
3 Equations of State

“The worth of a State, in the long run,
is the worth of the individuals composing it.”

— John Stuart Mill (1806–1873)

“What is Matter?—Never mind.
What is Mind?—no matter.”

— from Punch (1855)

The equations of state appropriate to the interiors of most stars are simple
in one major respect: they may be derived using the assumption that the
radiation, gas, fluid, or even solid, is in a state of local thermodynamic equi-
librium, or LTE. By this we mean that at nearly any position in the star
complete thermodynamic equilibrium is as very nearly true as we could wish.
It is only near the stellar surface or in highly dynamic events, such as in
supernovae, where this assumption may no longer be valid.

The reasons that LTE works so well are straightforward: particle–particle
and photon–particle mean free paths are short and collision rates are rapid
compared to other stellar length or time scales. (A major exception to this
rule involves nuclear reactions, which are usually slow.) Thus two widely
separated regions in the star are effectively isolated from one another as far
as the thermodynamics are concerned and, for any one region, the Boltzmann
populations of ion energy levels are consistent with the local electron kinetic
temperature.1 Note, however, that different regions cannot be completely
isolated from one another in a real star because, otherwise, energy could not
flow between them. Chapter 4 will go into this further.

One typical scale length in a star is the pressure scale height, λP , given
by

λP = −
(
d lnP
dr

)−1

=
P

gρ
(3.1)

where the equation of hydrostatic equilibrium (1.6) has been used to eliminate
dP/dr. The constant–density star discussed in the first chapter easily yields
an estimate for this quantity of

λP (ρ = constant) =
R2

2r

[
1 −
( r

R
)2
]

using the run of pressure given by (1.41). The central value of λP is infinite
but through most of the constant–density model it is of order R. Near the
1 For further discussions of the conditions for LTE see Cox (1968, Chap. 7) and

Mihalas (1978, Chap. 5).



146 3 Equations of State

surface it decreases rapidly to zero. We compare these lengths to photon
mean free paths, λphot, which we construct from the opacity by

λphot = (κρ)−1 cm . (3.2)

This quantity is a measure of how far a photon travels before it is either
absorbed or scattered into a new direction (see Chap. 4). Note that opacity
has the units of cm2 g−1.

For Thomson electron scattering, which is the smallest opacity in most
stellar interiors, later work will show that κ ≈ 1 cm2 g−1. If we consider
the sun to be a typical star and set R = R� and ρ = 〈ρ�〉 ≈ 1 g cm−3

in the above, we then find λphot is at most a centimeter and λP ∼ 1011 cm
through the bulk of the interior. Thus λphot is smaller than λP by many orders
of magnitude. We could also have compared λphot with a temperature scale
height and found the same sort of thing because, for the sun, the temperature
decreases by only 10−4 K cm−1 on average from center to surface.

Another simple calculation yields an estimate of how much of a star is not
in LTE. If the photon mean free path is still of order 1 cm, then the relative
radius at which the pressure scale height is equal to the photon mean free
path is (r/R) ≈ 1 − 10−11 using the constant–density model. This means, as
a crude estimate, that it is within only the last one part in 1011 of the radius
that the assumption of LTE fails. In realistic models, the assumption of LTE
breaks down within the region of the stellar photosphere, which is the only
part of a star we can see.

In the following sections we shall quote some results from statistical me-
chanics, which will eventually be used to derive equations of state for stellar
material consisting of gases (including photons) in thermodynamic equilib-
rium. Because several excellent texts on statistical mechanics are available for
reference, many results will be stated without proof. One particular text we
recommend is Landau and Lifshitz (1958, or later editions) for its clean style
and inclusion of many fundamental physical (and astrophysical) applications.
Additional material may be found in Cox (1968), Kippenhahn and Weigert
(1990), and Rose (1998, §3.2).

3.1 Distribution Functions

The “distribution function” for a species of particle measures the number
density of that species in the combined six–dimensional space of coordinates
plus momenta. If that function is known for a particular gas composed of
a combination of species, then all other thermodynamic variables may be
derived given the temperature, density, and composition. For the next few
sections we shall assume that the gas, including electrons and photons, is
a perfect (sometimes called ideal) gas in that particles comprising the gas
interact so weakly that they may be regarded as noninteracting as far as their
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thermodynamics is concerned. They may, however, still exchange energy and
other conserved properties. Before writing down the distribution function for
a perfect gas we first introduce what may be an unfamiliar thermodynamic
quantity.

The variables of thermodynamic consequence we have encountered thus
far are P , T , ρ (or Vρ = 1/ρ), S, E, Q, and various number densities, ni

(see §1.4.1). The latter have been, and will be, given in the units of number
cm−3. We now introduce Ni, which is the (specific) number density of an ith
species in the units of number per gram of material with Ni = ni/ρ. It is the
Lagrangian version of ni and it will prove useful because it remains constant
even if volume changes.

Another very useful thermodynamic quantity is the chemical potential,
µi, defined by2

µi =
(
∂E

∂Ni

)
S,V

(3.3)

as associated with an ith species in the material (and is not to be confused
with µI, the ion molecular weight). If there are “chemical” reactions in the
stellar mixture involving some subset of species (ions, electrons, photons,
molecules, etc.) whose concentrations could, in principle, change by dNi as
a result of those reactions, then thermodynamic (and chemical) equilibrium
requires that ∑

i

µi dNi = 0 (3.4)

which we state without proof. Changing Ni by dNi in a real mixture usually
means that other components in the mixture must change by an amount
related to dNi so that not all the dNi are independent.

As an example, consider the ionization–recombination reaction

H+ + e− ⇐⇒ H0 + γ (3.5)

where H0 is neutral hydrogen—assumed to have only one bound state in
the following discussion—H+ is the hydrogen ion (a proton), and e− is an
electron. We shall neglect the photon that appears on the righthand side of
(3.5) in the following because, as we shall show, its chemical potential is zero
and will not enter into the application of (3.4). The double-headed arrow is
to remind us that the reaction proceeds equally rapidly in both directions in
thermodynamic equilibrium. Now write (3.5) in the algebraic form

1 H+ + 1 e− − 1 H0 = 0

where the coefficients count how many individual constituents are destroyed
or created in a single reaction. A more general form for this equation is
2 A simple example indicating why µi is a “potential” is given as Ex. 3.6.
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i

νi Ci = 0 . (3.6)

The Ci represent H+, H0, and e− in the example and the νi, or stoichiometric
coefficients, are the numerical coefficients. Obviously the concentrations, Ni,
are constrained in the same way as the Ci. Thus if N1 changes by some
arbitrary amount dN1, then the ith concentration changes according to

dNi

νi
=
dN1

ν1
.

Equation (3.4) then becomes

∑
i

µi
dN1

ν1
νi =

dN1

ν1

∑
i

µiνi = 0

or, since dN1 is arbitrary, ∑
i

µiνi = 0 . (3.7)

This is the equation for chemical equilibrium, which must be part of thermo-
dynamic equilibrium when reactions are taking place.3

As another simple, and useful, example consider a classical blackbody
cavity filled with radiation in thermodynamic equilibrium with the walls of
the cavity. Equilibrium is maintained by the interaction of the photons with
material comprising the walls but the number of photons, Nγ , fluctuates
about some mean value; that is, photon number is not strictly conserved.
Therefore dNγ need not be zero. Nevertheless, reactions in the cavity must
satisfy a symbolic relation of the form

∑
µi dNi + µγ dNγ = 0 with dNi = 0.

The last two statements can only be reconciled if

µγ = 0 for photons. (3.8)

It is for this reason that photons were not included in the ionization and
recombination reaction of (3.5): the vanishing of µγ makes its presence su-
perfluous in the chemical equilibrium equation (3.7).

It is reasonable, and correct, to expect that given T , ρ, and a catalogue
of what reactions are possible, we should be able to find all the Ni for a
gas in thermodynamic equilibrium. In other words, information about Ni is
contained in µi for the given T and ρ. In a real gas this connection is difficult
to establish because it requires a detailed knowledge of how the particles in
the system interact. For a perfect gas things are easier. Any text on statistical
mechanics may be consulted for what follows.
3 We exclude thermonuclear reactions from this discussion for the present because

they may proceed very slowly and, usually, only in one direction during stellar
nuclear burning.
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The relation between the number density of some species of elementary
nature (ions, photons, etc.) in coordinate–momentum space and its chemical
potential in thermodynamic equilibrium is found from statistical mechanics
to be

n(p) =
1
h3

∑
j

gj

exp {[−µ+ Ej + E(p)] /kT} ± 1
. (3.9)

We call n(p) the distribution function for the species (although you will often
see this referred to as the “occupation number”). The various quantities are
as follows:

• µ is the chemical potential of the species.

• j refers to the possible energy states of the species (e.g., energy levels of
an ion).

• Ej is the energy of state j referred to some reference energy level.

• gj is the degeneracy of state j (i.e., the number of states having the same
energy Ej).

• E(p) is the kinetic energy as a function of momentum p.

• a “+” in the denominator is used for Fermi–Dirac particles (fermions of
half-integer spin) and a “−” for Bose–Einstein particles (bosons of zero
or whole integer spin).

• h is Planck’s constant h = 6.6260688 × 10−27 erg s.

• n(p) is in the units of number per (cm−unit momentum)3 where the dif-
ferential element in coordinate–momentum space is d3r d3p.

As we shall demonstrate in the following discussion, (3.9) will lead to all
the familiar results from elementary thermodynamics.

To retrieve the physical space number density, n (cm−3), for the species
from (3.9) we need only integrate over all momentum space, which, from
standard arguments, is assumed to be spherically symmetric; that is,4

n =
∫

p

n(p) 4πp2 dp cm−3 . (3.10)

The factor of 4π (steradians) comes from the two angular integrations over
the surface of a unit sphere.

Because we shall want eventually to consider relativistic particles, the
correct form of the kinetic energy, E , for a particle of rest mass m is given by

E(p) = (p2c2 +m2c4)
1/2 −mc2 (3.11)

4 We explicitly assume here that the distribution of particles is angularly isotropic
in momentum. This is really part of LTE but the assumption will have to be
reexamined in Chapter 4 when we put back angular information and partially
unravel the integral.
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which reduces to E(p) = p2/2m for pc � mc2 in the nonrelativistic limit, and
E(p) = pc for extremely relativistic particles or those with zero rest mass.

We shall also need an expression for the velocity which, from Hamilton’s
equations (one of the more elegant and important subjects in the physical
sciences), is

v =
∂E
∂p

. (3.12)

(As a simple check on this definition of v, note that v → p/m for pc � mc2

and v → c for the relativistic case, both of which are elementary results.) This
is the velocity to use in the following kinetic theory expression for isotropic
pressure (as in 1.20)

P = 1
3

∫
p

n(p) pv 4πp2 dp . (3.13)

Finally, the internal energy is simply

E =
∫

p

n(p) E(p) 4πp2 dp . (3.14)

That completes all that we shall need to construct practical equations of state
in the following applications.

3.2 Blackbody Radiation

Photons are massless bosons of unit spin. Since they travel at c, they only
have two states (two spin orientations or polarizations) for a given energy
and thus the degeneracy factor in (3.9) is g = 2. From before, µγ = 0 and
E = pc. Because there is only one energy level (no excited states), Ej may be
taken as zero. Putting this together, we find that the photon number density
is given by5

nγ =
8π
h3

∫ ∞

0

p2 dp

exp (pc/kT ) − 1
cm−3 . (3.15)

Let x = pc/kT and use the integral

5 It may seem contradictory to give one number for the photon density whereas we
stated earlier that the photon concentration fluctuates about some mean value—
thus giving µγ = 0. But the point is that photons must interact with matter to
equilibrate (not with each other unless you delve into quantum electrodynamics)
and this is a statistical process. What you get in (3.15) is an average. Fluctuations
about that average depend on the particulars of the matter interactions but, as
long as there are many interactions, the effect of fluctuations is very small. Much
the same can be said about even the ideal gas except there we deal with various
conservation rules involving particles, not photons. See, for example, Landau and
Lifshitz (1958, Chap. XII).
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0

x2 dx

ex − 1
= 2 ζ(3) = 2(1.202 · · ·)

where ζ(3) is a Riemann Zeta function, to find

nγ = 2π ζ(3)
(

2kT
ch

)3

≈ 20.28T 3 cm−3 . (3.16)

Find, in similar fashion, that the radiation pressure is given by

Prad =
(

k4

c3h3

8π5

15

)
T 4

3
=
aT 4

3
dyne cm−2 (3.17)

and that the energy density is

Erad = aT 4 = 3Prad erg cm−3 (3.18)

where a is the radiation constant a = 7.56577 × 10−15 erg cm−3 K−4. Thus
we recover the usual results for blackbody radiation. The nice thing about
LTE radiation is that all you have to know is the ambient temperature.
Matter density, composition, etc., don’t matter, so to speak.

Note that (3.18) is a γ–law equation of state P =(γ−1)E (as in 1.24 after
E in that equation is converted to energy per unit volume) with γ = 4/3.
Thus a star whose equation of state is dominated by radiation is in danger
of approaching the γ = 4/3 limit discussed in Chapter 1.

It will be convenient for later purposes to define the energy density per
unit frequency (ν) or wavelength (λ) in the radiation field. These energy
densities are usually designated by u (with an appropriate subscript). Recall
that frequency is given by ν = E/h = pc/h and wavelength by λ = c/ν. If
up is the energy density per unit momentum (that is, the integrand of 3.14
with Erad =

∫∞
0 up dp) and uν and uλ are the corresponding densities per

unit frequency and wavelength, then you may easily show

uν dν =
8πhν3

c3
1

ehν/kT − 1
dν erg cm−3 Hz−1 Hz (3.19)

and
uλ dλ =

8πhc
λ5

1
ehc/λkT − 1

dλ erg cm−3 cm−1 cm . (3.20)

Associated quantities are the frequency-dependent Planck function

Bν(T ) =
c

4π
uν erg cm−2 (3.21)

and the integrated Planck function

B(T ) =
∫ ∞

0
Bν(T ) dν =

ca

4π
T 4 =

σ

π
T 4 erg cm−2 s−1 . (3.22)
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Fig. 3.1. A plot of the function B(x) = x3/[exp(x) − 1] corresponding to the vital
part of either uν or the Planck function Bν . The maximum is at x = hν/kT = 2.821.

The Stefan–Boltzmann constant σ = 5.6704 × 10−5 erg cm−2 K−4 s−1. We
shall make extensive use of these functions when we discuss radiative transfer
in the next chapter.

To remind you of what uν or Bν looks like, we plot the function B(x) =
x3/[exp(x) − 1] (as part of 3.19) in Fig. 3.1 where x = hν/kT and multi-
plicative constants have been ignored. The function is strongly peaked with
a maximum at x = 2.821 · · ·. For the center of the sun, with Tc ≈ 107 K, this
peak corresponds to a photon energy of 2.4 keV. (For conversions to eV units
see App. B.) Photons of these energies are capable of completely ionizing
most of the lighter elements.

3.3 Ideal Monatomic Gas

As we shall soon show, the Boltzmann distribution for an ideal gas is charac-
terized by (µ/kT ) � −1. We start off by asserting that this inequality holds
for a sample of gas.

To make it simple, assume that the gas particles are nonrelativistic with
E = p2/2m, v = p/m, and that they have only one energy state E = E0. These
could be, as examples, elementary particles, or a collection of one species of
ion in a given state. If (µ/kT ) � −1, then the term ±1 in the denominator
of (3.9) may be neglected compared to the exponential and the gas becomes
purely classical in character with no reference to quantum statistics. The
expression for the number density is then
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n =
4π
h3 g

∫ ∞

0
p2eµ/kT e−E0/kT e−p2/2mkT dp . (3.23)

The integral is elementary and yields µ in terms of number density:

eµ/kT =
nh3

g(2πmkT )3/2 e
E0/kT . (3.24)

Because we require exp (µ/kT ) � 1 (since µ/kT � −1), the righthand
side of (3.24) must be small. Thus, nT−3/2 cannot be too large. If this is not
true, then other measures must be taken. For example, if µ/kT is negative but
not terribly less than −1, it is possible to expand the original integrand for
n (with the ±1 statistics term retained) in a power series and then integrate.
The additional terms obtained, assuming convergence of the series, represent
Fermi–Dirac or Bose–Einstein corrections to the ideal gas. This is done for
fermions in Chiu (1968, Chap. 3), and Chandrasekhar (1939, Chapt. X), for
example. In any event, µ may be computed once n and T are given. We
assume here that (3.24) is by far the largest contribution to any expansion
leading to an expression for µ for given n and T .

It is easy to take logarithmic differentials of n that yield the following
expressions, and you may easily verify from the literature that they are the
distribution functions for a Maxwell–Boltzmann ideal gas:

dn(p)
n

=
4π

(2πmkT )3/2 e
−p2/2mkT p2 dp (3.25)

and, in energy space,

dn(E)
n

=
2

π1/2

1

(kT )3/2 e
E/kT E1/2 dE . (3.26)

The relevant part of (3.26), C(x) = x1/2 exp(−x), is shown in Fig. 3.2, where
the maximum corresponds to E = kT/2 (i.e., x = 1/2).

It is easy to show that the average kinetic energy of a particle in this
distribution is just 3kT/2, which gives rise to (3.29) below. (To get the av-
erage, multiply 3.26 by E and integrate from zero energy to infinity.) Thus
the “important” particles, in a manner of speaking, of a Maxwell–Boltzmann
gas are those with energies near kT . A major exception to this involves those
partaking of fusion reactions. For the solar center kT is around 1 keV, which
is small compared to nuclear energies measured in MeVs. It will turn out (in
Chap. 6) that the important fusion reactants are those in the exponential
right hand tail of Fig. 3.2, even though their population is small compared
to those in the peak of the distribution.

A similar procedure involving the neglect of the ±1 statistical factor equiv-
alent to what was done for (3.23) yields the pressure

P = g
4π
h3

π1/2

8m
(2mkT )5/2

eµ/kT e−E0/kT (3.27)



154 3 Equations of State

Fig. 3.2. A plot of the function C(x) = x1/2 exp(−x) corresponding to the exciting
part of the Maxwell–Boltzmann distribution in energy space. The maximum is at
x = 1/2 (E = kT/2).

or, after substituting for eµ/kT of (3.24),

P = nkT dyne cm−2 (3.28)

which comes as no surprise. This last result is true even if the particles are
relativistic (as in Ex. 3.4). The internal energy is

E = 3
2nkT erg cm−3 (3.29)

using the same procedures. (Note that if reactions are present that change the
relative concentrations of particles, then E must contain information about
the energetics of such reactions; see below.) These are all elementary results
for the ideal gas so that, given n, T , and composition, then P , E, and µ
immediately follow.

To tidy up, we return to a statement made at the beginning of this chapter;
namely, that “the Boltzmann populations of ion energy levels are consistent
with the local electron kinetic temperature” in LTE. We have implicitly as-
sumed here that all species in a mixture have the same temperature, which, in
some environments, is not warranted. For the stellar interior the assumption
is fine. Thus consider an ion with two energy levels with E1 > E2. These levels
are populated or depopulated by photon absorption or emission, for example.
Because the photon chemical potential is zero, then µ1 = µ2. Dividing (3.24)
for the two levels yields, after trivial algebra,

n1

n2
=
g1
g2
e−(E1−E2)/kT (3.30)
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which is the Boltzmann population distribution and, if the statistical weights
are not strange, means that levels become more sparsely populated as their
energy increases.

3.4 The Saha Equation

In many situations the number densities of some species cannot be set a priori
because “chemical” reactions are taking place. This is the problem referred
to in §1.4 where mean molecular weights were computed. If the system is
in thermodynamic equilibrium, however, then the chemical potentials of the
reacting constituents depend on one another and this additional constraint
is sufficient to determine the number densities.

As an example, consider the ionization–recombination reaction brought
up earlier:6

H+ + e− ⇐⇒ H0 + χH (3.31)

where χH = 13.6 eV is the ionization potential from the ground state of
hydrogen (still assumed to have only one bound level). We assume that no
other reactions are taking place that involve the above constituents and, in
particular, that the gas is pure hydrogen. Reference to the photon in (3.31)
has again been deleted because its chemical potential is zero and does not
appear in the equilibrium condition (3.7), which will be invoked shortly.

To obtain the LTE number densities of the electrons and neutral and
ionized versions of hydrogen, assume that all gases are ideal so that (3.24)
applies. The reference energy levels for all species are established by taking
the zero of energy as the just-ionized H+ + e− state. (Other choices are
possible of course.) Thus E0 for electrons and H+ is zero, whereas for H0 it
is −χH = −13.6 eV lower on the energy scale. That is, we need 13.6 eV to
convert H0 to a free electron and a proton. The ground state of hydrogen
has two near-degenerate states corresponding to spin-up or spin-down of the
electron relative to the proton spin. For our purposes regard those states
as having the same energy (but of course they do not, otherwise 21-cm HI
radiation would not exist). Thus the degeneracy factor for H0 is g0 = 2.
The situation for the free electron and H+ is a bit more complicated because
of the possible problem of double counting. If the spin axis of the proton
is taken to be a fixed reference direction, then the free electron may have
two spin directions relative to the free proton. Thus, g− = 2 and g+ = 1.
The argument could be reversed without having any effect on the following
results.

With µ−, µ+, and µ0 denoting the chemical potentials of the components
in (3.31), Equation (3.24) then yields

6 See Ex. 3.1 for a more complicated problem.
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ne =
2 [2πmekT ]3/2

h3 eµ−/kT (3.32)

n+ =
[2πmpkT ]3/2

h3 eµ+/kT (3.33)

n0 =
2[2π(me +mp)kT ]3/2

h3 eµ0/kT eχH/kT (3.34)

where me and ne denote, respectively, the electron mass and number density,
mp is the proton mass, and the neutral atom mass is set to me +mp.

Now form the ratio n+ne/n
0 and find

n+ne

n0 =
(2πkT )3/2

h3

(
memp

me +mp

)3/2

e(µ−+µ+−µ0)/kT e−χH/kT .

But µ− + µ+ − µ0 = 0 for equilibrium by application of (3.7), so that we
obtain the Saha equation for the single-level pure hydrogen gas7

n+ne

n0 =
(

2πmekT

h2

)3/2

e−χH/kT (3.35)

where the reduced mass approximation [mem/(me +m)] ≈ me has been
used. A numerical version of part of this equation is

(
2πmekT

h2

)3/2

= 2.415 × 1015 T 3/2 cm−3 (3.36)

and note that
kT = 8.6173 × 10−5 T eV (3.37)

where the eV units are handy for energies on the atomic scale.
To find the number densities, and not just ratios, further constraints must

be placed on the system. A reasonable one is that of electrical neutrality,
which requires that ne = n+ for a gas of pure hydrogen. Furthermore, nucleon
number must be conserved so that n+ + n0 = n, where n is a constant if the
density (ρ) is kept fixed.

We now define the degree of ionization (as in §1.4 and Eq. 1.47)

y =
n+

n
=
ne

n
(3.38)

so that y is the fraction of all hydrogen that is ionized. The Saha equation
(3.35) is then

7 Clayton (1968, §1–2) extends this analysis to the case of multiple ionizations in
many-electron atoms, which leads to a consideration of partition functions. We
shall not need those functions but Clayton’s discussion is worth looking into.
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y2

1 − y
=

1
n

(
2πmekT

h2

)3/2

e−χH/kT . (3.39)

For sufficiently high temperatures, with fixed density, we expect the radiation
field or collisions effectively to ionize all the hydrogen. This is indeed the case
because we see that as T → ∞, then y → 1. Similarly, low temperatures mean
less intense radiation fields and recombination wins with y → 0.

Fig. 3.3. The half-ionization curve for a mixture of pure hydrogen undergoing the
recombination–ionization reaction H+ + e− ⇐⇒ H0 + χH (ground state only).

For the pure hydrogen mixture n = ρNA and (3.39) becomes

y2

1 − y
=

4.01 × 10−9

ρ
T 3/2e−1.578×105/T . (3.40)

The half-ionized (y = 1/2) path in the ρ-T plane for this mixture is then

ρ = 8.02 × 10−9T 3/2e−1.578×105/T g cm−3 (3.41)

and this is shown in Fig. 3.3 as a very shallow curve for a range of what are
interesting densities.

The dominant factor in (3.40) and (3.41) is the exponential and this is
what causes the half-ionization point to depend only weakly on density. For
hydrogen ionization from the ground state, the characteristic temperature for
ionization-recombination is around 104 K and you may readily check that the
transition from y = 0 to y = 1 takes place very rapidly as the temperature
scans across that value (or, more precisely, at the temperature corresponding
to y = 1/2 at a particular density). This is shown in Fig. 3.4 for pure hydrogen
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at a density of 10−6 g cm−3. A rough rule of thumb is that the transition
temperature (where y ≈ 1/2) is such that χ/kT ∼ 10 to within a factor of
three or so depending on density. Thus, for example, the ionization potentials
for removing the first and second electrons of helium are 24.6 eV and 54.4 eV,
which correspond to transition temperatures of about 3 × 104 K and 6 × 104

K. (See Ex. 3.1.)

Fig. 3.4. Note how the ionization fraction y changes rapidly for pure hydrogen as
temperature is varied through 1.62 × 104 K at which y = 1/2—as indicated by the
dashed lines. The density is fixed at ρ = 10−6 g cm−3.

As we shall see, the presence of these zones of ionization have profound
consequences for the structure of a star. You may wish to consider at this
point a mixture of single-level hydrogen and helium (with two stages of ion-
ization) and go through an analysis corresponding to the above to see how
the various ions compete for electrons and to find out what the transition
temperatures are for the three ionization stages involved. Even for this very
practical, but simple, problem, you will find that a computer is essential for
your sanity.

If the temperature and density of the hydrogen mixture are fixed, then
(3.40) yields the ionization fraction y. The total hydrogen number density is
clearly n = ρNA and thus n+ = ne = yn from (3.38). Chemical potentials, if
required, follow from (3.32–3.34). The partial pressures and internal energies,
which are additive, yield the total pressure

P = n(1 + y)kT (3.42)

and total internal energy
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E = 3
2n(1 + y)kT + y nχH erg cm−3. (3.43)

The last term in E appears because we have to take account of the ionization
energy. If we wish to ionize the gas (y → 1) completely, then (3nkT/2 +
nχH) erg cm−3 must be added to the system. Of this amount, nχH strips
off the electrons, and the remainder brings the system up to the common
temperature T .

The real calculation of ionization equilibria is as difficult as that for real
equations of state (and the two are intimately connected). In principle, all
species, energy levels, and reactions must be considered. In addition, the ef-
fects of real interactions must be included (and these depend on composition,
temperature, and density), which change the relations between concentration
and chemical potential. For textbook examples see Cox (1968, §15.3), and
Kippenhahn and Weigert (1990, Chap. 14), with the warning that, in prac-
tice, accurate analytic or semianalytic solutions are seldom possible: you are
usually faced with computer-generated tables of pressure and the like and
the task is to use them intelligently.

3.5 Fermi–Dirac Equations of State

The most commonly encountered Fermi–Dirac elementary particles of stel-
lar astrophysics are electrons, protons, and neutrons; all have spin one-half.
(Neutrinos also appear but in contexts not usually connected with equations
of state.) The emphasis here will be on electrons, but (almost) all that fol-
lows may apply to the other fermions as well. The prime motivation for this
discussion is that the equation of state in the inner regions of many highly
evolved stars, including white dwarfs, is dominated by degenerate electrons
and, to a great extent, this determines the structure of such stars.

The number density of Fermi–Dirac particles is given by (3.9) and (3.10)
with the choice of +1 in (3.9) and an energy reference level of E0 = mc2, where
m is the mass of the fermion. (Other choices are indeed possible for E0. They
lead to an additive constant in the definition of the chemical potential and
you have to watch out for this in the literature.) For these spin 1/2 particles,
the statistical weight g = 2. Transcribing these statements then means that
the number density is

n =
8π
h3

∫ ∞

0

p2 dp

exp {[−µ+mc2 + E(p)] /kT} + 1
(3.44)

where, in general, from (3.11) and (3.12),

E(p) = mc2

[√
1 +
( p

mc

)2
− 1

]
(3.45)

and
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v(p) =
∂E
∂p

=
p

m

[
1 +
( p

mc

)2
]−1/2

. (3.46)

We now explore some consequences of the above.

3.5.1 The Completely Degenerate Gas

The “completely degenerate” part of the title of this subsection refers to
the unrealistic assumption that the temperature of the gas is absolute zero.8

In practice this does not happen but, under some circumstances, the gas
effectively behaves as if it were at zero temperature and, for fermions in
stars, these unusual circumstances are very important. So, in (3.44), note the
peculiar behavior of the integrand as T → 0. The exponential tends either to
zero or infinity depending on, respectively, whether −µ + mc2 + E is <0 or
>0. Therefore consider the interesting part of (3.9),

F (E) =
1

exp {[E − (µ−mc2)] /kT} + 1
(3.47)

where, as T → 0, F (E) approaches either zero or unity depending on whether
E is greater or less than µ−mc2.

The critical kinetic energy at which F (E) is discontinuous (for T → 0) is
called the “Fermi energy” and we denote it by EF ; that is, where EF = µ−mc2.
(But note that we have not yet described how µ is found.) The situation is
depicted in Fig. 3.5 where, in the unit square corresponding to particle ener-
gies 0 ≤ E ≤ EF , F (E) is unity. Fermions are contained only in that energy
range and not at energies greater than EF where the distribution function
is zero. In this situation we refer to a “filled Fermi sea” of fermions because
all the fermions present are swimming in that sea and nowhere else. (Ignore
the dashed line for the moment. It shows what happens if the temperature
is raised slightly above zero. See §3.5.3.)

The momentum corresponding to the Fermi energy is the Fermi momen-
tum pF . It is usually reduced to dimensionless form by setting x = p/mc and
defining xF = pF /mc. Then, from (3.45), we have

EF = mc2
[(

1 + x2
F

)1/2 − 1
]
. (3.48)

In this language, the chemical potential of the system is µF = EF +mc2 and it
is the total energy, including rest mass energy, of the most energetic particle
8 This has almost been achieved in the laboratory by the elegant experiments of

DeMarco and Jin (1999), who, using atoms of 40K at temperatures less than
300 nanoKelvin (!), have made a soup of fermions in their lowest energy states.
Similar experiments by Anderson et al. (1995) have done the same for bosons
by making a “Bose–Einstein Condensate” (BEC), a form of matter long thought
possible but only now demonstrated actually to exist (and the work gained the
two senior investigators a Nobel Prize). The two groups, not so incidentally, are
in the same institute (JILA) at the University of Colorado.
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Fig. 3.5. The function F (E/EF ) of (3.47) versus particle kinetic energy in units of
EF for zero temperature. Fermions are restricted to the shaded area of unit height
and width and do not have energies greater than the Fermi energy EF . The dashed
line shows how F (E) is changed by raising the temperature slightly. (In this case
EF /kT = 20.)

(or particles) in the system. If the spin is 1/2 (g = 2), then all the rest of the
particles are locked in pair-wise with spin-up and spin-down paired at each
lower energy level by the Pauli exclusion principle.9 The Fermi sea is then
capped by the “Fermi surface” at EF .

The relation between particle number density and the Fermi energy, and
thus µF , is found as follows. Because F (E) is in the form of a unit step, (3.44)
need only be integrated up to pF . Hence

n =
8π
h3

∫ pF

0
p2 dp = 8π

(
h

mc

)−3 ∫ xF

0
x2 dx =

8π
3

(
h

mc

)−3

x3
F . (3.49)

To deal with astrophysically interesting numbers we shall, from this point on,
deal exclusively with electrons unless otherwise noted.

It is traditional, but admittedly confusing, to delete the F subscript on
xF so that (3.49) is written

ne =
8π
3

(
h

mec

)−3

x3 = 5.865 × 1029 x3 cm−3 (3.50)

9 The most obvious application of the Pauli exclusion principle is for atoms. Were
it not for this curious way nature works, electrons would all cascade down to the
lowest energy level of atoms and we all would become very small entities indeed.
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for electrons where (h/mec) is the electron Compton wavelength equal to
2.426×10−10 cm. The transcription to other spin 1/2 fermions is accomplished
merely by changing the mass in (3.50).

To convert this to density units we reintroduce the electron mean molec-
ular weight, µe, of (1.48–1.49) with ne = ρNA/µe. Thus

ρ

µe
= B x3 (3.51)

with

B =
8π

3NA

(
h

mec

)−3

= 9.739 × 105 g cm−3 (3.52)

for electrons. This may be looked upon as a relation that yields x (i.e., xF ),
and, hence, EF and pF , once ρ/µe is given.

Note that the demarcation between nonrelativistic and relativistic me-
chanics occurs when pF ≈ mec or x = xF ≈ 1. The corresponding density is
ρ/µe ≈ 106 g cm−3, which, incidentally, is a typical central density for white
dwarfs and is near the density at which the “helium flash” takes place (see
§2.5). It remains to be shown, however, that temperatures in these contexts
are sufficiently low to be effectively zero as far as electrons are concerned.

Looking ahead to neutron star matter, the numerical constant B in (3.51–
3.52) is B(neutrons) = 6.05 × 1015 g cm−3 and µe in that expression is set
to unity; that is, we must replace µe by the amu weight of the neutron
(essentially unity). For typical densities in a neutron star (comparable to
nuclear densities of ρ ≈ 2.7×1014 g cm−3), x ≈ 0.35 and EF ≈ 57 MeV. This
implies that the neutrons are nonrelativistic because the neutron rest mass
energy is 939.57 MeV.

The pressure of a completely degenerate electron gas is treated in the same
way as that for the number density. It is the integral in (3.13) truncated at
the Fermi momentum with F (E) of (3.47) set to unity. A little work on (3.13)
yields

Pe =
8π
3
m4

ec
5

h3

∫ xF

0

x4 dx

(1 + x2)1/2 = Af(x) (3.53)

where

A =
π

3

(
h

mec

)−3

mec
2 = 6.002 × 1022 dyne cm−2 (3.54)

for electrons and

f(x) = x(2x2 − 3)(1 + x2)1/2 + 3 sinh−1 x . (3.55)

Similarly, the internal energy, from (3.14), is given by the integral

Ee = 8π
(

h

mec

)−3

mec
2
∫ xF

0
x2
[
(1 + x2)1/2 − 1

]
dx = Ag(x) (3.56)
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with
g(x) = 8x3

[
(1 + x2)1/2 − 1

]
− f(x) . (3.57)

The units for Ee are erg cm−3 as is that for A when dyne cm−2 is expressed
in those units in (3.54).

It will often prove useful to have limiting forms for f(x) and g(x) that
correspond to the limits of relativistic or nonrelativistic electrons. These are

f(x) →
{

8
5x

5 − 4
7x

7 + · · · , x � 1
2x4 − 2x2 + · · · , x � 1

(3.58)

and

g(x) →
{

12
5 x

5 − 3
7x

7 + · · · , x � 1
6x4 − 8x3 + · · · , x � 1 .

(3.59)

Note that x � 1 implies nonrelativistic particles, and x � 1 is the extreme
relativistic limit. Also observe that

Pe ∝ Ee ∝
{

(ρ/µe)5/3, x � 1
(ρ/µe)4/3, x � 1

(3.60)

and the limiting ratios of Ee to Pe are

Ee

Pe
=
g(x)
f(x)

=
{

3/2 (γ = 5/3), x � 1
3 (γ = 4/3), x � 1 . (3.61)

The values for γ are included as a reminder that for a γ–law equation of state
the completely degenerate nonrelativistic electron gas acts like a monatomic
ideal gas whereas, in the extreme relativistic limit, it behaves like a photon
gas.

3.5.2 Application to White Dwarfs

As a simple, but important, application of completely degenerate fermion
statistics, consider zero temperature stars in hydrostatic equilibrium whose
internal pressures are due solely to electron degenerate material and whose
densities and composition are constant throughout.

The easiest way to look at this is to apply the virial theorem in the
hydrostatic form 3(γ−1)U = −Ω from (1.25). Because the star is assumed to
have constant density, Ω = −(3/5)(GM2/R). If Ee is the volumetric energy
density (with no contribution from the zero temperature ions), then U = V Ee
where V is the total stellar volume V = (4π/3)R3. In the nonrelativistic
limit Ee = 12Ax5/5 from (3.56) and (3.59), x may be expressed in terms
of ρ/µe via (3.51) and ρ, in turn, may be eliminated in favor of M and
R by ρ = M/(4πR3/3). If the entire virial theorem is also cast in a form
containing only M and R, and if the constants B and A of (3.52) and (3.54)
are given in terms of fundamental constants, then a little algebra yields the
nonrelativistic mass–radius relation
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M =
1
4

(
3
4π

)4(
h2NA

meG

)3
N2

A

µ5
e

1
R3 for constant density. (3.62)

This relation has the remarkable property that as mass increases, radius
decreases and is quite unlike the homology result for main sequence stars
discussed in the first chapter. And this result is what we promised you several
times in Chapter 2.

For electrons, this yields the numeric expression

M
M�

≈ 10−6
( R

R�

)−3( 2
µe

)5

. (3.63)

We state, without proof for now, that the interiors of white dwarf stars are
almost entirely supported by electron degeneracy pressure, and that they
typically have masses around 0.6 M�. If the electrons are nonrelativistic, then
(3.63) yields a typical radius of R ≈ 0.01 R� for µe = 2 (completely ionized
4He, 12C, 16O, etc.). This radius is very close to that of the earth’s with
R⊕ = 6.38×108 cm. An exact analysis involving integration of the hydrostatic
equation using the nonrelativistic equation of state shows that (3.63) gives the
correct result provided that the numerical coefficient is increased by (only!)
a factor of two.

If µe in (3.62) is replaced by unity and the particle mass is taken to be
that of the neutron, then the neutron star equivalent of (3.63) becomes

M
M�

≈ 5 × 10−15
( R

R�

)−3

(neutron stars) (3.64)

in the nonrelativistic limit. For M = M�, R ≈ 11 km, which is in the
right ballpark. Note that general relativistic effects have been completely
ignored, but this is the least of our sins because the nuclear force makes our
noninteracting equation of state inaccurate.

You will have realized by now that the simple arguments outlined above
for mass–radius relations contain a serious flaw. The nonrelativistic degen-
erate electron pressure depends solely on density and composition (through
µe); that is, in numeric form and using (3.51), (3.53), and (3.58)

Pe = 1.004 × 1013
(
ρ

µe

)5/3

dyne cm−2 (3.65)

and, as may easily be verified, the corresponding extreme relativistic expres-
sion is

Pe = 1.243 × 1015
(
ρ

µe

)4/3

dyne cm−2. (3.66)

Thus if ρ and µe are constant, then so is Pe by virtue of the equation of
state. But a constant pressure is inconsistent with hydrostatic equilibrium
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and, in fact, (1.41) is the correct solution for the pressure through a constant–
density star. Thus Pe is not a constant and neither is Ee as assumed above.
The trouble is that we have overconstrained the problem by insisting on the
constancy of ρ combined with the degenerate equation of state.

The correct way to construct equilibrium degenerate models is to use the
general expression for the pressure given by (3.53) along with the relation
between ρ/µe and dimensionless Fermi momentum of (3.51). This yields a
pressure–density relation, which is then put into the equation of hydrostatic
equilibrium. The resulting equation is then combined with the equation of
mass conservation yielding a second-order differential equation that must be
integrated numerically. We shall not go into the tedious details here because
more than adequate discussions are given in Chandrasekhar (1939, Chap. 11)
and Cox (1968, §25.1), and, in any case, such solutions are easy to come by
using modern numerical techniques. (See, for example, Chap. 7.) Important
results are summarized below.

In the limit of extreme relativistic degeneracy, where (3.66) is appropriate,
you may easily convince yourself by using dimensional analysis that the total
stellar mass depends only on µe and not on radius. An exact analysis yields

M
M�

=
M∞
M�

= 1.456
(

2
µe

)2

(3.67)

where M∞ is the Chandrasekhar limiting mass.10 A virial analysis similar
to that used to find (3.62), but done in the relativistic limit, yields a result
differing from the above by only a change in the constant (a 1.75 instead of
1.456). We assume you will try to verify this and, if you do, you should also
find that the full virial expression (1.25) implies d2I/dt2 becomes negative if
the total mass exceeds M∞. The interpretation is that electron degenerate
objects (of fixed µe) cannot have masses exceeding the Chandrasekhar limit
without collapsing the object. Increased densities and pressure cannot halt
the collapse because the relativistic limit has already been reached. In the
nonrelativistic limit, on the other hand, a new configuration may be reached
by decreasing the radius as indicated by (3.63). Extreme relativistic equations
of state, including that for photons, are too “soft” compared to the effects
of self–gravity. (You can’t make the particles exceed the speed of light to try
to increase pressures!) This conclusion might have been anticipated because
extreme relativistic effects imply γ → 4/3.

10 The exact value of this limiting mass depends on physics we have not included
in our analysis. Hamada and Salpeter (1961), for example, consider the effects
of electrostatic interactions and electron captures on various nuclei. For single
white dwarfs with normal masses and compositions, these effects are not that
significant. However, we can imagine massive objects formed by various means
in binary systems where such effects could well give a stable maximum mass less
than the Chandrasekhar limiting mass, as discussed earlier in §2.13.
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The astrophysical significance of the Chandrasekhar limiting mass is just
as we discussed in Chapter 2. If electron degenerate configurations are good
representations of white dwarfs, and if those objects are the final end product
of evolution for most stars, then the late stages of evolution are severely
constrained. That is, if a star does not finally rid itself of enough mass to
eventually leave a white dwarf with M <∼ 1.46M� (assuming a reasonable
value of µe near 2), then something catastrophic will happen at some time
in its life. Since there are so many white dwarfs in the sky, a large fraction
of stars either start off with sufficiently low masses, or they manage to rid
themselves of the excess mass.

The regime intermediate between nonrelativistic and full relativistic de-
generacy is intractable using simple means, and full-scale models must be
calculated (and you may try this by using the code WD.FOR on the CD-ROM).
The following useful and quite accurate mass–radius relation bridging the two
regimes (fit to actual calculations) is based on one given by Eggleton (1982)
for electrons:

R
R1

= 2.02

[
1 −
( M

M∞

)4/3
]1/2( M

M∞

)−1/3

. (3.68)

Here, M/M∞ is given by (3.67), and R1 is defined by

R1

R�
= 5.585 × 10−3

(
2
µe

)
. (3.69)

This radius is a typical scale length for electron degenerate objects. The
relativistic and nonrelativistic limits of (3.68) go to the correct values as
R → 0 (relativistic) or M becomes small (nonrelativistic). It is shown plotted
in Fig. 3.6.

We shall have more to say about white dwarfs in Chapter 10. One crucial
item that has not been addressed here, and that pertains to these objects, is
the effect of temperature on degeneracy. After all, if white dwarfs were really
at zero temperature we wouldn’t see them.

3.5.3 Effects of Temperature on Degeneracy

The crucial step in deriving some of the thermodynamics of the completely
degenerate zero temperature fermion gas was the realization that the dis-
tribution function becomes a unit step function at a kinetic energy equal
to µ − mc2. If the zero temperature condition is relaxed, the distribution
function follows suit. Suppose the temperature is low—on some scale yet to
determined—but not zero. Fermions deep in the Fermi sea, at energies much
less than EF , need roughly an additional EF energy units to move around
in energy. That is, if the energy input to the system, as measured by kT , is
much smaller than EF , then low–energy particles are excluded from promo-
tion to already occupied upper energy levels by the Pauli exclusion principle.
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Fig. 3.6. The mass–radius relation for zero temperature white dwarfs with constant
µe. (See Eqs. 3.68–3.69.)

Fermions near the top of the Fermi sea don’t have that difficulty and they
may find themselves elevated into states with energies greater than EF . Thus
as temperature is raised from zero, the stepped end of the distribution func-
tion smooths out to higher energies. This is the effect shown in Fig. 3.5 by
the dashed line. If temperatures rise high enough, we expect the effects of
Fermi–Dirac statistics to be washed out completely and the gas should merge
into a Maxwell–Boltzmann distribution. With this discussion as a guide, it
should be apparent that a rough criterion for the transition from degeneracy
to near- or nondegeneracy is EF ≈ kT . The dashed line in Fig. 3.5 shows the
effect of a rise in temperature corresponding to E = 20kT . The effect on the
distribution function is rather small, as would be expected, but the gas is no
longer completely degenerate. A better description is that the gas is partially
degenerate. As an example of the transition to nondegeneracy we apply the
criterion E ≈ kT to nonrelativistic electrons.

The Fermi energy of a nonrelativistic electron gas is EF = mc2x2
F /2,

which is easily obtained by expanding the radical in (3.48) for small xF . The
dimensionless Fermi momentum xF is then converted to ρ/µe using (3.51).
After this is applied to EF ≈ kT , and numbers put in, the criterion becomes

ρ

µe
≈ 6.0 × 10−9 T 3/2 g cm−3. (3.70)

If ρ/µe exceeds the value implied by the righthand side of (3.70) for a given
temperature, then the gas is considered degenerate. Realize though that this
is a rough statement: there is no clean demarcation line on the T–ρ/µe plane
that distinguishes degenerate from nondegenerate electrons.



168 3 Equations of State

The extreme relativistic equivalent to (3.70) is
ρ

µe
≈ 4.6 × 10−24 T 3 g cm−3. (3.71)

The density near which special relativistic effects become important was es-
timated earlier as ρ/µe ≈ 106 g cm−3. Equations (3.70) and (3.71) are illus-
trated in Fig. 3.7 where the transition near 106 g cm−3 has been smoothed.
Note that the center of the present–day sun, as indicated in the figure, is
nondegenerate but close enough to the transition line that good solar models
include the effects of Fermi–Dirac statistics.

Fig. 3.7. The domains of nondegenerate and degenerate electrons in the T–ρ/µe

plane. The location of the center of the present-day sun in these coordinates is
indicated by the � sign.

A better idea of how the transition from degeneracy to nondegeneracy
takes place with respect to temperature and ρ/µe requires explicit evaluation
of the Fermi–Dirac integrals. In general, this involves numeric integration,
although there are some useful series expansions and we shall discuss one of
these in a bit. The reader is referred to Cox (1968) and other references at
the end of this chapter for a full discussion but the results are summarized
in Fig. 3.8, which is derived from the numeric tabulations in App. A2 of Cox
and his §24.4. Cloutman (1989) discusses some techniques for computing
the Fermi–Dirac integrals and includes a FORTRAN program listing (see also
Eggleton et al., 1973, and Antia, 1993).

Plotted versus ρ/µe in Fig. 3.8 is the ratio of electron pressure at nonzero
temperature, Pe(T, ρ/µe), to the electron pressure for complete degeneracy
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Fig. 3.8. The domains of nondegenerate and degenerate electrons in temperature
and density as expressed by the ratio Pe(T, ρ/µe)/Pe(T = 0, ρ/µe). Temperatures
are given in units of β = kT/mec

2, where β = 1 corresponds to 5.93 × 109 K.
The dashed lines are lines of constant η, which is sometimes called the “degeneracy
parameter” and is related to the chemical potential (see text). The position of the
solar center is indicated by �.

at zero temperature, Pe(T = 0, ρ/µe). Values near unity for this ratio imply
strong degeneracy for Pe(T, ρ/µe), whereas large values mean that the gas is
nondegenerate and, if large enough, the Maxwell–Boltzmann expression may
be used. The solar center is indicated in the figure, and its position implies
that degeneracy accounts for some 15% of the total pressure at that location.

Note that the effects of electron–positron pairs created by the radiation
field are not included here. These become important if temperatures approach
or exceed kT ≈ mec

2 (i.e., T >∼ 6 × 109 K). We shall discuss pair–created
electrons briefly in Chapter 6, where they play a role in creating neutrinos.

A parameter called η is plotted as dashed lines on the figure and an η of
five, for example, corresponds to the situation where the true pressure is only
about 15% greater than if the gas were completely degenerate. Along the
dashed line labeled “η = 0,” a degenerate estimate for the pressure would be
too low by about a factor of three. Transferring this line to the temperature
versus density plane results in a plot that is very similar to that of Fig. 3.7.
Finally, the parameter η, which is commonly used in the literature (but not
by everyone), is related to the electron chemical potential defined here by
η = (µ−mec

2)/kT .
For strongly, but not completely, degenerate gases, there are useful expan-

sions for number density, pressure, and internal energy that are often quoted
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in the literature. We shall not derive complete versions of those expansions
here (see the references) but they all depend on the mild relaxation of the
shape of the distribution function near EF . One of them is the following.

Following Landau and Lifshitz (1958, §57) we write any of the Fermi–
Dirac integrals (for number density, etc.) in the kinetic energy-dependent
form

I(µ, T ) =
∫ ∞

0

G(E) dE
exp [(−µ+mc2 + E) /kT ] + 1

. (3.72)

The integral I may be expressed as an asymptotic (but not necessarily con-
vergent) series whose leading terms are

I(µ, T ) =
∫ µ′

0
G(E) dE +

π2

6
∂G

∂E (kT )2 +
7π4

360
∂3G

∂E3 (kT )4 + · · · (3.73)

where µ′ = µ − mc2 and all the partials are evaluated at µ′. It is assumed
that µ′/kT is much larger than unity.

It is a simple, but tedious, exercise to transform the integrals for n, P ,
and E of, respectively, (3.10), (3.13), and (3.14), into their energy space
counterparts and then to find G(E). Another way, however, is to transform
all of the elements in the expansion (3.73) into x = p/mc–space using (3.45);
that is, E = mc2

[(
1 + x2)1/2 − 1

)]
. A big part of this was done when the

expressions for the completely degenerate electron gas were written down in
the equations for ne (3.49), Pe (3.53), and Ee (3.56). Thus, for example, the
leading term in the expansion of (3.73) for ne is simply (neglecting constants)

ne (first term) ∝
∫ xf

0
x2 dx .

Here xf takes the place of µ′ = µ −mc2 and, since we have converted from
energy to x-space, it should be obvious that the relation between xf and µ′

is
µ′ = µ−mec

2 = mec
2
[(

1 + x2
f

)1/2 − 1
]
. (3.74)

This relation is given in the same spirit as was done for the completely de-
generate case where the Fermi energy was related to the chemical potential
by EF = µ −mec

2 and EF was given in terms of xF through (3.48). In that
instance, xF and, hence, µ were found by fixing the number density ne and
using (3.49). The same sort of thing can be done here except there is an
additional complication because temperature also appears in the thermody-
namics; that is, ne must be a function of both xf (or µ) and T . This all can
be accomplished by performing the indicated operations in the expansion
(3.73). Carrying out this enterprise is left to you as an exercise in elementary
calculus, but the result, to second-order in temperature, is

ne =
8π
3

(
h

mec

)−3

x3
f

[
1 + π2 1 + 2x2

f

2x4
f

(
kT

mec2

)2

+ · · ·
]

cm−3. (3.75)
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This expansion is useful only if the second term in the brackets is small
compared to unity. A useful rule of thumb is to be wary if it exceeds 0.1
to 0.2. In any case, given any two of ne (or ρ/µe), T , or xf (or µ), the
third follows. Looked at another way (and we shall use this shortly), (3.75)
may be used to find out how the chemical potential changes with respect to
temperature for fixed ne or ρ/µe. Note that as T → 0, the number density
approaches the completely degenerate expression (3.49) with xf → xF , and
µ′ → EF .

The corresponding expansions truncated to second order in kT for pres-
sure and internal energy are

Pe = Af(xf )

[
1 + 4π2xf (1 + x2

f )1/2

f(xf )

(
kT

mec2

)2
]

(3.76)

Ee = Ag(xf )

[
1+4π2 (1 + 3x2

f )(1 + x2
f )1/2 − (1 + 2x2

f )
xf g(xf )

(
kT

mec2

)2
]
(3.77)

where f(xf ) and g(xf ) are given, respectively, by (3.55) and (3.57). Note
that Pe is in dyne cm−2 and Ee is the volumetric energy density in erg cm−3

(and not specific energy density in erg g−1).
These equations will be used to find such things as specific heats and

temperature exponents for the almost completely degenerate electron gas.
Note: As a matter of practicality, xf is often computed as if the gas were

completely degenerate. Thus if the correction term for temperature is very
small, then x (or xF ) of (3.50) is used instead of xf as a good approximation
for direct calculation of ne, Pe, and Ee in (3.75–3.77). This is what we shall
usually do here.

3.6 “Almost Perfect” Equations of State

In real gases, interactions have to be taken into account that modify the
“perfect” results given above. In addition, a stellar equation of state might
consist of many components with radiation, Maxwell–Boltzmann, and degen-
erate gases competing in importance. This short section will not attempt to
show how imperfections are treated in detail but will indicate where some
are important in practical situations. The results of this discussion are sum-
marized in Fig. 3.9 for a hypothetical gas composed of pure hydrogen.

In an almost-ideal gas, a measure of the interaction energy between ions
is the Coulomb potential between two ions. If the ionic charge is Z, then
the potential is Z2e2/a, where a is some typical separation between the ions.
Coulomb effects are expected to become important when this energy is com-
parable to kT . Thus form the ratio

ΓC ≡ Z2e2

akT
(3.78)
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Fig. 3.9. A composite showing how the ρ–T plane is broken up into regions dom-
inated by pressure ionization, degeneracy, radiation, ideal gas, crystallization, and
ionization-recombination. The gas is assumed to be pure hydrogen.

where ΓC = 1 is the rough demarcation between where Coulomb effects might
be important or not, and a ΓC > 1 implies they probably are important. The
distance a is usually taken as the radius of a Wigner–Seitz sphere whereby
(4πa3/3) = (1/nI) and nI is the ion number density. If the gas consists of
pure ionized hydrogen and ΓC = 1, then (3.78) becomes

ρ = 8.49 × 10−17 T 3 g cm−3. (3.79)

If the density is greater than that implied by (3.79) for a given temperature,
then you can be reasonably certain that a perfect gas is not as perfect as
could be desired. This line is shown in Fig. 3.9. You may check, from the
material given previously, that the centers of very low mass ZAMS stars are
encroaching upon both this line and the one for degeneracy effects. Carefully
done stellar models of these stars contain corrections for these effects.

If ΓC becomes large enough, then Coulomb effects overwhelm those of
thermal agitation and the gas settles down into a crystal. The best estimates
as to how this takes place yield a ΓC of around 170 for the transition. With
this value of ΓC in a hydrogen gas (which is kind of silly for a crystallizing
composition but fine for talking purposes), (3.79) becomes

ρ = 4.2 × 10−10 T 3 g cm−3. (3.80)

This is not an academic issue because some portions of very cool white dwarfs
are thought to turn crystalline, but with carbon and/or oxygen rather than
hydrogen.
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We have already discussed the Saha equation for pure hydrogen, and the
density–temperature relation for half-ionization was given by (3.41). That
relation is also shown in Fig. 3.9 as the dashed line. In deriving the Saha
equation it was implicitly assumed that the energy levels of the hydrogen
atom (had we included all of them) were known and that their energies were
independent of conditions in the ambient environment. This cannot be true
in general. If the gas is dense, then the electrostatic field of one atom should
influence a neighboring atom and hence disturb atomic levels. In the extreme,
we can imagine this continuing until electron clouds practically rub and elec-
trons are ionized off the parent atoms. This is a crude description of pressure
ionization. To estimate under what conditions this occurs, take the rubbing
picture seriously and find at what density the Wigner–Seitz radius equals
the radius of the first Bohr orbit of hydrogen (0.53 × 10−8 cm). A very easy
calculation says that this takes place when

ρ ≈ 1 g cm−3. (3.81)

This density is shown in Fig. 3.9 as the line that terminates ordinary Saha
ionization. Such densities are commonplace in stellar interiors and lead to
the statement that the larger bulk of those interiors are ionized as far as
the lighter elements are concerned independent of the effects of the radiation
field.11

We finally ask under what conditions radiation pressure dominates over
ideal gas pressure or the other way round. That is, where does aT 4/3 =
ρNAkT/µ ? With the assumption of complete ionization in hydrogen this
becomes

ρ = 1.5 × 10−23 T 3 g cm−3 (3.82)

as shown in the figure. This ends the discussion of the major factors deter-
mining pressures and internal energies in simple environments.12

3.7 Adiabatic Exponents and Other Derivatives

For the most part, all we need in the way of thermodynamic variables to con-
struct a simplified stellar model is the internal energy and pressure as a func-
tion of density, temperature, and composition (as was done in Chap. 1). To
construct realistic models, and to evolve them in time, however, we need sev-
eral thermodynamic derivatives. We shall assume, at first, that the detailed
11 As a side comment, note that several lines in the figure cross at T ≈ 3 × 105

K and ρ ≈ 1 g cm−3. You can be assured that computing accurate equations of
state in that region of the T–ρ plane is a nightmare.

12 We have purposely ignored equations of state at ultrahigh densities such as are
found in neutron stars and the collapsing cores of supernovae. This is a difficult
subject itself worthy of a monograph. For further reading we suggest chapters 2
and 8 of Shapiro and Teukolsky (1983) and Bethe (1990, §§3-4).
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composition, including concentrations of ions, etc., has been determined and
that chemical reactions are not taking place. We also assume that you have
some facility in transforming thermodynamic functions under reversible con-
ditions and that you are familiar with their properties.

3.7.1 Keeping the Composition Fixed

If changes in temperature and density (or volume) do not cause corresponding
changes in the relative concentrations of various species of atoms or ions in
the stellar mixture, then the calculation of thermodynamic derivatives is not
particularly difficult. We now examine this situation and ignore until later
those complications arising from chemical reactions.

Specific Heats

The first derivatives encountered in elementary thermodynamics are specific
heats. In general form these are defined by

cα =
(
dQ

dT

)
α

(3.83)

where α is kept fixed as T changes. In the following, Q will have the units of
erg g−1 and thus the specific heats will have units of erg g−1 K−1. The most
useful variables for α for us are P , ρ, or the specific volume Vρ = 1/ρ. (We
shall also have occasion to use the ordinary volume, V .) From the first law
for a reversible process (and see 1.11)

dQ = dE + P dVρ = dE + P d

(
1
ρ

)
= dE − P

ρ2 dρ (3.84)

so that

cVρ =
(
dQ

dT

)
ρ

=
(
∂E

∂T

)
ρ

erg g−1 K−1. (3.85)

For an ideal monatomic gas E = 3NAkT/2µ erg g−1 (from 3.29) so that
cVρ = 3NAk/2µ and E = cVρT . Note that the composition has not been
mentioned here except in the mean molecular weight µ: it is kept fixed by
assumption.

To find cP , recall (from any of many thermodynamic texts) that cP and
cVρ (or cV ) are related by

cP − cVρ = −T
(
∂P

∂T

)2

(ρ or Vρ)

(
∂P

∂Vρ

)−1

T

. (3.86)

To cast this in a form that will prove more suitable for later purposes we rein-
troduce the power law expression for the equation of state given in Chapter 1
by (1.67):
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P = P0ρ
χρTχT (3.87)

where P0, χρ, and χT are constants. This means that the last two are also
defined by

χT =
(
∂ lnP
∂ lnT

)
(ρ or Vρ)

=
T

P

(
∂P

∂T

)
(ρ or Vρ)

(3.88)

and

χρ =
(
∂ lnP
∂ ln ρ

)
T

= −
(
∂ lnP
∂ lnVρ

)
T

=
ρ

P

(
∂P

∂ρ

)
T

= − 1
ρP

(
∂P

∂Vρ

)
T

. (3.89)

Thus

cP − cVρ =
P

ρT

χT
2

χρ
erg g−1 K−1. (3.90)

For an ideal monatomic gas χρ = χT = 1 and

cP − cVρ =
NAk

µ
erg g−1 K−1 (ideal gas), (3.91)

which gives the elementary result cP = 5NAk/2µ.
We also define γ (yes, another γ), the ratio of specific heats, to be

γ =
cP

cVρ

= 1 +
P

ρTcVρ

χT
2

χρ
(3.92)

which will be discussed shortly. This γ need not be the γ of the γ–law equation
of state, but sometimes it is—see later.

Adiabatic Exponents

The dimensionless adiabatic exponents, the “Γs,” measure the thermody-
namic response of the system to adiabatic changes and will be used exten-
sively. (Two of them, Γ1 and Γ2, were already introduced in Chap. 1.) They
are defined as follows:

Γ1 =
(
∂ lnP
∂ ln ρ

)
ad

= −
(
∂ lnP
∂ lnVρ

)
ad

(3.93)

Γ2

Γ2 − 1
=
(
∂ lnP
∂ lnT

)
ad

=
1

∇ad
(3.94)

which also defines ∇ad, and

Γ3 − 1 =
(
∂ lnT
∂ ln ρ

)
ad

= −
(
∂ lnT
∂ lnVρ

)
ad
. (3.95)

As in Chapter 1, the subscript “ad” means that the indicated partials are to
be evaluated at constant entropy. (We shall not need it directly, but extensive
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use will be made of ∇ad in later chapters.) It will shortly become clear why
the Γi appear in such curious combinations in the definitions, but first note
that not all the Γi are independent. You may easily show that

Γ3 − 1
Γ1

=
Γ2 − 1

Γ2
= ∇ad . (3.96)

Computation of the Γi is tedious and not particularly enlightening. Com-
plete and clear derivations may be found in Cox (1968), but we suggest you
try to derive the expressions that follow using the more compact methods
given in Landau and Lifshitz (1958), for example. They start from funda-
mentals and then use powerful yet simple Jacobian transformations to derive
what is needed. All you need watch out for is the distinction between V and
Vρ. When you get done, realize that there are many variations in the ways
that the Γi may be expressed and the following may not always be the most
efficient to use; that is, you may wish to rearrange things. The adiabatic
exponents are

Γ3 − 1 =
P

ρT

χT

cVρ

=
1
ρ

(
∂P

∂E

)
ρ

(3.97)

Γ1 = χT (Γ3 − 1) + χρ =
χρ

1 − χT ∇ad
(3.98)

Γ2

Γ2 − 1
= ∇−1

ad = cP

ρT

P

χρ

χT

=
χρ

Γ3 − 1
+ χT . (3.99)

The last exponent, γ, is given by

γ =
cP

cVρ

=
Γ1

χρ
= 1 +

χT

χρ
(Γ3 − 1) =

Γ3 − 1
χρ

1
∇ad

. (3.100)

Note that the righthand side result for Γ3 implies that P = (Γ3 − 1)ρE so
that the γ in the γ–law equation of state of (1.24) is Γ3 and, generally, not
one of the other gammas. Lay the blame for any possible confusion here on
the quirks of historical nomenclature.

Explicit values for all the exponents and specific heats, etc., for interest-
ing gases follow below. Remember, however, that there are still no chemical
reactions going on so that the relative concentrations of ions and electrons
are fixed despite changes in temperature and density.

Mixtures of Ideal Gases and Radiation

For a monatomic ideal gas χρ and χT are equal to unity and Γ1 = Γ2 = Γ3 =
γ = 5/3. A pure radiation “gas” has χρ = 0, χT = 4, and Γ1 = Γ2 = Γ3 = 4/3.
Note that γ = Γ1/χρ → ∞ in this case.

If γ = Γ1 = Γ2 = Γ3 of the same constant value, as can be satisfied by an
ideal gas, then
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P ∝ ργ (3.101)
P ∝ T γ/(γ−1) (3.102)
T ∝ ρ (γ−1) (3.103)

along adiabats. This is the result usually quoted in elementary physics texts
for adiabatic behavior: it is collectively true only if the exponents satisfy the
above equality.

In modeling simple stars, it often turns out that an equation of state
consisting of a mixture of ideal gas and radiation suffices:

P =
ρNAkT

µ
+
aT 4

3
= Pg + Prad dyne cm−2 (3.104)

and

E =
3NAkT

2µ
+
aT 4

ρ
erg g−1. (3.105)

We can find the density and temperature exponents almost by inspection so
that

χρ =
Pg

P
≡ β (3.106)

which also defines β, the ratio of gas (Pg) to total pressure, and

χT = 4 − 3β . (3.107)

(This β is not to be confused with β = kT/mec
2 introduced earlier.) Further

analysis, using the general expressions given previously, yields

cVρ =
3NAk

2µ

(
8 − 7β
β

)
erg g−1 K−1 (3.108)

Γ3 − 1 =
2
3

(
4 − 3β
8 − 7β

)
(3.109)

Γ1 = β + (4 − 3β) (Γ3 − 1) (3.110)
Γ2

Γ2 − 1
=

32 − 24β − 3β2

2(4 − 3β)
(3.111)

and, finally,

γ =
Γ1

β
. (3.112)

It is easy to confirm that all quantities go to their proper limits as β → 1
(ideal gas) or β → 0 (pure radiation) and that all quantities are intermediate
between their pure gas and radiation values for intermediate β.



178 3 Equations of State

Mixtures of Degenerate and Ideal Gases

The first thing we shall find is the specific heat at constant volume for an
almost completely degenerate electron gas. Recall our earlier discussion of
the temperature corrections to such a gas where the number density, ne, was
given as a function of T and xf in (3.75). If the volume or density of the gas is
fixed while temperature is varied, then ne does not change but xf must. Thus
(∂ne/∂T )ρ = 0. If this operation is performed on (3.75), then the righthand
side of the resulting equation contains (∂xf/∂T )ρ, which may be solved to
first order in T as (

∂xf

∂T

)
ρ

= − π2k2

m2
ec

4

1 + 2x2
f

3x3
f

T . (3.113)

When you derive this you will find that it is missing a denominator of the
form

[
1 + O (T 2

)]
, where O (T 2

)
contains terms that are of order T 2. Those

terms must be ignored because they are of the same order as other correction
terms that would have appeared if the equation for ne had been carried out
to higher order in temperature. Thus (3.113) is correct to first order in T .

To find the specific heat we have to differentiate Ee of (3.77) with respect
to T while keeping density fixed. This operation yields, through the chain rule,
nasty terms such as [dg(xf )/dxf ] (∂xf/∂T )ρ. When these are all straightened
out (see Chandrasekhar 1939, Chap. 10, §6), we find

cVρ (e) =
8π3m4

ec
5

3h3Tρ

(
kT

mec2

)2

xf

(
1 + x2

f

)1/2
(3.114)

for electrons or

cVρ (e) =
1.35 × 105

ρ
T xf

(
1 + x2

f

)1/2
erg g−1 K−1. (3.115)

Note the presence of ρ in the (3.115). It is required because this specific heat
is a specific specific heat (from the units). As before, it is reasonable to replace
xf with xF or x using (3.49–3.50) provided that temperature correction terms
are small in all of ne, Pe, and Ee. In any case, note the important result that
the electron specific heat for the nearly degenerate gas is proportional to
temperature.

From here on, we have to make some reasonable physical assumptions
about the nature of the stellar gas. Because of pressure ionization, we expect
all or most of the nuclear species to be completely ionized so that all electrons
are free to swim in the Fermi sea. Thus pressure and energy, as additive
quantities, are determined by bare ions and the free electrons. Radiation
should play no significant role because, if it did, the temperatures would
be so high that electrons would no longer be nearly degenerate—which we
assumed at the onset. (See Fig. 3.9.) Thus the total pressure consists of
P = Pe + PI, where “I” means “ions.” Internal energies and specific heats
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are also additive. The reason we bring this up is because the rest of the
thermodynamic derivatives are, for the most part, logarithmic (like the Γs)
and we cannot simply add them together. It is best to give an example.

The temperature exponent of pressure, χT , is (T/P ) (∂P/∂T )ρ from (3.88)
where P is the total pressure. We cannot separate χT into components de-
scribing just the electrons or just the ions. We had the same problem when
treating the gas and radiation mixture of the previous section but the calcu-
lations there were fairly straightforward. Here, however, the complexity of the
electron gas equation of state makes things computationally more difficult.
Nevertheless, we can compute all the derivatives fairly easily if we assume
that temperatures are very low. If this is the case, then electron degeneracy
pressure greatly exceeds that of the ions and Pe � PI. The same is not true for
the partials of pressure with respect to temperature. By following the same
course of analysis as was outlined above for the specific heat, you should verify
that (∂Pe/∂T )ρ ∝ T . (See 3.76.) On the other hand, (∂PI/∂T )ρ = NAkρ/µI

where µI is the ion mean molecular weight. (The ions are still assumed to
be ideal.) Thus for low enough temperatures the temperature derivative of
electron pressure may be neglected compared to that of the ions. The net
result is that for low temperatures

χT → NAk

µI

ρT

Pe
(3.116)

and, as T → 0, so does χT . The electrons have nothing to say in the matter.
The density exponent χρ = (ρ/P ) (∂P/∂ρ)T of (3.89) is easier. The elec-

tron pressure dominates both terms for low temperatures so that

χρ → ρ

Pe

(
∂Pe

∂ρ

)
T

→
{

5/3 nonrelativistic
4/3 relativistic. (3.117)

The limiting forms come directly from the pressure-density relations (3.60)
for the degenerate gas.

The rest of the derivatives require that the specific heats be found. We
already have cVρ (e) (from 3.114) and we know that the ion specific heat is
3NAk/2µI (from, e.g., 3.85) and it is a constant. Therefore, for sufficiently
low temperatures

cVρ → cVρ (I) =
3NAk

2µI

=
1.247 × 108

µI

erg g−1 K−1 (3.118)

and the electrons do not matter. (But always check that the temperatures
are “sufficiently low.”) It may seem strange at first that the electrons, which
may have a lot of total kinetic energy tied up in their Fermi sea, have a low
specific heat. But most of that energy is locked in, so to speak, because of
the exclusion principle and the vast majority of electrons have nowhere to go
in energy space. Thus increasing or lowering the temperature of the electrons
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does little to change their total kinetic energy. The ideal gas ions do not have
that constraint.

The combination of pressure dominance by electrons, low sensitivity of
pressure to temperature (small χT ), and low specific heats (only the ions
matter), all add up to a potentially explosive situation when very reactant
nuclear fuels are present, as in the helium flash.

Having found the above, it should be a simple matter for you to verify
the following: cP = cVρ (I), Γ3 − 1 = 2/3, Γ1 = χρ, and ∇ad = 2/3χρ.

3.7.2 Allowing for Chemical Reactions

We now give an example of how the thermodynamic derivatives are found
when chemical reactions are taking place. For simplicity, the ideal gas, one-
state hydrogen atom will again be used, and radiation in the equation of
state will be ignored. As usual, real calculations are very difficult and you are
referred to Cox (1968, §9.18) for a fuller discussion. As you will see, even in
the simple example given here, the analysis is made difficult because relative
concentrations of particles vary as temperatures and densities change.

Because we assume that all changes in the system take place along paths
in thermodynamic equilibrium, which implies chemical equilibrium, the Saha
equation of (3.35) holds and

n+ne

n0 = B T 3/2 e−χH/kT (3.119)

where B is

B =
(

2πmek

h2

)3/2

= 2.415 × 1015 cm−3 K−3/2 (3.120)

and the other symbols are the same as those in §3.4. Define N (as in §3.1)
so that Nρ ≡ n = n+ + n0. Thus N is the total ion plus neutral atom
number density per unit mass and it is independent of density and will not
change as the system is compressed or expanded. With the usual definition
of y = n+/n = ne/n, the pressure may be written

P = (ne + n+ + n0)kT = (1 + y)NρkT dyne cm−2 (3.121)

and the specific internal energy is (see 3.43)

E = (1 + y)
n

ρ

3kT
2

+ y
n

ρ
χH erg g−1 (3.122)

or
E = (1 + y)N

3kT
2

+ yN χH erg g−1 (3.123)

where the energetics of the reaction are accounted for.
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Having the pressure and internal energy now allows us to compute the
thermodynamic derivatives. First note that the analysis leading to the deter-
mination of those derivatives in the previous discussion involved only taking
partials with respect to either temperature or density with the other kept
fixed: concentrations were never mentioned in that analysis. But this implies
that partials with respect to concentrations (i.e., the Ni) were never needed.
Thus the general expressions derived for the specific heats, the Γs, etc., are
formally correct and all we need do is put in the correct pressures and internal
energies that contain the information about chemical equilibrium. To carry
this out in detail, however, still requires some effort. We start with easier
quantities, χT and χρ, and leave most of the rest of the work to you.

The ionization fraction y is given by a slightly rewritten version of (3.39):

y2

1 − y
=

B
Nρ

T 3/2 e−χH/kT . (3.124)

We now have the three relations P = P (ρ, T, y), E = E(ρ, T, y), and the
Saha equation. Take total differentials of the first two to find

dP = P

[
dT

T
+
dρ

ρ
+

dy

1 + y

]

and

dE = 3
2NkT (1 + y)

[
dT

T
+

2
3

(
3
2

+
χH

kT

)
dy

1 + y

]
.

Recall that N remains fixed because it is the number of hydrogen nuclei per
gram and cannot change with temperature, density, or volume.

Also take the differential of the Saha equation (3.124) and divide the
result by the Saha equation itself to find

dy

1 + y
= D(y)

[(
3
2

+
χH

kT

)
dT

T
− dρ

ρ

]

where

D(y) =
y(1 − y)

(2 − y)(1 + y)
. (3.125)

Note that D(1) = D(0) = 0 and, for general 0 ≤ y ≤ 1, D(y) ≥ 0. It reaches
a maximum at the half-ionization point y = 1/2 where D(1/2) = 1/9.

The lefthand side of the differentiated Saha equation appears explicitly
in the expressions for dP and dE. Therefore, use that equation to eliminate
any reference to dy in dP and dE and find, for dE,

dE =
3
2
NkT (1 + y)

{[
1 + D2

3

(
3
2

+
χH

kT

)2
]
dT

T
− D2

3

(
3
2

+
χH

kT

)
dρ

ρ

}
.

From this find directly
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cVρ =
3
2
Nk(1 + y)

[
1 + D(y)

2
3

(
3
2

+
χH

kT

)2
]

erg g−1 K−1. (3.126)

Note that Nk = NAk/µI and Nky = NAk/µe from which may be found µI of
(1.45) and µe of (1.48).

Treating the pressure differential in like fashion we find

dP

P
=
[
1 + D

(
3
2

+
χH

kT

)]
dT

T
+ (1 − D)

dρ

ρ

so that
χρ = 1 − D(y) (3.127)

and

χT = 1 + D(y)
(

3
2

+
χH

kT

)
. (3.128)

Because D ≥ 0, we have χρ ≤ 1 and χT ≥ 1. The interpretation here is
that if temperature rises, keeping density fixed, we get more free electrons
liberated and the pressure rises more so than the rise due to temperature
alone. Hence χT increases above its nominal value of unity without ionization
or recombination; that is, χT must be greater than or equal to unity. If density
increases, keeping temperature constant, then recombination decreases the
number of free electrons per gram and thus χρ can fall below unity.

The Γi may now be calculated using equations (3.97) through (3.99) in
the forms that contain χρ, χT , and cVρ . After a bit of algebra the results are

Γ3 − 1 =
2 + 2D(y) (3/2 + χH/kT )
3 + 2D(y) (3/2 + χH/kT )2

(3.129)

Γ2

Γ2 − 1
=

5 + 2D(y) {χH/kT + (3/2 + χH/kT ) (5/2 + χH/kT )}
2 + 2D(y) (3/2 + χH/kT )

(3.130)

and Γ1 follows from (3.96).
Note that as y approaches zero or unity (so that D → 0) all the Γi

approach their ideal gas values of 5/3. This is as it should be. If the gas
is completely neutral or totally ionized, then the equation of state is of its
usual ideal gas form since y is not changing. It is the intermediate case that
is interesting.

To compute the Γi the scheme is, choose ρ (or n) and T , find y from
the Saha equation (3.124) (and D by means of 3.125), and then apply the
above expressions. A typical result is shown in Fig. 3.10, where Γ3 is plotted
as a function of temperature for three densities. The half-ionization point,
y = 1/2, is indicated. Note that if T is near the typical hydrogen ionization
temperature of 104 K, Γ3 drops rapidly from its value of 5/3 to much lower
values. Even the dangerous 4/3 may be passed by in the process. A word to
the wise: always watch out for temperatures near 104 K in a hydrogen-rich
mixture.
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Fig. 3.10. The adiabatic exponent Γ3 for an ionizing pure one–state hydrogen gas
is plotted as a function of temperature. Results are shown for three densities. The ◦
indicates the half-ionization point. The fiducial points 5/3 and 4/3 are also shown.

The reason why Γ3 (and the other Γs) behaves the way it does when
ionization is taking place is quite simple. First suppose no ionization or re-
combination processes can operate in an almost completely neutral gas so
that concentrations remain constant as the system is compressed adiabati-
cally. In that case Γ3 = 5/3, T ∼ ρ2/3, (as in 3.103) and the gas heats up. If,
however, we allow ionization to take place, then compression may still heat
up the gas, but ionization is much more sensitive to temperature changes
than to changes in density. Hence, ionization is accelerated. But this takes
energy and that energy is paid for at the expense of the thermal motion in
the gas. Thus the temperature tends not to rise as rapidly as ρ2/3 and Γ3 is
smaller than its value with no ionization.

As we shall see in chapters to come, all the Γi are important in some
respect or another: Γ3 says something about how the heat content of the gas
responds to compression; Γ1 is intimately tied up with dynamics (partially
through the sound speed); the behavior of Γ2 and ∇ad may be a deciding
factor in whether convection may take place. As an example, Fig. 3.11 shows
the run of ∇ad through a ZAMS model sun. The abscissa is − log (1−Mr/M),
the stellar center is at the left, and the surface is to the right. Such an axis
emphasizes the outer layers of the model. Thus, a value of “9” on this axis
corresponds to 1−Mr/M = 10−9 or a mass point that is within 10−9 of the
total mass. The dips in ∇ad signal ionization. The one at “5” takes place at
a temperature of about 105 K and is the first 4He ionization zone. The broad
trough around 8–9 is at about 104 K and corresponds to a combination of
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Fig. 3.11. Plotted is ∇ad (of 3.96) versus − log (1 − Mr/M) for a ZAMS model
sun. The region from roughly “3” on this scale to almost the surface is convective
due, in part, to the depression of ∇ad.

second 4He and 1H ionization. Suffice it to say that the whole region with
depressed ∇ad is convective, for reasons that will be explained in in Chapter 5.

The effects of radiation or other ionizing species and energy levels are
included in more complete analyses than what we have done here (see Cox,
1968). In addition, the effects of pressure ionization (among other things)
have to be included in many situations. Even though the results we have
obtained are useful for many calculations in stellar structure, you should
be aware that real models are usually constructed using tabular equations
of state with P , E, and, sometimes, various derivatives given as functions of
temperature and density for a fixed nuclear composition. Very often these are
included in tabulations of opacities—which we discuss in the next chapter.

3.8 Exercises

Exercise 3.1. We have already explored the Saha equation using a pure
hydrogen gas as an example. Now consider the more complicated 4He atom
with its two electrons. Assume, as in the hydrogenic example, that the neutral
atom and first ionized ion are in their respective ground states. The ionization
potential to remove the first (second) electron is χ1 = 24.587 eV (χ2 =
54.416 eV). To agree on a common nomenclature, let ne, n0, n1, and n2
be the number densities of, respectively, electrons, neutral atoms, and first
and second ionized ions. The total number density of atoms plus ions of the
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pure helium gas is denoted by n. Furthermore, define ze as the ratio ne/n;
and, in like manner, let zi be ni/n, where i = 0, 1, 2. The gas is assumed to
be electrically neutral. For the following you will also need the degeneracy
factors for the atoms and ions and these are to be found in Allen (1973),
Lang (1991), or Cox (1999) as the data-type references given at the end of
Chapter 1.

1. Following the hydrogenic case, construct the ratios nen1/n0 and nen2/n1.
In doing so you must take care to establish the zero points of energy for
the various constituents. One way to do this is to use mc2 arguments.
For example, the first ionization has mec

2 +m1c
2 = m0c

2 +χ1 in obvious
notation. The reference energies E to be used in (3.24) for each constituent
are then taken to be the mc2s. This establishes the relative order of the
Es. The final form you obtain should not contain chemical potentials (and
you must show why this is true).

2. Apply n = n0 + n1 + n2, overall charge neutrality, and recast the above
Saha equations so that only z1 and z2 appear as unknowns. The resulting
two equations have temperature and n or, equivalently, ρ = 4n/NA as
independent parameters.

3. Simultaneously solve the two Saha equations for z1 and z2 for tempera-
tures in the range 1 × 104 ≤ T ≤ 2 × 105 K with a fixed value of density
from among the choices ρ = 10−4, 10−6, or 10−8 g cm−3. Choose a dense
grid in temperature because you will soon plot the results. (These cases
will prove useful when discussing pure helium opacities in Chap. 4.) Once
you have found z1 and z2, also find ze and z0 for the same range of tem-
perature. Note that this is a numerical exercise and use of a computer is
strongly advised.

4. Now plot all your zi as a function of temperature for your chosen value
of ρ. (Plot z0, z1, and z2 on the same graph.) This is an essential step
because it will make clear how the ionization responds to temperature
changes.

5. Find the half-ionization points on your plot. The two temperatures you
obtain (for fixed density) will correspond to the single half-ionization
point for pure hydrogen.

Exercise 3.2. We earlier established that photon mean free paths were very
short in a star except in the very outermost layers. This means that photons
must follow a tortuous path to escape eventually from a star and must take a
long time in doing so. To estimate this time, assume that a photon is created
at the center of a star and thereafter undergoes a long series of random
walk scatterings off electrons until it finally reaches the surface. The mean
free path associated with each scattering is λphot = (neσe)

−1, where σe is
the Thomson scattering cross section σe ≈ 0.7 × 10−24 cm2 (see §4.4.1).
For simplicity, assume that the star has a constant density so that λphot is
also constant. This is an order-of-magnitude problem, so don’t worry too
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much about constants of order unity. (Real diffusion in stars is much more
complicated and your estimate for the time will be an underestimate.)

1. Using one-dimensional random walk arguments, show that L ≈ R2/λphot
is the total distance a photon must travel if it starts its scattering career
at stellar center and eventually ends up at the surface at R.

2. Since the photons travel at the speed of light, c, find the time, τphot,
required for the photon to travel from the stellar center to the surface.
(Assume that any scattering process takes place instantaneously.)

3. Give an estimate for τphot, in the units of years, for a star of mass M/M�
and radius R/R�.

Exercise 3.3. Neutron stars are assumed to be objects with M ∼ M�,
R ∼ 10 km (〈ρ〉 ∼ 1014 g cm−3) where internal temperatures (kT ) are small
compared to the Fermi energies of electrons, protons, and neutrons (which
are assumed to be the only particles present). To demonstrate that the name
neutron star is apt, consider the following. Assume that the stellar tempera-
ture is zero and that chemical equilibrium exists between electrons, protons,
and neutrons. The reaction connecting them is

n ⇐⇒ p + e− +Q

where Q = 0.782 MeV and we are neglecting the electron anti-neutrino,
which should appear on the right-side of the reaction. Further assume that
the electrons are completely relativistic but that protons and neutrons are
nonrelativistic.

1. Convince yourself that the “Saha” equation is

En +Q = Ep + Ee

where the Es are the Fermi energies of the respective particles. Do your
“self-convincing” two ways: (a) argue from the chemical potential equa-
tion of the reaction; (b) make a physical argument based on the energetics
of the reaction and the Pauli exclusion principle.

2. Now find the number densities of the particles as a function of density.
Assume charge neutrality, so that ne = np, and use the Saha equation to
find ne, np, and nn for densities in the range 1013 <∼ ρ <∼ 2 × 1014 g cm−3.
You may take the density as being ρ = (np + nn)m where m is the mass
of either proton or neutron.

3. Plot your number density results as a function of density and, if possible,
compare to what you might find in the literature.

Exercise 3.4. Show for the ideal gas (µ/kT � −1) that P = nkT is a
general result independent of whether the particles are relativistic, nonrela-
tivistic, or anything in between. (Hint: integrate 3.13 by parts after inserting
3.12.)



3.8 Exercises 187

Exercise 3.5. Verify (3.29) by computing the average kinetic energy of a
Maxwell–Boltzmann distribution.

Exercise 3.6. To give an idea why the chemical potential is referred to as a
“potential,” consider the following, as discussed in Landau and Lifshitz (1958,
§25). They state that a body subject to an external field is in equilibrium if
the sum of the local chemical potential at every position in the body—here
call it µlocal(r)—and the potential of the external field , ψ(r), is a constant;
that is,

µtot ≡ µlocal(r) + ψ(r) = constant.

To make things simple, consider a one-dimensional situation where the ex-
ternal field is gravitational and the local gravity, g, is everywhere constant so
that ψ(r) = −mgz where z is height and m is the mass of a particle in the
body. Further assume that the particles compose an ideal gas.

1. Using the ideal gas results, show that(
∂P

∂µlocal

)
T

=
ρ

m
.

2. Compute dµtot/dz and finally show that

dP

dz
= −gρ

which is the elementary result for the equation of hydrostatic equilibrium
in a constant gravity field; that is, you have shown that the chemical
potential is part of a potential! For a more complicated situation, see

� Aronson, E., & Hansen, C.J. 1972, ApJ, 177, 145,
who give an example of the “gravo–thermo catastrophe.”

Exercise 3.7. This problem deals with corrections to Maxwell–Boltzmann
thermodynamics due to the effects of weak electron degeneracy. Suppose
µ/kT is still very much less than –1 as discussed in §3.3, but we wish to
include some effects of Fermi–Dirac statistics; i.e., what are the effects due
to the +1 in the distribution function (3.9)?

1. If the exponential term in (3.9) is still large then, we can use the expansion
1/(a+1) ≈ (1−1/a)/a to first order in the large quantity a. If you assume,
as an approximation, that µ/kT of (3.24) is still given by

eµ/kT =
n0h

3

2 (2πmekT )3 /2
≡ K

where n0 is the electron number density in the pure Maxwell–Boltzmann
limit, then show that the number density, n, for weak degeneracy is

n = n0

[
1 − 2−3/2K

]
.
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2. Similarly show that the new pressure is

P = n0kT
[
1 − 2−5/2K

]
.

Exercise 3.8. Section 3.6 discusses “imperfections” in equations of state
that make life difficult for the stellar modeler. One of these imperfections
arises from electrostatic interactions between ions. These cause modifications
in the ideal gas equation of state. The severity of the modifications depends
on density and temperature in the sense that low temperatures and/or high
densities means you have to work harder. One method of attacking the prob-
lem is to use Debye–Hückel theory wherein it is assumed that (for, say, a
one-component composition) that the average inter-ion spacing r0 is large
compared to the Debye length

rD =
(

kT

4πe2ρ ζNA

)1/2

.

Here ζ = Z(Z + 1)/A where Z is the ion charge and A is its atomic mass (in
rounded off amu’s). This statement is equivalent to

nZ <<

(
kT

Z2e2

)3

where nZ is the ion number density. If this condition is satisfied then, we find
the following expression for the pressure:

P = nkT

[
1 − e3

3
(πNAρ)1/2

(kT )3/2 µ ζ3/2
]

which becomes, after putting in numbers,

P = nkT

[
1 − 0.32

ρ1/2

T
3/2
6

µ ζ3/2

]
.

Here n is the total number density (ions plus electrons), µ is the mean mole-
cular weight, and T6 is the temperature in units of 106 K. You may check
these expressions by consulting Cox (1968, §15.5) or Clayton (1968, §2.3). In
any case, write this as

P = nkT (1 −B)

where, for this analysis to work at all, B must be small compared to unity.
If it gets moderately large (say 0.1 or larger), then electrostatic effects are
considered to be significant. Now do the following.

1. Consult the literature (or the Supplemental Material section of Chap. 2)
for properties of ZAMS models. Make believe these are composed of pure
ionized hydrogen (µ = 1/2) and compute B at model center for a selection
of these models starting with 60M� and ending at 0.08M�.
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2. What do you conclude from this exercise? Where, in mass on the ZAMS,
do you think electrostatic corrections begin to be important?

Exercise 3.9. Having already found the ionization fractions for pure helium
in a previous exercise, let’s go one step further—but “we” have done most
of the work for you here. The FORTRAN program GETEOS.F90 to be found
on the CD-ROM on the endcover of this text was written by W. Dean Pes-
nell (an old colleague of ours) to compute the pressure and internal energy
(among other things) for an ideal gas plus radiation. (This code is also part
of ZAMS.FOR also found on the CD.) You input the hydrogen (one ionization
state) mass fraction X, the helium (two ionization stages) mass fraction Y ,
the temperature T , and the specific volume Vρ. The output from GETEOS
consists of pressure P , internal energy E (in ergs g−1), the electron pressure
(PE), (∂P/∂Vρ)T (PV), (∂P/∂T )Vρ

(PT), (∂E/∂Vρ)T (EV), and (∂E/∂T )Vρ

(ET). The code is sparsely annotated but you should try to see what goes
on. The variable GES is our 1/µe and it is iterated upon until all the Saha
equations are satisfied. One way to unravel the code (in your mind, not when
using the code) is to set XHE and XHE2 (the helium ionization potentials)
to infinity, thus shutting off the ionization of that element. The metals con-
sist partially of Mg, Si, and Fe, included as a single element, with potential
XM. Set XM to infinity also. The rest of the metals are Na and Al, which
are always assumed to be ionized. A driver code at the beginning is just an
example and you will have to change it to get all the output quantities from
EOS. Note that this is in FORTRAN 90. In using the code be aware that it
doesn’t always like X or Y (or Z = 1 −X − Y ) to be zero. But you can set
them to some very small number.

1. Use this code, with your version of the driver, to compute various pres-
sures, etc., for interesting combinations of the input quantities.

2. Find the Γs for nearly pure hydrogen and compare to what was shown in
Fig. 3.10. The output from GETEOS gives you all you need.

3. Do the same for nearly pure helium to show the effects of the two ioniza-
tion stages. And we are sure your instructor can think of lots more things
to keep you busy! Note: pressure ionization is not included in this code
but, by the time the density reaches that level, the major constituents
(H and He) are already ionized.

3.9 References and Suggested Readings

Introductory Remarks
The place to go for general information on stellar equations of state is

� Cox, J.P. 1968, Principles of Stellar Structure, in two volumes (New York:
Gordon & Breach).

In particular, see his Chaps. 9–11, 15, and 24. We also recommend Part III
of
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� Kippenhahn, R., & Weigert, A. 1990, Stellar Structure and Evolution
(Berlin: Springer–Verlag)

and §3.2 of
� Rose, W.K. 1998, Advanced Stellar Astrophysics (Cambridge: Cambridge

University Press).
� Clayton, D.D. 1968, Principles of Stellar Evolution and Nucleosynthesis

(New York: McGraw-Hill)
also contains useful material.

A favorite text of ours is
� Landau, L.D., & Lifshitz, E.M. 1958, Statistical Physics (London: Perg-

amon)
and its later editions. We recommend it for its clarity (but it is not easy) and
wealth of practical applications. You will even find material about neutron
stars in it.

A complete discussion of what conditions must be met to use the approxi-
mation of LTE sensibly may be found in

� Mihalas, D. 1978, Stellar Atmospheres, 2nd ed. (San Francisco: Freeman).
Anyone thinking seriously about studying stars should try to find a copy.
The last we heard, it is out of print, but permission might be granted by the
publisher to reproduce it (but check for royalty fees).

§3.3: Ideal Monatomic Gas
A complete monograph discussion of Fermi–Dirac equations of state for use
in stars was first published by

� Chandrasekhar S. 1939, An Introduction to the Study of Stellar Structure
(Chicago: University of Chicago Press).

It should be available in paperback Dover editions and is well worth buying
at modest cost. We shall refer to this work quite often. Other versions may
be found in §3.5 of

� Chiu, H.-Y. 1968, Stellar Physics, Vol. 1. (Waltham, MA: Blaisdell)
and Chapter 24 of

� Cox, J.P. 1968, Principles of Stellar Structure, in two volumes (New York:
Gordon & Breach).

§3.4: The Saha Equation
Systematic application of the Saha equation to multicomponent mixtures is
not easy. The bookkeeping required to keep track of all the energy levels is
a daunting task, to say nothing of getting information on level parameters.
See Chapter 15 of

� Cox, J.P. 1968, Principles of Stellar Structure, in two volumes (New York:
Gordon & Breach)

and Chapter 14 of
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� Kippenhahn, R., & Weigert, A. 1990, Stellar Structure and Evolution
(Berlin: Springer–Verlag).

§3.5: Fermi–Dirac Equations of State
Chandrasekhar (1939) and Cox (1968) (see above) are standard references.
The references to fermionic matter and Bose–Einstein condensates are

� Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., & Cor-
nell, E.A. 1995, Science, 269, 198.

� DeMarco, B., & Jin, D.S. 1999, Science, 285, 1703.

The reference to Peter Eggleton (1982) is given as a private communication
in

� Truran, J.T., & Livio, M. 1986, ApJ, 308, 721,
who use it in some work concerning nova systems. We have extended Eggle-
ton’s mass–radius fit for white dwarfs to accommodate general µe.

� Cloutman, L.D. 1989, ApJS, 71, 677
is a good source of numerical techniques for computing the Fermi–Dirac in-
tegrals. See also

� Eggleton, P., Faulkner, J., & Flannery, B. 1973, A&A, 23, 325
for a thermodynamically self-consistent and efficient computation of the equa-
tion of state for arbitrarily degenerate and arbitrarily relativistic ionized
gases.

� Antia, H.M. 1993, ApJS, 84, 101
gives rational expansions for the Fermi–Dirac integrals. Early work on real-
istic corrections to the perfect Fermi–Dirac gas includes

� Hamada, T., & Salpeter, E.E. 1961, ApJ, 134, 683.

§3.6: “Almost Perfect” Equations of State
Our Fig. 3.9 is our version of Fig. 1 of

� Fontaine, G., Graboske, H.C., & Van Horn, H.M. 1977, ApJS, 35, 293.
This paper has an excellent discussion of the problems that arise when ioniza-
tion (including pressure effects) and electron degeneracy must be accounted
for. Their results are in the form of tables.

We have not discussed nuclear equations of state. To get an idea of what may
be involved see chapters 2, 8, and 9 of

� Shapiro, S.L., & Teukolsky, S.A. 1983, Black Holes, White Dwarfs, and
Neutron Stars (New York: John Wiley & Sons)

and the review article by
� Bethe, H.A. 1990, RevModPhys, 62, 801.
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