Chapter 1

Dynamic Modelling of
Chemical Processes

1.1 References

Many textbooks and research books are available. When a precise reference is
given for a textbook which describes a given topic particularly well, the present
author has tried not to forget his colleagues and mentions them at the end of the
concerned chapter. When general textbooks can be recommended for different
points, they are mentioned at the end of this first chapter to avoid too much
repetition. It is impossible to cite all textbooks and the fact that some are not
cited does not mean that they are of lower value. Of course, research papers
are referenced in the concerned chapter.

1.2 Applications of Process Control

A chemical plant represents a complex arrangement of different units (reactors;
separation units such as distillation, absorption, extraction, chromatography
and filtration; heat exchangers; pumps; compressors; tanks; ...). These units
must be either maintained close to their steady states for continuous operation
or follow optimal trajectories for batch operation.

The engineers in charge of a plant must ensure quantitative and qualitative
product specifications and economic performance while meeting health, safety
and environmental regulations.

The task of a control system is to ensure the stability of the process, to
minimize the influence of disturbances and perturbations and to optimize the
overall performance. These objectives are achieved by maintaining some varia-
bles (temperature, pressure, concentration, position, speed, quality, ...) close
to their desired values or using set points which can be fixed or time-dependent.

When a chemical engineer designs a process control system, he or she must
first study the process and determine its characteristics. The process variables
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are classified as inputs, outputs, and states.

Subsequently, a process model with varying degrees of complexity (accord-
ing to the ultimate use of the model) is derived. For an existing process, a black
box model (where coefficients have no physical meaning) may be developed by
system identification techniques, often with little effort. On the other hand,
a physical model based on first principles involves a great deal of engineering
effort.

The developed model is in general verified in an off-line manner and inde-
pendently of the control scheme. Then, the model is used together with the
chosen control scheme to check the process response to set point and distur-
bances variations.

The control scheme can be a simple proportional controller as well as a
much more sophisticated algorithm, e.g. if nonlinear control based on a physical
model of the process is utilized.

The outputs of the simulation model used for control can be compared to
those of the real process or to those from an accurate model. System identifi-
cation (Fig. 1.1) allows the engineer to estimate the parameters of the model
or to evaluate the performances of the control law.
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Figure 1.1: Design of a process model for control

1.3 Process Description from the Control
Engineer’s Viewpoint

The control engineer considers the process to be controlled as a dynamic system
having inputs, outputs and internal variables called the state variables. His/her
classification is different from the process engineer’s point of view. Indeed,
for a process engineer, inputs are essentially physical streams (such as a feed
pipe) delivering material and energy to the process, possibly information such
as electrical signals, and outputs are similarly physical streams, withdrawing
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materials (the effluent stream to the downstream processing unit) and energy
from the process.

External disturbances
Measured Unmeasured

l l Measured outputs

Manipulated Process

tat
variables (states) Unmeasured outputs

Figure 1.2: Input-output block diagram representation of a process

From the control engineer’s point of view, variables associated with a process

(flow rate, concentration, temperature, pressure, quality, . ..) are generally con-

sidered as signals transferring information. These variables are divided into two

groups (Fig. 1.2):

— Inputs which represent the influence of environment on the process: these
variables affect the process and thus modify its behaviour.

— Outputs which represent the process influence on environment: these varia-
bles represent the link with the outside. They should be maintained close
to their set points.

Input and output variables are linked by state variables (see state representa-
tion) which are internal to the process and help to describe the evolution of
the process with time. Any modification of the inputs affects dynamically the
process states, which in turn influence algebraically the process outputs.
Input variables are divided into:

— Control variables or manipulated variables which can be adjusted freely by
the operator or by regulatory means. For example, the position of a valve
stem determines the flow rate through the valve. In this case, the input or
manipulated variable will be the valve stem position or the flow rate in the
pipe which is directly related to the valve position.

— Disturbances include all other inputs which are not set by the operator or
a controller. For example, in the case of temperature control in a building,
outside climate temperature and humidity changes are considered as distur-
bances which affect the controlled variable that is the inner temperature.

Output variables are divided into:

— Measured variables, whose values are known using direct on-line measure-
ment by a sensor.

— Unmeasured variables, which may be estimated or inferred using an indirect
or secondary measurement. This estimation of unmeasured variables by
means of a model and other measurements constitutes a soft sensor (Chap.
18).
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Figure 1.2 represents an input-output block diagram of a process.

A system is called single variable or single-input single-output (SISO) if it
has only one input and one output. It is called multivariable or multi-input

multi-output (MIMO) if it has several inputs and several outputs. In general,
the number of inputs is larger than the number of outputs.
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Figure 1.3: Different types of inputs starting at time ¢ = 7 after steady state

In order to study the behaviour of a process, the process inputs are generally
varied by some simple and standard functions and the response of the process
is monitored in each case. Apart from the disturbances, which can take any
form, the standard input functions f (Fig. 1.3) are:

— A step function: a unit step function is defined as f =1if¢t >0, f =0 if
t < 0. Its response is called a step response.

— An impulse function: a unit impulse function is defined as: f = ¢ (theore-
tical Dirac). Its response is called an impulse response.

— A sinusoidal function: f = a cos(wt + ¢). Its response is referred to as a
frequency response.

— A ramp: f = kt. This determines the behaviour of the process output to
an input with constant rate of change (constant velocity).
— A parabolic function: f = kt?. This is used whenever the response to a
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constant acceleration is desired.

The inputs to a controlled physical system can be further classified as dis-
turbances (loads) (for regulatory control) or set point variations (for set point
tracking or servo-control).

1.4 Model Classification

Models can be classified with respect to different user-specified criteria. In the
steady-state models, the time derivatives of the state variables are set to zero
(d/dt = 0). In the dynamic models which describe the transient behaviour of
the process, the process variables are time-dependent (f(¢,z,u)). In process
control applications, the models must be dynamic in order to represent the
process variations with respect to time.

Dynamic models can be of two kinds: deterministic, in which it is assumed
that all the variables are perfectly known at a given instant of time, or prob-
abilistic (stochastic) models, which make use of probability distributions to
account for the variations and uncertainties associated with the process and its
variables.

Dynamic models can be continuous when the function f(¢, z,u) describing
the process is continuous or discrete with respect to time (variables are only
known at regular time intervals).

A model can be developed using merely the process input-output data series
without physical knowledge of the process. This type of model is referred to
as a black-box or behavioural model (such as neural networks). At the other
extreme, a model may be developed from the application of first principles
(conservation laws) to the process. Such models are called phenomenological
or knowledge-based.

The knowledge-based models are further classified as:

— Lumped-parameter models in which the state variables have no spatial de-
pendence, and therefore the models consist of ordinary differential equations
(e.g. the classical continuous stirred tank reactor).

— Distributed-parameter models, in which the state variables are position-de-
pendent and the models take the form of partial differential equations (e.g.
a tubular reactor). Very often, a distributed-parameter model is discretized
(division of a tubular reactor into n continuous stirred tank reactors) so as to
transform the partial differential equations into a set of ordinary differential
equations that are more tractable mathematically.

Furthermore, models can be linear or nonlinear. A process model is linear if all
variables describing the process appear linearly in the equations. It is nonlinear
in the opposite case. The advantage of linear models is that they can be easily
transformed by mathematical mappings and their mathematical behaviour is
well known.

Among the many forms of models that will be used in this book, the transfer
functions (in the continuous s Laplace or discrete z domains) and the state-
space models are of special significance.
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A key point which must be remembered is that a model, however sophis-
ticated it may be, remains an approximation of the real process. It will often
differ according to the pursued objective.

1.5 State-Space Models

Generally, a state-space multivariable system is modelled by a set of algebraic
and differential equations of the form

{ o= f(x,u,t)

e b (1.1)

where x is the state vector of dimension n, w is the input vector (or control
variables vector) of dimension n, and ¥y is the output vector of dimension n,
(in general, n, > ny). The state @ of the system at any time ¢ is described
by a set of n differential equations, which are often non-linear. The states x(t)
depend only on initial conditions at ¢y and on inputs w(t) between to and t.
At the initial time, the state variables are the initial conditions and later they
represent, the evolution of the state of the system.

A remarkable characteristic of the non-linear dynamic knowledge-based mo-
dels in chemical engineering is that they are described by differential equations,
either ordinary or partial, which are usually affine with respect to the input
vector. Thus, the most common form of a non-linear state-space model is

{ z = f(z,t) +g(z,t)u 12)
y =h(z,t)

An important class is linear state-space models of the form
{ &(t) = Az(t) + Bu(t)

(1.3)
y(t) = Cz(t) + Du(t)

which includes any process model described by a set of n linear ordinary diffe-
rential equations. A is the state matrix of dimension (n x n), B is the control
matrix of dimension (n x n,), C is the output matrix of dimension (n, x n),
and D is the coupling matrix of dimension (n, X n,) which is very often equal
to zero. When D is different from zero, it is said that the output is directly
driven by the input.

The linearization of a set of differential equations of the most general form

& = f(@,u.) (14)

around a steady-state operating level & for a nominal input ug can be achieved
by the following Taylor series expansion

. “~ (0f; < [ 0f;
xT; :fi(mo,uo,t)—I— < > 5.’E—|— < > (s’ltk
= \0% ) oy, g Our, ) g, u=u,

4 (1.5)

J
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with: dz; = ©; —xj,0, Sur = ur — uk,0 where ;o is the j component of steady-
state vector g and ug,o is the k component of the nominal input vector ug. 6
indicates any deviation with respect to the nominal operating condition, thus
0z and du are respectively deviations of the state and of the input with respect
to the steady state of the process. One gets &; = é2; + ;0 and &; 0 = fi 0, SO
that the following set of linear ordinary differential equations is obtained

. (& > > ( o >
dx; = E < dz; + E duy (1.6)
Ox; T=2,,U=1U, ! 1 Ouy, =2, U=,

=1

which can be easily written in a more condensed matrix form similar to Eq.
(1.3). Similarly

< [ Oh; = [ Oh;
dy; = < l) dxj + < 1) duy (1.7)
Z 0% ) gy u—uo ! kZ:l Ok ) g—z0 u—u,

i=1

The form of Egs. (1.6) and (1.7) is referred to as the linearized state-space
model with the matrices of the linear state-space model indicated by their
current element

ol I - B - B
6xj 8’[1,]' 8xj an

(1.8
A and B are respectively the Jacobian matrices of f with respect to & and u,
while C' and D are respectively the Jacobian matrices of h with respect to @
and u.

Notions of controllability and observability in the state space will be spe-
cially studied in Chap. 7.

1.6 Examples of Models in Chemical
Engineering

With the help of certain classical examples in chemical engineering, we will
show how various chemical processes can be described in the state-space form.

1.6.1 Lumped-Parameter Systems

In lumped-parameter systems, the process variables depend only on time, which
is the independent variable. The dynamic behaviour of the process is then
described by a set of ordinary differential equations.

A Surge Tank

Consider a cylindrical tank fed by an incompressible liquid (Fig. 1.4) at a
varying flow rate Fy (m?/s). The exit flow rate F is also time-dependent.
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Fo

Figure 1.4: A surge tank with varying level

At steady-state, the level in the tank is constant and the mass balance requires
equality of inlet and outlet mass flow rates

where p is the fluid density.
In transient regime, the liquid level h in the tank varies with time.
The general mass balance formulated as

(inlet mass / unit time) = (outlet mass / unit time) +
(time rate of change of mass in the system)

gives the dynamic model of the tank

d(pV
Fopo = Fp+ A2V (1.10)
dt
This is the state-space equation of the process.
If the liquid density is constant (p = pg) and the tank cross-sectional area
S does not depend on the liquid level, the previous mass balance will become

%:FO/SfF/S (1.11)
dt

One notices that only the liquid level in the tank, the controlled variable,

appears in the derivative. With the section area S being a constant parameter,

this ordinary differential equation is linear. Equation (1.11) can be considered

as the fundamental model of a level control system.

Assuming that a valve is placed on the inlet pipe (Fig. 1.5), the inlet flow
rate Fy will become the control (manipulated) variable of the system. In state
space, the system is single-input single-output (SISO), with an input u = Fp,
an output y = h and only one state: x = h. The state-space model is

= u/S—F/S

v 2 (1.12)
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Fy

Figure 1.5: Surge tank with varying level with valve on the inlet stream

Fy

Figure 1.6: Surge tank with varying level with valve on the outlet stream

In this linear model, the cross-sectional area S is a constant parameter, and
the flow rate F' is an external disturbance acting on the system.

In the case where the valve is on the outlet stream (Fig. 1.6), the manipu-
lated input is the outlet flow rate F', so that the state-space model becomes

T = Fo/S—U/S
y— @ (1.13)

In this case, the flow rate Fj is a disturbance.

An Isothermal Continuous Chemical Reactor

The cylindrical reactor (Fig. 1.7) is assumed to be perfectly mixed, i.e. the
temperature 7', the concentration of any given species, the pressure, etc. are
identical at any location of the reactor and keep their value in the effluent
stream. The reactor is fed by two streams, one having a flow rate Fj contai-
ning the reactant A, and the other one an inert stream with a flow rate F.
Both streams have their temperature equal to that of the reactor contents. Fur-
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thermore, we will assume that the heat of reaction is negligible so that there is
no need to write the energy balance.

FOapOaT Fl,pl,T
Ca,

V,Ca,Cp
p, T

F.,p, T
CAaCB

Figure 1.7: An isothermal continuous stirred tank reactor (CSTR)

The overall mass balance equation is similar to that of the previous tank

d(ph)

dt :Fopo/S-FFlpl/S*Fp/S (1.14)

and we assume that the densities in different streams are equal.
The balance for component A in transient regime is given by the continuity
equation for A:

(rate of A entering) = (rate of A exiting) — (rate of A produced) +
(rate of accumulation of A),

giving

d(V Ca)
dt

noting that F', = Fy Ca, is the molar flow rate (mol/s) of component A in the

inlet stream, and similarly F”; is the outlet molar flow rate. Equation (1.15)
can be written as

FoCyy=FCy—RuV+ (1.15)

d(V Ca)
dt
The term R4 represents the number of moles of A produced per unit volume
and unit time; it can be called the production rate of A (Levenspiel, 1999;
Villermaux, 1982). When R reactions designated by i occur simultaneously,

the rate of production of a component A; is equal to

Flhyo=F\ —~ R4V + (1.16)

R
Rj = Zyijri (117)
i=1

where each reaction rate r; is in general positive. The stoichiometric coefficient
v;; > 0if A is produced by reaction 7, and v;; < 0 if A; is consumed by reaction
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1. Note that this definition of reaction can be applied to either a continuous
reactor, a batch reactor (Fy = F = 0) or a fed-batch reactor(F = 0 and
Fy # 0). The chemical advancement ¢ (dimension: mol) and the generalized
yield x (without dimension) are defined such that:
e For a closed reactor:
Taking ng as the total number of moles of reacting species present at a refe-
rence state, in general the initial state, the number of moles of a component
A; at any other state is equal to

R R
n; = Njo + Zl/ij fz = Tj0 + ng Zl/ij Xi with: ng = ano (118)
i=1 i=1 J
given the rate of reaction i:

_ 16 o dxi
"IV TV at

(1.19)

e For an open continuous stirred reactor:
The reference is in general the inlet molar flow rate F} including all entering
reacting species j present in the reference state. So the molar flow rate F]'
of a component A; at any point of the system is equal to

R R
i=1 i=1 J
given the rate of reaction i:

F/
ri = VO (Xi,out - Xi,in) =

Fy Cy
|4

(Xi,out = Xiyin) (1.21)

where in denotes the inlet stream and out the exit stream. Cj is the total
concentration in the reference state of all the constituents. The residence
time 7 is equal to

v CO (Xi,out - Xi,in)

= — = 1.22
T FO T ( )

In the general case of R simultaneous reactions, Equation (1.15) becomes

R
d(h C4)
ST :FOCAO*FCA‘F;WA’HV (1'23)

In the case where only one first-order chemical reaction occurs: A — B, the
reaction rate r4 is equal to r4 = k C4, and the production rate of A is equal
to Ry = —ra, as v;4 = —1. Equation (1.15) becomes

d(V Ca)

FoCuay=FCa+EkCV + 7

(1.24)
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which can be transformed into

% = %(CAO —Ca) — 5, Ca—kCa (1.25)
This balance will be used as the fundamental model for the control of the
concentration Cy4.

The differential equation describing the variations in the concentration C4
is in general nonlinear, since the inlet and outlet flow rates F and F' are time-
varying and the reaction rate can be a complicated function with respect to
concentration. Frequently, a chemical reaction is either endothermic or exother-
mic. Therefore, an energy balance equation should be added to the previous
differential equations.

Assuming that the inputs are the inlet volumetric flow rate F; and inlet
concentration Ca,, the control vector is u = [Fy, CAO]T. We wish to control
the reactor level and concentration, thus the output vector is y = [h, C4]7.
The process is a 2 X 2 multivariable system. The state vector is chosen to be
equal to = [h, C4]T. The state-space representation of the isothermal reactor
with a first-order reaction is

i‘lz Fo/S—F/S+U1/S

. 1
Trog = S—M[Fo(ug—mg)—x2u1]—kmg (126)
Y= *1
Y2 = T2

This multi-input multi-output (MIMO) model is nonlinear even if we assume
that the level h is perfectly regulated by an independent controller because of
the differential equation describing the concentration variations. Disturbances
are flow rates Fy and F'.

Frequently, when the main objective is concentration control, the influence
of level variations is considered as secondary and the level can be regulated
independently.

A Non-isothermal Continuous Chemical Reactor

Figure 1.8 represents the schematics of a non-isothermal continuous chemi-
cal reactor with a heating/cooling jacket. The heating/cooling medium may
also be supplied by means of a coil immersed inside the reactor. It is used for
cooling in cases of exothermic reaction or desired temperature decrease, and
for heating in cases of endothermic reaction or desired temperature increase.
The rate of heat transfer transferred between the reacting mixture and the
heating/cooling medium is Q Q is positive for heating the reacting mixture
and negative in the opposite case. Q is given by

Q="USex (T; —T) (1.27)
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Figure 1.8: A non-isothermal continuous stirred tank chemical reactor
(CSTR)

where U is the overall heat transfer coefficient, Sex is the available heat ex-
change area, T} is the mean temperature in the jacket, and 7T is the temperature
of the reactor.

Apart from the overall mass balance and component mass balance on A, the
energy balance written in general terms as

(variation of internal energy / unit time) =
(inlet enthalpy by convection / unit time) —
(outlet enthalpy by convection / unit time ) +
(rate of heat transfer and mechanical energy)

must also be considered. The energy balance of the reactor is thus as follows

au .
o7 = Finlin = Fout howt + Q (1.28)
where F}, is the total inlet molar flow rate and F,,, is the total outlet molar

flow rate. A’ is the specific molar enthalpy of each stream given by
h;n = Z Lj,in h‘;’,in himt = Z Lj,out h;‘,out (129)
J J

where x; i, and x; .4 are the inlet and outlet mole fractions respectively and
h;,m and h;mut are the specific enthalpies of component j in the inlet and outlet
streams respectively. The specific molar enthalpy A’ of a pure component can
be expressed with respect to its enthalpy of formation AH(T,.f) at a reference

temperature T;..¢ according to
T
h = AHf(Tref) —|—/ C’; dr (130)
Trey

provided that there is no change of state between T’y and T'. If, however, there
is a change of state, the corresponding latent heat of transformation should be
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accounted for. Czl7 is the molar specific heat of the component at constant
pressure.
The change of total internal energy U of the reactor contents can be ex-
pressed in terms of the specific molar internal energy by
dU d(nu) d(H—-PV) d(nh) av dP

dat - dt dt ~—a Tw V& (1.31)

For isobaric operation and negligible pressure work, there remains

dU  d(nh)
- - 1.32
dt dt ( )
The enthalpy change Ah; due to reaction i is equal to
J

which concerns only reacting and produced species, not inert ones. For R
reactions, the total enthalpy contribution dh linked to the reactions is

R
dh=Vdt Y r; Ah; (1.34)

i=1

The enthalpy of the reactor walls and its accessories such as the mixer
should also be considered. Assuming that the mass of the reactor wall and its
accessories is represented by m, and the corresponding heat capacity is C,., the
overall thermal balance after some mathematical manipulation can be written
as

R
dT .
(mCp+my Cp) - = > " Fin pin Cpin (Tin —T) +Q —V > _r; Ah; (1.35)

i=1

where m is the mass of the reactor contents, C), its mean specific heat calculated
at the reactor temperature 7', and the summation is carried out over all inlet
streams to the reactor. Note that the reactor is perfectly mixed, therefore the
exit temperature and concentration are identical to those in the reactor. The
heats of reactions Ah; are calculated at the reactor temperature.

Consider again the first-order chemical reaction A — B with heat of reaction
Ahy_,p, taking place in the reactor shown in Fig. 1.8. The temperature
dependency of the reaction rate is expressed by the Arrhenius equation
r = ko exp(—E/(RT)) C4, which is a highly nonlinear term. When applied to
the reactor shown in Fig. 1.8 with its two inlet streams, Eq. (1.35) becomes
(assuming that densities pg, p1, p and heat capacities are constant)

= FopoCpo (To—T)+ Fi p1 Cpy (Ty—T)+Q -V r Aha_p
(1.36)

daT
(mCp+m, C,) =
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where Cp, is the mean specific heat of the inlet stream with volumetric flow
rate Fy. The densities are assumed to be identical and constant.

Notice that the differential equation describing the temperature variation
is nonlinear. This model will be used for temperature control studies in the
remainder of the book.

The behaviour of the chemical reactor shown in Fig. 1.8 is described by a
set of three coupled ordinary differential equations.

In addition to the level and concentration in the case of the isothermal
reactor, temperature must also be controlled. Moreover, it is assumed that a
valve allows us to manipulate the thermal power ) introduced in the jacket.
This can be performed by a heat exchanger. Therefore, the output vector is
y = [h,Ca, T]T, the control vector is u = [Fy,C4,,Q]7, and the state vector
isx =[h,Ca,T|T.

In this case, the state-space model obtained from balance equations is as
follows

1= Fy/S—F/S+u/S
. 1
To = g [FO (UQ—JJQ)—{EQ ul]—ko exp(_E/(thg,)):EQ

1

1
'3 = Fo po Cpo (T — Coi (Th —
T3 pSCpz1 +m,C, [Fo po po( 0 —3) +u1 p1 pl( 1 — x3)
—ko exp(—E/(Rx3)) Sz1 22kt + u3]

y1= T
Y2 = X2
Ys = I3

(1.37)
The state-space model is multi-input multi-output and nonlinear because of the
two differential equations describing respectively the variations of concentration
and of temperature in the reactor. Nevertheless, this model is affine with
respect to manipulated variables.
In general, this model will be too complicated for control system design
and analysis. If one is primarily concerned with temperature control, only the
energy balance will be taken into account.

Staged Processes

A tray distillation column is composed of a finite number of stages, similar
to a tray absorption column or a multi-stage mixer-settler for liquid-liquid
extraction. In a staged process, the overall mass balance, the component mass
balance and the energy balance are applied to each stage separately. The
full state-space model of a staged process is thus obtained by gathering the
stage models and taking into account the relations between the stages and the
environment. Therefore, the overall model of these processes consists of a large
number of ordinary differential equations adequate for dynamic simulation but
which pose difficult problems for control studies and implementation. The
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number of differential equations (the model order), however, can be reduced by
efficient model reduction techniques to obtain approximate low-order models.
The reduced model must keep the main dynamic characteristics of the original
high-order model. An example of model reduction for a distillation column is
given in Chap. 20.

1.6.2 Distributed-Parameter Systems

When process variables depend simultaneously on time and spatial variables,
the process is described by partial differential equations.

A chemical tubular reactor, chromatography column, packed absorption or
distillation column are examples of distributed-parameter systems. Only one
example will be presented here: an isothermal tubular reactor (Fig. 1.9). If
noticeable heat exchange occurs in the reactor, the energy balance equations
must be considered as previously with heat exchange occurring at the wall.

z z4dz
v(z) | v v(z +dz)
z=0 C(z) z=1L

Figure 1.9: Schematics of a tubular reactor

The flow is assumed to be fully turbulent, which results in a flat velocity profile
and justifies the plug flow assumption. For a plug flow reactor, the reaction
rate and all the process variables are constant over a given cross-section, i.e.
the radial variations are discarded and only the axial variations are considered.
The chemical reaction is identical to the previous cases: A — B, first-order,
and the reaction rate r4 is given by r4 = ko exp(—E/(RT)) Ca.

The conservation principles, in the case of distributed-parameter systems,
are applied to an infinitesimal volume (control volume) in which the fluid prop-
erties may be assumed constant. The shape of the control volume depends on
the geometry and the flow conditions in the reactor. For example, for a plug
flow reactor, the control volume is a cylinder of thickness dz (example of Fig.
1.9), for a tubular reactor with both radial and axial variations in process va-
riables, the control volume will be a ring with height dz and radial thickness
dr, and for a tubular reactor with variations of process variables in radial, axial
and angular directions, the control volume will be a sector of a ring.

Consider a cylindrical control volume between z and z + dz at time ¢t. All
the variables such as the density p, velocity v and concentration C'4 depend on
time ¢ and axial dimension z. The mass balance is performed on the control
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volume with thickness dz, and cross-sectional area S, giving

a(Sd
v(2)Sp(z) =v(z+dz)Sp(z+dz) + % (1.38)
which is simplified to
9p 9(pv) _
5+ g =0 (1.39)

Diffusion is related to the axial concentration gradient in the reactor.
The axial diffusive flux of component A (moles per unit time and unit cross-
sectional area) is expressed by Fick’s law

0C 4
0z

where D4 is the turbulent diffusion coefficient and the corresponding mass
balance on A over the control volume is

v(z) SCa(2) + SNa(z) = v(z+dz) SCa(z+dz) + SNa(z+dz)+

Nao=-Dy4

(1.40)

KCy Sdz 4 2842 Ca)
ot
(1.41)
which can be simplified as
BCA ov CA 0 aCA
— kCy—— | D =0 1.42
o0 o T A8z<Aaz> (142)

Such equations, however, are too complex for control applications. It is
well known that a tubular reactor can be represented as a series of n perfectly
mixed continuous stirred tank reactors, where n is large (infinite in theory).
For control purposes, an approximate dynamic model is often sufficient. For
example, a tubular reactor can be modelled as a cascade of a few (possibly
three) perfectly mixed continuous stirred tank reactors, i.e. for 7 (1 < i < 3)
the overall and component mass balances become

dpi
dt

iC (1.43)
0;ii1Ca1= 0;C4a; +k/SCa;+ Az 7’

Note that a rigorous simulation model will need a much larger number of
elementary reactors in series.

Pi—1Vim1 = pivi + Az

1.6.3 Degrees of Freedom

A state-space model can represent either the steady state or the transient be-
haviour of a system. The steady-state solution obtained by setting all time
derivatives to zero constitutes the intialization of the dynamic regime. The
following discussion on degrees of freedom could be applied to steady state,
but is here devoted to control, thus to the dynamic model.

The number of degrees of freedom ndf of a system is equal to the number
of variables minus the number of equations
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ndf = number of var. — number of eq.

If the degrees of freedom ndf is zero, the system is fully determined (or spe-
cified) and there exists only a unique solution; if it is positive, the system is
under-specified and ndf equations should be added; if it is negative, the system
is over-specified and ndf equations should be removed to get a unique solution.
Each control loop adds an additional equation. Furthermore, the external
disturbances are also specified to reduce the number of unknowns.

1.7 Process Stability

A process is said to be stable (asymptotically) when in response to a distur-
bance, the state variables converge towards a steady state (the system is said to
be feedback-negative). Another definition of stability is that a process is said
to be stable if any bounded input results in a bounded output. If a bounded
input results in an unbounded output, the process is unstable.

The process is unstable when in response to a disturbance some state va-
riables tend mathematically towards infinity (the system is feedback-positive).
In practice, that means simply that the variables go out of the desired domain
or do not tend to come back in a stable manner, but oppositely go far from it
at least periodically.

Nearly all chemical processes are stable in open loop. However, a CSTR
with an exothermic reaction can be unstable. Indeed, if the cooling is insuffi-
cient with regard to the heat of reaction, there may be three stationary states,
one stable at low temperature and low conversion, one stable at high tempera-
ture and high conversion, a third unstable state at an intermediate temperature
and conversion (see Sect. 3.2.3). Nearly all processes can be made unstable
in closed loop. A major recommendation for the controller design is to avoid
instability.

1.8 Order of a System

If a process is described by an ordinary differential equation of order n, the
process is said to be of order n
dzx d’x d"z

f(t):a0$+ala+agﬁ+...+anm

where f(t) represents an input or a forcing function. Note that an ordinary
differential equation of order n is equivalent to a set of n first-order ordinary
differential equations.

The first-order process model

(1.44)

f@&)=avz+ a1 (fl—:f (1.45)

can be written as

F) =ao(x+720) (1.46)
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where 7 is the process time constant.
The second-order process model

dz d*z
f(t) =agx +ay 7 T2z (1.47)
can be written as p -2
T 5 d’x
f(t) = ao (x—|—2CTE—|—T W) (1.48)

where ( is the damping coefficient.

1.9 Laplace Transform

The Laplace transform is an elegant mathematical method to solve linear or
linearized differential equations. In control theory, it is used to develop simple
continuous input-output models and thereby analyze the influence of external
variables on a given process.

The Laplace transform of a function f(t) is defined by

CIf(t)] = F(s) = / " F(t) exp(—st) di (1.49)

assuming that the function or signal f(t) is zero for ¢ < 0. This is the mono-
lateral Laplace transform which is used throughout this book. Notice that the
exponential term has no dimension, therefore the dimension of variable s is the
inverse of time (frequency).

If function f(t) presents discontinuities at the boundaries, the Laplace trans-
form is defined as

L[f(t)] =F(s) = lim/ f(t) exp(—st)dt (e—=0,T— ) (1.50)

The bilateral Laplace transform for nonzero functions for negative ¢ is de-
fined as

cif)=res) = [ " A(t) exp(—st) dt (1.51)

and is identical to the Fourier transform if we set s = j w. The Laplace trans-
form exists only if the integral (1.49) is bounded: the function f(t) exp(—st) is
summable in Lebesgue’s way. For example, consider the function f(¢) = exp(t).
This function is unbounded when ¢ — +o00. However, let us try to calculate its
Laplace transform. We get

—+oo

s—1

LIF®) = / ™ explt) exp(—st) dt = [

1
=1 if: Re(s) > 1

e(ls)t:|
0 (1.52)

Its Laplace transform would be defined only in a frequency domain excluding
low frequencies. Its convergence region is the domain of s complex values such
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that the Laplace transform exists, here the real part of s should be larger than
1.

If we consider the step function f(¢) =1, if ¢t > 0, f(t) = 0 else, its Laplace
transform is

o0 JrOO
LIf()] = / 1 exp(—st) dt = [eH)t]
1° 0 (1.53)
== if: Re(s) > 0
s
Its convergence region is the complex right half-plane.
The inverse Laplace transform is defined as
1 o+j oo
f(t) =L F(s)] = — F(s) exp(ts)ds (1.54)
27 J o—j oo

This integral is defined on a complex domain with s = o + jw.
The Laplace transformation is a linear mapping

Llay f1(t) + az f2(8)] = a1 LIf1(8)] + az L[ f2(t)] (1.55)

To get the inverse Laplace transform of F(s), it is in general useful to expand
the function F(s) which very often takes the form of a rational fraction, as a
sum of simple rational fractions, and then to operate the inverse transformation
on each fraction separately.

1.9.1 Linearization and Deviation Variables
What is a Nonlinear Model?

Model linearization often poses problems for students. One reason may be that
the analysis of the nonlinearity of the model is not clear. First, let us give some
mathematical examples.
Consider a function of a single variable f(z):
f(z) =4z and f(z) = 2z + 3 are linear with respect to =,
f(z) =322, f(z)= ﬁ, f(x) = /3, are nonlinear with respect to z.
A function of a single variable is linear with respect to this variable when
the derivative of this function is constant. Otherwise, it is nonlinear.
Consider a function of two variables f(z,y):
f(z,y) = 2y + 3 is linear with respect to y and independent of z,
f(z,y) =22+ 6y + 5 is linear with respect to z and y,
f(z,y) = zy is nonlinear with respect to z and y,
f(x,y) = 222 4+ 3y is nonlinear with respect to x and linear with respect to ,
flz,y) =4+ 222+ 3y + 592 is nonlinear with respect to = and y.
A function of several variables is linear with respect to one of its variables
when the partial derivative of this function with respect to the considered
variable is constant. Otherwise, it is nonlinear with respect to that variable.

i
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Significance of Linearization in Process Control

Two cases can be considered: either a fixed set point is imposed on the process
(case of regulation), or a reference trajectory is to be followed by the process
(case of output tracking). Consider the simpler first case. We wish the process
to be maintained in the neighbourhood of a set point, which will thus be the
steady state. Due to imperfections of the control, the output and the state
variables move around their steady-state values. The difference between the
transient value of any variable and its steady-state value is called a deviation
variable. When this latter remains small with respect to its absolute value, the
behaviour of a function of this variable can be approximated by the tangent at
the considered point (Fig. 1.10)

fl@) ~ f(z°) + f'(2°) (z — 2°) (1.56)

Nonlinear
function

Figure 1.10: Linear approximation of a nonlinear function by linearization of
this function around steady state

General Linearization

A nonlinear state-space model of a process must be linearized before apply-
ing the Laplace transform. The system thus obtained is called a linear time-
invariant (LTI) system. Consider again the example of the chemical reactor
(Eq. 1.15); the term FC4, which appears in the differential equation in the
component mass balance, is nonlinear as F(t) and C4(¢t) both depend on time.
As the Laplace transformation is a linear mapping, it is therefore necessary to
linearize the balance ordinary differential equations around steady state (de-
noted by *); thus, the product F'C4 becomes

F(t)Ca(t) = F*C4 + F* (Ca(t) — C3) + C5 (F(t) — F*) +0(e®)  (1.57)
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The term 0(€?) indicates that the Taylor series expansion in the neighbourhood
of the steady state is truncated at the first order. Generally, for a function f of
n variables x4, ..., x,, by neglecting the higher-order terms, the Taylor series
expansion leads to

f(xl,,mn)%f(mf,,xi)—l—Z(?j) (ml—xf)<:>(5fmz<gx> dx;

(1.58)

It can be noticed that the linearization results in deviation variables (with

respect to the steady state or a reference state) of the form dz; = (z; — zf)
which play an important role in Laplace transformation.

1.9.2 Some Important Properties of Laplace
Transformation

e The Laplace transformation is a linear operation

Llay f1(t) + a2 f2(t)] = a1 L[f1(t)] + a2 L[f2(t)] (1.59)
e The Laplace transform of a first-order derivative of a function is

df (¢
oy s p) - 50) (1.60)
If f(t) is a deviation variable with respect to the initial steady state, its initial
value becomes zero: f(0) = 0, and the previous equation simply becomes
df(t
P AL ST (1.61)
dt
This assumption is used in general.
e The Laplace transform of the nth_order derivative of a function is

0

S = 5 F(s) = 5" (0) = 77 FO(0) - f0D(0) (162)

If f(t) is a deviation variable, its initial value and successive derivatives up to
the (n — 1)-th-order become zero so that the previous formula becomes

" f(t)
dtn

] ] = s" F(s) (1.63)

e The Laplace transform of the integral of a function is

t
1
] / F)da] = L P(s) (1.64)
0 S
e The initial value theorem is

lim f(t) = lim s F(s) (1.65)

t—0 5—00
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e The final value theorem is

tl:_rgloo f(t) = gl_{l’(l)SF(S) (1.66)
Notice that the final value theorem cannot be applied in the case of a function
corresponding to an unstable system. For example, consider the Laplace trans-
form F(s) = 1/(s—1), which would be the transform of function f(t) = exp(?)
if we strictly apply Table 1.1. Let us try to apply the final value theorem
(1.66) to this function. It gives

lim f(t) = lim —

t—+o0 s—0s—1

=0 (1.67)

One would wrongly conclude that the function f(¢) = exp(t) tends towards 0
when t — +o00. The mistakes comes from the fact that one does not take into
account the remark concerning Eq. (1.52).

Consider the Laplace transform F(s) = 1/(s(s + 1)) corresponding to a
stable system (we will later see that it is a first-order system subjected to an
input step). The final value theorem gives

. . S
i S0 =l 2y = 1 (1.68)

e The Laplace transform of a delayed function is

L[f(t —to)] = exp(—sto) L[f(1)] (1.69)

Note that the function f(t—to) is the same as f(t) delayed by to, which means
that at time to, the delayed function is equal to f(0) (Fig. 1.11). The delay
corresponds to a time translation of the function.

1

0.9~

0.8

without delay
0.7

0.6~
> 0.5~ with delay T
0.4+
0.3

0.2

O.1—

. . . . . . . .
00 10 20 30 40 50 60 70 80 90 100
Time

Figure 1.11: Tlustration of the effect of a time delay of 20 time units on a
response

e The complex translation is

L[f(t) exp(at)] = F(s —a) (1.70)
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e The scale change is
L[f(t/a)] =aF(as) (1.71)

e Laplace transform of convolution

Figure 1.12: Convolution for a linear system. Top: time domain. Bottom:
frequency domain

When a signal f(t) excites a linear time-invariant system with impulse response
g(t) (Fig. 1.12), the response of the system h(t) is equal to the convolution
product of f(¢) by g(t) denoted by

WO =50 <90 = [ 1) g(t-r)dr (1.72)
The Laplace transform H(s) of the output is equal to

L[f(t) * g()] = F(s) G(s) (1.73)

which is expressed as the Laplace transform of a convolution product being
equal to the product of the Laplace transforms of the functions.

A consequence of this property is that when a signal f(t) excites two linear
systems in series g; (t) and go(t), the response h(t) is equal to

h(t) = f(t) * (91(t) * g2(t)) (1.74)

and its Laplace transform H(s) is
LIf(#) * (91(2) * g2(8))] = F(s) Ga(s) Ga(s) (1.75)
Thus, the Laplace transform of the impulse response of two linear systems
in series is equal to the product of the Laplace transforms of the individual

impulse responses.
e The complex convolution is

o+joo
L0 = 5 [ F@ G- a)dd (1.70

e Parseval-Plancherel relation
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This relation, classical in signal processing, expresses that the energy of a signal
is equal to the sum of the energies of its constitutive signals

+oo 1 oo
/ fA(t)ydt = — |F(jw)|? dw (1.77)
oo 27 ) _ oo
It is necessary that the signal f(¢) be square-integrable, which means that the
integral of f2(t) must exist.

e Differentiation or integration with respect to a parameter

Consider the function f(¢,6) which depends on parameter 6 as well as time ¢
(both are independent variables) the Laplace transforms of the derivative or
integral of the function with respect to 6 are

c [M] T (1.78)

00 09

and

0> 02
c[ f(t,&)d&} :/ CIf(t, 0)] do (1.79)

01 ‘91

e Table 1.1 lists the Laplace transforms of some common functions.

1.9.3 Transfer Function
Definition of a Transfer Function

Consider a linear single variable system whose dynamic behaviour is described
in terms of deviation variables by an ordinary differential equation of order n
linking the input and the output

du(t) d™u(t)

dy(t d™y(t
= ap y(t)+a1 %—I—. . +a, y(*)

,m<n

(1.80)
where u(t) and y(t) are the system input and output respectively (Fig. 1.13).
If we assume that the system is initially at steady state, the deviation variables
and their successive derivatives are zero at initial state

d7u d™u

5u(0)=0,<dt> =0 =0

. geeey dtim

0 (1.81)
_ dy _ d™y _
0y(0) =0, <dt>0 =0, (dt">0 =0

The Laplace transformation of (1.80) gives

n

(bo+bis+...+byps™)U(s)=(ap+ars+...+a,s")Y(s) (1.82)

The transfer function of the system results as the ratio of the Laplace trans-
form of the output variable to the Laplace transform of the input variable, both
expressed in terms of deviations from their steady states

Y (s) (5) bo+b1s+...+by,s™
= S) =
U(s) ag+a;s+...+ay,s"

(1.83)
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Table 1.1: Laplace transform of some common functions

Signal f(¢t) (¢>0) Transform L[f(t)] = F(s)
Convolution product f(t) * g(¥) F(s)G(s)
Derivative: df(f) sF(s) — f(0)
Integral: fo (z)dz % F(s)
Delayed function: f(t — to) exp(—sto) F(s)
Dirac unit impulse: §(t) 1
Unit impulse of duration 7 defined by % %(_S/T)
0-(t)=0ift<OQort>r
s()=2Lifo<t<r
Step of amplitude A é
Exponential: exp(—at) 3 —il- o
7 exp(—t/7) T
Ramp: at A
s
1
t —at
oot Grar
art” exp(—at) (n > 1) Gra ™
. t w
sin(w?) 32 "_’; o2
t
cos(w t) 240
sin(wt + ¢) w cos(¢2) + s2sm(¢)
s —A—)w
—at) si t
exp(—at) sin(wt) G+ a_): oy
exp(—at) cos(wt 5 Ta
p( ) ( ) (5 + a)2 +w
t" 1
nl N
T 1
5= (exp(—at) — exp(-bt)) GraGTy
1 1
T — T2 (exp(—t/m1) — exp(—t/72)) (15 + 1) (25 + b)
n € —a;t
g — e .
i E(s +ai)
w%, exp(—Cwt) sin(wpt) Frocwst ot Ci) st o?
with: wp, =w/1—-¢2 (0< (] <1)
% (1 — exp(—at)) s(s}i—a)

Thus, the transfer function is totally equivalent to the linear ordinary differen-
tial equation describing the linearized system and can be further used to find
output solutions to a given input.

Most transfer functions take the previous form of a ratio of two polynomials,
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(a) u(t) y(t)
Input Process Output
U [y YO
(b)

Figure 1.13: Block diagram of a process (a) in the time domain, (b) in the
Laplace domain (transfer function)

symbolized as

(1.84)

A transfer function is said to be proper if

degree of N(s) < degree of D(s)
it is strictly proper if

degree of N(s) < degree of D(s)
A transfer function is said to be biproper if

degree of N(s) = degree of D(s)
A transfer function is said to be improper if

degree of N(s) > degree of D(s)

It will be shown that improper transfer functions, such as an ideal derivative,

amplify high-frequency noise.
The following steps are followed to derive the transfer function of a

process from a theoretical model:

e Using the conservation principles, write the dynamic model describing the
system,

e Linearize equations using Taylor series expansion,

e Express the equations in terms of deviation variables by subtracting the
steady-state equations from the dynamic equations

e Operate Laplace transformation on the linear or linearized equations,

e Obtain the ratio of the Laplace transform of the output over the Laplace
transform of the input.
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Example 1.1: Application to the Surge Tank

Equation (1.12) is linear with respect to all variables, and results simply in

X(s) = % U(s) - é F(s) (1.85)

which contains two transfer functions, both pure integrators. The process trans-
fer function with respect to the input is
1
- Ss

and the load or disturbance transfer function with respect to the disturbance
Fis

Gu(s) (1.86)

Guls) = 5 (1.87)

where S is the cross-sectional area of the surge tank and s is the Laplace
operator.

The block diagram (Fig. 1.14) represents the influence of the input and of
the disturbance.

F(S)

1
Ss

U0 [ ey K

Figure 1.14: Block diagram of the surge tank

Example 1.2: Application to the Isothermal Chemical Reactor
The system of Egs. (1.26) is nonlinear with respect to the variables. Using the

superscript “s” for the steady-state, linearizing the nonlinear terms, introducing
the equations in terms of deviation variables and Laplace transforming results

n

sX1(s) = %[FO(S) — F(s) + Uy (s)]
Xals) = = grpa [FE (05 = 79 Xi(5)] — k Xo(s)
+si§ [(u3 — 23) Fo(s) + Fg (Ua(s) — Xa(s)) — a3 Ur(s) — uj Xa(s)]

(1.88)
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The steady-state equations resulting from Eq. (1.26) are

1 S S S
0= §[Fo = F® +uf]
1 S S S S El S
0= Sas [Fo (us — @3) — 23 ui] — ko)
which yield
w = F°—Fg
s x5 F° 4+ Skxixf
uy = .
F3
Fo<s>{ { F(s)
Gan Ga21
Ga2 Ga22
[ Ui(s) ] Gi1 G ++ ++
Us(s) Ga1 G2 ~ ~

31

(1.89)

(1.90)

Figure 1.15: Block diagram of the linearized isothermal chemical reactor tank

The final system of transfer functions, the transfer function matrix, ex-
presses the state vector with respect to the input vector and the disturbances

1 0
[Xl(s)} _ R (F* + Ska — F§) — F [Ul(s)]
X (s) Ss S(x1)? i Sz Us(s)
S+Sx{+k S+Sm{+k
1
S8
| 5~ g T Skt = B | Ry

S

k
I S+Smi+
[ 1
S
| U0 ay FriSkai-F
5)2 s
SsS(xF) s Tk
| Sxf

(1.91)
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Note that the states x; and x5 are coupled by this system of equations. The
first state x; is influenced only by input u;, while the second state x5 is influ-
enced by both inputs. With the system being multi-input multi-state, matrices
of transfer functions relate the inputs and disturbances to the states. The li-
nearized system described by the previous equation can be symbolized by the
block diagram in Fig. 1.15.

The non-isothermal chemical reactor could be treated in the same manner
with added complexity.

Impulse Response and Transfer Function of a System

Consider a linear system in which the input and output are linked by the
convolution product (Fig. 1.16)

y(t) = u(t) * g(t) (1.92)
If this system is excited by a Dirac impulse: u(t) = §(t), the output becomes
y(t) = g(t) (1.93)

thus g(t) is the impulse response of the system and is equal to the inverse
Laplace transform of the system transfer function as the Laplace transform of
the convolution product is

Lly(t)] = Llu(t) * g(t)] = U(s) G(s) = G(s) (1.94)

with U(s) = 1 for a unit impulse input.

Figure 1.16: Time and frequency responses for a linear system subjected to
a Dirac impulse input

Although obtaining a system transfer function in this manner seems attractive,
it suffers from several drawbacks:

— A Dirac impulse is not realizable in practice, only an impulse of finite
duration is possible.

— A simple impulse input contains poor characteristics with respect to fre-
quency excitation and introduces difficulty in process identification as will
be shown later in this book.
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In experimental characterization of the flow pattern in chemical processes, in
particular reactors, however, the impulse response technique is used to get
the residence time distribution. A tracer is injected over a short time at the
process inlet and its evolution is recorded at the reactor outlet. The analysis of
the output response is often complicated but it enables us to characterize the
system as a combination of perfectly mixed CSTRs, tubular reactors placed
in parallel or in series with possible bypass and/or dead volume (Levenspiel,
1999; Villermaux, 1982).

Principle of superposition

When the input can be decomposed into a sum of inputs (e.g. a rectangular
pulse is the sum of a positive and a negative step, occurring at different times,
see Figs. 1.17 and 1.18), the global output is the sum of the responses to the
individual inputs

U(s) = Z Ui(s) = Y(s)=G(s)U(s) = ZG(S) Ui(s) = ZY"(S) (1.95)

The principle of superposition results directly from the properties of linearity
of the Laplace transform. The principle of superposition is not valid for a
nonlinear system.

For example, a rectangular pulse can be seen as the sum of a positive and
a negative step (in Fig. 1.17, ug is the sum of u; and uy). The respective
responses to the three inputs for a given transfer function are given in Fig.
1.18.

Experimental Determination (Identification) of a System Transfer
Function

Consider a general system whose dynamics in the time domain can be described
in terms of the following ordinary differential equation

dy
= = Fy(t) . u(t),d) (1.96)
where y is the output, u is the input, and d is the disturbance. To determine
the system transfer function G(s), several possibilities exist depending on the
choice of the applied input to the system:

— For a Dirac impulse input, the output is equal to g(t), i.e. the inverse trans-
form of the system transfer function G(s). The drawback of this technique
is that the frequency content (the information content) of the input signal
is not rich and results in poor identification.

— For a step input or a succession of small amplitude positive and negative
steps such as a pseudo-random binary sequence (PRBS), the information
content of the input signal is adequate for yielding a satisfactory identifi-
cation. This technique is particularly well adapted to discrete-time identi-
fication. In the continuous-time domain, often a single step or a succession
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0.8]

0.6)

0.2]

Time

10 15 20 25 5 10 15 20 25
Time Time

Figure 1.17: Inputs from left to right: wy, us, us

0.8

0.6}

0.4
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>-0.5 >

0.4

0.2)

15
Time Time

Figure 1.18: Outputs from left to right: y1, y2, y3 as responses of the transfer

function G(s) =

3 1 to respective inputs uy, ug, us
s

of positive and negative steps is applied. System nonlinearities are demon-
strated by dissimilar responses to positive and negative step changes in the
input. For example, a furnace often shows a different time constant for a
step increase or decrease in the heat rate.

For a sinusoidal input (Fig. 1.19), the identification is performed in the
frequency domain. In this latter method, the Laplace variable s is replaced
by s = jw (where w is the angular frequency in rad/s and is related to
the frequency in Hz, v, by w = 27v). If a linear system is excited by a
sinusoidal input u(t) = exp(jwt), after a transient period, the output will
also be a sinusoidal wave with the same frequency, a different amplitude
and a phase difference, i.e.

y(t) = G(jw) exp(jwt) = G(s) exp(st) for sufficiently large ¢ (1.97)

which, when combined with Eq. (1.96), gives

s G(s) exp(st) = f(G(s)exp(st), exp(st), d) (1.98)

Complex exponential functions (such as sines and cosines) are proper func-
tions for the Laplace operator. In order to obtain a rich information for the
experimental determination of the transfer functions, it is sufficient to vary
the frequency w of the input signal over a large range.
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u(t) = exp(jwt) | Process y(t)
0] GG v

Figure 1.19: Experimental determination of a process transfer function by
sinusoidal excitation

Provided the function f is known, one analytically deduces from Eq. (1.98)
the transfer function G(s) as the ratio of the output transform Y'(s) over the
input transform U(s).

1.9.4 Poles and Zeros of a Transfer Function
Consider a system described by the differential equation

dy(t) d™y(t) du(t) d™u(t)
.o tan =bou(t)+b; ——+...+b,,
at O g ou(t)+br ==+ b =

In the absence of an input excitation, the output Laplace transform is given by

ao y(t)+a (1.99)

D(s)Y(s) =0 (1.100)

where D(s) = ag+aj s+ ...+ a, s™. The shape of the response curve depends
on the roots of D(s) which are called the system modes.

The system transfer function describes the response when the initial state
is zero (refer to the relation between the transfer function and the state-space
model) or when we refer to deviation variables. In general, the transfer function
can be expressed as the ratio of two polynomials

N(s) bo+bis+...4bys™

G = =
(5) D(s) ao+ars+...+a,s"

with: n>m (1.101)

where the denominator degree n is higher than or equal to the numerator degree
m.

The roots of the numerator polynomial N(s) are called the system zeros or
zeros of the transfer function, since the transfer function is equal to zero for
these values.

If the numerator N(s) and the denominator D(s) have common roots, after
cancellation of these common roots, the remaining roots of D(s) are referred
to as the poles of the transfer function; they determine the response for zero
initial state.

If no common roots exist between N(s) and D(s), then the system can be
completely characterized by its transfer function, and the sets of poles and the
modes are the same. The transfer function G(s) becomes infinite when s is
equal to one of the poles.

If N(s) and D(s) have common factors, the latter form a polynomial noted
R(s). The roots of R(s) are called system nodes, but are not poles for G(s).
For that reason, they are called missing poles of the transfer function. In this
case, the system is not completely characterized by its transfer function.
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1.9.5 Qualitative Analysis of a System Response

The response of a system to a given input u(t) can be determined from its
Laplace transform
Y(s) = G(s)U(s) (1.102)

If the transfer function G(s) and the input transform U (s) are given, the system
response y(t) can be obtained by inverse Laplace transformation of Y (s).

s3 Im
[ ]
S7 S6
[ )
S2 S1 S4 Re
S5
[ )
* *
S S6
[ ]
*
S3

Figure 1.20: Different types of poles represented in the complex s-plane

The behaviour of a system, such as its stability and the the shape of the system
response, is largely determined by the poles of its transfer function. Let us
consider a general transfer function with poles as depicted in Fig. 1.20

N(s)
G(s) = D =
(s)
N(s)
(5= 50) (5= 52) (5= 53) (5 — 58) (5 — 2) (5 = 58) (5 — 5) (s = 52) (5 — 1) (s — %)

(1.103)
where s; is a negative real pole

$o is a negative real multiple pole of order m
s3 is a complex pole with negative real part

s is the conjugate complex pole (D being a real polynomial, all complex poles
must appear as a pair in conjugate form)

S4 is a pole at the origin

sy is a positive real pole

Sg i1s a complex pole with positive real part
sg is the complex conjugate pole of sg

s7 is a pure imaginary pole

s% is the conjugate of the imaginary pole s7
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The transfer function G(s) can be expanded as a sum of rational fractions

*
c
G(s)= - 4 Ca1 C22 4+ Com 4+ G 4 3
(5) §—81 §=82 ' (5 sy)? (s—s2)™ §—83 ' s— s
Co Ce Cr Cr
3_36—1—8782_’_5_57_’_878;

+E e+
(1.104)
If poles are distinct, to find the coefficients in the numerators (residuals), it

suffices to multiply G(s) by (s — s;) and set s = s;

N(s)
(s—51)...(s—8i—1)(5 — Six1) ... (s — sn)

¢i =[(s =) G(s)ll o=y, =

s=s;

(1.105)
In the case of multiple poles, e.g. if s; is a multiple pole of order m, the residuals
are calculated by multiplying G(s) by (s —s;)™ and differentiating successively
with respect to s and setting s = s; after differentiation. Consider the following
transfer function with a multiple pole s; of order m

N(s)
(s—51)...(3—si'_l)(s—sic)m(s—sHl)...(s—sn)

G(s) =

C1 Ci—1 7,1 Ci,2 1,m
= +...+ + —— + . +... .+ m
§— 81 S=Si-1 | ST Si | (5—s;)° (s—s)™
Cit1 Cn
+S—Si+1+"'+5—5n

(1.106)
Let us define a new transfer function having the same poles as G(s) except for

the multiple pole s;
N(s) (s —si)™

Gt(s) = 1.107
()= (1.107)
The residuals are calculated by the following expression
1 d9Gt
Cim—j = —7@ i 7=0,1,....m—1 (1.108)

Jtodst |
Note that multiple poles are more frequently encountered in physical modelling
than in identification.

When a process having a transfer function G(s) of the form given by Eq.
(1.106) is subjected to a unit impulse, the Laplace transform of the process
output is equal to the process transfer function. To determine the time response
to this impulse input, the inverse Laplace transformation is performed.

e Simple real poles such as s; and s5 result in exponential responses (Fig.
1.21)
y(t) = c; exp(si t) (1.109)

If the pole is negative real, the exponential tends towards 0: sy is a stable
pole. The closer the pole to the origin, the slower the response will be. If
the pole is positive real such as ss, the response increases exponentially with
time and tends towards infinity: sy is an unstable pole.



38 Chapter 1. Dynamic Modelling of Chemical Processes
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Figure 1.21: Impulse response of transfer functions with different types of
poles

e A multiple real pole with order ¢ such as s, results in the following responses:

i1 exp(sa t)

(i—1)!

The response increases towards infinity if the pole is positive or zero, and
decreases towards zero if the pole is negative.

e A complex pole s is represented by its real part and its imaginary part:
s = sr + j s1, and the impulse response of a transfer function presenting a
complex pole will be

y(t) = (1.110)

y(t) = exp(srt) exp(js;t) = exp(sgt)[cos(s;t) + jsin(s;t)]  (1.111)

The imaginary part is responsible for the oscillatory behaviour while the
stability depends only on the sign of the real part.
Conjugate complex poles with negative real part such as s; and s} (Fig.
1.21) result in damped oscillatory behaviour: they are stable poles. The
closer the poles are to the imaginary axis, i.e. the nearest to 0 their real
part is, the slower the decay of their exponential part.
When poles are complex conjugate with positive real part such as sg and
sg (Fig. 1.21), they induce an oscillatory undamped response: they are
unstable poles.

e A pole at the origin such as s4 results in a constant term.



Process Control 39

e Pure imaginary poles s = £jw such as s; and sj result in a sinusoidal
response with a frequency w equal to the imaginary part of the poles. Un-
der these conditions the system is said to be on the verge of stability or
marginally stable.

1.10 Linear Systems in State Space

1.10.1 General Case

Consider the single variable linear system (single-input single-output). Its
state-space model is

{ @(t)= Awz(t)+ Bu(t) (1.112)
Czx

y(t) = Ca(t)+ Du()

where A, B, C, D are matrices of respective dimensions n x n, n x 1, 1 x n
and 1 x 1. The initial state of the system is x(0). For a system which can be
represented by a strictly proper transfer function, i.e. whose numerator degree
is strictly lower than the denominator degree, the matrix D is zero. This is the
case for most physical systems.

As this system is linear, it is possible to apply the Laplace transformation

sX(s)—x(0)=AX(s)+BU(s) <= (sI-A)X(s) =x(0)+BU(s) (1.113)

where I is the identity matrix of dimension n X n. Provided that the matrix
(s I — A) is invertible, the Laplace transform of the states can be obtained

X(s)=(sI—A) 'z(0)+(sI - A) ' BU(s) (1.114)
and the Laplace transform of the output is

Y(s)=CX(s)+DU(s)=C(sI—-A) " z(0)+ [C(sI—A)"' B+ D] U(s)
(1.115)
This response is composed of two terms, the first called response for a zero
input and the second called response for a zero state.
Given

exp(At) = L7 [(sI—A)7"] (1.116)

the output response can be deduced from (1.115)

y(t) = C exp(At) 2(0) + C exp(At) /t exp(—A 1) Bu(r)dr + Du(t)
’ (1.117)

and the state of the process is given by

z(t) = exp(At) z(0) + exp(At) /Ot exp(—AT) Bu(r)dr (1.118)
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To obtain y(t) as in (1.117), it is possible to integrate the differential equa-
tion of the system given by (1.112) by using the following properties of the
matrix exponential

t? tm
exp(At):I+tA+5A2+...+EA"+... (1.119)
d
E(exp(A t)) = A exp(At) (1.120)

The system transfer function is obtained, assuming that all initial conditions
are zero, and consequently the initial states are zero: (0) = 0. The output
Laplace transform is

Y(s)=[C(sI—A)"' B+ D] U(s) (1.121)
and the system transfer function is
G(s)=C(sI-A)™'B+D (1.122)

This transfer function can be written in a different form using the determinant
“det” and the adjoint matrix “adj”:

1

Gls)=C det(sI — A)

ladj(sI — A)] B+ D (1.123)

The determinant of (s I — A) is called the characteristic polynomial of A (di-
mension n X n). Its n roots are the eigenvalues of A.

1.10.2 Analog Representation
First Case
Consider a second-order system having the following transfer function

K
(15 + 1) (m2s+ 1)

Gi(s) = (1.124)

This transfer function is equivalent to the second-order ordinary differential

equation
d2

d
mﬁg + (71 + TQ)d_Z +y = Ku(t) (1.125)

which can be rewritten, in view of its further use in the analog block diagram,
as
d?y

d
o —apy(t) — al—y + bou(t) (1.126)

dt
with:

apg = 1/(7’17’2), ay — (T1 + 7'2)/(7'17'2), bo = K/(Tng).
Note that the above differential equation is in terms of the deviation va-
riables in the same way as for the transfer function. Let us assume that at
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Ly Yo \ dy Yo J
u(t) dt? dt ; Y t)t:
A T G Bl S e B
“a

—agp

Figure 1.22: Analog block diagram of the state-space representation

time ¢ = 0 the steady state prevails, y(t = 0) = y(0) and (dy/dt);—o = 3'(0).
The analog circuit representation of the above ordinary differential equation
is shown in Fig. 1.22. The input u(t) passes through a potentiometer (gain
bg), a summator, an integrator and another summator (supplying the initial
condition y'(0)). The output from the second summator is passed through a
second integrator and a third summator (supplying the initial condition y(0)).
The final output is y(t).

Designating z4(t) as the output of the first integrator and z;(¢) as the output
of the second integrator, the above system can be represented by the following
state-space model

.’El(t) = X9 (t)
Ibg (t) = —aoml(t) - all‘g(t) + bou(t) (1127)
y(t) = ()

or, using matrix form

(38] - (2 ]

Io (t)

Il
—
—_
o
JE—
—

where x1(t) and z5(t) are the system state variables. The number of state
variables is equal to the order of the differential equation or the order of the
transfer function. The state of the system at any time ¢ depends only on the
initial conditions at g and on the input u(t) between ¢ and #. At initial time,
the state variables are equal to the initial conditions and, in the following, they
represent the evolution of the system.

Second Case

Consider a different second-order system having the following transfer function

B(S) b082—|—b18—|—b2
G = = 1.129
2(s) A(s) ags®+ars+as ( )
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Process

Figure 1.23: Representation of the partial state z(t)

This transfer function is not strictly proper. It is equivalent to the second-order
ordinary differential equation

d*y dy dPu du
LIOE“‘CLI % +a2(5y(t) :bo dt2 —|—b1 di +b2 (S’U.( ) (1130)

The transformation into an analog form is not as straightforward as in the
first case. We introduce the partial state z(¢) (Fig. 1.23) such that

1
A(s)

Y (s) = B(s) Z(s) and Z(s)= U(s) (1.131)

As previously, we assume that u(t), z(t) and y(t) are deviation variables. From
the previous equations, we deduce

d*z dz
y(t) —bo +b1 +b2 Z( )
dg dz (1.132)
u(t) 0 +ay — p + ag 2(t)
Set
£ — dz
n(t) = - (1.133)

y(t) = 2(t)

The state representation follows

2] <[ ][0 e | o
s _[( =0 ) <";°;‘2+bz>][i;8]+2—2u<t>

(1.134)
which allows to easily obtain the analog representation.

1.11 Dynamic Behaviour of Simple Processes
Initially, simple processes without a controller are considered (Fig. 1.24) and

their open-loop behaviour is studied.
Let us consider the response of the system to two types of inputs u(t):
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U6 [ e YO

Figure 1.24: Open-loop block diagram of a process

— A unit step: u=1fort >0, u=0 for £t <O0; the response of the system
to this input is referred to as the step response.

— A Dirac unit impulse: u = § (theoretical Dirac!); the response of the system
to such an input is referred to as an impulse response.

Let G(s) be the system transfer function subject to an input U(s). Except
for possible time delays, G(s) is a rational fraction. For any physical input
(impulse, step, ramp, sinusoidal, ...), U(s) can also be expressed as a rational
fraction, therefore

Ny(s) Nu(s)
G(s) = =2 i U(s) = (1.135)
Dy(s) Dy (s)
The Laplace transform Y (s) of the output can be decomposed into
Ny(s) Nu(s) Ni(s) Na(s)
Y(s)=G(s)U(s) = -2 = + =Y, +Y; <=
()= ) = Dya) Duls) = Dyls) D) f
Response = Natural response + Forced response
(1.136)

provided that the product (G(s) U(s)) is strictly proper and that denominators
D,(s) and the D,,(s) have no common roots.

The response y, (t) depends on the modes of G(s) and is called the natural
response of the system, while y(¢) depends on the modes of U(s) (linked to
the input type) and is referred to as the forced response of the system.

IThe Dirac function §(¢) is defined by physicists as

é(t)=0 vVt #£0

4(0) = 400

[Te) =1
which is the limit of a real pulse function centred around O with unit area (strength or energy)
and zero duration.

Mathematicians define the Dirac distribution such that the convolution of a function f(z)
by the Dirac distribution is equal to

f(@)* 8(z) = f(=)

An important property of a Dirac distribution is

+oo
/ FB8(t — to) = F(to)

—oo

The Dirac distribution is equal to the derivative of a unit step function (Heaviside function).
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1.11.1 First-Order Systems

A first-order system is described by a first-order differential equation of the
form

d
Td—‘z +y(t) = K, u(t) (1.137)
The corresponding transfer function is equal to
K
G(s) = —2= 1.138
(8) =7 (1.138)

where 7 is the time constant and K, is the steady-state gain, or asymptotic
gain of the process.

A first-order system can be represented by the block diagram shown in Fig.
1.25.

U(s) K

P
Ts+1

Y (s)

Figure 1.25: Block diagram of a first-order system

If the input u of the process is a step function with amplitude A, the Laplace
transform of the input is

Us) = = (1.139)

Using the definition of the transfer function, the Laplace transform of the out-
put is obtained

K, A AK, AK,
220 B80T yi(s)+ Va(s)  (1.140)

Y(S)ZG(S)U(S)275+1 s s Ts+1

and the time domain response (Fig. 1.26) is
y(t) = AKp, (1 —exp(—t/7)) (1.141)
The forced and natural parts of the response are respectively equal to
yr(t) =AKp, 5 yn(t) = —AK, exp(—t/7)) (1.142)

With respect to the input of amplitude A, the asymptotic output (when ¢ — o)
is thus multiplied by the gain of the process K,. A first-order process is also
called a “first-order lag”.

The time constant 7 corresponds to the time necessary for the system res-
ponse to reach 63.2% of its asymptotic value for a step input. After 27, the
response reaches 86.5% and after 57 it reaches 99.3% (Table 1.2).

Several real physical systems have first-order dynamics. Examples of such
systems are:

— Systems storing mass, energy or momentum,
— Systems showing resistance to the flow of mass, energy or momentum.
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5
Temps

Figure 1.26: Response of a first-order system (K, = 1,7 = 2) to a unit step
function

Table 1.2: Response of a first-order system to a unit step function expressed
in percentage of the asymptotic value

Time | Percentage of the
asymptotic value
0 0
63.21%
27 86.47%
3T 95.02%
4T 98.17%
57 99.33%
67 99.75%
7T 99.91%

1.11.2 Integrating Systems

Integrating or pure capacitive processes are those whose dynamics only contain
the first-order derivative of y(t)

dy
pri K, u(t) (1.143)
The corresponding transfer function is
K
G(s)=—L (1.144)
s

The Laplace transform of the output of such a system to a step function with
magnitude A is

_AKy

=

The time domain response y(t) (Fig. 1.27) is thus equal to

y(t) = AK,t (1.146)

Y (s)

(1.145)
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The process is referred to as a “pure capacitive” or a “pure integrator”. The term
“capacitive” signifies the accumulation of electrical charges, energy or mass. A
surge tank can behave as a pure capacitive process.

5
Temps

Figure 1.27: Response of a pure capacitive system (K, = 1) to a unit step
input

1.11.3 Second-Order Systems

A second-order system is described by a second-order differential equation writ-
ten in the classical form as

d?y(t)
2
T ae

+2(¢T d%it) +y(t) = Kpu(t) (1.147)

with the corresponding transfer function

K
Z (1.148)
72524+ 2(Ts+1

G(s) =

where 7 is the natural period of oscillation of the system which determines the
stabilization time of the system, ( is the damping coeflicient and K, is the
steady-state gain of the system.

The notions of natural period of oscillation and of damping factor are related to
the damped or undamped oscillators. For ¢ = 0, the expression (1.155) shows
that the response to a step input oscillates continuously with a frequency 1/7
in radians/time unit.

The transfer function of a second-order system is sometimes written as

K,w?
G(s) = Pn 1.149
0= 7 (1.149)
where w, = 1/7 is the natural undamped frequency and ¢ = (w, is the

damping parameter.
Several real physical processes exhibit second-order dynamics, among them
are:

— Two first-order systems in series.
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— Intrinsic second-order systems, e.g. mechanical systems having an accele-
ration.

— Feedback or closed-loop transfer function of a first-order process with a PI
controller.

Note that the transfer function G(s) defined by Eq. (1.148) has two poles,

roots of: 722 +2( 71 s+ 1 =0, which are equal to

1(7&\/@71) if: ¢ >1
(—=CxjV1-C)=wp(—CEjV/1-C)=-0tjuw, i: 0<(<1

(1.150)
If the natural period of oscillation 7 is fixed, then the position of the poles
depends only on the damping coefficient (. The shape of the open-loop response
to a given input is determined by the location of these poles on the s-plane.
For 0 < ¢ < 1, the natural frequency w,, is equal to the distance of the poles
from the origin, the damped frequency w, is equal to the distance of the poles
from the real axis, and the damping parameter o is equal to the distance of the
poles from the imaginary axis.

S; =

DR

1.5

Figure 1.28: Normalized response of a second-order system to a unit step func-
tion for different values of the damping coefficient ¢ (= 0.25; 1; 1.3 resulting
in oscillatory underdamped response to overdamped response) (K, =1,7 = 1)

If the input is a step function with magnitude A, the output Laplace transform

is equal to

K
L (1.151)

Y(S)ZAS(T2S2+2CTS—1—1)

which can be decomposed into

AK AKp,t?s+2
_AKy, ARy s42CT = Y}(s) + Yo(s) (1.152)

Y
(s) s 7282 4+2(Ts+1

The overall response consists of the forced and the natural responses

y(t) = ys(t) + yn(t) (1.153)
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The forced response is equal to

ys(t) = AK, (1.154)

and the overall response is

AK, {1 — exp(~Ct/r) [COS (mt) v Sin( = t)]}
if: 0< (<1

S — éf?ill— (1+ L) exp(—t/7)]
At {1 = exp(=co/r) Joost (Y520 + i (Y20 |
if: 1<¢

(1.155)

The forced response is constant and equal to AK), while the natural response
tends towards O when ¢ — oco. The natural response takes into account the
natural modes of the system and thus depends on the value of ¢ (Fig. 1.28):

Rising time

1.5 - ‘ ; ;
: Stabilization time
|
|
|
|
|
1 r-=-4-- Fl
>
0.5 |
B
o Y ‘ ‘ ‘ ‘ ‘ ‘ ‘
0] 2 4 6 8 10 12 14 16 18 20

Time

Figure 1.29: Response of a second-order system to a unit step input

— For ¢ > 1, there will be two real and distinct poles. The response is
overdamped (multi-capacitive systems) with no overshoot.

— For ¢ = 1, there will be one multiple second-order pole. The response is
critically damped, which corresponds to the faster overdamped response.

— For 0 < ¢ < 1, there will be two complex conjugate poles with negative
real part. The response is underdamped. This response is initially faster
than the critically damped and overdamped responses, which are sluggish;
the drawback is the resulting overshoot.
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With reference to the underdamped response of Fig. 1.29, the following terms
are defined:

— Overshoot

overshoot = — = exp( ) (1.156)

Decay ratio = C'/A’ = (overshoot)?

— Natural period of oscillation is defined for a system with a damping coefhi-
cient ¢ equal to zero. Such a system oscillates continuously with the natural
period T;, = 277 = 27/w,, and the undamped natural frequency w,.

— Actual period of oscillation T,, which is the time between two successive

peaks, characterized by its damped frequency w,

wn /1 — vi=¢® Cz 27 (1.157)

ST,

— Rise time: this is the time necessary to reach the asymptotic value for the

first time
1 A/ 1— (2
tm = ——— arctg _yi=¢ (1.158)
wny/1—C? ¢
It can also be defined as the time necessary to go from 10% to 90% of the
asymptotic value and, in that case, it can be approximated (Goodwin and
Sin, 1984) by
2.5
tm N — 1.159
- (1.159)
— First peak reach time: the time necessary for the response to reach the first
peak

_T__ T (1.160)

t, = =
Priwd wp /1= 02
— Settling time: time necessary for the response to remain in an interval
between +e (£5%, or £2%) of the asymptotic value. For e = +1%,
according to Goodwin and Sin (1984), the settling time is
4.6

te 8 —— 1.161
*~ T (1161

For (0 < ¢ < 1), the time domain response can be written as

y(t) = AK, — AK, “" exp(—ot) sin(wat + 0) (1.162)
Wa
with
1-¢2 )
6 = arccos¢ = arctan( R ) = arcsin(+/1 — (?) (1.163)

and the envelope of the undamped sinusoidal response is

exp(—ot) sin(wgt + 6) (1.164)
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°

Normalized amplitude ratio
]

10
omega * tau

Figure 1.30: Normalized amplitude ratio for a sinusoidal input with varying
damping coefficient ¢ between 0 and 1 per increment of 0.1

The time domain response of a second-order system subjected to a sinusoidal
input: u(t) = A sin(wt), after the transient response decays, will take the form

K, A 2
Yoo(t) = r sin(wt — arctang [47‘”2]) (1.165)
VL= (wr)2? + (2¢wr)? 1—(wr)
and the normalized amplitude ratio is equal to
1
RA, = (1.166)

VL= (wr)2]? + (2wr)?

which is maximum at a frequency wpax given by

wmax = /(1 — 2¢2) /7 (1.167)

The normalized amplitude ratio has a maximum equal to 1/(2¢4/1 — ¢?) for
0 < ¢ £0.707. This maximum increases very quickly when ( becomes small
(Fig. 1.30).

Large oscillations are not desired, therefore small damping coefficients ¢
must be avoided. In controlled processes, a damping coefficient around ( = 1
(comservative) or ¢ = 0.7 (low overshoot, fast response), is often recommended.

1.11.4 Higher-Order Systems

Three types of higher-order systems will be described:

— n First-order processes in series (multi-capacitive).
— Processes with time delay.
— Processes with inverse response.
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n First-Order Processes in Series

The transfer function of n first-order processes in series is obtained by multi-
plying the transfer functions of n first-order systems

n

G(s) =] Kpi (1.168)

i1 8+ 1

Example 1.3: Tubular Plug Flow Reactor

Consider a tubular plug flow reactor with a mean residence time equal to 7y.
In the absence of reaction, for a simple flow, the outlet concentration is equal
to the inlet one, just delayed by the residence time 7y. Suppose now that a
first-order reaction A — B with a reaction rate r4 = kC, is carried out in
the reactor, the reactor being fed with a reactant stream at inlet concentration
C4,. This represents a distributed-parameter system whose model is given by
a partial differential equation. Another approach to model the reactor is to

discretize it into n elementary reactors (Fig. 1.31) with a residence time given
by

Ty = L (1.169)

n
The component mass balance on each element is given by
dCa(7) 1

&t 7 [Ca(i—1) — Ca(i)] — kCa(i) (1.170)

CAO Can

— —

CAO ‘ CA(Z]-)# CA(’L) ‘ CA(n)
—_— (—l—] —» L ] L ] L) — — L] L] L] — &) >

1 n

Figure 1.31: Decomposition of a tubular reactor into a series of n continuous
perfectly stirred tank reactors

In the absence of reaction, the flow is simply represented by n first-order sys-
tems in series with unit gain
Ca (7,) _ 1
Cai—1) Tps+1

(1.171)

The observed response at the reactor exit is similar to an overdamped system
with a sluggish sigmoidal shape. Figure 1.32 represents the response of the
system to a step increase in Cy, from 0.4 to 0.5, using different numbers of
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discretization elements n ranging from 1 to 100. Note that as n approaches
100, the response looks like the input step with a delay time equal to the
mean residence time of the tubular plug flow reactor (assumed 6 min. in this
simulation).

o 5 10 15 20 25 30 35 40
Time (min)

Figure 1.32: Response of the discretized plug flow reactor to a step increase
in the inlet concentration from 0.4 to 0.5 with the number n of discretized
elements, ranging from 1,2, 3,4, 5,10 and 100 (in the absence of reaction)
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o 2 a 6 8 10 12 14 16 18 20
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Figure 1.33: Response of the discretized plug flow reactor to a step increase in
the inlet reactant concentration from 0.4 to 0.5 in the presence of a first-order
reaction

In the case where a chemical reaction occurs, each element represents a
CSTR. Except in the simple case where the reaction is first-order, the model
is in general nonlinear and would need a linearization around a steady state.
For a first-order reaction, the transfer function is

Cali) 1
Cai—1) Tps+1+km,

(1.172)

Note that the process gain is no longer unity due to the depletion of reactant by
chemical reaction. The process response to a unit increase in the inlet concen-
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tration of reactant C4, from 0.4 to 0.5 in the presence of reaction is shown in
Fig. 1.33. Due to the chemical reaction, the asymptotic outlet concentrations
decrease with the number of elements of discretization in a similar manner to
a tubular reactor. In comparison with Fig. 1.32, the response is more sluggish.

Another example of a series of elementary systems resulting in an overall higher
order system is the staged processes such as a tray distillation column. Each
tray of a distillation column can be often considered as a first-order interacting
process.

A packed column (distillation, absorption or chromatography) can be mo-
delled by partial differential equations and could be discretized in a similar
manner to a tubular reactor.

The dynamics of distributed-parameter systems and higher-order systems
are often approximated by a first- or second-order overdamped model with time
delay. For example, in a distillation column, a set of plates such as the stripping
or the enrichment section is often identified as first-order with delay.

Processes with Time Delay

Time delay may be an inherent dynamic characteristic of a process or due to
the measurement. In the former case, the process input does not immediately
affect the process output. In the latter case, the measured signal received by the
controller does not correspond to the contemporary process information and
suffers from delay. A common example of time delay is the transportation lag,
which may be either due to the process or measurement or both. Consider, for
example, the concentration measurement in a reactor which frequently is not
done in situ (Fig. 1.34). The measuring device is mounted on a sampling loop.
The sample is pumped through the loop and experiences some transportation
lag t4 to reach the sensor.

N N

(a) (b)

Figure 1.34: Case (a): In situ sensor. Case (b): sensor placed in the exit
pipe, inducing a transportation lag

In the case of a distillation column, in general distillate and bottom concentra-
tions are controlled by manipulating, for example, the reflux flow and the steam
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flow to the reboiler. Measurements are typically the levels in the reboiler and
in the condenser, temperatures at different points of the column, and distillate
and bottom concentrations. Temperature and level measurements can be con-
sidered as instantaneous. This is not the case for concentration measurement,
e.g. in the case of refineries, a chromatograph some distance away from the
distillation column is often used. In such cases, the delay time will consist of
a transportation lag to pump the sample from the process to the analyzer and
an additional time for the analysis of the sample, which in the case of a chro-
matograph could be in the order of several tens of seconds. A sample is taken
from the distillation column at time ¢; and the result is available at time to,
where t; — t; = tg. During the measurement, the process continues to evolve.

u(t) y(t) y(t —tq)
— | n-Order System Time Delay |

Y

Figure 1.35: Representation of a system with time delay

The time delay poses a problem in process control. The time delay between
an input and an output (Fig. 1.35) means that the input variations have no
immediate influence on the output.

For a first-order system with a time delay, the transfer function linking the
input u(t) and the delayed output y(t — t4) is

Lly(t —ta)] _ Kp exp(—tas)

Llu(®)] rstl (1.173)

The exponential term is a nonlinear term. It is often approximated, for exam-
ple, by a Padé approximation (here a first-order approximation), which converts
the delay term to a rational fraction

2]
1——s
exp(—tq s) ~ 72520[ (1.174)
1 + 5 S

A more accurate approximation of the time delay is realized by the second-
order Padé approximation.

t t2

1— Ly dg?
t2 12 (1.175)
d

exp(—tqs) = — g
14+ S5+ 452
HCRRETR

Figure 1.36 shows the unit step response of a first-order system without time
delay y(t), with exact time delay y(t —t4), with first-order Padé approximation
y1 and with second-order Padé approximation y>. Note that the approxima-
tions are valid for times much larger than the time delay. Initially both first-
and second-order approximations exhibit inverse response due to the zeros of
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2.5
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Figure 1.36: Response of a first-order system (K, = 2,7 = 5) with a time
delay of 20 s to a step input: y(t) (without time delay), y(t — tq4) (with time
delay), y1 (Padé first-order), yo (Padé second-order)

the rational transfer functions introduced by Padé approximations. The num-
ber of intersections of the approximated response with the time axis is equal
to the order of Padé approximation and corresponds to the number of positive
real zeros or complex zeros with positive real part of the transfer function, i.e.
for the first-order Padé approximation, there is one real positive zero and for
the second-order Padé approximation, there are two conjugate complex zeros
with positive real part.

There exists no perfect approximation for the time delay. However, digital
computers handle time delays with relative ease, in particular in the case of
digital control.

Processes with Inverse Response

Process 1
K,
T1s+1 l
U(s) +© Y(s)
K2 - T
Tos+ 1
Process 2

Figure 1.37: Representation of a system with inverse response

In a system with inverse response such as that represented in Fig. 1.37, the
overall response y, (Fig. 1.38) initially moves in a direction opposite to its
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final direction. This behaviour is caused by the addition of two opposing sub-
processes. At the beginning, process 2, which has a smaller time constant,
is dominant. Subsequently, process 1, which has a higher gain (K; > Kj),
becomes dominant. The overall process is thus composed of two competitive
processes having different time constants and different gains.

To produce an inverse response, it is necessary and sufficient that the plant
transfer function exhibits a positive real zero or a complex zero with a positive
real part. For the example shown in Fig. 1.37, the overall transfer function
will have a positive zero if

KK

T2 T1

(1.176)

y1

Y9

y2

[e] 10 20 30 40 50 60 70 80 90 100
Time

Figure 1.38: Inverse response of the system shown in Fig. 1.37 to a unit step
input (K; =5, =20,Ks =1.5,72 = 2)

Chemical processes which exhibit an inverse response are not rare. For example,
an increase in the vapour boil-off (increase in the steam flow rate to the reboiler)
in a distillation column results in an inverse response in the liquid level in the
bottom of the column. The increase in the vapour boil-off, initially, decreases
the liquid level in the bottom of the column. Subsequently, due to the increased
vapour flow rate and frothing on the trays immediately above the reboiler, the
liquid level may eventually increase.

Another example is the response in the liquid level in a boiler due to an
increase in the inlet water flow rate. The initial increase in the water flow
rate decreases the liquid level because of the collapse of the vapour bubbles.
However, if the steam production is maintained at a constant rate, the liquid
level will eventually increase.

A third example is the response in the exit temperature of a fixed-bed re-
actor with exothermic reactions to a step increase in the feed temperature. If
the feed temperature increases, the rate of reactions at the reactor inlet will
increase and the reactants are consumed close to the reactor inlet. This will
move the hot spot closer to the reactor entrance and consequently the exit re-
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actor temperature decreases. However, eventually the reactor exit temperature
will increase as a result of the increase in the inlet temperature.

1.11.5 Process Identification in the Continuous Domain
General Principles

It is possible to develop a model for an existing process using only the input-
output data. This empirical technique for developing process models is referred
to as process or system identification (Sinha and Rao, 1991; Unbehauen and
Rao, 1987; Walter and Pronzato, 1997; Young, 1981). System identification for
complex processes requires less engineering effort compared to the theoretical
model development. Of course, the application field of such an identified model
is more limited. In open-loop system identification, the controller is switched
to manual, the controller output is changed by a step function or a series
of pseudo-random-binary-signal (PRBS) or any other exciting input sequence,
and the process response is monitored. The input-output data are used to
develop the system model. This model will represent the dynamics of the
combination of the final control element (the control valve), the process, and
the measuring element. Measurement noise will generally be superposed on
the actual process response. Sophisticated process identification techniques are
capable of distinguishing the process model from the noise model.

Often, a low-order linear model based on the a priori information of the
process is assumed, i.e. the structure of the model is fixed. Under these con-
ditions, process identification is reduced to the determination of the unknown
model parameters, i.e. a parameter estimation problem. Let us assume that
the process model is given by

y(t) = f(t,0) (1.177)

where 0 is the unknown parameter vector. In order to determine the unknown
parameter vector, one may use the least-squares technique by minimizing the
following objective function, which is the sum of the squares of errors between
the measured output y; at time t; and the output predicted by the model g;

J(0) = Z(yi —9:)? (1.178)

Other criteria can be introduced in particular by the use of weighting factors.

Two main cases are distinguished depending on whether the model is linear
or nonlinear. In the case of a linear model with respect to m parameters 6;,
the model can be written as

y(z) = 291‘ ¢;(z) (1.179)

A set of n input-output observations can be collected in a matrix ® such that

Pij=¢j(z;) ; 1<i<n ; 1<j<m (1.180)
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The parameter vector estimated by minimization of the criterion (1.178) is
equal to .

0= (2To) ol y (1.181)
where y is the measured vector.
Example 1.4: Identification of a Linear Model

Consider the example of determining the parameters in the model of the heat
capacity of a fluid expressed with respect to temperature by

Cp=a+bT +cT? (1.182)

This model is nonlinear with respect to temperature but linear with respect
to the coefficients a, b, c. As we wish to determine the coefficients, we must
realize at least three experiments. In the case where only three experiments are
performed, the coefficients are the solution of a perfectly determined system
which can be solved by the Gauss method, for example. In the case where more
than three experiments are performed, it becomes a least-squares problem.
Assume that we perform n > 3 experiments which give heat capacities C},; at
temperatures T;. The matrix ® and vector y of Eq. (1.181) are equal to

1 T, T? Cpa
1 T, T2 Chp.a

e Poy=| . (1.183)
1 T, T2 Cpom

The vector of estimated parameters is then

=(@"e) ' eTy (1.184)

o O

In the case of a nonlinear model, which is most common in practice, more
general optimization methods such as direct search or gradient-type methods
such as the generalized reduced gradient method or the quasi-Newton method
(Fletcher, 1991; Gill et al., 1981), must be employed. Powerful algorithms
exist for solving such problems as the BFGS method (Byrd et al., 1995; Zhu
et al., 1994) or sequential quadratic programming (SQP) under NLPQL form
(Schittkowski, 1985). It is also possible to linearize the non-linear model with
respect to the parameter vector and then use a linear parameter estimation
method.

Example 1.5: Identification of a Nonlinear Model

Consider the example of determining the parameters in the model of the sat-
urated vapour pressure of a fluid expressed with respect to temperature by
Antoine’s law

B
In(Pyy) = A— —— 1.1
0(Pot) = A= o (1.185)
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We can make remarks similar to the previous case. This model is nonlinear with
respect to the temperature and nonlinear with respect to the coefficients A, B,
C. In the case where only three experiments are performed, the coefficients are
the solution of a perfectly determined system which is now nonlinear and could
be solved by the Newton-Raphson method (Carnahan et al., 1969). In the case
where more than three experiments are performed, it becomes a least-squares
problem. Assuming that we make n experiments which give vapour pressures
P; at temperatures T;, a least-squares criterion to be minimized is written as

B
C+1T;

J = zn:(ln(P,-) - A+ )? (1.186)

whose minimization with respect to parameters can be performed by a quasi-
Newton method.

A First-Order Model

If a time delay is present, first it must be estimated and then the system is
examined without this delay. The steady-state gain K, is also estimated from
the asymptotic response. The time constant 7 can be evaluated by using Table
1.2, for example, by searching the time at which 63.2% of the asymptotic value
is reached. For a step change with magnitude A in the input, the time domain
response is given by

y y__t
(- )= (1.187)

which corresponds to a straight line with a slope —1/7.

A Second-Order Model

Similar to a first-order model, the time delay must be estimated first, then the
steady-state gain K.
If the second-order system is overdamped, its transfer function can be writ-

ten as
Kp
G(s) = (7’15—1— 1) (7'25—1— 1) (1.188)

with two unknown time constants. Harriott’s method offers a simple graphi-
cal method for the determination of the unknown time constants based on the
measurements of process outputs at two points during its evolution. A more ac-
curate method is the numerical non-linear optimization using the entire process
output response to a step change in the input

y(t) = AK, |1+

exp(—t/71) + exp(—t/72) (1.189)

T2 — T1 T1 — T2
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When plotted versus time, this function has a sigmoidal shape with an inflection

point at
TLT:
t = Lln(
1 — T2 T2

T1

) (1.190)

If the second-order system is underdamped, its transfer function is
Ky
72824 2(1s+1

G(s) = (1.191)
Two parameters must be estimated, the damping coefficient and the time con-
stant 7. Graphical methods can be used to determine the decay ratio or the
overshoot to estimate the unknown parameters.

However, a better approach is the nonlinear optimization using the res-
ponse given by Eq. (1.155) to minimize a criterion such as the one given in
Eq. (1.178). Consider the response of the model denoted by y,04,; and the ex-
perimental response denoted by ¥ezp; at n different instants ¢;. The nonlinear
optimization problem is expressed as

n

. 2
exp,t — Ymod,i 1.192
Join 1_1(y pi — Ymod,i) (1.192)

which again can be solved by a quasi-Newton-type method. The response of
the model depends analytically on the parameters and the criterion can be
analytically differentiated. If this differentiation seems too difficult, it may be
performed numerically.

The Method of Moments

The advantage of the method of moments is that it can be used with any type
of input.

This method is based on the definition of the Laplace transform of the
impulse response g(t) of a system, which is its transfer function

G(s) = /000 exp(—st) g(t) dt (1.193)

As the n-th-order moment of a function f(z) is defined by

Mo(f) = /Ooo o f(2) do (1.194)

it can be noticed that the first two derivatives of G(s) with respect to s

G'(s) = — /oot exp(—st)g(t)dt ; G'"(s)= /00 2 exp(—st) g(t) dt
’ ’ (1.195)

are related to the moments of the impulse response function by

G(O)Z/oog(t)dt ; G'(O):—/ootg(t)dt ; G”(O):/Oot2g(t)dt
’ ’ " (1.19)
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Thus G(0), —G'(0), G"(0) are respectively the zero-, first- and second-order
moments of the impulse response g(t).

Note that the above three integrals can be calculated by using the measured
output response. Consider the following systems for the application of this
method:

e A first-order model with time delay

K, exp(—tqs)

G(S): Ts+1

(1.197)
giving

G0)=K, ; G0)=-K,(t+ts) ; G"(0)=K, (27> +27ts+13)
(1.198)
from which the three unknown parameters K, 7 and ¢4 can be determined.
e An overdamped second-order model with time delay (previously determined)
K, exp(—tgs)

CO) = o et T (1.199)

from which

G(0) =K, ; G(0)=-K,(ri+m+ta)

1.200
G"(0) =K, [(r1+72+ta)* + 77 + 73] (1.200)

The time delay can be obtained by inspection of the response curve and the
other parameters are obtained from the moments.
e An underdamped second-order model with time delay (previously deter-
mined)

K, exp(—tqs)
7282+2(Ts+1

G(s) = (1.201)

from which
G0O) =K, ; G'(0)=-K,(2(T+1q)
G"0) =K, [t2+4(Ttg—27>+8(*7?]

Note that in this method, it is possible to use any type of input. We have,
in general

(1.202)

Y(s)

G(s)U(s) 5 Y'(s)=G'(s)U(s) +G(s)U'(s)
Y”(s) —G”(s (1.203)

JU(s) + G(s)U"(s) +2G'(s) U'(s)
from which the following equations are deduced

Y(0) =GO)U() : Y'(0)=G'(0)U(0)+ G(0)U'(0)

Y"”(0) =G"(0)U(0)+ G0)U"(0)+2G'(0)U'(0) (1.204)

These quantities can be calculated by the following equations:

U(O)z/oou(t)dt ; U'(O):—/ootu(t)dt ; U”(O):/Oot2u(t)dt
i ’ ° (1205
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and

o0 o0 oo
YO = [ wod o YO =~ [ wwa s vo - [ ey
’ ’ " (1.206)
In order to determine the characteristic parameters of the system, the mo-
ments method uses the entire input and output curves and can be applied to
any type of the input signal. This method should be preferred to any method
based on only two given points of an output response.
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