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Aims and Objectives

• Review basic concepts of probability theory;

• Discuss random variables, their distribution and the notion of

independence;

• Calculate functionals and transforms;

• Review basic limit theorems.
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Probability theory

To describe a random experiment we use sample space Ω, the set of all

possible outcomes.

Each point ω of Ω, or sample point, represents a possible random

outcome of performing the random experiment.

For a set A ⊆ Ω we want to know the probability IP (A).

The class F of subsets of Ω whose probabilities IP (A) are defined (call

such A events) should be be a σ-algebra , i.e. closed under countable,

disjoint unions and complements, and contain the empty set ∅ and the

whole space Ω.

Examples. Flip coins, Roll two dice.
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Probability theory

We want

(i) IP (∅) = 0, IP (Ω) = 1,

(ii) IP (A) ≥ 0 for all A,

(iii) If A1, A2, . . . , are disjoint,

IP (
⋃
iAi) =

∑
i IP (Ai) countable additivity.

(iv) If B ⊆ A and IP (A) = 0,

then IP (B) = 0 (completeness).

A probability space, or Kolmogorov triple, is a triple (Ω,F , IP ) satisfying

Kolmogorov axioms (i),(ii),(iii), (iv) above.

A probability space is a mathematical model of a random experiment.
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Probability theory

Let (Ω,F , IP ) be a probability space. A random variable (vector) X is a

function X : Ω → IR(IRk) such that

X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ F for all Borel sets B ∈ B(B(IRk)).

For a random variable X

{ω ∈ Ω : X(ω) ≤ x} ∈ F

for all x ∈ IR.

So define the distribution function FX of X by

FX(x) := IP ({ω : X(ω) ≤ x}).

Recall: σ(X), the σ-algebra generated by X.
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Probability theory

• Binomial distribution: Number of successes

IP (Sn = k) =
(
n

k

)
pk(1− p)n−k.

• Geometric distribtion: Waiting time

IP (N = n) = p(1− p)n−1.

• Poisson distribution:

IP (X = k) = e−λ
λ

k!
.

• Uniform distribution:

f(x) =
1

b− a
1{(a,b)}.
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Probability theory

• Exponential distribution:

f(x) = λe−λx1{[0,∞)}.

The expectation E of a random variable X on (Ω,F , IP ) is defined by

EX :=
∫

Ω

XdIP, or

∫
Ω

X(ω)dIP (ω).

The variance of a random variable is defined as

V (X) := E
[
(X − E (X))2

]
= E

(
X2
)
− (EX)2.
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Probability theory

If X is real-valued with density f ,

EX :=
∫
xf(x)dx

or if X is discrete, taking values xn(n = 1, 2, . . .) with probability

function f(xn)(≥ 0),

EX :=
∑

xnf(xn).

Examples. Moments for some of the above distributions.

Random variables X1, . . . , Xn are independent if whenever Ai ∈ B for

i = 1, . . . n we have

IP

(
n⋂
i=1

{Xi ∈ Ai}

)
=

n∏
i=1

IP ({Xi ∈ Ai}).
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Probability theory

In order for X1, . . . , Xn to be independent it is necessary and sufficient

that for all x1, . . . xn ∈ (−∞,∞],

IP

(
n⋂
i=1

{Xi ≤ xi}

)
=

n∏
i=1

IP ({Xi ≤ xi}).

Multiplication Theorem If X1, . . . , Xn are independent and

E |Xi| <∞, i = 1, . . . , n, then

E

(
n∏
i=1

Xi

)
=

n∏
i=1

E (Xi).
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Probability theory

If X, Y are independent, with distribution functions F , G

Z := X + Y,

let Z have distribution function H.

Call H the convolution of F and G, written H = F ∗G.

Suppose X, Y have densities f , g. Then

H(z) = IP (X + Y ≤ z) =
∫
{(x,y):x+y≤z}

f(x)g(y)dxdy,

Thus

H(z) =
∫ ∞

−∞
f(x)

{∫ z−x

−∞
g(y)dy

}
dx =

∫ ∞

−∞
f(x)G(z − x)dx.

Example. Gamma distribution.
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Probability theory

If X is a random variable with distribution function F , its moment

generating function φX is

φ(t) := E (etX) =
∫ ∞

−∞
etxdF (x).

The mgf takes convolution into multiplication: if X, Y are independent,

φX+Y (t) = φX(t)φY (t).

Observe φ(k)(t) = E (XketX) and φ(0) = E (Xk).

For X on nonnegative integers use the generating function

γX(z) = E (zX) =
∞∑
k=0

zkIP (Z = k).
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Probability theory

Conditional expectation For events:

IP (A|B) := IP (A ∩B)/IP (B) if IP (B) > 0.

Implies the multiplication rule:

IP (A ∩B) = IP (A|B)IP (B)

Leads to the Bayes rule

IP (Ai|B) =
IP (Ai)IP (B|Ai)∑
j IP (Aj)IP (B|Aj)

.
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Probability theory

For discrete random variables:

If X takes values x1, . . . , xm with

probabilities f1(xi) > 0,

Y takes values y1, . . . , yn with

probabilities f2(yj) > 0,

(X,Y ) takes values (xi, yj) with

probabilities f(xi, yj) > 0,

then the marginal distributions are

f1(xi) =
n∑
j=1

f(xi, yj).

f2(yj) =
m∑
i=1

f(xi, yj).
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Probability theory

IP (Y = yj |X = xi) =
IP (X = xi, Y = yj)

IP (X = xi)

=
f(xi, yj)
f1(xi)

=
f(xi, yj)∑n
j=1 f(xi, yj)

.

So the conditional distribution

of Y given X = xi

fY |X(yj |xi) =
f(xi, yj)
f1(xi)

=
f(xi, yj)∑n
j=1 f(xi, yj)

.
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Probability theory

Its expectation is

E (Y |X = xi) =
∑
j

yjfY |X(yj |xi)

=

∑
j yjf(xi, yj)∑
j f(xi, yj)

.
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Probability theory

Density case. If (X,Y ) has density f(x, y),
X has density f1(x) :=

∫∞
−∞ f(x, y)dy,

Y has density f2(y) :=
∫∞
−∞ f(x, y)dx.

The conditional density of Y given X = x is:

fY |X(y|x) :=
f(x, y)
f1(x)

=
f(x, y)∫∞

−∞ f(x, y)dy
.

Its expectation is

E (Y |X = x) =
∫ ∞

−∞
yfY |X(y|x)dy

=

∫∞
−∞ yf(x, y)dy∫∞
−∞ f(x, y)dy

.
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Probability theory

General case.

Suppose that G is a sub-σ-algebra of F , G ⊂ F

If Y is a non-negative random variable with EY <∞, then

Q(B) :=
∫
B

Y dIP (B ∈ G)

is non-negative, σ-additive – because∫
B

Y dIP =
∑
n

∫
Bn

Y dIP

if B = ∪nBn, Bn disjoint – and defined on the σ-algebra G, so is a

measure on G.

If IP (B) = 0, then Q(B) = 0 also (the integral of anything over a null

set is zero), so Q << IP .
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Probability theory

By the Radon-Nikodým theorem, there exists a Radon-Nikodým

derivative of Q with respect to IP on G, which is G-measurable.

Following Kolmogorov, we call this Radon-Nikodým derivative the

conditional expectation of Y given (or conditional on) G,E (Y |G): this is

G-measurable, integrable, and satisfies

∫
B

Y dIP =
∫
B

E (Y |G)dIP ∀B ∈ G.
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Probability theory

Suppose G = σ(X).

Then E (Y |G) = E (Y |σ(X)) =: E (Y |X).

Its defining property is∫
B

Y dIP =
∫
B

E (Y |X)dIP ∀B ∈ σ(X).

If G = σ(X1, . . . , Xn) write

E (Y |σ(X1, . . . , Xn)) =: E (Y |X1, . . . , Xn)

then ∫
B

Y dIP =
∫
B

E (Y |X1, . . . , Xn)dIP.
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Probability theory

Weak Law of Large Numbers If X1, X2, . . . are independent and

identically distributed with mean µ, then

1
n

n∑
i=1

Xi → µ in probability.

Central Limit Theorem If X1, X2, . . . are independent and identically

distributed with mean µ and variance σ2, then

1√
n

n∑
i=1

(Xi − µ)/σ → N(0, 1) in distribution.
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Financial Mathematics

Lecture 2

by Rüdiger Kiesel

Department of Financial Mathematics, University of Ulm

Department of Statistics, LSE
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Aims and Objectives

• Derivative Background §1.1;

• Arbitrage §1.2, §1.3;

• Fundamental Pricing Example §1.4;

• Single-period Model §1.4.
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Derivative Background

A derivative security, or contingent claim, is a financial contract whose

value at expiration date T (more briefly, expiry) is determined exactly by

the price (or prices within a prespecified time-interval) of the underlying

financial assets (or instruments) at time T (within the time interval

[0, T ]).

Derivative securities can be grouped under three general headings:

Options, Forwards and Futures and Swaps. During this text we will

mainly deal with options although our pricing techniques may be readily

applied to forwards, futures and swaps as well.
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Options

An option is a financial instrument giving one the right but not the

obligation to make a specified transaction at (or by) a specified date at a

specified price. Call options give one the right to buy. Put options give

one the right to sell. European options give one the right to buy/sell on

the specified date, the expiry date, on which the option expires or

matures.

American options give one the right to buy/sell at any time prior to or at

expiry.
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Options

The simplest call and put options are now so standard they are called

vanilla options.

Many kinds of options now exist, including so-called exotic options.

Types include: Asian options, which depend on the average price over a

period, lookback options, which depend on the maximum or minimum

price over a period and barrier options, which depend on some price level

being attained or not.
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Terminology

The asset to which the option refers is called the underlying asset or the

underlying. The price at which the transaction to buy/sell the

underlying, on/by the expiry date (if exercised), is made, is called the

exercise price or strike price. We shall usually use K for the strike price,

time t = 0 for the initial time (when the contract between the buyer and

the seller of the option is struck), time t = T for the expiry or final time.

Consider, say, a European call option, with strike price K; write S(t) for

the value (or price) of the underlying at time t. If S(t) > K, the option

is in the money, if S(t) = K, the option is said to be at the money and

if S(t) < K, the option is out of the money.
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Payoff

The payoff from the option, which is

S(T )−K if S(T ) > K and 0 otherwise

(more briefly written as (S(T )−K)+).

Taking into account the initial payment of an investor one obtains the

profit diagram below.
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Figure 1: Profit diagram for a European call
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Forwards

A forward contract is an agreement to buy or sell an asset S at a certain

future date T for a certain price K. The agent who agrees to buy the

underlying asset is said to have a long position, the other agent assumes

a short position. The settlement date is called delivery date and the

specified price is referred to as delivery price. The forward price f(t, T )
is the delivery price which would make the contract have zero value at

time t. At the time the contract is set up, t = 0, the forward price

therefore equals the delivery price, hence f(0, T ) = K. The forward

prices f(t, T ) need not (and will not) necessarily be equal to the delivery

price K during the life-time of the contract.
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Options

The payoff from a long position in a forward contract on one unit of an

asset with price S(T ) at the maturity of the contract is

S(T )−K.

Compared with a call option with the same maturity and strike price K

we see that the investor now faces a downside risk, too. He has the

obligation to buy the asset for price K.
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Options

A swap is an agreement whereby two parties undertake to exchange, at

known dates in the future, various financial assets (or cash flows)

according to a prearranged formula that depends on the value of one or

more underlying assets. Examples are currency swaps (exchange

currencies) and interest-rate swaps (exchange of fixed for floating set of

interest payments).
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Underlying securities

Stocks. Shares

• provide partial ownership of the company, pro rata with investment,

• have value, reflecting both the value of the company’s (real) assets

and the earning power of the company’s dividends.

With publicly quoted companies, shares are quoted and traded on the

Stock Exchange. Stock is the generic term for assets held in the form of

shares.
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Interest Rates

The value of some financial assets depends solely on the level of interest

rates (or yields), e.g. Treasury (T-) notes, T-bills, T-bonds, municipal

and corporate bonds. These are fixed-income securities by which

national, state and local governments and large companies partially

finance their economic activity. Fixed-income securities require the

payment of interest in the form of a fixed amount of money at

predetermined points in time, as well as repayment of the principal at

maturity of the security. Interest rates themselves are notional assets,

which cannot be delivered. A whole term structure is necessary for a full

description of the level of interest rates.
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Currencies

A currency is the denomination of the national units of payment

(money) and as such is a financial asset. The end of fixed exchange

rates and the adoption of floating exchange rates resulted in a sharp

increase in exchange rate volatility. International trade, and economic

activity involving it, such as most manufacturing industry, involves

dealing with more than one currency. A company may wish to hedge

adverse movements of foreign currencies and in doing so use derivative

instruments.
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Indexes

An index tracks the value of a (hypothetical) basket of stocks

(FT-SE100, S&P-500, DAX), bonds (REX), and so on. Again, these are

not assets themselves. Derivative instruments on indexes may be used

for hedging if no derivative instruments on a particular asset (a stock, a

bond, a commodity) in question are available and if the correlation in

movement between the index and the asset is significant. Furthermore,

institutional funds (such as pension funds, mutual funds etc.), which

manage large diversified stock portfolios, try to mimic particular stock

indexes and use derivatives on stock indexes as a portfolio management

tool. On the other hand, a speculator may wish to bet on a certain

overall development in a market without exposing him/herself to a

particular asset.
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Markets

Financial derivatives are basically traded in two ways: on organized

exchanges and over-the-counter (OTC). Organised exchanges are subject

to regulatory rules, require a certain degree of standardisation of the

traded instruments (strike price, maturity dates, size of contract etc.)

and have a physical location at which trade takes place.

OTC trading takes place via computers and phones between various

commercial and investment banks (leading players include institutions

such as Bankers Trust, Goldman Sachs – where Fischer Black worked,

Citibank, Chase Manhattan and Deutsche Bank).

c©Rüdiger Kiesel

U
N

IV
ERSITÄT

ULM
·

S
C

IE
N

D
O

·DOCENDO
·C

U
R

A
N

D
O

·



37

Types of Traders

We can classify the traders of derivative securities in three different

classes:

Hedgers. Successful companies concentrate on economic activities in

which they do best. They use the market to insure themselves against

adverse movements of prices, currencies, interest rates etc. Hedging is

an attempt to reduce exposure to risk a company already faces.
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Types of Traders

Speculators. Speculators want to take a position in the market – they

take the opposite position to hedgers. Indeed, speculation is needed to

make hedging possible, in that a hedger, wishing to lay off risk, cannot

do so unless someone is willing to take it on.

Arbitrageurs. Arbitrageurs try to lock in riskless profit by simultaneously

entering into transactions in two or more markets. The very existence of

arbitrageurs means that there can only be very small arbitrage

opportunities in the prices quoted in most financial markets.
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Modelling Assumptions

We impose the following set of assumptions on the financial markets:

• No market frictions: No transaction costs, no bid/ask spread, no

taxes, no margin requirements, no restrictions on short sales.

• No default risk: Implying same interest for borrowing and lending

• Competitive markets: Market participants act as price takers

• Rational agents Market participants prefer more to less
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Arbitrage

We now turn in detail to the concept of arbitrage, which lies at the

centre of the relative pricing theory. This approach works under very

weak assumptions. All we assume is that they prefer more to less, or

more precisely, an increase in consumption without any costs will always

be accepted.

The essence of the technical sense of arbitrage is that it should not be

possible to guarantee a profit without exposure to risk. Were it possible

to do so, arbitrageurs (we use the French spelling, as is customary)

would do so, in unlimited quantity, using the market as a ‘money-pump’

to extract arbitrarily large quantities of riskless profit.

We assume that arbitrage opportunities do not exist!
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Arbitrage Relationships

We now use the principle of no-arbitrage to obtain bounds for option

prices. We focus on European options (puts and calls) with identical

underlying (say a stock S), strike K and expiry date T . Furthermore we

assume the existence of a risk-free bank account (bond) with constant

interest rate r (continuously compounded) during the time interval

[0, T ]. We start with a fundamental relationship:

We have the following put-call parity between the prices of the

underlying asset S and European call and put options on stocks that pay

no dividends:

S + P − C = Ke−r(T−t). (1)
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Arbitrage Relationships

Proof. Consider a portfolio consisting of one stock, one put and a short

position in one call (the holder of the portfolio has written the call);

write V (t) for the value of this portfolio. Then

V (t) = S(t) + P (t)− C(t)

for all t ∈ [0, T ]. At expiry we have

V (T ) = S(T ) + (S(T )−K)− − (S(T )−K)+

= S(T ) +K − S(T ) = K.

This portfolio thus guarantees a payoff K at time T . Using the principle

of no-arbitrage, the value of the portfolio must at any time t correspond

to the value of a sure payoff K at T , that is V (t) = Ke−r(T−t).

Having established (1), we concentrate on European calls.
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Arbitrage Relationships

The following bounds hold for European call options:

max
{
S(t)− e−r(T−t)K, 0

}
=

(
S(t)− e−r(T−t)K

)+ ≤ C(t) ≤ S(t).
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Arbitrage Relationships

Proof. That C ≥ 0 is obvious, otherwise ‘buying’ the call would give a

riskless profit now and no obligation later.

Similarly the upper bound C ≤ S must hold, since violation would mean

that the right to buy the stock has a higher value than owning the stock.

This must be false, since a stock offers additional benefits.

Now from put-call parity (1) and the fact that P ≥ 0 (use the same

argument as above), we have

S(t)−Ke−r(T−t) = C(t)− P (t) ≤ C(t),

which proves the last assertion.
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Arbitrage Relationships

It is immediately clear that an American call option can never be worth

less than the corresponding European call option, for the American

option has the added feature of being able to be exercised at any time

until the maturity date. Hence (with the obvious notation):

CA(t) ≥ CE(t). The striking result we are going to show (due to R.C.

Merton in 1973 is:

For a non-dividend paying stock we have

CA(t) = CE(t). (2)
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Arbitrage Relationships

Proof. Exercising the American call at time t < T generates the

cash-flow S(t)−K. From the bounds on calls we know that the value of

the call must be greater or equal to S(t)−Ke−r(T−t), which is greater

than S(t)−K. Hence selling the call would have realised a higher

cash-flow and the early exercise of the call was suboptimal.

c©Rüdiger Kiesel

U
N

IV
ERSITÄT

ULM
·

S
C

IE
N

D
O

·DOCENDO
·C

U
R

A
N

D
O

·



47

Arbitrage Relationships

Qualitatively, there are two reasons why an American call should not be

exercised early:

(i) Insurance. An investor who holds a call option instead of the

underlying stock is ‘insured against a fall in stock price below K,

and if he exercises early, he loses this insurance.

(ii) Interest on the strike price. When the holder exercises the option, he

buys the stock and pays the strike price, K. Early exercise at t < T

deprives the holder of the interest on K between times t and T : the

later he pays out K, the better.
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A fundamental example

We consider a one-period model, i.e. we allow trading only at t = 0 and

t = T = 1(say). Our aim is to value at t = 0 a European derivative on a

stock S with maturity T .

First idea. Model ST as a random variable on a probability space

(Ω,F , IP ). The derivative is given by H = f(ST ), i.e. it is a random

variable (for a suitable function f(.)). We could then price the derivative

using some discount factor β by using the expected value of the

discounted future payoff:

H0 = E (βH). (3)

Problem. How should we pick the probability measure IP? According to

their preferences investors will have different opinions about the

distribution of the price ST .
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A fundamental example

Black-Scholes-Merton approach. Use the no-arbitrage principle and

construct a hedging portfolio using only known (and already priced)

securities to duplicate the payoff H. We assume

1. Investors are non-satiable, i.e. they always prefer more to less.

2. Markets do not allow arbitrage , i.e. the possibility of risk-free

profits.
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A fundamental example

From the no-arbitrage principle we see:

If it is possible to duplicate the payoff H of a derivative using a portfolio

V of underlying (basic) securities, i.e. H(ω) = V (ω), ∀ω, the price of

the portfolio at t = 0 must equal the price of the derivative at t = 0.
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A fundamental example

Let us assume there are two tradeable assets

• a riskfree bond (bank account) with B(0) = 1 and B(T ) = 1, that

is the interest rate r = 0 and the discount factor β(t) = 1. (In this

context we use β(t) = 1/B(t) as the discount factor).

• a risky stock S with S(0) = 10 and two possible values at t = T

S(T ) =

 20 with probability p

7.5 with probability 1− p.
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A fundamental example

We call this setting a (B,S)− market. The problem is to price a

European call at t = 0 with strike K = 15 and maturity T , i.e. the

random payoff H = (S(T )−K)+. We can evaluate the call in every

possible state at t = T and see H = 5 (if S(T ) = 20) with probability p

and H = 0 (if S(T ) = 7.5) with probability 1− p.

c©Rüdiger Kiesel

U
N

IV
ERSITÄT

ULM
·

S
C

IE
N

D
O

·DOCENDO
·C

U
R

A
N

D
O

·



53

A fundamental example

The key idea now is to try to find a portfolio combining bond and stock,

which synthesizes the cash flow of the option. If such a portfolio exists,

holding this portfolio today would be equivalent to holding the option –

they would produce the same cash flow in the future. Therefore the price

of the option should be the same as the price of constructing the

portfolio, otherwise investors could just restructure their holdings in the

assets and obtain a riskfree profit today.
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A fundamental example

We briefly present the constructing of the portfolio θ = (θ0, θ1), which

in the current setting is just a simple exercise in linear algebra. If we buy

θ1 stocks and invest θ0 £ in the bank account, then today’s value of the

portfolio is

V (0) = θ0 + θ1 · S(0).

In state 1 the stock price is 20 £ and the value of the option 5 £, so

θ0 + θ1 · 20 = 5.

In state 2 the stock price is 7.5 £ and the value of the option 0 £, so

θ0 + θ1 · 7.5 = 0.
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A fundamental example

We solve this and get θ0 = −3 and θ1 = 0.4. So the value of our

portfolio at time 0 in £ is

V (0) = −3B(0) + 0.4S(0) = 1

V (0) is called the no-arbitrage price. Every other price allows a riskless

profit, since if the option is too cheap, buy it and finance yourself by

selling short the above portfolio (i.e. sell the portfolio without possessing

it and promise to deliver it at time T = 1 – this is riskfree because you

own the option). If on the other hand the option is too dear, write it (i.e.

sell it in the market) and cover yourself by setting up the above portfolio.
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A fundamental example

We see that the no-arbitrage price is independent of the individual

preferences of the investor (given by certain probability assumptions

about the future, i.e. a probability measure IP ). But one can identify a

special, so called risk-neutral, probability measure IP ∗, such that

H0 = E ∗ (βH)

= (p∗ · β(S1 −K) + (1− p∗) · 0)

= 1.
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A fundamental example

In the above example we get from 1 = p∗5 + (1− p∗)0 that p∗ = 0.2

This probability measure IP ∗ is equivalent to IP , and the discounted

stock price process, i.e. βtSt, t = 0, 1 follows a IP ∗-martingale. In the

above example this corresponds to

S(0) = p∗S(T )up + (1− p∗)S(T )down, that is S(0) = E ∗ (βS(T )).
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A fundamental example

We will show that the above generalizes. Indeed, we will find that the

no-arbitrage condition is equivalent to the existence of an equivalent

martingale measure (first fundamental theorem of asset pricing) and that

the property that we can price assets using the expectation operator is

equivalent to the uniqueness of the equivalent martingale measure.
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A single-period model

We proceed to formalise and extend the above example and present in

detail a simple model of a financial market. Despite its simplicity it

already has all the key features needed in the sequel (and the reader

should not hesitate to come back here from more advanced chapters to

see the bare concepts again).

We consider a single period model, i.e. we have two time-indices, say

t = 0, which is the current time (date), and t = T , which is the terminal

date for all economic activities considered.
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A single-period model

The financial market contains d+ 1 traded financial assets, whose prices

at time t = 0 are denoted by the vector S(0) ∈ IRd+1,

S(0) = (S0(0), S1(0), . . . , Sd(0))′

(where ′ denotes the transpose of a vector or matrix). At time T , the

owner of financial asset number i receives a random payment depending

on the state of the world. We model this randomness by introducing a

finite probability space (Ω,F , IP ), with a finite number |Ω| = N of

points (each corresponding to a certain state of the world)

ω1, . . . , ωj , . . . , ωN , each with positive probability: IP ({ω}) > 0, which

means that every state of the world is possible.
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A single-period model

F is the set of subsets of Ω (events that can happen in the world) on

which IP (.) is defined (we can quantify how probable these events are),

here F = P(Ω) the set of all subsets of Ω.

We can now write the random payment arising from financial asset i as

Si(T )

= (Si(T, ω1), . . . , Si(T, ωj), . . . , Si(T, ωN ))′.

c©Rüdiger Kiesel

U
N

IV
ERSITÄT

ULM
·

S
C

IE
N

D
O

·DOCENDO
·C

U
R

A
N

D
O

·



62

A single-period model

At time t = 0 the agents can buy and sell financial assets. The portfolio

position of an individual agent is given by a trading strategy ϕ, which is

an IRd+1 vector,

ϕ = (ϕ0, ϕ1, . . . , ϕd)′.

Here ϕi denotes the quantity of the ith asset bought at time t = 0,

which may be negative as well as positive (recall we allow short

positions).
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A single-period model

The dynamics of our model using the trading strategy ϕ are as follows:

at time t = 0 we invest the amount

S(0)′ϕ =
d∑
i=0

ϕiSi(0)

and at time t = T we receive the random payment

S(T, ω)′ϕ =
∑d
i=0 ϕiSi(T, ω) depending on the realised state ω of the

world. Using the (d+ 1)×N -matrix ~S, whose columns are the vectors

S(T, ω), we can write the possible payments more compactly as ~S′ϕ.
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A single-period model

What does an arbitrage opportunity mean in our model? As arbitrage is

‘making something out of nothing’; an arbitrage strategy is a vector

ϕ ∈ IRd+1 such that S(0)′ϕ = 0, our net investment at time t = 0 is

zero, and

S(T, ω)′ϕ ≥ 0, ∀ω ∈ Ω and there exists a ω ∈ Ω such that

S(T, ω)′ϕ > 0.

We can equivalently formulate this as: S(0)′ϕ < 0, we borrow money for

consumption at time t = 0, and

S(T, ω)′ϕ ≥ 0, ∀ω ∈ Ω,

i.e we don’t have to repay anything at t = T . Now this means we had a

‘free lunch’ at t = 0 at the market’s expense.
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A single-period model

We agreed that we should not have arbitrage opportunities in our model.

The consequences of this assumption are surprisingly far-reaching.

So assume that there are no arbitrage opportunities. If we analyse the

structure of our model above, we see that every statement can be

formulated in terms of Euclidean geometry or linear algebra. For

instance, absence of arbitrage means that the space

Γ

=

{(
x
y

)
, x ∈ IR, y ∈ IRN :

x = −S(0)′ϕ, y = ~S′ϕ,ϕ ∈ IRd+1
}
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A single-period model

and the space

IRN+1
+

=
{
z ∈ IRN+1 : zi ≥ 0 ∀ 0 ≤ i ≤ N

∃ i such that zi > 0}

have no common points. A statement like that naturally points to the

use of a separation theorem for convex subsets, the separating

hyperplane theorem Using such a theorem we come to the following

characterisation of no arbitrage.
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A single-period model

There is no arbitrage if and only if there exists a vector

ψ ∈ IRN , ψi > 0, ∀ 1 ≤ i ≤ N

such that
~Sψ = S(0). (4)

Proof. The implication ‘⇐’ follows straightforwardly: assume that

S(T, ω)′ϕ ≥ 0, ω ∈ Ω for a vector ϕ ∈ IRd+1.Then

S(0)′ϕ = (~Sψ)′ϕ = ψ′~S′ϕ ≥ 0,

since ψi > 0, ∀1 ≤ i ≤ N . So no arbitrage opportunities exist.
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A single-period model

To show the implication ‘⇒’ we use a variant of the separating

hyperplane theorem. Absence of arbitrage means the Γ and IRN+1
+ have

no common points. This means that K ⊂ IRN+1
+ defined by

K =

{
z ∈ IRN+1

+ :
N∑
i=0

zi = 1

}
and Γ do not meet.
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A single-period model

But K is a compact and convex set, and by the separating hyperplane

theorem, there is a vector λ ∈ IRN+1 such that for all z ∈ K

λ′z > 0

but for all (x, y)′ ∈ Γ

λ0x+ λ1y1 + . . .+ λNyN = 0.

Now choosing zi = 1 successively we see that λi > 0, i = 0, . . . N , and

hence by normalising we get ψ = λ/λ0 with ψ0 = 1. Now set

x = −S(0)′ϕ and y = ~S′ϕ and the claim follows.
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A single-period model

The vector ψ is called a state-price vector. We can think of ψj as the

marginal cost of obtaining an additional unit of account in state ωj . We

can now reformulate the above statement to:

There is no arbitrage if and only if there exists a state-price vector.
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A single-period model

Using a further normalisation, we can clarify the link to our probabilistic

setting. Given a state-price vector ψ = (ψ1, . . . , ψN ), we set

ψ0 = ψ1 + . . .+ ψN and for any state ωj write qj = ψj/ψ0. We can

now view (q1, . . . , qN ) as probabilities and define a new probability

measure on Ω by Q({ωj}) = qj , j = 1, . . . , N . Using this probability

measure, we see that for each asset i we have the relation

Si(0)
ψ0

=
N∑
j=1

qjSi(T, ωj) = E Q(Si(T )).

Hence the normalized price of the financial security i is just its expected

payoff under some specially chosen ‘risk-neutral’ probabilities.
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A single-period model

So far we have not specified anything about the denomination of prices.

From a technical point of view we could choose any asset i as long as its

price vector (Si(0), Si(T, ω1), . . . , Si(T, ωN ))′ only contains positive

entries, and express all other prices in units of this asset. We say that we

use this asset as numéraire. Let us emphasise again that arbitrage

opportunities do not depend on the chosen numéraire. It turns out that

appropriate choice of the numéraire facilitates the probability-theoretic

analysis in complex settings, and we will discuss the choice of the

numéraire in detail later on.

c©Rüdiger Kiesel

U
N

IV
ERSITÄT

ULM
·

S
C

IE
N

D
O

·DOCENDO
·C

U
R

A
N

D
O

·



73

A single-period model

For simplicity, let us assume that asset 0 is a riskless bond paying one

unit in all states ω ∈ Ω at time T . This means that S0(T, ω) = 1 in all

states of the world ω ∈ Ω. By the above analysis we must have

S0(0)
ψ0

=
N∑
j=1

qjS0(T, ωj) =
N∑
j=1

qj1 = 1,

and ψ0 is the discount on riskless borrowing. Introducing an interest rate

r, we must have S0(0) = ψ0 = (1 + r)−T .

c©Rüdiger Kiesel

U
N

IV
ERSITÄT

ULM
·

S
C

IE
N

D
O

·DOCENDO
·C

U
R

A
N

D
O

·



74

A single-period model

We can now express the price of asset i at time t = 0 as

Si(0) =
N∑
j=1

qj
Si(T, ωj)
(1 + r)T

= E Q

(
Si(T )

(1 + r)T

)
.

We rewrite this as

Si(T )
(1 + r)0

= E Q

(
Si(T )

(1 + r)T

)
.
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A single-period model

In the language of probability theory we just have shown that the

processes Si(t)/(1 + r)t, t = 0, T are Q-martingales. (Martingales are

the probabilists’ way of describing fair games.) It is important to notice

that under the given probability measure IP (which reflects an individual

agent’s belief or the markets’ belief) the processes

Si(t)/(1 + r)t, t = 0, T generally do not form IP -martingales.
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A single-period model

We use this to shed light on the relationship of the probability measures

IP and Q. Since Q({ω}) > 0 for all ω ∈ Ω the probability measures IP

and Q are equivalent and because of the argument above we call Q an

equivalent martingale measure. So we arrived at yet another

characterisation of arbitrage:

There is no arbitrage if and only if there exists an equivalent martingale

measure.
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A single-period model

We also see that risk-neutral pricing corresponds to using the

expectation operator with respect to an equivalent martingale measure.

This concept lies at the heart of stochastic (mathematical) finance and

will be the golden thread (or roter Faden) throughout this lecture.
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A single-period model

We now know how the given prices of our (d+ 1) financial assets should

be related in order to exclude arbitrage opportunities, but how should we

price a newly introduced financial instrument? We can represent this

financial instrument by its random payments

δ(T ) = (δ(T, ω1), . . . , δ(T, ωj), . . . , δ(T, ωN ))′

(observe that δ(T ) is a vector in IRN ) at time t = T and ask for its price

δ(0) at time t = 0.
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A single-period model

The natural idea is to use an equivalent probability measure Q and set

δ(0) = E Q(δ(T )/(1 + r)T )

(recall that all time t = 0 and time t = T prices are related in this way).

Unfortunately, as we don’t have a unique martingale measure in general,

we cannot guarantee the uniqueness of the t = 0 price. Put another way,

we know every equivalent martingale measure leads to a reasonable

relative price for our newly created financial instrument, but which

measure should one choose?
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A single-period model

The easiest way out would be if there were only one equivalent

martingale measure at our disposal – and surprisingly enough the

classical economic pricing theory puts us exactly in this situation! Given

a set of financial assets on a market the underlying question is whether

we are able to price any new financial asset which might be introduced

in the market, or equivalently whether we can replicate the cash-flow of

the new asset by means of a portfolio of our original assets. If this is the

case and we can replicate every new asset, the market is called complete.
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A single-period model

In our financial market situation the question can be restated

mathematically in terms of Euclidean geometry: do the vectors Si(T )
span the whole IRN? This leads to:

Suppose there are no arbitrage opportunities. Then the model is

complete if and only if the matrix equation

~S′ϕ = δ

has a solution ϕ ∈ IRd+1 for any vector δ ∈ IRN.
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A single-period model

Linear algebra immediately tells us that the above theorem means that

the number of independent vectors in ~S′ must equal the number of

states in Ω. In an informal way we can say that if the financial market

model contains 2 (N) states of the world at time T it allows for

1 (N − 1) sources of randomness (if there is only one state we know the

outcome). Likewise we can view the numéraire asset as risk-free and all

other assets as risky. We can now restate the above characterisation of

completeness in an informal (but intuitive) way as:

A financial market model is complete if it contains at least as many

independent risky assets as sources of randomness.
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A single-period model

The question of completeness can be expressed equivalently in

probabilistic language, as a question of representability of the relevant

random variables or whether the σ-algebra they generate is the full

σ-algebra.

If a financial market model is complete, traditional economic theory

shows that there exists a unique system of prices. If there exists only one

system of prices, and every equivalent martingale measure gives rise to a

price system, we can only have a unique equivalent martingale measure.

The (arbitrage-free) market is complete if and only if there exists a

unique equivalent martingale measure.
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Financial Mathematics

Lecture 3

by Rüdiger Kiesel

Department of Financial Mathematics, University of Ulm

Department of Statistics, LSE
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Aims and Objectives

• Review basic facts of conditional expectation §2.5;

• Introduce discrete-parameter martingales §3.3;

• Discuss main properties of martingales §3.4;

• Discussion of the optional stopping theorem §3.5;

• Discussion of the Snell envelope §3.6;
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Conditional Expectation

Recall the defining property: For X and Y random variables

E (Y |σ(X)) = E (Y |X) is defined as the σ(X)-measurable random

variable such that∫
B

Y dIP =
∫
B

E (Y |X)dIP ∀B ∈ σ(X) (5)

To define E (Y |G) for a general σ-algebra G, replace σ(X) with G in (5).
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Conditional Expectation

From the definition linearity of conditional expectation follows from the

linearity of the integral. Further properties

1. G = {∅,Ø}, E (Y |{∅,Ø}) = EY.

2. G = F , E (Y |F) = Y IP − a.s..

3. If Y is G-measurable, E (Y |G) = Y IP − a.s..

4. If Y is G-measurable, E (Y Z|G) = Y E (Z|G) IP − a.s. (we call this

‘taking out what is known’ in view of the above).
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Conditional Expectation

5. If G0 ⊂ G, E [E (Y |G)|G0] = E [Y |G0] a.s. This is the so-called

tower property).

6. Conditional mean formula. E [E (Y |G)] = EY IP − a.s.

7. Role of independence. If Y is independent of G,

E (Y |G) = EY a.s.
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Discrete-Parameter Martingales

A process X = (Xn) is called a martingale relative to ((Fn), IP ) if

(i) X is adapted (to (Fn));
(ii) E |Xn| <∞ for all n;

(iii) E [Xn|Fn−1] = Xn−1 IP − a.s. (n ≥ 1).

X is a supermartingale if in place of (iii)

E [Xn|Fn−1] ≤ Xn−1 IP − a.s. (n ≥ 1);

X is a submartingale if in place of (iii)

E [Xn|Fn−1] ≥ Xn−1 IP − a.s. (n ≥ 1).
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Discrete-Parameter Martingales

Using (iii) we see that the best forecast of unobserved future values of

(Xk) based on information at time Fn is Xn; in more mathematical

terms, the Fn measurable random variable Y which minimises

E ((Xn+1 − Y )2|Fn) is Xn.

Martingales also have a useful interpretation in terms of dynamic games:

a martingale is ‘constant on average’, and models a fair game; a

supermartingale is ‘decreasing on average’, and models an unfavourable

game; a submartingale is ‘increasing on average’, and models a

favourable game.
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Discrete-Parameter Martingales

X is a submartingale (supermartingale) if and only if −X is a

supermartingale (submartingale); X is a martingale if and only if it is

both a submartingale and a supermartingale.

(Xn) is a martingale if and only if (Xn −X0) is a martingale. So we

may without loss of generality take X0 = 0 when convenient.
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Discrete-Parameter Martingales

If X is a martingale, then for m < n using the iterated conditional

expectation and the martingale property repeatedly

E [Xn|Fm] = E [E (Xn|Fn−1)|Fm]

= E [Xn−1|Fm]

= . . . = E [Xm|Fm] = Xm,

and similarly for submartingales, supermartingales.
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Discrete-Parameter Martingales

Examples of a martingale include: sums of independent, integrable

zero-mean random variables (submartingales: positive mean;

supermartingale: negative mean). Also

Example. Accumulating data about a random variable: If

ξ ∈ L1(Ø,F , IP ), Mn := E (ξ|Fn) (so Mn represents our best estimate

of ξ based on knowledge at time n), then using iterated conditional

expectations

E [Mn|Fn−1] = E [E (ξ|Fn)|Fn−1]

= E [ξ|Fn−1] = Mn−1,

so (Mn) is a martingale. One has the convergence

Mn →M∞ := E [ξ|F∞] a.s. and in L1.
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Martingale Convergence

We turn now to the theorems that make martingales so powerful a tool.

A supermartingale is ‘decreasing on average’. Recall that a decreasing

sequence (of real numbers) that is bounded below converges (decreases

to its greatest lower bound or infimum). This suggests that a

supermartingale which is bounded below converges a.s.. More is true.

Call X L1-bounded if

sup
n

E |Xn| <∞.

An L1-bounded supermartingale is a.s. convergent: there exists X∞

finite such that

Xn → X∞ (n→∞) a.s.
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Martingale Convergence

Doob’s Martingale Convergence Theorem

An L1-bounded martingale converges a.s..

We say that

Xn → X∞ in L1

if

E |Xn −X∞| → 0 (n→∞).

For a class of martingales, one gets convergence in L1 as well as almost

surely.
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Martingale Convergence

The following are equivalent for martingales X = (Xn):

(i) Xn converges in L1;

(ii) Xn is L1-bounded, and its a.s. limit X∞ (which exists, by above)

satisfies

Xn = E [X∞|Fn];

(iii) There exists an integrable random variable X with

Xn = E [X|Fn].

Such martingales are called regular or uniformly integrable.
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Doob Decomposition

Let X = (Xn) be an adapted process with each Xn ∈ L1. Then X has

an (essentially unique) Doob decomposition

X = X0 +M +A : Xn = X0 +Mn +An ∀n (6)

with M a martingale null at zero, A a predictable process null at zero. If

also X is a submartingale (‘increasing on average’), A is increasing:

An ≤ An+1 for all n, a.s.
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Doob decomposition

Proof. If X has a Doob decomposition (6),

E [Xn −Xn−1|Fn−1]

= E [Mn −Mn−1|Fn−1] + E [An −An−1|Fn−1].

The first term on the right is zero, as M is a martingale. The second is

An −An−1, since An (and An−1) is Fn−1-measurable by previsibility.

So

E [Xn −Xn−1|Fn−1] = An −An−1, (7)

and summation gives

An =
n∑
k=1

E [Xk −Xk−1|Fk−1], a.s.
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Doob decomposition

We use this formula to define (An), clearly previsible. We then use (6)

to define (Mn), then a martingale, giving the Doob decomposition (6).

If X is a submartingale, the LHS of (7) is ≥ 0, so the RHS of (7) is ≥ 0,

i.e. (An) is increasing.
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Martingale Transforms

Now think of a gambling game, or series of speculative investments, in

discrete time. There is no play at time 0; there are plays at times

n = 1, 2, . . ., and

∆Xn := Xn −Xn−1

represents our net winnings per unit stake at play n. Thus if Xn is a

martingale, the game is ‘fair on average’.

Call a process C = (Cn)∞n=1 predictable (or previsible) if

Cn is Fn−1 −measurable for all n ≥ 1.

Think of Cn as your stake on play n (C0 is not defined, as there is no

play at time 0).
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Martingale Transforms

Previsibility says that you have to decide how much to stake on play n

based on the history before time n (i.e., up to and including play n− 1).

Your winnings on game n are Cn∆Xn = Cn(Xn −Xn−1). Your total

(net) winnings up to time n are

Yn =
n∑
k=1

Ck∆Xk =
n∑
k=1

Ck(Xk −Xk−1).

We write

Y = C •X, Yn = (C •X)n, ∆Yn = Cn∆Xn

((C •X)0 = 0 as
∑0
k=1 is empty), and call C •X the martingale

transform of X by C.
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Martingale Transforms

(i) If C is a bounded non-negative predictable process and X is a

supermartingale, C •X is a supermartingale null at zero.

(ii) If C is bounded and predictable and X is a martingale, C •X is a

martingale null at zero.
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Martingale Transforms

Proof. With Y = C •X as above,

E [Yn − Yn−1|Fn−1] = E [Cn(Xn −Xn−1)|Fn−1]

= CnE [(Xn −Xn−1)|Fn−1]

(as Cn is bounded, so integrable, and Fn−1-measurable, so can be taken

out)

≤ 0

in case (i), as C ≥ 0 and X is a supermartingale,

= 0

in case (ii), as X is a martingale.

Interpretation. You can’t beat the system! In the martingale case,

previsibility of C means we can’t foresee the future (which is realistic

and fair). So we expect to gain nothing – as we should.
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Martingale Transforms

Martingale Transform Lemma: An adapted sequence of real integrable

random variables (Mn) is a martingale iff for any bounded previsible

sequence (Hn),

E

(
n∑
k=1

Hk∆Mk

)
= 0 (n = 1, 2, . . .).

Proof. If (Mn) is a martingale, X defined by X0 = 0,

Xn =
n∑
k=1

Hr∆Mr (n ≥ 1)

is the martingale transform H •M , so is a martingale.
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Martingale Transforms

Conversely, if the condition of the proposition holds, choose j, and for

any Fj-measurable set A write Hn = 0 for n 6= j + 1, Hj+1 = IA. Then

(Hn) is previsible, so the condition of the proposition,

E (
∑n

1 Hr∆Mr) = 0, becomes

E [IA(Mj+1 −Mj)] = 0.

Since this holds for every set A ∈ Fj , the definition of conditional

expectation gives

E (Mj+1|Fj) = Mj .

Since this holds for every j, (Mn) is a martingale.
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Stopping Times and Optional Stopping

A random variable T taking values in {0, 1, 2, . . . ; +∞} is called a

stopping time (or optional time) if

{T ≤ n} = {ω : T (ω) ≤ n} ∈ Fn ∀n ≤ ∞.

Equivalently,

{T = n} ∈ Fn n ≤ ∞,

or

{T ≥ n} ∈ Fn, n ≤ ∞.
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Stopping Times and Optional Stopping

Think of T as a time at which you decide to quit a gambling game:

whether or not you quit at time n depends only on the history up to and

including time n – NOT the future. Thus stopping times model

gambling and other situations where there is no foreknowledge, or

prescience of the future; in particular, in the financial context, where

there is no insider trading.
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Stopping Times and Optional Stopping

Doob’s Optional Stopping Theorem Let T be a stopping time,

X = (Xn)be a supermartingale, and assume that one of the following

holds:

(i) T is bounded (T (ω) ≤ K for some constant K and all ω ∈ Ω);

(ii) X = (Xn) is bounded (|Xn(ω)| ≤ K for some K and all n, ω);

(iii) ET <∞ and (Xn −Xn−1) is bounded.

Then XT is integrable, and

EXT ≤ EX0.

If X is a martingale, then

EXT = EX0.
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Stopping Times and Optional Stopping

Write XT
n := Xn∧T for the sequence (Xn) stopped at time T .

(i) If (Xn) is adapted and T is a stopping time, the stopped sequence

(Xn∧T ) is adapted.

(ii) If (Xn) is a martingale (supermartingale) and T is a stopping time,

(XT
n ) is a martingale (supermartingale).
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Stopping Times and Optional Stopping

Proof. If φj := 1{j≤T},

XT∧n = X0 +
n∑
j=1

φj(Xj −Xj−1)

(as the right is X0 +
∑T∧n
j=1 (Xj −Xj−1), which telescopes to XT∧n).

Since {j ≤ T} is the complement of {T < j} = {T ≤ j − 1} ∈ Fj−1,

(φn) is predictable. So (XT
n ) is adapted.

If (Xn) is a martingale, so is (XT
n ) as it is the martingale transform of

(Xn) by (φn).
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Stopping Times and Optional Stopping

Since by predictability of (φn)

E (XT∧n|Fn−1) = X0 +
n−1∑
j=1

φj(Xj −Xj−1)

+φn(E [Xn|Fn−1]−Xn−1)

= XT∧(n−1)

+φn(E [Xn|Fn−1]−Xn−1),

φn ≥ 0 shows that if (Xn) is a supermartingale (submartingale), so is

(XT∧n).
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Examples

1. Simple Random Walk Recall the simple random walk: Sn :=
∑n

1 Xk,

where the Xn are independent tosses of a fair coin, taking values ±1
with equal probability 1/2. Suppose we decide to bet until our net gain

is first +1, then quit. Let T be the time we quit; T is a stopping time.

The stopping time T has been analysed in detail; see e.g.(?), §5.3.
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Examples

From this, note:

(i) T <∞ a.s.: the gambler will certainly achieve a net gain of +1
eventually;

(ii) ET = +∞: the mean waiting-time until this happens is infinity.

Hence also:

(iii) No bound can be imposed on the gambler’s maximum net loss

before his net gain first becomes +1.

c©Rüdiger Kiesel

U
N

IV
ERSITÄT

ULM
·

S
C

IE
N

D
O

·DOCENDO
·C

U
R

A
N

D
O

·



114

Examples

At first sight, this looks like a foolproof way to make money out of

nothing: just bet until you get ahead (which happens eventually, by (i)),

then quit. However, as a gambling strategy, this is hopelessly

impractical: because of (ii), you need unlimited time, and because of

(iii), you need unlimited capital – neither of which is realistic.

Notice that the optional stopping theorem fails here: we start at zero, so

S0 = 0, ES0 = 0; but ST = 1, so EST = 1.
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Examples

This example shows two things:

(a) The Optional Stopping Theorem does indeed need conditions, as the

conclusion may fail otherwise (none of the conditions (i) – (iii) in the

OST are satisfied in the example above).

(b) Any practical gambling (or trading) strategy needs to have some

integrability or boundedness restrictions to eliminate such theoretically

possible but practically ridiculous cases.
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Examples

2. The Doubling Strategy The strategy of doubling when losing - the

martingale, according to the Oxford English Dictionary – has similar

properties. We play until the time T of our first win. Then T is a

stopping time, and is geometrically distributed with parameter p = 1/2.

If T = n, our winnings on the nth play are 2n−1 (our previous stake of 1
doubled on each of the previous n− 1 losses). Our cumulative losses to

date are 1 + 2 + . . .+ 2n−2 = 2n−1 − 1 (summing the geometric series),

giving us a net gain of 1.
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Examples

The mean time of play is E (T ) = 2 (so doubling strategies accelerate

our eventually certain win to give a finite expected waiting time for it).

But no bound can be put on the losses one may need to sustain before

we win, so again we would need unlimited capital to implement this

strategy – which would be suicidal in practice as a result.
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Examples

3. The Saint Petersburg Game A single play of the Saint Petersburg

game consists of a sequence of coin tosses stopped at the first head; if

this is the rth toss, the player receives a prize of $ 2r. (Thus the

expected gain is
∑∞
r=1 2−r.2r = +∞, so the random variable is not

integrable, and martingale theory does not apply.) Let Sn denote the

player’s cumulative gain after n plays of the game. The question arises

as to what the ‘fair price’ of a ticket to play the game is. It turns out

that fair prices exist (in a suitable sense), but the fair price of the nth

play varies with n – surprising, as all the plays are replicas of each other.
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The Snell Envelope

If Z = (Zn)Nn=0 is a sequence adapted to a filtration (Fn), the sequence

U = (Un)Nn=0 defined by UN := ZN ,

Un := max(Zn, E(Un+1|Fn)) (n ≤ N − 1)

is called the Snell envelope of Z.
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The Snell Envelope

The Snell envelope (Un) of (Zn) is a supermartingale, and is the smallest

supermartingale dominating (Zn) (that is, with Un ≥ Zn for all n).

Proof. First, Un ≥ E(Un+1|Fn), so U is a supermartingale, and

Un ≥ Zn, so U dominates Z.

Next, let T = (Tn) be any other supermartingale dominating Z; we

must show T dominates U also. First, since UN = ZN and T dominates

Z, TN ≥ UN .
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The Snell Envelope

Assume inductively that Tn ≥ Un. Then

Tn−1 ≥ E (Tn|Fn−1) ≥ E (Un|Fn−1),

and as T dominates Z

Tn−1 ≥ Zn−1.

Combining,

Tn−1 ≥ max(Zn−1,E (Un|Fn−1)) = Un−1.

By repeating this argument (or more formally, by backward induction),

Tn ≥ Un for all n, as required.
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The Snell Envelope

T0 := inf{n ≥ 0 : Un = Zn} is a stopping time, and the stopped

sequence (UT0
n ) is a martingale.

Proof. Since UN = ZN , T0 ∈ {0, 1, . . . , N} is well-defined. For k = 0,

{T0 = 0} = {U0 = Z0} ∈ F0; for k ≥ 1,

{T0 = k}

= {U0 > Z0} ∩ · · · ∩ {Uk−1 > Zk−1} ∩ {Uk = Zk}

∈ Fk.

So T0 is a stopping time.
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The Snell Envelope

UT0
n = Un∧T0 = U0 +

n∑
j=1

φj∆Uj ,

where φj = 1{T0≥j} is adapted. For n ≤ N − 1,

UT0
n+1 − UT0

n = φn+1(Un+1 − Un)

= 1{n+1≤T0}(Un+1 − Un).

Now Un := max(Zn,E (Un+1|Fn)), and

Un > Zn on {n+ 1 ≤ T0}.
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The Snell Envelope

So from the definition of Un,

Un = E (Un+1|Fn) on {n+ 1 ≤ T0}.

We next prove

UT0
n+1 − UT0

n = 1{n+1≤T0}(Un+1 − E (Un+1|Fn)). (8)
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The Snell Envelope

For, suppose first that T0 ≥ n+ 1. Then the left of (8) is Un+1 − Un,

the right is Un+1 − E (Un+1|Fn), and these agree on {n+ 1 ≤ T0} by

above. The other possibility is that T0 < n+ 1, i.e. T0 ≤ n. Then the

left of (8) is UT0 − UT0 = 0, while the right is zero because the indicator

is zero, completing the proof of (8).
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The Snell Envelope

Now apply E (.|Fn) to (8): since {n+ 1 ≤ T0} = {T0 ≤ n}c ∈ Fn,

E [(UT0
n+1 − UT0

n )|Fn]

= 1{n+1≤T0}E ([Un+1 − E (Un+1|Fn)]|Fn)

= 1{n+1≤T0)} [E (Un+1|Fn)− E (Un+1|Fn)]

= 0.

So E (UT0
n+1|Fn) = UT0

n . This says that UT0
n is a martingale, as required.
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The Snell Envelope

Write Tn,N for the set of stopping times taking values in

{n, n+ 1, . . . , N} (a finite set, as Ω is finite). We next see that the

Snell envelope solves the optimal stopping problem.

T0 solves the optimal stopping problem for Z:

U0 = E (ZT0 |F0) = sup{E (ZT |F0) : T ∈ T0,N}.
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The Snell Envelope

Proof. To prove the first statement we use that (UT0
n ) is a martingale

and UT0 = ZT0 ; then

UT0
0 = E (UT0

N |F0) = E (UT0 |F0) = E (ZT0 |F0).

Now for any stopping time T ∈ T0,N , since U is a supermartingale

(above), so is the stopped process (UTn ). Together with the property

that (Un) dominates (Zn) this yields

U0 = UT0
0 ≥ E(UTN |F0) = E(UT |F0) ≥ E(ZT |F0),

and this completes the proof.
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The Snell Envelope

The same argument, starting at time n rather than time 0, gives

If Tn := inf{j ≥ n : Uj = Zj},

Un = E (ZTn |Fn) = sup{E (ZT |Fn) : T ∈ Tn,N}.

As we are attempting to maximise our payoff by stopping Z = (Zn) at

the most advantageous time, the Corollary shows that Tn gives the best

stopping time that is realistic: it maximises our expected payoff given

only information currently available (it is easy, but irrelevant, to

maximise things with hindsight!). We thus call T0 (or Tn, starting from

time n) the optimal stopping time for the problem. For textbook

accounts of optimal stopping problems, see e.g. (?), (Neveu 1975).
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Financial Mathematics

Lecture 4

by Rüdiger Kiesel

Department of Financial Mathematics, University of Ulm

Department of Statistics, LSE
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Aims and Objectives

• Discrete-time models §4.1;

• Fundamental theorems of asset pricing §4.2, §4.3;
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The model

We will study so-called finite markets – i.e. discrete-time models of

financial markets in which all relevant quantities take a finite number of

values. To illustrate the ideas, it suffices to work with a finite probability

space (Ω,F , IP ), with a finite number |Ω| of points ω, each with

positive probability: IP ({ω}) > 0.

We specify a time horizon T , which is the terminal date for all economic

activities considered. (For a simple option pricing model the time

horizon typically corresponds to the expiry date of the option.)
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The model

As before, we use a filtration IF = {Ft}Tt=0 consisting of σ-algebras

F0 ⊂ F1 ⊂ · · · ⊂ FT : we take F0 = {∅,Ω}, the trivial σ-field,

FT = F = P(Ω) (here P(Ω) is the power-set of Ω, the class of all 2|Ω|

subsets of Ω: we need every possible subset, as they all – apart from the

empty set – carry positive probability).
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The model

The financial market contains d+ 1 financial assets. The usual

interpretation is to assume one risk-free asset (bond, bank account)

labelled 0, and d risky assets (stocks, say) labelled 1 to d. While the

reader may keep this interpretation as a mental picture, we prefer not to

use it directly. The prices of the assets at time t are random variables,

S0(t, ω), S1(t, ω), . . . , Sd(t, ω) say, non-negative and Ft-measurable (i.e.

adapted: at time t, we know the prices Si(t)). We write

S(t) = (S0(t), S1(t), . . . , Sd(t))′

for the vector of prices at time t.
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The model

Hereafter we refer to the probability space (Ω,F , IP ), the set of trading

dates, the price process S and the information structure IF , which is

typically generated by the price process S, together as a securities

market model.

A numéraire is a price process (X(t))Tt=0 (a sequence of random

variables), which is strictly positive for all t ∈ {0, 1, . . . , T}.
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The model

For the standard approach the risk-free bank account process is used as

numéraire. In some applications, however, it is more convenient to use a

security other than the bank account and we therefore just use S0

without further specification as a numéraire. We furthermore take

S0(0) = 1 (that is, we reckon in units of the initial value of our

numéraire), and define β(t) := 1/S0(t) as a discount factor.
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The model

A trading strategy (or dynamic portfolio) ϕ is a IRd+1 vector stochastic

process

ϕ = (ϕ(t))Tt=1

= ((ϕ0(t, ω), ϕ1(t, ω), . . . , ϕd(t, ω))′)Tt=1

which is predictable (or previsible): each ϕi(t) is Ft−1-measurable for

t ≥ 1.
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The model

Here ϕi(t) denotes the number of shares of asset i held in the portfolio

at time t – to be determined on the basis of information available before

time t; i.e. the investor selects his time t portfolio after observing the

prices S(t− 1). However, the portfolio ϕ(t) must be established before,

and held until after, announcement of the prices S(t).

The components ϕi(t) may assume negative as well as positive values,

reflecting the fact that we allow short sales and assume that the assets

are perfectly divisible.
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The model

The value of the portfolio at time t is the scalar product

Vϕ(t) = ϕ(t) · S(t)

:=
d∑
i=0

ϕi(t)Si(t), (t = 1, 2, . . . , T )

and

Vϕ(0) = ϕ(1) · S(0).

The process Vϕ(t, ω) is called the wealth or value process of the trading

strategy ϕ.

The initial wealth Vϕ(0) is called the initial investment or endowment of

the investor.
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The model

Now ϕ(t) · S(t− 1) reflects the market value of the portfolio just after it

has been established at time t− 1, whereas ϕ(t) · S(t) is the value just

after time t prices are observed, but before changes are made in the

portfolio. Hence

ϕ(t) · (S(t)− S(t− 1)) = ϕ(t) ·∆S(t)

is the change in the market value due to changes in security prices which

occur between time t− 1 and t. This motivates:
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The model

The gains process Gϕ of a trading strategy ϕ is given by

(t = 1, 2, . . . , T )

Gϕ(t) :=
t∑

τ=1

ϕ(τ) · (S(τ)− S(τ − 1))

=
t∑

τ=1

ϕ(τ) ·∆S(τ).

Observe the – for now – formal similarity of the gains process Gϕ from

trading in S following a trading strategy ϕ to the martingale transform

of S by ϕ.
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The model

Define S̃(t) = (1, β(t)S1(t), . . . , β(t)Sd(t))′, the vector of discounted

prices, and consider the discounted value process

Ṽϕ(t) = β(t)(ϕ(t) · S(t)) = ϕ(t) · S̃(t),

and the discounted gains process

G̃ϕ(t) :=
∑t
τ=1 ϕ(τ) · (S̃(τ)− S̃(τ − 1))

=
t∑

τ=1

ϕ(τ) ·∆S̃(τ).

Observe that the discounted gains process reflects the gains from trading

with assets 1 to d only, which in case of the standard model (a bank

account and d stocks) are the risky assets.
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The model

We will only consider special classes of trading strategies.

The strategy ϕ is self-financing, ϕ ∈ Φ, if for t = 1, 2, . . . , T − 1

ϕ(t) · S(t) = ϕ(t+ 1) · S(t). (9)

When new prices S(t) are quoted at time t, the investor adjusts his

portfolio from ϕ(t) to ϕ(t+ 1), without bringing in or consuming any

wealth.
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The model

The following result (which is trivial in our current setting, but requires a

little argument in continuous time) shows that renormalising security

prices (i.e. changing the numéraire) has essentially no economic effects.

Numéraire Invariance Let X(t) be a numéraire. A trading strategy ϕ is

self-financing with respect to S(t) if and only if ϕ is self-financing with

respect to X(t)−1S(t).
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The model

Proof. Since X(t) is strictly positive for all t = 0, 1, . . . , T we have the

following equivalence, which implies the claim:

ϕ(t) · S(t) = ϕ(t+ 1) · S(t)

⇔
ϕ(t) ·X(t)−1S(t) = ϕ(t+ 1) ·X(t)−1S(t).

A trading strategy ϕ is self-financing with respect to S(t) if and only if

ϕ is self-financing with respect to S̃(t).
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The model

We now give a characterisation of self-financing strategies in terms of

the discounted processes.

A trading strategy ϕ belongs to Φ if and only if

Ṽϕ(t) = Vϕ(0) + G̃ϕ(t), (t = 0, 1, . . . , T ). (10)
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The model

Proof. Assume ϕ ∈ Φ. Then using the defining relation (9), the

numéraire invariance theorem and the fact that S0(0) = 1

Vϕ(0) + G̃ϕ(t)

= ϕ(1) · S(0) +
t∑

τ=1

ϕ(τ) · (S̃(τ)− S̃(τ − 1))

= ϕ(1) · S̃(0) + ϕ(t) · S̃(t)

−
t−1∑
τ=1

(ϕ(τ)− ϕ(τ + 1)) · S̃(τ)− ϕ(1) · S̃(0)

= ϕ(t) · S̃(t) = Ṽϕ(t).
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The model

Assume now that (10) holds true. By the numéraire invariance theorem

it is enough to show the discounted version of relation (9). Summing up

to t = 2 (10) is

ϕ(2) · S̃(2) = ϕ(1) · S̃(0) + ϕ(1) · (S̃(1)− S̃(0)) + ϕ(2) · (S̃(2)− S̃(1)).
Subtracting ϕ(2) · S̃(2) on both sides gives ϕ(2) · S̃(1) = ϕ(1) · S̃(1),
which is (9) for t = 1. Proceeding similarly – or by induction – we can

show ϕ(t) · S̃(t) = ϕ(t+ 1) · S̃(t) for t = 2, . . . , T − 1 as required.
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The model

We are allowed to borrow (so ϕ0(t) may be negative) and sell short (so

ϕi(t) may be negative for i = 1, . . . , d). So it is hardly surprising that if

we decide what to do about the risky assets and fix an initial

endowment, the numéraire will take care of itself, in the following sense.

If (ϕ1(t), . . . , ϕd(t))′ is predictable and V0 is F0-measurable, there is a

unique predictable process (ϕ0(t))Tt=1 such that ϕ = (ϕ0, ϕ1, . . . , ϕd)′ is

self-financing with initial value of the corresponding portfolio

Vϕ(0) = V0.
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The model

Proof. If ϕ is self-financing, then

Ṽϕ(t)

= V0 + G̃ϕ(t)

= V0 +
t∑

τ=1

(ϕ1(τ)∆S̃1(τ) + . . .+ ϕd(τ)∆S̃d(τ)).
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The model

On the other hand,

Ṽϕ(t)

= ϕ(t) · S̃(t)

= ϕ0(t) + ϕ1(t)S̃1(t) + . . .+ ϕd(t)S̃d(t).
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The model

Equate these:

ϕ0(t)

= V0 +
t∑

τ=1

(ϕ1(τ)∆S̃1(τ) + . . .+ ϕd(τ)∆S̃d(τ))

−(ϕ1(t)S̃1(t) + . . .+ ϕd(t)S̃d(t)),

which defines ϕ0(t) uniquely.
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The model

The terms in S̃i(t) are

ϕi(t)∆S̃i(t)− ϕi(t)S̃i(t) = −ϕi(t)S̃i(t− 1),

which is Ft−1-measurable. So

ϕ0(t)

= V0 +
t−1∑
τ=1

(ϕ1(τ)∆S̃1(τ) + . . .+ ϕd(τ)∆S̃d(τ))

−(ϕ1(t)S1(t− 1) + . . .+ ϕd(t)S̃d(t− 1)),

where as ϕ1, . . . , ϕd are predictable, all terms on the right-hand side are

Ft−1-measurable, so ϕ0 is predictable.
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The model

The above has a further important consequence: for defining a gains

process G̃ϕ only the components (ϕ1(t), . . . , ϕd(t))′ are needed. If we

require them to be predictable they correspond in a unique way (after

fixing initial endowment) to a self-financing trading strategy. Thus for

the discounted world predictable strategies and final cash-flows

generated by them are all that matters.

c©Rüdiger Kiesel

U
N

IV
ERSITÄT

ULM
·

S
C

IE
N

D
O

·DOCENDO
·C

U
R

A
N

D
O

·



155

The model

We now turn to the modelling of derivative instruments in our current

framework. This is done in the following fashion.

A contingent claim X with maturity date T is an arbitrary

FT = F-measurable random variable (which is by the finiteness of the

probability space bounded). We denote the class of all contingent claims

by L0 = L0(Ω,F , IP ).

The notation L0 for contingent claims is motivated by the them being

simply random variables in our context (and the functional-analytic

spaces used later on).
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The model

A typical example of a contingent claim X is an option on some

underlying asset S, then (e.g. for the case of a European call option

with maturity date T and strike K) we have a functional relation

X = f(S) with some function f (e.g. X = (S(T )−K)+). The general

definition allows for more complicated relationships which are captured

by the FT -measurability of X (recall that FT is typically generated by

the process S).
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The No-Arbitrage Condition

The central principle in the single period example was the absence of

arbitrage opportunities, i.e. the absence investment strategies for making

profits without exposure to risk. As mentioned there this principle is

central for any market model, and we now define the mathematical

counterpart of this economic principle in our current setting.

Let Φ̃ ⊂ Φ be a set of self-financing strategies. A strategy ϕ ∈ Φ̃ is

called an arbitrage opportunity or arbitrage strategy with respect to Φ̃ if

IP{Vϕ(0) = 0} = 1, and the terminal wealth of ϕ satisfies

IP{Vϕ(T ) ≥ 0} = 1 and IP{Vϕ(T ) > 0} > 0.
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The No-Arbitrage Condition

So an arbitrage opportunity is a self-financing strategy with zero initial

value, which produces a non-negative final value with probability one

and has a positive probability of a positive final value. Observe that

arbitrage opportunities are always defined with respect to a certain class

of trading strategies.

We say that a security market M is arbitrage-free if there are no

arbitrage opportunities in the class Φ of trading strategies.
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The No-Arbitrage Condition

We will allow ourselves to use ‘no-arbitrage’ in place of ‘arbitrage-free’

when convenient.

The fundamental insight in the single-period example was the

equivalence of the no-arbitrage condition and the existence of

risk-neutral probabilities. For the multi-period case we now use

probabilistic machinery to establish the corresponding result.

A probability measure IP ∗ on (Ω,FT ) equivalent to IP is called a

martingale measure for S̃ if the process S̃ follows a IP ∗-martingale with

respect to the filtration IF . We denote by P(S̃) the class of equivalent

martingale measures.
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The No-Arbitrage Condition

Let IP ∗ be an equivalent martingale measure (IP ∗ ∈ P(S̃)) and ϕ ∈ Φ
any self-financing strategy. Then the wealth process Ṽϕ(t) is a

IP ∗-martingale with respect to the filtration IF .

PROOF:

By the self-financing property of ϕ, (10), we have

Ṽϕ(t) = Vϕ(0) + G̃ϕ(t) (t = 0, 1, . . . , T ).
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The No-Arbitrage Condition

So

Ṽϕ(t+ 1)− Ṽϕ(t)

= G̃ϕ(t+ 1)− G̃ϕ(t)

= ϕ(t+ 1) · (S̃(t+ 1)− S̃(t)).

So for ϕ ∈ Φ, Ṽϕ(t) is the martingale transform of the IP ∗ martingale S̃

by ϕ and hence a IP ∗ martingale itself.

Observe that in our setting all processes are bounded, i.e. the martingale

transform theorem is applicable without further restrictions. The next

result is the key for the further development.
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The No-Arbitrage Condition

If an equivalent martingale measure exists - that is, if P(S̃) 6= ∅ – then

the market M is arbitrage-free.

PROOF:

Assume such a IP ∗ exists. For any self-financing strategy ϕ, we have as

before

Ṽϕ(t) = Vϕ(0) +
t∑

τ=1

ϕ(τ) ·∆S̃(τ).

Now, S̃(t) a (vector) IP ∗-martingale implies Ṽϕ(t) is a P ∗-martingale.
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The No-Arbitrage Condition

So the initial and final IP ∗-expectations are the same,

E ∗(Ṽϕ(T )) = E ∗(Ṽϕ(0)).

If the strategy is an arbitrage opportunity its initial value – the

right-hand side above – is zero. Therefore the left-hand side E ∗(Ṽϕ(T ))
is zero, but Ṽϕ(T ) ≥ 0 (by definition). Also each IP ∗({ω}) > 0 (by

assumption, each IP ({ω}) > 0, so by equivalence each IP ∗({ω}) > 0).

This and Ṽϕ(T ) ≥ 0 force Ṽϕ(T ) = 0. So no arbitrage is possible.
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The No-Arbitrage Condition

If the market M is arbitrage-free, then the class P(S̃) of equivalent

martingale measures is non-empty.

For the proof (for which we follow (Schachermayer 2003) we need some

auxiliary observations.

Recall the definition of arbitrage, in our finite-dimensional setting: a

self-financing trading strategy ϕ ∈ Φ is an arbitrage opportunity if

Vϕ(0) = 0, Vϕ(T, ω) ≥ 0 ∀ω ∈ Ω and there exists a ω ∈ Ω with

Vϕ(T, ω) > 0.
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The No-Arbitrage Condition

Now call L0 = L0(Ω,F , IP ) the set of random variables on (Ω,F) and

L0
++(Ω,F , IP ) := {X ∈ L0 : X(ω) ≥ 0 ∀ω ∈ Ω and ∃ ω ∈

Ω such that X(ω) > 0}. (Observe that L0
++ is a cone -closed under

vector addition and multiplication by positive scalars.) Using L0
++ we

can write the arbitrage condition more compactly as

Vϕ(0) = Ṽϕ(0) = 0

⇒ Ṽϕ(T ) 6∈ L0
++(Ω,F , IP )

for any self-financing strategy ϕ.
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The No-Arbitrage Condition

The next lemma formulates the arbitrage condition in terms of

discounted gains processes. The important advantage in using this

setting (rather than a setting in terms of value processes) is that we only

have to assume predictability of a vector process (ϕ1, . . . , ϕd). Recall

that we can choose a process ϕ0 in such a way that the strategy

ϕ = (ϕ0, ϕ1, . . . , ϕd) has zero initial value and is self-financing.

In an arbitrage-free market any predictable vector process

ϕ′ = (ϕ1, . . . , ϕd) satisfies

G̃ϕ′(T ) 6∈ L0
++(Ω,F , IP ).
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The No-Arbitrage Condition

PROOF:

There exists a unique predictable process (ϕ0(t)) such that

ϕ = (ϕ0, ϕ1, . . . , ϕd) has zero initial value and is self-financing. Assume

G̃ϕ′(T ) ∈ L0
++(Ω,F , IP ). Then,

Vϕ(T ) = β(T )−1Ṽϕ(T )

= β(T )−1(Vϕ(0) + G̃ϕ(T ))

= β(T )−1G̃ϕ′(T ) ≥ 0,

and is positive somewhere (i.e. with positive probability) by definition of

L0
++. Hence ϕ is an arbitrage opportunity with respect to Φ. This

contradicts the assumption that the market is arbitrage-free.
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The No-Arbitrage Condition

We now define the space of contingent claims, i.e. random variables on

(Ω,F), which an economic agent may replicate with zero initial

investment by pursuing some predictable trading strategy ϕ.

We call the subspace K of L0 = L0(Ω,F , IP ) defined by

K = {X ∈ L0 : X = G̃ϕ(T ), ϕ predictable}

the set of contingent claims attainable at price 0.
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The No-Arbitrage Condition

A market is arbitrage-free if and only if

K ∩ L0
++(Ω,F , IP ) = ∅. (11)

Proof Since our market model is finite we can use results from Euclidean

geometry, in particular we can identify L0 with IR|Ω|). By assumption

we have (11), i.e. K and L0
++ do not intersect. So K does not meet

the subset

D := {X ∈ L0
++ :

∑
ω∈Ω

X(ω) = 1}.
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The No-Arbitrage Condition

Now D is a compact convex set. By the separating hyperplane theorem,

there is a vector λ = (λ(ω) : ω ∈ Ω) such that for all X ∈ D

λ ·X :=
∑
ω∈Ω

λ(ω)X(ω) > 0, (12)

but for all G̃ϕ(T ) in K,

λ · G̃ϕ(T ) =
∑
ω∈Ω

λ(ω)G̃ϕ(T )(ω) = 0. (13)
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The No-Arbitrage Condition

Choosing each ω ∈ Ω successively and taking X to be 1 on this ω and

zero elsewhere, (12) tells us that each λ(ω) > 0. So

IP ∗({ω}) :=
λ(ω)∑

ω′∈Ωλ(ω′)

defines a probability measure equivalent to IP (no non-empty null sets).

With E ∗ as IP ∗-expectation, (13) says that

E ∗
(
G̃ϕ(T )

)
= 0,

i.e.

E ∗

(
T∑
τ=1

ϕ(τ) ·∆S̃(τ)

)
= 0.
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The No-Arbitrage Condition

In particular, choosing for each i to hold only stock i,

E ∗

(
T∑
τ=1

ϕi(τ)∆S̃i(τ)

)
= 0 (i = 1, . . . , d).

Since this holds for any predictable ϕ (boundedness holds automatically

as Ω is finite), the martingale transform lemma tells us that the

discounted price processes (S̃i(t)) are IP ∗-martingales.
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The No-Arbitrage Condition

No-Arbitrage Theorem The market M is arbitrage-free if and only if

there exists a probability measure IP ∗ equivalent to IP under which the

discounted d-dimensional asset price process S̃ is a IP ∗-martingale.
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Risk-Neutral Pricing

We now turn to the main underlying question of this text, namely the

pricing of contingent claims (i.e. financial derivatives). As in the

one-period setting the basic idea is to reproduce the cash flow of a

contingent claim in terms of a portfolio of the underlying assets. On the

other hand, the equivalence of the no-arbitrage condition and the

existence of risk-neutral probability measures imply the possibility of

using risk-neutral measures for pricing purposes. We will explore the

relation of these tow approaches in this subsection.
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Risk-Neutral Pricing

We say that a contingent claim is attainable if there exists a replicating

strategy ϕ ∈ Φ such that

Vϕ(T ) = X.

So the replicating strategy generates the same time T cash-flow as does

X. Working with discounted values (recall we use β as the discount

factor) we find

β(T )X = Ṽϕ(T ) = V (0) + G̃ϕ(T ). (14)

So the discounted value of a contingent claim is given by the initial cost

of setting up a replication strategy and the gains from trading.
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Risk-Neutral Pricing

In a highly efficient security market we expect that the law of one price

holds true, that is for a specified cash-flow there exists only one price at

any time instant. Otherwise arbitrageurs would use the opportunity to

cash in a riskless profit. So the no-arbitrage condition implies that for an

attainable contingent claim its time t price must be given by the value

(inital cost) of any replicating strategy (we say the claim is uniquely

replicated in that case). This is the basic idea of the arbitrage pricing

theory.
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Risk-Neutral Pricing

Suppose the market M is arbitrage-free. Then any attainable contingent

claim X is uniquely replicated in M.

Proof. Suppose there is an attainable contingent claim X and strategies

ϕ and ψ such that

Vϕ(T ) = Vψ(T ) = X,

but there exists a τ < T such that

Vϕ(u) = Vψ(u)

for every u < τ and

Vϕ(τ) 6= Vψ(τ).
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Risk-Neutral Pricing

Define A := {ω ∈ Ω : Vϕ(τ, ω) > Vψ(τ, ω)}, then A ∈ Fτ and

IP (A) > 0 (otherwise just rename the strategies). Define the

Fτ -measurable random variable Y := Vϕ(τ)− Vψ(τ) and consider the

trading strategy ξ defined by

ξ(u) = ϕ(u)− ψ(u), u ≤ τ

and

ξ(u) = 1Ac(ϕ(u)− ψ(u)) + 1A(Y β(τ), 0, . . . , 0),

for τ < u ≤ T . The idea here is to use ϕ and ψ to construct a

self-financing strategy with zero initial investment (hence use their

difference ξ) and put any gains at time τ in the savings account (i.e.

invest them riskfree) up to time T .
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Risk-Neutral Pricing

We need to show formally that ξ satisfies the conditions of an arbitrage

opportunity. By construction ξ is predictable and the self-financing

condition (9) is clearly true for t 6= τ , and for t = τ we have using that

ϕ,ψ ∈ Φ

ξ(τ) · S(τ) = (ϕ(τ)− ψ(τ)) · S(τ)

= Vϕ(τ)− Vψ(τ)
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Risk-Neutral Pricing

and

ξ(τ + 1) · S(τ)

= 1Ac(ϕ(τ + 1)− ψ(τ + 1)) · S(τ)

+1AY β(τ)S0(τ)

= 1Ac(ϕ(τ)− ψ(τ)) · S(τ)

+1A(Vϕ(τ)− Vψ(τ))β(τ)β−1(τ)

= Vϕ(τ)− Vψ(τ).
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Risk-Neutral Pricing

Hence ξ is a self-financing strategy with initial value equal to zero.

Furthermore

Vξ(T ) = 1Ac(ϕ(T )− ψ(T )) · S(T )

+1A(Y β(τ), 0, . . . , 0) · S(T )

= 1AY β(τ)S0(T ) ≥ 0

and

IP{Vξ(T ) > 0} = IP{A} > 0.

Hence the market contains an arbitrage opportunity with respect to the

class Φ of self-financing strategies. But this contradicts the assumption

that the market M is arbitrage-free.
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Risk-Neutral Pricing

This uniqueness property allows us now to define the important concept

of an arbitrage price process.

Suppose the market is arbitrage-free. Let X be any attainable

contingent claim with time T maturity. Then the arbitrage price process

πX(t), 0 ≤ t ≤ T or simply arbitrage price of X is given by the value

process of any replicating strategy ϕ for X.
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Risk-Neutral Pricing

The construction of hedging strategies that replicate the outcome of a

contingent claim (for example a European option) is an important

problem in both practical and theoretical applications. Hedging is central

to the theory of option pricing. The classical arbitrage valuation models,

such as the Black-Scholes model ((Black and Scholes 1973), depend on

the idea that an option can be perfectly hedged using the underlying

asset (in our case the assets of the market model), so making it possible

to create a portfolio that replicates the option exactly. Hedging is also

widely used to reduce risk, and the kinds of delta-hedging strategies

implicit in the Black-Scholes model are used by participants in option

markets. We will come back to hedging problems subsequently.
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Risk-Neutral Pricing

Analysing the arbitrage-pricing approach we observe that the derivation

of the price of a contingent claim doesn’t require any specific preferences

of the agents other than nonsatiation, i.e. agents prefer more to less,

which rules out arbitrage. So, the pricing formula for any attainable

contingent claim must be independent of all preferences that do not

admit arbitrage. In particular, an economy of risk-neutral investors must

price a contingent claim in the same manner. This fundamental insight,

due to Cox and Ross (Cox and Ross 1976) and to Harrison and Kreps

(Harrison and Kreps 1979), simplifies the pricing formula enormously. In

its general form the price of an attainable simple contingent claim is just

the expected value of the discounted payoff with respect to an

equivalent martingale measure.
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Risk-Neutral Pricing

The arbitrage price process of any attainable contingent claim X is given

by the risk-neutral valuation formula

πX(t) = β(t)−1E ∗ (Xβ(T )|Ft) (15)

where E ∗ is the expectation operator with respect to an equivalent

martingale measure IP ∗.
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Risk-Neutral Pricing

Proof Since we assume the the market is arbitrage-free there exists (at

least) an equivalent martingale measure IP ∗. Also the discounted value

process Ṽϕ of any self-financing strategy ϕ is a IP ∗-martingale. So for

any contingent claim X with maturity T and any replicating trading

strategy ϕ ∈ Φ we have for each t = 0, 1, . . . , T

πX(t) = Vϕ(t) = β(t)−1Ṽϕ(t)

= β(t)−1E ∗(Ṽϕ(T )|Ft)

= β(t)−1E ∗(β(T )Vϕ(T )|Ft)

= β(t)−1E ∗(β(T )X|Ft),

use Ṽϕ(t) is a martingale and ϕ is replicating X.
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Complete Markets

The last section made clear that attainable contingent claims can be

priced using an equivalent martingale measure. In this section we will

discuss the question of the circumstances under which all contingent

claims are attainable. This would be a very desirable property of the

market M, because we would then have solved the pricing question (at

least for contingent claims) completely. Since contingent claims are

merely FT -measurable random variables in our setting, it should be no

surprise that we can give a criterion in terms of probability measures.

We start with:
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Complete Markets

A market M is complete if every contingent claim is attainable, i.e. for

every FT -measurable random variable X ∈ L0 there exists a replicating

self-financing strategy ϕ ∈ Φ such that Vϕ(T ) = X.

In the case of an arbitrage-free market M one can even insist on

replicating nonnegative contingent claims by an admissible strategy

ϕ ∈ Φa. Indeed, if ϕ is self-financing and IP ∗ is an equivalent martingale

measure under which discounted prices S̃ are IP ∗-martingales (such IP ∗

exist since M is arbitrage-free and we can hence use the no-arbitrage

theorem, Ṽϕ(t) is also a IP ∗-martingale, being the martingale transform

of the martingale S̃ by ϕ. So

Ṽϕ(t) = E∗(Ṽϕ(T )|Ft) (t = 0, 1, . . . , T ).
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Complete Markets

If ϕ replicates X, Vϕ(T ) = X ≥ 0, so discounting, Ṽϕ(T ) ≥ 0, so the

above equation gives Ṽϕ(t) ≥ 0 for each t. Thus all the values at each

time t are non-negative – not just the final value at time T – so ϕ is

admissible.

Completeness Theorem An arbitrage-free market M is complete if and

only if there exists a unique probability measure IP ∗ equivalent to IP

under which discounted asset prices are martingales.
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Complete Markets

Proof. ‘⇒’: Assume that the arbitrage-free market M is complete.

Then for any FT -measurable random variable X ( contingent claim),

there exists an admissible (so self-financing) strategy ϕ replicating X:

X = Vϕ(T ). As ϕ is self-financing,

β(T )X = Ṽϕ(T ) = Vϕ(0) +
T∑
τ=1

ϕ(τ) ·∆S̃(τ).
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Complete Markets

We know by the no-arbitrage theorem that an equivalent martingale

measure IP ∗ exists; we have to prove uniqueness. So, let IP1, IP2 be two

such equivalent martingale measures. For i = 1, 2, (Ṽϕ(t))Tt=0 is a

IPi-martingale. So,

E i(Ṽϕ(T )) = E i(Ṽϕ(0)) = Vϕ(0),

since the value at time zero is non-random (F0 = {∅,Ω}) and β(0) = 1.

So

E 1(β(T )X) = E 2(β(T )X).

Since X is arbitrary, E 1,E 2 have to agree on integrating all integrands.

Now E i is expectation (i.e. integration) with respect to the measure IPi,

and measures that agree on integrating all integrands must coincide. So

IP1 = IP2, giving uniqueness as required.
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Complete Markets

‘⇐’: Assume that the arbitrage-free market M is incomplete: then there

exists a non-attainable FT -measurable random variable X (a contingent

claim). We may confine attention to the risky assets S1, . . . , Sd, as these

suffice to tell us how to handle the numéraire S0.

Consider the following set of random variables:

K̃ :=

{
Y ∈ L0 : Y = Y0 +

T∑
t=1

ϕ(t) ·∆S̃(t),

Y0 ∈ IR , ϕ predictable}.

(Recall that Y0 is F0-measurable and set ϕ = ((ϕ1(t), . . . , ϕd(t))′)Tt=1

with predictable components.)
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Complete Markets

Then by the above reasoning, the discounted value β(T )X does not

belong to K̃, so K̃ is a proper subset of the set L0 of all random

variables on Ω (which may be identified with IR|Ω|). Let IP ∗ be a

probability measure equivalent to IP under which discounted prices are

martingales (such IP ∗ exist by the no-arbitrage theorem. Define the

scalar product

(Z, Y ) → E ∗(ZY )

on random variables on Ω. Since K̃ is a proper subset, there exists a

non-zero random variable Z orthogonal to K̃ (since Ω is finite, IR|Ω| is

Euclidean: this is just Euclidean geometry).
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Complete Markets

That is,

E ∗(ZY ) = 0, ∀ Y ∈ K̃.

Choosing the special Y = 1 ∈ K̃ given by

ϕi(t) = 0, t = 1, 2, . . . , T ; i = 1, . . . , d and Y0 = 1 we find

E ∗(Z) = 0.

Write ‖X‖∞ := sup{|X(ω)| : ω ∈ Ω}, and define IP ∗∗ by

IP ∗∗({ω}) =
(

1 +
Z(ω)

2 ‖Z‖∞

)
IP ∗({ω}).

By construction, IP ∗∗ is equivalent to IP ∗ (same null sets - actually, as

IP ∗ ∼ IP and IP has no non-empty null sets, neither do IP ∗, IP ∗∗). From

E ∗(Z) = 0, we see that
∑
IP ∗∗(ω) = 1, i.e. is a probability measure.

As Z is non-zero, IP ∗∗ and IP ∗ are different.
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Complete Markets

Now

E ∗∗

(
T∑
t=1

ϕ(t) ·∆S̃(t)

)

=
∑
ω∈Ω

IP ∗∗(ω)

(
T∑
t=1

ϕ(t, ω) ·∆S̃(t, ω)

)

=
∑
ω∈Ω

(
1 +

Z(ω)
2 ‖Z‖∞

)
IP ∗(ω)

(
T∑
t=1

ϕ(t, ω) ·∆S̃(t, ω)

)
.

The ‘1’ term on the right gives

E ∗

(
T∑
t=1

ϕ(t) ·∆S̃(t)

)
,

which is zero since this is a martingale transform of the S̃(t).
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Complete Markets

The ‘Z’ term gives a multiple of the inner product

(Z,
T∑
t=1

ϕ(t) ·∆S̃(t)),

which is zero as Z is orthogonal to K̃ and
∑T
t=1 ϕ(t) ·∆S̃(t) ∈ K̃. By

the martingale transform lemma, S̃(t) is a IP ∗∗-martingale since ϕ is an

arbitrary predictable process. Thus IP ∗∗ is a second equivalent

martingale measure, different from IP ∗. So incompleteness implies

non-uniqueness of equivalent martingale measures, as required.
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Financial Mathematics

Lecture 5

by Rüdiger Kiesel

Department of Financial Mathematics, University of Ulm

Department of Statistics, LSE
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Aims and Objectives

• Cox-Ross-Rubinstein model §4.5;

• Binomial Approximation §4.6.
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The Cox-Ross-Rubinstein Model

We take d = 1, that is, our model consists of two basic securities. Recall

that the essence of the relative pricing theory is to take the price

processes of these basic securities as given and price secondary securities

in such a way that no arbitrage is possible.

Our time horizon is T and the set of dates in our financial market model

is t = 0, 1, . . . , T . Assume that the first of our given basic securities is a

(riskless) bond or bank account B, which yields a riskless rate of return

r > 0 in each time interval [t, t+ 1], i.e.

B(t+ 1) = (1 + r)B(t), B(0) = 1.

So its price process is

B(t) = (1 + r)t, t = 0, 1, . . . , T.
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The CRR Model

Furthermore, we have a risky asset (stock) S with price process

S(t+ 1) =

 (1 + u)S(t) with prob p,

(1 + d)S(t) with prob 1− p,

with −1 < d < u, S0 ∈ IR+
0 and for t = 0, 1, . . . , T − 1.
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The CRR Model

S(0) ������������
p

S(1) = (1 + u)S(0)

XXXXXXXXXXXX1− p S(1) = (1 + d)S(0)

Figure 2: One-step tree diagram

Alternatively we write this as

Z(t+ 1) :=
S(t+ 1)
S(t)

− 1, t = 0, 1, . . . , T − 1.
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The CRR Model

We set up a probabilistic model by considering the Z(t), t = 1, . . . , T as

random variables defined on probability spaces (Ω̃t, F̃t, ĨP t) with

Ω̃t = Ω̃ = {d, u},
F̃t = F̃ = P(Ω̃) = {∅, {d}, {u}, Ω̃},
ĨP t = ĨP

with ĨP ({u}) = p, ĨP ({d}) = 1− p, p ∈ (0, 1). On these probability

spaces we define

Z(t, u) = u and Z(t, d) = d, t = 1, 2, . . . , T.
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The CRR Model

Our aim, of course, is to define a probability space on which we can

model the basic securities (B,S). Since we can write the stock price as

S(t) = S(0)
t∏

τ=1

(1 + Z(τ)), t = 1, 2, . . . , T,

the above definitions suggest using as the underlying probabilistic model

of the financial market the product space (Ω,F , IP ) (see e.g.

(Williams 1991) ch. 8), i.e.

Ω = Ω̃1 × . . .× Ω̃T = Ω̃T = {d, u}T ,

with each ω ∈ Ω representing the successive values of

Z(t), t = 1, 2, . . . , T .
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The CRR Model

Hence each ω ∈ Ω is a T -tuple ω = (ω̃1, . . . , ω̃T ) and ω̃t ∈ Ω̃ = {d, u}.
For the σ-algebra we use F = P(Ω) and the probability measure is given

by

IP ({ω}) = ĨP 1({ω1})× . . .× ĨPT ({ωT })

= ĨP ({ω1})× . . .× ĨP ({ωT })
.

The role of a product space is to model independent replication of a

random experiment. The Z(t) above are two-valued random variables,

so can be thought of as tosses of a biased coin; we need to build a

probability space on which we can model a succession of such

independent tosses.
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The CRR Model

Now we redefine (with a slight abuse of notation) the Z(t), t = 1, . . . , T
as random variables on (Ω,F , IP ) as (the tth projection)

Z(t, ω) = Z(t, ωt).

Observe that by this definition (and the above construction)

Z(1), . . . , Z(T ) are independent and identically distributed with

IP (Z(t) = u) = p = 1− IP (Z(t) = d).

To model the flow of information in the market we use the obvious

filtration with

F0 = {∅,Ω}
Ft = σ(Z(1), . . . , Z(t)) = σ(S(1), . . . , S(t)),

FT = F = P(Ω).
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The CRR Model

This construction emphasises again that a multi-period model can be

viewed as a sequence of single-period models. Indeed, in the

Cox-Ross-Rubinstein case we use identical and independent single-period

models. As we will see in the sequel this will make the construction of

equivalent martingale measures relatively easy. Unfortunately we can

hardly defend the assumption of independent and identically distributed

price movements at each time period in practical applications.
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The CRR Model

We now turn to the pricing of derivative assets in the

Cox-Ross-Rubinstein market model. To do so we first have to discuss

whether the Cox-Ross-Rubinstein model is arbitrage-free and complete.

To answer these questions we have, according to our fundamental

theorems, to understand the structure of equivalent martingale measures

in the Cox-Ross-Rubinstein model. In trying to do this we use (as is

quite natural and customary) the bond price process B(t) as numéraire.
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The CRR Model

Our first task is to find an equivalent martingale measure Q such that

the Z(1), . . . , Z(T ) remain independent and identically distributed, i.e.

a probability measure Q defined as a product measure via a measure Q̃
on (Ω̃, F̃) such that Q̃({u}) = q and Q̃({d}) = 1− q. We have:

c©Rüdiger Kiesel

U
N

IV
ERSITÄT

ULM
·

S
C

IE
N

D
O

·DOCENDO
·C

U
R

A
N

D
O

·



209

The CRR Model

(i) A martingale measure Q for the discounted stock price S̃ exists if and

only if

d < r < u. (16)

(ii) If equation (16) holds true, then there is a unique such measure in P
characterised by

q =
r − d

u− d
. (17)
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The CRR Model

Proof Since S(t) = S̃(t)B(t) = S̃(t)(1 + r)t, we have

Z(t+ 1) = S(t+ 1)/S(t)− 1 = (S̃(t+ 1)/S̃(t))(1 + r)− 1. So, the

discounted price (S̃(t)) is a Q-martingale if and only if for all t

E Q[S̃(t+ 1)|Ft] = S̃(t)

⇔ E Q[(S̃(t+ 1)/S̃(t))|Ft] = 1

⇔ E Q[Z(t+ 1)|Ft] = r.

But Z(1), . . . , Z(T ) are mutually independent and hence Z(t+ 1) is

independent of Ft = σ(Z(1), . . . , Z(t)). So

r = E Q(Z(t+ 1)|Ft) = E Q(Z(t+ 1)) = uq + d(1− q)

is a weighted average of u and d; this can be r if and only if r ∈ [d, u].
As Q is to be equivalent to IP and IP has no non-empty null sets,

r = d, u are excluded and (16) is proved.
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The CRR Model

To prove uniqueness and to find the value of q we simply observe that

under (16)

u× q + d× (1− q) = r

has a unique solution. Solving it for q leads to the above formula.

From now on we assume that (16) holds true. Using the above we

immediately get:

The Cox-Ross-Rubinstein model is arbitrage-free.

The Cox-Ross-Rubinstein model is complete.
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The CRR Model

One can translate this result – on uniqueness of the equivalent

martingale measure – into financial language. Completeness means that

all contingent claims can be replicated. If we do this in the large, we can

do it in the small by restriction, and conversely, we can build up our full

model from its constituent components. To summarize:

The multi-period model is complete if and only if every underlying

single-period model is complete.
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The CRR Model

We can now use the risk-neutral valuation formula to price every

contingent claim in the Cox-Ross-Rubinstein model.

The arbitrage price process of a contingent claim X in the

Cox-Ross-Rubinstein model is given by

πX(t) = B(t)E ∗ (X/B(T )|Ft) ∀t = 0, 1, . . . , T,

where E ∗ is the expectation operator with respect to the unique

equivalent martingale measure IP ∗ characterised by p∗ = (r−d)/(u−d).
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The CRR Model

We now give simple formulas for pricing (and hedging) of European

contingent claims X = f(ST ) for suitable functions f (in this simple

framework all functions f : IR→ IR). We use the notation

Fτ (x, p) (18)

:=
τ∑
j=0

(
τ

j

)
pj(1− p)τ−jf

(
x(1 + u)j(1 + d)τ−j

)
Observe that this is just an evaluation of f(S(j)) along the

probability-weighted paths of the price process. Accordingly, j, τ − j are

the numbers of times Z(i) takes the two possible values d, u.
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The CRR Model

Consider a European contigent claim with expiry T given by

X = f(ST ). The arbitrage price process πX(t), t = 0, 1, . . . , T of the

contingent claim is given by (set τ = T − t)

πX(t) = (1 + r)−τFτ (St, p∗). (19)

Proof Recall that

S(t) = S(0)
t∏

j=1

(1 + Z(j)), t = 1, 2, . . . , T.
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The CRR Model

By the risk-neutral valuation principle the price πX(t) of a contingent

claim X = f(ST ) at time t is

πX(t)

= (1 + r)−(T−t)E ∗[f(S(T ))|Ft]

= (1 + r)−(T−t)E ∗

[
f

(
S(t)

T∏
i=t+1

(1 + Z(i))

)∣∣∣∣∣Ft
]

= (1 + r)−(T−t)E ∗

[
f

(
S(t)

T∏
i=t+1

(1 + Z(i))

)]
= (1 + r)−τFτ (S(t), p∗).
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The CRR Model

We used the role of independence property of conditional expectations in

the next-to-last equality. It is applicable since S(t) is Ft-measurable and

Z(t+ 1), . . . , Z(T ) are independent of Ft.

An immediate consequence is the pricing formula for the European call

option, i.e. X = f(ST ) with f(x) = (x−K)+.
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The CRR Model

Consider a European call option with expiry T and strike price K written

on (one share of) the stock S. The arbitrage price process

ΠC(t), t = 0, 1, . . . , T of the option is given by (set τ = T − t)

ΠC(t) (20)

= (1 + r)−τ
τ∑
j=0

(
τ

j

)
p∗j(1− p∗)τ−j

(S(t)(1 + u)j(1 + d)τ−j −K)+.

For a European put option, we can either argue similarly or use put-call

parity.
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Binomial Approximations

Suppose we observe financial assets during a continuous time period

[0, T ]. To construct a stochastic model of the price processes of these

assets (to, e.g. value contingent claims) one basically has two choices:

one could model the processes as continuous-time stochastic processes

(for which the theory of stochastic calculus is needed) or one could

construct a sequence of discrete-time models in which the

continuous-time price processes are approximated by discrete-time

stochastic processes in a suitable sense. We describe the the second

approach now by examining the asymptotic properties of a sequence of

Cox-Ross-Rubinstein models.
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Binomial Approximations

We assume that all random variables subsequently introduced are

defined on a suitable probability space (Ω,F , IP ). We want to model

two assets, a riskless bond B and a risky stock S, which we now observe

in a continuous-time interval [0, T ]. To transfer the continuous-time

framework into a binomial structure we make the following adjustments.
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Binomial Approximations

Looking at the nth Cox-Ross-Rubinstein model in our sequence, there is

a prespecified number kn of trading dates. We set ∆n = T/kn and

divide [0, T ] in kn subintervals of length ∆n, namely

Ij = [j∆n, (j + 1)∆n], j = 0, . . . , kn − 1. We suppose that trading

occurs only at the equidistant time points tn,j = j∆n, j = 0, . . . , kn− 1.
We fix rn as the riskless interest rate over each interval Ij , and hence

the bond process (in the nth model) is given by

B(tn,j) = (1 + rn)j , j = 0, . . . , kn.
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Binomial Approximations

In the continuous-time model we compound continuously with spot rate

r ≥ 0 and hence the bond price process B(t) is given by B(t) = ert. In

order to approximate this process in the discrete-time framework, we

choose rn such that

1 + rn = er∆n . (21)

With this choice we have for any j = 0, . . . , kn that

(1 + rn)j = exp(rj∆n) = exp(rtn,j). Thus we have approximated the

bond process exactly at the time points of the discrete model.
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Binomial Approximations

Next we model the one-period returns S(tn,j+1)/S(tn,j) of the stock by

a family of random variables Zn,i; i = 1, . . . , kn taking values {dn, un}
with

IP (Zn,i = un) = pn = 1− IP (Zn,i = dn)

for some pn ∈ (0, 1) (which we specify later). With these Zn,j we model

the stock price process Sn in the nth Cox-Ross-Rubinstein model as

Sn(tn,j) = Sn(0)
j∏
i=1

(1 + Zn,i) , j = 0, 1, . . . , kn.

c©Rüdiger Kiesel

U
N

IV
ERSITÄT

ULM
·

S
C

IE
N

D
O

·DOCENDO
·C

U
R

A
N

D
O

·



224

Binomial Approximations

With the specification of the one-period returns we get a complete

description of the discrete dynamics of the stock price process in each

Cox-Ross-Rubinstein model. We call such a finite sequence

Zn = (Zn,i)kn
i=1 a lattice or tree. The parameters un, dn, pn, kn differ

from lattice to lattice, but remain constant throughout a specific lattice.

In the triangular array (Zn,i), i = 1, . . . , kn; n = 1, 2, . . . we assume

that the random variables are row-wise independent (but we allow

dependence between rows). The approximation of a continuous-time

setting by a sequence of lattices is called the lattice approach.
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Binomial Approximations

It is important to stress that for each n we get a different discrete stock

price process Sn(t) and that in general these processes do not coincide

on common time points (and are also different from the price process

S(t)).

Turning back to a specific Cox-Ross-Rubinstein model, we now have a

discrete-time bond and stock price process. We want arbitrage-free

financial market models and therefore have to choose the parameters

un, dn, pn accordingly. An arbitrage-free financial market model is

guaranteed by the existence of an equivalent martingale measure, and

the (necessary and) sufficient condition for that is

dn < rn < un.
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Binomial Approximations

The risk-neutrality approach implies that the expected (under an

equivalent martingale measure) one-period return must equal the

one-period return of the riskless bond and hence we get

p∗n =
rn − dn
un − dn

. (22)

So the only parameters to choose freely in the model are un and dn. In

the next sections we consider some special choices.
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Binomial Approximations

We now choose the parameters in the above lattice approach in a special

way. Assuming the risk-free rate of interest r as given, we have by (21)

1 + rn = er∆n, and the remaining degrees of freedom are resolved by

choosing un and dn. We use the following choice:

1 + un = eσ
√

∆n ,

and

1 + dn = (1 + un)−1 = e−σ
√

∆n .
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Binomial Approximations

By condition (22) the risk-neutral probabilities for the corresponding

single period models are given by

p∗n =
rn − dn
un − dn

=
er∆n − e−σ

√
∆n

eσ
√

∆n − e−σ
√

∆n
.
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Binomial Approximations

We can now price contingent claims in each Cox-Ross-Rubinstein model

using the expectation operator with respect to the (unique) equivalent

martingale measure characterised by the probabilities p∗n. In particular

we can compute the price ΠC(t) at time t of a European call on the

stock S with strike K and expiry T by formula (20). Let us reformulate

this formula slightly. We define

an = min {j ∈ IN0| (23)

S(0)(1 + un)j(1 + dn)kn−j > K
}
.
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Binomial Approximations

Then we can rewrite the pricing formula (20) for t = 0 in the setting of

the nth Cox-Ross-Rubinstein model as

ΠC(0) = (1 + rn)−kn

kn∑
j=an

(
kn
j

)
p∗n
j(1− p∗n)

kn−j

(S(0)(1 + un)j(1 + dn)kn−j −K)
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Binomial Approximations

So

ΠC(0) = S(0)

 kn∑
j=an

(
kn
j

)(
p∗n(1 + un)

1 + rn

)j
(

(1−p∗n)(1+dn)
1+rn

)kn−j
]

−(1 + rn)−knK

 kn∑
j=an

(
kn
j

)
p∗jn (1− p∗n)

kn−j

.
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Binomial Approximations

Denoting the binomial cumulative distribution function with parameters

(n, p) as Bn,p(.) we see that the second bracketed expression is just

B̄kn,p
∗
n(an) = 1−Bkn,p

∗
n(an).

Also the first bracketed expression is B̄kn,p̂n(an) with

p̂n =
p∗n(1 + un)

1 + rn
.

That p̂n is indeed a probability can be shown straightforwardly. Using

this notation we have in the nth Cox-Ross-Rubinstein model for the price

of a European call at time t = 0 the following formula:

Π(n)
C (0) = Sn(0)B̄kn,p̂n(an) (24)

−K(1 + rn)−knB̄kn,p
∗
n(an).
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Binomial Approximations

We have the following limit relation:

lim
n→∞

Π(n)
C (0) = ΠBS

C (0)

with ΠBS
C (0) given by the Black-Scholes formula (we use S = S(0) to

ease the notation)

ΠBS
C (0) = SN(d1(S, T ))−Ke−rTN(d2(S, T )). (25)
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Binomial Approximations

The functions d1(s, t) and d2(s, t) are given by

d1(s, t) =
log(s/K) + (r + σ2

2 )t
σ
√
t

,

d2(s, t) = d1(s, t)− σ
√
t

=
log(s/K) + (r − σ2

2 )t
σ
√
t

and N(.) is the standard normal cumulative distribution function.
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Binomial Approximations

The above is the famous Black-Scholes European call price formula.

PROOF:

Since Sn(0) = S (say) all we have to do to prove the proposition is to

show

(i) lim
n→∞

B̄kn,p̂n(an) = N(d1(S, T )),

(ii) lim
n→∞

B̄kn,p
∗
n(an) = N(d2(S, T )).
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Binomial Approximations

These statements involve the convergence of distribution functions.

To show (i) we interpret

B̄kn,p̂n(an) = IP (an ≤ Yn ≤ kn)

with (Yn) a sequence of random variables distributed according to the

binomial law with parameters (kn, p̂n).
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Binomial Approximations

We normalise Yn to

Ỹn =
Yn − E (Yn)√
V ar(Yn)

=
Yn − knp̂n√
knp̂n(1− p̂n)

=

kn∑
j=1

(Bj,n − p̂n)√
knp̂n(1− p̂n)

,

where Bj,n, j = 1, . . . , kn; n = 1, 2, . . . are row-wise independent

Bernoulli random variables with parameter p̂n.
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Binomial Approximations

Now using the central limit theorem we know that for αn → α, βn → β

we have

lim
n→∞

IP (αn ≤ Ỹn ≤ βn) = N(β)−N(α).

By definition we have

IP (an ≤ Yn ≤ kn) = IP
(
αn ≤ Ỹn ≤ βn

)
with

αn =
an − knp̂n√
knp̂n(1− p̂n)

and βn =
kn(1− p̂n)√
knp̂n(1− p̂n)

.
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Binomial Approximations

Observe the following limiting relations:

lim
n→∞

p̂n =
1
2

and

lim
n→∞

kn(1− 2p̂n)
√

∆n = −T
( r
σ

+
σ

2

)
,
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Binomial Approximations

From the defining relation for an, formula (23), we get

lim
n→∞

αn = lim
n→∞

log(K/S) + knσ
√

∆n

2σ
√

∆n

− knp̂n√
knp̂n(1− p̂n)

= lim
n→∞

log(K/S) + σkn
√

∆n(1− 2p̂n)
2σ
√
kn∆np̂n(1− p̂n)

=
log(K/S)− (r + σ2

2 )T

σ
√
T

= −d1(S, T ).
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Binomial Approximations

Furthermore we have

lim
n→∞

βn = lim
n→∞

√
knp̂

−1
n (1− p̂n) = +∞.

So N(βn) → 1, N(αn) → N(−d1) = 1−N(d1), completing the proof

of (i).
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Binomial Approximations

To prove (ii) we can argue in very much the same way and arrive at

parameters α∗n and β∗n with p̂n replaced by p∗n. Using the following

limiting relations:

lim
n→∞

p∗n =
1
2
, lim

n→∞
kn(1− 2p∗n)

√
∆n = T

(σ
2
− r

σ

)
,

we get

lim
n→∞

α∗n = lim
n→∞

log(K/S) + σn
√

∆n(1− 2p∗n)
2σ
√
n∆np∗n(1− p∗n)

=
log(K/S)− (r − σ2

2 )T

σ
√
T

= −d2(s, T ).
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Binomial Approximations

For the upper limit we get

lim
n→∞

β∗n = lim
n→∞

√
kn(p∗n)−1(1− p∗n) = +∞,

whence (ii) follows similarly.

By the above proposition we have derived the classical Black-Scholes

European call option valuation formula as an asymptotic limit of option

prices in a sequence of Cox-Ross-Rubinstein type models with a special

choice of parameters. We will therefore call these models discrete

Black-Scholes models.

c©Rüdiger Kiesel

U
N

IV
ERSITÄT

ULM
·

S
C

IE
N

D
O

·DOCENDO
·C

U
R

A
N

D
O

·



244

Financial Mathematics

Lecture 6

by Rüdiger Kiesel

Department of Financial Mathematics, University of Ulm

Department of Statistics, LSE
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Aims and Objectives

• American Option §4.7

• American Options in the Cox-Ross-Rubinstein setting §4.7

• A three-period example §4.8.
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American Options

Consider a general multi-period framework. The holder of an American

derivative security can ‘exercise’ in any period t and receive payment

f(St) (or more general a non-negative payment ft). In order to hedge

such an option, we want to construct a self-financing trading strategy ϕt

such that for the corresponding value process Vϕ(t)

Vϕ(0) = x initial capital

Vϕ(t) ≥ f(St), ∀t. (26)

Such a hedging portfolio is minimal, if for a stopping time τ

Vϕ(τ) = f(Sτ ).

Our aim in the following will be to discuss existence and construction of

such a stopping time.
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American Options

We assume now that we work in a market model (Ω,F , IF , IP ), which is

complete with IP ∗ the unique martingale measure.

Then for any hedging strategy ϕ we have that under IP ∗

M(t) = Ṽϕ(t) = β(t)Vϕ(t) (27)

is a martingale. Thus we can use the stopping time principle to find for

any stopping time τ

Vϕ(0) = M0 = E ∗(Ṽϕ(τ)). (28)

Since we require Vϕ(τ) ≥ fτ (S) for any stopping time we find for the

required initial capital

x ≥ sup
τ∈T

E ∗(β(τ)fτ (S)). (29)
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American Options

Suppose now that τ∗ is such that Vϕ(τ∗) = fτ∗(S) then the strategy ϕ

is minimal and since Vϕ(t) ≥ ft(S) for all t we have

x = E ∗(β(τ∗)fτ∗(S)) = sup
τ∈T

E ∗(β(τ)fτ (S)) (30)

Thus (30) is a necessary condition for the existence of a minimal

strategy ϕ. We will show that it is also sufficient and call the price in

(30) the rational price of an American contingent claim.
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American Options

Now consider the problem of the option writer to construct such a

strategy ϕ. At time T the hedging strategy needs to cover fT , i.e.

Vϕ(T ) ≥ fT is required (We write short ft for ft(S)). At time T − 1 the

option holder can either exercise and receive fT−1 or hold the option to

expiry, in which case B(T − 1)E ∗(β(T )fT |FT−1) needs to be covered.

Thus the hedging strategy of the writer has to satisfy

Vϕ(T − 1) = max{fT−1, B(T − 1)E ∗(β(T )fT |FT−1)} (31)
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American Options

Using a backwards induction argument we can show that

Vϕ(t− 1) = max{ft−1, B(t− 1)E ∗(β(t)Vϕ(t)|Ft−1)}. (32)

Considering only discounted values this leads to

Ṽϕ(t− 1) = max{f̃t−1,E ∗(Ṽϕ(t)|Ft−1)}. (33)

Thus we see that Ṽϕ(t) is the Snell envelope Zt of f̃t.
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American Options

In particular we know that

Zt = sup
τ∈Tt

E ∗(f̃τ |Ft) (34)

and the stopping time τ∗ = min{s ≥ t : Zs = f̃s} is optimal. So

Zt = E ∗(f̃τ∗ |Ft) (35)

In case t = 0 we can use τ∗0 = min{s ≥ 0 : Zs = f̃s} and then

x = Z0 = E ∗(f̃τ∗0 ) = sup
τ∈T0

E ∗(f̃τ ) (36)

is the rational option price.
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American Options

We still need to construct the strategy ϕ. To do this recall that Z is a

supermartingale and so the Doob decomposition yields

Z = M̃ − Ã (37)

with a martingale M̃ and a predictable, increasing process Ã. We write

Mt = M̃tBt and At = ÃtBt. Since the market is complete we know

that there exists a self-financing strategy ϕ̄ such that

M̃t = Ṽϕ̄(t). (38)
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American Options

Also using (37) we find ZtBt = Vϕ̄(t)−At. Now on

C = {(t, ω) : 0 ≤ t < τ∗(ω)} we have that Z is a martingale and thus

At(ω) = 0. Thus we obtain from Ṽϕ̄(t) = Zt that

Ṽϕ̄(t) = sup
t≤τ≤T

E ∗(f̃τ |Ft) ∀ (t, ω) ∈ C. (39)

Now τ∗ is the smallest exercise time and Ãτ∗(ω) = 0. Thus

Ṽϕ̄(τ∗(ω), ω) = Zτ∗(ω)(ω) = f̃τ∗(ω)(ω) (40)

Undoing the discounting we find

Vϕ̄(τ∗) = fτ∗ (41)

and therefore φ̄ is a minimal hedge.
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American Options

Now consider the problem of the option holder, how to find the optimal

exercise time. We observe that the optimal exercise time must be an

optimal stopping time, since for any other stopping time σ

Ṽϕ(σ) = Zσ > f̃σ (42)

and holding the asset longer would generate a larger payoff. Thus the

holder needs to wait until Zσ = f̃σ.
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American Options

On the other hand with ν the largest stopping time, we see that σ ≤ ν.

This follows since using φ̄ after ν with initial capital from exercising will

always yield a higher portfolio value than the strategy of exercising later.

To see this recall that Vϕ̄ = ZtBt +At with At > 0 for t > ν. So we

must have σ ≤ ν and since At = 0 for t ≤ ν we see that Zσ is a

martingale. Thus both criteria of the characterisation of optimality are

true and σ is thus optimal. So
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American Options

A stopping time σ ∈ Tt is an optimal exercise time for the American

option (ft) if and only if

E ∗(β(σ)fσ) = sup
τ∈Tt

E ∗(β(τ)fτ ) (43)
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American Options in the CRR model

We now consider how to evaluate an American put option in a standard

CRR model. We assume that the time interval [0, T ] is divided into N

equal subintervals of length ∆ say. Assuming the risk-free rate of

interest r (over [0,T]) as given, we have 1 + ρ = er∆ (where we denote

the risk-free rate of interest in each subinterval by ρ). The remaining

degrees of freedom are resolved by choosing u and d as follows:

1 + u = eσ
√

∆, and 1 + d = (1 + u)−1 = e−σ
√

∆.

The risk-neutral probabilities for the corresponding single period models

are given by
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American Options in the CRR model

p∗ =
ρ− d

u− d
=

er∆ − e−σ
√

∆

eσ
√

∆ − e−σ
√

∆
.

Thus the stock with initial value S = S(0) is worth S(1 + u)i(1 + d)j

after i steps up and j steps down. Consequently, after N steps, there are

N + 1 possible prices, S(1 + u)i(1 + d)N−i (i = 0, . . . , N). There are

2N possible paths through the tree.
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American Options

It is common to take N of the order of 30, for two reasons:

(i) typical lengths of time to expiry of options are measured in months (9

months, say); this gives a time step around the corresponding number of

days,

(ii) 230 paths is about the order of magnitude that can be comfortably

handled by computers (recall that 210 = 1, 024, so 230 is somewhat over

a billion).
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American Options in the CRR model

We can now calculate both the value of an American put option and the

optimal exercise strategy by working backwards through the tree (this

method of backward recursion in time is a form of the dynamic

programming (DP) technique, due to Richard Bellman, which is

important in many areas of optimisation and Operational Research).
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American Options in the CRR model

1. Draw a binary tree showing the initial stock value and having the

right number, N , of time intervals.

2. Fill in the stock prices: after one time interval, these are S(1 + u)
(upper) and S(1 + d) (lower); after two time intervals, S(1 + u)2, S and

S(1 + d)2 = S/(1 + u)2; after i time intervals, these are

S(1 + u)j(1 + d)i−j = S(1 + u)2j−i at the node with j ‘up’ steps and

i− j ‘down’ steps (the ‘(i, j)’ node).

3. Using the strike price K and the prices at the terminal nodes, fill in

the payoffs fAN,j = max{K − S(1 + u)j(1 + d)N−j , 0} from the option

at the terminal nodes underneath the terminal prices.
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American Options in the CRR model

4. Work back down the tree, from right to left. The no-exercise values

fij of the option at the (i, j) node are given in terms of those of its

upper and lower right neighbours in the usual way, as discounted

expected values under the risk-neutral measure:

fij = e−r∆[p∗fAi+1,j+1 + (1− p∗)fAi+1,j ].

The intrinsic (or early-exercise) value of the American put at the (i, j)
node – the value there if it is exercised early – is

K − S(1 + u)j(1 + d)i−j

(when this is non-negative, and so has any value).
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American Options in the CRR model

The value of the American put is the higher of these:

fAij

= max{fij ,K − S(1 + u)j(1 + d)i−j}
= max

{
e−r∆(p∗fAi+1,j+1 + (1− p∗)fAi+1,j) ,

K − S(1 + u)j(1 + d)i−j
}
.

5. The initial value of the option is the value fA0 filled in at the root of

the tree.

6. At each node, it is optimal to exercise early if the early-exercise value

there exceeds the value fij there of expected discounted future payoff.
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A Three-period Example

Assume we have two basic securities: a risk-free bond and a risky stock.

The one-year risk-free interest rate (continuously compounded) is

r = 0.06 and the volatility of the stock is 20%. We price calls and puts

in three-period Cox-Ross-Rubinstein model. The up and down

movements of the stock price are given by

1 + u = eσ
√

∆ = 1.1224

and

1 + d = (1 + u)−1 = e−σ
√

∆ = 0.8910,

with σ = 0.2 and ∆ = 1/3. We obtain risk-neutral probabilities

p∗ =
er∆ − d

u− d
= 0.5584.
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A Three-period Example

We assume that the price of the stock at time t = 0 is S(0) = 100. To

price a European call option with maturity one year (N = 3) and strike

K = 10) we can either use the explicit valuation formula or work our

way backwards through the tree. Prices of the stock and the call are

given below.
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time t = 0

S = 100
c = 11.56 �

�
�

S = 112.24
c = 18.21

Q
Q

Q S = 89.10
c = 3.67

t = 1

�
��

S = 125.98
c = 27.96

HHH
S = 100
c = 6.70

���

HHH S = 79.38
c = 0

t = 2

���

HHH

S = 89.10
c = 0

S = 70.72
c = 0

���

S = 112.24
c = 12.24

HHH

���
S = 141.40
c = 41.40

H
HH

t = 3

Figure 3: Stock and European call prices
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A Three-period Example

One can implement the simple evaluation formulae for the CRR- and the

BS-models and compare the values. The figure is for

S = 100,K = 90, r = 0.06, σ = 0.2, T = 1.
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Approximation

C
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Approximating CRR prices

Figure 4: Approximation of Black-Scholes price by Binomial models
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A Three-period Example

To price a European put, with price process denoted by p(t), and an

American put, P (t), (maturity N = 3, strike 100), we can for the

European put either use the put-call parity, the risk-neutral pricing

formula, or work backwards through the tree. For the prices of the

American put we use the technique outlined above.

We indicate the early exercise times of the American put in bold type.

Recall that the discrete-time rule is to exercise if the intrinsic value

K − S(t) is larger than the value of the corresponding European put.
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time t = 0

p = 5.82
P = 6.18 �

�
�

p = 2.08
P = 2.08

Q
Q

Q p = 10.65
P = 11.59

t = 1

�
��

p = 0
P = 0

HHH
p = 4.76
P = 4.76

���

HHH p = 18.71
P = 20.62

t = 2

���

HHH

p = 10.90
P = 10.90

p = 29.28
P = 29.28

���

p = 0
P = 0

HHH

���
p = 0
P = 0

H
HH

t = 3

Figure 5: European p(.) and American P (.) put prices
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Financial Mathematics

Lecture 7

by Rüdiger Kiesel

Department of Financial Mathematics, University of Ulm

Department of Statistics, LSE
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Aims and Objectives

• Review of Itô’s formula (§5.6 );

• Main Theorems from Stochastic Analysis (§5.7)

• The Financial Market Model (§6.1)

• Equivalent Martingale Measures (§6.1)
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Itô Processes

X(t) := x0 +
∫ t

0

b(s)ds+
∫ t

0

σ(s)dW (s)

defines a stochastic process X with X(0) = x0.

We express such an equation symbolically in differential form, in terms

of the stochastic differential equation

dX(t) = b(t)dt+ σ(t)dW (t), X(0) = x0.

For f ∈ C2 we want to give meaning to the stochastic differential

df(X(t)) of the process f(X(t)).
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Multiplication rules

These are just shorthand for the corresponding properties of the

quadratic variations.

dt dW

dt 0 0

dW 0 dt

We find

d 〈X〉 = (bdt+ σdW )2

= σ2dt+ 2bσdtdW + b2(dt)2 = σ2dt
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Basic Itô Formula

If X is a Itô Process and f ∈ C2, then f(X) has stochastic differential

df(X(t)) = f ′(X(t))dX(t)

+
1
2
f ′′(X(t))d 〈X〉 (t),

or writing out the integrals,

f(X(t)) = f(x0) +
∫ t

0

f ′(X(u))dX(u)

+
1
2

∫ t

0

f ′′(X(u))d 〈X〉 (u).
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Itô Formula

If X(t) is an Itô process and f ∈ C1,2 then f = f(t,X(t)) has

stochastic differential

df =
(
ft + bfx +

1
2
σ2fxx

)
dt+ σfxdW.

That is, writing f0 for f(0, x0), the initial value of f ,

f = f0 +
∫ t

0

(ft + bfx +
1
2
σ2fxx)dt+

∫ t

0

σfxdW.
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Example: GBM

The SDE for GBM has the unique solution

S(t) = S(0) exp
{(

µ− 1
2
σ2

)
t+ σdW (t)

}
.

For, writing

f(t, x) := exp
{(

µ− 1
2
σ2

)
t+ σx

}
,

we have

ft =
(
µ− 1

2
σ2

)
f, fx = σf, fxx = σ2f,

and with x = W (t), one has

dx = dW (t), (dx)2 = dt.
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Example: GBM

Thus Itô’s lemma gives

df = ftdt+ fxdW +
1
2
fxx(dW )2

= f

((
µ− 1

2
σ2

)
dt+ σdW +

1
2
σ2dt

)
= f(µdt+ σdW ).
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Girsanov’s Theorem

Consider independent N(0, 1) random variables Z1, . . . , Zn on

(Ω,F , IP ).

Given γ = (γ1, . . . , γn), consider a new probability measure ĨP on (Ω,F)
defined by

ĨP (dω) = exp

{
n∑
i=1

γiZi(ω)− 1
2

n∑
i=1

γ2
i

}
IP (dω).
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Girsanov’s Theorem

Then

ĨP (Zi ∈ dzi,∀i)

= e{
Pn

i=1 γiZi− 1
2

Pn
i=1 γ

2
i }IP (Zi ∈ dzi,∀i)

=
1

(2π)
n
2
e{
Pn

i=1 γizi− 1
2

Pn
i=1 γ

2
i− 1

2

Pn
i=1 z

2
i }

n∏
i=1

dzi

=
1

(2π)
n
2
e{−

1
2

Pn
i=1(zi−γi)

2}dz1 . . . dzn.

So the Zi are independent N(γi, 1) under ĨP .

c©Rüdiger Kiesel

U
N

IV
ERSITÄT

ULM
·

S
C

IE
N

D
O

·DOCENDO
·C

U
R

A
N

D
O

·



281

Girsanov’s Theorem

Let W = (W1, . . .Wd) be a d-dimensional BM on(Ω,F , IP, IF ).

With (γ(t) a suitable d-dimensional process

L(t) = exp
{
−
∫ t

0

γ(s)′dW (s)− 1
2

∫ t

0

‖γ(s)‖2 ds
}
.

Girsanov Define

W̃i(t) := Wi(t) +
∫ t

0

γi(s)ds.

Under the equivalent probability measure ĨP with Radon-Nikodým

derivative
dĨP

dIP
= L(T ),

the process W̃ = (W̃1, . . . , W̃d) is d-dimensional Brownian motion.
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Girsanov’s Theorem

For γ(t) = γ, change of measure by the Radon-Nikodým derivative

exp
{
−γW (t)− 1

2
γ2t

}
corresponds to a change of drift from c to c− γ.

If IF = (Ft) is the Brownian filtration any pair of equivalent probability

measures Q ∼ IP on F = FT is a Girsanov pair, i.e.

dQ̃
dIP

∣∣∣∣∣
Ft

= L(t)

with L defined as above.
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Representation Theorem

Let M = (M(t))t≥0 be a martingale with respect to the Brownian

filtration (Ft). Then

M(t) = M(0) +
∫ t

0

H(s)dW (s), t ≥ 0

with H = (H(t))t≥0 a progressively measurable process such that∫ t
0
H(s)2ds <∞, t ≥ 0 with probability one.

All Brownian martingales may be represented as stochastic integrals with

respect to Brownian motion.

Let C be an FT -measurable random variable with E (|C|) <∞; then

there exists a process H as abone such that

C = EC +
∫ T

0

H(s)dW (s).
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Feynman-Kac formula

Consider a SDE,

dX(t) = µ(t,X(t))ds+ σ(t,X(t))dW (t),

with initial condition

X(t0) = x.

Let X = X(t) be the unique solution and consider a smooth function

F (t,X(t)) of it. By Itô’s lemma,

dF = Ftdt+ FxdX +
1
2
Fxxd 〈X〉 ,

and as d 〈X〉 = 〈µdt+ σdW 〉 = σ2dt, this is

dF = Ftdt+ Fx(µdt+ σdW ) +
1
2
σ2Fxxdt

=
(
Ft + µFx +

1
2
σ2Fxx

)
dt+ σFxdW.
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Feynman-Kac formula

Now suppose that F satisfies the partial differential equation

Ft + µFx +
1
2
σ2Fxx = 0

with boundary condition,

F (T, x) = h(x).

Then the above expression for dF gives

dF = σFxdW.
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Feynman-Kac formula

This can be written in stochastic-integral rather than

stochastic-differential form as F0 = F (t0, X(t0))

F (s,Xs) = F0 +
∫ s

t0

σ(u,Xu)Fx(u,Xu)dWu.

The stochastic integral on the right is a martingale with constant

expectation = 0. Then

F (t0, x) = E (F (s,X(s))|X(t0) = x).
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Feynman-Kac formula

In the time-homogeneous case µ(t, x) = µ(x) and σ(t, x) = σ(x), with

µ and σ Lipschitz, and h ∈ C2
0 the solution F = F (t, x) to the PDE

Ft + µFx +
1
2
σ2Fxx = 0

with final condition F (T, x) = h(x) has the stochastic representation

F (t, x) = E [h(X(T ))|X(t) = x],

where X satisfies the stochastic differential equation

dX(s) = µ(X(s))ds+ σ(X(s))dW (s)

with initial condition X(t) = x.

The Feynman-Kac formula gives a stochastic representation to solutions

of partial differential equations.
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Financial Market Model

T > 0 is a fixed a planning horizon.

Uncertainty in the financial market is modelled by a probability space

(Ω,F , IP ) and a filtration IF = (Ft)0≤t≤T satisfying the usual conditions

of right-continuity and completeness.

There are d+ 1 primary traded assets, whose price processes are given

by stochastic processes S0, . . . , Sd, which represent the prices of some

traded assets.

A numéraire is a price process X(t) almost surely strictly positive for

each t ∈ [0, T ].

‘Historically’ money market account B(t) = er(t) with a positive

deterministic process r(t) and r(0) = 0, was used as a numéraire.
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Trading Strategies

We call an IRd+1-valued predictable process

ϕ(t) = (ϕ0(t), . . . , ϕd(t)), t ∈ [0, T ]

a trading strategy (or dynamic portfolio process).

Here ϕi(t) denotes the number of shares of asset i held in the portfolio

at time t - to be determined on the basis of information available before

time t; i.e. the investor selects his time t portfolio after observing the

prices S(t−).
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Trading Strategies

• The value of the portfolio ϕ at time t is given by

Vϕ(t) := ϕ(t) · S(t) =
d∑
i=0

ϕi(t)Si(t).

Vϕ(t) is called the value process, or wealth process, of the trading

strategy ϕ.

• The gains process Gϕ(t) is

Gϕ(t) :=
d∑
i=0

∫ t

0

ϕi(u)dSi(u).

• A trading strategy ϕ is called self-financing if the wealth process

Vϕ(t) satisfies

Vϕ(t) = Vϕ(0) +Gϕ(t) for all t ∈ [0, T ].
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Discounted Processes

The discounted price process is

S̃(t) :=
S(t)
S0(t)

= (1, S̃1(t), . . . S̃d(t))

with S̃i(t) = Si(t)/S0(t), i = 1, 2, . . . , d. The discounted wealth process

Ṽϕ(t) is

Ṽϕ(t) :=
Vϕ(t)
S0(t)

= ϕ0(t) +
d∑
i=1

ϕi(t)S̃i(t)

and the discounted gains process G̃ϕ(t) is

G̃ϕ(t) :=
d∑
i=1

∫ t

0

ϕi(t)dS̃i(t).
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Self-Financing

ϕ is self-financing if and only if

Ṽϕ(t) = Ṽϕ(0) + G̃ϕ(t).

Thus a self-financing strategy is completely determined by its initial

value and the components ϕ1, . . . , ϕd. Any set of predictable processes

ϕ1, . . . , ϕd such that the stochastic integrals
∫
ϕidS̃i exist can be

uniquely extended to a self-financing strategy ϕ with specified initial

value Ṽϕ(0) = v by setting the cash holding as

ϕ0(t) = v +
d∑
i=1

∫ t

0

ϕi(u)dS̃i(u)−
d∑
i=1

ϕi(t)S̃i.
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Arbitrage Opportunities

A self-financing trading strategy ϕ is called an arbitrage opportunity if

the wealth process Vϕ satisfies the following set of conditions:

Vϕ(0) = 0, IP (Vϕ(T ) ≥ 0) = 1,

and

IP (Vϕ(T ) > 0) > 0.
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Martingale Measure

A probability measure Q defined on (Ω,F) is an equivalent martingale

measure (EMM) if:

(i) Q is equivalent to IP ,

(ii) the discounted price process S̃ is a Q martingale.

Assume S0(t) = B(t) = er(t), then Q ∼ IP is a martingale measure if

and only if every asset price process Si has price dynamics under Q of

the form

dSi(t) = r(t)Si(t)dt+ dMi(t),

where Mi is a Q-martingale.
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EMMs and Arbitrage

Assume Q is an EMM. Then the market model contains no arbitrage

opportunities.

Proof. Under Q we have that Ṽϕ(t) is a martingale. That is,

E Q

(
Ṽϕ(t)|Fu

)
= Ṽϕ(u), for all u ≤ t ≤ T.

For ϕ ∈ Φ to be an arbitrage opportunity we must have

Ṽϕ(0) = Vϕ(0) = 0. Now

E Q

(
Ṽϕ(t)

)
= 0, for all 0 ≤ t ≤ T.
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EMMs and Arbitrage

Now Ṽϕ(t) is a martingale, so

E Q

(
Ṽϕ(t)

)
= 0, 0 ≤ t ≤ T,

in particular E Q

(
Ṽϕ(T )

)
= 0.

For an arbitrage opportunity ϕ we have IP (Vϕ(T ) ≥ 0) = 1, and since

Q ∼ IP , this means Q (Vϕ(T ) ≥ 0) = 1.

Both together yield

Q (Vϕ(T ) > 0) = IP (Vϕ(T ) > 0) = 0,

and hence the result follows.
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Financial Mathematics

Lecture 8

by Rüdiger Kiesel

Department of Financial Mathematics, University of Ulm

Department of Statistics, LSE
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Aims and Objectives

• Risk-Neutral Pricing (§6.1);

• Black-Scholes Model (§6.2)

• Barrier Options (§6.3)
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Admissible Strategies

A SF strategy ϕ is called (IP ∗-) admissible if

G̃ϕ(t) =
∫ t

0

ϕ(u)dS̃(u)

is a (IP ∗-) martingale.

By definition S̃ is a martingale, and G̃ is the stochastic integral with

respect to S̃.

The financial market model M contains no arbitrage opportunities wrt

admissible strategies.
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Contingent Claims

A contingent claims X is a random variable such that

X/S0(T ) ∈ L1(F , IP ∗).

• A contingent claim X is called attainable if there exists at least one

admissible trading strategy such that

Vϕ(T ) = X.

We call such a trading strategy ϕ a replicating strategy for X.

• The financial market model M is said to be complete if any

contingent claim is attainable.
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No-Arbitrage Price

If a contingent claim X is attainable, X can be replicated by a portfolio

ϕ ∈ Φ(IP ∗). This means that holding the portfolio and holding the

contingent claim are equivalent from a financial point of view. In the

absence of arbitrage the (arbitrage) price process ΠX(t) of the

contingent claim must therefore satisfy

ΠX(t) = Vϕ(t).
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Risk-Neutral Valuation

The arbitrage price process of any attainable claim is given by the

risk-neutral valuation formula

ΠX(t) = S0(t)E IP∗

[
X

S0(T )

∣∣∣∣Ft] .
Thus, for any two replicating portfolios ϕ,ψ ∈ Φ(IP ∗)

Vϕ(t) = Vψ(t).
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Risk-Neutral Valuation

Proof. Since X is attainable, there exists a replicating strategy

ϕ ∈ Φ(IP ∗) such that Vϕ(T ) = X and ΠX(t) = Vϕ(t). Since

ϕ ∈ Φ(IP ∗) the discounted value process Ṽϕ(t) is a martingale, and

hence

ΠX(t) = Vϕ(t) = S0(t)Ṽϕ(t)

= S0(t)E IP∗

[
Ṽϕ(T )

∣∣∣Ft]

= S0(t)E IP∗

[
Vϕ(T )
S0(T )

∣∣∣∣Ft]

= S0(t)E IP∗

[
X

S0(T )

∣∣∣∣Ft].
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Black-Scholes Model

The classical Black-Scholes model is

dB(t) = rB(t)dt, B(0) = 1,

dS(t) = S(t) (bdt+ σdW (t)), S(0) = p,

with constant coefficients b ∈ IR, r, σ ∈ IR+.

We use the bank account being the natural numéraire) and get from

Itô’s formula

dS̃(t) = S̃(t) {(b− r)dt+ σdW (t)}.
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EMM in BS-model

Any EMM is a Girsanov pair

dQ
dIP

∣∣∣∣
Ft

= L(t)

with

L(t) = exp
{
−
∫ t

0

γ(s)dW (s)− 1
2

∫ t

0

γ(s)2ds
}
.

By Girsanov’s theorem

dW (t) = dW̃ (t)− γ(t)dt,

where W̃ is a Q-BM. Thus the Q-dynamics for S̃ are

dS̃(t) = S̃(t)
{

(b− r − σγ(t))dt+ σdW̃ (t)
}
.
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EMM in BS-model

Since S̃ has to be a martingale under Q we must have

b− r − σγ(t) = 0 t ∈ [0, T ],

and so we must choose

γ(t) ≡ γ =
b− r

σ
,

this argument leads to a unique martingale measure. The Q-dynamics of

S are

dS(t) = S(t)
{
rdt+ σdW̃

}
.
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Pricing Contingent Claims

By the risk-neutral valuation principle

ΠX(t) = e{−r(T−t)}E ∗ [X| Ft],

with E ∗ given via the Girsanov density

L(t) = exp

{
−
(
b− r

σ

)
W (t)− 1

2

(
b− r

σ

)2

t

}
.
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Pricing Contingent Claims

For a European call X = (S(T )−K)+ and we can evaluate the above

expected value

The Black-Scholes price process of a European call is given by

C(t) = S(t)N(d1(S(t), T − t))

−Ke−r(T−t)N(d2(S(t), T − t)).

The functions d1(s, t) and d2(s, t) are given by

d1(s, t) =
log(s/K) + (r + σ2

2 )t
σ
√
t

,

d2(s, t) =
log(s/K) + (r − σ2

2 )t
σ
√
t

c©Rüdiger Kiesel

U
N

IV
ERSITÄT

ULM
·

S
C

IE
N

D
O

·DOCENDO
·C

U
R

A
N

D
O

·



309

Hedging Contingent Claims

From the risk-neutral valuation principle

M(t) = exp {−rT}E ∗ [X| Ft] .

By Itô’s lemma we find for the dynamics of the IP ∗-martingale

M(t) = G(t, S(t)):

dM(t) = σS(t)Gs(t, S(t))dW̃ (t).
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Hedging Contingent Claims

Using this representation, we get for the stock component of the

replicating portfolio

h(t) = σS(t)Gs(t, S(t)).

Now for the discounted assets the stock component is

ϕ1(t) = Gs(t, S(t))B(t),

and using the self-financing condition the cash component is

ϕ0(t) = G(t, S(t))−Gs(t, S(t))S(t).
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Hedging Contingent Claims

To transfer this portfolio to undiscounted values we multiply it by the

discount factor, i.e F (t, S(t)) = B(t)G(t, S(t)), and obtain.

The replicating strategy in the classical Black-Scholes model is given by

ϕ0 =
F (t, S(t))− Fs(t, S(t))S(t)

B(t)
,

ϕ1 = Fs(t, S(t)).
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BS by Arbitrage

Consider a self-financing portfolio which has dynamics

dVϕ(t) = ϕ0(t)dB(t) + ϕ1(t)dS(t)

= (ϕ0rB + ϕ1µS)dt+ ϕ1σSdW.

Assume that Vϕ(t) = V (t) = f(t, S(t)). Then by Itô’s formula

dV = (ft + fxSµ+
1
2
S2σ2fxx)dt

+fxσSdW.
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BS by Arbitrage

We match coefficients and find

ϕ1 = fx and ϕ0 =
1
rB

(ft +
1
2
σ2S2

t fxx).

So f(t, x) must satisfy the Black-Scholes PDE

ft + rxfx +
1
2
σ2x2fxx − rf = 0

and initial condition f(T, x) = (x−K)+.
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Barrier Options

One-barrier options specify a stock-price level, H say, such that the

option pays (‘knocks in’) or not (‘knocks out’) according to whether or

not level H is attained, from below (‘up’) or above (‘down’). There are

thus four possibilities: ‘up and in’, ‘up and out’, ‘down and in’ and

‘down and out’. Since barrier options are path-dependent (they involve

the behaviour of the path, rather than just the current price or price at

expiry), they may be classified as exotic; alternatively, the four basic

one-barrier types above may be regarded as ‘vanilla barrier’ options, with

their more complicated variants, described below, as ‘exotic barrier’

options.
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Down-and-out Call

Consider a down-and-out call option with strike K and barrier H. The

payoff is

(S(T )−K)+1{minS(.)≥H}

= (S(T )−K)1{S(T )≥K,minS(.)≥H},

so by risk-neutral pricing the value of the option DOCK,H is

E ∗ [e−rT (S(T )−K)1{S(T )≥K,minS(.)≥H}
]
,

where S is geometric Brownian motion.
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max and min of BM

Write c := µ− 1
2σ

2/σ; then

minS(.) ≥ H

iff

min(ct+W (t)) ≥ σ−1 log(H/p0).

Writing X for X(t) := ct+W (t) – drifting Brownian motion with drift

c, m, M for its minimum and maximum processes

m(t) := min{X(s) : s ∈ [0, t]},

M(t) := max{X(s) : s ∈ [0, t]},

the payoff function involves the bivariate process (X,m), and the option

price involves the joint law of this process.
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Reflection Principle

Consider c = 0. We require the joint law of standard BM and its

maximum (or minimum), (W,M).

We choose a level b > 0, and run the process until the first-passage time

τ(b) := inf{t ≥ 0 : W (t) ≥ b}.

This is a stopping time, and we may use the strong Markov property for

W at time τ(b). The process now begins afresh at level b, and by

symmetry the probabilistic properties of its further evolution are

invariant under reflection in the level b. This reflection principle leads to

Lévy’s joint density formula (x < y)

IP0 (W (t) ∈ dx,M(t) ∈ dy)

=
2(2y − x)√

2πt3
exp

{
−1

2
(2y − x)2/t

}
.
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Density of (X(t),M(t))

Lévy’s formula for the joint density of (W (t),M(t)) may be extended to

the case of general drift c by the usual method for changing drift,

Girsanov’s theorem. The general result is

IP0 (X(t) ∈ dx,M(t) ∈ dy)

=
2(2y − x)√

2πt3
exp

{
− (2y − x)2

2t
+ cx− 1

2
c2t

}
.

Here as before 0 ≤ x ≤ y.
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Valuation Formula

It is convenient to decompose the price DOCK,H of the down-and-out

call into the (Black-Scholes) price of the corresponding vanilla call, CK
say, and the knockout discount, KODK,H say, by which the knockout

barrier at H lowers the price:

DOCK,H = CK −KODK,H .

The option formula is, writing λ := r − 1
2σ

2,

KODK,H = p0(H/p0)2+2λ/σ2
N(c1)

−Ke−rT (H/p0)2λ/σ
2
N(c2),

where c1, c2 are given by

c1,2(p, t) =
log(H2/pK) + (r ± 1

2σ
2)t

σ
√
t
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Financial Mathematics

Lecture 9

by Rüdiger Kiesel

Department of Financial Mathematics, University of Ulm

Department of Statistics, LSE
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Aims and Objectives

• The Bond Market (§8.1);

• Short Rate Models (§8.2)
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Bonds

A zero-coupon bond with maturity date T , also called a T -bond, is a

contract that guarantees the holder a cash payment of one unit on the

date T . The price at time t of a bond with maturity date T is denoted

by p(t, T ).

Coupon bonds are bonds with regular interest payments, called coupons,

plus a principal repayment at maturity. Let cj be the payments at times

tj , j = 1, . . . , n, F be the face value paid at time tn. Then the price of

the coupon bond Bc must satisfy

Bc =
n∑
j=1

cjp(0, tj) + Fp(0, tn).

Hence, we see that a coupon bond is equivalent to a portfolio of

zero-coupon bonds.
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Rates

Given three dates t < T1 < T2 the basic question is: what is the risk-free

rate of return, determined at the contract time t, over the interval

[T1, T2] of an investment of 1 at time T1?

t T1 T2

Sell T1-bond Pay out 1

Buy p(t,T1)
p(t,T2)

T2-bonds Receive p(t,T1)
p(t,T2)

0 −1 + p(t,T1)
p(t,T2)
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Rates

To exclude arbitrage opportunities, the equivalent constant rate of

interest R over this period (we pay out 1 at time T1 and receive

eR(T2−T1) at T2) has thus to be given by

eR(T2−T1) =
p(t, T1)
p(t, T2)

.
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Rates

1. The forward rate for the period [T1, T2] as seen at time at t is

R(t;T1, T2) = − log p(t, T2)− log p(t, T1)
T2 − T1

.

2. The spot rate R(T1, T2), for the period [T1, T2] is

R(T1, T2) = R(T1;T1, T2).

3. The instantaneous forward rate with maturity T , at time t, is

f(t, T ) = −∂ log p(t, T )
∂T

.

4. The instantaneous short rate at time t is

r(t) = f(t, t).
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Simple Relations

The money account process is defined by

B(t) = exp
{∫ t

0

r(s)ds
}
.

The interpretation of the money market account is a strategy of

instantaneously reinvesting at the current short rate.

For t ≤ s ≤ T we have

p(t, T ) = p(t, s) exp

{
−
∫ T

s

f(t, u)du

}
,

and in particular

p(t, T ) = exp

{
−
∫ T

t

f(t, s)ds

}
.
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Process Dynamics

Short-rate Dynamics:

dr(t) = a(t)dt+ b(t)dW (t),

Bond-price Dynamics:

dp(t, T ) = p(t, T ) {m(t, T )dt+ v(t, T )dW (t)}

Forward-rate Dynamics:

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t).
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EMMs and RNV

A measure Q ∼ IP defined on (Ω,F , IP ) is an equivalent martingale

measure for the bond market, if for every fixed 0 ≤ T ≤ T ∗ the process

p(t, T )
B(t)

, 0 ≤ t ≤ T

is a Q-martingale.

Consider a T -contingent claim X. Then the price process is

ΠX(t) = E Q

[
Xe−

R T
t
r(s)ds

∣∣∣Ft].
In particular, the price process of a zero-coupon bond with maturity T is

given by

p(t, T ) = E Q

[
e−
R T

t
r(s)ds

∣∣∣Ft].

c©Rüdiger Kiesel

U
N

IV
ERSITÄT

ULM
·

S
C

IE
N

D
O

·DOCENDO
·C

U
R

A
N

D
O

·



329

Short-rate model

We now fix an equivalent martingale measure Q and model the short

rate as

dr(t) = a(t, r(t))dt+ b(t, r(t))dW (t).

If the contingent claim is of the form X = Φ(r(T )) its arbitrage-free

price process is given by ΠX(t) = F (t, r(t)), where F is the solution of

the partial differential equation

Ft + aFr +
b2

2
Frr − rF = 0

with terminal condition F (T, r) = Φ(r) for all r ∈ IR. In particular,

T -bond prices are given by p(t, T ) = F (t, r(t);T ), with F solving the

PDE and terminal condition F (T, r;T ) = 1.
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Contingent Claim Pricing

We want to evaluate the price of a European call option with maturity S

and strike K on an underlying T -bond. This means we have to price the

S-contingent claim

X = max{p(S, T )−K, 0}.

We first have to find the price process p(t, T ) = F (t, r;T ) by solving the

PDE with terminal condition F (T, r;T ) = 1. Secondly, we use the

risk-neutral valuation principle to obtain ΠX(t) = G(t, r), with G solving

Gt + aGr +
b2

2
Grr − rG = 0

and

G(S, r) = max{F (S, r;T )−K, 0}, ∀r ∈ IR.
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Affine Term Structure

If bond prices are given as

p(t, T ) = exp {A(t, T )−B(t, T )r},

with A(t, T ) and B(t, T ) deterministic functions, we say that the model

possesses an affine term structure. For

a(t, r) = α(t)− β(t)r

and

b(t, r) =
√
γ(t) + δ(t)r,
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Affine Term Structure

we find that A and B are given as solutions of ODEs

At − α(t)B +
γ(t)
2
B2 = 0,

(1 +Bt)− β(t)B − δ(t)
2
B2 = 0,

with A(T, T ) = B(T, T ) = 0. The equation for B is a Riccati equation,

which can be solved analytically.
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Affine Term Structure

1. Vasicek model:

dr = (α− βr)dt+ γdW ;

2. Cox-Ingersoll-Ross (CIR) model:

dr = (α− βr)dt+ δ
√
rdW ;

3. Ho-Lee model:

dr = α(t)dt+ γdW ;

4. Hull-White (extended Vasicek) model:

dr = (α(t)− β(t)r)dt+ γ(t)dW ;

5. Hull-White (extended CIR) model:

dr = (α(t)− β(t)r)dt+ δ(t)
√
rdW .
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Financial Mathematics

Lecture 10

by Rüdiger Kiesel

Department of Financial Mathematics, University of Ulm

Department of Statistics, LSE
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Aims and Objectives

• HJM models (§8.3)

• Contingent Claims (§8.4)

c©Rüdiger Kiesel

U
N

IV
ERSITÄT

ULM
·

S
C

IE
N

D
O

·DOCENDO
·C

U
R

A
N

D
O

·



336

Heath-Jarrow-Morton (HJM) model

The Heath-Jarrow-Morton model uses the entire forward rate curve as

(infinite-dimensional) state variable. The dynamics of the instantaneous,

continuously compounded forward rates f(t, T ) are exogenously given by

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t).

For any fixed maturity T , the initial condition of the stochastic

differential equation (??) is determined by the current value of the

empirical (observed) forward rate for the future date T which prevails at

time 0.
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Heath-Jarrow-Morton (HJM) model

The exogenous specification of the family of forward rates

{f(t, T );T > 0} is equivalent to a specification of the entire family of

bond prices {p(t, T );T > 0}. Furthermore, the dynamics of the

bond-price processes are

dp(t, T ) = p(t, T ) {m(t, T )dt+ S(t, T )dW (t)},

where

m(t, T ) = r(t) +A(t, T ) +
1
2
‖S(t, T )‖2 ,

with

A(t, T ) = −
∫ T

t

α(t, s)ds

and

S(t, T ) = −
∫ T

t

σ(t, s)ds.
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HJM Drift Condition

We want to find an EMM equivalent measure (the risk-neutral

martingale measure) such that

Z(t, T ) =
p(t, T )
B(t)

is a martingale for every 0 ≤ T ≤ T ∗.

A risk-neutral EMM exists iff there exists a process λ(t), with

1.

L(t) = e−
R t
0 λdW− 1

2

R t
0 ‖λ‖

2du.

defines a Girsanov pair and

2. for all 0 ≤ T ≤ T ∗ and for all t ≤ T , we have

α(t, T ) = σ(t, T )
∫ T

t

σ(t, s)ds+ σ(t, T )λ(t).
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Forward Risk-neutral Martingale Measures

For many valuation problems in the bond market it is more suitable to

use the bond price process p(t, T ∗) as numéraire.

One needs an equivalent probability measure Q∗ such that the auxiliary

process

Z∗(t, T ) =
p(t, T )
p(t, T ∗)

, ∀t ∈ [0, T ],

is a martingale under Q∗ for T ≤ T ∗.

This measure is called such a measure forward risk-neutral martingale

measure.
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Forward Risk-neutral Martingale Measures (FRN-EMM)

Bond price dynamics under the original probability measure IP are given

as

dp(t, T ) = p(t, T ) {m(t, T )dt+ S(t, T )dW (t)},

with m(t, T ) from the HJM-drift condition.

Application of Itô’s formula to the quotient p(t, T )/p(t, T ∗) yields

dZ∗(t, T ) = Z∗(t, T ) {m̃(t, T )dt

+ (S(t, T )− S(t, T ∗))dW (t)} ,

with

m̃(t, T ) = m(t, T )−m(t, T ∗)

−S(t, T ∗)(S(t, T )− S(t, T ∗)).
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FRN-EMM

The drift coefficient of Z∗(t, T ) under any EMM Q∗ is given as

m̃(t, T )− (S(t, T )− S(t, T ∗))γ(t).

For Z∗(t, T ) to be a Q∗-martingale this coefficient has to be zero, and

replacing m̃ with its definition we get

(A(t, T )−A(t, T ∗))

+ 1
2

(
‖S(t, T )‖2 − ‖S(t, T ∗)‖2

)
= (S(t, T ∗) + γ(t)) (S(t, T )− S(t, T ∗)) .
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FRN-EMM

Written in terms of the coefficients of the forward-rate dynamics, this

identity simplifies to∫ T∗

T

α(t, s)ds+
1
2

∥∥∥∥∥
∫ T∗

T

σ(t, s)ds

∥∥∥∥∥
2

= γ(t)
∫ T∗

T

σ(t, s)ds.

Taking the derivative with respect to T , we obtain

α(t, T ) + σ(t, T )
∫ T∗

T

σ(t, s)ds = γ(t)σ(t, T ).
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FRN-EMM

There exists a forward risk-neutral martingale measure if and only if

there exists an adapted process γ(t) such that for all 0 ≤ t ≤ T ≤ T ∗

α(t, T ) = σ(t, T ) (S(T, T ∗) + γ(t))
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Gaussian HJM Framework

Assume that the dynamics of the forward rate are given under a

risk-neutral martingale measure Q by

df(t, T ) = α(t, T )dt+ σ(t, T )dW̃ (t)

with deterministic forward rate volatility. Then

f(t, t) = r(t)

= f(0, t) +
∫ t

0

(−σ(u, t)S(u, t))du

+
∫ t

0

σ(u, t)dW̃ (u),

which implies that the short-rate as well as the forward rates f(t, T )
have Gaussian probability laws.
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Options on Bonds

Consider a European call C on a T ∗-bond with maturity T ≤ T ∗ and

strike K. So we consider the T -contingent claim

X = (p(T, T ∗)−K)+.

Its price at time t = 0 is

C(0) = p(0, T ∗)Q∗(A)−Kp(0, T )QT (A),

with A = {ω : p(T, T ∗) > K} and QT resp. Q∗ the T - resp. T ∗-forward

risk-neutral measure.
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Options on Bonds

Z̃(t, T ) =
p(t, T ∗)
p(t, T )

has Q-dynamics

dZ̃ = Z̃
{
S(S − S∗)dt− (S − S∗)dW̃ (t)

}
,

so a deterministic variance coefficient. Now

Q∗(p(T, T ∗) ≥ K)

= Q∗
(
p(T, T ∗)
p(T, T )

≥ K

)

= Q∗(Z̃(T, T ) ≥ K).
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Options on Bonds

Since Z̃(t, T ) is a QT -martingale with QT -dynamics

dZ̃(t, T ) = −Z̃(t, T )(S(t, T )− S(t, T ∗))dWT (t),

we find that under QT

Z̃(T, T ) =
p(0, T ∗)
p(0, T )

exp

{
−
∫ T

0

(S − S∗)dWT
t

}

× exp

{
−1

2

∫ T

0

(S − S∗)2dt

}
The stochastic integral in the exponential is Gaussian with zero mean

and variance

Σ2(T ) =
∫ T

0

(S(t, T )− S(t, T ∗))2dt.
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Options on Bonds So

QT (p(T, T ∗) ≥ K)

= QT (Z̃(T, T ) ≥ K) = N(d2)

with

d2 =
log
(

p(0,T )
Kp(0,T∗)

)
− 1

2Σ2(T )√
Σ2(T )

.

Repeat the argument to get

The price of the call option is given by

C(0) = p(0, T ∗)N(d2)−Kp(0, T )N(d1),

with parameters given as above.
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Swaps Consider the case of a forward swap settled in arrears

characterized by:

• a fixed time t, the contract time,

• dates T0 < T1, . . . < Tn, equally distanced Ti+1 − Ti = δ,

• R, a prespecified fixed rate of interest,

• K, a nominal amount.
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Swaps

A swap contract S with K and R fixed for the period T0, . . . Tn is a

sequence of payments, where the amount of money paid out at

Ti+1, i = 0, . . . , n− 1 is defined by

Xi+1 = Kδ(L(Ti, Ti)−R).

The floating rate over [Ti, Ti+1] observed at Ti is a simple rate defined as

p(Ti, Ti+1) =
1

1 + δL(Ti, Ti)
.
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Swaps

Using the risk-neutral pricing formula we obtain (we may use K = 1),

Π(t, S) =
nX

i=1
E Q

"
e
−
RT
t r(s)ds

δ(L(Ti, Ti) − R)

�����Ft

#

=
nX

i=1
E Q

2
64E Q

2
64 e
−
RTi
Ti−1

r(s)ds
�������FTi−1

3
75

× e
−
RT
t r(s)ds

0
@ 1

p(Ti−1, Ti)
− (1 + δR)

1
A
������Ft

3
5

=
nX

i=1

�
p(t, Ti−1) − (1 + δR)p(t, Ti)

�

= p(t, T0) −
nX

i=1
cip(t, Ti),

with ci = δR, i = 1, . . . , n− 1 and cn = 1 + δR. So a swap is a linear

combination of zero-coupon bonds, and we obtain its price accordingly.
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Caps An interest cap is a contract where the seller of the contract

promises to pay a certain amount of cash to the holder of the contract if

the interest rate exceeds a certain predetermined level (the cap rate) at

some future date. A cap can be broken down in a series of caplets.

A caplet is a contract written at t, in force between [T0, T1], δ = T1−T0,

the nominal amount is K, the cap rate is denoted by R. The relevant

interest rate (LIBOR, for instance) is observed in T0 and defined by

p(T0, T1) =
1

1 + δL(T0, T0)
.
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Caplets

A caplet C is a T1-contingent claim with payoff

X = Kδ(L(T0, T0)−R)+.

Writing L = L(T0, T0), p = p(T0, T1), R∗ = 1 + δR, we have

L = (1− p)/(δp), (assuming K = 1) and

X = δ(L−R)+ = δ

(
1− p

δp
−R

)+

=
(

1
p
− (1 + δR)

)+

=
(

1
p
−R∗

)+

.
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Caplets

The risk-neutral pricing formula leads to

ΠC (t) = E Q

"
e
−
RT1
t r(s)ds

�
1
p
− R∗

�+�����Ft

#

= E Q

2
64E Q

2
64 e
−
RT1
T0

r(s)ds

�������FT0

3
75 e

−
RT0
t r(s)ds

 
1

p
− R

∗
!+

������Ft

3
5

= E Q

2
4p(T0, T1) e

−
RT0
t r(s)ds

 
1

p
− R

∗
!+

������Ft

3
5

= E Q

"
e
−
RT0
t r(s)ds

�
1 − pR

∗�+�����Ft

#

= R
∗E Q

"
e
−
RT0
t r(s)ds

� 1

R∗
− p

�+
�����Ft

#
.

So a caplet is equivalent to R∗ put options on a T1-bond with maturity

T0 and strike 1/R∗.
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