = {0, 2, 7, 22} and, for p ≥ 5, J(p) ⊇ 0, p − 1, p2 − p, p2 − 1; they give
necessary and sufficient conditions for equality and show that the primes
less than 200 which satisfy these conditions are 5, 13, 17, 23, 41, 67, 73,
79, 107, 113, 139, 149, 157, 179, 191, 193. [I(5) = {1, 2, 3, 4, . . .} was
the subject of Putnam problem 1997 B3.] It is conjectured that there are
infinitely many such primes. In contrast

J(7) = {0, 6, 42, 48, 295, 299, 337, 341, 2096, 2390, 14675, 16735, 102728},

but it is also conjectured that J(p) is always finite.
Ron Graham asks if s(n) = �n/2� implies that n is 2 or a power of 3.

Luo Shi-Le & Le Mao-Hua have given a partial answer.
Erdős lets f(n) be the smallest integer for which n =

∑k
i=1 di for some

k, where 1 = d1 < d2 < . . . dl = f(n) is the increasing sequence of
divisors of f(n). Is f(n) = o(n)? Or is this true only for almost all n, with
lim sup f(n)/n = ∞?

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
f(n) 1 - 2 3 - 5 4 7 15 12 21 6 9 13 8 12 30 10 42 19 18 20 57 14 36 46 30 12

Erdős defined nk to be the smallest integer for which if you partition the
proper divisors of nk into k classes, nk will always be the sum of distinct
divisors from the same class. Clearly n1 = 6, but he was not even able to
prove the existence of n2.
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B3 Unitary perfect numbers.

If d divides n and d ⊥ n/d, call d a unitary divisor of n. A number n
which is the sum of its unitary divisors, apart from n itself, is a unitary
perfect number. There are no odd unitary perfect numbers, and Sub-
barao conjectures that there are only a finite number of even ones. He,
Carlitz & Erdős each offer $10.00 for settling this question and Subbarao
offers 10/c for each new example. If n = 2am, where m is odd and has r
distinct prime factors, then Subbarao and others have shown that, apart
from 2 · 3, 22 · 3 · 5, 2 · 32 · 5 and 26 · 3 · 5 · 7 · 13, there are no unitary perfect
numbers with a ≤ 10, or with r ≤ 6. S. W. Graham has shown that the
first and third are the only unitary perfect numbers of shape 2am with m
odd and squarefree, and Jennifer DeBoer that the second is the only one
of shape 2a32m with m ⊥ 6 and squarefree.

Wall has found the unitary perfect number

218 · 3 · 54 · 7 · 11 · 13 · 19 · 37 · 79 · 109 · 157 · 313

and shown that it is the fifth such. He can prove that any other unitary
perfect number has an odd component greater than 215. Frey has shown
that if N = 2mpa1

1 . . . par
r is unitary perfect with N ⊥ 3, then m > 144,

r > 144 and N > 10440.
Peter Hagis investigates unitary multiperfect numbers: there are

no odd ones. Write σ∗(n) for the sum of the unitary divisors of n. If
σ∗(n) = kn and n contains t distinct odd prime factors, then k = 4 or 6
implies n > 10110, t ≥ 51 and 249|n; k ≥ 8 implies n > 10663 and t ≥ 247;
while k odd and k ≥ 5 imply n > 10461, t ≥ 166 and 2166|n.

Sitaramaiah & Subbarao call a number unitary superperfect if it
satisfies the equation σ∗(σast(n)) = 2n. They find 22 such numbers below
108.

Cohen calls a divisor d of an integer n a 1-ary divisor of n if d ⊥ n/d,
and he calls d a k-ary divisor of n (for k > 1), and writes d|kn, if the
greatest common (k−1)-ary divisor of d and n/d is 1 (written (d, n/d)k−1 =
1). In this notation d|n and d ‖ n are written d|0n and d|1n. He also
calls px an infinitary divisor of py(y > 0) if px|y−1p

y. This gives rise
to infinitary analogs of earlier concepts. Write σ∞(n) for the sum of the
infinitary divisors of n. He found 14 infinitary perfect numbers, i.e., with
σ∞(n) = kn and k = 2; 13 numbers with k = 3; 7 with k = 4; and two
with k = 5. There are no odd ones, and he conjectures that there are no
infinitary multiperfect numbers not divisible by 3.
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B4 Amicable numbers.

Unequal numbers m, n are called amicable if each is the sum of the aliquot
parts of the other, i.e., σ(m) = σ(n) = m + n. Several thousand (in 2003,
‘million’) such pairs are known. The smaller member, 220, of the smallest
pair, occurs in Genesis, xxxii, 14, and intrigued the Greeks and Arabs and
many others since. For their history see the articles of Lee & Madachy. The
Genesis reference, from the King James Bible, is achieved by amalgamating
200 females and 20 males. Aviezri Fraenkel writes that in his Pentateuch,
they occur at xxxii, 15, and gives the more convincing occurrences of 220
in Ezra viii, 20 and in 1 Chronicles xv, 6; and of 284 in Nehemiah xi, 18.
He notes that the three places are amicably related: all are connected to
the tribe of Levi, whose name derives from the wish of Levi’s mother to be
amicably related to his father (Genesis xxix, 34).

It is not known if there are infinitely many, but it is believed that there
are. In fact Erdős conjectured that the number, A(x), of such pairs with
m < n < x is at least x1−ε. He improved a result of Kanold to show that
A(x) = o(x) and his method can be used to obtain A(x) ≤ cx/ ln ln lnx.
Pomerance obtained the further improvement

A(x) ≤ x exp{−c(ln ln lnx ln ln ln lnx)1/2}.

Erdős conjectured that A(x) = o(x/(lnx)k) for every k whereupon Pomer-
ance proved the stronger result

A(x) ≤ x exp{−(lnx)1/3}.

This implies that the sum of the reciprocals of the amicable numbers is
finite, a fact not earlier known. He also notes that his proof can be modified
to give the slightly stronger result

A(x) � x exp{−c(lnx ln lnx)1/3}.

Herman te Riele has found all 1427 amicable pairs whose lesser members
are less than 1010. He remarks that the quantity A(x)(lnx)3/x1/2 “remains
very close to 174.6”, but I suspect that a much more powerful telescope
would require the exponent 1/2 to be increased much nearer to 1. Moews
& Moews have continued the complete search to beyond 2 · 1011.
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Some large amicable pairs, with 32, 40, 81 and 152 decimal digits, dis-
covered by te Riele, are mentioned by Kaplansky under “Mathematics” in
the 1975 Encyclopedia Britannica Yearbook. The largest previously known
had 25 decimal digits. More recently te Riele has constructed, from a
“mother” list of 92 known amicable pairs, more than 2000 new pairs of
sizes up to 38 decimal digits, and five pairs with from 239 to 282 digits.
The largest amicable pair known in mid-1993 has 1041 decimal digits:

(29p20q1rstu, 29p20q2v)

with p = 5661346302015448219060051; q1, q2 of shape bc20 − 1 with
b1 = 5797874220719830725124352, b2 = 5531348900141215019827200,
c = 5661346302015448219060051; and r = 569, s = 5039, t = 1479911,
u = 30636732851; and v = 136527918704382506064301. It was found in
July 1988 by Holger Wiethaus, a student at Dortmund. On 97-10-04 Mar-
iano Garcia found a pair each of whose members has 4829 digits. This
exceeded the pair with 3766 digits found by Frank Zweers the previous
August.

Elvin J. Lee has given half a dozen rules for amicable pairs of type
(2npq, 2nrs) where p, q, r, s are primes of appropriate shape. E.g.,

p = 3 ·2n−1 −1, q = 35 ·2n+1 −29, r = 7 ·2n−1 −1, s = 15 ·2n+1 −13,

but the simultaneous discovery of four such primes is a rare event.
Borho, Hoffman & te Riele have made considerable advances, both with

proliferation of generalized Thabit rules, and with actual computation. Of
the 1427 amicable pairs mentioned above, all but 17 have m+n ≡ 0 mod 9.
The smallest exception is Poulet’s pair

24 · 331 ·
{

19 · 6619
199 · 661

with m + n ≡ 5 mod 9: te Riele gives the first examples

24 ·
{

192 · 103 · 1627
3847 · 16763 and 22 · 19 ·

{
132 · 37 · 43 · 139
41 · 151 · 6709

with m, n even, m + n ≡ 3 mod 9.
It is not known if an amicable pair exists with m and n of opposite

parity, or with m ⊥ n. Bratley & McKay conjectured that both members
of all odd amicable pairs are divisible by 3, but Battiato & Borho produced
15 counterexamples with from 36 to 73 decimal digits. In an 87-05-15 letter
te Riele announced a 33-digit specimen (misquoted in UPINT2)

5 · 72 · 112 · 13 · 17 · 193 · 23 · 37 · 181
{

101 · 8693 · 19479382229
365147 · 47307071129

Is this the smallest such pair? Is there an odd amicable pair with one
member, but not both, divisible by 3? No pair has been discovered with
different smallest prime factors.
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Yasutoshi Kohmoto found pairs with each member coprime to 30, for
example

72 · 11 · 132 · 174 · 193 · 23 · 292 · 31 · 37 · 43 · 59 · 61 · 67 · 83 · 97 · 139 · 173×
181 · 331 · 349 · 577 × 661 · 1321 · 4349 · 11093 · 41519 · 43973 · 44371 · 88741×

15223567 · 91341401 · 264271333 · 1281651920873 · 47031498888355607×
41277542598611381429 · 4870750026636143008621×

either 179 · 1525663971924884048614628301903295821727019
or 274619514946479128750633094342593247910863599

An old conjecture of Charles Wall is that odd amicable pairs must be
incongruent modulo 4.

On p. 169 of Mathematical Magic Show, Vintage Books, 1978, Martin
Gardner makes a conjecture about the digital roots of amicable numbers.
Lee confirms this in part by showing that if (2npqr, 2nstu) is an amicable
pair whose sum is not divisible by 9, then each number is congruent to 7,
modulo 9.

Unitary amicable numbers have been studied by Peter Hagis and
by Mariano Garćıa, who list 82 pairs.

Cohen & te Riele call (a, b) a φ-amicable pair with multiplier k if
φ(a) = φ(b) = (a + b)/k for some integer k ≥ 1, where φ is Euler’s totient
function (see B36). They computed all such pairs with larger member
≤ 109 and found 812 pairs whose gcd is squarefree.
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S. Battiato, Über die Produktion von 37803 neuen befreundeten Zahlenpaaren
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Mariano Garćıa, New unitary amicable couples, J. Recreational Math., 17

(1984-5) 32–35.
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B5 Quasi-amicable or betrothed numbers.

Garćıa has called a pair of numbers (m, n), m < n, quasi-amicable if

σ(m) = σ(n) = m + n + 1.

For example, (48,75), (140,195), (1575,1648), (1050,1925) and (2024,2295).
Rufus Isaacs, noting that each of m and n is the sum of the proper divisors
of the other (i.e., omitting 1 as well as the number itself) has much more
appropriately named them betrothed numbers.
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Ma̧kowski gave examples of betrothed numbers and also of amicable
triples

σ(a) = σ(b) = σ(c) = a + b + c,

e.g., 22325 · 11, 25327, 223271. Similarly, in a 92-07-20 letter, Yasutoshi
Kohmoto calls the set {a, b, c, d} quadri-amicable if

σ(a) = σ(b) = σ(c) = σ(d) = a + b + c + d.

As examples which are not multiples of 3 he gives
a = x · 173 · 1933058921 · 149 · 103540742849 b = x · 173 · 1933058921 · 15531111427499

c = 336352252427 · 149 · 103540742849 d = 336352252427 · 15531111427499

where x is the product of
59 ·72 ·114 ·172 ·19·292 ·67·712 ·109·131·139·179·307·431·521·653·1019·1279·2557·3221·5113·6949

with a perfect number 2p−1Mp, Mp = 2p − 1 being a Mersenne prime (see
A3) with p > 3.

Hagis & Lord have found all 46 pairs of betrothed numbers with m <
107. All of them are of opposite parity. No pairs are known with m, n
having the same parity. If there are such, then m > 1010. If m ⊥ n, then
mn contains at least four distinct prime factors, and if mn is odd, then mn
contains at least 21 distinct prime factors.

Beck & Najar call such pairs reduced amicable pairs, and call numbers
m, n such that

σ(m) = σ(n) = m + n − 1

augmented amicable pairs. They found 11 augmented amicable pairs. They
found no reduced or augmented unitary amicable or sociable numbers (see
B8) with n < 105.

Walter E. Beck & Rudolph M. Najar, More reduced amicable pairs, Fibonacci
Quart., 15(1977) 331–332; Zbl. 389.10004.

Walter E. Beck & Rudolph M. Najar, Fixed points of certain arithmetic
functions, Fibonacci Quart., 15(1977) 337–342; Zbl. 389.10005.
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to 108, Fibonacci Quart., 31(1993) 295–298; MR 94g:11005.

Peter Hagis & Graham Lord, Quasi-amicable numbers, Math. Comput., 31
(1977) 608–611; MR 55 #7902; Zbl. 355.10010.

M. Lal & A. Forbes, A note on Chowla’s function, Math. Comput., 25(1971)
923–925; MR 45 #6737; Zbl. 245.10004.

Andrzej Ma̧kowski, On some equations involving functions φ(n) and σ(n),
Amer. Math. Monthly, 67(1960) 668–670; correction 68(1961) 650; MR 24 #A76.

OEIS: A003502-003503, A005276.

B6 Aliquot sequences.

Since some numbers are abundant and some deficient, it is natural to ask
what happens when you iterate the function s(n) = σ(n) − n and produce
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an aliquot sequence, {sk(n)}, k = 0, 1, 2, . . . . Catalan and Dick-
son conjectured that all such sequences were bounded, but we now have
heuristic arguments and experimental evidence that some sequences, per-
haps almost all of those with n even, go to infinity. The smallest n for
which there was ever doubt was 138, but D. H. Lehmer eventually showed
that after reaching a maximum

s117(138) = 179931 895322 = 2 · 61 · 929 · 1587569

the sequence terminated at s177(138) = 1. The next value for which there
continues to be real doubt is 276. A good deal of computation by Lehmer,
subsequently assisted by Godwin, Selfridge, Wunderlich and others, pushed
the calculation as far as s469(276), which was quoted in the first edition.
Thomas Struppeck factored this term and computed two more iterates.

Andy Guy wrote a PARI program which started from scratch and overnight
verified all the earlier calculations and reached s487(276).

The first few sequences whose fate was unknown are the “Lehmer six”
starting from 276, 552, 564, 660, 840 and 966. Our program found that the
840 sequence hit the prime s746(840) = 601 and established a new record

s287(840) = 3 463982 260143 725017 429794 136098 072146 586526 240388

= 22 · 64970467217 · 6237379309797547 · 2136965558478112990003

for the maximum of a terminating sequence. This has since been beaten
by Mitchell Dickerman who found that the 1248 sequence has length 1075
after reaching a maximum s583(1248) =

1231 636691 923602 991963 829388 638861 714770 651073 275257 065104 = 24p

of 58 digits, and by Paul Zimmerman who found that the 446580 sequence
terminates at step 4736 with the prime 601.

Godwin investigated the fourteen main sequences starting between 1000
and 2000 whose outcome was unknown and discovered that the sequence
1848 terminated. We have found that those for 2580, 2850, 4488, 4830,
6792, 7752, 8862 and 9540 also terminate.

Wieb Bosma showed that the 3556 sequence teminated. Benito &
Verona have shown that the 4170, 7080 and 8262 sequences each termi-
nate, the first of which had a (then) record maximum of 84 decimal digits:
s289(4170) =

329561080342477212747203692863366213833838703158858822327064032192093690321488891836=

22 · 41 · 97 · 20374357 · 1559593537 · 651966073954976081342107597832287652091395156174990523498331163

Wolfgang Creyaufmüller has made extensive calculations, the results of
which may be seen at
http://home.t-online.de/home/wolfgang.creyaufmueller/aliquot.

Comparatively few have terminated, and many open-ended sequences
have appeared. His limits of computation generally exceed 1080. The
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current numbers of open-ended sequences in the interval
(
(k−1)105, k · 105

)
is

k = 1 2 3 4 5 6 7 8 9 10
922 975 938 877 917 971 958 971 982 985

which seem to support the Guy-Selfridge conjecture rather than the Catalan-
Dickson one. His graphs are convincing even though 564 almost bit the
dust on one occasion. In October 2003 Paul Zimmermann’s statistics for
the Lehmer five were:

Sequence 276 552 564 660 966
Length so far 1332 829 3075 531 550
# of digits 123 121 121 118 117

Creyaufmüller stopped calculation of the sequence 389508 when it reached
101 digits at step 7135.

H. W. Lenstra has proved that it is possible to construct arbitrarily
long monotonic increasing aliquot sequences. See the quadruple paper cited
under B41. The last of the following references has a bibliography of 60
items concerning the iteration of number-theoretic functions.
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Zbl. 266.10006.
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report on aliquot sequences, Congr. Numer. IX, Proc. 3rd Manitoba Conf. Numer.
Math., 1973, 357–368; MR 50 #4455; Zbl. 325.10007.

H. W. Lenstra, Problem 6064, Amer. Math. Monthly, 82(1975) 1016; solution
84 (1977) 580.

G. Aaron Paxson, Aliquot sequences (preliminary report), Amer. Math.
Monthly, 63(1956) 614. See also Math. Comput., 26 (1972) 807–809.

P. Poulet, La chasse aux nombres, Fascicule I, Bruxelles, 1929.
P. Poulet, Nouvelles suites arithmétiques, Sphinx, Deuxième Année (1932)

53–54.
H. J. J. te Riele, A note on the Catalan-Dickson conjecture, Math. Comput.,

27(1973) 189–192; MR 48 #3869; Zbl. 255.10008.
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Math. Centrum, Amsterdam, 1983.
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B7 Aliquot cycles. Sociable numbers.

Aliquot cycles or sociable numbers. Poulet discovered two cycles of
numbers, showing that sk(n) can have the periods 5 and 28, in addition to
1 and 2. For k ≡ 0, 1, 2, 3, 4 mod 5, sk(12496) takes the values

12496 = 24 · 11 · 71, 14288 = 24 · 19 · 47, 15472 = 24 · 967,

14536 = 23 · 23 · 79, 14264 = 23 · 1783.

For k ≡ 0, 1, . . . , 27 mod 28, sk(14316) takes the values

14316 19116 31704 47616 83328 177792 295488
629072 589786 294896 358336 418904 366556 274924
275444 243760 376736 381028 285778 152990 122410
97946 48976 45946 22976 22744 19916 17716

After a gap of over 50 years, and the advent of high-speed computing,
Henri Cohen discovered nine cycles of period 4, and Borho, David and Root
also discovered some. Recently Moews & Moews have made an exhaustive
search for such cycles with greatest member less than 1010. There are
twenty-four: their smallest members are
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1264460 7169104 46722700 330003580 2387776550 4424606020
2115324 18048976 81128632 498215416 2717495235 4823923384
2784580 18656380 174277820 1236402232 2879697304 5373457070
4938136 28158165 209524210 1799281330 3705771825 8653956136

Moews & Moews give five larger 4-cycles, and, in a 90-09-01 letter,
another whose least member is:

26 · 79 · 1913 · 226691 · 207722852483

They also found an 8-cycle:

1095447416 1259477224 1156962296 1330251784
1221976136 1127671864 1245926216 1213138984

Ren Yuanhua had already found three of the 4-cycles and Achim Flam-
menkamp had also found many of them, as well as a second 8-cycle:

1276254780 2299401444 3071310364 2303482780
2629903076 2209210588 2223459332 1697298124

and a 9-cycle:

805984760 1268997640 1803863720 2308845400 3059220620
3367978564 2525983930 2301481286 1611969514

Moews & Moews have continued their exhaustive search to uncover all
cycles, of any length, whose member preceding the largest member is less
than 3.6 · 1010. There are three more 4-cycles, with least members

15837081520, 17616303220, 21669628904,
and a 6-cycle, all of whose members are odd:

21548919483 = 35 · 72 · 13 · 17 · 19 · 431, 23625285957 = 35 · 72 · 13 · 19 · 29 · 277,
24825443643 = 32 · 72 · 11 · 13 · 19 · 20719, 26762383557 = 34 · 72 · 13 · 19 · 27299,
25958284443 = 32 · 72 · 13 · 19 · 167 · 1427, 23816997477 = 32 · 72 · 13 · 19 · 218651.

Their continued search to 1.03 × 1011 produced four more 4-cycles. A
recent count is

length 4 5 6 8 9 28 Total
number 110 1 2 2 1 1 127

50 four-cycles having been discovered by Blankenagel, Borho & vom Stein.
See J. O. M. Pedersen’s pages at
http://amicable.adsl.dk/aliquot/sociable.txt

It has been conjectured that there are no 3-cycles. On the other hand
it has been conjectured that for each k there are infinitely many k-cycles.
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Karsten Blankenagel, Walter Borho & Axel vom Stein, New amicable four-
cycles, Math. Comput., 72(2003) 2071–2076.

Walter Borho, Über die Fixpunkte der k-fach iterierten Teilersummenfunk-
tion, Mitt. Math. Gesellsch. Hamburg, 9(1969) 34–48; MR 40 #7189.

Achim Flammenkamp, New sociable numbers, Math. Comput., 56(1991) 871–
873.

David Moews & Paul C. Moews, A search for aliquot cycles below 1010, Math.
Comput., 57(1991) 849–855; MR 92e:11151.

David Moews & Paul C. Moews, A search for aliquot cycles and amicable
pairs, Math. Comput., 61(1993) 935–938.

OEIS: A003416.

B8 Unitary aliquot sequences.

The ideas of aliquot sequence and aliquot cycle can be adapted to the case
where only the unitary divisors are summed, leading to unitary aliquot
sequences and . We use σ∗(n) and s∗(n) for the analogs of σ(n) and s(n)
when just the unitary divisors are summed (compare B3).

Are there unbounded unitary aliquot sequences? Here the balance is
more delicate than in the ordinary aliquot sequence case. The only se-
quences which deserve serious consideration are those involving odd mul-
tiples of 6, which is a unitary perfect number as well as an ordinary one.
Now the sequences tend to increase if 3‖n, but decrease when a higher
power of 3 is present, and it is a moot point as to which situation will
dominate. Once a term of a sequence is 6m, with m odd, then σ∗(6m) is
an even multiple of 6, making s∗(6m) an odd multiple of 6 again, except
in the extremely rare case that m is 4 raised to an odd power.

te Riele pursued all unitary aliquot sequences for n < 105. The only one
which did not terminate or become periodic was 89610. Later calculations
showed that this reached a maximum,

645 856907 610421 353834 = 2 · 32 · 13 · 19 · 73 · 653 · 3047409443791

at its 568th term, and terminated at its 1129th.
One can hardly expect typical behavior until the expected number of

prime factors is large. Since this number is ln lnn, such sequences are well
beyond computer range. Of 80 sequences examined near 1012, all have
terminated or become periodic. One sequence exceeded 1023.

Unitary amicable pairs and unitary sociable numbers may occur rather
more frequently than their ordinary counterparts. Lal, Tiller & Summers
found cycles of periods 1, 2, 3, 4, 5, 6, 14, 25, 39 and 65. Examples
of unitary amicable pairs are (56430,64530) and (1080150,1291050), while
(30,42,54) is a 3-cycle and

(1482, 1878, 1890, 2142, 2178)
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is a 5-cycle.
Cohen (see B3 for definitions and a reference) finds 62 infinitary amica-

ble pairs with smaller member less than a million, eight infinitary aliquot
cycles of order 4 and three of order 6. The only other such cycle of order
less than 17 and least member less than a million is of order 11:

448800, 696864, 1124448, 1651584, 3636096, 6608784,
5729136, 3736464, 2187696, 1572432, 895152.

A type of aliquot sequence which can be unbounded has been suggested
by David Penney & Carl Pomerance and is based on Dedekind’s function:
see B41. It was in fact the subject of Chapter 7 of te Riele’s thesis.

Erdős, looking for a number-theoretic function whose iterates might
be bounded, suggested defining w(n) = n

∑
1/pαi

i where n =
∏

pαi
i , and

wk(n) = w(wk−1(n)). Note that w(n) ⊥ n. Can it be proved that wk(n),
k = 1, 2, . . ., is bounded? Is |{w(n) : 1 ≤ n ≤ x}| = o(x)?

Erdős & Selfridge called n a barrier for a number-theoretic function
f(m) if, for all m < n, m + f(m) ≤ n. Euler’s φ-function (see B36) and
σ(m) increase too fast to have barriers, but does ω(m) have infinitely many
barriers? The numbers 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 17, 18, 20, 24, 26, 28,
30, . . ., are barriers for ω(m). Does Ω(m) have infinitely many barriers?
Selfridge observes that 99840 is the largest barrier for Ω(m) that is < 105.
Ma̧kowski observes that n = 1 is a barrier for every function, and that 2
is a barrier for every function f(n) with f(1) = 1; in particular for d(m),
the number of divisors of m. The inequality

max{d(n − 1) + n − 1, d(n − 2) + n − 2} ≥ n + 2

holds for n ≥ 7, but not for n = 6. But d(n − 1) + n − 1 ≥ n + 1 for n ≥ 3,
so d(m) has no barriers ≥ 3. Does

max
m<n

(m + d(m)) = n + 2

have infinitely many solutions? It is very doubtful. The first few are n = 5,
8, 10, 12, 24; Jud McCranie found no others below 1010.

Paul Erdős, A mélange of simply posed conjectures with frustratingly elusive
solutions, Math. Mag., 52(1979) 67–70.
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Peter Hagis, Unitary hyperperfect numbers, Math. Comput., 36(1981) 299–
301.
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B9 Superperfect numbers.

Suryanarayana defines superperfect numbers n by σ2(n) = 2n, i.e.,
σ(σ(n)) = 2n. He and Kanold show that the even ones are just the numbers
2p−1 where 2p − 1 is a . Are there any odd superperfect numbers? If so,
Kanold shows that they are perfect squares, and Dandepat and others that
n or σ(n) is divisible by at least three distinct primes.

More generally, Bode defines m-superperfect numbers as numbers
n for which σm(n) = 2n, and shows that for m ≥ 3 there are no even
m-superperfect numbers. He also shows that for m = 2 there is no super-
perfect number < 1010. Hunsucker & Pomerance have raised this bound
to 7 × 1024 and have shown that if n is an odd super perfect number, then
nσ(n) has at least 5 distinct prime factors, and that the number of distinct
prime factors in n, together with the number of distinct prime factors in
σ(n) is at least 7. These results are announced in the paper with Dandapat.

If σ2(n) = 2n+1, it would be consistent with earlier terminology to call
n quasi-superperfect. The Mersenne primes are such. Are there others?
Are there “almost superperfect numbers” for which σ2(n) = 2n − 1 ?

Erdős asks if (σk(n))1/k has a limit as k → ∞. He conjectures that it
is infinite for each n > 1.

Schinzel asks if lim inf σk(n)/n < ∞ for each k, as n → ∞, and observes
that it follows for k = 2 from a deep theorem of Rényi. Ma̧kowski &
Schinzel give an elementary proof for k = 2 that the limit is 1. Helmut
Maier has used sieve methods to prove the result for k = 3.
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Sitaramaiah & Subbarao call a number unitary superperfect if it sat-
isfies the equation σ∗(σ∗(n)) = 2n. They note that the equation σ∗(σ∗(n)) =
2n + 1 has no solutions and that σ∗(σ∗(n)) = 2n − 1 has only n = 1
and 3. They list the unitary superperfect numbers less than 108: 2, 9,
165, 238, 1640, 4320, 10250, 10824, 13500, 23760, 58500, 66912, 425880,
520128, 873180, 931392, 1899744, 2129400, 2253888, 3276000, 4580064,
4668300, and they conjecture that there are infinitely many unitary super-
perfect numbers, of which only a finite number are odd. They also list the
solutions n = 10, 30, 288, 660, 720, 2146560 of σ∗(σ∗(n)) = kn for k = 3
and the solution n = 18 for k = 4.

Dieter Bode, Über eine Verallgemeinerung der volkommenen Zahlen, Disser-
tation, Braunschweig, 1971.

G. G. Dandapat, J. L. Hunsucker & C. Pomerance, Some new results on odd
perfect numbers, Pacific J. Math., 57(1975) 359–364; 52 #5554.

P. Erdős, Some remarks on the iterates of the φ and σ functions, Colloq.
Math., 17(1967) 195–202.

J. L. Hunsucker & C. Pomerance, There are no odd super perfect numbers
less than 7 · 1024, Indian J. Math., 17(1975) 107–120; MR 82b:10010.

H.-J. Kanold, Über “Super perfect numbers,” Elem. Math., 24(1969) 61–62;
MR 39 #5463.

Graham Lord, Even perfect and superperfect numbers, Elem. Math., 30
(1975) 87–88.

Helmut Maier, On the third iterates of the φ- and σ-functions, Colloq. Math.,
49(1984) 123–130.

Andrzej Ma̧kowski, On two conjectures of Schinzel, Elem. Math., 31(1976)
140–141.

A. Schinzel, Ungelöste Probleme Nr. 30, Elem. Math., 14(1959) 60–61.

V. Sitaramaiah & M. V. Subbarao, On the equation σ∗(σ∗(n)) = 2n, Utilitas
Math., 53(1998) 101–124; MR 99a:11009.

D. Suryanarayana, Super perfect numbers, Elem. Math., 24(1969) 16–17; MR
39 #5706.

D. Suryanarayana, There is no superperfect number of the form p2α, Elem.
Math., 28(1973) 148–150; MR 48 #8374.

B10 Untouchable numbers.

Erdős has proved that there are infinitely many n such that s(x) = n has no
solution. Alanen calls such n untouchable. In fact Erdős showed that the
untouchable numbers have positive lower density. Here are the untouchable
numbers less than 1000:



96 Unsolved Problems in Number Theory

2 5 52 88 96 120 124 146 162 178 188 206 210 216 238 246
248 262 268 276 288 290 292 304 306 322 324 326 336 342 372 406
408 426 430 448 472 474 498 516 518 520 530 540 552 556 562 576
584 612 624 626 628 658 668 670 714 718 726 732 738 748 750 756
766 768 782 784 792 802 804 818 836 848 852 872 892 894 896 898
902 916 926 936 964 966 976 982 996

In view of the plausibility of the Goldbach conjecture (C1), it seems likely
that 5 is the only odd untouchable number since if 2n + 1 = p + q + 1 with
p and q prime, then s(pq) = 2n + 1. Can this be proved independently?
Are there arbitrarily long sequences of consecutive even numbers which are
untouchable? How large can the gaps between untouchable numbers be?

Wouter Meeussen, in a 98-08-27 email, calls an integer m < n unre-
lated to n if it is neither a divisor of n nor relatively prime to it, and
defines the function W (n) = n − d(n) − φ(n) + 1, the number of integers
unrelated to n. For n < 14 the only examples are: 4 unrelated to 6; 6
unrelated to 8 and 9; 4, 6, 8 unrelated to 10; and 8, 9, 10 unrelated to 12,
so that W (6) = W (8) = W (9) = 1 and W (10) = W (12) = 3. Meeussen
asks if any of the numbers

2, 13, 67, 93, 123, 133, 141, 173, 187, 193, 205, 217, 229, 245, 253, 257,
283, 285, 293, 303, 317, 319, 325, 333, 341, 389, 393, 397, 405, 415, 427,
445, 453, 467, 473, 483, 491, 493, 509, 525, 527, 533, 537, 549, 557, 571,
573, 581, 587, 589, 595, 609, 621, 635, 643, 653, 655, 667, 669, 673, 679,
685, 701, 709, 723, 765, 777, 779, 789, 797, 811, 813, 833, 843, 845, 869,
877, 893, 899, 901, 907, 915, 921, 941, 957, 973, 997, . . .
can occur as a value of W (n).

Felice Russo found the following unitary untouchable numbers: 2,
3, 4, 5, 7, 374, 702, 758, 998, i.e., numbers n for which s∗(x) = n has no
solution, s∗(x) = σ∗(x)−x being the sum of the unitary divisors of x other
than x itself. They are the only ones < 1000. David Wilson found 862
unitary untouchable numbers ≤ 105. What is a good estimate for their
number ≤ x ?

P. Erdős, Über die Zahlen der Form σ(n) − n und n − φ(n), Elem. Math.,
28(1973) 83–86; MR 49 #2502.

Paul Erdős, Some unconventional problems in number theory, Astérisque,
61(1979) 73–82; MR 81h:10001.

OEIS: A005114, A063948.

B11 Solutions of mσ(m) = nσ(n).
Leo Moser observed that while nφ(n) determines n uniquely, nσ(n) does
not. [φ(n) is Euler’s totient function; see B36.] For example, mσ(m) =
nσ(n) for m = 12, n = 14. The multiplicativity of σ(n) now ensures an
infinity of solutions, m = 12q, n = 14q, where q ⊥ 42. So Moser asked if
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there is an infinity of primitive solutions, in the sense that (m∗, n∗) is not
a solution for any m∗ = m/d, n∗ = n/d, d > 1. The example we’ve given
is the least of the set m = 2p−1(2q − 1), n = 2q−1(2p − 1), where 2p − 1,
2q − 1 are distinct Mersenne primes, so that only a finite number of such
solutions is known. Another set of solutions is m = 27 · 32 · 52 · (2p − 1),
n = 2p−1 · 53 · 17 · 31, where 2p − 1 is a Mersenne prime other than 3 or
31; also p = 5 gives a primitive solution on deletion of the common factor
31. There are other solutions, such as m = 24 · 3 · 53 · 7, n = 211 · 52 and
m = 29 ·5, n = 23 ·11 ·31. An example with m ⊥ n is m = 25 ·5, n = 33 ·7.
If mσ(m) = nσ(n), is m/n bounded?

Erdős observed that if n is squarefree, then integers of the form nσ(n)
are distinct. He also proved that the number of solutions of mσ(m) = nσ(n)
with m < n < x is cx + o(x). In answer to the question, are there three
distinct numbers l, m, n such that lσ(l) = mσ(m) = nσ(n), Ma̧kowski
observes that for distinct Mersenne primes Mpi

, 1 ≤ i ≤ s, we have niσ(ni)
is constant for ni = A/Mpi , where A =

∏s
j=1 Mpj . Is there an infinity of

primitive solutions of the equation σ(a)/a = σ(b)/b? Without restricting
the solutions to being primitive, Erdős showed that their number with
a < b < x is at least cx + o(x); with the restriction a ⊥ b no solution is
known at all.

Erdős believes that the number of solutions of xσ(x) = n is less than
nε/ ln ln n for every ε > 0, and says that the number may be less than (lnn)c.

Jean-Marie De Koninck asks if n = 1782 is the only non-trivial solution
of σ(n) =(rad n)2, where rad n, the radical of n, is its greatest squarefree
divisor:

σ(1782) = σ(2 · 34 · 11) = (2 + 1) · 35−1
3−1 · (11 + 1) = (2 · 3 · 11)2

At the conclusion of the article by Huard, Ou, Spearman & Williams on
convolution sums of divisor functions is mentioned the possibility of finding
further identities and of connexions with Ramanujan’s τ -function.

Nicolae Ciprian Bonciocat, Congruences for the convolution of divisor sum
function, Bull. Greek Math. Soc., 46(2002) 161–170; MR 2003e:11111.

P. Erdős, Remarks on number theory II: some problems on the σ function,
Acta Arith., 5(1959) 171–177; MR 21 #6348.

James G. Huard, Zhiming M. Ou, Blair K. Spearman & Kenneth S. Williams,
Elementary evaluation of certain convolution sums involving divisor functions,
Number Theory for the Millenium II (Urbana IL, 2000) 229–274, AKPeters, Nat-
ick MA¡ 2002.

B12 Analogs with d(n), σk(n).

Analogous questions may be asked with σk(n) in place of σ(n), where σk(n)
is the sum of the k-th powers of the divisors of n. For example, are there
distinct numbers m and n such that mσ2(m) = nσ2(n)? For k = 0 we have



98 Unsolved Problems in Number Theory

md(m) = nd(n) for (m, n) = (18, 27), (24, 32), (56, 64) and (192, 224). The
last pair can be supplemented by 168 to give three distinct numbers such
that ld(l) = md(m) = nd(n). There are primitive solutions (m, n) of shape

m = 2qt−1p, n = 2pt·2tu−1q

where p and q = u + p · 2tu are primes, but it does not immediately fol-
low that these are infinitely numerous. Many other solutions can be con-
structed; for example (270, 263 · 71), (319, 317 · 5) and (551, 549 · 13).

Bencze proves the inequalities

nk + 1
2

≥ σk(n)
σk−l(n)

≥
√

nl

for 0 ≤ l ≤ k and gives no fewer than 60 applications.

Mihály Bencze, A contest problem and its application (Hungarian), Mat.
Lapok Ifjúsági Folyóirat (Románia), 91(1986) 179–186.

OEIS: A000005, A033950, A036762-036763, A039819, A051278-051280.

B13 Solutions of σ(n) = σ(n + 1).
Sierpiński has asked if σ(n) = σ(n + 1) infinitely often. Hunsucker, Nebb
& Stearns extended the tabulations of Ma̧kowski and of Mientka & Vogt
and have found just 113 solutions

14, 206, 957, 1334, 1364, 1634, 2685, 2974, 4364, . . .

less than 107. They also obtain statistics concerning the equation σ(n) =
σ(n + l), of which Mientka & Vogt had asked: for what l (if any) is there
an infinity of solutions? They found many solutions if l is a factorial, but
only two solutions for l = 15 and l = 69. They also ask whether, for each
l and m, there is an n such that σ(n) + m = σ(n + l).

Jud McCranie found 832 solutions of σ(n) = σ(n+1) for n < 4.25×109

and 2189 solutions of σ(n) = σ(n + 2) in the same range. An example is

4236745811 = 64399 × 65789
4236745813 = 64499 × 65687

for which σ(n) = σ(n + 2) = 4236876000 = 25 · 32 · 53 · 7 · 11 · 23 · 43. He
found no solutions for σ(n) = σ(n + 1) = σ(n + 2) in that range.

Hunsucker, Nebb & Stearns conjectured that if σ(n) = σ(n + 1) and
neither n nor n + 1 is squarefree, then n ≡ 0 or −1 mod 4 but Haukkanen
gave the counterexamples n = 52586505 = 32 · 5 · 71 · 109 · 151, n + 1 =
2·72 ·43·12479 and n = 164233250 = 2·53 ·353·1861, n+1 = 35 ·72 ·13·1061.



B. Divisibility 99

He also observed that for no n ≤ 2 · 108 is σ(n) = σ(n + 1) = σ(n + 2).
If n and n + 2 are twin primes, then σ(n + 2) = σ(n) + 2. Ma̧kowski

found the composite solutions n = 434, 8575, 8825 and Haukkanen showed
that these were the only ones ≤ 2 · 108.

One can ask corresponding questions for σk(n), the sum of the k-th
powers of the divisors of n [For k = 0, see B15.] The only solution of
σ2(n) = σ2(n + 1) is n = 6, since σ2(2n) > σ2(2n + 1) for n > 7 and
σ2(2n) > 5n2 > (π2/8)(2n − 1)2 > σ2(2n − 1). Note that σ2(24) = σ2(26);
Erdős doubts that σ2(n) = σ2(n + 2) has infinitely many solutions, and
thinks that σ3(n) = σ3(n + 2) has no solutions at all. De Koninck shows
that σ2(n) = σ2(n + l) has only finitely many solutions for l odd, whereas
Schinzel’s Hypothesis H (see A) implies that there are infinitely many
solutions for l even.

J.-M. De Koninck, On the solutions of σ2(n) = σ2(n + l), Ann. Univ. Sci.
Budapest. Sect. Comput., 21(2002) 127–133; MR 2003h:11007.

Richard K. Guy & Daniel Shanks, A constructed solution of σ(n) = σ(n+1),
Fibonacci Quart., 12(1974) 299; MR 50 #219.

Pentti Haukkanen, Some computational results concerning the divisor func-
tions d(n) and σ(n), Math. Student, 62(1993) 166-168; MR 90j:11006.

John L. Hunsucker, Jack Nebb & Robert E. Stearns, Computational results
concerning some equations involving σ(n), Math. Student, 41(1973) 285–289.

W. E. Mientka & R. L. Vogt, Computational results relating to problems
concerning σ(n), Mat. Vesnik, 7(1970) 35–36.

OEIS: A002961.

B14 Some irrational series.

Is
∑∞

n=1(σk(n)/n!) irrational? It is for k = 1 and 2.
Erdős established the irrationality of the series

∞∑
n=1

1
2n − 1

=
∞∑

n=1

d(n)
2n

and Peter Borwein showed that
∞∑

n=1

1
qn + r

and
∞∑

n=1

(−1)n

qn + r

are irrational if q is an integer other than 0, ±1 and r is a rational other
than 0 or −qn.

Peter B. Borwein, On the irrationality of
∑

1/(qn + r), J. Number Theory,
37(1991) 253–259.

Peter B. Borwein, On the irrationality of certain series, Math. Proc. Cam-
bridge Philos. Soc., 112(1992) 141–146; MR 93g:11074.
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P. Erdős, On arithmetical properties of Lambert series, J. Indian Math.
Soc.(N.S.) 12(1948) 63–66.

P. Erdős, On the irrationality of certain series: problems and results, in New
Advances in Transcendence Theory, Cambridge Univ. Press, 1988, pp. 102–109.

P. Erdős & M. Kac, Problem 4518, Amer. Math. Monthly 60(1953) 47. So-
lution R. Breusch, 61(1954) 264–265.

B15 Solutions of σ(q) + σ(r) = σ(q + r).

Max Rumney (Eureka, 26(1963) 12) asked if the equation σ(q) + σ(r) =
σ(q+r) has infinitely many solutions which are primitive in a sense similar
to that used in B11. If q + r is prime, the only solution is (q, r) = (1, 2).
If q + r = p2 where p is prime, then one of q and r, say q, is prime,
and r = 2nk2 where n ≥ 1 and k is odd. If k = 1, there is a solu-
tion if p = 2n − 1 is a and q = p2 − 2n is prime; this is so for n = 2,
3, 5, 7, 13 and 19. For k = 3 there are no solutions, and none for
k = 5 with n < 189. For k = 7, n = 1 and 3 give (q, r, q + r) =
(5231, 2 · 72, 732) and (213977, 23 · 72, 4632). Other solutions are (k, n) =
(11, 1) (11,3), (19,5), (25,1), (25,9), (49,9), (53,1), (97,5), (107,5), (131,5),
(137,1), (149,5), (257,5), (277,1), (313,3) and (421,3). Solutions with
q + r = p3 and p prime are σ(2) + σ(6) = σ(8) and

σ(11638687) + σ(22 · 13 · 1123) = σ(2273)

Erdős asks how many solutions (not necessarily primitive) are there
with q + r < x; is it cx + o(x) or is it of higher order? If s1 < s2 < · · · are
the numbers for which σ(si) = σ(q) + σ(si − q) has a solution with q < si,
what is the density of the sequence {si}?

M. Sugunamma, PhD thesis, Sri Venkataswara Univ., 1969.

B16 Powerful numbers. Squarefree numbers.

Erdős & Szekeres studied numbers n such that if a prime p divides n, then pi

divides n where i is a given number greater than one. Golomb named these
numbers powerful and exhibited infinitely many pairs of consecutive ones.
In answer to his conjecture that 6 was not representable as the difference of
two powerful numbers, W�ladys�law Narkiewicz noted that 6 = 5473 − 4632,
and that there were infinitely many such representations. In fact in 1971
Richard P. Stanley (unpublished, since a simultaneous discovery was made
by Peter Montgomery) used the theory of the Bhaskara (Pell) equation
to show that every non-zero integer is the difference between two powerful
numbers and that 1 is the difference between two non-square powerful
numbers, each in infinitely many ways. A typical result of Stanley is that
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if a1 = 39, b1 = 1, an = 24335an−1 + 7176bn−1 and
bn = 82524an−1 + 24335bn−1, then 23(an)2 − 233(bn)2 = 1.

Many have investigated which numbers are the difference of two powers,
mp − nq, with m, n ≥ 1, p, q ≥ 2. Can any of the following numbers be so
expressed?

6, 14, 34, 42, 50, 58, 62, 66, 70, 78, 82, 86, 90, 102, 110, 114, 130, 134,
158, 178, 182, 202, 206, 210, 226, 230, 238, 246, 254, 258, 266, 274, 278,
302, 306, 310, 314, 322, . . .

Erdős denotes by u
(k)
1 < u

(k)
2 < . . . the integers all of whose prime

factors have exponents ≥ k; sometimes called k-full numbers. He asks
if the equation u

(2)
i+1 − u

(2)
i = 1 has infinitely many solutions which do not

come from Pell equations x2−dy2 = ±1. Is there a constant c, such that the
number of solutions with ui < x is less than (lnx)c? Does u

(3)
i+1 − u

(3)
i = 1

have no solutions? Do the equations u
(2)
i+2 − u

(2)
i+1 = 1, u

(2)
i+1 − u

(2)
i = 1 have

no simultaneous solutions? And several other questions, some of which
have been answered by Ma̧kowski.

For example, Ma̧kowski notes that 73x2 − 33y2 = 1 has infinitely many
solutions, and that this is not usually counted as a Bhaskara (Pell) equation.
He also notes that

(2k+1 − 1)k, 2k(2k + 1 − 1)k and (2k+1 − 1)k+1

are k-full numbers in A.P., and that if a1, a2, . . ., as are k-full and in A.P.
with common difference d then

a1(as + d)k, a2(as + d)k, . . . , as(as + d)k, (as + d)k+1

are s + 1 such numbers. As

ak(al+. . .+1)k +ak+1(al+. . .+1)k +. . .+ak+l(al+. . .+1)k = ak(al+. . .+1)k+1,

the sum of l + 1 k-ful numbers can be k-full. He says that these last two
questions become difficult when we require that the numbers be relatively
prime. Heath-Brown has shown that every sufficiently large number is
the sum of three powerful numbers; his proof would be much shortened if
his conjecture could be proved that the quadratic form x2 + y2 + 125z2

represents every sufficiently large n ≡ 7 mod 8. Erdős suggested that this
may follow from work of Duke and Iwaniec: in fact see the paper by Moroz.

Are there only finitely many powerful numbers n such that n2 − 1 is
also powerful? (See the Granville reference at D2.)

If A(x) is the number of squareful integers ≤ x and ∆(x) = A(x) −
a1x

1/2−a2x
1/3 with a−1, a2 known constants, then, assuming the Riemann

Hypothesis, Cao showed that ∆(x) = O(x5/33+ε), and Cai replaced 5/33
by 4/27.

Liu Hong-Quan shows that the number of 3-full numbers in the interval
(x, x + x

2
3+µ) is asymptotic to Cxµ if 11

92 < µ < 1
3 .
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Nitaj proves the conjecture of Erdős that x + y = z has solutions in
relatively prime 3-full numbers, with |z| → ∞. Cohn further shows that
this can be done infinitely often with none of x, y, z being a perfect cube.

Gang Yu improves Menzer’s estimate for the number of 4-full numbers
≤ x from x35/316(lnx)3 to x3626/35461+ε.

Huxley & Trifonov show that the number of square-full numbers among
N + 1, . . ., N + h is, for N sufficiently large in terms of ε and h ≥
1
ε N

5
8 (lnN)

5
16 is

ζ( 3
2 )

2ζ(3)
h√
N

+ O

(
εh√
N

)
Earlier results, with exponents 2

3 , 0.6318, 0.6308, and 49
78 in place of 5

8 ,
were obtained by Bateman & Grosswald, Heath-Brown, Liu, and Filaseta
& Trifonov.

If p is a prime, p ≡ 1 (mod 4), and 1
2 (t + u

√
p) is the fundamental unit

of Q(
√

p) (i.e., (t, u) are the least positive integers satisfying the Bhaskara
equation t2 − pu2 = 1),then the Ankeny-Artin-Chowla conjecture asserts
that p � u for any p. It was proved for all p < 1011 by van der Poorten, te
Riele & Williams. The conjecture is false if p is not prime; Gerry Myerson
believes that 46 and 430 are the two smallest counterexamples.

At the other end of the spectrum from the powerful numbers are the
squarefree numbers, with no repeated prime divisors. If we denote the
sequence of squarefree numbers by {fn} = {1, 2, 3, 5, 6, 7, 10, . . .}, then it is
well known that fn+1 − fn = 1 for infinitely many n and
lim sup(fn+1 − fn) = ∞. Panaitopol further shows that

lim sup(min{fn+1 − fn, fn − fn−1}) = ∞

and that if en = fn+1 − 2fn + fn−1 and gn = f2
n+1 − 2f2

n + f2
n−1, then each

of en < 0, en = 0, en > 0, gn < 0, gn > 0 holds for infinitely many n, and
gn �= 0 for all n > 1. He asks if there exist, for each positive integer k, an
index n such that fn+1 − fn = k?

N. C. Ankeny, E. Artin & S. Chowla, The class-number of real quadratic
number fields, Ann. of Math.(2), 56(1952) 479–493; MR 14, 251.

R. C. Baker & J. Brüdern, On sums of two squarefull numbers, Math. Proc.
Cambridge Philos. Society, 116(1994) 1–5; MR 95f:11073.

P. T. Bateman & E. Grosswald, On a theorem of Erdős and Szekeres, Illinois
J. Math., 2(1958) 88–98.

B. D. Beach, H. C. Williams & C. R. Zarnke, Some computer results on units
in quadratic and cubic fields, Proc. 25th Summer Meet. Canad. Math. Congress,
Lakehead, 1971, 609–648; MR 49 #2656.

Cai Ying-Chun, On the distribution of square-full integers, Acta Math. Sinica
(N.S.) 13(1997) 269–280; MR 98j:11070.

Catalina Calderón & M. J. Velasco, Waring’s problem on squarefull numbers,
An. Univ. Bucureşti Mat., 44(1995) 3–12.
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Cao Xiao-Dong, The distribution of square-full integers, Period. Math. Hun-
gar., 28(1994) 43–54; MR 95k:11119.

J. H. E. Cohn, A conjecture of Erdős on 3-powerful numbers. Math. Comput.,
67(1998) 439–440; MR 98c:11104.

David Drazin & Robert Gilmer, Complements and comments, Amer. Math.
Monthly, 78(1971) 1104–1106 (esp. p. 1106).

W. Duke, Hyperbolic distribution problems and half-integral weight Maass
forms, Invent. Math., 92(1988) 73–90; MR 89d:11033.

P. Erdős, Problems and results on consecutive integers, Eureka, 38(1975–76)
3–8.

P. Erdős & G. Szekeres, Über die Anzahl der Abelschen Gruppen gegebener
Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Litt. Sci.
Szeged, 7(1934) 95–102; Zbl. 10, 294.

S. W. Golomb, Powerful numbers, Amer. Math. Monthly, 77(1970) 848–852;
MR 42 #1780.

Ryūta Hashimoto, Ankeny-Artin-Chowla conjecture and continued fraction
expansion, J. Number Theory, 90(2001) 143–153; MR 2002e:11149.

D. R. Heath-Brown, Ternary quadratic forms and sums of three square-
full numbers, Séminaire de Théorie des Nombres, Paris, 1986-87, Birkhäuser,
Boston, 1988; MR 91b:11031.

D. R. Heath-Brown, Sums of three square-full numbers, in Number Theory,
I (Budapest, 1987), Colloq. Math. Soc. János Bolyai, 51(1990) 163–171; MR
91i:11036.

D. R. Heath-Brown, Square-full numbers in short intervals, Math. Proc. Cam-
bridge Philos. Soc., 110(1991) 1–3; MR 92c:11090.

M.N. Huxley & O. Trifonov, The square-full numbers in an interval, Math.
Proc. Cambridge Philos. Soc., 119(1996) 201–208; MR 96k:11114.

Aleksander Ivić, On the asymptotic formulas for powerful numbers, Publ.
Math. Inst. Beograd (N.S.), 23(37)(1978) 85–94; MR 58 #21977.

A. Ivić & P. Shiue, The distribution of powerful integers, Illinois J. Math.,
26(1982) 576–590; MR 84a:10047.

H. Iwaniec, Fourier coefficients of modular forms of half-integral weight, In-
vent. Math., 87(1987) 385–401; MR 88b:11024.

C.-H. Jia, On square-full numbers in short intervals, Acta Math. Sinica (N.S.)
5(1987) 614–621.

Ekkehard Krätzel, On the distribution of square-full and cube-full numbers,
Monatsh. Math., 120(1995) 105–119; MR 96f:11116.

Hendrik W. Lenstra, Solving the Pell equation, Notices Amer. Math. Soc.,
49(2002) 182–192.

Liu Hong-Quan, On square-full numbers in short intervals, Acta Math. Sinica
(N.S.), 6(1990) 148–164; MR 91g:11105.

Liu Hong-Quan, The number of squarefull numbers in an interval, Acta Arith.,
64(1993) 129–149.

Liu Hong-Quan, The number of cube-full numbers in an interval, Acta Arith.,
67(1994) 1–12; MR 95h:11100.
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B17 Exponential-perfect numbers

If n = pa1
1 pa2

2 · · · par
r , then Straus & Subbarao call d an exponential

divisor (e-divisor) of n if d|n and d = pb1
1 pb2

2 · · · pbr
r where bj |aj (1 ≤ j ≤ r),

and they call n e-perfect if σe(n) = 2n, where σe(n) is the sum of the
e-divisors of n. Some examples of e-perfect numbers are

22 · 32, 22 · 33 · 52, 23 · 32 · 52, 24 · 32 · 112, 24 · 33 · 52 · 112,

26 · 32 · 72 · 132, 26 · 33 · 52 · 72 · 132, 27 · 32 · 52 · 72 · 132, 28 · 32 · 52 · 72 · 1392

and 219 · 32 · 55 · 72 · 112 · 132 · 192 · 372 · 792 · 1092 · 1572 · 3132.

If m is squarefree, σe(m) = m, so if n is e-perfect and m is squarefree
with m ⊥ n, then mn is e-perfect. So it suffices to consider only powerful
(B16) e-perfect numbers.

Straus & Subbarao show that there are no odd e-perfect numbers, in fact
no odd n which satisfy σe(n) = kn for any integer k > 1. They also show
that for each r the number of (powerful) e-perfect numbers with r prime
factors is finite, and that the same holds for e-multiperfect numbers
(k > 2).
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Is there an e-perfect number which is not divisible by 3 (equivalently,
not divisible by 36)?

Straus & Subbarao conjecture that there is only a finite number of
numbers not divisible by any given prime p.

Are there any e-multiperfect numbers?

E. G. Straus & M. V. Subbarao, On exponential divisors, Duke Math. J.,
41(1974) 465–471; MR 50 #2053.

M. V. Subbarao, On some arithmetic convolutions, Proc. Conf. Kalamazoo
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M. V. Subbarao & D. Suryanarayana, Exponentially perfect and unitary per-
fect numbers, Notices Amer. Math. Soc., 18(1971) 798.

OEIS A051377, A054979-054980.

B18 Solutions of d(n) = d(n + 1).

Claudia Spiro has proved that d(n) = d(n + 5040) has infinitely many so-
lutions and Heath-Brown used her ideas to show that there are infinitely
many numbers n such that d(n) = d(n + 1), and Pinner has extended this
to d(n) = d(n + a) for any integer a. Many examples arise from pairs of
consecutive numbers which are products of just two distinct primes, and
it has been conjectured that there is an infinity of triples of consecutive
products of two primes, n, n + 1, n + 2. For example, n = 33, 85, 93, 141,
201, 213, 217, 301, 393, 445, 633, 697, 921, . . . . It is clearly not possible
to have four such numbers, but it is possible to have longer sequences of
consecutive numbers with the same number of divisors. For example,

d(242) = d(243) = d(244) = d(245) = 6 and

d(40311) = d(40312) = d(40313) = d(40314) = d(40315) = 8.

How long can such sequences be?
For 5 and 6 consecutive numbers, Haukkanen (see ref. at B13) showed

that the least n is respectively 11605 and 28374. In an 87-07-16 letter
Stephane Vandemergel sent the sequence of seven numbers: 171893 = 19 ·
83 · 109, 171894 = 2 · 3 · 28649, 171895 = 5 · 31 · 1109, 171896 = 23 · 21487,
171897 = 3 ·11 ·5209, 171898 = 2 ·61 ·1409, 171899 = 7 ·13 ·1889, each with
8 divisors. In 1990, Ivo Düntsch & Roger Eggleton discovered several such
sequences of 7 numbers, two of 8 and one of 9, each with 48 divisors; the last
example starts at 17796126877482329126044, presumably not the smallest
of its kind. At the beginning of 2002 Jud McCranie gave 1043710445721
as the smallest first member of eight consecutive numbers with the same
number of divisors.

Erdős believes that there are sequences of length k for every k, but does
not see how to give an upper bound for k in terms of n.
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Erdős, Pomerance & Sárközy showed that the number of n ≤ x with
d(n) = d(n + 1) is � x/(ln lnx)1/2, and Hildebrand showed that this
number is � x/(ln lnx)3. The former authors also showed that the number
of n ≤ x with the ratio d(n)/d(n + 1) in the set {2−3, 2−2, 2−1, 1, 2, 22, 23}
is � x/(ln lnx)1/2.

Erdős showed that the density of numbers n with d(n + 1) > d(n) is 1
2 .

This, with the above results, settles a conjecture of S. Chowla. Fabrykowski
& Subbarao extend this to the case with n + h in place of n + 1.

Erdős also lets
1 = d1 < d2 < · · · < dτ = n

be the set of all divisors of n, listed in order, defines

f(n) =
τ−1∑

1

di/di+1

and asks us to prove that
∑x

n=1 f(n) = (1 + o(1))x lnx.
Erdős & Mirsky ask for the largest k so that the numbers d(n), d(n+1),

. . ., d(n + k) are all distinct. They only have trivial bounds; probably
k = (lnn)c.
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B19 (m, n + 1) and (m + 1, n) with same set of
prime factors. The abc-conjecture.

Motzkin & Straus asked for all pairs of numbers m, n such that m and n+1
have the same set of distinct prime factors, and similarly for n and m + 1.
It was thought that such pairs were necessarily of the form m = 2k + 1,
n = m2 − 1 (k = 0, 1, 2, . . . ) until Conway observed that if m = 5 · 7,
n + 1 = 54 · 7, then n = 2 · 37, m + 1 = 22 · 32. Are there others?

Similarly, Erdős asks if there are numbers m, n (m < n) other than
m = 2k −2, n = 2k(2k −2) such that m and n have the same prime factors
and similarly for m+1, n+1. Ma̧kowski found the pair m = 3·52, n = 35 ·5
for which m + 1 = 22 · 19, n + 1 = 26 · 19. Compare problem B29.

Pomerance has asked if there are any odd numbers n > 1 such that n
and σ(n) have the same prime factors. He conjectures that there are not.

The example 1 + 2 · 37 = 547 in the first paragraph is of interest in
connexion with the abc-conjecture:

Many of the classical problems of number theory (Goldbach conjecture,
twin primes, the Fermat problem, Waring’s problem, the Catalan conjec-
ture) owe their difficulty to a clash between multiplication and addition.
Roughly, if there’s an additive relation between three numbers, their prime
factors can’t all be small.

Suppose that A + B = C with gcd(A, B, C) = 1. Define the radical R
to be the maximum squarefree integer dividing abc and the power P by

P =
lnmax(|A|, |B|, |C|)

lnR

then for a given η > 1 are there only finitely many triples {A, B, C} with
P ≥ η? Another form of this conjecture is that lim supP = 1; both forms
of the conjecture seem to be hopelessly beyond reach.

Joe Kanapka, a student of Noam Elkies, has produced a list of all ex-
amples with C < 232 and P > 1.2. There are nearly 1000 of them. The
“top ten” according to
http://www.math.unicaen.fr/˜nitaj/abc.html#Ten<i>abc</i>
(which has an extensive bibliography) are
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P A B C author
1.62991 2 310 · 109 235 Reyssat
1.62599 112 32 · 56 · 73 221 · 23 de Weger (D10)
1.62349 19 · 1307 7 · 292 · 318 28 · 322 · 54 Browkin-Brzeziński
1.58076 283 511 · 132 28 · 38 · 173 Br-Br, Nitaj
1.56789 1 2 · 37 54 · 7 Lehmer (B29)
1.54708 73 310 211 · 29 de Weger
1.54443 72 · 412 · 3113 1116 · 132 · 79 2 · 33 · 523 · 953 Nitaj
1.53671 53 29 · 317 · 132 115 · 17 · 313 · 137 Montgomery-teRiele
1.52700 13 · 196 230 · 5 313 · 112 · 31 Nitaj
1.52216 318 · 23 · 2269 173 · 29 · 318 210 · 52 · 715 Nitaj

Browkin & Brzeziński generalize the abc-conjecture (which is their case
n = 3) to an “n-conjecture” on a1 + · · · + an = 0 in coprime integers with
non-vanishing subsums. With R and P defined analogously, they conjecture
that lim supP = 2n − 5. They prove that lim supP ≥ 2n − 5. They give a
lot of examples for the abc-conjecture with P > 1.4. Their method is to look
for rational numbers approximating roots of integers (note that the best
example above is connected to the good approximation 23/9 for 1091/5).
Abderrahmane Nitaj used a similar method. Some of these were found
independently by Robert Styer (D10). The Catalan relation 1 + 23 = 32

gives a comparatively poor P ≈ 1.22629.
For connexions between the abc-conjecture and the Fermat problem, see

the Granville references at D2. Indeed, if A = ap, B = bp, C = cp and the
Fermat equation A + B = C is satisfied, then Gerhard Frey’s elliptic curve

y2 = x(x − A)(x + B)

has discriminant 16(abc)2p.
This area has had several stimuli: two being the proof of Fermat’s

Last Theorem and the announcement of the Beal prize. I thank Andrew
Granville for the following remarks.

The problem has been much studied recently by several au-
thors. Darmon & Granville showed that if we fix integers x,
y, z with 1/x + 1/y + 1/z < 1 then there are only finitely
many triples of coprime integers a, b, c satisfying ax + by = cz.
This is proved independently of any assumption, and fits well
with the conjecture that x, y, z > 2 imply that a, b, c have a
common factor since in this case 1/x + 1/y + 1/z < 1 unless
x = y = z = 3, but of course Euler, and possibly Fermat, knew
that there are no solutions in that case. Following this result
there has been extensive computer searching and exactly ten
solutions have been found with 1/x + 1/y + 1/z < 1 and a, b, c
coprime:
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1 + 23 = 32 177 + 762713 = 210639282

25 + 72 = 34 14143 + 22134592 = 657

73 + 132 = 29 92623 + 153122832 = 1137

27 + 173 = 712 438 + 962223 = 300429072

35 + 114 = 1222 338 + 15490342 = 156133

The five big solutions were found by clever computations by
Beukers & Zagier. From this, several people have conjectured
that the only solutions do have some exponent equal to 2, and
wonder if this is always the case. Granville is loth to believe or
disbelieve such a statement. For a year he and Cohen believed
that the five small solutions above were the only five, and then
were totally shocked by these computations — and he sees no
good reason to suppose that we’ve seen the last of the solutions!

The technique used by Darmon & Granville was to reduce
the problem to applications of Faltings’s Theorem. This is why
they always say ‘at most finitely many solutions’. Recently Dar-
mon & Merel, and also Poonen, have revisited these problems,
and tried to reduce several examples of x, y, z to applications
of Wiles’s Theorem (Darmon and Granville had done a couple
of examples of this in their paper, but it is done much more
skillfully in the recent papers). Darmon & Merel, and Poo-
nen, prove that there are no coprime solutions with exponents
(x, x, 3) with x ≥ 3.

As Mauldin pointed out, the abc-conjecture is relevant to
this. Gerald Tenenbaum has long suggested an explicit and
plausible version of the abc-conjecture: If a + b = c in coprime
positive integers then c ≤ (product of p|abc)2. Assuming then
that ax + by = cz with a, b, c > 0 we’d have c(z/2) ≤ abc <
cz(1/x+1/y+1/z) and thus 1/x + 1/y + 1/z > 1/2. This leaves us
with a list of cases to consider if we insist that x, y, z > 2:

(3, 3, z > 3), (3, 4, z > 3), (3, 5, z > 4), (3, 6, z > 6), (4, 4, z > 4),
and a finite list.

I am also indebted to Andrew Bremner and the AMS for permission to
reproduced the review of Mauldin’s paper:

This note announces the award of a substantial monetary
prize (since this article was written, fixed at $50,000) to any
person who provides a solution to the “Beal Conjecture”, stated
as the following: Let A, B, C, x, y, z be positive integers with
x, y, z > 2. If Ax + By = Cz (1), then A, B, C have a non-
trivial common factor.

The story of this conjecture is an interesting one, and told
at slightly greater length in the author’s follow-up letter to the



B. Divisibility 111

Notices in March, 1998. Andrew Beal is a successful Texas
businessman, with enthusiasm for number theory. He has a
particular interest in Fermat and his methods, and evidently
formulated this conjecture after several years of study following
the announcement in 1993 of Andrew Wiles’s work on Fermat’s
Last Theorem. So often, the amateur number-theorist turns
out to be a well-intentioned crank; what is remarkable here is
how close the stated problem is to current research activity by
leaders in the field. In fact, the problem is essentially many
decades old, and Brun [1914] asks many similar questions. The
formulation in the 1980s by Masser, Oesterle & Szpiro of the
abc-conjecture has had great influence on the discipline, and
in fact a corollary of the abc-conjecture is that there are no
solutions to the Beal Prize problem when the exponents are
sufficiently large. The prize problem itself was implicitly posed
by Andrew Granville in the Unsolved Problems section of the
West Coast Number Theory Meeting, Asilomar, 1993 (“Find
examples of xp + yq = zr with 1/p + 1/q + 1/r < 1 other
than 23 + 17 = 32 and 73 + 132 = 29”), and is stated and
discussed in van der Poorten’s book “Notes on Fermat’s Last
Theorem” (1996). The resolution by Wiles of Fermat’s Last
Theorem disposes of a special case of the prize problem; and
Darmon and Granville prove the deep result that if 1/x+1/y+
1/z < 1 then there can only be finitely many triples of coprime
integers A, B, C satisfying Ax + By = Cz (ten solutions are
known). Recently, Darmon & Merel have shown there can exist
no coprime solutions to (1) with the exponents (x, x, 3), x ≥ 3.

There has been some feeling expressed that the Conjecture
should best be referred to as the “Beal Prize problem”, though
there is no doubt that Andrew Beal after much computation
independently arrived at and formulated the conjecture without
knowledge of the current literature. With a nod to T. S. Eliot,
the matter of naming Conjectures can be as difficult as the
naming of Cats.

See also D2.
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B20 Cullen and Woodall numbers.

Some interest has been shown in the Cullen numbers, n · 2n + 1, which
are all composite for 2 ≤ n ≤ 1000, except for n = 141. This is probably
a good example of the Law of Small Numbers, because for small n, where
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the density of primes is large, the Cullen numbers are very likely to be
composite because Fermat’s (little) theorem tells us that (p − 1)2p−1 + 1
and (p − 2)2p−2 + 1 are both divisible by p. Moreover, as John Conway
observes, the Cullen numbers are divisible by 2n − 1 if that is a prime
of shape 8k ± 3. He asks if p and p · 2p + 1 can both be prime. Wilfrid
Keller notes that Conway’s remark can be generalized as follows. Write
Cn = n · 2n + 1, Wn = n · 2n − 1: then a prime p divides C(p+1)/2 and
W(3p−1)/2 or it divides C(3p−1)/2 and W(p+1)/2 according as the Legendre

symbol (see F5)
(

2
p

)
is −1 or +1. Known Cullen numbers include n = 1,

141, 4713, 5795, 6611, 18496, 32292, 32469, 59656, 90825, 262419 and
361275.

The corresponding numbers (which have been called Woodall primes)
n · 2n − 1 are prime for n = 2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, 462,
512 (i.e. M521), 751, 822, 5312, 7755, 9531, 12379, 15822, 18885, 22971,
23005, 98726, 143018, 151023, 667071. In parallel with Conway’s question
above, Keller notes that here 3, 751 and 12379 are primes.

Ingemar Jönsson, On certain primes of Mersenne-type, Nordisk Tidskr. In-
formationsbehandling (BIT ), 12 (1972) 117–118; MR 47 #120.

Wilfrid Keller, New Cullen primes, (92-11-20 preprint).
Hans Riesel, En Bok om Primtal (Swedish), Lund, 1968; supplement Stock-

holm, 1977; MR 42 #4507, 58 #10681.
Hans Riesel, Prime Numbers and Computer Methods for Factorization, Pro-

gress in Math., 126, Birkhäuser, 2nd ed. 1994.

OEIS: A002064, A003261, A005849, A050914.

B21 k · 2n + 1 composite for all n.

Let N(x) be the number of odd positive integers k, not exceeding x, such
that k · 2n + 1 is prime for no positive integer n. Sierpiński used covering
congruences (see F13) to show that N(x) tends to infinity with x. For
example, if

k ≡ 1 mod 641 · (232 − 1) and k ≡ −1 mod 6700417,

then every member of the sequence k · 2n + 1 (n = 0, 1, 2, . . . ) is divisible
by just one of the primes 3, 5, 17, 257, 641, 65537 or 6700417. He also
noted that at least one of 3, 5, 7, 13, 17, 241 will always divide k · 2n + 1
for certain other values of k.

Erdős & Odlyzko have shown that

(
1
2

− c1)x ≥ N(x) ≥ c2x.

What is the least value of k such that k ·2n+1 is composite for all values
of n? Selfridge discovered that one of 3, 5, 7, 13, 19, 37, 73 always divides
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78557 · 2n + 1. He also noted that there is a prime of the form k · 2n + 1
for each k < 383 and Hugh Williams discovered the prime 383 · 26393 + 1.

In the first edition we wrote that the determination of the least k may
now be within computer reach, though Keller has expressed his doubts
about this. Extensive calculations have been made by Baillie, Cormack
& Williams, by Keller, and by Buell & Young. Continuing activities by
these and many others, including seventeenorbust.com have reduced the
35 possibilities of the second edition to twelve. The answer seems almost
certain to be k = 78557, but there remain the possibilities

4847 5359 10223 19249 21181 22699
24737 27653 28433 33661 55459 67607

Riesel (see references at B20) investigated the corresponding question
for k · 2n − 1. For k = 509203, 762701, 992077, the covering set of divisors
is {3, 5, 7, 13, 17, 241}; for k = 777149, 790841, the covering set of divisors
is {3, 5, 7, 13, 19, 37, 73}. There are no other values of k < 106 covered by
the following six covering sets given by Stanton:
{3, 5, 7, 13, 19, 37, 73}, {3, 5, 7, 13, 19, 37, 109}, {3, 5, 7, 11, 13, 31, 41, 61, 151},
{3, 5, 7, 11, 13, 19, 31, 37, 41, 61, 181}, {3, 5, 7, 13, 17, 241}, {3, 5, 7, 13, 17, 97, 257}.
It seems that k = 509203 is the smallest number such that k · 2n − 1 are all
composite for every integer n > 0. An enormous amount of prime finding
is needed to establish this – when Meng wrote there were more than 1000
values of k still to be investigated.
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Anatoly S. Izotov, A note on Sierpiński numbers, Fibonacci Quart., 33(1995)
206–207; MR 96f:11020.
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87b:11009.

Wilfrid Keller, Factors of Fermat numbers and large primes of the form
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by primes, Combinatorial mathematics, VIII (Geelong, 1980), Springer Lecture
Notes in Math., 884(1981) 107–114; MR 84j:10009.

R. G. Stanton & H. C. Williams, Further results on covering of the integers
1 + k2n by primes, Combinatorial Math. VIII, Lecture Notes in Math., 884,
Springer-Verlag, Berlin–New York, 1980, 107–114.

Yong Gao-Chen, On integers of the forms kr − 2n and kr2n + 1, J. Number
Theory, 98(2003) 310–319; MR bf2003m:11004.
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B22 Factorial n as the product of n large fac-
tors.
Straus, Erdős & Selfridge have asked that n! be expressed as the product
of n factors, with the least one, l, as large as possible. For example, for
n = 56, l = 15,

56! = 15 · 163 · 173 · 188 · 192 · 2012 · 219 · 225 · 232 · 264 · 29 · 31 · 37 · 41 · 43 · 47 · 53

Selfridge has two conjectures: (a) that, except for n = 56, l ≥ �2n/7�;
(b) that for n ≥ 300000, l ≥ n/3. If the latter is true, by how much can
300000 be reduced?

Straus was reputed to have shown that for n > n0 = n0(ε), l > n/(e+ε),
but a proof was not found in his Nachlaß. It is clear from Stirling’s formula
that this is best possible. It is also clear that l is a monotonic, though not
strictly monotonic, increasing function of n. On the other hand it does not
take all integer values: for n = 124, 125, l is respectively 35 and 37. Erdős
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asks how large the gaps in the values of l can be, and can l be constant for
arbitrarily long stretches?

Alladi & Grinstead write n! as a product of prime powers, each as large
as nδ(n) and let α(n) = max δ(n) and show that limn→∞ α(n) = ec−1 = α,
say, where

c =
∞∑
2

1
k

ln
k

k − 1
so that α = 0.809394020534 . . . .

K. Alladi & C. Grinstead, On the decomposition of n! into prime powers, J.
Number Theory, 9(1977) 452–458; MR 56 #11934.

P. Erdős, Some problems in number theory, Computers in Number Theory,
Academic Press, London & New York, 1971, 405–414.

Paul Erdős, S. W. Graham, Aleksandar Ivić & Carl Pomerance, On the num-
ber of divisors of n!, Analytic Number Theory, Vol. 1(Allerton Park IL, 1995)
337–355, Progr. Math., 138, Birkhäuser Boston, 1996; MR 97d:11142.

B23 Equal products of factorials.

Suppose that n! = a1!a2! . . . ar!, r ≥ 2, a1 ≥ a2 ≥ . . . ≥ ar ≥ 2. A trivial
example is a1 = a2! . . . ar!−1, n = a2! . . . ar! Dean Hickerson notes that the
only nontrivial examples with n ≤ 410 are 9! = 7!3!3!2!, 10! = 7!6! = 7!5!3!
and 16! = 14!5!2! and asks if there are any others. Jeffrey Shallit & Michael
Easter have extended the search to n = 18160 and Chris Caldwell has
shownthat any other n is greater than 106.

Erdős observes that if P (n) is the largest prime factor of n and if it
were known that P (n(n + 1))/ lnn tends to infinity with n, then it would
follow that there are only finitely many nontrivial examples.

He & Graham have studied the equation y2 = a1!a2! . . . ar! They define
the set Fk to be those m for which there is a set of integers m = a1 > a2 >
. . . > ar with r ≤ k which satisfies this equation for some y, and write
Dk for Fk − Fk−1. They have various results, for example: for almost all
primes p, 13p does not belong to F5; and the least element of D6 is 527. If
D4(n) is the number of elements of D4 which are ≤ n, they do not know
the order of growth of D4(n). They conjecture that D6(n) > cn but cannot
prove this.

Chris Caldwell, The Diophantine equation A!B! = C!, J. Recreational Math.,
26(1994) 128-133.

Donald I. Cartwright & Joseph Kupka, When factorial quotients are integers,
Austral. Math. Soc. Gaz., 29(2002) 19–26.

Earl Ecklund & Roger Eggleton, Prime factors of consecutive integers, Amer.
Math. Monthly, 79(1972) 1082–1089.
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E. Ecklund, R. Eggleton, P. Erdős & J. L. Selfridge, on the prime factorization
of binomial coefficients, J. Austral. Math. Soc. Ser. A, 26(1978) 257–269; MR
80e:10009.

P. Erdős, Problems and results on number theoretic properties of consec-
utive integers and related questions, Congressus Numerantium XVI (Proc. 5th
Manitoba Conf. Numer. Math. 1975), 25–44.

P. Erdős & R. L. Graham, On products of factorials, Bull. Inst. Math. Acad.
Sinica, Taiwan, 4(1976) 337–355.

T. N. Shorey, On a conjecture that a product of k consecutive positive integers
is never equal to a product of mk consecutive positive integers except for 8·9·10 =
6! and related questions, Number Theory (Paris, 1992–1993), L.M.S. Lect. Notes
215(1995) 231–244; MR 96g:11028.

B24 The largest set with no member dividing
two others.

Let f(n) be the size of the largest subset of [1, n] no member of which
divides two others. Erdős asks how large can f(n) be? By taking
[m + 1, 3m + 2] it is clear that one can have 
2n/3�. D.J. Kleitman shows
that f(29) = 21 by taking [11,30] and omitting 18, 24 and 30, which then
allows the inclusion of 6, 8, 9 and 10. However, this example does not seem
to generalize. In fact Lebensold has shown that if n is large, then

0.6725n ≤ f(n) ≤ 0.6736n.

Erdős also asks if lim f(n)/n is irrational.
Dually, one can ask for the largest number of numbers ≤ n, with no

number a multiple of any two others. Kleitman’s example serves this pur-
pose also. More generally, Erdős asks for the largest number of numbers
with no one divisible by k others, for k > 2. For k = 1, the answer is 
n/2�.

For some related problems, see E2.

Driss Abouabdillah & Jean M. Turgeon, On a 1937 problem of Paul Erdős
concerning certain finite sequences of integers none divisible by another, Proc.
15th S.E. Conf. Combin. Graph Theory Comput., Baton Rouge, 1984, Congr.
Numer., 43(1984) 19–22; MR 86h:11020.

Neil J. Calkin & Andrew Granville, On the number of co-prime-free sets,
Number Theory (New York, 1991–1995), Springer, New York, 1996, 9–18; MR
97j:11006.

P. J. Cameron & P. Erdős, On the number of sets of integers with various
properties, Number Theory (Banff, 1988), de Gruyter, Berlin, 1990, 61–79; MR
92g:11010.

P. Erdős, On a problem in elementary number theory and a combinatorial
problem, Math. Comput., (1964) 644–646; MR 30 #1087.

Kenneth Lebensold, A divisibility problem, Studies in Appl. Math., 56(1976–
77) 291–294; MR 58 #21639.
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Emma Lehmer, Solution to Problem 3820, Amer. Math. Monthly, 46(1939)
240–241.

B25 Equal sums of geometric progressions with
prime ratios.

Bateman asks if 31 = (25 − 1)/(2 − 1) = (53 − 1)/(5 − 1) is the only prime
which is expressible in more than one way in the form (pr − 1)/(p − 1)
where p is prime and r ≥ 3 and d ≥ 1 are integers. Trivially one has
7 = (23 − 1)/(2 − 1) = ((−3)3 − 1)/(−3 − 1), but there are no others
< 1010. If the condition that p be prime is relaxed, the problem goes back
to Goormaghtigh and we have the solution

8191 = (213 − 1)/(2 − 1) = (903 − 1)/(90 − 1)

E. T. Parker observed that the very long proof by Feit & Thompson
that every group of odd order is solvable would be shortened if it could be
proved that (pq − 1)/(p − 1) never divides (qp − 1)/(q − 1) where p, q are
distinct odd primes. In fact it has been conjectured that that these two
expressions are relatively prime, but Nelson Stephens noticed that when
p = 17, q = 3313 they have a common factor 2pq + 1 = 112643. McKay
has established that p2 + p + 1 � 3p − 1 for p < 53 · 106.

Karl Dilcher quotes Nelson Stephens to the effect that if pq−1 and qp−1
have a common factor r, then r is of shape 2λpq +1 and has searched with
all such r < 8 · 1010. Also with 1 ≤ λ ≤ 10 and p < q < 107, and with
p = 3 and q < 1014.

P. T. Bateman & R. M. Stemmler, Waring’s problem for algebraic number
fields and primes of the form (pr −1)/(pd −1), Illinois J. Math., 6(1962) 142–156;
MR 25 #2059.

Ted Chinburg & Melvin Henriksen, Sums of kth powers in the ring of poly-
nomials with integer coefficients, Bull. Amer. Math. Soc., 81(1975) 107–110; MR
51 #421; Acta Arith., 29(1976) 227–250; MR 53 #7942.

Karl Dilcher& Josh Knauer, On a conjecture of Feit and Thompson, (preprint,
Williams60, Banff, May 2003).

A. Ma̧kowski & A. Schinzel, Sur l’équation indéterminée de R. Goormaghtigh,
Mathesis, 68(1959) 128–142; MR 22 # 9472; 70(1965) 94–96.

N. M. Stephens, On the Feit-Thompson conjecture, Math. Comput., 25(1971)
625; MR 45 #6738.

B26 Densest set with no l pairwise coprime.

Erdős asks what is the maximum k so that the integers ai, 1 ≤ a1 < a2 <
· · · < ak ≤ n have no l among them which are pairwise relatively prime.
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He conjectures that this is the number of integers ≤ n which have one of
the first l − 1 primes as a divisor. He says that this is easy to prove for
l = 2 and not difficult for l = 3; he offers $10.00 for a general solution.

Dually one can ask for the largest subset of [1, n] whose members have
pairwise least common multiples not exceeding n. If g(n) is the cardinality
of such a maximal subset, then Erdős showed that

3
2
√

2
n1/2 − 2 < g(n) ≤ 2n1/2

where the first inequality follows by taking the integers from 1 to (n/2)1/2

together with the even integers from (n/2)1/2 to (2n)1/2. Choi improved
the upper bound to 1.638n1/2.

Rudolf F. Ahlswede & L. G. Khachatrian, Maximal sets of numbers not
containing k + 1 pairwise coprime integers, Acta Arith., 72(1995) 77–100; MR
96k:11020.

Neil J. Calkin & Andrew Granville, On the number of coprime-free sets,
Number Theory (New York, 1991–1995) 9–18, Springer, New York, 1996; MR
97j:11006.

S. L. G. Choi, The largest subset in [1, n] whose integers have pairwise l.c.m.
not exceeding n, Mathematika, 19(1972) 221–230; 47 #8461.

S. L. G. Choi, On sequences containing at most three pairwise coprime inte-
gers, Trans. Amer. Math. Soc., 183(1973) 437–440; 48 #6052.

P. Erdős, Extremal problems in number theory, Proc. Sympos. Pure Math.
Amer. Math. Soc., 8(1965) 181–189; MR 30 #4740.

B27 The number of prime factors of n+k which
don’t divide n + i, 0 ≤ i < k.

Erdős & Selfridge define v(n; k) as the number of prime factors of n + k
which do not divide n + i for 0 ≤ i < k, and v0(n) as the maximum of
v(n; k) taken over all k ≥ 0. Does v0(n) → ∞ with n? They show that
v0(n) > 1 for all n except 1, 2, 3, 4, 7, 8 and 16. More generally, define
vl(n) as the maximum of v(n; k) taken over k ≥ l. Does vl(n) → ∞ with
n? They are unable to prove even that v1(n) = 1 has only a finite number
of solutions. Probably the greatest n for which v1(n) = 1 is 330.

They also denote by V (n; k) the number of primes p for which pα is
the highest power of p dividing n + k, but pα does not divide n + i for
0 ≤ i < k, and by Vl(n) the maximum of V (n; k) taken over k ≥ l. Does
V1(n) = 1 have only a finite number of solutions? Perhaps n = 80 is the
largest solution. What is the largest n such that V0(n) = 2?

Some further problems are given in their paper.

P. Erdős & J. L. Selfridge, Some problems on the prime factors of consecutive
integers, Illinois J. Math., 11(1967) 428–430.



B. Divisibility 121

A. Schinzel, Unsolved problem 31, Elem. Math., 14(1959) 82–83.

OEIS: A059756-059757.

B28 Consecutive numbers with distinct prime
factors.

Selfridge asked: do there exist n consecutive integers, each having either
two distinct prime factors less than n or a repeated prime factor less than
n? He gives two examples:

1. the numbers a + 11 + i (1 ≤ i ≤ n = 115) where a ≡ 0 mod 22 · 32 ·
52 · 72 · 112 and a + p ≡ 0 mod p2 for each prime p, 13 ≤ p ≤ 113;

2. the numbers a + 31 + i (1 ≤ i ≤ n = 1329) where a + p ≡ 0 mod p2

for each prime p, 37 ≤ p ≤ 1327 and a ≡ 0 mod 22 · 32 · 52 · 72 · 112 ·
132 · 172 · 192 · 232 · 292 · 312.

It is harder to find examples of n consecutive numbers, each one divisible
by two distinct primes less than n or by the square of a prime < n/2, though
he believes that they could be found by computer.

This is related to the problem: find n consecutive integers, each having
a composite common factor with the product of the other n − 1. If the
composite condition is relaxed, and one asks merely for a common factor
greater than 1, then 2184 + i (1 ≤ i ≤ n = 17) is a famous example.

Alfred Brauer, On a property of k consecutive integers, Bull. Amer. Math.
Soc., 47(1941) 328–331; MR 2, 248.

Ronald J. Evans, On blocks of N consecutive integers, Amer. Math. Monthly
76(1969) 48–49.

Ronald J. Evans, On N consecutive integers in an arithmetic progression,
Acta Sci. Math. Univ. Szeged, 33(1972) 295–296; MR 47 #8408.

Heiko Harborth, Eine Eigenschaft aufeinanderfolgender Zahlen, Arch. Math.
(Basel) 21(1970) 50–51; MR 41 #6771.

Heiko Harborth, Sequenzen ganzer Zahlen, Zahlentheorie (Tagung, Math.
Forschungsinst. Oberwolfach, 1970) 59–66; MR 51 #12775.

S. S. Pillai, On m consecutive integers I, Proc. Indian Acad. Sci. Sect. A,
11(1940) 6–12; MR 1, 199; II 11(1940) 73–80; MR 1, 291; III 13(1941) 530–533;
MR 3, 66; IV Bull. Calcutta Math. Soc., 36(1944) 99–101; MR 6, 170.

OEIS: A059756-059757.

B29 Is x determined by the prime divisors of
x + 1, x + 2, . . ., x + k?

Alan R. Woods asks if there is a positive integer k such that every x is
uniquely determined by the (sets of) prime divisors of x + 1, x + 2, . . .,
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x + k. Perhaps k = 3?
For primes less than 23 there are four ambiguous cases for k = 2:

(x+1, x+2) = (2,3) or (8,9); (6,7) or (48,49); (14,15) or (224,225); (75,76)
or (1215,1216). The first three of these are members of the infinite family
(2n − 2, 2n − 1), (2n(2n − 2), (2n − 1)2). Compare B19.

D. H. Lehmer, On a problem of Størmer, Illinois J. Math., 8(1964) 57–79;
MR 28 #2072.

OEIS: A059756-059757.

B30 A small set whose product is square.

Erdős, Graham & Selfridge want us to find the least value of tn so that the
integers n + 1, n + 2, . . . , n + tn contain a subset the product of whose
members with n is a square. The Thue–Siegel theorem implies that tn → ∞
with n, faster than a power of lnn.

I was asked for a justification or reference for this last sentence. Andrew
Granville kindly supplied the following comments:

The point is that if you do have such a subset then there is
an integer point (n, m) on some hyperelliptic curve

y2 = x(x + i1)(x + i2) · · · (x + ik)

where 0 < ii < i2 < ... < ik ≤ tn. If tn were to be < T for
infinitely many n then some such curve would have infinitely
many rational points (or even integer points), contradicting
Faltings’s Theorem if k ≥ 3, and Thue’s Theorem for k ≥ 0.
Thus tn → ∞.

More difficult would be to estimate quite how fast we can
prove tn → ∞. To do this one needs some effective version of
Faltings’s or Thue’s Theorem. There is probably a pretty good
effective version of Thue’s Theorem, especially for hyperelliptic
curves.

It is amusing to note that the abc-conjecture is certainly ap-
plicable to this question, via Elkies’s paper (see ref. at B19) or
Langevin, though this would take some working out. Presum-
ably tn > nc for some c > 0 (assuming abc) though I have not
proved this! Perhaps Silverman is interested in this question.

Joseph Silverman responded:

Granville’s argument that tn → ∞ is fine, but it depends on
the fact that a hyperelliptic curve has only finitely many integer
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points (due to Siegel, I believe, not Thue). It seems to me that
Theorem 1 of my paper with Evertse might be helpful. Let

f(X) = X(X + i1) · · · (X + ik) with 0 < i1 < · · · < ik

and assume that k ≥ 3, since the case k = 2 can be dealt with
separately. Then Theorem 1(b) can be applied with K = Q,
m = 1, S is the infinite place of Q together with the primes
dividing D(f), the discriminant of f , s = |S| = 1 + ν(D(f)),
RS is the ring of S-integers in Q, L = K = Q, M = 1, n = 2,
κn(L) = 0. This appears to give that the number of integer
solutions to Y 2 = f(X) is ≤ 74+9s = 713+9ν(D(f)).

Selfridge (W. No. Theory problem 97:22) says that it is conjectured
that 6 and 392 are the only numbers of shape n = rs2 with r > 1 and
squarefree for which there do not exist a, b with n < a < b < r(s + 1)2 and
nab a square.

To revert to the opening paragraph, Selfridge has shown that tn ≤
max(P (n), 3

√
n), where P (n) is the largest prime factor of n.

Alternatively, is it true that for every c there is an n0 so that for every
n > n0 the products

∏
ai, taken over n < a1 < . . . < ak < n + (lnn)c

(k = 1, 2, . . . ) are all distinct? Erdős, Graham & Selfridge proved this
for c < 2.

Selfridge conjectures that if n is not a square, and t is the next larger
number than n such that nt is a square, then, unless n = 8 or 392, it
is always possible to find r and s, n < r < s < t such that nrs is a
square. E.g., if n = 240 = 243 · 5 then t = 375 = 3 · 53 and we can
find r = 243 = 35 and s = 245 = 5 · 72. Selfridge and Meyerowitz have
confirmed the conjecture for n < 1030000.

Several of the papers referred to at D10 are relevant here.

P. Erdős & Jan Turk, Products of integers in short intervals, Acta Arith.,
44(1984) 147–174; MR 86d:11073.

Paul Erdős, Janice Malouf, John Selfridge & Esther Szekeres, Subsets of an
interval whose product is a power, Paul Erds memorial collection. Discrete Math.,
200(1999) 137–147; MR 2000e:11017.

Jan-Hendrik Evertse & J. H. Silverman, Uniform bounds for the number of
solutions to Y n = f(X) Math. Proc. Cambridge Philos. Soc., 100(1986) 237–248;
MR 87k:11034.

L. Hajdu & Ákos Pintér, Square product of three integers in short intervals,
Math. Comput., 68(1999) 1299–1301; 99j:11027.

Michel Langevin, Cas d’égalité pour le théorème de Mason et applications de
la conjecture (abc), C.R. Acad. Sci. Paris Sér. I Math., 317(1993) 441–444; MR
94j:11027.

Shorey, T. N.(6-TIFR) Perfect powers in products of integers from a block of
consecutive integers. Acta Arith. 49 (1987), no. 1, 71–79.88m:11002
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T. N. Shorey & Yu. V. Nesterenko, Perfect powers in products of integers from
a block of consecutive integers, II Acta Arith., 76(1996) 191–198; MR 97d:11005.

OEIS: A068568.

B31 Binomial coefficients.

Earl Ecklund, Roger Eggleton, Erdős & Selfridge (see B23) write the
binomial coefficient

(
n
k

)
= n!/k!(n−k)! as a product UV in which every

prime factor of U is at most k and every prime factor of V is greater than
k. There are only finitely many cases with n ≥ 2k for which U > V . They
determine all such cases except when k = 3, 5 or 7.

S. P. Khare lists all cases with n ≤ 551: k = 3, n = 8, 9, 10, 18, 82,
162; k = 5, n = 10, 12, 28; and k = 7, n = 21, 30, 54.

Most binomial coefficients
(
n
k

)
with n ≥ 2k have a prime factor p ≤ n/k.

After some computing with Lacampagne & Erdős, Selfridge conjectured
that this inequality is true whenever n > 17.125k. A slightly stronger
conjecture is that any such binomial coefficient has least prime factor p ≤
n/k or p ≤ 17 with just 4 exceptions:

(62
6

)
,
(959

56

)
,
(474

66

)
,
(284

28

)
for which

p = 19, 19, 23 and 29 respectively.
These authors define the deficiency of the binomial coefficient

(
n+k

k

)
,

k ≤ n, as the number of i for which bi = 1, where n + i = aibi, 1 ≤ i ≤ k,
the prime factors of bi are greater than k, and

∏
ai = k! Then(44

8

)
,
(74
10

)
,
(174

12

)
,
(239

14

)
,
(5179

27

)
,
(8413

28

)
,
(8414

28

)
and

(96622
42

)
each have deficiency

2;
(46
10

)
,
(47
10

)
,
(241

16

)
,
(2105

25

)
,
(1119

27

)
and

(6459
33

)
have deficiency 3;

(47
11

)
has

deficiency 4; and
(284

28

)
has deficiency 9; and they conjecture that there

are no others with deficiency greater than 1. Are there only finitely many
binomial coefficients with deficiency 1?

Erdős & Selfridge noted that if n ≥ 2k ≥ 4, then there is at least one
value of i, 0 ≤ i ≤ k − 1, such that n − i does not divide

(
n
k

)
, and asked

for the least nk for which there was only one such i. For example, n2 = 4,
n3 = 6, n4 = 9, n5 = 12. nk ≤ k! for k ≥ 3.

For a positive integer k, the Erdős-Selfridge function is the least integer
g(k) > k + 1 such that all prime factors of

(
g(k)

k

)
exceed k. The first few

values are

k = 2 3 4 5 6 7 8 9 10 11 12 13
g(k) = 6 7 7 23 62 143 44 159 46 47 174 2239

They are far from being monotonic. Ecklund, Erdős & Selfridge conjecture
that lim sup & lim inf of g(k + 1)/g(k) are ∞ & 0. They also conjecture
that, for each n and for k > k0(n), g(k) > kn, that lim g(k)1/k = 1 and
that g(k) < ecπ(k). For example, they conjecture that g(k) > k3 for k > 35
and that g(k) > k5 for k > 100. They show that g(k) < k2LkPl with
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l = �6k/ ln k�, where Lk is the l.c.m. of 1, 2, . . . , k and Pl is the product of
the primes not exceeding l and Erdős, Lacampagne & Selfridge show that
g(k) > ck2/ ln k. The tables of g(k) have been extended by Scheidler &
Williams (ref. at B33) to k ≤ 140 and, with the help of Lukes, to k ≤ 200.

g(200) = 520 8783889271 0191382732

Granville shows that the abc-conjecture implies that there are only
finitely many powerful binomial coefficients

(
n
k

)
with 3 ≤ k ≤ n/2.

Harry Ruderman asks for a proof or disproof that for every pair (p, q)
of nonnegative integers there is a positive integer n such that

(2n − p)!
n!(n + q)!

is an integer.
A problem which has briefly baffled good mathematicians is: is

(
n
r

)
ever prime to

(
n
s

)
, 0 < r < s ≤ n/2? The negative answer follows from the

identity (
n

s

)(
s

r

)
=
(

n

r

)(
n − r

s − r

)
.

Erdős & Szekeres ask if the greatest prime factor of the g.c.d. is always
greater than r; the only counterexample with r > 3 that they noticed is

gcd
((

28
5

)
,

(
28
14

))
= 23 · 33 · 5

On 98-01-12 David Gale reported that a Berkeley student proposed a
natural generalization, of the noncoprimality of two binomial coefficients, to
trinomial coeffients, with the further generalization to k-nomial coefficients.
If n = a+ b+ c, let T (n; a, b, c) = n!/(a!b!c!). The conjecture, supported by
fairly extensive computer evidence, is that for 0 < a, b, c < n, every three
T (n; a, b, c) have a common factor. George Bergman and Hendrik Lenstra
and others have some relevant partial results.

Wolstenholme’s theorem states that if n is a prime > 3, then(
2n − 1

n

)
≡ 1 mod n3.

There are no composite solutions for n < 109 and it is conjectured that
there are none. Call a prime p satisfying

(2p−1
p−1

) ≡ 1 mod p4 a Wolsten-
holme prime. McIntosh shows that p is Wolstenholme just if it divides
the numerator of the Bernoulli number Bp−3 (see A17). The two known
such are 16843 and 2124679. He conjectures that there are infinitely many
and that none satisfies

(2p−1
p−1

) ≡ 1 mod p5.
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For other problems and results on the divisors of binomial coefficients,
see B33.

Emre Alkan, Variations on Wolstenholme’s theorem, Amer. Math. Monthly,
101(1994) 1001–1004.

D. F. Bailey, Two p3 variations of Lucas’s theorem, J. Number Theory,
35(1990) 208–215; MR 90f:11008.

M. Bayat, A generalization of Wolstenholme’s theorem, Amer. Math. Monthly,
104(1997) 557–560 (but see Gessel reference).

Daniel Berend & Jørgen E. Harmse, On some arithmetical properties of mid-
dle binomial coefficients, Acta Arith., 84(1998) 31–41.

Cai Tian-Xin & Andrew Granville, On the residues of binomisl coefficients
and their residues modulo prime powers. Acta Math. Sin. (Engl. Ser.), 18(2002)
277–288.

Chen Ke-Ying, Another equivalent form of Wolstenholme’s theorem and its
generalization (Chinese), Math. Practice Theory, 1995 71–74; MR 97d:11006.

Paul Erdős, C. B. Lacampagne & J. L. Selfridge, Estimates of the least
prime factor of a binomial coefficient, Math. Comput., 61(1993) 215–224; MR
93k:11013.

P. Erdős & J. L. Selfridge, Problem 6447, Amer. Math. Monthly 90(1983)
710; 92(1985) 435–436.

P. Erdős & G. Szekeres, Some number theoretic problems on binomial coeffi-
cients, Austral. Math. Soc. Gaz., 5(1978) 97–99; MR 80e:10010 is uninformative.

Ira M. Gessel, Wolstenholme revisited, Amer. Math. Monthly, 105(1998) 657–
658; MR 99e:11009.

Andrew Granville, Arithmetic properties of binomial coefficients. I. Binomial
coefficients modulo prime powers, Organic mathematics (Burnaby BC, 1995),
CMS Conf. Proc., 20(1997) 253–276; MR 99h:11016.

Andrew Granville, On the scarcity of powerful binomial coefficients, Mathe-
matika 46(1999) 397–410; MR 2002b:11029.

Andrew Granville & Olivier Ramaré, Explicit bounds on exponential sums
and the scarcity of squarefree binomial coefficients, Mathematika, 43(1996) 73–
107; MR 99m:11023.

A. Grytczuk, On a conjecture of Erdős on binomial coefficients, Studia Sci.
Math. Hungar., 29(1994) 241–244.

Hong Shao-Fang, A generalization of Wolstenholme’s theorem, J. South China
Normal Univ. Natur. Sci. Ed., 1995 24–28; MR 99f:11004.

Gerhard Larcher, On the number of odd binomial coefficients, Acta Math.
Hungar., 71(1996 183–203.

Lee Dong-Hoon1 & Hahn Sang-Geun, Some congruences for binomial coeffi-
cients, Class field theory—its centenary and prospect (Tokyo, 1998) 445–461, Adv.
Stud. Pure Math. 30 Math. Soc. Japan, Tokyo, 2001; II Proc. Japan Acad. Ser.
A Math. Sci., 76(2000) 104–107; MR 2002k:11024, 11025.

Grigori Kolesnik, Prime power divisors of multinomial and q-multinomial
coefficients, J. Number Theory, 89(2001) 179–192; MR 2002i:11020.

Richard F. Lukes, Renate Scheidler & Hugh C. Williams, Further tabula-
tion of the Erdős-Selfridge function, Math. Comput., 66(1997) 1709–1717; MR
98a:11191.
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Richard J. McIntosh, A generalization of a congruential property of Lucas,
Amer. Math. Monthly, 99(1992) 231–238.

Richard J. McIntosh, On the converse of Wolstenholme’s theorem, Acta Arith.,
71(1995) 381–389; MR 96h:11002.

Marko Razpet, On divisibility of binomial coefficients, Discrete Math., 135(1994)
377–379; MR 95j:11014.

Harry D. Ruderman, Problem 714, Crux Math., 8(1982) 48; 9(1983) 58.
J. W. Sander, On prime divisors of binomial coefficients. Bull. London Math.

Soc.¡ 24(1992) no. 2 140–142; MR 93g:11019.
J. W. Sander, Prime power divisors of multinomial coefficients and Artin’s

conjecture, J. Number Theory, 46(1994) 372–384; MR 95a:11018.
J. W. Sander, On the order of prime powers dividing

(2n
n

)
, Acta Math.,

174(1995) 85–118; MR 96b:11018.
J. W. Sander, A story of binomial coefficients and primes, Amer. Math.

Monthly, 102(1995) 802–807; MR 96m:11015.
Renate Scheidler & Hugh C. Williams, A method of tabulating the number-

theoretic function g(k), Math. Comput., 59(1992) 199, 251–257; MR 92k:11146.
David Segal, Problem E435, partial solution by H.W. Brinkman, Amer. Math.

Monthly, 48(1941) 269–271.

OEIS: A034602.

B32 Grimm’s conjecture.

Grimm has conjectured that if n + 1, n + 2, . . . , n + k are all composite,
then there are distinct primes pij

such that pij |(n + j) for 1 ≤ j ≤ k. For
example

1802 1803 1804 1805 1806 1807 1808 1809 1810

are respectively divisible by

53 601 41 19 43 139 113 67 181
and

114 115 116 117 118 119 120 121 122 123 124 125 126
by

19 23 29 13 59 17 2 11 61 41 31 5 7
Ramachandra, Shorey & Tijdeman proved, under the hypothesis of

Schinzel mentioned in A2, that there are only finitely many exceptions
to Grimm’s conjecture.

Erdős & Selfridge asked for an estimate of f(n), the least number such
that for each m there are distinct integers a1, a2, . . . , aπ(n) in the interval
[m+1, m+f(n)] with pi|ai where pi is the ith prime. They and Pomerance
show that, for large n,

(3 − ε)n ≤ f(n) � n3/2(lnn)−1/2
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P. Erdős, Problems and results in combinatorial analysis and combinatorial
number theory, in Proc. 9th S.E. Conf. Combin. Graph Theory, Comput., Boca
Raton, Congressus Numerantium XXI, Utilitas Math. Winnipeg, 1978, 29–40.

P. Erdős & C. Pomerance, Matching the natural numbers up to n with distinct
multiples in another interval, Nederl. Akad. Wetensch. Proc. Ser. A, 83(= Indag.
Math., 42)(1980) 147–161; MR 81i:10053.

Paul Erdős & Carl Pomerance, An analogue of Grimm’s problem of finding
distinct prime factors of consecutive integers, Utilitas Math., 24(1983) 45–46;
MR 85b:11072.

P. Erdős & J. L. Selfridge, Some problems on the prime factors of consecutive
integers II, in Proc. Washington State Univ. Conf. Number Theory, Pullman,
1971, 13–21.

C. A. Grimm, A conjecture on consecutive composite numbers, Amer. Math.
Monthly, 76(1969) 1126–1128.

Michel Langevin, Plus grand facteur premier d’entiers en progression arith-
métique, Sém. Delange-Pisot-Poitou, 18(1976/77) Théorie des nombres: Fasc.
1, Exp. No. 3, Paris, 1977; MR 81a:10011.

Carl Pomerance, Some number theoretic matching problems, in Proc. Num-
ber Theory Conf., Queen’s Univ., Kingston, 1979, 237–247.

Carl Pomerance & J. L. Selfridge, Proof of D.J. Newman’s coprime mapping
conjecture, Mathematika, 27(1980) 69–83; MR 81i:10008.

K. Ramachandra, T. N. Shorey & R. Tijdeman, On Grimm’s problem re-
lating to factorization of a block of consecutive integers, J. reine angew. Math.,
273(1975) 109–124.

B33 Largest divisor of a binomial coefficient.

What can one say about the largest divisor, less than n, of the binomial
coefficient

(
n
k

)
= n!/k!(n − k)! ? Erdős points out that it is easy to show

that it is at least n/k and conjectures that there may be one between cn
and n for any c < 1 and n sufficiently large. Marilyn Faulkner showed that
if p is the least prime > 2k and n ≥ p, then

(
n
k

)
has a prime divisor ≥ p,

except for
(9
2

)
and

(10
3

)
. Earl Ecklund showed that if n ≥ 2k > 2 then

(
n
k

)
has a prime divisor p ≤ n/2, except for

(7
3

)
.

John Selfridge conjectures that if n ≥ k2 − 1, then, apart from the
exception

(62
6

)
, there is a prime divisor ≤ n/k of

(
n
k

)
. Among those binomial

coefficients whose least prime factor p is ≥ n/k there may be only a finite
number with p ≥ 13, but there could be infinitely many with p = 7. That
there are infinitely many with p = 5 was proved by Erdős, Lacampagne &
Selfridge (B31).

A classical theorem, discovered independently by Sylvester and Schur,
stated that the product of k consecutive integers, each greater than k, has
a prime divisor greater than k. Leo Moser conjectured that the Sylvester-
Schur theorem holds for primes ≡ 1 mod 4, in the sense that for n suffi-
ciently large (and ≥ 2k),

(
n
k

)
has a prime divisor ≡ 1 mod 4 which is greater
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than k. However, Erdős does not think that this is true, but it may not be
at all easy to settle. In this connexion John Leech notices that the fourteen
integers 280213, . . ., 280226 have no prime factor of the form 4m + 1 > 13.

Thanks to Ira Gessel and John Conway, we can say that the generaliza-
tion of the Catalan numbers 1

n+1

(2n
n

)
, requested in the first edition by

Neil Sloane, is (n,r)
n

(
n
r

)
, which is always an integer (multiply by n and by r

and Euclid knew that (n, r) is a linear combination of n and r). These are
also known as generalized ballot numbers and they occur when enumerating
certain lattice paths.

If f(n) is the sum of the reciprocals of those primes < n which do not
divide

(2n
n

)
, then Erdős, Graham, Ruzsa & Straus conjectured that there

is an absolute constant c so that f(n) < c for all n. Erdős also conjectured
that

(2n
n

)
is never squarefree for n > 4. Since 4

∣∣(2n
n

)
unless n = 2k, it

suffices to consider (
2k+1

2k

)
.

Sárközy proved this for n sufficiently large and Sander has shown, in a
precise sense, that binomial coefficients near the centre of the Pascal tri-
angle are not squarefree. Granville & Ramaré completed Sárközy’s proof
by showing that k > 300000 was sufficiently large, and checking it com-
putationally for 2 ≤ k ≤ 300000. They also improved Sander’s result by
showing that there is a constant δ, 0 < δ < 1, such that if

(
n
k

)
is squarefree

then k or n− k must be < nδ for sufficiently large n. They conjecture that
k or n − k must in fact be < (lnn)2−δ, and that this is best possible in the
sense that there are infinitely many squarefree

(
n
k

)
with 1

2n > k > c(lnn)2

for some c > 0. They prove such a result for 1
2n > k > 1

5 lnn. They show
that there is a constant ρk > 0 such that the number of n ≤ N with

(
n
k

)
squarefree is ∼ ρkN . Since ρk < c/k2 for some c > 0, they conjecture that
there is a constant γ > 0 such that the number of squarefree entries in the
first N rows of Pascal’s triangle is ∼ γN .

Erdős has also conjectured that for k > 8, 2k is not the sum of distinct
powers of 3 [28 = 35 + 32 + 3 + 1]. If that’s true, then for k ≥ 9,

3
∣∣∣∣
(

2k+1

2k

)
.

In answer to the question, is
(342
171

)
the largest

(2n
n

)
which is not divisible

by the square of an odd prime, Eugene Levine gave the examples n = 784
and 786. Erdős feels sure that there are no larger such n.

Denote by e = e(n) the largest exponent such that, for some prime p,
pe divides

(2n
n

)
. It is not known whether e → ∞ with n. On the other

hand Erdős cannot disprove e > c lnn.
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Ron Graham offers $100.00 for deciding if (
(2n

n

)
, 105) = 1 infinitely

often. Kummer knew that n, when written in base 3 or 5 or 7, would have
to have only the digits 0, 1 or 0, 1, 2 or 0, 1, 2, 3 respectively. H. Gupta
& S. P. Khare found the 14 values 1, 10, 756, 757, 3160, 3186, 3187, 3250,
7560, 7561, 7651, 20007, 59548377, 59548401 of n less than 710, while Peter
Montgomery, Khare and others found many larger values.

Erdős, Graham, Ruzsa & Straus showed that for any two primes p, q
there are infinitely many n for which (

(2n
n

)
, pq) = 1. If g(n) is the smallest

odd prime factor of
(2n

n

)
, then g(3160) = 13 and g(n) ≤ 11 for

3160 < n < 1010000.
More complicated quotients of products of factorials which yield integers

have been considered by Picon.
Gould repeated Hermite’s 1889 observations that

m

(m, n)

∣∣∣∣
(

m

n

)
and

m − n + 1
(m + 1, n)

∣∣∣∣
(

m

n

)

and asked for more general a, b, c, r, s, u, v such that

am + bn + c

(rm + s, un + v)

∣∣∣∣
(

m

n

)

John McKay notes that
(72−1

72/2

)
is squarefree, and states that

(2n−1
n

)
is

square-free only for n = 1, 2, 3, 4, 6, 9, 10, 12, 36 with n ≤ 500.
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B34 If there’s an i such that n − i divides
(
n
k

)
.

If Hk,n is the proposition: there is an i, 0 ≤ i < k such that n − i divides(
n
k

)
, then Erdős asked if Hk,n is true for all k when n ≥ 2k. Schinzel gave

the counterexample n = 99215, k = 15. If Hk is the proposition: Hk,n is
true for all n, then Schinzel showed that Hk is false for k = 15, 21, 22, 33,
35 and thirteen other values of k. He showed that Hk is true for all other
k ≤ 32 and asked if there are infinitely many k, other than prime-powers,
for which Hk is true: he conjectures not and later reported that it is true
for k = 34, but for no other non-prime-powers between 34 and 201.

E. Burbacka & J. Piekarczyk, P. 217, R. 1, Colloq. Math., 10(1963) 365.
A. Schinzel, Sur un problème de P. Erdős, Colloq. Math., 5(1957–58) 198–204.
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B35 Products of consecutive numbers with the
same prime factors.

Let f(n) be the the least integer such that at least one of the numbers n,
n + 1, . . ., n + f(n) divides the product of the others. It is easy to see that
f(k!) = k and f(n) > k for n > k! Erdős has also shown that

f(n) > exp((lnn)1/2−ε)

for an infinity of values of n, but it seems difficult to find a good upper
bound for f(n).

Erdős asks if (m + 1)(m + 2) · · · (m + k) and (n + 1)(n + 2) · · · (n + l)
with k ≥ l ≥ 3 can contain the same prime factors infinitely often. For
example (2 · 3 · 4 · 5 · 6) · 7 · 8 · 9 · 10 and 14 · 15 · 16 and 48 · 49 · 50; also
(2 · 3 · 4 · 5 · 6) · 7 · 8 · 9 · 10 · 11 · 12 and 98 · 99 · 100. For k = l ≥ 3 he
conjectures that this happens only finitely many times.

If L(n; k) is the l.c.m. of n+1, n+2, . . ., n+ k, then Erdős conjectures
that for l > 1, n ≥ m + k, L(m; k) = L(n; l) has only a finite number
of solutions. Examples are L(4; 3) = L(13; 2) and L(3; 4) = L(19; 2). He
asks if there are infinitely many n such that for all k (1 ≤ k < n) we
have L(n; k) > L(n − k; k). What is the largest k = k(n) for which this
inequality can be reversed? He notes that it is easy to see that k(n) = o(n),
but he believes that much more is true. He expects that for every ε > 0
and n > n0(ε), k(n) < n1/2+ε but cannot prove this.

P. Erdős, How many pairs of products of consecutive integers have thesame
prime factors? Amer. Math. Monthly 87(1980) 391–392.

B36 Euler’s totient function.

Euler’s totient function, φ(n), is the number of numbers not greater than
n and prime to n. For example φ(1) = φ(2) = 1, φ(3) = φ(4) = φ(6) = 2,
φ(5) = φ(8) = φ(10) = φ(12) = 4, φ(7) = φ(9) = 6. Are there infinitely
many pairs of consecutive numbers, n, n + 1, such that φ(n) = φ(n + 1)?
For example, n = 1, 3, 15, 104, 164, 194, 255, 495, 584, 975. It is not even
known if |φ(n + 1) − φ(n)| < nε has an infinity of solutions for each ε > 0.
Jud McCranie found 1267 solutions of φ(n) = φ(n + 1) with n < 1010,
the largest of which is n = 9985705185, φ(n) = φ(n + 1) = 211357 · 11.
He also looked for solutions of φ(n + k) = φ(n). Schinzel conjectures that
for every even k there are infinitely many solutions, but observes that the
corresponding conjecture with k odd is implausible. Indeed, when k is an
odd multiple of 3, in a search to n = 1010, McCranie found only a few
solutions. For k = 3 only n = 3 and n = 5. In fact, the only value of
k ≡ 3 (mod 6) which yielded as many as 13 solutions was k = 141 and
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the largest solution found was n = 715 with k = 245, except that k = 27
yielded a very atypical n = 4135966808. Other odd k were still yielding a
steady supply of solutions; the most for k < 101 being 1673 solutions for
k = 47, and the least being 278 for k = 55, except that k = 35 gave only
29 solutions, 12 of them > 109, including n = 9423248800.

Sierpiński has shown that there is at least one solution for each k and
Schinzel & Wakulicz that there are at least two for each k < 2 · 1058. For
even k Holt raises this to k < 1.38 · 1026595411.

Ma̧kowski has shown that φ(n + k) = 2φ(n) has at least one solution
for every k. For the equation φ(n+k) = 3φ(n) see the solution to Problem
E3215 in Amer. Math. Monthly, 96(1989) 63–64.

McCranie found no solutions of φ(n+k) = φ(n)+φ(k) for k = 3, nor any
of φ(n) = φ(n+1) = φ(n+2), for n < 1010, apart from φ(5186) = φ(5187) =
φ(5188) = 2534. Other curiosities are φ(25930) = φ(25935) = φ(25940) =
φ(25942) = 2734 and φ(404471) = φ(404473) = φ(404477) = 2832527.

Sid Graham, Jeffrey Holt & Carl Pomerance can show that |φ(n) −
φ(n + 2)| < n9/10 infinitely often by looking at n = 2(2p − 1), where p is
a prime, and using a theorem of Chen that says that there are infinitely
many primes p such that either 2p − 1 is a prime or 2p − 1 is a product
of two prime factors, both of which exceed p1/10. With a little work, they
could improve the 9/10 exponent. On the other hand, they don’t see any
similar argument for |φ(n) − φ(n + 1)|. This seems to be a fundamentally
different problem.

Erdős lets a1, . . . , at be the longest sequence for which

a1 < · · · < at ≤ n and φ(a1) < · · · < φ(at)

and suggests that t = π(n). Can one even prove t < (1 + o(1))π(n) or at
least t = o(n)? Similar questions can be asked about σ(n).

Nontotients are positive even values of n for which φ(x) = n has no
solution; for example, n = 14, 26, 34, 38, 50, 62, 68, 74, 76, 86, 90, 94,
98. The number, #(y), of these less than y has been calculated by the
Lehmers.

y 103 104 2 · 104 3 · 104 4 · 104 5 · 104 6 · 104 7 · 104 8 · 104 9 · 104

#(y) 210 2627 5515 8458 11438 14439 17486 20536 23606 26663

Zhang Ming-Zhi has shown that for every positive integer m, there is a
prime p such that mp is a nontotient.

Browkin & Schinzel have proved the conjecture of Sierpiński and Erdős
that there are infinitely many noncototients, by showing that none of the
numbers 2k · 509203, k = 1, 2, . . . is of the form x − φ(x).

Erdős & Hall have shown that the number, Φ(y) = y − #(n), of n
for which φ(x) = n has a solution is yef(y)/ ln y, where f(y) lies between
c(ln ln ln y)2 and c(ln y)1/2. Maier & Pomerance more recently showed that
the lower bound was correct, with c ≈ 0.8178. Erdős conjectures that
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Φ(cy)/Φ(y) → c, and that this, if true, may be the best substitute that one
can find for an asymptotic formula for Φ(y).

Noncototients are positive values of n for which x − φ(x) = n has no
solution; for example, n = 10, 26, 34, 50, 52, 58, 86, 100. Sierpiński and
Erdős conjecture that there are infinitely many noncototients.

Erdős once asked if it was true that for every ε there is an n with
φ(n) = m, m < εn and for no t < n is φ(t) = m; perhaps there are many
such n.

Michael Ecker has asked for which values of x do each of the series∑∞
n=1 φ(n)/nx and

∑∞
n=1(−1)n+1φ(n)/nx converge.

Donald Newman has shown that if a, b, c, d are nonnegative integers
with a, c > 0 and ad − bc �= 0, then there exists a positive integer n such
that |phi(an + b) < φ(cn + d), but there is no such n < 2 · 106 such that
φ(30n + 1) < φ(30n). In fact Greg Martin showed that that the least such
n has 1116 decimal digits. It is
n = 232909 8101754967 9381404968 4205233780 0048598859 6605123536 3345311075
8883445287 2315452798 4260176895 8541826348 0290710927 1610432287 6529769074
6757436240 0134090318 3559621214 7678571289 1544538210 9667040369 9088529244
6155135679 7175658080 6376638384 6220120606 1438265094 3354025008 5111624970
4645413809 3448637568 8208918750 6406746299 4246549936 9036578640 3317590359
7936930268 5371156272 2454663962 2786562195 1101808240 6922599602 0309133058
9296656888 0117910114 1606263156 5320593772 2871189137 2860899790 1791216356
1086654763 0608074012 1528236888 6801201524 7913832745 1088404280 9290483149
1212278487 9758304016 8324367515 3225518564 0249324065 4924915110 7252158598
0547438748 6893071593 6348123396 5802331725 0336638626 1895716897 4043547448
8796632179 7108144561 9618789985 4720743031 0030363607 8827273695 5511620897
2543511024 6701964021 0458490818 1160442733 1227553783 5908215100 9160756717
8842569576 6995480382 1767317189 5383249326 8006674329 9353118643 7659910632
8654198923 7095772215 4266351039 8085481508 2886896882 0675198820 3811355236
4636120238 3915218571 0178014630 1149110878 4343253284 3935116502 5450659792
3969653616 8138977106 2175669382 7471154701 1512223204 4334740818 0047964860
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B37 Does φ(n) properly divide n − 1?

D. H. Lehmer has conjectured that there is no composite value of n such
that φ(n) is a divisor of n − 1, i.e., that for no value of n is φ(n) a proper
divisor of n−1. Such an n must be a Carmichael number (A13). He showed
that it would have to be the product of at least seven distinct primes, and
Lieuwens has shown that if 3|n, then n > 5.5 · 10571 and ω(n) ≥ 212; if
the smallest prime factor of n is 5, then ω(n) ≥ 11; if the smallest prime
factor of n is at least 7, then ω(n) ≥ 13. This supersedes and corrects
the work of Schuh. Masao Kishore has shown that at least 13 primes are
needed in any case, and Cohen & Hagis have improved this to 14. Siva
Rama Prasad & Subbarao improve Lieuwens’s 212 result to ω(n) ≥ 1850
and Hagis to ω(n) ≥ 298848. Siva Rama Prasad & Rangamma show that
if 3|n, n composite, Mφ(n) = n − 1, M �= 4, then ω(n) ≥ 5334.

Pomerance has proved that the number of composite n less than x for
which φ(n) | n − 1 is

O(x1/2(lnx)3/4(ln lnx)−1/2)

and Shan Zun improved the exponent 3
4 to 1

2 .
Schinzel notes that if n = p or 2p, where p is prime, then φ(n) + 1

divides n and asks if the converse is always true. Segal (see paper with
Cohen) observes that Schinzel’s question reduces to that of Lehmer, that it
arises in group theory, and may have been raised by G. Hajós (see Miech’s
paper, though there it is attributed to Gordon).

Lehmer gives eight solutions to φ(n) | n+1, namely n = 2, n = 22k − 1
for 1 ≤ k ≤ 5, n = n1 = 3 · 5 · 17 · 353 · 929 and n = n1 · 83623937. [Note
that 353 = 11 · 25 + 1, 929 = 29 · 25 + 1, 83623937 = 11 · 29 · 218 + 1 and
(353−28)(929−28) = 216−28+1.] This exhausts the solutions with less than
seven factors. Victor Meally notes that n = n1 ·83623937·699296672132097
would be a solution were the largest factor a prime, but Peter Borwein notes
that this is divisible by 73. The Borweins & Roland Girgensohn conjecture
that there are no more solutions.

See Erick Wong’s thesis, quoted at A17.
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If n is prime, it divides φ(n)d(n) + 2. Is this true for any composite n
other than n = 4? Subbarao also notes that if n is prime, then nσ(n) ≡
2 mod φ(n), and also only if n = 4, 6 or 22. Jud McCranie finds no others
with n < 1010 for either problem.

Subbarao has an analogous conjecture to Lehmer’s, based on the func-
tion φ·(n) =

∏
(pα−1), where the product is taken over the maximal prime

power divisors of n, pα‖n. He conjectures that φ·(n)|(n−1) if and only if n
is a power of a prime. He also has a ‘dual’ of Lehmer’s conjecture, namely
that ψ(n) ≡ 1 mod n only when n is a prime, where ψ(n) is Dedekind’s
function (see B41). Again, Jud McCranie finds no counterexamples < 1010

to either of these conjectures.
Ron Graham makes the following conjecture

¿ For all k there are infinitely many n such that φ(n)|(n − k) ?

He observes that it is true for k = 0, k = 2a (a ≥ 0) and k = 2a3b (a,
b > 0) for example. Pomerance (see Acta Arith. paper quoted in B2) has
treated Graham’s problem.
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B38 Solutions of φ(m) = σ(n).
Are there infinitely many pairs of numbers m, n such that φ(m) = σ(n)?
Since for p prime φ(p) = p − 1 and σ(p) = p + 1 this question would
be answered affirmatively if there were infinitely many twin primes (A7).
Also if there were infinitely many Mersenne primes (A3) Mp = 2p−1, since
σ(Mp) = 2p = φ(2p+1). However there are many solutions other than these,
sometimes displaying little noticeable pattern, e.g., φ(780) = 192 = σ(105).

Erdős remarks that the equation φ(x) = n! is solvable, and (apart from
n = 2) σ(y) = n! is probably solvable also. Charles R. Wall can show that
ψ(n) = n! is solvable for n �= 2, where ψ is Dedekind’s function (see B41).

Jean-Marie De Koninck asks if R is the radical of n, i.e., the greatest
squarefree divisor of n, then are n = 1 and 1782 the only solutions of
σ(n) = R2 ?

Jean-Marie De Koninck, Problem 10966(b), Amer. Math. Monthly, 109(2002)
759.

Le Mao-Hua, A note on primes p with σ(pm) = zn, Colloq. Math., 62(1991)
193–196.

B39 Carmichael’s conjecture.

Carmichael’s conjecture. For every n it appears to be possible to find
an m, not equal to n, such that φ(m) = φ(n) and for a few years early
in the last century it was thought that Carmichael had proved this. Klee
verified the conjecture for φ(n) < 10400, and for all φ(n) not divisible by
242 · 347. Masai & Valette have raised the bound to 10100000, and Schlafly
& Wagon to 1010900000. Pomerance has shown that if n is such that for
every prime p for which p−1 divides φ(n) we have p2 divides n, then n is a
counterexample. He can also show (unpublished) that if the first k primes
p ≡ 1 (mod q) (where q is prime) are all less than qk+1, then there are no
numbers n which satisfy his theorem. This also implies the truth of his
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conjecture that pk −1|∏i<k pi(pi −1). The truth of this last conjecture for
all k also implies that there are no numbers n which satisfy his theorem.

Define the multiplicity of an integer as the number of times it occurs
as a value of φ(n). For example, 6 has multiplicity 4 because φ(n) = 6
for n = 7, 9, 14, 18 and no other values of n. The multiplicity may be
zero (for any odd n > 1, and n = 14, 26, 34, . . . ), but not, according to
the Carmichael conjecture, equal to one. Sierpiński conjectured that all
integers greater than 1 occur as multiplicities and Erdős has shown that if
a multiplicity occurs once it occurs infinitely often. Kevin Ford has proved
Sierpiński’s conjecture. He also showed that if there is a counterexam-
ple to Carmichael’s conjecture, then a positive proportion of totients are
counterexamples.

There are examples of even numbers n such that there is no odd number
m such that φ(m) = φ(n). Lorraine Foster has given n = 33817088 =
29 · 2572 as the least such.

Erdős proved that if φ(x) = k has exactly s solutions, then there are
infinitely many other k for which there are exactly s solutions, and that
s > kc for infinitely many k. If C is the least upper bound of those c for
which this is true, then Wooldridge showed that C ≥ 3 − 2

√
2 > 0.17157.

Pomerance used Hooley’s improvement on the Brun–Titchmarsh theorem
to improve this to C ≥ 1 − 625/512e > 0.55092 and notes that further
improvements by Iwaniec enable him to get C > 0.55655 so that s > k5/9

for infinitely many k. Erdős conjectures that C = 1. In the other direction
Pomerance also shows that

s < k exp{−(1 + o(1)) ln k ln ln ln k / ln ln k}
and gives a heuristic argument to support the belief that this is best pos-
sible.
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B40 Gaps between totatives.

If a1 < a2 < . . . < aφ(n) are the integers less than n and prime to it, then
Erdős conjectured that

∑
(ai+1 −ai)2 < cn2/φ(n) and offered $500.00 for a

proof. Hooley showed that, for 1 ≤ α < 2,
∑

(ai+1 − ai)α � n(n/φ(n))α−1

and that
∑

(ai+1 − ai)2 � n(ln lnn)2, Vaughan established the conjecture
“on the average” and he & Montgomery finally won the prize.

Jacobsthal asked what bounds can be placed on J(n) = max(ai+1 −
ai). Erdős asks if, for infinitely many x, there are two integers n1, n2,
n1 < n2 < x, n1 ⊥ n2, J(n1) > lnx, J(n2) > lnx.

In a 95-03-30 letter Bernardo Recamán asks if the set of totatives of
every sufficiently large n contains a Pythagorean triple, and whether, for
each k, it contains an arithmetic progrssion of length k.

P. Erdős, On the integers relatively prime to n and on a number-theoretic
function considered by Jacobsthal, Math. Scand., 10(1962) 163–170; MR 26
#3651.

R. R. Hall & P. Shiu, The distribution of totatives, Cand. Math. Bull.,
45(2002); MR 2003a:11005.
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C. Hooley, On the difference of consecutive numbers prime to n, Acta Arith.,
8(1962/63) 343–347; MR 27 #5741.

H. L. Montgomery & R. C. Vaughan, On the distribution of reduced residues,
Ann. of Math. (2), 123(1986) 311–333; MR 87g:11119.

R. C. Vaughan, Some applications of Montgomery’s sieve, J. Number Theory,
5(1973) 64–79.

B41 Iterations of φ and σ.

Pomerance asks if, for each positive integer n, there is a positive integer
k such that σk(n)/n is an integer. E.g., (n, k) = (1, 1), (2,2), (3,4), (4,2),
(5,5), (6,4), (7,5), . . . .

There is a close relative to the sum of divisors and the sum of the
unitary divisors function, which complements Euler’s totient function and
which is often named for Dedekind. If n = pa1

1 pa2
2 . . . pak

k , denote by ψ(n)
the product

∏
pai−1

i (pi + 1), i.e., ψ(n) = n
∏

(1 + p−1), where the product
is taken over the distinct prime divisors of n. It is easy to see that iter-
ation of the function leads eventually to terms of the form 2a3b where b
is fixed and a increases by one in successive terms. Given any value of b
there are infinitely many values of n which lead to such terms, for exam-
ple, ψk(2a3b7c) = 2a+4k3b7c−k (0 ≤ k ≤ c) and ψk(2a3b7c) = 2a+5k−c3b

(k > c).
That there are values of n for which the iterates of the function ψ(n)−n

are unbounded as the number of iterations tends to infinity is the subject
of te Riele’s thesis (reference at B8); the least such n is 318.

If we average ψ with the φ-function, 1
2 (φ + ψ), and iterate, we produce

sequences whose terms become constant whenever they are prime powers;
for example 24, 1

2 (8+48) = 28, 1
2 (12+48) = 30, 1

2 (8+72) = 40, 1
2 (16+72) =

44, 1
2 (20+72) = 46, 1

2 (22+72) = 47, 1
2 (46+48) = 47, . . . . Charles R. Wall

gives examples where iteration leads to an unbounded sequence: start with
45, 48, . . . or 50, 55, . . . and continue 56, 60, 80, 88, 92, 94, 95, 96, . . . ;
each term after the 35th is the double of the last but seven!

We can also average the σ- and φ-functions, and iterate. Since φ(n) is
always even for n > 2 and σ(n) is odd when n is a square or twice a square,
we will sometimes get a noninteger value. For example, 54, 69, 70, 84, 124,
142, 143 ,144, 225 1

2 ; in this case we say that the sequence fractures. It is
easy to show that (σ(n)+φ(n))/2 = n just if n = 1 or a prime, so sequences
can become constant, for example, 60, 92, 106, 107, 107, . . . . Are there
sequences which increase indefinitely without fracturing?

Of course, if we iterate the φ-function, it eventually arrives at 1. Call
the least integer k for which φk(n) = 1 the class of n.
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k n

1 2
2 3 4 6
3 5 7 8 9 10 12 14 18
4 11 13 15 16 19 20 21 22 24 26 . . .
5 17 23 25 29 31 32 33 34 35 37 39 40 43. . .
6 41 47 51 53 55 59 61 64 65 67 68 69 71 73 . . .
7 83 85 89 97 101 103 107 113 115 119 121 122123 125 128 . . .

The set of least values of the classes is M = {2, 3, 5, 11, 17, 41, 83, . . . }.
Shapiro conjectured that M contained only prime values, but Mills found
several composite members. If S is the union, for all k, of the members of
class k which are < 2k, then

S = {3; 5, 7; 11, 13, 15; 17, 23, 25, 29, 31; 41, 47, 51, 53, 55, 59, 61; 83, 85, . . .}
and Shapiro showed that the factors of an element of S is also in S. Catlin
showed that if m is an odd element of M , then the factors of M are in M ,
and that there are finitely many primes in M just if there are finitely many
odd numbers in M . Does S contain infinitely many odd numbers? Does
M contain infinitely many odd numbers?

Pillai showed that that the class, k = k(n), of n satisfies⌊
lnn

ln 3

⌋
≤ k(n) ≤

⌊
lnn

ln 2

⌋

and it’s easy to see (look at 2a3b) that k(n)/ lnn is dense in the interval
[1/ ln 3, 1/ ln 2]. What is the average and normal behavior of k(n)? Erdős,
Granville, Pomerance & Spiro conjecture that there is a constant α such
that the normal order of k(n) is α lnn and prove this under the assumption
of the Elliott-Halberstam conjecture. They also showed that the normal
order of φh(n)/φh+1(n) is heγ ln ln lnn for each positive integer h, where
γ is Euler’s constant. See their paper for many unsolved problems: for
example, if σk(n) is the kth iterate of the sum of divisors function, they
are unable to prove or disprove any of the following statements.

¿ for every n > 1, σk+1(n)/σk(n) → 1 as k → ∞ ?

¿ for every n > 1, σk+1(n)/σk(n) → ∞ as k → ∞ ?

¿ for every n > 1,
(
σk(n)

)1/k → ∞ as k → ∞ ?

¿ for every n > 1, there is some k with n|σk(n) ?

¿ for every n, m > 1, there is some k with m|σk(n) ?

¿ for every n, m > 1, there are some k, l with σk(m) = σl(n) ?

Miriam Hausman has characterized those integers n which are solutions
of the equation n = mφk(n); they are mainly of the form 2a3b.
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Finucane iterated the function φ(n) + 1 and asked: in how many steps
does one reach a prime? Also, given a prime p, what is the distribution
of the values of n whose sequences end in p? Are 5, 8, 10, 12 the only
numbers which lead to 5? And 7, 9, 14, 15, 16, 18, 20, 24, 30 the only ones
leading to 7?

Erdős similarly asked about the iteration of σ(n) − 1. Does it always
end on a prime, or can it grow indefinitely? In none of the cases of iteration
of σ(n)−1, of (ψ(n)+φ(n))/2, or of (φ(n)+σ(n))/2 is he able to show that
the growth is slower than exponential. For several results and conjectures,
consult the quadruple paper cited below.

Atanassov defines some additive analogs of φ and σ, poses 17 questions
and answers only three of them.

Iannucci, Moujie & Chen define perfect totient numbers as those
n for which n = φ(n) + φ2(n) + φ3(n) + · · · + 2 + 1. All powers of 3 are
perfect totient numbers. They find 30 others < 5 · 109 of which the largest
is 4764161215.
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man, Allerton Park, 1989, Birkhäuser, Boston, 1990, 165–204; MR 92a:11113.
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Paul Erdős & R. R. Hall, Euler’s φ-function and its iterates, Mathematika,
24(1977) 173–177; MR 57 #12356.

Miriam Hausman, The solution of a special arithmetic equation, Canad.
Math. Bull., 25(1982) 114–117.

Douglas E. Iannucci, Deng Moujie & Graeme L. Cohen, On perfect totient
numbers, preprint, 2003.
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49(1984) 123–130; MR 86d:11006.

W. H. Mills, Iteration of the φ-function, Amer. Math. Monthly 50(1943) 547–
549; MR 5, 90.

C. A. Nicol, Some diophantine equations involving arithmetic functions, J.
Math. Anal. Appl., 15(1966) 154–161.

Ivan Niven, The iteration of certain arithmetic functions, Canad. J. Math.,
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S. S. Pillai, On a function connected with φ(n), Bull. Amer. Math. Soc.,
35(1929) 837–841.

Carl Pomerance, On the composition of the arithmetic functions σ and φ,
Colloq. Math., 58(1989) 11–15; MR 91c:11003.

Harold N. Shapiro, An arithmetic function arising from the φ-function, Amer.
Math. Monthly 50(1943) 18–30; MR 4, 188.
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Charles R. Wall, Unbounded sequences of Euler-Dedekind means, Amer.
Math. Monthly 92(1985) 587.

Richard Warlimont, On the iterates of Euler’s function, Arch. Math. (Basel),
76(2001) 345–349; MR 2002k:11167.

OEIS: A000010, A003434, A005239, A007755, A019268, A040176,
A049108.

B42 Behavior of φ(σ(n)) and σ(φ(n)).
Erdős asks us to prove that φ(n) > φ(n − φ(n)) for almost all n, but that
φ(n) < φ(n − φ(n)) for infinitely many n.

Ma̧kowski & Schinzel prove that lim supφ(σ(n))/n = ∞,

lim supφ(φ(n))/n =
1
2
, and lim inf σ(φ(n))/n ≤ 1

2
+

1
234 − 4

and they ask if σ(φ(n))/n ≥ 1
2 for all n. They point out that even

inf σ(φ(n))/n > 0 is not proved, but Pomerance has since established this,
using Brun’s method. Graeme Cohen and later Segal each thought that he
had proved the main result, but it remains open.

John Selfridge, Fred Hoffman & Rich Schroeppel found 24 solutions of
φ(σ(n)) = n, namely

2k for k = 0, 1, 3, 7, 15, 31; 22 · 3; 28 · 33; 210 · 33 · 112; 212 · 33 · 5 · 7 · 13;
24 · 3 · 5; 24 · 32 · 5; 29 · 3 · 52 · 31; 29 · 32 · 52 · 31; 25 · 34 · 5 · 11; 25 · 34 · 52 · 11;
28 · 34 · 5 · 11; 28 · 34 · 52 · 11; 25 · 36 · 72 · 13; 26 · 36 · 72 · 13; 213 · 37 · 5 · 72;
213 · 37 · 52 · 72; 221 · 33 · 5 · 113 · 31; 221 · 33 · 52 · 113 · 31; and there are, of
course, 24 corresponding solutions of σ(φ(m)) = m.

Terry Raines, in January 1995, found ten further solutions:
28 ·36 ·7213; 29 ·34 ·52 ·112 ·31; 213 ·33 ·54 ·73; 213 ·38 ·5·73; 213 ·36 ·5·73 ·13;

213 · 33 · 54 · 74; 213 · 38 · 52 · 73; 213 · 36 · 52 · 73 · 13; 221 · 35 · 5 · 113 · 31;
221 · 35 · 52 · 113 · 31;

and on Independence Day, 1996, Graeme Cohen added

213 · 35 · 54 · 74 and 224 · 39 · 57 · 11 · 13

Are there others? An infinite number?
Golomb observes that if q > 3 and p = 2q − 1 are primes and m ∈

{2, 3, 8, 9, 15}, then n = pm is a solution of φ(σ(n)) = φ(n). Undoubtedly
there are infinitely many such and undoubtedly no one will prove this in
the foreseeable future. There are other solutions, 1, 3, 15, 45, . . . ; an
infinite number? He gives the solutions 1, 87, 362, 1257, 1798, 5002, 9374
to σ(φ(n)) = σ(n). He also notes that if p and (3p − 1)/2 are primes (e.g.,
p = 3, 7, 13, 71, 103), then n = 3p−1 is a solution of σ(φ(n)) = φ(σ(n));
and shows that σ(φ(n)) − φ(σ(n)) is both positive and negative infinitely
often and asks what is the proportion of each?
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There are numerous questions that one may ask about these two roughly
dual functions. Zhang Ming-Zhi notes that if n is prime, then it divides
φ(n)+σ(n), but if n = pα with α > 1 or n = pαq with p, q distinct primes,
then this is not so. He finds 17 composite n less than 107 which divide
φ(n) + σ(n): 312, 560, 588, 1400, 23760, 59400, 85632, 147492, 153720,
556160, 569328, 1590816, 2013216 and four others.
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Kevin Ford, Sergei Konyagin & Carl Pomerance, Residue classes free of values
of Euler’s function, Number Theory in Progress, Vol. 2 (Zakopane-Kościelisko,
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Colloq. Math., 58(1989) 11–15; MR 91c:11003.

József Sándor, On Dedekind’s arithmetical function, Seminarul de Teoria
Structurilor, Univ. Timişoara, 51(1988) 1–15.

József Sándor, On the composition of some arithmetic functions, Studia Univ.
Babeş-Bolyai Math., 34(1989) 7–14; MR 91i:11008.

József Sándor & R. Sivaramakrishnan, The many facets of Euler’s totient.
III. An assortment of miscellaneous topics, Nieuw Arch. Wisk., 11(1993) 97–130;
MR 94i:11007.

Zhang Ming-Zhi, A divisibility problem (Chinese), Sichuan Daxue Xuebao,
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OEIS: A000010, A000203, A001229, A006872, A033631,
A051487-051488, A066831, A067382-0670385.

B43 Alternating sums of factorials.

The numbers 3! − 2! + 1! = 5,
4! − 3! + 2! − 1! = 19,
5! − 4! + 3! − 2! + 1! = 101,
6! − 5! + 4! − 3! + 2! − 1! = 619,
7! − 6! + 5! − 4! + 3! − 2! + 1! = 4421,

and 8! − 7! + 6! − 5! + 4! − 3! + 2! − 1! = 35899

are each prime. Are there infinitely many such? Here are the factors of
An = n!− (n− 1)!+ (n− 2)!−+ . . .− (−1)n1! for the next few values of n :

n An n An

9 79 · 4139 19 15578717622022981 (prime)
10 3301819 (prime) 20 8969 · 210101 · 1229743351
11 13 · 2816537 21 113 · 167 · 4511191 · 572926421
12 29 · 15254711 22 79 · 239 · 56947572104043899
13 47 · 1427 · 86249 23 85439 · 289993909455734779
14 211 · 1679 · 229751 24 12203 · 24281 · 2010359484638233
15 1226280710981 (prime) 25 59 · 555307 · 455254005662640637
16 53 · 6581 · 56470483 26 1657 · 234384986539153832538067
17 47 · 7148742955723 27 1272 · 271 · 1163 · 2065633479970130593
18 2683 · 2261044646593 28 61 · 221171 · 21820357757749410439949

The example n = 27 shows that these numbers are not necessarily square-
free. Wilfrid Keller has continued the calculations for n ≤ 335; An is prime
for n = 41, 59, 61, 105 and 160.

If there is a value of n such that n+1 divides An, then n+1 will divide
Am for all m > n, and there would be only a finite number of prime values.
This problem has been answered by Miodrag Živkovič, who has shown that
p = 3612703 divides A(n) for all n ≥ p.

There are questions if 0! is included. The numbers are now even, and
only 2!−1!+0! = 2 is prime. Kevin Buzzard reported that a teenage friend
asked for which n does n divide An + (−1)n ? If S is the set of such n,
then a ∈ S, b ∈ S, a ⊥ b imply ab ∈ S and c ∈ S, d | c imply d ∈ S. So
one needs only search for prime powers. Buzzard found only 2, 4, 5, 13, 37,
463 less than 160000, and asks: is S just the set of divisors of 4454060?

Miodrag Živkovič, The number of primes
∑n

i=1(−1)n−ii! is finite, Math. Com-
put., 68(1999) 403–409; MR99c:11163.

OEIS: A000142, A001272, A002981-002982, A003422, A005165.
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B44 Sums of factorials.

D- . Kurepa defined !n = 0!+1!+2!+ . . .+(n−1)! and asks if !n �≡ 0 mod n
for all n > 2. Slavić established this for 3 ≤ n ≤ 1000. The conjecture
is that (!n, n!) = 2. Wagstaff verified the conjecture for n < 50000, and
Mijajlović and Gogić independently for n ≤ 106. Mijajlović notes that for
Kn = !(n + 1) − 1 = 1! + 2! + . . . + n! we have 3|Kn for n ≥ 2, 9|Kn for
n ≥ 5 and 99|Kn for n ≥ 10. Wilfrid Keller has since extended this and
found no new divisibilities for Kn with n < 106. In a 91-03-21 letter, and
a February 1998 preprint, Reg. Bond offered an as yet unpublished proof
of the conjecture.

Miodrag Živkovič (see ref. at B43) has shown that (54503)2 divides
!26540, so that !n is not always squarefree for n > 3.
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Alexandar Petojević, On Kurepa’s hypothesis for the left factorial, Filomat
No. 12, part 1 (1998) 29–37.

Zoran Šami, On generalization of functions n! and !n, Publ. Inst. Math.
(Beograd)(N.S.) 60(74)(1996) 5–14; MR 98a:11006.

Zoran Šami, A sequence un,m and Kurepa’s hypothesis on left factorial, Sym-
pos. dedicated to memory of D- uro Kurepa, Belgrade 1996, Sci. Rev. Ser. Sci.
Eng., 19-20(1996) 105–113; MR 98b:11016.
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B45 Euler numbers.

The coefficients in the expansion of sec x =
∑

En(ix)n/n! are the Euler
numbers, and arise in several combinatorial contexts. E0 = 1, E2 =
−1, E4 = 5, E6 = −61, E8 = 1385, E10 = −50521, E12 = 2702765,
E14 = −199360981, E16 = 19391512145, E18 = −2404879675441, . . . . Is
it true that for any prime p ≡ 1 mod 8, E(p−1)/2 �≡ 0 mod p? Is it true for
p ≡ 5 mod 8?
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V. I. Arnol′d, Bernoulli-Euler updown numbers associated with function sin-
gularities, their combinatorics and arithmetics, Duke Math. J., 63(1991) 537–555;
MR 93b:58020.

V. I. Arnol′d, Snake calculus and the combinatorics of the Bernoulli, Euler
and Springer numbers of Coxeter groups, Uspekhi Mat. Nauk, 47(1992) 3–45;
transl. in Russian Math. Surveys, 47(1992) 1–51; MR 93h:20042.

E. Lehmer, On congruences involving Bernoulli numbers and the quotients of
Fermat and Wilson, Annals of Math. 39(1938) 350–360; Zbl. 19, 5.

Barry J. Powell, Advanced problem 6325, Amer. Math. Monthly 87(1980)
826.

B46 The largest prime factor of n.

Erdős denotes by P (n) the largest prime factor of n and asks if there are
infinitely many primes p such that (p − 1)/P (p − 1) = 2k? Or = 2k · 3l?

If n > 2, then P (n), P (n+1), P (n+2) are all distinct. Show that each
of the six permutations of {low, medium, high} occurs infinitely often, and
that they occur with equal frequency. 2k −2, 2k −1, 2k show that medium,
high, low occurs for infinitely many k because P (2k − 1) → ∞ as k → ∞
by a theorem of Bang (or Mahler). To see that low, medium high occurs
infinitely often, ask if p − 1, p, p + 1 works for p prime. No! Try p2 − 1,
p2, p2 + 1. Maybe. If P (p2 + 1) < p, try p4 − 1, p4, p4 + 1. Eventually, for
each prime p, there will be a value of k such that P (p2k

+ 1) > p.
Selfridge settled the low, high, medium case with 2k, 2k +1, 2k +2 and

Tijdeman gave the following argument for medium, low, high: consider the
possibilities 2k − 1, 2k, 2k + 1; 22k − 1, 22k, 22k + 1; 24k − 1, 24k, 24k + 1;
. . . .

Mabkhout showed that P (n4+1) ≥ 137 for all n > 3; he used a classical
result of Størmer, quoted at D10.

P. Erdős & Carl Pomerance, On the largest prime factors of n and n + 1,
Aequationes Math., 17(1978) 311–321; MR 58 #476.
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63(1993) 135–148; MR 96e:11039.

B47 When does 2a − 2b divide na − nb?

Selfridge notices that 22 − 2 divides n2 − n for all n, that 222 − 22 divides
n22 − n2 and 2222 − 222

divides n222 − n22
and asks for what a and b does

2a − 2b divide na − nb for all n. The case n = 3 was proposed as E2468*,
Amer. Math. Monthly, 81(1974) 405 by Harry Ruderman. In his solution
(83(1976) 288–289) Bill Vélez omits (b, a − b) = (0, 1) as trivial and gives
13 other solutions, (1,1), (1,2), (2,2), (3,2), (1,4), (2,4), (3,4), (4,4), (2,6),
(3,6), (2,12), (3,12), (4,12). Remarks by Pomerance (84(1977) 59–60) show
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that results of Schinzel complete Vélez’s solution. The problem was also
solved by Sun Qi & Zhang Ming Zhi.

A. Schinzel, On primitive prime factors of an − bn, Proc. Cambridge Philos.
Soc., 58(1962) 555–562.

Sun Qi & Zhang Ming-Zhi, Pairs where 2a −2b divides na −nb for all n, Proc.
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B48 Products taken over primes.

David Silverman noticed that if pn is the n-th prime, then
m∏

n=1

pn + 1
pn − 1

is an integer for m = 1, 2, 3, 4 and 8 and asked is it ever again an in-
teger? Equivalently, as Ma̧kowski observes (reference at B16), for what
n =

∏m
r=1 pr does φ(n) divide σ(n)? For example, if σ(n) = 4φ(n) then

2n is either perfect or abundant, σ(2n) ≥ 4n. Jud McCranie checked that
the product is not an integer for 8 < m ≤ 98222287, i.e for primes p,
23 ≤ p < 2 · 109. He notes the connexion with Sophie Germain primes
(primes p such that 2p + 1 is also prime) and with Cunningham chains
(A7).

Wagstaff asked for an elementary proof (e.g., without using properties
of the Riemann ζ-function) that∏ p2 + 1

p2 − 1
=

5
2

where the product is taken over all primes. It seems very unlikely that
there is a proof which doesn’t involve analytical methods. At first glance it
might appear that the fractions might cancel, but none of the numerators
are divisible by 3. Euler’s proof is

∏ p2 + 1
p2 − 1

=
∏ p4 − 1

(p2 − 1)2
=

∏ 1 − p−4

(1 − p−2)2
=

ζ2(2)
ζ(4)

=
(π2/6)2

π4/90
=

5
2
.

This uses
∑

n−k =
∏

(1− p−k)−1 and
∑

n−2 = π2/6 and
∑

n−4 = π4/90.
Wagstaff regards the first as elementary, but not the latter two. He would
like to see a direct proof of 2(

∑
n−2)2 = 5

∑
n−4 or of

4
∞∑

n=1

1
n2

∞∑
m=n+1

1
m2 = 3

∑ 1
n4
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B49 Smith numbers.

Albert Wilansky named Smith numbers from his brother-in-law’s tele-
phone number

4937775 = 3 · 5 · 5 · 65837,

the sum of whose digits is equal to the sum of the digits of its prime
factors, and they soon caught the public fancy. Trivially, any prime is a
Smith number: so are 4, 22, 27, 58, 85, 94, 121, . . . . Oltikar & Wayland
gave the examples 3304(10317 − 1)/9 and 2 · 1045(10317 − 1)/9 and the race
to find larger and larger Smith numbers was on. Yates has given

103913210(101031 − 1)(104594 + 3 · 102297 + 1)1476

with 10694985 decimal digits, but has since beaten his own record with a
13614513-digit Smith number.
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