1 Introduction to Uncertain Systems

1.1 Uncertainty and Uncertain Systems

Uncertainty is one of the main features of complex and intelligent decision making
systems. Various approaches, methods and techniques in this field have been
developed for several decades, starting with such concepts and tools as adaptation,
stochastic optimization and statistical decision theory (see e.g. [2, 3, 68, 79, 80]).
The first period of this development was devoted to systems described by
traditional mathematical models with unknown parameters. In the past two decades
new ideas (such as learning, soft computing, linguistic descriptions and many
others) have been developed as a part of modern foundations of knowledge-based
Decision Support Systems (DSS) in which the decisions are based on uncertain
knowledge. Methods and algorithms of decision making under uncertainty are
especially important for design of computer control and management systems based
on incomplete or imperfect knowledge of a decision plant. Consequently, problems
of analysis and decision making in uncertain systems are related to the following
fields:

1. General systems theory and engineering.

2. Control and management systems.

3. Information technology (knowledge-based expert systems).

There exists a great variety of definitions and formal models of uncertainties and
uncertain systems. The most popular non-probabilistic approaches are based on
fuzzy sets theory and related formalisms such as evidence and possibility theory,
rough sets theory and fuzzy measures, including a probability measure as a special
case (e.g. [4,7,9, 64, 65, 67,69, 71, 74,75, 78, 81, 83, 84, 96-100, 103, 104]). The
different formulations of decision making problems and various proposals for
reasoning under uncertainty are adequate for the different formal models of
uncertainty. On the other hand, new forms of uncertain knowledge representations
require new concepts and methods of information processing: from computing with
numbers to granular computing [5, 72] and computing with words [101].

Special approaches have been presented for multiobjective programming and
scheduling under uncertainty [91, 92], for uncertain object-oriented databases [63],
and for uncertainty in expert systems [89]. A lot of works have been concerned with
specific problems of uncertain control systems, including problems of stability and
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stabilization of uncertain systems and an idea of robust control (e.g. [31, 61, 62, 77,
87, 88)).

In recent years a concept of so-called uncertain variables and their applications to
analysis and decision problems for a wide class of uncertain systems has been
developed [25, 30, 35, 40, 42, 43, 44, 46, 50, 53, 54, 55]. The main aim of this book
is to present a unified, comprehensive and compact description of analysis and
decision problems in a class of uncertain systems described by traditional
mathematical models and by relational knowledge representations. An attempt at a
uniform theory of uncertain systems including problems and methods based on
different mathematical formalisms may be useful for further research in this large
area and for practical applications to the design of knowledge-based decision
support systems. The book may be characterized by the following features:

1. The problems and methods are concerned with systems described by traditional
mathematical models (with number variables) and by knowledge representations
which are treated as an extension of classical functional models. The considerations
are then directly related to respective problems and methods in traditional system
and control theory.

2. The problems under consideration are formulated for systems with unknown
parameters in the known form of the description (parametric problems) and for the
direct non-deterministic input—output description (non-parametric problems). In the
first case the unknown parameters are assumed to be values of random or uncertain
variables. In the second case the values of input and output variables are assumed to
be values of random, uncertain or fuzzy variables.

3. The book presents three new concepts introduced and developed by the author
for a wide class of uncertain systems:

a. Logic-algebraic method for systems with a logical knowledge representation

[9—14].
b. Learning process in systems with a relational knowledge representation,
consisting in step by step knowledge validation and updating (e.g. [18, 22, 25]).

c. Uncertain variables based on uncertain logics.

4. Special emphasis is placed on uncertain variables as a convenient tool for
handling the uncertain systems under consideration. The main part of the book is
devoted to the basic theory of uncertain variables and their application in different
cases of uncertain systems. One of the main purposes of the book is to present
recent developments in this area, a comparison with random and fuzzy variables
and the generalization in the form of so-called sof variables.

5. Special problems such as pattern recognition and control of a complex of
operations under uncertainty are included. Examples concerning the control of
manufacturing systems, assembly processes and task distributions in computer
systems indicate the possibilities of practical applications of uncertain variables and
other approaches to decision making in uncertain systems.

The analysis and decision problems are formulated for input—output plants and two
kinds of uncertainty:

1. The plant is non-deterministic, i.e. the output is not determined by the input.



Introduction to Uncertain Systems 3

2. The plant is deterministic, but its description (the input—output relationship) is
not exactly known.

The different forms of the uncertainty may be used in the description of one plant.
For example, the non-deterministic plant may be described by a relation such that
the output is not determined by the input (i.e. is not a function of the input). This
relation may be considered as a basic description of the uncertainty. If the relation
contains unknown parameters, their description, e.g. in the form of probability
distributions, may be defined as an additional description of the uncertainty or the
second-order uncertainty.

In the wide sense of the word an uncertain system is understood in the book as a
system containing any kind and any form of uncertainty in its description. In a
narrow sense, an uncertain system is understood as a system with the description
based on uncertain variables. In this sense, such names as “random, uncertain and
fuzzy knowledge” or “random, uncertain and fuzzy controllers” will be used.
Additional remarks will be introduced, if necessary, to avoid misunderstandings.
Quite often the name “control” is used in the text instead of decision making for a
particular plant. Consequently, the names “control plant, control system, control
algorithm, controller” are used instead of “decision plant, decision system, decision
algorithm, decision maker”, respectively.

1.2 Uncertain Variables

In the traditional case, for a static (memoryless) system described by a function
y =®@(u,x) where u, y, x are input, output and parameter vectors, respectively,

the decision problem may be formulated as follows: to find the decision u* such
that y = y* (the desirable output value). The decision u" may be obtained for the

known function @ and the value x.Let us now assume that x is unknown. In the
probabilistic approach x is assumed to be a value of a random variable X
described by the probability distribution. In the approach based on uncertain
variables the unknown parameter x is a value of an uncertain variable x for
which an expert gives the certainty distribution /4 (x)=v(x = x) where v denotes

a certainty index of the soft property: “Xx is approximately equal to x” or “x is
the approximate value of x ”. The certainty distribution evaluates the expert’s
opinion on approximate values of the uncertain variable. The uncertain variables,
related to random variables and fuzzy numbers, are described by the set of values
X and their certainty distributions which correspond to probability distributions for
the random variables and to membership functions for the fuzzy numbers. To define
the uncertain variable, it is necessary to give /(x) and to determine the certainty

indexes of the following soft properties:
1.“x€D,” for D, — X, which means “the approximate value of x belongs to

D,” or “Xx belongs approximately to D, ™.
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2.“X ¢ D,” =“—~(x €D,)”, which means “X does not belong approximately to
D,”.

To determine the certainty indexes for the properties: —(x € D,),
(x€D))v(x €D,) and (x € D) A(x € Dy) where D;,D, < X, it is necessary
to introduce an uncertain logic, which deals with the soft predicates of the type
“X € D,”. In Chapter 4 four versions of the uncertain logic have been defined and

used for the formulation of the respective versions of the uncertain variable.
For the proper interpretation (semantics) of these formalisms it is convenient to
consider x = g(w) as a value assigned to an element w € 2 (a universal set). For

fixed o its value x is determined and x € D, is a crisp property. The property

’

X € D,=x e D, = “the approximate value of x belongs to D,” is a soft

property because x is unknown and the evaluation of “x € D,” is based on the
evaluation of x = x for the different x € X given by an expert. In the first version
of the uncertain variable, v(X € D,)# v(x & D,) where D, =X —D, is the

complement of D,. In the version called the C-uncertain variable,

v (X&D,)=v.(x € Bx) where v, is the certainty index in this version
—~ 1, —~ =
ve.(xeD,) :E[V(x eD)+v(xeD,)].

The uncertain variable in the first version may be considered as a special case of the
possibilistic number with a specific interpretation of % (x) described above. In our

approach we use soft properties of the type “P is approximately satisfied” where
P is a crisp property, in particular P= “x e D, ”. It allows us to accept the

difference between x € D, and X EBX in the first version. More details

concerning the relations to random variables and fuzzy numbers are given in
Chapter 6. Now let us pay attention to the following aspects which will be more
clear after the presentation of the formalisms and semantics in Chapter 4:

1. To compare the meanings and practical utilities of different formalisms, it is
necessary to take into account their semantics. It is specially important in our
approach. The definitions of the uncertain logics and consequently the uncertain
variables contain not only the formal description but also their interpretation. In
particular, the uncertain logics may be considered as special cases of multi-valued
predicate logic with a specific semantics of the predicates. It is worth noting that
from the formal point of view the probabilistic measure is a special case of the
fuzzy measure and the probability distribution is a special case of the membership
function in the formal definition of the fuzzy number when the meaning of the
membership function is not described.

2. Even if the uncertain variable in the first version may be formally considered as
a very special case of the fuzzy number, for simplicity and unification it is better to
introduce it independently (as has been done in the book) and not as a special case
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of the much more complicated formalism with different semantics and applications.
3. Uncertainty is understood here in the narrow sense of the word, and concerns an
incomplete or imperfect knowledge of something which is necessary to solve the
problem. In our considerations, it is the knowledge of the parameters in the
mathematical description of the system or the knowledge of a form of the
input—output relationships, and is related to a fixed expert who gives the description
of the uncertainty.

4. In the majority of interpretations the value of the membership function means a
degree of truth of a soft property determining the fuzzy set. In our approach,
“xeD,” and “xeD,” are crisp properties, the soft property “X € D,” is
introduced because the value of x is unknown and /4 (x) is a degree of certainty

(or 1-h(x) is a degree of uncertainty).

1.3 Basic Deterministic Problems

The problems of analysis and decision making under uncertainty described in the
book correspond to the respective problems for deterministic (functional) plants
with the known mathematical models. Let us consider a static plant described by a

function y = @(u) where u € U = R? is the input vector, yeY = R' is the output

vector, U and Y are p-dimensional and /-dimensional real number vector spaces,
respectively. The function @ may be presented as a set of functions

@ = @, @D ,u® Py i=1,2,.,1
where y(i) is the i-th component of y and u' is the Jj-th component of u.

Analysis problem: Given the function @ and the value u:u*, find the

corresponding output y* =&( u*) .

Decision problem: For the given function @ and the value y* required by a user,
find the decision u" such that y= y* .

The solution of the problem is reduced to solving the equation y* =@(u) with
respect to u. In general, we may obtain a set of decisions

D,={uelU: @(u):y*}.

In particular D, =& (an empty set), which means that the solution does not exist.
For the plant described by a function y =@®(u,z) where z is a vector of external

disturbances, the set of solutions D,(z) depends on z. In the case of a unique
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solution we obtain " 2% (2), i.e. the deterministic decision (control) algorithm in
an open-loop decision system when z is measured (Fig. 1.1). For the plant
described by the function y=@(u), on the assumption that the equation
D(u) = y* has a unique solution, the decision u' may be determined by the

following recursive algorithm:
Uy =1ty K[y —@@,)]; n=0,1... (L.1)

where u, denotes the n-th approximation of u" and K is a matrix of coefficients.

Under some conditions concerning @ and K, the sequence u, converges to u for
any ug. The algorithm (1.1) may be executed in a closed-loop decision system
(Fig. 1.2) where the output y, = @(u, ) is measured. It is worth noting that to
assure the convergence, it is not necessary to know exactly the function @ . Then

feedback is a way to achieve the proper decision u" for the uncertain plant, i.e. it is
one of the possible approaches to decision making under uncertainty.

' Plant |——=

Figure 1.1. Open-loop decision system

Plant

Algorithm (1.1)

Figure 1.2. Closed-loop decision system

If there are additional constraints and/or the solution of the equation @(u) = y*
does not exist, the decision problem may be formulated as an optimization problem

consisting in finding u minimizing a quality index ¢( y, y*) ,e.8.

7,y ) ==y (r-2")

where vectors are presented as one-column matrices and T denotes transposition of
a matrix.
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The formulations of basic analysis and decision problems may be extended to
deterministic dynamical plants. Let us consider a plant described by the equation

Spe1 = f(s,u,); n=0,1,...
where s,, is a state vector.

Analysis problem: For the given function £, initial state s, and the sequence
ug,uy,...,uy_, one should find the sequence sy,57,...,5y -
One of the possible formulations of a decision problem is the following: for the

given function f, sy and sy =s" required by a user, one should determine the

sequence of decisions ug,uy,....,up_1 such that sy =s" . The solution exists for
sufficiently large N if the plant is controllable. The optimization problem
corresponding to the minimization of @(y, y*) for a static plant may be formulated
as follows.

Optimal decision problem: For the given function f, state s, and a quality index

o(s,s ), one should determine the sequence ug,u,...,u_; minimizing the global

performance index

N * N-1 *
QN = Z(D(Snas ): Z qo[f(snaun)vs ]
n=1 n=0

1.4 Structure of the Book

The book consists of two informal parts. The first part containing Chapters 2—7
presents basic analysis and decision problems for static plants. The second part
containing Chapters 814 concerns dynamical systems and special problems
connected with learning and complex systems, pattern recognition and operation
systems. The parts are organized as follows.

Chapter 2 presents basic analysis and decision problems for static plants described
by relations. A general concept of so-called determinization, consisting in replacing
an uncertain description by its deterministic representation, is introduced. Two
kinds of relational knowledge representation are considered: the knowledge of the
plant and the knowledge of the decision making.

Chapter 3 deals with the application of random variables to the description of the
uncertainty. In the first part of the chapter, analysis and decision problems are
considered for the functional and relational plant with random parameters. The
second part is devoted to the respective problems with a non-parametric description
of the uncertainty. In this case the knowledge of the plant has a form of conditional
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probability distribution. In both cases it is shown how the probabilistic knowledge
of the decision making (i.e. the random decision algorithm in an open-loop decision
system) may be obtained from the probabilistic knowledge of the plant, and how to
obtain the deterministic decision algorithm as a result of determinization.

Chapters 4 and 5 are devoted to uncertain variables and their applications to
uncertain systems. The basic definitions and properties of the uncertain logics and
variables are given in Chapter 4. We consider four versions of the uncertain
variables with different definitions of the certainty distributions and operations. The
application of the uncertain variables to the formulation and solving of the analysis
and decision problems for the functional and relational static plant is the topic of
Chapter 5. The chapter is completed with considerations for the non-parametric
case in which the knowledge of the plant has the form of conditional certainty
distributions. The uncertain decision algorithm is obtained from the uncertain
knowledge of the plant.

In the first part of Chapter 6 the applications of fuzzy numbers (fuzzy variables)
to non-parametric analysis and decision problems for the static plant are presented.
In the second part of the chapter the comparison of uncertain variables with random
and fuzzy variables and analogies between the non-parametric problem statements
and solutions for the descriptions based on random, uncertain and fuzzy variables
are discussed. These analogies lead to a generalization in the form of so-called soft
variables and their application in analysis and decision problems for the static plant.

Chapter 7 is concerned with relational static plants described by a logical
knowledge representation, which may be treated as a special form of the relational
knowledge representation that consists of relations in the form of logical formulas
concerning input, output and additional variables. Consequently, to formulate and
solve the analysis and decision problems, one may apply the so-called /ogic-
algebraic method. The modification of this method may be applied to a plant with
random and uncertain parameters.

The purpose of Chapter 8 is to show how the approaches and methods presented
in the first part of the book for static plants (in particular, the considerations based
on the relational knowledge representation and uncertain variables) may be applied
to dynamical plants. The application of the presented approach to knowledge-based
control of an assembly process is described.

Chapter 9 has a special character, and is devoted to the general idea of parametric
optimization and its application to uncertain, random and fuzzy controllers in
closed-loop decision systems with dynamical plants. The chapter is completed with
remarks concerning so-called descriptive and prescriptive approaches, and the
quality of the decisions based on different forms of the knowledge given by an
expert.

The idea and algorithms of learning based on step by step knowledge validation
and updating are presented in Chapter 11. Two cases are considered. In the first
case the validation and updating concerns the knowledge of the plant, and in the
second case — the knowledge of the decision making. The idea of learning is
illustrated by an example of the application to the assembly system considered in
Chapter 8.
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Chapters 12, 13 and 14 deal with specific problems and systems: the decision
problems for plants with three-level uncertainty, complex relational systems (with
an application to a complex manufacturing system), control of a complex of
operations (with an application to task allocation in a group of parallel processors),
and knowledge-based pattern recognition under uncertainty.
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This chapter is concerned with analysis and decision making problems for a static
input—output plant described by a relation which is not reduced to the function @
considered in Sect. 1.3. Consequently, for the given relation, the output is not
determined by the input. The analysis problem consists in finding the output
property (or the set of possible outputs) for the given input property (or the given
set of inputs), and the decision problem consists in finding the input property (or
the set of possible inputs) for the given output property (or the set of acceptable
outputs, required by a user). For the functional plant presented in Sect. 1.3, the

input and output properties have the form “u = u"” and © y= y* ”, respectively. For

the relational plant the respective properties have the form “u € D, ”and “ y € D, ”

where D, and D, are subsets of U and Y, respectively.

2.1 Relational Knowledge Representation

Let us consider a static plant with input vector u € U and output vector y €Y,

where U and Y are real number vector spaces. The plant is described by a relation

upyéR(u,y)cUxY 2.1
which may be called a relational knowledge representation of the plant. It is an
extension of the traditional functional model y = @(u) considered in Sect. 1.3. The
relation R (u, y) denotes a set of all possible pairs (u, y) in the Cartesian product

U xY , which may appear in the plant. In other words, the plant is described by a
property (a predicate) concerning (u, y), and R (u,y) denotes the set of all pairs

(u, y) for which this property is satisfied, i.e.

R(u,y) = {(w,y) € UxY :wlp(, )] =1} & {(u,y) € UXY : p(u, )}

where wl@(u,y)]€[0,1] for the fixed values (u,y) denotes a logic value of the
property ¢ (u,y). When the relation R (u,y) is not a function, the description (2.1)

given by an expert may have two practical interpretations:
1. The plant is deterministic, i.e. at every moment n
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Yn :Q(un),

but the expert has no full knowledge of the plant and for the given u he/she can
determine only the set of possible outputs:

Dy(u)cY:{yeY:(u,y)€R(uy)}.

For example, in a one-dimensional case y=cu, the expert knows that
c; £c<cy; c1,¢p > 0. Then as a description of the plant he/she gives a relation
presented in the following form:
cu<y<cu for u=20
: ? . 2.2)

cu<y<cu for u<0
The situation is illustrated in Fig. 2.1, in which the set of points (u,,y,) is
marked.

y cHu

cu

au

Figure 2.1. Illustration of a relation — the first case

2. The plant is not deterministic, which means that at different » we may observe
different values y, for the same values u, . Then R(u,y) is a set of all possible

points (u,, y,), marked for the example (2.2) in Fig. 2.2, and D, (u) is a set of all

possible values which may be observed at the output for the fixed value u .

In the first case the relation (which is not a function) is a result of the expert’s
uncertainty and in the second case — a result of uncertainty in the plant. For
simplicity, in both cases we shall talk about an wuncertain plant, and the plant
described by a relational knowledge representation will be shortly called a
relational plant.

In more complicated cases the relational knowledge representation given by an
expert may have the form of a set of relations:

Ri(u,Ww,y) cUXWxY, i=1,2, ..k 2.3)
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where w € WV is a vector of additional auxiliary variables used in the description of
the knowledge. The set of relations (2.3) may be called a basic knowledge
representation. It may be reduced to a resulting knowledge representation R(u,y):

R(u,y)={(u,y)eUxY: v (u,W,y)cE(u,w,y)}

weWw

where
k

R(u, W, y)=[ R, W, y).
i=1

Figure 2.2. Illustration of a relation — the second case

The relations R;(u, w, y) may have the form of a set of inequalities and/or

equalities concerning the components of the vectors u, w, y.

In Chapter 7 we shall consider a special form of the relational knowledge
representation, in which the relations (2.3) are expressed by logical formulas
concerning (u,w,y), and in Chapter 8 the extension of the relational knowledge

representation to a dynamical plant will be presented.
The relational knowledge representation has a specific form in a discrete case
when U and Y are finite sets of vectors. Assume that U is a finite discrete set

U ={up,uy,...ug} .
Then the relation R (u, y) is reduced to the family of sets

Dy(ﬁj):{yey(EJ,Y)ER(%J’)}» j=1,23-~~9a B

Le. the sets of possible outputs for all inputs u;. If ¥ ={y;,»;,...y5} then
R(u,y) is a set of pairs (u;,y;) selected from UxY and D,(u;) is a
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corresponding finite set of the points y; (a subset of Y).

For the plant with external disturbances, the relational knowledge representation
has the form of a relation

R(u,y,2)c UxYxZ

where z € Z is a vector of the disturbances.

2.2 Analysis and Decision Making for Relational
Plants

The formulations of the analysis and decision making problems for a relational
plant analogous to those for a functional plant described by a function y =@ (u)

are adequate for the knowledge of the plant [24].

Analysis problem: For the given R(u,y) and D, cU find the smallest set
D, cY such that the implication

ueD,—>yeD, 2.4)

is satisfied.
The information that « € D, may be considered as a result of observation. For

the given D, one should determine the best estimation of y in the form of the set

of possible outputs D, . It is easy to note that

Dy:{er:v (u,y) € R(u,y)} . (2.5)

ueD,

This is then a set of all such values of y for which there exists <D, such that
(u,y) belongs to R. In particular, if the value u is known, ie. D, ={u}

(a singleton), then
Dy (u)={yeY: (u,y)eR(u,y)} (2.6)

where D, (u) is a set of all possible y for the given value u. The analysis problem

is illustrated in Fig. 2.3 where the shaded area illustrates the relation R(u,y) and
the interval D,, denotes the solution for the given interval D, .

Example 2.1.
Let us consider the plant with two inputs (D) and u(?), described by the inequality

quV+diu®@<y < uW+dyu@

and the set D,, is determined by
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auV +bu? <q 2.7
uD > ur(lln)n s u? Z”r(ji)n' (2.8)
y
Dy
D u

u

Figure 2.3. Illustration of analysis problem

For example, y may denote the amount of a product in a production process, uV

and #® — amounts of two kinds of raw material, and the value auD +bu® _ the
cost of the raw material. Assume that ¢;, ¢,, dy, d5, a, b, & are positive numbers

and c¢y;<cy, di<d,. It is easy to see that the set (2.5) is described by the

inequality
it + Ay S V'S Vi 2.9)
where
Yo = max (cu +du?) (2.10)

FOINE)

subject to constraints (2.7) and (2.8).
The maximization in (2.10) leads to the following results:

If
£ 4
d, b
then
ey 42 )
Y max —czumin—k?(a—aumin). (2.11)

If
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©H . a

dy b

then

Vmax = & (a bu® )+d, u'?) .

min min

(2.12)

For the numerical data ¢; =1, ¢, =2, d; =2, dy=4, a=1, b=4, =3,
uD =1, 42 ~05

l'IlIIl min
o 1 a1l o
dy 2 b 4 d,
From (2.12) we  obtain Ymax =4 and according to (2.9)
Ymin = Sl)n +d lu(z) =2. The set D, is then determined by inequality
2<y<4. O

Now let us consider a decision making problem for the relational plant described
by R (u,y) which is not a function. In this case the requirement y = y* (where y*

is a given value) cannot be satisfied and should be replaced by a weaker
requirement y € D, for a given set D,. As a result we may obtain not one

particular decision u”, butaset of possible decisions D,, .

Decision problem: For the given R(u,y) and D), Y find the largest set D, cU

such that the implication (2.4) is satisfied.
The set D), is given by a user, the property y € D,, denotes the user’s requirement

and D, denotes the set of all possible decisions for which the requirement
concerning the output y is satisfied. It is easy to note that

D,={ueU: D,(u)cD,} (2.13)

where D (u) is the set of all possible y for the fixed value u, determined by (2.6),

or

D,={ueU:(u,y)eRu,y)>yeD,}.

The solution may not exist, i.e. D, =< (empty set). Such a case is illustrated in
Fig.2.4: for the given interval D, a set D, = satisfying the implication (2.4)

does not exist. This means that the requirement is too strong, i.e. the interval D, is
too small. The requirement may be satisfied for a larger interval D, (see Fig. 2.3).

In the example illustrated in Fig. 2.2, if D), =[yyin, Ymax] and ¢, ¢ >0 then
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Ymin  Ymax
9

D:[C C
1 2

u

]

and the solution exists on the condition

Ymin . Vmax
< S)

Figure 2.4. Illustration of the case where the solution does not exist

The analysis and decision problems for the relational plant are the extensions of the
respective problems for the functional plant, presented in Sect. 1.3. The properties
“ueD,” and “yeD,” may be called input and output properties, respectively.
For the functional plant we considered the input and output properties in the form:
“u=u " and“ y= y* ” where " s y* denote fixed values. For the relational plant
the analysis problem consists in finding the best output property (the smallest set
D)) for the given input property, and the decision problem consists in finding the
best input property (the largest set D,,) for the given output property required. The
procedure for determining the effective solution D, or D, based on the general
formulas (2.5) or (2.13) depends on the form of R(u,y) and may be very
complicated. If R(u,y) and the given property (i.e. the given set D, or D, ) are
described by a set of equalities and/or inequalities concerning the components of
the vector u and y, then the procedure is reduced to “solving” this set of equalities
and/or inequalities.

Example 2.2.
Consider a plant with a single output, described by a relation

Gy (1) < y < Gy (1) (2.14)

where G| and G, are the functions

G :U—>R*, G,:U—->R"; R =[0,0),
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A [G(u) £ Gy (m)].

uelU

and

For example, y is the amount of a product as in Example 2.1, and the components
of the vector u are features of the raw materials. For a user’s requirement

Vmin S V'S Vmax (2.15)
ie. Dy, =[Ymin>Ymax ], We obtain
Dy ={ueU:[G(u) 2 ymin IN[G2 () < ymax ]} -

In particular, if the relation (2.14) has the form

cluTu SySczuTu, c; >0, ¢y >
where u € R¥ and

ulu=@M)? + @)? + .+ @®)?
then D,, is described by the inequality

Ymin <MTM<J’maX
aq

and the decision u satisfying the requirement (2.15) exists if

Ymax -, Vmin O
o

2.3 Relational Plant with External Disturbances

The considerations may by extended to a plant with external disturbances, described
by a relation R(u,y,z)cUxY xZ where ze Z is a vector of the disturbances

which may be observed. The property ze D, for the given D, c Z may be
considered as a result of observations. Our plant has two inputs (#,z) and the
analysis problem is formulated in the same way as for the relation R(u,y), with

(u,z)e D,,xD, inplaceof ueD,, .
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Analysis problem: For the given R(u,y,z), D, and D, find the smallest set
D, <Y such that the implication

(ueDu)/\(zeDZ)—>yeDy (2.16)

is satisfied.

The result analogous to (2.5) is

D, ={yeY VIR VRS-

ueD, zeD,

The decision making is an inverse problem consisting in the determination of the
set of all decisions u such that for every decision from this set and for every z e D,

the required property y € D, is satisfied.

Decision problem: For the given R(u,y,z), D, (the requirement) and D, (the

result of observations), find the largest set D, such that the implication (2.16) is
satisfied. The general form of the solution is as follows:

D, :{ueU:A [D,(u,z)c D, ]} (2.17)
zeD,
where
Dy(u,z):{er: (u,y,z) € R(u,y,z)} . (2.18)

It is then the set of all such decisions u that for every z € D, the set of possible
outputs y belongs to D, . For the fixed z (the result of measurement) the set D,

is determined by (2.17) with the relation
R(u,y,z) 4 Ru,y;z) cUxY.

In this notation z is the parameter in the relation R(u, y;z). Then

D (z2)={ueU: Dy(u,z)cD,} & R(zu) (2.19)

where D, (u,z) is defined by (2.18). The formula (2.19) defines a relation between

z and u denoted by R(z,u). The relation R(z,u) may be called a knowledge
representation for the decision making (a description of the knowledge of the
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decision making) or a relational decision algorithm. The block scheme of the
open-loop decision system (Fig. 2.5) is analogous to that of Fig. 1.1 for a functional
plant. The knowledge of the decision making

<R(z,u)> KD
has been obtained for the given knowledge of the plant
A
<R(u,y,z)> =KP

and the given requirement y € D, .

§(z,u) R(u, y,z) —

Figure 2.5. Open-loop decision system

Example 2.3.
Consider a plant with one output, described by a relation

Gi(u,2) <y <Gy(u,z) (2.20)
where G| and G, are the functions
G :UxZ—->R", G,:UxZ—->R"; R*=[0,0),

A A [G1(u,2) < Gy (u,2)].

uelU zeZ

and

For example, y is the amount of a product (see Example 2.2), the components of

the vector u are the features of the raw material which may be chosen by a decision
maker, and the components of the vector z are the features of the raw material
which may be observed. For a user’s requirement

Ymin £V < Ymax > (2.21)
ie. Dy, =[Ymin>Ymax ], We obtain
Dy {u €U :[Gy() 2 ymin ] ALG2 () < Yy 1}

where
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Gy(u)= min G{(u,z),  G,(u)=max G,(u,z).
zeD, zeD,
Assume that z| = [z(l) 2(2)] , the relation (2.20) has the form

)

cz ulu < y< czz(z) T

u u,

C1>O, Ccy >Cp, Z1>0, Zy > 71

and D, is described by the inequality

Fin <7+ (D) <rfy.
Then
(_;1(u) = clzr(llgnuTu , (_?2 )= czzglziquu
where

Z(l) _ Tmin (2) _ "max

min \/E ’ max \/E '

Consequently, the set D,, is described by the inequality

\/Eymin <uTu< \/Eymax
€17 min €2 max
and the decision u satisfying the requirement (2.21) exists if

Y max > Y min ) O

€2 max €1"min

Example 2.4.
A plant with u, y,z€ R 2 (two-dimensional vectors) is described by the inequalities

0, M < y(l) <20, D
22,2 < y(Z) <2:2, @
0 , 2 , u® , u® >0.The requirement concerning the output is the following

a<()?+(yP) <p

for the given «, £ > 0. From the description of the plant we have
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)52 1)\2 )42 1)5\2 142
2 @)? <")? <4 @)

)2 ?)? < () <4E)? )2,

it 2 e[z(l) z) ] and z® e[z(z) z(2) ], then the set D,, is determined by

min *> ©“max min *> “max

the inequalities

Az)® @) + @20 @P)?1< p

max

D2 @M)? + D)2 w?)? > a.

2.4 Determinization

The deterministic decision algorithm based on the knowledge KD may be obtained
as a result of determinization (see Sect. 1.4) of the relational decision algorithm

R(z,u) by using the mean value

ii(z) = judu~[ jdu]—l 2 g(y).
Dy, (2) Dy, (2)
In such a way the relational decision algorithm R (z,u) is replaced by the
deterministic decision algorithm ' (2).

For the given desirable value y* we can consider two cases: in the first case the
deterministic decision algorithm ¥/(z) is obtained via determinization of the

knowledge of the plant KP, and in the second case the deterministic decision
algorithm ¥,(z) is based on the determinization of the knowledge of the decision

making KD obtained from KP for the given y’k . In the first case we determine the

mean value

¥ = [yavl [l 2 o) (222)
Dy(u,z) Dy(u,z)

where D, (u,z) is described by formula (2.18). Then, by solving the equation

D(u,z)=y" (2.23)
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with respect to u, we obtain the deterministic decision algorithm u = #(z), on the

assumption that Equation (2.23) has a unique solution.
In the second case we use

R, y",z) & Ry(z,u), (2.24)

i.e. the set of all pairs (u,z) for which it is possible that y = y*. The relation
R;(z,u) c ZxU may be considered as the knowledge of the decision making KD,
i.e. the relational decision algorithm obtained for the given KP and the value y* .
The determinization of the relational decision algorithm R, gives the deterministic

decision algorithm

1y (z) = judu-[ jdu]—lé v, (2) (2.25)

Dud (z) Dud (2)
where

D,(2)={ueU: (u,z)eR;y(z,u)}.

Two cases of the determination of the deterministic decision algorithm are
illustrated in Figs. 2.6 and 2.7. The results of these two approaches may be
different, i.e. in general ¥ (z) # ¥,(z) (see Example 2.5).

Example 2.5.

Consider a plant with u, z, y € R! (one-dimensional variables), described by the
inequality

cu+z<y<2cu+z, c>0. (2.26)

For Dy, =[Vmin>Ymax] and the given z, the set (2.19) is determined by the
inequality

Ymin “fou< Ymax —Z
c 2c

The determinization of the knowledge KP according to (2.22) gives
~ 3
y :zcu +z=0(u,z).

From the equation @(u,z) = y* we obtain the decision algorithm

u=¥’(z)=¥.
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z
z u y
' Plant }——
|
y
]

l

Determinization K—]
R(u,y,z)

Figure 2.6. Decision system with determinization — the first case

z
z Uy Y
¥y Plant |——>
Determinization
|
y KD . | KP
Ry(za) |7 |R@w..2)

Figure 2.7. Decision system with determinization — the second case

Substituting y* into (2.26) we obtain the relational decision algorithm R, (z,u) in

the form

and after the determinization

3y -
uy =‘i’d(z)=(y4—cz)¢‘{’(z).



Relational Systems 25
2.5 Discrete Case
Assume that

U:{’;l’l’_lQ."“’]’_la}’ YZ{?],;Z,...,)_/ﬂ}-

Now the relation R (u,y)is a set of pairs (u;,y;) selected from UxY , and may

be described by the zero-one matrix

710 0 @50 €R j=lna, izl p

The sets D, cUand D, Y may be determined by the sets of the respective

indexes

JeL2a} 28, Icil2..B}2S,,

ie.

ujeD, <> jeJ, y;jeD,oiel.

Analysis problem: For the given matrix [y;;] and the set J find the smallest set

I such that
jedJ—iel. (2.27)
According to (2.5)
I={ieSy:\/(;(j,~:1)} (2.28)
JeS,

Decision problem: For the given matrix [y;;] and the set / required by a user,

find the largest set J such that the implication (2.27) is satisfied.
According to (2.13)

J={jeSs, Sy(])gl}
where
Sy(N=GieS, x;=1}, (2.29)

or

J={jeS, z;=1>icl}. (2.30)

It is worth noting that the sets (2.28) and (2.29) may be easily generated by a
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computer containing the matrix [y;;] as a knowledge base. For the plant with

external disturbances

z€Z={21,22, 2},
the relation R (u, y,z) may be described by the three-dimensional zero-one matrix

Yir = 1 if (L_lja.)_/bfk)eR
Jik 0 otherwise,
j=lL..,a,i=1..,0, k=1,..,y. The set D, may be determined by the set of
respective indexes K < {l,2,...,y},1.e. z, € D, <> kekK.

The decision problem consists in finding the largest set J such that the
implication

(jen(keK)—iel

is satisfied.
The solution is analogous to (2.17) and (2.18):

J:{jESu :/\Sy(jak)g]}

keK
where
S,(J,k)={ieS,:  yjx=1}.
The form corresponding to (2.30) is as follows:

J={jeSs, 3A(Zjik:1—>i€1)}~

kekK

Remark 2.1. Note that in the discrete case it may be possible to satisfy the
requirement y = y* eY,ie i=i * for R which is not a function. The solution has

the form
J={jeS,:S,(.b=i}. O

Example 2.6.
Let a=5, =6,

—_ o O O O
—_ o = O O
_—= = = O
S O O = O
—_—O = O

X
Il
c o o o -
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and the requirement is determined by [={3,4,5}, which means that

Dy, ={y3,74,ys} . According to (2.29)

S, ={L6}, S, (=145}, S,(3)={346},

S,(4)=1{4, §5,05=1{23.4,6}.

Then J ={2,4}, which means that the requirement is satisfied for the decisions u,

and uy . It is easy to see that for

N

1]
S = o o =
- o © = ©
- o = o ©
==
o o o = o
—_ O = O

the solution does not exist. O



2 Springer
http://www.springer.com/978-1-85233-772-8

Analysis and Decision Making in Uncertain Systems
Bubnicki, 2.

2004, ¥, 371 p., Hardcover

ISBN: 978-1-85233-772-8





