
2
Measure

2.1 Null sets

The idea of a ‘negligible’ set relates to one of the limitations of the Riemann
integral, as we saw in the previous chapter. Since the function f = 1Q takes
a non-zero value only on Q, and equals 1 there, the ‘area under its graph’ (if
such makes sense) must be very closely linked to the ‘length’ of the set Q. This
is why it turns out that we cannot integrate f in the Riemann sense: the sets
Q and R \ Q are so different from intervals that it is not clear how we should
measure their ‘lengths’ and it is clear that the ‘integral’ of f over [0, 1] should
equal the ‘length’ of the set of rationals in [0, 1]. So how should we define this
concept for more general sets?

The obvious way of defining the ‘length’ of a set is to start with intervals
nonetheless. Suppose that I is a bounded interval of any kind, i.e. I = [a, b],
I = [a, b), I = (a, b] or I = (a, b). We simply define the length of I as l(I) = b−a

in each case.
As a particular case we have l({a}) = l([a, a]) = 0. It is then natural to say

that a one-element set is ‘null’. Before we extend this idea to more general sets,
first consider the length of a finite set. A finite set is not an interval but since
a single point has length 0, adding finitely many such lengths together should
still give 0. The underlying concept here is that if we decompose a set into a
finite number of disjoint intervals, we compute the length of this set by adding
the lengths of the pieces.

As we have seen, in general it may not be always possible to decompose a set
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16 Measure, Integral and Probability

into non-trivial intervals. Therefore, we consider systems of intervals that cover
a given set. We shall generalise the above idea by allowing a countable number
of covering intervals. Thus we arrive at the following more general definition of
sets of ‘zero length’:

Definition 2.1

A null set A ⊆ R is a set that may be covered by a sequence of intervals
of arbitrarily small total length, i.e. given any ε > 0 we can find a sequence
{In : n ≥ 1} of intervals such that

A ⊆
∞⋃

n=1

In

and ∞∑

n=1

l(In) < ε.

(We also say simply that ‘A is null ’.)

Exercise 2.1

Show that we get an equivalent notion if in the above definition we
replace the word ‘intervals’ by any of these: ‘open intervals’, ‘closed in-
tervals’, ‘the intervals of the form (a, b]’, ‘the intervals of the form [a, b)’.

Note that the intervals do not need to be disjoint. It follows at once from
the definition that the empty set is null.

Next, any one-element set {x} is a null set. For, let ε > 0 and take I1 =
(x− ε

4 , x+ ε
4 ), In = [0, 0] for n ≥ 2. (Why take In = [0, 0] for n ≥ 2? Well, why

not! We could equally have taken In = (0, 0) = Ø, of course!) Now

∞∑

n=1

l(In) = l(I1) =
ε

2
< ε.

More generally, any countable set A = {x1, x2, ...} is null. The simplest way
to show this is to take In = [xn, xn], for all n. However, as a gentle introduction
to the next theorem we will cover A by open intervals. This way it is more fun.
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For, let ε > 0 and cover A with the following sequence of intervals:

I1 = (x1 − ε
8 , x1 + ε

8 ) l(I1) =
1
2
ε · 1

21

I2 = (x2 − ε
16 , x2 + ε

16 ) l(I2) =
1
2
ε · 1

22

I3 = (x3 − ε
32 , x3 + ε

32 ) l(I3) =
1
2
ε · 1

23

. . . . . .

In = (xn − ε
2·2n , xn + ε

2·2n ) l(In) =
1
2
ε · 1

2n

Since
∑∞

n=1
1
2n = 1,

∞∑

n=1

l(In) =
ε

2
< ε,

as needed.
Here we have the following situation: A is the union of countably many

one-element sets. Each of them is null and A turns out to be null as well.
We can generalise this simple observation:

Theorem 2.2

If (Nn)n≥1 is a sequence of null sets, then their union

N =
∞⋃

n=1

Nn

is also null.

Proof

We assume that all Nn, n ≥ 1, are null and to show that the same is true for N

we take any ε > 0. Our goal is to cover the set N by countably many intervals
with total length less than ε.

The proof goes in three steps, each being a little bit tricky.

Step 1. We carefully cover each Nn by intervals.

‘Carefully’ means that the lengths have to be small. ‘Small’ means that we
are going to add them up later to end up with a small number (and ‘small’
here means less than ε).

Since N1 is null, there exist intervals I1
k , k ≥ 1, such that

∞∑

k=1

l(I1
k) <

ε

2
, N1 ⊆

∞⋃

k=1

I1
k .
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For N2 we find a system of intervals I2
k , k ≥ 1, with

∞∑

k=1

l(I2
k) <

ε

4
, N2 ⊆

∞⋃

k=1

I2
k .

You can see a cunning plan of making the total lengths smaller at each step at
a geometric rate. In general, we cover Nn with intervals In

k , k ≥ 1, whose total
length is less than ε

2n :

∞∑

k=1

l(In
k ) <

ε

2n
, Nn ⊆

∞⋃

k=1

In
k .

Step 2. The intervals In
k are formed into a sequence.

We arrange the countable family of intervals {In
k }k≥1,n≥1 into a sequence

Jj , j ≥ 1. For instance we put J1 = I1
1 , J2 = I1

2 , J3 = I2
1 , J4 = I1

3 , etc. so that
none of the In

k are skipped. The union of the new system of intervals is the
same as the union of the old one and so

N =
∞⋃

n=1

Nn ⊆
∞⋃

n=1

∞⋃

k=1

In
k =

∞⋃

j=1

Jj .

Step 3. Compute the total length of Jj .

This is tricky because we have a series of numbers with two indices:

∞∑

j=1

l(Jj) =
∞∑

n=1,k=1

l(In
k ).

Now we wish to write this as a series of numbers, each being the sum of a series.
We can rearrange the double sum because the components are non-negative (a
fact from elementary calculus)

∞∑

n=1,k=1

l(In
k ) =

∞∑

n=1

( ∞∑

k=1

l(In
k )

)
<

∞∑

n=1

ε

2n
= ε,

which completes the proof.

Thus any countable set is null, and null sets appear to be closely related
to countable sets – this is no surprise as any proper interval is uncountable, so
any countable subset is quite ‘sparse’ when compared with an interval, hence
makes no real contribution to its ‘length’. (You may also have noticed the
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similarity between Step 2 in the above proof and the ‘diagonal argument’ which
is commonly used to show that Q is a countable set.)

However, uncountable sets can be null, provided their points are sufficiently
‘sparsely distributed’, as the following famous example, due to Cantor, shows:

1. Start with the interval [0, 1], remove the ‘middle third’, i.e. the interval
( 1
3 , 2

3 ), obtaining the set C1, which consists of the two intervals [0, 1
3 ] and

[23 , 1].

2. Next remove the middle third of each of these two intervals, leaving C2,
consisting of four intervals, each of length 1

9 , etc. (See Figure 2.1.)

3. At the nth stage we have a set Cn, consisting of 2n disjoint closed intervals,
each of length 1

3n . Thus the total length of Cn is
(

2
3

)n.

Figure 2.1 Cantor set construction (C3)

We call

C =
∞⋂

n=1

Cn

the Cantor set.
Now we show that C is null as promised.
Given any ε > 0, choose n so large that

(
2
3

)n
< ε. Since C ⊆ Cn, and Cn

consists of a (finite) sequence of intervals of total length less than ε, we see that
C is a null set.

All that remains is to check that C is an uncountable set. This is left for
you as

Exercise 2.2

Prove that C is uncountable.

Hint Adapt the proof of the uncountability of R: begin by expressing
each x in [0, 1] in ternary form:

x =
∞∑

k=1

ak

3k
= 0.a1a2 . . .

with ak = 0, 1 or 2. Note that x ∈ C iff all its ak equal 0 or 2.
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Why is the Cantor set null, even though it is uncountable? Clearly it is the
distribution of its points, the fact that it is ‘spread out’ all over [0,1], which
causes the trouble. This makes it the source of many examples which show that
intuitively ‘obvious’ things are not always true! For example, we can use the
Cantor set to define a function, due to Lebesgue, with very odd properties:

If x ∈ [0, 1] has ternary expansion (an), i.e. x = 0.a1a2 . . . with an = 0, 1
or 2, define N as the first index n for which an = 1, and set N = ∞ if none
of the an are 1 (i.e. when x ∈ C). Now set bn = an

2 for n < N and bN = 1,
and let F (x) =

∑N
n=1

bn

2n for each x ∈ [0, 1]. Clearly, this function is monotone
increasing and has F (0) = 0, F (1) = 1. Yet it is constant on the middle thirds
(i.e. the complement of C), so all its increase occurs on the Cantor set. Since we
have shown that C is a null set, F ‘grows’ from 0 to 1 entirely on a ‘negligible’
set. The following exercise shows that it has no jumps!

Exercise 2.3

Prove that the Lebesgue function F is continuous and sketch its partial
graph.

2.2 Outer measure

The simple concept of null sets provides the key to our idea of length, since it
tells us what we can ‘ignore’. A quite general notion of ‘length’ is now provided
by:

Definition 2.3

The (Lebesgue) outer measure of any set A ⊆ R is given by

m∗(A) = inf ZA

where

ZA =
{ ∞∑

n=1

l(In) : In are intervals, A ⊆
∞⋃

n=1

In

}
.

We say the (In)n≥1 cover the set A. So the outer measure is the infimum
of lengths of all possible covers of A. (Note again that some of the In may be
empty; this avoids having to worry whether the sequence (In) has finitely or
infinitely many different members.)
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Clearly m∗(A) ≥ 0 for any A ⊆ R. For some sets A, the series
∑∞

n=1 l(In)
may diverge for any covering of A, so m∗(A) may by equal to ∞. Since we
wish to be able to add the outer measures of various sets we have to adopt a
convention to deal with infinity. An obvious choice is a+∞ = ∞, ∞+∞ = ∞
and a less obvious but quite practical assumption is 0 × ∞ = 0, as we have
already seen.

The set ZA is bounded from below by 0, so the infimum always exists.
If r ∈ ZA, then [r,+∞] ⊆ ZA (clearly, we may expand the first interval of
any cover to increase the total length by any number). This shows that ZA is
either {+∞} or the interval (x,+∞] or [x,+∞] for some real number x. So the
infimum of ZA is just x.

First we show that the concept of null set is consistent with that of outer
measure:

Theorem 2.4

A ⊆ R is a null set if and only if m∗(A) = 0.

Proof

Suppose that A is a null set. We wish to show that inf ZA = 0. To this end we
show that for any ε > 0 we can find an element z ∈ ZA such that z < ε.

By the definition of null set we can find a sequence (In) of intervals covering
A with

∑∞
n=1 l(In) < ε and so

∑∞
n=1 l(In) is the required element z of ZA.

Conversely, if A ⊆ R has m∗(A) = 0, then by the definition of inf, given
any ε > 0, there is z ∈ ZA, z < ε. But a member of ZA is the total length of
some covering of A. That is, there is a covering (In) of A with total length less
than ε, so A is null.

This combines our general outer measure with the special case of ‘zero
measure’. Note that m∗(Ø) = 0, m∗({x}) = 0 for any x ∈ R, and m∗(Q) = 0
(and in fact, for any countable X, m∗(X) = 0).

Next we observe that m∗ is monotone: the bigger the set, the greater its
outer measure.

Proposition 2.5

If A ⊂ B then m∗(A) ≤ m∗(B).

Hint Show that ZB ⊂ ZA and use the definition of inf.
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The second step is to relate outer measure to the length of an interval.
This innocent result contains the crux of the theory, since it shows that the
formal definition of m∗, which is applicable to all subsets of R, coincides with
the intuitive idea for intervals, where our thought processes began. We must
therefore expect the proof to contain some hidden depths, and we have to
tackle these in stages: the hard work lies in showing that the length of the
interval cannot be greater than its outer measure: for this we need to appeal
to the famous Heine–Borel theorem, which states that every closed, bounded
subset B of R is compact : given any collection of open sets Oα covering B (i.e.
B ⊂

⋃
α Oα), there is a finite subcollection (Oαi

)i≤n which still covers B, i.e.
B ⊂

⋃n
i=1 Oαi

(for a proof see [1]).

Theorem 2.6

The outer measure of an interval equals its length.

Proof

If I is unbounded, then it is clear that it cannot be covered by a system of
intervals with finite total length. This shows that m∗(I) = ∞ and so m∗(I) =
l(I) = ∞.

So we restrict ourselves to bounded intervals.

Step 1. m∗(I) ≤ l(I).

We claim that l(I) ∈ ZI . Take the following sequence of intervals: I1 = I,
In = [0, 0] for n ≥ 2. This sequence covers the set I, and the total length is
equal to the length of I, hence l(I) ∈ ZI . This is sufficient since the infimum
of ZI cannot exceed any of its elements.

Step 2. l(I) ≤ m∗(I).

(i) I = [a, b]. We shall show that for any ε > 0,

l([a, b]) ≤ m∗([a, b]) + ε. (2.1)

This is sufficient since we may obtain the required inequality passing to the
limit, ε → 0. (Note that if x, y ∈ R and y > x then there is an ε > 0 with
y > x + ε, e.g. ε = 1

2 (y − x).)
So we take an arbitrary ε > 0. By the definition of outer measure we can

find a sequence of intervals In covering [a, b] such that
∞∑

n=1

l(In) ≤ m∗([a, b]) +
ε

2
. (2.2)
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We shall slightly increase each of the intervals to an open one. Let the endpoints
of In be an, bn, and we take

Jn =
(
an − ε

2n+2
, bn +

ε

2n+2

)
.

It is clear that
l(In) = l(Jn) − ε

2n+1
,

so that ∞∑

n=1

l(In) =
∞∑

n=1

l(Jn) − ε

2
.

We insert this in (2.2) and we have

∞∑

n=1

l(Jn) ≤ m∗([a, b]) + ε. (2.3)

The new sequence of intervals of course covers [a, b], so by the Heine–Borel
theorem we can choose a finite number of Jn to cover [a, b] (the set [a, b] is
compact in R). We can add some intervals to this finite family to form an
initial segment of the sequence (Jn) – just for simplicity of notation. So for
some finite index m we have

[a, b] ⊆
m⋃

n=1

Jn. (2.4)

Let Jn = (cn, dn). Put c = min{c1, . . . , cm}, d = max{d1, . . . , dm}. The cover-
ing (2.4) means that c < a and b < d, hence l([a, b]) < d − c.

Next, the number d − c is certainly smaller than the total length of Jn,
n = 1, . . . , m (some overlapping takes place) and

l([a, b]) < d − c <

m∑

n=1

l(Jn). (2.5)

Now it is sufficient to put (2.3) and (2.5) together in order to deduce (2.1)
(the finite sum is less than or equal to the sum of the series since all terms are
non-negative).

(ii) I = (a, b). As before, it is sufficient to show (2.1). Let us fix any ε > 0.

l( (a, b) ) = l([a +
ε

2
, b − ε

2
]) + ε

≤ m∗([a +
ε

2
, b − ε

2
]) + ε (by (1))

≤ m∗( (a, b) ) + ε (by Proposition 2.5).
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(iii) I = [a, b) or I = (a, b].

l(I) = l((a, b)) ≤ m∗((a, b)) (by (2))

≤ m∗(I) (by Proposition 2.5),

which completes the proof.

Having shown that outer measure coincides with the natural concept of
length for intervals, we now need to investigate its properties. The next theorem
gives us an important technical tool which will be used in many proofs.

Theorem 2.7

Outer measure is countably subadditive, i.e. for any sequence of sets {En},

m∗(
∞⋃

n=1

En

)
≤

∞∑

n=1

m∗(En).

(Note that both sides may be infinite here.)

Proof (a warm-up)

Let us prove first a simpler statement:

m∗(E1 ∪ E2) ≤ m∗(E1) + m∗(E2).

Take an ε > 0 and we show an even easier inequality

m∗(E1 ∪ E2) ≤ m∗(E1) + m∗(E2) + ε.

This is however sufficient because taking ε = 1
n and letting n → ∞ we get what

we need.
So for any ε > 0 we find covering sequences (I1

k)k≥1 of E1 and (I2
k)k≥1 of

E2 such that
∞∑

k=1

l(I1
k) ≤ m∗(E1) +

ε

2
,

∞∑

k=1

l(I2
k) ≤ m∗(E2) +

ε

2
;

hence, adding up,

∞∑

k=1

l(I1
k) +

∞∑

k=1

l(I2
k) ≤ m∗(E1) + m∗(E2) + ε.



2. Measure 25

The sequence of intervals (I1
1 , I2

1 , I1
2 , I2

2 , I1
3 , I2

3 , . . .) covers E1 ∪ E2, hence

m∗(E1 ∪ E2) ≤
∞∑

k=1

l(I1
k) +

∞∑

k=1

l(I2
k),

which combined with the previous inequality gives the result.

Proof of the theorem

If the right-hand side is infinite, then the inequality is of course true. So, suppose
that

∑∞
n=1 m∗(En) < ∞. For each given ε > 0 and n ≥ 1 find a covering

sequence (In
k )k≥1 of En with

∞∑

k=1

l(In
k ) ≤ m∗(En) +

ε

2n
.

The iterated series converges:

∞∑

n=1

( ∞∑

k=1

l(In
k )

)
≤

∞∑

n=1

m∗(En) + ε < ∞

and since all its terms are non-negative,

∞∑

n=1

( ∞∑

k=1

l(In
k )

)
=

∞∑

n,k=1

l(In
k ).

The system of intervals (In
k )k,n≥1 covers

⋃∞
n=1 En, hence

m∗(
∞⋃

n=1

En

)
≤

∞∑

n,k=1

l(In
k ) ≤

∞∑

n=1

m∗(En) + ε.

To complete the proof we let ε → 0.

A similar result is of course true for a finite family (En)m
n=1:

m∗(
m⋃

n=1

En

)
≤

m∑

n=1

m∗(En).

It is a corollary to Theorem 2.7 with Ek = Ø for k > m.
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Exercise 2.4

Prove that if m∗(A) = 0 then for each B, m∗(A ∪ B) = m∗(B).

Hint Employ both monotonicity and subadditivity of outer measure.

Exercise 2.5

Prove that if m∗(A∆B) = 0, then m∗(A) = m∗(B).

Hint Note that A ⊆ B ∪ (A∆B).

We conclude this section with a simple and intuitive property of outer mea-
sure. Note that the length of an interval does not change if we shift it along the
real line: l([a, b]) = l([a+ t, b+ t]) = b−a for example. Since the outer measure
is defined in terms of the lengths of intervals, it is natural to expect it to share
this property. For A ⊂ R and t ∈ R we put A + t = {a + t : a ∈ A}.

Proposition 2.8

Outer measure is translation-invariant, i.e.

m∗(A) = m∗(A + t)

for each A and t.

Hint Combine two facts: the length of interval does not change when the in-
terval is shifted and outer measure is determined by the length of the coverings.

2.3 Lebesgue-measurable sets and Lebesgue
measure

With outer measure, subadditivity (as in Theorem 2.7) is as far as we can
get. We wish, however, to ensure that if sets (En) are pairwise disjoint (i.e.
Ei ∩Ej = Ø if i 
= j), then the inequality in Theorem 2.7 becomes an equality.
It turns out that this will not in general be true for outer measure, although
examples where it fails are quite difficult to construct (we give such examples in
the Appendix). But our wish is an entirely reasonable one: any ‘length function’
should at least be finitely additive, since decomposing a set into finitely many
disjoint pieces should not alter its length. Moreover, since we constructed our
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length function via approximation of complicated sets by ‘simpler’ sets (i.e.
intervals) it seems fair to demand a continuity property : if pairwise disjoint
(En) have union E, then the lengths of the sets Bn = E \

⋃
n
k=1Ek may be

expected to decrease to 0 as n → ∞. Combining this with finite additivity leads
quite naturally to the demand that ‘length’ should be countably additive, i.e.
that

m∗

( ∞⋃

n=1

En

)
=

∞∑

n=1

m∗(En) when Ei ∩ Ej = Ø for i 
= j.

We therefore turn to the task of finding the class of sets in R which have this
property. It turns out that it is also the key property of the abstract concept of
measure, and we will use it to provide mathematical foundations for probability.

In order to define the ‘good’ sets which have this property, it also seems
plausible that such a set should apportion the outer measure of every set in R

properly, as we state in Definition 2.9 below. Remarkably, this simple demand
will suffice to guarantee that our ‘good’ sets have all the properties we demand
of them!

Definition 2.9

A set E ⊆ R is (Lebesgue-) measurable if for every set A ⊆ R we have

m∗(A) = m∗(A ∩ E) + m∗(A ∩ Ec) (2.6)

where Ec = R\E, and we write E ∈ M.

We obviously have A = (A∩E)∪ (A∩Ec), hence by Theorem 2.7 we have

m∗(A) ≤ m∗(A ∩ E) + m∗(A ∩ Ec)

for any A and E. So our future task of verifying (2.6) has simplified: E ∈ M if
and only if the following inequality holds:

m∗(A) ≥ m∗(A ∩ E) + m∗(A ∩ Ec) for all A ⊆ R. (2.7)

Now we give some examples of measurable sets.

Theorem 2.10

(i) Any null set is measurable.

(ii) Any interval is measurable.
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Proof

(i) If N is a null set, then (Proposition 2.4) m∗(N) = 0. So for any A ⊂ R we
have

m∗(A ∩ N) ≤ m∗(N) = 0 since A ∩ N ⊆ N

m∗(A ∩ N c) ≤ m∗(A) since A ∩ N c ⊆ A

and adding together we have proved (2.7).

(ii) Let E = I be an interval. Suppose, for example, that I = [a, b]. Take any
A ⊆ R and ε > 0. Find a covering of A with

m∗(A) ≤
∞∑

n=1

l(In) ≤ m∗(A) + ε.

Clearly the intervals I ′n = In ∩ [a, b] cover A ∩ [a, b] hence

m∗(A ∩ [a, b]) ≤
∞∑

n=1

l(I ′n).

The intervals I ′′n = In ∩ (−∞, a), I ′′′n = In ∩ (b,+∞) cover A ∩ [a, b]c so

m∗(A ∩ [a, b]c) ≤
∞∑

n=1

l(I ′′n) +
∞∑

n=1

l(I ′′′n ).

Putting the above three inequalities together we obtain (2.7).
If I is unbounded, I = [a,∞) say, then the proof is even simpler since it is

sufficient to consider I ′n = In ∩ [a,∞) and I ′′n = In ∩ (−∞, a).

The fundamental properties of the class M of all Lebesgue-measurable sub-
sets of R can now be proved. They fall into two categories: first we show that
certain set operations on sets in M again produce sets in M (these are what
we call ‘closure properties’) and second we prove that for sets in M the outer
measure m∗ has the property of countable additivity announced above.

Theorem 2.11

(i) R ∈ M,

(ii) if E ∈ M then Ec ∈ M,

(iii) if En ∈ M for all n = 1, 2, . . . then
⋃∞

n=1 En ∈ M.

Moreover, if En ∈ M, n = 1, 2, . . . and Ej ∩ Ek = Ø for j 
= k, then

m∗(
∞⋃

n=1

En

)
=

∞∑

n=1

m∗(En). (2.8)
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Remark 2.12

This result is the most important theorem in this chapter and provides the
basis for all that follows. It also allows us to give names to the quantities under
discussion.

Conditions (i)–(iii) mean that M is a σ-field. In other words, we say that
a family of sets is a σ-field if it contains the base set and is closed under
complements and countable unions. A [0,∞]-valued function defined on a
σ-field is called a measure if it satisfies (2.8) for pairwise disjoint sets, i.e.
it is countably additive.

An alternative, rather more abstract and general, approach to measure the-
ory is to begin with the above properties as axioms, i.e. to call a triple (Ω,F , µ)
a measure space if Ω is an abstractly given set, F is a σ-field of subsets of Ω,
and µ : F �→ [0,∞] is a function satisfying (2.8) (with µ instead of m∗). The
task of defining Lebesgue measure on R then becomes that of verifying, with
M and m = m∗ on M defined as above, that the triple (R,M,m) satisfies
these axioms, i.e. becomes a measure space.

Although the requirements of probability theory will mean that we have to
consider such general measure spaces in due course, we have chosen our more
concrete approach to the fundamental example of Lebesgue measure in order
to demonstrate how this important measure space arises quite naturally from
considerations of the ‘lengths’ of sets in R, and leads to a theory of integration
which greatly extends that of Riemann. It is also sufficient to allow us to develop
most of the important examples of probability distributions.

Proof of the theorem

(i) Let A ⊆ R. Note that A ∩ R = A, Rc = Ø, so that A ∩ Rc = Ø. Now (2.6)
reads m∗(A) = m∗(A) + m∗(Ø) and is of course true since m∗(Ø) = 0.

(ii) Suppose E ∈ M and take any A ⊆ R. We have to show (2.6) for Ec, i.e.

m∗(A) = m∗(A ∩ Ec) + m∗(A ∩ (Ec)c),

but since (Ec)c = E this reduces to the condition for E which holds by hy-
pothesis.

We split the proof of (iii) into several steps. But first:

A warm-up Suppose that E1 ∩ E2 = Ø, E1, E2 ∈ M. We shall show that
E1 ∪ E2 ∈ M and m∗(E1 ∪ E2) = m∗(E1) + m∗(E2).
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Let A ⊆ R. We have the condition for E1:

m∗(A) = m∗(A ∩ E1) + m∗(A ∩ Ec
1). (2.9)

Now, apply (2.6) for E2 with A ∩ Ec
1 in place of A:

m∗(A ∩ Ec
1) = m∗((A ∩ Ec

1) ∩ E2) + m∗((A ∩ Ec
1) ∩ Ec

2).

= m∗(A ∩ (Ec
1 ∩ E2)) + m∗(A ∩ (Ec

1 ∩ Ec
2))

(the situation is depicted in Figure 2.2).

Figure 2.2 The sets A, E1, E2

Since E1 and E2 are disjoint, Ec
1 ∩E2 = E2. By de Morgan’s law Ec

1 ∩Ec
2 =

(E1 ∪ E2)c. We substitute and we have

m∗(A ∩ Ec
1) = m∗(A ∩ E2) + m∗(A ∩ (E1 ∪ E2)c).

Inserting this into (2.9) we get

m∗(A) = m∗(A ∩ E1) + m∗(A ∩ E2) + m∗(A ∩ (E1 ∪ E2)c). (2.10)

Now by the subadditivity property of m∗ we have

m∗(A ∩ E1) + m∗(A ∩ E2) ≥ m∗((A ∩ E1) ∪ (A ∩ E2)
)

= m∗(A ∩ (E1 ∪ E2)),

so (2.10) gives

m∗(A) ≥ m∗(A ∩ (E1 ∪ E2)) + m∗(A ∩ (E1 ∪ E2)c),

which is sufficient for E1 ∪E2 to belong to M (the inverse inequality is always
true, as observed before (2.7)).

Finally, put A = E1 ∪E2 in (2.10) to get m∗(E1 ∪E2) = m∗(E1)+m∗(E2),
which completes the argument.

We return to the proof of the theorem.
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Step 1. If pairwise disjoint Ek, k = 1, 2, . . ., are in M then their union is in
M and (2.8) holds.

We begin as in the proof of the warm-up and we have

m∗(A) = m∗(A ∩ E1) + m∗(A ∩ Ec
1)

m∗(A) = m∗(A ∩ E1) + m∗(A ∩ E2) + m∗(A ∩ (E1 ∪ E2)c)

(see (2.10)) and after n steps we expect

m∗(A) =
n∑

k=1

m∗(A ∩ Ek) + m∗(A ∩
( n⋃

k=1

Ek

)c)
. (2.11)

Let us demonstrate this by induction. The case n = 1 is the first line above.
Suppose that

m∗(A) =
n−1∑

k=1

m∗(A ∩ Ek) + m∗(A ∩
( n−1⋃

k=1

Ek

)c)
. (2.12)

Since En ∈ M, we may apply (2.6) with A ∩
( ⋃n−1

k=1 Ek

)c in place of A:

m∗(A∩ (
n−1⋃

k=1

Ek)c) = m∗(A∩ (
n−1⋃

k=1

Ek)c∩En)+m∗(A∩ (
n−1⋃

k=1

Ek)c∩Ec
n). (2.13)

Now we make the same observations as in the warm-up:

( n−1⋃

k=1

Ek

)c ∩ En = En (Ei are pairwise disjoint),

( n−1⋃

k=1

Ek

)c ∩ Ec
n =

( n⋃

k=1

Ek

)c (by de Morgan’s law).

Inserting these into (2.13) we get

m∗(A ∩
( n−1⋃

k=1

Ek

)c) = m∗(A ∩ En) + m∗(A ∩
( n⋃

k=1

Ek

)c),

and inserting this into the induction hypothesis (2.12) we get

m∗(A) =
n−1∑

k=1

m∗(A ∩ Ek) + m∗(A ∩ En) + m∗(A ∩
( n⋃

k=1

Ek

)c)

as required to complete the induction step. Thus (2.11) holds for all n by
induction.
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As will be seen at the next step the fact that Ek are pairwise disjoint is
not necessary in order to ensure that their union belongs to M. However, with
this assumption we have equality in (2.11) which does not hold otherwise. This
equality will allow us to prove countable additivity (2.8).

Since ( n⋃

k=1

Ek

)c

⊇
( ∞⋃

k=1

Ek

)c

,

from (2.11) by monotonicity (Proposition 2.5) we get

m∗(A) ≥
n∑

k=1

m∗(A ∩ Ek) + m∗(A ∩
( ∞⋃

k=1

Ek

)c)
.

The inequality remains true after we pass to the limit n → ∞:

m∗(A) ≥
∞∑

k=1

m∗(A ∩ Ek) + m∗(A ∩
( ∞⋃

k=1

Ek

)c)
. (2.14)

By countable subadditivity (Theorem 2.7)

∞∑

k=1

m∗(A ∩ Ek) ≥ m∗(A ∩
∞⋃

k=1

Ek

)

and so

m∗(A) ≥ m∗(A ∩
∞⋃

k=1

Ek

)
+ m∗(A ∩

( ∞⋃

k=1

Ek

)c) (2.15)

as required. So we have shown that
⋃∞

k=1 Ek ∈ M and hence the two sides of
(2.15) are equal. The right-hand side of (2.14) is squeezed between the left and
right of (2.15), which yields

m∗(A) =
∞∑

k=1

m∗(A ∩ Ek) + m∗(A ∩
( ∞⋃

k=1

Ek

)c)
. (2.16)

The equality here is a consequence of the assumption that Ek are pairwise
disjoint. It holds for any set A, so we may insert A =

⋃∞
j=1 Ej . The last term

on the right is zero because we have m∗(Ø). Next (
⋃∞

j=1 Ej) ∩ En = En and
so we have (2.8).

Step 2. If E1, E2 ∈ M, then E1 ∪ E2 ∈ M (not necessarily disjoint).

Again we begin as in the warm-up:

m∗(A) = m∗(A ∩ E1) + m∗(A ∩ Ec
1). (2.17)
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Next, applying (2.6) to E2 with A ∩ Ec
1 in place of A we get

m∗(A ∩ Ec
1) = m∗(A ∩ Ec

1 ∩ E2) + m∗(A ∩ Ec
1 ∩ Ec

2).

We insert this into (2.17) to get

m∗(A) = m∗(A ∩ E1) + m∗(A ∩ Ec
1 ∩ E2) + m∗(A ∩ Ec

1 ∩ Ec
2). (2.18)

By de Morgan’s law, Ec
1 ∩ Ec

2 = (E1 ∪ E2)c, so (as before)

m∗(A ∩ Ec
1 ∩ Ec

2) = m∗(A ∩ (E1 ∪ E2)c). (2.19)

By subadditivity of m∗ we have

m∗(A ∩ E1) + m∗(A ∩ Ec
1 ∩ E2) ≥ m∗(A ∩ (E1 ∪ E2)). (2.20)

Inserting (2.19) and (2.20) into (2.18) we get

m∗(A) ≥ m∗(A ∩ (E1 ∪ E2)) + m∗(A ∩ (E1 ∪ E2)c)

as required.

Step 3. If Ek ∈ M, k = 1, . . . , n, then E1 ∪ · · · ∪ En ∈ M (not necessarily
disjoint).

We argue by induction. There is nothing to prove for n = 1. Suppose the
claim is true for n − 1. Then

E1 ∪ · · · ∪ En = (E1 ∪ · · · ∪ En−1) ∪ En

so that the result follows from Step 2.

Step 4. If E1, E2 ∈ M, then E1 ∩ E2 ∈ M.

We have Ec
1, Ec

2 ∈ M by (ii), Ec
1 ∪ Ec

2 ∈ M by Step 2, (Ec
1 ∪ Ec

2)
c ∈ M by

(ii) again, but by de Morgan’s law the last set is equal to E1 ∩ E2.

Step 5. The general case: if E1, E2, . . . are in M, then so is
⋃∞

k=1 Ek.

Let Ek ∈ M, k = 1, 2, . . .. We define an auxiliary sequence of pairwise
disjoint sets Fk with the same union as Ek:

F1 = E1

F2 = E2\E1 = E2 ∩ Ec
1

F3 = E3\(E1 ∪ E2) = E3 ∩ (E1 ∪ E2)c

. . .

Fk = Ek\(E1 ∪ · · · ∪ Ek−1) = Ek ∩ (E1 ∪ · · · ∪ Ek−1)c;
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Figure 2.3 The sets Fk

(see Figure 2.3).
By Steps 3 and 4 we know that all Fk are in M. By the very construction

they are pairwise disjoint, so by Step 1 their union is in M. We shall show that
∞⋃

k=1

Fk =
∞⋃

k=1

Ek.

This will complete the proof since the latter is now in M. The inclusion
∞⋃

k=1

Fk ⊆
∞⋃

k=1

Ek

is obvious since for each k, Fk ⊆ Ek by definition. For the inverse let a ∈⋃∞
k=1 Ek. Put S = {n ∈ N : a ∈ En} which is non-empty since a belongs to the

union. Let n0 = min S ∈ S. If n0 = 1, then a ∈ E1 = F1. Suppose n0 > 1. So
a ∈ En0 and, by the definition of n0, a /∈ E1, . . . , a /∈ En0−1. By the definition
of Fn0 this means that a ∈ Fn0 , so a is in

⋃∞
k=1 Fk.

Using de Morgan’s laws you should easily verify an additional property of
M.

Proposition 2.13

If Ek ∈ M, k = 1, 2, . . . , then

E =
∞⋂

k=1

Ek ∈ M.

We can therefore summarise the properties of the family M of Lebesgue-
measurable sets as follows:

M is closed under countable unions, countable intersections, and comple-
ments. It contains intervals and all null sets.



2. Measure 35

Definition 2.14

We shall write m(E) instead of m∗(E) for any E in M and call m(E) the
Lebesgue measure of the set E.

Thus Theorems 2.11 and 2.6 now read as follows, and describe the construc-
tion which we have laboured so hard to establish:

Lebesgue measure m : M → [0,∞] is a countably additive set function de-
fined on the σ-field M of measurable sets. Lebesgue measure of an interval
is equal to its length. Lebesgue measure of a null set is zero.

2.4 Basic properties of Lebesgue measure

Since Lebesgue measure is nothing else than the outer measure restricted to
a special class of sets, some properties of the outer measure are automatically
inherited by Lebesgue measure:

Proposition 2.15

Suppose that A,B ∈ M.

(i) If A ⊂ B then m(A) ≤ m(B).

(ii) If A ⊂ B and m(A) is finite then m(B \ A) = m(B) − m(A).

(iii) m is translation-invariant.

Since Ø ∈ M we can take Ei = Ø for all i > n in (2.8) to conclude that
Lebesgue measure is additive: if Ei ∈ M are pairwise disjoint, then

m(
n⋃

i=1

Ei) =
n∑

i=1

m(Ei).

Exercise 2.6

Find a formula describing m(A ∪ B) and m(A ∪ B ∪ C) in terms of
measures of the individual sets and their intersections (we do not assume
that the sets are pairwise disjoint).
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Recalling that the symmetric difference A∆B of two sets is defined by
A∆B = (A \ B) ∪ (B \ A) the following result is also easy to check:

Proposition 2.16

If A ∈ M, m(A∆B) = 0, then B ∈ M and m(A) = m(B).

Hint Recall that null sets belong to M and that subsets of null sets are null.

As we noted in Chapter 1, every open set in R can be expressed as the union
of a countable number of open intervals. This ensures that open sets in R are
Lebesgue-measurable, since M contains intervals and is closed under countable
unions. We can approximate the Lebesgue measure of any A ∈ M from above
by the measures of a sequence of open sets containing A. This is clear from the
following result:

Theorem 2.17

(i) For any ε > 0, A ⊂ R we can find an open set O such that

A ⊂ O, m(O) ≤ m∗(A) + ε.

Consequently, for any E ∈ M we can find an open set O containing E such
that m(O \ E) < ε.

(ii) For any A ⊂ R we can find a sequence of open sets On such that

A ⊂
⋂

n

On, m(
⋂

n

On) = m∗(A).

Proof

(i) By definition of m∗(A) we can find a sequence (In) of intervals with A ⊂⋃
n In and

∞∑

n=1

l(In) − ε

2
≤ m∗(A).

Each In is contained in an open interval whose length is very close to that of
In; if the left and right endpoints of In are an and bn respectively let Jn =
(an − ε

2n+2 , bn + ε
2n+2 ). Set O =

⋃
n Jn, which is open. Then A ⊂ O and

m(O) ≤
∞∑

n=1

l(Jn) ≤
∞∑

n=1

l(In) +
ε

2
≤ m∗(A) + ε.
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When m(E) < ∞ the final statement follows at once from (ii) in Proposi-
tion 2.15, since then m(O \ E) = m(O) − m(E) ≤ ε. When m(E) = ∞ we
first write R as a countable union of finite intervals: R =

⋃
n(−n, n). Now

En = E ∩ (−n, n) has finite measure, so we can find an open On ⊃ En with
m(On \ En) ≤ ε

2n . The set O =
⋃

n On is open and contains E. Now

O \ E = (
⋃

n

On) \ (
⋃

n

En) ⊂
⋃

n

(On \ En),

so that m(O \ E) ≤
∑

n m(On \ En) ≤ ε as required.

(ii) In (i) use ε = 1
n and let On be the open set so obtained. With E =

⋂
n On

we obtain a measurable set containing A such that m(E) < m(On) ≤ m∗(A)+ 1
n

for each n, hence the result follows.

Remark 2.18

Theorem 2.17 shows how the freedom of movement allowed by the closure
properties of the σ-field M can be exploited by producing, for any set A ⊂
R, a measurable set O ⊃ A which is obtained from open intervals with two
operations (countable unions followed by countable intersections) and whose
measure equals the outer measure of A.

Finally we show that monotone sequences of measurable sets behave as one
would expect with respect to m.

Theorem 2.19

Suppose that An ∈ M for all n ≥ 1. Then we have:

(i) if An ⊂ An+1 for all n, then

m(
⋃

n

An) = lim
n→∞

m(An),

(ii) if An ⊃ An+1 for all n and m(A1) < ∞, then

m(
⋂

n

An) = lim
n→∞

m(An).
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Proof

(i) Let B1 = A1, Bi = Ai − Ai−1 for i > 1. Then
⋃∞

i=1 Bi =
⋃∞

i=1 Ai and the
Bi ∈ M are pairwise disjoint, so that

m(
⋃

i

Ai) = m(
⋃

i

Bi)

=
∞∑

i=1

m(Bi) (by countable additivity)

= lim
n→∞

n∑

i=1

m(Bi)

= lim
n→∞

m(
n⋃

n=1

Bi) (by additivity)

= lim
n→∞

m(An),

since An =
⋃n

i=1 Bi by construction – see Figure 2.4.

Figure 2.4 Sets An, Bn

(ii) A1 \ A1 = Ø ⊂ A1 \ A2 ⊂ · · · ⊂ A1 \ An ⊂ · · · for all n, so that by (i)

m(
⋃

n

(A1 \ An)) = lim
n→∞

m(A1 \ An)

and since m(A1) is finite, m(A1 \ An) = m(A1) − m(An). On the other hand,⋃
n(A1 \ An) = A1 \

⋂
n An, so that

m(
⋃

n

(A1 \ An)) = m(A1) − m(
⋂

n

An) = m(A1) − lim
n→∞

m(An).

The result follows.
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Remark 2.20

The proof of Theorem 2.19 simply relies on the countable additivity of m and
on the definition of the sum of a series in [0,∞], i.e.

∞∑

i=1

m(Ai) = lim
n→∞

n∑

i=1

m(Ai).

Consequently the result is true, not only for the set function m we have con-
structed on M, but for any countably additive set function defined on a σ-field.
It also leads us to the following claim, which, though we consider it here only
for m, actually characterizes countably additive set functions.

Theorem 2.21

The set function m satisfies:

(i) m is finitely additive, i.e. for pairwise disjoint sets (Ai) we have

m(
n⋃

i=1

Ai) =
n∑

i=1

m(Ai)

for each n;

(ii) m is continuous at Ø, i.e. if (Bn) decreases to Ø, then m(Bn) decreases to
0.

Proof

To prove this claim, recall that m : M �→ [0,∞] is countably additive. This
implies (i), as we have already seen. To prove (ii), consider a sequence (Bn) in
M which decreases to Ø. Then An = Bn \ Bn+1 defines a disjoint sequence in
M, and

⋃
n An = B1. We may assume that B1 is bounded, so that m(Bn) is

finite for all n, so that, by Proposition 2.15 (ii), m(An) = m(Bn)−m(Bn+1) ≥ 0
and hence we have

m(B1) =
∞∑

n=1

m(An)

= lim
k→∞

k∑

n=1

[m(Bn) − m(Bn+1)]

= m(B1) − lim
n→∞

m(Bn)

which shows that m(Bn) → 0, as required.
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2.5 Borel sets

The definition of M does not easily lend itself to verification that a particular
set belongs to M; in our proofs we have had to work quite hard to show that
M is closed under various operations. It is therefore useful to add another
construction to our armoury, one which shows more directly how open sets
(and indeed open intervals) and the structure of σ-fields lie at the heart of
many of the concepts we have developed.

We begin with an auxiliary construction enabling us to produce new σ-fields.

Theorem 2.22

The intersection of a family of σ-fields is a σ-field.

Proof

Let Fα be σ-fields for α ∈ Λ (the index set Λ can be arbitrary). Put

F =
⋂

α∈Λ

Fα.

We verify the conditions of the definition.

(i) R ∈ Fα for all α ∈ Λ, so R ∈ F .

(ii) If E ∈ F , then E ∈ Fα for all α ∈ Λ. Since the Fα are σ-fields, Ec ∈ Fα

and so Ec ∈ F .

(iii) If Ek ∈ F for k = 1, 2, . . . , then Ek ∈ Fα, all α, k, hence
⋃∞

k=1 Ek ∈ Fα,
all α, and so

⋃∞
k=1 Ek ∈ F .

Definition 2.23

Put
B =

⋂
{F : F is a σ-field containing all intervals}.

We say that B is the σ-field generated by all intervals and we call the elements
of B Borel sets (after Emile Borel, 1871–1956). It is obviously the smallest
σ-field containing all intervals. In general, we say that G is the σ-field generated
by a family of sets A if G =

⋂
{F : F is a σ-field such that F ⊃ A}.

Example 2.24

(Borel sets) The following examples illustrate how the closure properties of
the σ-field B may be used to verify that most familiar sets in R belong to B.
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(i) By construction, all intervals belong to B, and since B is a σ-field, all open
sets must belong to B, as any open set is a countable union of (open)
intervals.

(ii) Countable sets are Borel sets, since each is a countable union of closed
intervals of the form [a, a]; in particular N and Q are Borel sets. Hence, as
the complement of a Borel set, the set of irrational numbers is also Borel.
Similarly, finite and cofinite sets are Borel sets.

The definition of B is also very flexible – as long as we start with all intervals
of a particular type, these collections generate the same Borel σ-field:

Theorem 2.25

If instead of the family of all intervals we take all open intervals, all closed
intervals, all intervals of the form (a,∞) (or of the form [a,∞), (−∞, b), or
(−∞, b]), all open sets, or all closed sets, then the σ-field generated by them is
the same as B.

Proof

Consider for example the σ-field generated by the family of open intervals J
and denote it by C:

C =
⋂

{F ⊃ J , F is a σ-field}.

We have to show that B = C. Since open intervals are intervals, J ⊂ I (the
family of all intervals), then

{F ⊃ I} ⊂ {F ⊃ J }

i.e. the collection of all σ-fields F which contain I is smaller than the collection
of all σ-fields which contain the smaller family J , since it is a more demanding
requirement to contain a bigger family, so there are fewer such objects. The
inclusion is reversed after we take the intersection on both sides, thus C ⊂ B
(the intersection of a smaller family is bigger, as the requirement of belonging
to each of its members is a less stringent one).

We shall show that C contains all intervals. This will be sufficient, since B
is the intersection of such σ-fields, so it is contained in each, so B ⊂ C.

To this end consider intervals [a, b), [a, b], (a, b] (the intervals of the form
(a, b) are in C by definition):

[a, b) =
∞⋂

n=1

(a − 1
n

, b),
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[a, b] =
∞⋂

n=1

(a − 1
n

, b +
1
n

),

(a, b] =
∞⋂

n=1

(a, b +
1
n

).

C as a σ-field is closed with respect to countable intersection, so it contains the
sets on the right. The argument for unbounded intervals is similar. The proof
is complete.

Exercise 2.7

Show that the family of intervals of the form (a, b] also generates the
σ-field of Borel sets. Show that the same is true for the family of all
intervals [a, b).

Remark 2.26

Since M is a σ-field containing all intervals, and B is the smallest such σ-field,
we have the inclusion B ⊂ M, i.e. every Borel set in R is Lebesgue-measurable.
The question therefore arises whether these σ-fields might be the same. In fact
the inclusion is proper. It is not altogether straightforward to construct a set
in M\B, and we shall not attempt this here (but see the Appendix). However,
by Theorem 2.17 (ii), given any E ∈ M we can find a Borel set B ⊃ E of the
form B =

⋂
n On, where the (On) are open sets, and such that m(E) = m(B).

In particular,
m(B∆E) = m(B \ E) = 0.

Hence m cannot distinguish between the measurable set E and the Borel set
B we have constructed.

Thus, given a Lebesgue-measurable set E we can find a Borel set B such that
their symmetric difference E∆B is a null set. Now we know that E∆B ∈ M,
and it is obvious that subsets of null sets are also null, and hence in M. However,
we cannot conclude that every null set will be a Borel set (if B did contain all
null sets then by Theorem 2.17 (ii) we would have B = M), and this points to
an ‘incompleteness’ in B which explains why, even if we begin by defining m

on intervals and then extend the definition to Borel sets, we would also need
to extend it further in order to be able to identify precisely which sets are
‘negligible’ for our purposes. On the other hand, extension of the measure m to
the σ-field M will suffice, since M does contain all m-null sets and all subsets
of null sets also belong to M.
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We show that M is the smallest σ-field on R with this property, and we say
that M is the completion of B relative to m and (R,M,m) is complete (whereas
the measure space (R,B,m) is not complete). More precisely, a measure space
(X,F , µ) is complete if for all F ∈ F with µ(F ) = 0, for all N ⊂ F we have
N ∈ F (and so µ(N) = 0).

The completion of a σ-field G, relative to a given measure µ, is defined as
the smallest σ-field F containing G such that, if N ⊂ G ∈ G and µ(G) = 0,
then N ∈ F .

Proposition 2.27

The completion of G is of the form {G∪N : G ∈ G, N ⊂ F ∈ F with µ(F ) = 0}.

This allows us to extend the measure µ uniquely to a measure µ̄ on F by
setting µ̄(G ∪ N) = µ(G) for G ∈ G.

Theorem 2.28

M is the completion of B.

Proof

We show first that M contains all subsets of null sets in B: so let N ⊂ B ∈ B,
B null, and suppose A ⊂ R. To show that N ∈ M we need to show that

m∗(A) ≥ m∗(A ∩ N) + m∗(A ∩ N c).

First note that m∗(A∩N) ≤ m∗(N) ≤ m∗(B) = 0. So it remains to show that
m∗(A) ≥ m∗(A ∩ N c) but this follows at once from monotonicity of m∗.

Thus we have shown that N ∈ M. Since M is a complete σ-field containing
B, this means that M also contains the completion C of B.

Finally, we show that M is the minimal such σ-field, i.e. that M ⊂ C: first
consider E ∈ M with m∗(E) < ∞, and choose B =

⋂
n On ∈ B as described

above such that B ⊃ E, m(B) = m∗(E). (We reserve the use of m for sets in
B throughout this argument.)

Consider N = B \ E, which is in M and has m∗(N) = 0, since m∗ is
additive on M. By Theorem 2.17 (ii) we can find L ⊃ N , L ∈ B and m(L) = 0.
In other words, N is a subset of a null set in B, and therefore E = B \ N

belongs to the completion C of B. For E ∈ M with m∗(E) = ∞, apply the
above to En = E ∩ [−n, n] for each n ∈ N. Each m∗(En) is finite, so the En all
belong to C and hence so does their countable union E. Thus M ⊂ C and so
they are equal.
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Despite these technical differences, measurable sets are never far from ‘nice’
sets, and, in addition to approximations from above by open sets, as observed
in Theorem 2.17, we can approximate the measure of any E ∈ M from below
by those of closed subsets.

Theorem 2.29

If E ∈ M then for given ε > 0 there exists a closed set F ⊂ E such that
m(E \F ) < ε. Hence there exists B ⊂ E in the form B =

⋃
n Fn, where all the

Fn are closed sets, and m(E \ B) = 0.

Proof

The complement Ec is measurable and by Theorem 2.17 we can find an open
set O containing Ec such that m(O \ Ec) ≤ ε. But O \ Ec = O ∩ E = E \ Oc,
and F = Oc is closed and contained in E. Hence this F is what we need. The
final part is similar to Theorem 2.17 (ii), and the proof is left to the reader.

Exercise 2.8

Show that each of the following two statements is equivalent to saying
that E ∈ M:

(a) given ε > 0 there is an open set O ⊃ E with m∗(O \ E) < ε,

(b) given ε > 0 there is a closed set F ⊂ E with m∗(E \ F ) < ε.

Remark 2.30

The two statements in the above Exercise are the key to a considerable gener-
alization, linking the ideas of measure theory to those of topology:

A non-negative countably additive set function µ defined on B is called a
regular Borel measure if for every Borel set B we have:

µ(B) = inf{µ(O) : O open, O ⊃ B},
µ(B) = sup{µ(F ) : F closed, F ⊂ B}.

In Theorems 2.17 and 2.29 we have verified these relations for Lebesgue mea-
sure. We shall consider other concrete examples of regular Borel measures later.
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2.6 Probability

The ideas which led to Lebesgue measure may be adapted to construct mea-
sures generally on arbitrary sets: any set Ω carrying an outer measure (i.e. a
mapping from P (Ω) to [0,∞], monotone and countably subadditive) can be
equipped with a measure µ defined on an appropriate σ-field F of its subsets.
The resulting triple (Ω,F , µ) is then called a measure space, as observed in
Remark 2.12. Note that in the construction of Lebesgue measure we only used
the properties, not the particular form of the outer measure.

For the present, however, we shall be content with noting simply how to
restrict Lebesgue measure to any Lebesgue-measurable subset B of R with
m(B) > 0:

Given Lebesgue measure m on the Lebesgue σ-field M, let

MB = {A ∩ B : A ∈ M}

and for A ∈ MB write
mB(A) = m(A).

Proposition 2.31

(B,MB ,mB) is a complete measure space.

Hint
⋃

i(Ai ∩ B) = (
⋃

i Ai) ∩ B and (A1 ∩ B) \ (A2 ∩ B) = (A1 \ A2) ∩ B.

We can finally state precisely what we mean by ‘selecting a number from
[0,1] at random’: restrict Lebesgue measure m to the interval B = [0, 1] and
consider the σ-field of M[0,1] of measurable subsets of [0, 1]. Then m[0,1] is a
measure on M[0,1] with ‘total mass’ 1. Since all subintervals of [0,1] with the
same length have equal measure, the ‘mass’ of m[0,1] is spread uniformly over
[0,1], so that, for example, the ‘probability’ of choosing a number from [0, 1

10 )
is the same as that of choosing a number from [ 6

10 , 7
10 ), namely 1

10 . Thus all
numerals are equally likely to appear as first digits of the decimal expansion
of the chosen number. On the other hand, with this measure, the probability
that the chosen number will be rational is 0, as is the probability of drawing
an element of the Cantor set C.

We now have the basis for some probability theory, although a general
development still requires the extension of the concept of measure from R to
abstract sets. Nonetheless the building blocks are already evident in the detailed
development of the example of Lebesgue measure. The main idea in providing a
mathematical foundation for probability theory is to use the concept of measure
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to provide the mathematical model of the intuitive notion of probability. The
distinguishing feature of probability is the concept of independence, which we
introduce below. We begin by defining the general framework.

2.6.1 Probability space

Definition 2.32

A probability space is a triple (Ω,F , P ) where Ω is an arbitrary set, F is a
σ-field of subsets of Ω, and P is a measure on F such that

P (Ω) = 1,

called probability measure or, briefly, probability.

Remark 2.33

The original definition, given by Kolmogorov in 1932, is a variant of the above
(see Theorem 2.21): (Ω,F , P ) is a probability space if (Ω,F) are given as
above, and P is a finitely additive set function with P (Ø) = 0 and P (Ω) = 1
such that P (Bn) ↘ 0 whenever (Bn) in F decreases to Ø.

Example 2.34

We see at once that Lebesgue measure restricted to [0, 1] is a probability mea-
sure. More generally: suppose we are given an arbitrary Lebesgue-measurable
set Ω ⊂ R, with m(Ω) > 0. Then P = c·mΩ , where c = 1

m(Ω) , and m = mΩ de-
notes the restriction of Lebesgue measure to measurable subsets of Ω, provides
a probability measure on Ω, since P is complete and P (Ω) = 1.

For example, if Ω = [a, b], we obtain c = 1
b−a , and P becomes the ‘uniform

distribution’ over [a, b]. However, we can also use less familiar sets for our base
space; for example, Ω = [a, b] ∩ (R \ Q), c = 1

b−a gives the same distribution
over the irrationals in [a, b].

2.6.2 Events: conditioning and independence

The word ‘event’ is used to indicate that something is happening. In probability
a typical event is to draw elements from a set and then the event is concerned
with the outcome belonging to a particular subset. So, as described above, if
Ω = [0, 1] we may be interested in the fact that a number drawn at random
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from [0, 1] belongs to some A ⊂ [0, 1]. We want to estimate the probability of
this happening, and in the mathematical setup this is the number P (A), here
m[0,1](A). So it is natural to require that A should belong to M[0,1], since these
are the sets we may measure. By a slight abuse of the language, probabilists
tend to identify the actual ‘event’ with the set A which features in the event.
The next definition simply confirms this abuse of language.

Definition 2.35

Given a probability space (Ω,F , P ) we say that the elements of F are events.

Suppose next that a number has been drawn from [0, 1] but has not been
revealed yet. We would like to bet on it being in [0, 1

4 ] and we get a tip that
it certainly belongs to [0, 1

2 ]. Clearly, given this ‘inside information’, the prob-
ability of success is now 1

2 rather than 1
4 . This motivates the following general

definition.

Definition 2.36

Suppose that P (B) > 0. Then the number

P (A|B) =
P (A ∩ B)

P (B)

is called the conditional probability of A given B.

Proposition 2.37

The mapping A �→ P (A|B) is countably additive on the σ-field FB.

Hint Use the fact that A �→ P (A ∩ B) is countably additive on F .

A classical application of the conditional probability is the total probability
formula which enables the computation of the probability of an event by means
of conditional probabilities given some disjoint hypotheses:

Exercise 2.9

Prove that if Hi are pairwise disjoint events such that
⋃∞

i=1 Hi = Ω,
P (Hi) 
= 0, then

P (A) =
∞∑

i=1

P (A|Hi)P (Hi).
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It is natural to say that the event A is independent of B if the fact that B

takes place has no influence on the chances of A, i.e.

P (A|B) = P (A).

By definition of P (A|B) this immediately implies the relation

P (A ∩ B) = P (A)P (B),

which is usually taken as the definition of independence. The advantage of this
practice is that we may dispose of the assumption P (B) > 0.

Definition 2.38

The events A, B are independent if

P (A ∩ B) = P (A) · P (B).

Exercise 2.10

Suppose that A and B are independent events. Show that Ac and B are
also independent.

The exercise indicates that if A and B are independent events, then all
elements of the σ-fields they generate are mutually independent, since these
σ-fields are simply the collections FA = {Ø, A,Ac, Ω} and FB = {Ø, B,Bc, Ω}
respectively. This leads us to a natural extension of the definition: two σ-fields
F1 and F2 are independent if for any choice of sets A1 ∈ F1 and A2 ∈ F2 we
have P (A1 ∩ A2) = P (A1)P (A2).

However, the extension of these definitions to three or more events (or
several σ-fields) needs a little care, as the following simple examples show:

Example 2.39

Let Ω = [0, 1], A = [0, 1
4 ] as before; then A is independent of B = [18 , 5

8 ] and of
C = [18 , 3

8 ] ∪ [34 , 1]. In addition, B and C are independent. However,

P (A ∩ B ∩ C) 
= P (A)P (B)P (C).

Thus, given three events, the pairwise independence of each of the three possible
pairs does not suffice for the extension of ‘independence’ to all three events.

On the other hand, with A = [0, 1
4 ], B = C = [0, 1

16 ]∪[ 14 , 11
16 ] (or alternatively

with C = [0, 1
16 ] ∪ [ 9

16 , 1]),

P (A ∩ B ∩ C) = P (A)P (B)P (C) (2.21)
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but none of the pairs make independent events.

This confirms further that we need to demand rather more if we wish to
extend the above definition – pairwise independence is not enough, nor is (2.21);
therefore we need to require both conditions to be satisfied together. Extending
this to n events leads to:

Definition 2.40

The events A1, . . . , An are independent if for all k ≤ n for each choice of k

events, the probability of their intersection is the product of the probabilities.

Again there is a powerful counterpart for σ-fields (which can be extended
to sequences, and even arbitrary families):

Definition 2.41

The σ-fields F1,F2, ...,Fn defined on a given probability space (Ω,F , P ) are
independent if, for all choices of distinct indices i1, i2, ..., ik from {1, 2, ..., n}
and all choices of sets Fin

∈ Fin
, we have

P (Fi1 ∩ Fi2 ∩ · · · ∩ Fik
) = P (Fi1)P (Fi2) · · ·P (Fik

).

The issue of independence will be revisited in the subsequent chapters where
we develop some more tools to calculate probabilities.

2.6.3 Applications to mathematical finance

As indicated in the Preface, we will explore briefly how the ideas developed
in each chapter can be applied in the rapidly growing field of mathematical
finance. This is not intended as an introduction to this subject, but hope-
fully it will demonstrate how a consistent mathematical formulation can help
to clarify ideas central to many disciplines. Readers who are unfamiliar with
mathematical finance should consult texts such as [4], [5], [7] for definitions and
a discussion of the main ideas of the subject.

Probabilistic modelling in finance centres on the analysis of models for the
evolution of the value of traded assets, such as stocks or bonds, and seeks
to identify trends in their future behaviour. Much of the modern theory is
concerned with evaluating derivative securities such as options, whose value is
determined by the (random) future values of some underlying security, such as
a stock.
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We illustrate the above probability ideas on a classical model of stock prices,
namely the binomial tree. This model is based on finitely many time instants
at which the prices may change, and the changes are of a very simple nature.
Suppose that the number of steps is N , and denote the price at the k-th step
by S(k), 0 ≤ k ≤ N. At each step the stock price changes in the following way:
the price at a given step is the price at the previous step multiplied by U with
probability p or D with probability q = 1 − p, where 0 < D < U. Therefore
the final price depends on the sequence ω = (ω1, ω2, . . . , ωN ) where ωi = 1
indicates the application of the factor U or ωi = 0, which indicates application
of the factor D. Such a sequence is called a path and we take Ω to consist of
all possible paths. In other words,

S(k) = S(0)
k∏

i=1

η(i),

where

η(k) =
{

U with probability p

D with probability q.

Exercise 2.11

Suppose N = 5, U = 1.2, D = 0.9, and S(0) = 500. Find the number
of all paths. How many paths lead to the price S(5) = 524.88? What is
the probability that S(5) > 900 if the probability of going up in a single
step is 0.5?

In general, the total number of paths is clearly 2N and at step k there are
k + 1 possible prices.

We construct a probability space by equipping Ω with the σ-field 2Ω of all
subsets of Ω, and the probability defined on single-element sets by P ({ω}) =
pkqN−k, where k =

∑N
i=1 ωi.

As time progresses we gather information about stock prices, or, what
amounts to the same, about paths. This means that having observed some
prices, the range of possible future developments is restricted. Our information
increases with time and this idea can be captured by the following family of
σ-fields.

Fix m < N and let Fm to be the σ-field generated by the following family
of sets {A : ω, ω′ ∈ A =⇒ ω1 = ω′

1, ω2 = ω′
2, . . . , ωm = ω′

m}. So all paths
from a particular set A in this σ-field have identical initial segments while the
remaining coordinates are arbitrary. Note that

F0 = {Ω,Ø},
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F1 = {A1, A
c
1, Ω,Ø}, where A1 = {ω : ω1 = 1}, i.e. S(1) = S(0)U, and

Ac
1 = {ω : ω1 = 0} i.e. S(1) = S(0)D.

Exercise 2.12

Prove that Fm has 22m

elements.

Exercise 2.13

Prove that the sequence Fm is increasing.

This sequence is an example of a filtration (the identifying features are that
the σ-fields should be contained in F and form an increasing chain), a concept
which we shall revisit later on.

The consecutive choices of stock prices are closely related to coin-tossing.
Intuition tells us that the latter are independent. This can be formally seen by
introducing another σ-field describing the fact that at a particular step we have
a particular outcome. Suppose ω is such that ωk = 1. Then we can identify the
set of all paths with this property Ak = {ω : ωk = 1} and extend to a σ-field:
Gk = {Ak, Ac

k, Ω,Ø}. In fact, Ac
k = {ω : ωk = 0}.

Exercise 2.14

Prove that Gm and Gk are independent if m 
= k.

2.7 Proofs of propositions

Proof (of Proposition 2.5)

If the intervals In cover B, then they also cover A: A ⊂ B ⊂
⋃

n In, hence
ZB ⊂ ZA. The infimum of a larger set cannot be greater than the infimum of a
smaller set (trivial illustration: inf{0, 1, 2} < inf{1, 2}, inf{0, 1, 2} = inf{0, 2}),
hence the result.

Proof (of Proposition 2.8)

If a system In of intervals covers A then the intervals In + t cover A + t.
Conversely, if Jn cover A+ t then Jn − t cover A. Moreover, the total length of
a family of intervals does not change when we shift each by a number. So we
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have a one–one correspondence between the interval coverings of A and A + t

and this correspondence preserves the total length of the covering. This implies
that the sets ZA and ZA+t are the same, so their infima are equal.

Proof (of Proposition 2.13)

By de Morgan’s law
∞⋂

k=1

Ek =
( ∞⋃

k=1

Ec
k

)c
.

By Theorem 2.11 (ii) all Ec
k are in M, hence by (iii) the same can be said about

the union
⋃∞

k=1 Ec
k. Finally, by (ii) again, the complement of this union is in

M, and so the intersection
⋂∞

k=1 Ek is in M.

Proof (of Proposition 2.15)

(i) Proposition 2.5 tells us that the outer measure is monotone, but since m is
just the restriction of m∗ to M, then the same is true for m: A ⊂ B implies
m(A) = m∗(A) ≤ m∗(B) = m(B).
(ii) We write B as a disjoint union B = A ∪ (B \ A) and then by additivity of
m we have m(B) = m(A) + m(B \A). Subtracting m(A) (here it is important
that m(A) is finite) we get the result.
(iii) Translation invariance of m follows at once from translation invariance of
the outer measure in the same way as in (i) above.

Proof (of Proposition 2.16)

The set A∆B is null, hence so are its subsets A \ B and B \ A. Thus these
sets are measurable, and so is A ∩ B = A \ (A \ B), and therefore also B =
(A ∩ B) ∪ (B \ A) ∈ M. Now m(B) = m(A ∩ B) + m(B \ A) as the sets on
the right are disjoint. But m(B \ A) = 0 = m(A \ B), so m(B) = m(A ∩ B) =
m(A ∩ B) + m(A \ B) = m((A ∩ B) ∪ (A \ B)) = m(A).

Proof (of Proposition 2.27)

The family G = {G∪N : G ∈ F , N ⊂ F ∈ F with µ(F ) = 0} contains the set X

since X ∈ F . If Gi∪Ni ∈ G, Ni ⊂ Fi, µ(Fi) = 0, then
⋃

Gi∪Ni =
⋃

Gi∪
⋃

Ni

is in G since the first set on the right is in F and the second is a subset of a null
set

⋃
Fi ∈ F . If G∪N ∈ G, N ⊂ F, then (G∪N)c = (G∪F )c ∪ ((F\N)∩Gc),

which is also in G Thus G is a σ-field. Consider any other σ-field H containing
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F and all subsets of null sets. Since H is closed with respect to the unions, it
contains G and so G is the smallest σ-field with this property.

Proof (of Proposition 2.31)

It follows at once from the definitions and the hint that MB is a σ-field. To see
that mB is a measure we check countable additivity: with Ci = Ai∩B pairwise
disjoint in MB , we have

mB(
⋃

i

Ci) = m(
⋃

i

(Ai ∩ B)) =
∑

i

m(Ai ∩ B) =
∑

i

m(Ci) =
∑

i

mB(Ci).

Therefore (B,MB ,mB) is a measure space. It is complete, since subsets of null
sets contained in B are by definition mB-measurable.

Proof (of Proposition 2.37)

Assume that An are measurable and pairwise disjoint. By the definition of
conditional probability

P (
∞⋃

n=1

An|B) =
1

P (B)
P ((

∞⋃

n=1

An) ∩ B)

=
1

P (B)
P (

∞⋃

n=1

(An ∩ B))

=
1

P (B)

∞∑

n=1

P (An ∩ B)

=
∞∑

n=1

P (An|B)

since An ∩ B are also pairwise disjoint and P is countably additive.
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