Additional questions for chapter 4

1. A stock price is currently $ 100. Over the next two six-month periods it is expected
to go up by 10% or go down by 10%. The risk-free interest rate is 8% per annum
with continuous compounding.

(i) What is the value of a one-year European call option with a strike price of $
100.

(ii) What is the value of a one-year Furopean put option with a strike price of §
100.

(i1i) Verify that the European call and the European put satisfy put-call parity.

Solution:

Parameters are u = 0.1,d = —0.1,1 + r = €%°%%08_ So the risk-neutral probability is
p* = 0.7. After evaluation of the options at the terminal nodes we use the risk-neutral
valuation to get (i)

mo(0) = e 205008 1072 % 21 + 2 x 0.7(1 — 0.7) x 0+ (1 — 0.7)* x 0] = 9.61
and (ii)

mp(0) = e 2000 1072 5 0+ 2 x 0.7(1 — 0.7) x 1+ (1 — 0.7)% x 19] = 1.92
(iii) For put-call parity one has to verify S — o + mp = Ke™", here :

100 — 9.61 + 1.92 = 1007298,



2. Assume a standard 3-period CRR binomial model. The price of the stock is currently
$100. The risk-free interest rate with continuous compounding is 6% per annum.
Owver the next three 4 month periods, the stock is expected to go up by 8% or go down
by 7% in each period.

(a) What is the value of a one-year European call with strike price $1037
(b) What is the value of a one-year European put with strike price $103?
(c) Verify the Put-Call parity for the European call and the European put.

Solution:
We first calculate the Martingale probability in the tree. We get

r—d e%9%/3 14007

- - — 0.6013423
P= "4 0.08+0.07

(a) The tree for the call option looks as follows:

125.97
116.64 < 22.97
15.
108 < 5679 108.475
%:_16083 10.503 100.44 < 5.475
e 93 3.2272 93.409
1.9022 < 0
86.49
0 80.435
0
time t = 0 t=1/3 t=2/3 t=1
(b) The tree for the put option is:
125.97

116.64 < 0
108 < 0 108.475
S S e
93 < 3.7477 93.409

7.8635
86.49 9.5908
14.47 80.435

22.5643

time t =0 t=1/3 t=2/3 t=1
(¢) The Put-Call parity holds:

C—P =6.9342—3.936 = 2.9982 = 100—103e¢%% = 100—97.0017 = S— Ke 7.



3. Consider a 3-period Cox-Ross-Rubinstein model. The annual interest rate is v = 0.05
(discrete), u = 0.1 and d = —0.1. The initial price of the stock is S(0) = 100. The

time horizon is T = 3 years.

(a) Calculate the risk-neutral probability and the stock prices at each node in the
binomial tree (correct up to 2 decimal places after the decimal point).

(b) Calculate the value of the European option with payoff
sup S; —Sr S <110Vt

P(T) = { 0<t<T
0 otherwise

(¢) Find a replicating portfolio for the above option for the first trading period.

Solution:

(a) For the risk-neutral probability we get p = Z:Z = %. The tree with the stock
prices and the value of the option is
133.1
121 0
0
108.9
110 0
0
108.9
99 0
0
89.1
$=100 0
pP=12
o 108.9
99 0
2.595
89.1
90 10.9
5.24 9.1
81 10.9
14.23
< 72.9
27.1
time ¢t = 0 t=1/3 t=2/3 t=1

(b) The replicating portfolio can be found by solving the equations

1.05- o1 + 110 00 = 0
1.05 - 1 + 90 - 0 = 5.24

As solution we get 1 = 27.45 and ¢, = —0.262.



4. Construct a three period binomial tree using the parameters r = 0.1 (discrete, per
period), u = 0.15, d = —0.05 and Sy = 100.

(a) Find the price of a European Put P with strike 105 and maturity date T = 3.

(b) Find the price of the knock in Call option C with knock in level H = 110, strike
K =90 and maturity date T' = 3, 1.e.

C = (S(T)—-90)t 3Ft:S, > H =110
R S, < H =110 Vt.
Solution:
The risk neutral probability is

r—d 014005 3

P Zd T 0154005 4

We first set up a tree with the stock price movements, then compute the values of
the two options:

152.00
132.25 0
0 62.09
“0.43 125.64
115 0
0.0625 i’gf‘é -
40.62 :
109.25 0
s
9743 o
$=100 :
ar
C=31.46 -
109.25 -
0.275 :
94.3 10231'79
95 ;
1.37
657 103.79
90.25 321
5.2
0 85.74
19.26
0

time t =0 t=1/3 t=2/3 t=1



5. Assume a 3-period Cox-Ross-Rubinstein model. The annual interest rate with con-
tinuous compounding is v = 0.06. The volatility of the stock is o = 0.2 with a price
of S(0) = 100. Furthermore, there exists an American Put with maturity date T = 1
und strike K = 90.

(a) Calculate the risk-neutral probability and the stock prices at each node in the
binomial tree (correct up to 2 decimal places after the decimal point).

(b) Calculate the value of the American Put for all nodes in the tree.
(c) What is the optimal stopping time? Justify your answer.

Solution:

(a) The parameter-values are
1

A=, lirg= e =1.0202, 14u=e"V2=1.1224, 1+d=e V2 =0.8909.
For the risk-neutral probability we get
—d
pr =" % (5584,
u—d
The tree with the stock prices is
141.40
125.98 <
112.24 < 112.24
$=100 < 89.09 <
89.09 < 89.09
79.38 <
70.72
time t = 0 t=1/3 t=2/3 t=1
(b) The prices for the american Put are
0
0 <
0.17 < 0
4.812 < 0.91
max{10.62, 8.84} <
19.28
time £t =0 t=1/3 t=2/3 t=1

(c) Let = {u,d}?. The optimal exercise date is
=2 ddu, ddd
() = {n w € {ddu, ddd}

n =3 otherwise.

For w € {(ddu), (ddd)}, we have 17 ~E[p* fao + (1 —p*) fas] < (K — Sp(1+d)*)*.
Here f;; denotes the price of the claim in period ¢ with j-down movements.



6. Assume that we have a three period CRR model with initial stock price S = $150,
interest rate r = 0.05 and volatility o = 0.2.

(a) What is the value of an American Put with strike $150, which matures in 6
months?

(b) What is the value of an American Call with strike $150, which matures in 6
months?

(c) Verify that the following inequalities hold:

S—K<Cy—Py<S—Ke "

Solution:
The martingale probability is p = 0.5308 with v = 0.085, d = —0.0784 and r =
0.0084.

(a), (b) For the American Put and Call we get:

191.63
0
176.61 41.63
0
162.76 27.85 162.76
2.55 0
S=150 17.78 150 12.76
Cs=11.01 138.24 6.72 138.24
13.40 11.76
3.54 127.40 0
22.60
0 117.41
32.59
0
timet =0 t:1/6 t:2/6 t=0.5

(c) We have 0 < 11.01 — 7.57 = 3.44 < 3.7035 = 150 — 150 - ¢70:925



7. Show that a security market is arbitrage-free with respect to ® iff it is arbitrage-free
with respect to ®,. Here ® is the set of all self-financing trading strategies and P,
is the set of all admissible strategies, that means all ¢ € ® with V,(t) > 0 ¢ =
0,...,T.

Solution:

First note, if p € ®, is an arbitrage strategy, then it is by definition of ®, also a
strategy in ®. We now have to show that if we have an arbitrage strategy ¢ € P,
then there exists an arbitrage strategy ¥ € ®@,.

Assume that ¢ € ® is an arbitrage strategy. Then we have V,,(0) = 0, P(V,(T) >
0) =1 and P(V,(T) > 0) > 0. We have to distinguish between two cases:

Case 1: V,(t) > 0 t =0,...,7. Then ¢ € ®, and we found the admissible
arbitrage strategy.

Case 2: Jt*, A € Fp» with V,,(t*,w) < 0 Vw € A and V() > 0t > t*. Then define
a new strategy 1. Set ¢ (u,w) = 0 Vw € A° Vu. Furthermore ¢(u,w) = 0w €
A and u < t*. For the remaining possibilities set

Vo (™, w)

Soll7, ) YVweEeA u>t

¢0(an) = SO()(U,(U) -
and
Yi(u,w) =pi(u,w) YweAd i=1,....,d u>t"

We have to show that this strategy is self-financing and admissible. For w € A°¢
we clearly have no problem. There is nothing to show for w € A,u < t*. 9 is
also clearly self-financing for u > t* + 1 as it just replicates the other strategy
there. We have to show that ¢ (t*)S(t*) = ¢ (t* + 1)S(t*). For w € A we have

ho(t" + 1)So(t) = @o(t” +1)So(t") = Vo (") and  ¢(t" +1) = @i(t* + 1)
Thus we get
P(E+D)S(E) = Lale(E+1)S () =V (t7)) = Lalp(t")SE) = Vo (1)) = 0 = () S(¢7)
It remains to show that v is admissible and an arbitrage opportunity. We get
Vp(t) =0 t <t

and

So(t) So(t)

V() =1 t)S(t) — V,(t* =14 V,(t) =V, (t* >0
510) = La (080) ~ Vil) 5o ) = (Valt) = Voler) 20k ) 2
and > 0 on A for ¢t = T because V,,(t*) < 0. We also have that V,(t) = 0 V¢t < t*.

Therefore 1 is admissible and an arbitrage opportunity.




(a) State the Black-Scholes formula for an European Call and Put. (Hint: The
Put-Call parity C — P = S — Ke """ might be useful)

(b) Replicate the European straddle with payoff D(T) = |S(T') — K| using standard
European options.

(¢) What is the Black-Scholes price of the straddle?

(d) What is the A of the straddle? How much does the value of the straddle approz-

imately change if the stock price changes from S; to Sy + ¢ (Hint: The A of
the Call is N(dy))

Solution:

(a) The Black-Scholes formula for an European Call and Put is

C(t) = S(t)N(dy) — Ke " T"IN(dy)
P(t) = Ke "M N(=dy) — S(t)N(—d,)

where

2

log(S/K) + <7~ + %) (T — 1)
1: oVT 1
do =dy —oVT —1t.
(b) We can replicate the straddle D(T") = |S(T") — K| by buying one call and one
put, both with strike K.
(c¢) The Black-Scholes price of the straddle is

D(t) = C(t) + P(t) = S(t)N(dy) — Ke "IN (dy) + Ke "IN (—dy) — S(t)N(—dy) =
= S(t)(2N(dy) — 1) — Ke " TD(2N(dy) — 1).

(d) The Delta of the straddle is
AD = AC + AP - N(dl) - N(—dl) == 2N(d1) —1.

When the stock price changes from S; to S; + ¢, then the price of the straddle
changes about £(2N(d;) — 1).



. Consider a financial market in which the Black-Scholes formula for a European call
option holds. The risk-free interest rate (cont. compounding) is r. The underlying
stock has value S with volatility o. For a Furopean call with strike K and maturity
T, show that the following relations hold:

oC

A= = N(d
35 (dv)
o oC N'(dy)
052 SU\/T—
O = 8_0 = _M — rKe‘T(T‘t)N(dQ)
ot 2V T —t
oC
p=g- =K(T- £)e " THIN(dy)
VvV = o = SN/(dl)\/T t
Do
Show that the call satisfies the partial differential equation
80 oc 1 2 ,0*C B
ot 95 a7 e T =0
Solution:
We first show that SN’(dy) = Ke """ N'(dy):
SN'(dy) — Ke " T=IN'(dy) = b <S€fd§/2 _ Kefr(Tft)efd%Q) _
27

<Se az/2 Ke—r(T—t)6—d§/2+d1mﬁT—t—a2(T—t)/z> _

d2/2 —d2/2K —r(T—t) dioV/T—t—o2(T—t)/2 \ _

/2 — Se™™ 5 e =
(Sed%/Q o Sed%/2§€r(Tt)elog(S/K)+(7‘+02/2)(Tt)0'2(Tt)/2> —

<Se_d /2 _ Se_d%m) =0

-5 ﬂ\ 8-

Now we calculate the Greeks:

(a)

oC N R SN
A = 55 N(d1)+SN(d1)aS Ke N(dg)as—
ody  Ody

— / —_—— — =

_N(d1)+SN(d1)(aS as>

= N(dy)

(b)
L 9C A, ddy  N'(dy)
I= 082~ 08 _N(d1>as  SoJT —t



oC ody ddy

O =—=5N(d)—= — Ke """ N'(d, ) — Kre TN (dy) =

ot

ot
_gn(any (9% 9da g rire _
— SN'(dy) ( 5 at) Kre N(dy) =

g

—rKe "TUN(d
0T — 1 (d2)

= —SN'(dy)

Ody

oc Odi _ Ke "= N'(d, )a_ + K(T —

= SN’
P= ar = SN(d) 5 or
_ an Ody  0d, —r(T—1) _

= K(T —t)e "IN (dy)

oC od,

)e—r(T—t)N(dz)

Ody

v=—"=8N(d) = — Ke " T ON'(dy) =

o Oo

o (ody  od
= SN'(d)) (a—al - %) -

— SN'(d)VT —+.

The partial differential equation holds because:

oC GO0 1 ,5,0°C B
AT R A T
U
— SN'(d))—a — rKe " TON(d
)y =~ e (d2)+

+7rSN(dy)+
1 5o N'(dy)
+ —0°S ———
27 SovT —t
+rC =
=r(SN(d;) — Ke """YN(dy) — C) = 0.

+

&7:



10. Prove the following limit relations used in the proof of Proposition 3.5.1, assuming
that k, — 0o (n — 00):

1
lim p, ==, lim k(1 —2p,)VA, =T (Z n E)
n— o0 2 n— oo g 2
Solution:
We have the following definitions for the variables:
T
A, =—
Ky,
Uy, = eoVAn _ 1
d, = e VAL _q
r, =" —1
* Tn — dn
Pn = Uy, — dp,
L Gt
P = Pn7 +r,
Then, we get for the first limit relation:
lim p li * i L+ up e A 1
im p, = lim im = lim = _.
n—>oopn n—o0 Pn n—oo | + Tn n—00 eUx/Ain _ e—am 2
—_——

—1(n—o0)

In order to show the last equality, it suffices to show that

er:nZ — e 0T

1
lim ——mm = —.
t—04 e —e 9% 2

as VA, — 04(n — o0).
By L’Hospital we get

2 _ 2 _

. —e 7" . 2xre™ 4+ ge %" 1
lim ————— == lim = —.
z—04 €7 — e 7% z—04 ge’T + ge= % 2

For the second limit relation we get:

n—oo n—oo

. X . erAn . 6—0'\/?” e—rAn
lim £,(1 —2p,)VA, = lim \/Tk, [ 1— 260\/5 7 —r

1— 6720'\/5 -9 + 2¢— 9 Ap—rAn

= limﬁ i

n—00 = (1 — e 20VAn)
VI (VT (5+5)) =T (5+,)

For the second to last equation it suffices to show that:

) _6—203: -1 + 2€—a:v—rz2 o r
lim — —o =T (— + —>
z—04 \/_T (1 — e ) 2 g




as VA, — 04(n — ).
We are using L’Hospital twice and get:

_6_20'15 _ 1 + 2€_UZ‘—T$2

lim _
x—04 \/LT (1 — 6—201)
i 2O = Ao 2ra)e
2—04 (1 _ 672023) + 2pge—20w
i A 4 20 4 2ra)e e dpemerr
=0+ 20e720% 4 20207 — fxgle—207
—40% +20% — 4r c r
4o 2 ' o
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