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Aims and Objectives
e Review basic concepts of probability theory;

e Discuss random variables, their distribution and the notion of

independence;
e (alculate functionals and transforms:

e Review basic limit theorems.
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Probability theory

To describe a random experiment we use sample space €2, the set of all

possible outcomes.

Each point w of €2, or sample point, represents a possible random
outcome of performing the random experiment.

For a set A C ) we want to know the probability IP(A).

The class F of subsets of {2 whose probabilities IP(A) are defined (call
such A events) should be be a o-algebra , i.e. closed under countable,
disjoint unions and complements, and contain the empty set () and the

whole space (.

Examples. Flip coins, Roll two dice.
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Probability theory

We want

(i) P(0)=0,P(Q2) =1,
(i) IP(A) >0 for all A,

(iii) If Ay, Ao, ..., are disjoint,
IP(lJ, Ai) = >, IP(A;) countable additivity.

(iv) If BC Aand IP(A) =0,
then IP(B) = 0 (completeness).

A probability space, or Kolmogorov triple, is a triple (€2, F, IP) satisfying
Kolmogorov axioms (i),(ii),(iii), (iv) above.

A probability space is a mathematical model of a random experiment.
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Probability theory

Let (2, F, IP) be a probability space. A random variable (vector) X is a

function X : Q — IR(IR*) such that
XY B)={weQ: X(w) e B} € F for all Borel sets B € B(B(IR")).

For a random variable X
fweQ: X(w)<z}eF

for all x € IR.

So define the distribution function F'x of X by

Fx(x):=1IP ({w: X(w) < zx}).

Recall: (X)), the o-algebra generated by X.
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Probability theory

e Binomial distribution: Number of successes
_ _ n k n—=k
P(S, =k) = (k)p (1 —p) ",
e Geometric distribtion: Waiting time
IP(N =n)=p(1—-p)"".

e Poisson distribution:

A
R
P(X =k)=ce ik

e Uniform distribution:
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Probability theory

e Exponential distribution:

f(ﬂ?) = )\G_Ax]_{[o,oo)}.

The expectation E of a random variable X on (2, F, IP) is defined by
EX := / XdIP, or / X (w)dIP(w).
Q Q

The variance of a random variable is defined as

V(X):=E [(X —E(X))’] =E (X?) — (EX)?
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Probability theory
If X is real-valued with density f,

EX := /xf

or if X is discrete, taking values x,,(n = 1,2,...) with probability
function f(x,)(> 0),

EX =) x,f(zn).

Examples. Moments for some of the above distributions.

Random variables X1, ..., X,, are independent if whenever A; € B for

1 =1,...n we have
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Probability theory

In order for X1,...,.X,, to be independent it is necessary and sufficient
that for all z4,...x, € (—o0, o0,
P (ﬂ{xi < xi}> = [ PHX; <)),
i=1 i=1

Multiplication Theorem If X1, ..., X,, are independent and
E | X;| <oo,i=1,...,n, then

E (ﬁX) — ﬁE(Xi).

1=1
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Probability theory

If X, Y are independent, with distribution functions F', G
Z =X+Y,

let Z have distribution function H.
Call H the convolution of F' and GG, written H = F' + (.

Suppose X, Y have densities f, g. Then

H(z)= P(X +Y < z) = /{ o ey
) rty<z

e = [t [ awatae= [T @6 - s

Example. Gamma distribution.
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Probability theory

If X is a random variable with distribution function F', its moment

generating function ¢x is

o(t) :=F (') = /OO e dF(x).

The mgf takes convolution into multiplication: if X, Y are independent,
Px+v (1) = ¢x(t)Py (1).
Observe ¢(F)(t) = E (X*e!X) and ¢(0) = E (X*).

For X on nonnegative integers use the generating function

vx(2) =E(z%) =) FIP(Z =k).
k=0
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Probability theory

Conditional expectation For events:

P(A|B) := IP(An B)/IP(B) if P(B)> 0.

Implies the multiplication rule:

P(AN B) = IP(A|B)IP(B)

Leads to the Bayes rule

IP(A;)IP(B|A;)

PUIB) = S~ p(a,p(BlA;)

(©Riidiger Kiesel
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Probability theory

For discrete random variables:

If X takes values x1,...,x,, with
probabilities f;(xz;) > 0,
Y takes values 41, ..., y, with

probabilities fa(y;) > 0,

(X,Y) takes values (x;,y;) with
probabilities f(x;,y,) > 0,

then the marginal distributions are

fl(zz) — Zf(ajz:yj)
f2(yg) — f(l‘z',yg)
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Probability theory

fleiyy) (@i, y;)
files) i flxiys)

So the conditional distribution

of Y given X = x;

) — f(x%yj) _ f(xiayj)
fY|X(yJ| z) fl(ajz) Z?:1 f(ccz,yj)
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Probability theory

lts expectation is

(©Riidiger Kiesel
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J

> Yif (T, y5)
Zj f(xi,y;)
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Probability theory

Density case. If (X Y) has density f(z,y),
X has density fi(z) = [ f(= y)dy
Y has density fo(y f f(z,y)d

The conditional den5|ty of Y given X = x is:

_ flxyy) 0 f(x,y)
fyix (ylz) == R@) T )y

lts expectation is

E(Y|X =z) = /wuwmwumy

— OO0

[ uf(w,y)dy
oo fley)dy
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Probability theory
General case.
Suppose that G is a sub-o-algebra of 7, G C F

If Y is a non-negative random variable with EY < oo, then
Q(B) := / YdIP (B €g)
B

Is non-negative, o-additive — because

/BYle:zn:/BnYdP

if B=U,B,, B, disjoint — and defined on the o-algebra G, so is a
measure on §.

If IP(B) =0, then Q(B) = 0 also (the integral of anything over a null
set is zero), so Q << IP.
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Probability theory

By the Radon-Nikodym theorem, there exists a Radon-Nikodym
derivative of Q with respect to IP on G, which is G-measurable.

Following Kolmogorov, we call this Radon-Nikodym derivative the
conditional expectation of Y given (or conditional on) G, E (Y'|G): this is

G-measurable, integrable, and satisfies

/YdIP:/ E(Y|G)dP VB €G.
B B
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Probability theory
Suppose G = o(X).
Then E(Y|G) =E (Y|o(X)) =: E(Y|X).

Its defining property is
/ Yd]P:/ E(Y|X)dIP VB e o(X).
B B
If G =0o(X1,...,X,) write
E (Y|e(Xy,...,Xn)) =EY|X,...,X,)

then
/YdP:/E(Y|X1,...,Xn)dP.
B B
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Probability theory

Weak Law of Large Numbers It X7, X5, ... are independent and
identically distributed with mean u, then

1 n
— E X; — 1 in probability.
n

i=1

Central Limit Theorem If X, X5, ... are independent and identically
distributed with mean 1 and variance o2, then

1 n
_ Z(XZ — p)/o — N(0,1) in distribution.
v
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Aims and Objectives
e Derivative Background §1.1;
e Arbitrage §1.2, §1.3;
e Fundamental Pricing Example §1.4;

e Single-period Model §1.4.
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Derivative Background

A derivative security, or contingent claim, is a financial contract whose
value at expiration date 7' (more briefly, expiry) is determined exactly by
the price (or prices within a prespecified time-interval) of the underlying
financial assets (or instruments) at time 1" (within the time interval
0,71).

Derivative securities can be grouped under three general headings:
Options, Forwards and Futures and Swaps. During this text we will
mainly deal with options although our pricing techniques may be readily
applied to forwards, futures and swaps as well.
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Options

An option is a financial instrument giving one the right but not the
obligation to make a specified transaction at (or by) a specified date at a
specified price. Call options give one the right to buy. Put options give
one the right to sell. European options give one the right to buy/sell on
the specified date, the expiry date, on which the option expires or

matures.

American options give one the right to buy/sell at any time prior to or at

expiry.
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Options

The simplest call and put options are now so standard they are called
vanilla options.

Many kinds of options now exist, including so-called exotic options.
Types include: Asian options, which depend on the average price over a
period, lookback options, which depend on the maximum or minimum
price over a period and barrier options, which depend on some price level
being attained or not.
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Terminology

The asset to which the option refers is called the underlying asset or the
underlying. The price at which the transaction to buy/sell the
underlying, on /by the expiry date (if exercised), is made, is called the
exercise price or strike price. We shall usually use K for the strike price,
time ¢t = 0 for the initial time (when the contract between the buyer and
the seller of the option is struck), time ¢ = T for the expiry or final time.

Consider, say, a European call option, with strike price K; write S(t) for
the value (or price) of the underlying at time ¢. If S(¢) > K, the option
is in the money, if S(t) = K, the option is said to be at the money and
if S(t) < K, the option is out of the money.
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Payoff

The payoff from the option, which is
S(T)—-— K if S(T)>K and 0 otherwise

(more briefly written as (S(T) — K)™).

Taking into account the initial payment of an investor one obtains the

profit diagram below.
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Figure 1: Profit diagram for a European call
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Forwards

A forward contract is an agreement to buy or sell an asset S at a certain
future date T’ for a certain price K. The agent who agrees to buy the
underlying asset is said to have a long position, the other agent assumes
a short position. The settlement date is called delivery date and the
specified price is referred to as delivery price. The forward price f(t,T)
is the delivery price which would make the contract have zero value at
time ¢t. At the time the contract is set up, ¢ = 0, the forward price
therefore equals the delivery price, hence f(0,7) = K. The forward
prices f(t,T) need not (and will not) necessarily be equal to the delivery
price K during the life-time of the contract.
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Options

The payoff from a long position in a forward contract on one unit of an
asset with price S(T') at the maturity of the contract is

S(T) — K.

Compared with a call option with the same maturity and strike price K
we see that the investor now faces a downside risk, too. He has the
obligation to buy the asset for price K.
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Options

A swap is an agreement whereby two parties undertake to exchange, at
known dates in the future, various financial assets (or cash flows)
according to a prearranged formula that depends on the value of one or
more underlying assets. Examples are currency swaps (exchange
currencies) and interest-rate swaps (exchange of fixed for floating set of
interest payments).
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Underlying securities
Stocks. Shares

e provide partial ownership of the company, pro rata with investment,

e have value, reflecting both the value of the company's (real) assets
and the earning power of the company’s dividends.

With publicly quoted companies, shares are quoted and traded on the
Stock Exchange. Stock is the generic term for assets held in the form of

shares.
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Interest Rates

The value of some financial assets depends solely on the level of interest
rates (or yields), e.g. Treasury (T-) notes, T-bills, T-bonds, municipal
and corporate bonds. These are fixed-income securities by which
national, state and local governments and large companies partially
finance their economic activity. Fixed-income securities require the
payment of interest in the form of a fixed amount of money at
predetermined points in time, as well as repayment of the principal at
maturity of the security. Interest rates themselves are notional assets,
which cannot be delivered. A whole term structure is necessary for a full
description of the level of interest rates.
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Currencies

A currency is the denomination of the national units of payment
(money) and as such is a financial asset. The end of fixed exchange
rates and the adoption of floating exchange rates resulted in a sharp
increase in exchange rate volatility. International trade, and economic
activity involving it, such as most manufacturing industry, involves
dealing with more than one currency. A company may wish to hedge
adverse movements of foreign currencies and in doing so use derivative

Instruments.
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Indexes

An index tracks the value of a (hypothetical) basket of stocks
(FT-SE100, S&P-500, DAX), bonds (REX), and so on. Again, these are
not assets themselves. Derivative instruments on indexes may be used
for hedging if no derivative instruments on a particular asset (a stock, a
bond, a commodity) in question are available and if the correlation in
movement between the index and the asset is significant. Furthermore,
institutional funds (such as pension funds, mutual funds etc.), which
manage large diversified stock portfolios, try to mimic particular stock
indexes and use derivatives on stock indexes as a portfolio management
tool. On the other hand, a speculator may wish to bet on a certain
overall development in a market without exposing him /herself to a

particular asset.
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Markets

Financial derivatives are basically traded in two ways: on organized
exchanges and over-the-counter (OTC). Organised exchanges are subject
to regulatory rules, require a certain degree of standardisation of the
traded instruments (strike price, maturity dates, size of contract etc.)
and have a physical location at which trade takes place.

OTC trading takes place via computers and phones between various
commercial and investment banks (leading players include institutions
such as Bankers Trust, Goldman Sachs — where Fischer Black worked,
Citibank, Chase Manhattan and Deutsche Bank).
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Types of Traders

We can classify the traders of derivative securities in three different
classes:

Hedgers. Successful companies concentrate on economic activities in
which they do best. They use the market to insure themselves against
adverse movements of prices, currencies, interest rates etc. Hedging is
an attempt to reduce exposure to risk a company already faces.
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Types of Traders

Speculators. Speculators want to take a position in the market — they

take the opposite position to hedgers. Indeed, speculation is needed to
make hedging possible, in that a hedger, wishing to lay off risk, cannot
do so unless someone is willing to take it on.

Arbitrageurs. Arbitrageurs try to lock in riskless profit by simultaneously
entering into transactions in two or more markets. The very existence of
arbitrageurs means that there can only be very small arbitrage
opportunities in the prices quoted in most financial markets.
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Modelling Assumptions

We impose the following set of assumptions on the financial markets:

e No market frictions: No transaction costs, no bid/ask spread, no
taxes, no margin requirements, no restrictions on short sales.

e No default risk: Implying same interest for borrowing and lending
e Competitive markets: Market participants act as price takers

e Rational agents Market participants prefer more to less

(©Riidiger Kiesel



40

Arbitrage

We now turn in detail to the concept of arbitrage, which lies at the
centre of the relative pricing theory. This approach works under very
weak assumptions. All we assume is that they prefer more to less, or
more precisely, an increase in consumption without any costs will always
be accepted.

The essence of the technical sense of arbitrage is that it should not be
possible to guarantee a profit without exposure to risk. Were it possible
to do so, arbitrageurs (we use the French spelling, as is customary)
would do so, in unlimited quantity, using the market as a ‘money-pump’
to extract arbitrarily large quantities of riskless profit.

We assume that arbitrage opportunities do not exist!
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Arbitrage Relationships

We now use the principle of no-arbitrage to obtain bounds for option
prices. We focus on European options (puts and calls) with identical
underlying (say a stock 5), strike K and expiry date T. Furthermore we
assume the existence of a risk-free bank account (bond) with constant
interest rate r (continuously compounded) during the time interval

[0, T]. We start with a fundamental relationship:

We have the following put-call parity between the prices of the
underlying asset S and European call and put options on stocks that pay
no dividends:

S+P—C=Ke T, (1)
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Arbitrage Relationships

Proof. Consider a portfolio consisting of one stock, one put and a short
position in one call (the holder of the portfolio has written the call);
write V' (t) for the value of this portfolio. Then

V(t)=95(t)+ P(t) - C(1)
for all t € [0, T]. At expiry we have

V(T) = S(T)+(S(T)-K)” = (S(T) - K)"

= S(T)+K-S(T) =K.

This portfolio thus guarantees a payoff K at time 7. Using the principle
of no-arbitrage, the value of the portfolio must at any time ¢ correspond
to the value of a sure payoff K at T, that is V(t) = Ke "1, .

Having established (1), we concentrate on European calls.
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Arbitrage Relationships

The following bounds hold for European call options:

max {S(t) —e "IV, O}

= (S(t)— e TVK)T < C(t) < S(b).

(©Riidiger Kiesel
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Arbitrage Relationships

Proof. That C > 0 is obvious, otherwise ‘buying’ the call would give a
riskless profit now and no obligation later.

Similarly the upper bound C' < S must hold, since violation would mean
that the right to buy the stock has a higher value than owning the stock.
This must be false, since a stock offers additional benefits.

Now from put-call parity (1) and the fact that P > 0 (use the same
argument as above), we have

S(t) — Ke "I'=Y) = C(t) — P(t) < C(t),

which proves the last assertion. .
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Arbitrage Relationships

It is immediately clear that an American call option can never be worth
less than the corresponding European call option, for the American
option has the added feature of being able to be exercised at any time
until the maturity date. Hence (with the obvious notation):

C'a(t) > Cg(t). The striking result we are going to show (due to R.C.
Merton in 1973 is:

For a non-dividend paying stock we have

Ca(t) = Cp(t). (2)
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Arbitrage Relationships

Proof. Exercising the American call at time ¢ < 1" generates the
cash-flow S(¢) — K. From the bounds on calls we know that the value of
the call must be greater or equal to S(t) — Ke "(T=") which is greater
than S(t) — K. Hence selling the call would have realised a higher
cash-flow and the early exercise of the call was suboptimal. .
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Arbitrage Relationships

Qualitatively, there are two reasons why an American call should not be
exercised early:

(i) Insurance. An investor who holds a call option instead of the
underlying stock is ‘insured against a fall in stock price below K,
and if he exercises early, he loses this insurance.

(ii) Interest on the strike price. When the holder exercises the option, he
buys the stock and pays the strike price, K. Early exercise at ¢t < T’
deprives the holder of the interest on K between times ¢ and 1I': the
later he pays out K, the better.
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A fundamental example

We consider a one-period model, i.e. we allow trading only at ¢ = 0 and
t =T = 1(say). Our aim is to value at t = 0 a European derivative on a
stock S with maturity T

First idea. Model S7 as a random variable on a probability space
(Q, F, IP). The derivative is given by H = f(ST), i.e. it is a random
variable (for a suitable function f(.)). We could then price the derivative
using some discount factor 5 by using the expected value of the
discounted future payoff:

Hy, = E (3H). (3)

Problem. How should we pick the probability measure IP? According to
their preferences investors will have different opinions about the
distribution of the price St.
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A fundamental example

Black-Scholes-Merton approach. Use the no-arbitrage principle and
construct a hedging portfolio using only known (and already priced)

securities to duplicate the payoff H. We assume
1. Investors are non-satiable, i.e. they always prefer more to less.

2. Markets do not allow arbitrage , i.e. the possibility of risk-free

profits.
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A fundamental example

From the no-arbitrage principle we see:

If it is possible to duplicate the payoff H of a derivative using a portfolio
V' of underlying (basic) securities, i.e. H(w) =V (w), Yw, the price of
the portfolio at t = 0 must equal the price of the derivative att = 0.
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A fundamental example

et us assume there are two tradeable assets

e a riskfree bond (bank account) with B(0) =1 and B(T') = 1, that
is the interest rate r = 0 and the discount factor 3(¢) = 1. (In this
context we use 3(t) = 1/B(t) as the discount factor).

e a risky stock S with S(0) = 10 and two possible values at t =T

S(T) 20 with probability p
7.5  with probability 1 — p.
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A fundamental example

We call this setting a (B, S)— market. The problem is to price a
European call at ¢ = 0 with strike K = 15 and maturity 7', i.e. the
random payoff H = (S(T) — K)™. We can evaluate the call in every
possible state at t =T and see H =5 (if S(1") = 20) with probability p
and H =0 (if S(T") = 7.5) with probability 1 — p.
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A fundamental example

The key idea now is to try to find a portfolio combining bond and stock,
which synthesizes the cash flow of the option. If such a portfolio exists,
holding this portfolio today would be equivalent to holding the option —
they would produce the same cash flow in the future. Therefore the price
of the option should be the same as the price of constructing the
portfolio, otherwise investors could just restructure their holdings in the
assets and obtain a riskfree profit today.
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A fundamental example

We briefly present the constructing of the portfolio @ = (6, 61), which
in the current setting is just a simple exercise in linear algebra. If we buy
61 stocks and invest 6y £ in the bank account, then today's value of the
portfolio is

V(O) =0y + 61 - S(O)
In state 1 the stock price is 20 £ and the value of the option 5 £, so
Oy + 601 - 20 = 5.

In state 2 the stock price is 7.5 £ and the value of the option 0 £, so

Oy +61-7.5=0.
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A fundamental example

We solve this and get 5 = —3 and 6; = 0.4. So the value of our

portfolio at time 0 in £ is
V(0) =—-3B(0)+0.45(0) =1

V(0) is called the no-arbitrage price. Every other price allows a riskless
profit, since if the option is too cheap, buy it and finance yourself by
selling short the above portfolio (i.e. sell the portfolio without possessing
it and promise to deliver it at time 1" = 1 — this is riskfree because you
own the option). If on the other hand the option is too dear, write it (i.e.
sell it in the market) and cover yourself by setting up the above portfolio.
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A fundamental example

We see that the no-arbitrage price is independent of the individual
preferences of the investor (given by certain probability assumptions
about the future, i.e. a probability measure IP). But one can identify a

special, so called risk-neutral, probability measure IP*, such that

Hy = E"(8H)

= (@ - B(5S1—K)+(1-p")-0)

(©Riidiger Kiesel
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A fundamental example
In the above example we get from 1 = p*5 + (1 — p*)0 that p* = 0.2

This probability measure IP* is equivalent to IP, and the discounted
stock price process, i.e. 3;5;, t = 0,1 follows a IP*-martingale. In the
above example this corresponds to

S(0) = p*S(T)*P 4 (1 — p*)S(T)%*", that is S(0) = E* (3S(T)).
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A fundamental example

We will show that the above generalizes. Indeed, we will find that the
no-arbitrage condition is equivalent to the existence of an equivalent
martingale measure (first fundamental theorem of asset pricing) and that
the property that we can price assets using the expectation operator is
equivalent to the uniqueness of the equivalent martingale measure.
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A single-period model

We proceed to formalise and extend the above example and present in
detail a simple model of a financial market. Despite its simplicity it
already has all the key features needed in the sequel (and the reader
should not hesitate to come back here from more advanced chapters to
see the bare concepts again).

We consider a single period model, i.e. we have two time-indices, say
t = 0, which is the current time (date), and ¢t = T, which is the terminal
date for all economic activities considered.
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A single-period model

The financial market contains d + 1 traded financial assets, whose prices
at time ¢ = 0 are denoted by the vector S(0) € IR,

S(0) = (S0(0), 51(0), .. ., Sa(0))’

(where ’ denotes the transpose of a vector or matrix). At time 7T, the
owner of financial asset number ¢ receives a random payment depending
on the state of the world. We model this randomness by introducing a
finite probability space (2, F, IP), with a finite number |Q}] = N of
points (each corresponding to a certain state of the world)

Wi, ... ,Wj,...,wn, €ach with positive probability: IP({w}) > 0, which
means that every state of the world is possible.
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A single-period model

F is the set of subsets of (2 (events that can happen in the world) on
which IP(.) is defined (we can quantify how probable these events are),
here F = P(£2) the set of all subsets of ).

We can now write the random payment arising from financial asset ¢ as

(©Riidiger Kiesel
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A single-period model

At time t = 0 the agents can buy and sell financial assets. The portfolio
position of an individual agent is given by a trading strategy ¢, which is
an IRt vector,

Y = (9007901,---79061)/-

Here ¢; denotes the quantity of the ith asset bought at time ¢ = 0,
which may be negative as well as positive (recall we allow short
positions).
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A single-period model

The dynamics of our model using the trading strategy ¢ are as follows:

at time t = 0 we invest the amount

and at time t = T" we receive the random payment

S(T,w) ¢ = Z?:o ©;S; (T, w) depending on the realised state w of the
world. Using the (d 4+ 1) x N-matrix S, whose columns are the vectors
S(T,w), we can write the possible payments more compactly as §’gp.
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A single-period model

What does an arbitrage opportunity mean in our model? As arbitrage is
‘making something out of nothing’; an arbitrage strategy is a vector

¢ € IR such that S(0)'p = 0, our net investment at time t = 0 is
zero, and

S(T,w) v >0, Vw € Q and there exists a w € ) such that
S(T,w) ¢ > 0.

We can equivalently formulate this as: S(0)’'¢ < 0, we borrow money for

consumption at time ¢ = 0, and
S(T,w) ¢ >0, Yw € 0,

i.e we don’t have to repay anything at ¢t = 7. Now this means we had a
‘free lunch’ at t = 0 at the market's expense.
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A single-period model

We agreed that we should not have arbitrage opportunities in our model.

The consequences of this assumption are surprisingly far-reaching.

So assume that there are no arbitrage opportunities. If we analyse the
structure of our model above, we see that every statement can be
formulated in terms of Euclidean geometry or linear algebra. For

instance, absence of arbitrage means that the space

I
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A single-period model

and the space

RY T
= {zeR"*1:2,>0 VO<i<N

34 such that z; > 0}

have no common points. A statement like that naturally points to the
use of a separation theorem for convex subsets, the separating
hyperplane theorem Using such a theorem we come to the following
characterisation of no arbitrage.
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A single-period model

There is no arbitrage if and only if there exists a vector
weRY, ¢;>0, V1<i<N

such that

S = S(0). (4)

Proof. The implication ‘<=’ follows straightforwardly: assume that
S(T,w) o >0, w € for a vector ¢ € IR . Then

S(0) ¢ = (Sip) o =1'S'p >0,

since ¢; > 0, V1 <7 < N. So no arbitrage opportunities exist.
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A single-period model

To show the implication ‘=" we use a variant of the separating
hyperplane theorem. Absence of arbitrage means the I' and ]Rfle have
no common points. This means that K C IRfJrl defined by

N
K = zEZRfJA:Zzizl
i=0

and I' do not meet.

(©Riidiger Kiesel

68




69

A single-period model

But K is a compact and convex set, and by the separating hyperplane
theorem, there is a vector A € IRV 1! such that for all z € K

Nz >0
but for all (z,y)" € T
AT + My + ...+ Avyny = 0.

Now choosing z; = 1 successively we see that A\; >0, : =0,... N, and
hence by normalising we get ¢ = A/ \g with 19 = 1. Now set
= —5(0)'¢ and y = S’y and the claim follows. .
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A single-period model

The vector v is called a state-price vector. We can think of 1; as the
marginal cost of obtaining an additional unit of account in state w;. We

can now reformulate the above statement to:

There is no arbitrage if and only if there exists a state-price vector.
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A single-period model

Using a further normalisation, we can clarify the link to our probabilistic

setting. Given a state-price vector ¢ = (¢1,...,1%nN), we set
Yo = ¥1 + ...+ YN and for any state w; write ¢; = ¥;/19. We can
now view (qi,...,qn) as probabilities and define a new probability

measure on {2 by Q({w;}) =¢;, 7 =1,..., N. Using this probability
measure, we see that for each asset 7 we have the relation

qu (T, wj) = Eq(Si(T)).

Hence the normalized price of the financial security ¢ is just its expected
payoff under some specially chosen ‘risk-neutral’ probabilities.
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A single-period model

So far we have not specified anything about the denomination of prices.
From a technical point of view we could choose any asset ¢ as long as its
price vector (.5;(0), S;(T,w1),...,S:;(T,wn))" only contains positive
entries, and express all other prices in units of this asset. We say that we
use this asset as numéraire. Let us emphasise again that arbitrage
opportunities do not depend on the chosen numéraire. It turns out that
appropriate choice of the numéraire facilitates the probability-theoretic
analysis in complex settings, and we will discuss the choice of the
numéraire in detail later on.
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A single-period model

For simplicity, let us assume that asset O is a riskless bond paying one
unit in all states w € §2 at time T'. This means that Sy(7,w) =1 in all
states of the world w € (2. By the above analysis we must have

S (O) N N
S = iSo(Tywy) =Y il =1,
j=1

(0

j=1

and 1) is the discount on riskless borrowing. Introducing an interest rate
r, we must have Sp(0) =g = (1 + 7)1,
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A single-period model

We can now express the price of asset ¢ at time ¢t = 0 as

- St —m ()

We rewrite this as
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A single-period model

In the language of probability theory we just have shown that the
processes S;(t)/(1 4+ r)*, t = 0,T are Q-martingales. (Martingales are
the probabilists’ way of describing fair games.) It is important to notice
that under the given probability measure IP (which reflects an individual
agent's belief or the markets’ belief) the processes

S;(t)/(L+7r)t, t =0,T generally do not form IP-martingales.
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A single-period model

We use this to shed light on the relationship of the probability measures
IP and Q. Since Q({w}) > 0 for all w € € the probability measures IP
and QQ are equivalent and because of the argument above we call Q an
equivalent martingale measure. So we arrived at yet another
characterisation of arbitrage:

There is no arbitrage if and only if there exists an equivalent martingale
measure.
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A single-period model

We also see that risk-neutral pricing corresponds to using the
expectation operator with respect to an equivalent martingale measure.
This concept lies at the heart of stochastic (mathematical) finance and
will be the golden thread (or roter Faden) throughout this lecture.
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A single-period model

We now know how the given prices of our (d + 1) financial assets should
be related in order to exclude arbitrage opportunities, but how should we
price a newly introduced financial instrument? We can represent this
financial instrument by its random payments

o(T)=(0(T,w1),...,0(T,w;),...,0(T,wn))

(observe that §(T) is a vector in IRY) at time t = T and ask for its price
6(0) at time t = 0.
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A single-period model

The natural idea is to use an equivalent probability measure Q and set
5(0) =Eq(d(T)/(1 +1)")

(recall that all time ¢ = 0 and time ¢t = T prices are related in this way).
Unfortunately, as we don't have a unique martingale measure in general,
we cannot guarantee the uniqueness of the ¢ = 0 price. Put another way,
we know every equivalent martingale measure leads to a reasonable
relative price for our newly created financial instrument, but which
measure should one choose?
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A single-period model

The easiest way out would be if there were only one equivalent
martingale measure at our disposal — and surprisingly enough the
classical economic pricing theory puts us exactly in this situation! Given
a set of financial assets on a market the underlying question is whether
we are able to price any new financial asset which might be introduced
in the market, or equivalently whether we can replicate the cash-flow of
the new asset by means of a portfolio of our original assets. If this is the
case and we can replicate every new asset, the market is called complete.
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A single-period model

In our financial market situation the question can be restated
mathematically in terms of Euclidean geometry: do the vectors S;(T)
span the whole IRV ? This leads to:

Suppose there are no arbitrage opportunities. Then the model is
complete if and only if the matrix equation

S'p=14¢

has a solution ¢ € IR for any vector 6 € IR™
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A single-period model

Linear algebra immediately tells us that the above theorem means that
the number of independent vectors in S’ must equal the number of
states in €2. In an informal way we can say that if the financial market
model contains 2 (IN) states of the world at time T it allows for

1 (N — 1) sources of randomness (if there is only one state we know the
outcome). Likewise we can view the numéraire asset as risk-free and all
other assets as risky. We can now restate the above characterisation of
completeness in an informal (but intuitive) way as:

A financial market model is complete if it contains at least as many
independent risky assets as sources of randomness.
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A single-period model

The question of completeness can be expressed equivalently in
probabilistic language, as a question of representability of the relevant
random variables or whether the o-algebra they generate is the full
o-algebra.

If a financial market model is complete, traditional economic theory
shows that there exists a unique system of prices. If there exists only one
system of prices, and every equivalent martingale measure gives rise to a

price system, we can only have a unique equivalent martingale measure.

The (arbitrage-free) market is complete if and only if there exists a
unique equivalent martingale measure.
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Aims and Objectives
e Review basic facts of conditional expectation §2.5;
e Introduce discrete-parameter martingales §3.3;
e Discuss main properties of martingales §3.4;
e Discussion of the optional stopping theorem §3.5;

e Discussion of the Snell envelope §3.6;
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Conditional Expectation

Recall the defining property: For X and Y random variables
E(Y|o(X)) =E(Y|X) is defined as the (X )-measurable random

variable such that

/ Y diP — / E(Y|X)dP VB € o(X) (5)

To define E (Y'|G) for a general o-algebra G, replace o(X) with G in (5).
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Conditional Expectation

From the definition linearity of conditional expectation follows from the
linearity of the integral. Further properties

1 G={0,0}, E(V|{},0})=EY.

2. G6=F, EY|F)=Y IP—a.s..

3. f Y is G-measurable, E(Y|G) =Y IP—a.s..
4

. If Y is G-measurable, E (Y Z|G) = YE (Z|G) IP — a.s. (we call this
‘taking out what is known' in view of the above).

(©Riidiger Kiesel
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Conditional Expectation

5. f Go C G, E[E(Y|G)|Go] =E[Y|Gy] a.s. This is the so-called
tower property).

6. Conditional mean formula. E[E (Y|G)]=EY IP — a.s.

7. Role of independence. If Y is independent of G,

E(Y|G)=EY a.s.
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Discrete-Parameter Martingales

A process X = (X,,) is called a martingale relative to ((F,), IP) if

(i) X is adapted (to (F,));
(i) E | X,| < oo for all n;
(iii) E [ X, | Fno1] = Xpn1 P —a.s. (n>1).

X is a supermartingale if in place of (iii)
E[X,|Fno1] < Xpo1 P—as. (n>1);
X is a submartingale if in place of (iii)

E[X,|Fn-1] > Xpn-1 IP—a.s. (n>1).
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Discrete-Parameter Martingales

Using (iii) we see that the best forecast of unobserved future values of
(X% ) based on information at time F,, is X,,; in more mathematical
terms, the F,, measurable random variable Y which minimises

E( X1 — Y)?|F,) is X,

Martingales also have a useful interpretation in terms of dynamic games:
a martingale is ‘constant on average’, and models a fair game; a
supermartingale is ‘decreasing on average’, and models an unfavourable
game; a submartingale is ‘increasing on average’, and models a

favourable game.
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Discrete-Parameter Martingales

X is a submartingale (supermartingale) if and only if —X is a
supermartingale (submartingale); X is a martingale if and only if it is

both a submartingale and a supermartingale.

(X,,) is a martingale if and only if (X,, — X{) is a martingale. So we
may without loss of generality take Xy = 0 when convenient.
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Discrete-Parameter Martingales

If X is a martingale, then for m < n using the iterated conditional
expectation and the martingale property repeatedly

E [Xn‘fm] = K [E (Xn|Fn—1)|fm]

= E[X,_1]|Fn]

. =E[Xn|Fn] = X,

and similarly for submartingales, supermartingales.
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Discrete-Parameter Martingales

Examples of a martingale include: sums of independent, integrable
zero-mean random variables (submartingales: positive mean;
supermartingale: negative mean). Also

Example. Accumulating data about a random variable: If
¢ e LYD, F,IP), M, :=E (£|F,) (so M, represents our best estimate
of & based on knowledge at time n), then using iterated conditional

expectations

E [M,|Fn-1] = E[E(&|Fn)|Fn-1]

= E[{|Fn-1] = My,
so (M) is a martingale. One has the convergence

M, — My, :=E[¢|Fs] a.s. andin L'
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Martingale Convergence
We turn now to the theorems that make martingales so powerful a tool.

A supermartingale is ‘decreasing on average'. Recall that a decreasing
sequence (of real numbers) that is bounded below converges (decreases
to its greatest lower bound or infimum). This suggests that a
supermartingale which is bounded below converges a.s.. More is true.
Call X L!-bounded if

supE | X,,| < oo.
n

An Ll-bounded supermartingale is a.s. convergent: there exists X
finite such that

Xn — Xoo (n—00) a.s.
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Martingale Convergence

Doob’s Martingale Convergence Theorem
An L!'-bounded martingale converges a.s..

We say that
X, — Xo inL?

E|X, - Xs| —0 (n— o00).

For a class of martingales, one gets convergence in L' as well as almost

surely.
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Martingale Convergence

The following are equivalent for martingales X = (X,,):

(i) X,, converges in L;
(i) X, is L'-bounded, and its a.s. limit X, (which exists, by above)
satisfies

X, = E[Xo|Fnl;

(iii) There exists an integrable random variable X with

X, = E[X|F,].

Such martingales are called regular or uniformly integrable.
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Doob Decomposition

Let X = (X,,) be an adapted process with each X,, € L'. Then X has

an (essentially unique) Doob decomposition
X=Xg+M+A: X,=Xo+M,+A, Yn (6)

with M a martingale null at zero, A a predictable process null at zero. If
also X is a submartingale (‘increasing on average'), A is increasing:
Ap < A,yq forall n, ass.
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Doob decomposition

Proof. If X has a Doob decomposition (6),

1D [Xn - Xn—l‘fn—l]

= K [Mn — Mn—1|fn—1] + K [An — An—llfn—l]o

The first term on the right is zero, as M is a martingale. The second is
A, — A, _1, since A, (and A,,_1) is F,,_1-measurable by previsibility.
So

E[X, — Xp_1|Fn_1] = An — Ap_1, (7)

and summation gives

n

An = ZE [Xk — Xk_1|fk_1], a.s.
k=1
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Doob decomposition

We use this formula to define (A,,), clearly previsible. We then use (6)
to define (M,,), then a martingale, giving the Doob decomposition (6).

If X is a submartingale, the LHS of (7) is > 0, so the RHS of (7) is > 0,
i.e. (A,) is increasing. .
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Martingale Transforms

Now think of a gambling game, or series of speculative investments, in
discrete time. There is no play at time O; there are plays at times
n=12,..., and

AX, =X, — X,
represents our net winnings per unit stake at play n. Thus if X,, is a
martingale, the game is ‘fair on average'.

Call a process C' = (C,,)5% predictable (or previsible) if
C,, is F,,_1 — measurable for all n > 1.

Think of C,, as your stake on play n (Cj is not defined, as there is no
play at time 0).
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Martingale Transforms

Previsibility says that you have to decide how much to stake on play n
based on the history before time n (i.e., up to and including play n — 1).
Your winnings on game n are C,,AX,, = Cp,(X,, — X;,_1). Your total
(net) winnings up to time n are

Yo=Y CpAXp =) Cp(Xp— Xp_1).
k=1 k=1

We write
Y=CeX, Y,=(CeX),, AY,=C,AX,

(CeX)y=0as 22:1 is empty), and call C' e X the martingale
transform of X by C.
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Martingale Transforms

(i) If C is a bounded non-negative predictable process and X is a
supermartingale, C' @ X is a supermartingale null at zero.
(ii) If C'is bounded and predictable and X is a martingale, C' e X is a

martingale null at zero.
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Martingale Transforms

Proof. With Y = (' e X as above,

E [Yn — Yn—l‘fn—l] =K [Cn(Xn — Xn—1)|fn—1]
= CLE [(Xn — Xn—1)|fn—1]

(as ', is bounded, so integrable, and F,,_1-measurable, so can be taken

out)
<0

in case (i), as C' > 0 and X is a supermartingale,
=0
in case (ii), as X is a martingale. .

Interpretation. You can't beat the system! In the martingale case,
previsibility of C' means we can’t foresee the future (which is realistic

and fair). So we expect to gain nothing — as we should.
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Martingale Transforms

Martingale Transform Lemma: An adapted sequence of real integrable
random variables (M,,) is a martingale iff for any bounded previsible

sequence (H,),

E (inAMk> =0 (n=1,2,...).

k=1

Proof. If (M,,) is a martingale, X defined by X, = 0,
X, =Y H.AM, (n>1)
k=1

is the martingale transform H e M, so is a martingale.
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Martingale Transforms

Conversely, if the condition of the proposition holds, choose 7, and for
any F;-measurable set A write H,, =0 forn # j+1, Hj41 = I4. Then
(H,,) is previsible, so the condition of the proposition,

E(>.7 H-AM,) = 0, becomes

E[Ia(Mj1 — M;)] = 0.

Since this holds for every set A € F;, the definition of conditional
expectation gives

E (Mji1]F;) = M.

Since this holds for every j, (M) is a martingale. .
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Stopping Times and Optional Stopping
A random variable T" taking values in {0,1,2,...; 400} is called a
stopping time (or optional time) if
{T'<n}=H{w:T(w)<n}eF, Vn<ox.
Equivalently,
{T'=n}eF, n<ox,

or
{T'>n}eF,, n<oo.
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Stopping Times and Optional Stopping

Think of I" as a time at which you decide to quit a gambling game:
whether or not you quit at time n depends only on the history up to and
including time n — NOT the future. Thus stopping times model
gambling and other situations where there is no foreknowledge, or

prescience of the future; in particular, in the financial context, where
there is no insider trading.
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Stopping Times and Optional Stopping
Doob’s Optional Stopping Theorem Let T' be a stopping time,

X = (X,,)be a supermartingale, and assume that one of the following
holds:

(i) T is bounded (T'(w) < K for some constant K and all w € Q);
(i) X = (X,) is bounded (| X,,(w)| < K for some K and all n,w);
(iii) ET < oo and (X,, — X,,_1) is bounded.

Then X7 is integrable, and

EXr <EX,.
If X is a martingale, then

EXr=EXp.
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Stopping Times and Optional Stopping
Write X' := X, A7 for the sequence (X,,) stopped at time 7.

(i) If (X,,) is adapted and T is a stopping time, the stopped sequence
(XnaT) is adapted.

(ii) If (X,,) is a martingale (supermartingale) and 7" is a stopping time,
(XI') is a martingale (supermartingale).
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Stopping Times and Optional Stopping
Proof. If ¢; := 1¢;<7y,

Xran = Xo + Z ¢ (X; — Xj-1)
j=1

(as the right is Xy + Z?:/\f(X] — X,_1), which telescopes to X7nn).
Since {j < T'} is the complement of {T' < j} ={T' <j—1} € F,;_1,

(¢,,) is predictable. So (X1 is adapted.

If (X,,) is a martingale, so is (X!) as it is the martingale transform of
(X0n) by (¢n).
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Stopping Times and Optional Stopping
Since by predictability of (¢,,)

n—1

E(Xran|Foo1) = Xo+ Y 6;(X; — X;-1)
j=1

+¢n(E [anfn—l] — Xn—l)
= X7A(m-1)

+¢n(E [Xn|fn—1] — Xn—l)a

¢n > 0 shows that if (X,,) is a supermartingale (submartingale), so is
(XT/\n)- u
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Examples

1. Simple Random Walk Recall the simple random walk: S,, := "7 X,
where the X,, are independent tosses of a fair coin, taking values +1
with equal probability 1/2. Suppose we decide to bet until our net gain
is first +1, then quit. Let 1" be the time we quit; T' is a stopping time.
The stopping time T" has been analysed in detail; see e.g.(?), §5.3.
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Examples

From this, note:

(i) T < oo a.s.: the gambler will certainly achieve a net gain of +1
eventually;

(i) ET = +o00: the mean waiting-time until this happens is infinity.
Hence also:

(iii) No bound can be imposed on the gambler's maximum net loss
before his net gain first becomes +1.
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Examples

At first sight, this looks like a foolproof way to make money out of
nothing: just bet until you get ahead (which happens eventually, by (i)),
then quit. However, as a gambling strategy, this is hopelessly
impractical: because of (ii), you need unlimited time, and because of
(iii), you need unlimited capital — neither of which is realistic.

Notice that the optional stopping theorem fails here: we start at zero, so
So=0, ESyg =0; but St =1, s0o ESr =1.
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Examples

This example shows two things:

(a) The Optional Stopping Theorem does indeed need conditions, as the
conclusion may fail otherwise (none of the conditions (i) — (iii) in the
OST are satisfied in the example above).

(b) Any practical gambling (or trading) strategy needs to have some
integrability or boundedness restrictions to eliminate such theoretically
possible but practically ridiculous cases.
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Examples

2. The Doubling Strategy The strategy of doubling when losing - the
martingale, according to the Oxford English Dictionary — has similar
properties. We play until the time 1T’ of our first win. Then 1" is a
stopping time, and is geometrically distributed with parameter p = 1/2.
If T = n, our winnings on the nth play are 2"~ (our previous stake of 1
doubled on each of the previous n — 1 losses). Our cumulative losses to
dateare 1 +2+...+2" 2 =2""1 1 (summing the geometric series),

giving us a net gain of 1.
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Examples

The mean time of play is E (T') = 2 (so doubling strategies accelerate
our eventually certain win to give a finite expected waiting time for it).
But no bound can be put on the losses one may need to sustain before
we win, so again we would need unlimited capital to implement this
strategy — which would be suicidal in practice as a result.
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Examples

3. The Saint Petersburg Game A single play of the Saint Petersburg
game consists of a sequence of coin tosses stopped at the first head; if
this is the rth toss, the player receives a prize of $ 2". (Thus the
expected gain is Zfil 27 ".2" = 400, so the random variable is not
integrable, and martingale theory does not apply.) Let S,, denote the
player's cumulative gain after n plays of the game. The question arises
as to what the ‘fair price’ of a ticket to play the game is. It turns out
that fair prices exist (in a suitable sense), but the fair price of the nth
play varies with n — surprising, as all the plays are replicas of each other.
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The Snell Envelope

If Z =(Z,))_, is a sequence adapted to a filtration (F,,), the sequence
U = (U,)N_, defined by

UN = ZN,
U, = max(Z,, E(Up11|Fn)) (n < N —1)

is called the Snell envelope of Z.
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The Snell Envelope

The Snell envelope (U,) of (Z,,) is a supermartingale, and is the smallest
supermartingale dominating (Z,,) (that is, with U,, > Z,, for all n).

Proof. First, U, > E(U,11|F,), so U is a supermartingale, and
U, > Z,, so U dominates Z.

Next, let T' = (I},) be any other supermartingale dominating Z; we
must show 7' dominates U also. First, since Uy = Zx and I dominates
Z, T > Uypy.
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The Snell Envelope

Assume inductively that T,, > U,,. Then
Tn—l Z E (Tn|fn—1) Z E (Un|]:n—1)7

and as T" dominates Z
Tn—l > Zn—l-

Combining,
Tn—l > maX(Zn—laE (Un|fn—1)) — Un—l-

By repeating this argument (or more formally, by backward induction),
T,, > U, for all n, as required. =
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The Snell Envelope

To :=inf{n >0: U, = Z,} is a stopping time, and the stopped
sequence (U10) is a martingale.

Proof. Since Uy = Zn, Ty € {0,1,..., N} is well-defined. For k = 0,
{To =0} ={Uy = Zyp} € Fo; for k > 1,

{To =k}
= {UO > Z()} AEEERA {Uk—l > Zk—l} M {Uk = Zk}

e Fi.

So T} is a stopping time.
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The Snell Envelope

Ugo — Un/\TO = Up + Z¢jAUj7

j=1
where ¢; = 1y7,>;1 is adapted. Forn < N — 1,

U, — U dnt1(Unt1 — Up)

Lint1<ty (Ungt1 — Uy).
Now U, := max(Z,,E (U,+1|F)), and

Un>Zn on {n—|—1§T0}
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The Snell Envelope

So from the definition of U,
U,=EUp+1|Fn) on{n+1<Ty}.
We next prove

Upty = Up® = 1pnga<m} (Unga = E(Unya|Fn))- (8)
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The Snell Envelope

For, suppose first that Ty > n + 1. Then the left of (8) is U,11 — Uy,
the right is U,,+1 — E (Un41|Fn), and these agree on {n + 1 < Ty} by
above. The other possibility is that Ty <n + 1, i.e. Ty < n. Then the
left of (8) is U, — U, = 0, while the right is zero because the indicator
is zero, completing the proof of (8).
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The Snell Envelope
Now apply E (.|F,) to (8): since {n+ 1 < Ty} ={Ty < n}¢e Fp,,

E[(U,51 — Ug®)|Fal
= 1{n+1§To)} [E (Un—Fl’fn) — K (Un+1‘Fn)]

= 0.

So E (Ugil\fn) = U!o. This says that U0 is a martingale, as required.
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The Snell Envelope

Write 7,, n for the set of stopping times taking values in
{n,n+1,..., N} (a finite set, as €2 is finite). We next see that the

Snell envelope solves the optimal stopping problem.

Ty solves the optimal stopping problem for Z:

U =E (ZT0|]:O) — Sup{E (ZT’.FO) T e ,ZE),N}-
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The Snell Envelope

Proof. To prove the first statement we use that (U°) is a martingale
and U, = Z7,; then

Uy® =E (Ux|Fo) = E (Ur, | Fo) = E (Zr, | Fo).

Now for any stopping time 1" € 7y n, since U is a supermartingale
(above), so is the stopped process (U!'). Together with the property
that (U,,) dominates (Z,,) this yields

Uy =U,° > E(UL|Fo) = E(Ur|Fo) > E(Z7|Fy),

and this completes the proof. .
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The Snell Envelope

The same argument, starting at time n rather than time 0, gives

If T,, :=inf{j > n:U; = Z;},

U, =E(Zr, |F,) =sup{E(Zp|F,): T € T, N}

As we are attempting to maximise our payoff by stopping Z = (Z,,) at
the most advantageous time, the Corollary shows that T,, gives the best
stopping time that is realistic: it maximises our expected payoff given
only information currently available (it is easy, but irrelevant, to
maximise things with hindsight!). We thus call T;, (or T}, starting from
time n) the optimal stopping time for the problem. For textbook
accounts of optimal stopping problems, see e.g. (?), (Neveu 1975).
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Financial Mathematics

Lecture 4

by Riidiger Kiesel
Department of Financial Mathematics, University of Ulm

Department of Statistics, LSE
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Aims and Objectives
e Discrete-time models §4.1;

e Fundamental theorems of asset pricing §4.2, §4.3;

(©Riidiger Kiesel



132

The model

We will study so-called finite markets — i.e. discrete-time models of
financial markets in which all relevant quantities take a finite number of
values. To illustrate the ideas, it suffices to work with a finite probability
space (£2, F, IP), with a finite number || of points w, each with
positive probability: IP({w}) > 0.

We specify a time horizon 1', which is the terminal date for all economic
activities considered. (For a simple option pricing model the time
horizon typically corresponds to the expiry date of the option.)
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The model

As before, we use a filtration F = {F;}]_, consisting of o-algebras

Fo CF1 C -+ C Fr: we take Fy = {0, Q}, the trivial o-field,

Fr =F =P(Q) (here P() is the power-set of €, the class of all 2/l
subsets of 2: we need every possible subset, as they all — apart from the
empty set — carry positive probability).

(©Riidiger Kiesel




134

The model

The financial market contains d 4 1 financial assets. The usual
interpretation is to assume one risk-free asset (bond, bank account)
labelled 0, and d risky assets (stocks, say) labelled 1 to d. While the
reader may keep this interpretation as a mental picture, we prefer not to
use it directly. The prices of the assets at time ¢ are random variables,
So(t,w),S1(t,w),...,Sq(t,w) say, non-negative and F;-measurable (i.e.
adapted: at time ¢, we know the prices S;(t)). We write

S(t) = (So(t), Si(t),...,Sa(t))

for the vector of prices at time t.
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The model

Hereafter we refer to the probability space (€2, F, IP), the set of trading
dates, the price process S and the information structure IF, which is
typically generated by the price process S, together as a securities
market model.

A numéraire is a price process (X (t))1_, (a sequence of random
variables), which is strictly positive for all ¢t € {0,1,...,T}.
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The model

For the standard approach the risk-free bank account process is used as
numéraire. In some applications, however, it is more convenient to use a
security other than the bank account and we therefore just use .Sy
without further specification as a numéraire. We furthermore take
So(0) =1 (that is, we reckon in units of the initial value of our
numéraire), and define 3(t) := 1/Sy(t) as a discount factor.
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The model

A trading strategy (or dynamic portfolio) o is a IRt vector stochastic

process

¥ = (Sp(t))thl

= ((po(t,w), p1(t,w), .., palt,w)) )iz

which is predictable (or previsible): each ;(t) is F;_1-measurable for
t > 1.
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The model

Here o;(t) denotes the number of shares of asset i held in the portfolio
at time ¢ — to be determined on the basis of information available before
time t; i.e. the investor selects his time t portfolio after observing the
prices S(t — 1). However, the portfolio (t) must be established before,
and held until after, announcement of the prices S(t).

The components ;(t) may assume negative as well as positive values,
reflecting the fact that we allow short sales and assume that the assets
are perfectly divisible.
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The model

The value of the portfolio at time ¢t is the scalar product

and
Vi (0) = (1) - S(0).
The process V,,(t,w) is called the wealth or value process of the trading

strategy .

The initial wealth V,(0) is called the initial investment or endowment of

the investor.
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The model

Now ¢(t) - S(t — 1) reflects the market value of the portfolio just after it
has been established at time ¢t — 1, whereas ¢(t) - S(t) is the value just

after time ¢ prices are observed, but before changes are made in the
portfolio. Hence

p(t) - (S(t) =St = 1)) = @(t) - AS(?)

is the change in the market value due to changes in security prices which
occur between time ¢t — 1 and ¢. This motivates:
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The model
The gains process GG, of a trading strategy ¢ is given by
(t=1,2,...,7)

Observe the — for now — formal similarity of the gains process G, from
trading in S following a trading strategy ¢ to the martingale transform

of S by .
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The model

Define S(t) = (1, 5(t)S1(t), ..., B(t)S4(t)), the vector of discounted
prices, and consider the discounted value process

and the discounted gains process

Ge(t) = X1 9(1)(8(1) = S8(7 —1))

= ZQO(T) - AS(1).

Observe that the discounted gains process reflects the gains from trading
with assets 1 to d only, which in case of the standard model (a bank
account and d stocks) are the risky assets.
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The model
We will only consider special classes of trading strategies.

The strategy ¢ is self-financing, p € @, if fort =1,2,...,T —1
p(t) - S(t) =t +1)-5(). (9)

When new prices S(t) are quoted at time ¢, the investor adjusts his
portfolio from (t) to ¢(t + 1), without bringing in or consuming any
wealth.
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The model

The following result (which is trivial in our current setting, but requires a
little argument in continuous time) shows that renormalising security

prices (i.e. changing the numéraire) has essentially no economic effects.

Numéraire Invariance Let X (t) be a numéraire. A trading strategy ¢ is

self-financing with respect to S(¢) if and only if ¢ is self-financing with
respect to X (¢)~15(t).
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The model

Proof. Since X (t) is strictly positive for all t =0,1,...,T we have the

following equivalence, which implies the claim:

p(t)  X(@)T1S(t) = p(t+ 1) X(1)7'S(b).

A trading strategy ¢ is self-financing with respect to S(t) if and only if
o is self-financing with respect to S(t).
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The model

We now give a characterisation of self-financing strategies in terms of

the discounted processes.

A trading strategy ¢ belongs to ® if and only if

V,(t) =V, (0) +G,(t), (t=0,1,...,T). (10)
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The model

Proof. Assume ¢ € ®. Then using the defining relation (9), the
numéraire invariance theorem and the fact that Sp(0) =1

= ¢(1)-5(0) + > ¢(r)- (S(r) = S(r = 1))

=D (p(7) —p(r+ 1)) - S(1) — ¢(1) - 5(0)
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The model

Assume now that (10) holds true. By the numéraire invariance theorem
it is enough to show the discounted version of relation (9). Summing up
tot =2 (10) is

p(2) - 5(2) = p(1) - 5(0) + (1) - (5(1) — §(0)) + p(2) - (5(2) — 5(1)).
Subtracting ¢(2) - S(2) on both sides gives ©(2) - S(1) = (1) - S(1),
which is (9) for t = 1. Proceeding similarly — or by induction — we can

~

show ©(t) - S(t) = @(t+1)-S(t) fort =2,...,T — 1 as required. .
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The model

We are allowed to borrow (so ¢g(t) may be negative) and sell short (so
@;(t) may be negative for ¢ = 1,...,d). So it is hardly surprising that if
we decide what to do about the risky assets and fix an initial

endowment, the numéraire will take care of itself, in the following sense.

If (p1(t),...,pq(t)) is predictable and Vj is Fy-measurable, there is a
unique predictable process (g(t))i_, such that o = (g, ¥1,...,0q) is
self-financing with initial value of the corresponding portfolio

V,(0) = V.
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The model

Proof. If ¢ is self-financing, then

Ve (1)

= Vo+ Z ©1(T AS1 )+ ..+ Sﬁd(T)AS’d(T))'
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The model

On the other hand,

= o)+ p1(t)S1(t) + ...+ wa(t)Sa(t).
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The model

Equate these:

which defines ¢ (t) uniquely.
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The model

The terms in S;(t) are

~ ~

pi(1)AS; (1) — pi(1)Si(t) = —i(t)S;i(t — 1),

which is F;_1-measurable. So

wo(t)

— V,+ Z 01 (T)ASL(T) + ... + pa(T)AS4(T))

—(1(1)S1(t—1) + ...+ @a(t)Sa(t — 1)),

where as 1,...,pq are predictable, all terms on the right-hand side are
Fi_1-measurable, so ¢ is predictable.
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The model

The above has a further important consequence: for defining a gains
process G, only the components (1 (t),.. ., pq(t)) are needed. If we
require them to be predictable they correspond in a unique way (after
fixing initial endowment) to a self-financing trading strategy. Thus for
the discounted world predictable strategies and final cash-flows
generated by them are all that matters.
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The model

We now turn to the modelling of derivative instruments in our current

framework. This is done in the following fashion.

A contingent claim X with maturity date 7" is an arbitrary
Fr = F-measurable random variable (which is by the finiteness of the
probability space bounded). We denote the class of all contingent claims

by L0 = LO(Q, F, IP).

The notation L° for contingent claims is motivated by the them being
simply random variables in our context (and the functional-analytic

spaces used later on).
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The model

A typical example of a contingent claim X is an option on some
underlying asset S, then (e.g. for the case of a European call option
with maturity date 7" and strike K') we have a functional relation

X = f(S) with some function f (e.g. X = (S(T) — K)*). The general
definition allows for more complicated relationships which are captured
by the Fr-measurability of X (recall that Fr is typically generated by
the process 5).
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The No-Arbitrage Condition

The central principle in the single period example was the absence of
arbitrage opportunities, i.e. the absence investment strategies for making
profits without exposure to risk. As mentioned there this principle is
central for any market model, and we now define the mathematical
counterpart of this economic principle in our current setting.

Let & C ® be a set of self-financing strategies. A strategy RS P is
called an arbitrage opportunity or arbitrage strategy with respect to @ if
IP{V,(0) = 0} =1, and the terminal wealth of ¢ satisfies

P{V,(T) >0} =1 and P{V,(T) > 0} > 0.
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The No-Arbitrage Condition

So an arbitrage opportunity is a self-financing strategy with zero initial
value, which produces a non-negative final value with probability one
and has a positive probability of a positive final value. Observe that
arbitrage opportunities are always defined with respect to a certain class
of trading strategies.

We say that a security market M is arbitrage-free if there are no
arbitrage opportunities in the class ® of trading strategies.
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The No-Arbitrage Condition

We will allow ourselves to use ‘no-arbitrage’ in place of ‘arbitrage-free’
when convenient.

The fundamental insight in the single-period example was the
equivalence of the no-arbitrage condition and the existence of
risk-neutral probabilities. For the multi-period case we now use
probabilistic machinery to establish the corresponding result.

A probability measure IP* on (£2, Fr) equivalent to IP is called a
martingale measure for S if the process S follows a IP*-martingale with

respect to the filtration IF. We denote by P(S) the class of equivalent
martingale measures.
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The No-Arbitrage Condition

Let IP* be an equivalent martingale measure (IP* € P(S)) and p € ®
any self-financing strategy. Then the wealth process f/@(t) IS a
IP*-martingale with respect to the filtration IF.

PROOF:
By the self-financing property of ¢, (10), we have

V,(t) =V, (0)+G,(t) (t=0,1,...,T).
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The No-Arbitrage Condition
So

~ ~

Vo(t +1) = V(1)

= Go(t+1) = Gy(t)

= @t+1)-(SEt+1)—S5@)).
So for p € ®, V,,(t) is the martingale transform of the IP* martingale S
by ¢ and hence a IP* martingale itself. .

Observe that in our setting all processes are bounded, i.e. the martingale
transform theorem is applicable without further restrictions. The next
result is the key for the further development.
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The No-Arbitrage Condition

If an equivalent martingale measure exists - that is, if P(S) # () — then
the market M is arbitrage-free.

PROOF:

Assume such a IP* exists. For any self-financing strategy ¢, we have as
before
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The No-Arbitrage Condition

So the initial and final IP*-expectations are the same,

~

E*(V,(T)) = E*(V,(0)).

If the strategy is an arbitrage opportunity its initial value — the

~

right-hand side above — is zero. Therefore the left-hand side E*(V,(T))
is zero, but V,(T) > 0 (by definition). Also each IP*({w}) > 0 (by
assumption, each IP({w}) > 0, so by equivalence each IP*({w}) > 0).
This and V,,(T) > 0 force V,,(T) = 0. So no arbitrage is possible. .
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The No-Arbitrage Condition

If the market M is arbitrage-free, then the class P(S) of equivalent

martingale measures is non-empty.

For the proof (for which we follow (Schachermayer 2003) we need some

auxiliary observations.

Recall the definition of arbitrage, in our finite-dimensional setting: a
self-financing trading strategy ¢ € ® is an arbitrage opportunity if
V,(0) =0, Vo (T,w) > 0Vw € 2 and there exists a w € Q with
V,(T,w) > 0.
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The No-Arbitrage Condition

Now call LY = L%(Q, F, IP) the set of random variables on (2, F) and
LY (QF,P):={XeLl’: X(w)>0VweQ and Jw €

Q such that X (w) > 0}. (Observe that LY | is a cone -closed under

. . . . . . . . O
vector addition and multiplication by positive scalars.) Using L3 . we
can write the arbitrage condition more compactly as

=  V(T)¢ L%, (QF,P)

for any self-financing strategy .
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The No-Arbitrage Condition

The next lemma formulates the arbitrage condition in terms of
discounted gains processes. The important advantage in using this
setting (rather than a setting in terms of value processes) is that we only
have to assume predictability of a vector process (¢1,...,@q). Recall
that we can choose a process g in such a way that the strategy

© = (Yo, P1,--.,©q) has zero initial value and is self-financing.

In an arbitrage-free market any predictable vector process
¢ = (p1,...,pq) satisfies

Gy (T) & LY (. F, IP).
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The No-Arbitrage Condition

PROOF:
There exists a unique predictable process (yg(t)) such that
© = (¢o0,¥1,---,paq) has zero initial value and is self-financing. Assume

~

G (T) € LY, (, F,IP). Then,

Vo(T) = B(T)Vo(T)

— 5(T)_1é<p’(T) > 0,

and is positive somewhere (i.e. with positive probability) by definition of
L9r+. Hence ¢ is an arbitrage opportunity with respect to ®. This
contradicts the assumption that the market is arbitrage-free.
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The No-Arbitrage Condition

We now define the space of contingent claims, i.e. random variables on
(€2, F), which an economic agent may replicate with zero initial
investment by pursuing some predictable trading strategy .

We call the subspace K of L° = L%(Q, F, IP) defined by
K={XecL’: X =G,(T), ¢ predictable}

the set of contingent claims attainable at price 0.
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The No-Arbitrage Condition

A market is arbitrage-free if and only if

KNLY (Q,F,P)=0. (11)

Proof Since our market model is finite we can use results from Euclidean
geometry, in particular we can identify LY with IR|Q|). By assumption
we have (11), i.e. K and LY, do not intersect. So K does not meet

the subset
D:={XeLl},:) Xw)=1}

wel
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The No-Arbitrage Condition

Now D is a compact convex set. By the separating hyperplane theorem,
there is a vector A = (A(w) : w € Q) such that for all X € D

A X =) Aw)X(w) >0, (12)

we

but for all G,(T) in K,

A-Go(T) = 3 AW)G (D)) = 0. (13)
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The No-Arbitrage Condition

Choosing each w € €2 successively and taking X to be 1 on this w and
zero elsewhere, (12) tells us that each A(w) > 0. So

AMw)
Zw’EQ)\(w,)

defines a probability measure equivalent to IP (no non-empty null sets).
With E* as IP*-expectation, (13) says that

E” (écp(T)) =0,

P~ ({w}) =
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The No-Arbitrage Condition

In particular, choosing for each 7 to hold only stock ¢,

E* (Z (,Oi(T)AgZ’(T)> =0 (i=1,...,d).

Since this holds for any predictable ¢ (boundedness holds automatically
as (1 is finite), the martingale transform lemma tells us that the

~

discounted price processes (5;(t)) are IP*-martingales. .
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The No-Arbitrage Condition

No-Arbitrage Theorem The market M is arbitrage-free if and only if
there exists a probability measure IP* equivalent to IP under which the
discounted d-dimensional asset price process S is a IP*-martingale.
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Risk-Neutral Pricing

We now turn to the main underlying question of this text, namely the
pricing of contingent claims (i.e. financial derivatives). As in the
one-period setting the basic idea is to reproduce the cash flow of a
contingent claim in terms of a portfolio of the underlying assets. On the
other hand, the equivalence of the no-arbitrage condition and the
existence of risk-neutral probability measures imply the possibility of
using risk-neutral measures for pricing purposes. We will explore the
relation of these tow approaches in this subsection.
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Risk-Neutral Pricing

We say that a contingent claim is attainable if there exists a replicating
strategy ¢ € ® such that

V,(T) = X.

So the replicating strategy generates the same time T’ cash-flow as does
X. Working with discounted values (recall we use 3 as the discount
factor) we find

~

5(T)X — V@(T> — V(O) + écp(T)- (14)

So the discounted value of a contingent claim is given by the initial cost
of setting up a replication strategy and the gains from trading.
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Risk-Neutral Pricing

In a highly efficient security market we expect that the law of one price
holds true, that is for a specified cash-flow there exists only one price at
any time instant. Otherwise arbitrageurs would use the opportunity to
cash in a riskless profit. So the no-arbitrage condition implies that for an
attainable contingent claim its time ¢ price must be given by the value
(inital cost) of any replicating strategy (we say the claim is uniquely
replicated in that case). This is the basic idea of the arbitrage pricing
theory.

(©Riidiger Kiesel



177

Risk-Neutral Pricing

Suppose the market M is arbitrage-free. Then any attainable contingent
claim X is uniquely replicated in M.

Proof. Suppose there is an attainable contingent claim X and strategies
© and 1 such that
Vo(T) = Vy(T) = X,

but there exists a 7 < T" such that
V@(U) = Vw(“)

for every u < 7 and
V() # Vip(7).
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Risk-Neutral Pricing

Define A :={w e Q:V,(r,w) > Vy(7,w)}, then A € F, and
IP(A) > 0 (otherwise just rename the strategies). Define the
Fr-measurable random variable Y := V,,(7) — Vi, (7) and consider the

trading strategy & defined by

and
g(u) = 14 (gp(u) - ¢(u)) + lA(Yﬁ(T)a 07 e 70)7

for 7 <u <T'. The idea here is to use © and 9 to construct a
self-financing strategy with zero initial investment (hence use their
difference £) and put any gains at time 7 in the savings account (i.e.

invest them riskfree) up to time 7.
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Risk-Neutral Pricing

We need to show formally that & satisfies the conditions of an arbitrage
opportunity. By construction £ is predictable and the self-financing
condition (9) is clearly true for ¢t # 7, and for ¢ = 7 we have using that

0, € P
E(r)-S(r) = (o(r) —(7))-S(7)
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Risk-Neutral Pricing

and

&(r+1)-5(7)
= lac(p(r+1) =4(r +1)) - 5(7)

+14Y B(7)So(7)
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Risk-Neutral Pricing

Hence € is a self-financing strategy with initial value equal to zero.

Furthermore
Ve(T) = Lac(p(T) —9(T)) - S(T)
+14(Y3(7),0,...,0)-5(T)
= 14YB(7)So(T) = 0
and

P{V:(T) >0} = IP{A} > 0.

Hence the market contains an arbitrage opportunity with respect to the
class @ of self-financing strategies. But this contradicts the assumption
that the market M is arbitrage-free.
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Risk-Neutral Pricing

This uniqueness property allows us now to define the important concept

of an arbitrage price process.

Suppose the market is arbitrage-free. Let X be any attainable
contingent claim with time 1" maturity. Then the arbitrage price process
wx(t), 0 <t < T or simply arbitrage price of X is given by the value
process of any replicating strategy ¢ for X.
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Risk-Neutral Pricing

The construction of hedging strategies that replicate the outcome of a
contingent claim (for example a European option) is an important
problem in both practical and theoretical applications. Hedging is central
to the theory of option pricing. The classical arbitrage valuation models,
such as the Black-Scholes model ((Black and Scholes 1973), depend on
the idea that an option can be perfectly hedged using the underlying
asset (in our case the assets of the market model), so making it possible
to create a portfolio that replicates the option exactly. Hedging is also
widely used to reduce risk, and the kinds of delta-hedging strategies
implicit in the Black-Scholes model are used by participants in option
markets. We will come back to hedging problems subsequently.
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Risk-Neutral Pricing

Analysing the arbitrage-pricing approach we observe that the derivation
of the price of a contingent claim doesn’t require any specific preferences
of the agents other than nonsatiation, i.e. agents prefer more to less,
which rules out arbitrage. So, the pricing formula for any attainable
contingent claim must be independent of all preferences that do not
admit arbitrage. In particular, an economy of risk-neutral investors must
price a contingent claim in the same manner. This fundamental insight,
due to Cox and Ross (Cox and Ross 1976) and to Harrison and Kreps
(Harrison and Kreps 1979), simplifies the pricing formula enormously. In
its general form the price of an attainable simple contingent claim is just
the expected value of the discounted payoff with respect to an
equivalent martingale measure.
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Risk-Neutral Pricing

The arbitrage price process of any attainable contingent claim X is given

by the risk-neutral valuation formula
mx(t) = B(t) BT (XB(T)|F) (15)

where [E™ is the expectation operator with respect to an equivalent

martingale measure IP*
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Risk-Neutral Pricing

Proof Since we assume the the market is arbitrage-free there exists (at
least) an equivalent martingale measure IP*. Also the discounted value
process f/@ of any self-financing strategy ¢ is a IP*-martingale. So for
any contingent claim X with maturity 7" and any replicating trading
strategy ¢ € ® we have foreacht=10,1,...,T

mx(t) = Vy(t) = 6(t)" V(1)
= BE)T'E*(V,(T)|F)
= Bt)T'E(B(T)V,(T)|F)

= B 'ET(B(T)X|F),

use V,,(t) is a martingale and ¢ is replicating X .
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Complete Markets

The last section made clear that attainable contingent claims can be
priced using an equivalent martingale measure. In this section we will
discuss the question of the circumstances under which all contingent
claims are attainable. This would be a very desirable property of the
market M, because we would then have solved the pricing question (at
least for contingent claims) completely. Since contingent claims are
merely Fpr-measurable random variables in our setting, it should be no
surprise that we can give a criterion in terms of probability measures.
We start with:
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Complete Markets

A market M is complete if every contingent claim is attainable, i.e. for
every Fr-measurable random variable X € L° there exists a replicating
self-financing strategy ¢ € ® such that V,,(T') = X.

In the case of an arbitrage-free market M one can even insist on
replicating nonnegative contingent claims by an admissible strategy

© € ®,. Indeed, if ¢ is self-financing and IP* is an equivalent martingale
measure under which discounted prices S are IP*-martingales (such IP*
exist since M is arbitrage-free and we can hence use the no-arbitrage
theorem, f/gp(t) is also a IP*-martingale, being the martingale transform
of the martingale S by ¢. So

~

V,(t) = E*(V,(T)|F) (t=0,1,...,T).
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Complete Markets

~

If © replicates X, V(1)) = X > 0, so discounting, V,,(T') > 0, so the
above equation gives V,(t) > 0 for each t. Thus all the values at each
time ¢ are non-negative — not just the final value at time T' —so ¢ is

admissible.

Completeness Theorem An arbitrage-free market M is complete if and
only if there exists a unique probability measure IP* equivalent to IP

under which discounted asset prices are martingales.
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Complete Markets

Proof. ‘=": Assume that the arbitrage-free market M is complete.
Then for any Fpr-measurable random variable X ( contingent claim),
there exists an admissible (so self-financing) strategy ¢ replicating X:
X =V, (T). As ¢ is self-financing,
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Complete Markets

We know by the no-arbitrage theorem that an equivalent martingale

measure IP* exists; we have to prove uniqueness. So, let IP;, IP> be two

such equivalent martingale measures. For i = 1,2, (V,,(t))i_, is a

~

IP;-martingale. So,

since the value at time zero is non-random (Fy = {0,Q}) and 3(0) = 1.

So
E1(B(T)X) =E2(8(T)X).

Since X is arbitrary, E ;1,I[£5 have to agree on integrating all integrands.
Now E; is expectation (i.e. integration) with respect to the measure IP;,
and measures that agree on integrating all integrands must coincide. So

IP, = IP,, giving uniqueness as required.
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Complete Markets

‘«<=": Assume that the arbitrage-free market M is incomplete: then there
exists a non-attainable Fp-measurable random variable X (a contingent
claim). We may confine attention to the risky assets S1, ..., Sq, as these
suffice to tell us how to handle the numéraire Sy.

Consider the following set of random variables:

T
K = {YELOZY—YO—I—ZQO(t)-Ag(t),

t=1
Yo € IR, ¢ predictable}.

(Recall that Yy is Fo-measurable and set ¢ = ((¢1(¢),...,0q(t)) ),
with predictable components.)

(©Riidiger Kiesel



193

Complete Markets

Then by the above reasoning, the discounted value 3(7) X does not
belong to K, so K is a proper subset of the set L° of all random
variables on © (which may be identified with IR, Let IP* be a
probability measure equivalent to IP under which discounted prices are
martingales (such IP* exist by the no-arbitrage theorem. Define the
scalar product

(Z,Y) —=E*(ZY)

on random variables on . Since K is a proper subset, there exists a
non-zero random variable Z orthogonal to K (since Q is finite, R
Euclidean: this is just Euclidean geometry).

IS
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Complete Markets

That is,
E*(ZY)=0, VY €K.

Choosing the special Y = 1 € K given by

wi(t)=0,t=1,2,...,T;i=1,...,d and Yy = 1 we find
E*(Z) =0.

Write || X || :=sup{|X(w)| : w € Q}, and define IP** by

P ({w)) = (1 bl g‘;{m) P*({}).

By construction, IP** is equivalent to IP* (same null sets - actually, as
IP* ~ IP and IP has no non-empty null sets, neither do IP*, IP**). From
E*(Z) =0, we see that > IP**(w) =1, i.e. is a probability measure.
As Z is non-zero, IP** and IP* are different.
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Complete Markets

Now
e+ (Y- 250
= > P*w) (Z o(t,w) - AS(t, w))

weld
— Z(l + Qﬁgﬂ) ) ]P*(w)(Z o(t,w) - AS’(t,w)).

The ‘1" term on the right gives

- (zm | A§<t>)7

which is zero since this is a martingale transform of the S(t).
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Complete Markets

The ‘Z’ term gives a multiple of the inner product

(2, o(t) - AS(1)),

which is zero as Z is orthogonal to K and 3., o(t) - AS(t) € K. By
the martingale transform lemma, S(¢) is a IP**-martingale since ¢ is an
arbitrary predictable process. Thus IP** is a second equivalent
martingale measure, different from IP% So incompleteness implies
non-uniqueness of equivalent martingale measures, as required. =
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Financial Mathematics

Lecture 5

by Riidiger Kiesel
Department of Financial Mathematics, University of Ulm

Department of Statistics, LSE

(©Riidiger Kiesel



198

Aims and Objectives
e Cox-Ross-Rubinstein model §4.5;

e Binomial Approximation 44.6.
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The Cox-Ross-Rubinstein Model

We take d = 1, that is, our model consists of two basic securities. Recall
that the essence of the relative pricing theory is to take the price
processes of these basic securities as given and price secondary securities
in such a way that no arbitrage is possible.

Our time horizon is T" and the set of dates in our financial market model
ist=0,1,...,7. Assume that the first of our given basic securities is a
(riskless) bond or bank account B, which yields a riskless rate of return

r > 0 in each time interval [t,t + 1], i.e.

B(t+1)=(1+r)B(t), B(0)=1.
So its price process is

Bt)=(1+r)" t=0,1,...,T.
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The CRR Model

Furthermore, we have a risky asset (stock) S with price process

(14+u)S(t)  with prob  p,

S(t+1) =
(14+d)S(t)  with prob 1 —p,

with —1<al<u,SOEIRSr and fort =0,1,...,7 — 1.
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The CRR Model

S(1) = (14+u)S(0)

Figure 2: One-step tree diagram

Alternatively we write this as
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The CRR Model

We set up a probabilistic model by considering the Z(t), t =1,...,T as
random variables defined on probability spaces (Q, F;, IP;) with

Qt = Q — {d7 ’LL},
ﬁt = ﬁ = P(Q) — {(Z)a {d}7 {u}7 Q}’
Pt — ]NP

with P({u}) = p, P({d}) =1 —p, p € (0,1). On these probability
spaces we define

Z(t,u)=u and Z(t,d)=d, t=1,2,...,T.
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The CRR Model

Our aim, of course, is to define a probability space on which we can
model the basic securities (B,.S). Since we can write the stock price as

S(t) = S(0) f[<1 v 20r), t=1,2,...,T,

the above definitions suggest using as the underlying probabilistic model
of the financial market the product space (2, F, IP) (see e.g.
(Williams 1991) ch. 8), i.e.

Q:le...XQT:QT:{dau}T7

with each w € () representing the successive values of
Z(t),t=12,....T.
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The CRR Model

Hence each w € Q is a T-tuple w = (&1,...,&7) and @& € Q = {d, u}.
For the o-algebra we use F = P(€2) and the probability measure is given
by

P({w}) = Pi({wi})x...x Pr({wr})

= P{wi}) x...x P{wr})

The role of a product space is to model independent replication of a
random experiment. The Z(t) above are two-valued random variables,
so can be thought of as tosses of a biased coin; we need to build a
probability space on which we can model a succession of such
independent tosses.
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The CRR Model

Now we redefine (with a slight abuse of notation) the Z(¢), t=1,...,T
as random variables on (€2, F, IP) as (the tth projection)

Z(t,w) = Z(t,wy).

Observe that by this definition (and the above construction)
Z(1),...,Z(T) are independent and identically distributed with

PZ{t) =u) =p=1—P(Z(t) = d).

To model the flow of information in the market we use the obvious
filtration with

Fo = {0,Q}
Fr = o(ZQ),...,2Z(t) =o(S(1),...,8(t),
Fr = F=PH).

(©Riidiger Kiesel




206

The CRR Model

This construction emphasises again that a multi-period model can be
viewed as a sequence of single-period models. Indeed, in the
Cox-Ross-Rubinstein case we use identical and independent single-period
models. As we will see in the sequel this will make the construction of
equivalent martingale measures relatively easy. Unfortunately we can
hardly defend the assumption of independent and identically distributed
price movements at each time period in practical applications.
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The CRR Model

We now turn to the pricing of derivative assets in the
Cox-Ross-Rubinstein market model. To do so we first have to discuss
whether the Cox-Ross-Rubinstein model is arbitrage-free and complete.

To answer these questions we have, according to our fundamental
theorems, to understand the structure of equivalent martingale measures
in the Cox-Ross-Rubinstein model. In trying to do this we use (as is
quite natural and customary) the bond price process B(t) as numéraire.
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The CRR Model

Our first task is to find an equivalent martingale measure Q such that
the Z(1),..., Z(T) remain independent and identically distributed, i.e.
a probability measure (Q defined as a product measure via a measure Q

on (9, F) such that Q({u}) = ¢ and Q({d}) = 1 — ¢. We have:
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The CRR Model

(i) A martingale measure Q for the discounted stock price S exists if and
only if
d<r<u. (16)

(ii) If equation (16) holds true, then there is a unique such measure in P
characterised by

(17)
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The CRR Model

Proof Since S(t) = S(t)B(t) = S(t)(1 + r)*, we have
Z(t+1)=S(t+1)/S(t) =1 =(S(t+1)/S(t))(1 +7) — 1. So, the

discounted price (S(t)) is a Q-martingale if and only if for all ¢

~

EC[S(t+1)|F] = S(t)
s EO(SEt+1)/St)|F] =1
s EYZEt+1D)|F]=r

But Z(1),...,Z(T) are mutually independent and hence Z(t + 1) is
independent of F; = o(Z(1),...,Z(t)). So

r=E%Z(t+1)|F) =E%Z(t+1)) = ug+d(1—q)

is a weighted average of u and d; this can be r if and only if r € [d, u].
As Q is to be equivalent to IP and IP has no non-empty null sets,
r = d,u are excluded and (16) is proved.
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The CRR Model

To prove uniqueness and to find the value of ¢ we simply observe that
under (16)

uxq+dx(l—q)=r
has a unique solution. Solving it for ¢ leads to the above formula. .

From now on we assume that (16) holds true. Using the above we
immediately get:

The Cox-Ross-Rubinstein model is arbitrage-free.

The Cox-Ross-Rubinstein model is complete.
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The CRR Model

One can translate this result — on uniqueness of the equivalent
martingale measure — into financial language. Completeness means that
all contingent claims can be replicated. If we do this in the large, we can
do it in the small by restriction, and conversely, we can build up our full
model from its constituent components. To summarize:

The multi-period model is complete if and only if every underlying
single-period model is complete.
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The CRR Model

We can now use the risk-neutral valuation formula to price every
contingent claim in the Cox-Ross-Rubinstein model.

The arbitrage price process of a contingent claim X in the
Cox-Ross-Rubinstein model is given by

nx(t)=Bt)E*(X/B(T)|F) VvVt=0,1,...,T,

where E™ is the expectation operator with respect to the unique
equivalent martingale measure IP* characterised by p* = (r —d)/(u —d).
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The CRR Model

We now give simple formulas for pricing (and hedging) of European
contingent claims X = f(S7) for suitable functions f (in this simple
framework all functions f : IR — IR). We use the notation

F.(z,p) (18)

=2 @pﬂ'n —p) IS (21 ) (14 d))

Observe that this is just an evaluation of f(S(j)) along the
probability-weighted paths of the price process. Accordingly, 7, 7 — 7 are
the numbers of times Z (i) takes the two possible values d, u.
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The CRR Model

Consider a European contigent claim with expiry 1" given by
X = f(ST). The arbitrage price process wx(t), t =0,1,...,T of the
contingent claim is given by (set 7 =T — t)

mx(t) = (14 7)""F (S, p*). (19)

Proof Recall that
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The CRR Model

By the risk-neutral valuation principle the price wx (¢) of a contingent
claim X = f(Sr) at time t is

Wx(t)
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The CRR Model

We used the role of independence property of conditional expectations in
the next-to-last equality. It is applicable since S(t) is F;-measurable and
Z(t+1),...,Z(T) are independent of F;. .

An immediate consequence is the pricing formula for the European call
option, i.e. X = f(St) with f(z) = (z — K)™T.
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The CRR Model

Consider a European call option with expiry T" and strike price K written
on (one share of) the stock S. The arbitrage price process
[Io(t), t=0,1,...,T of the option is given by (set 7 =T — t)

(%) (20)
= @ (D)
(SH1+u)y1+d)™7 - K)*t

For a European put option, we can either argue similarly or use put-call
parity.
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Binomial Approximations

Suppose we observe financial assets during a continuous time period
[0, T]. To construct a stochastic model of the price processes of these
assets (to, e.g. value contingent claims) one basically has two choices:
one could model the processes as continuous-time stochastic processes
(for which the theory of stochastic calculus is needed) or one could
construct a sequence of discrete-time models in which the
continuous-time price processes are approximated by discrete-time
stochastic processes in a suitable sense. We describe the the second
approach now by examining the asymptotic properties of a sequence of
Cox-Ross-Rubinstein models.
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Binomial Approximations

We assume that all random variables subsequently introduced are
defined on a suitable probability space (2, F, IP). We want to model
two assets, a riskless bond B and a risky stock S, which we now observe
in a continuous-time interval [0, T]. To transfer the continuous-time
framework into a binomial structure we make the following adjustments.
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Binomial Approximations

Looking at the nth Cox-Ross-Rubinstein model in our sequence, there is
a prespecified number k,, of trading dates. We set A,, =T /k,, and
divide [0, 7] in k,, subintervals of length A,,, namely

I =1jA,, G+ 1A,]l, 7=0,...,k, — 1. We suppose that trading
occurs only at the equidistant time points ¢, ; = jA,,, 7 =0,...,k, — 1.
We fix r;, as the riskless interest rate over each interval I;, and hence
the bond process (in the nth model) is given by

B(tp;)=0+r,), i=0,... k.
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Binomial Approximations

In the continuous-time model we compound continuously with spot rate
r > 0 and hence the bond price process B(t) is given by B(t) = ¢e". In
order to approximate this process in the discrete-time framework, we

choose r,, such that
147, =2 (21)

With this choice we have for any 5 =0,...,k, that
(1+7,) =exp(rjA,) = exp(rt, ;). Thus we have approximated the
bond process exactly at the time points of the discrete model.
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Binomial Approximations

Next we model the one-period returns S(t,, j+1)/S(tn, ;) of the stock by
a family of random variables Z,, ;;i =1, ..., k, taking values {d,, u,}
with

P(Zyi=upn)=pp=1—IP(Z,; =dy)

for some p,, € (0,1) (which we specify later). With these Z,, ; we model
the stock price process .5, in the nth Cox-Ross-Rubinstein model as
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Binomial Approximations

With the specification of the one-period returns we get a complete
description of the discrete dynamics of the stock price process in each
Cox-Ross-Rubinstein model. We call such a finite sequence

Ly = (ZW;)I?" a lattice or tree. The parameters u,,, d,,, pn, k,, differ

1=1
from lattice to lattice, but remain constant throughout a specific lattice.
In the triangular array (Z,;), it =1,...,ky; n=1,2,... we assume

that the random variables are row-wise independent (but we allow
dependence between rows). The approximation of a continuous-time
setting by a sequence of lattices is called the lattice approach.
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Binomial Approximations

It is important to stress that for each n we get a different discrete stock
price process S, (t) and that in general these processes do not coincide

on common time points (and are also different from the price process
S(t)).

Turning back to a specific Cox-Ross-Rubinstein model, we now have a
discrete-time bond and stock price process. We want arbitrage-free
financial market models and therefore have to choose the parameters
Un, dn, pn, accordingly. An arbitrage-free financial market model is
guaranteed by the existence of an equivalent martingale measure, and
the (necessary and) sufficient condition for that is

dy, <1, < Up.
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Binomial Approximations

The risk-neutrality approach implies that the expected (under an
equivalent martingale measure) one-period return must equal the
one-period return of the riskless bond and hence we get

r, —d
x _ N n 22
e — (22)

So the only parameters to choose freely in the model are u,, and d,,. In
the next sections we consider some special choices.
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Binomial Approximations

We now choose the parameters in the above lattice approach in a special
way. Assuming the risk-free rate of interest r as given, we have by (21)
1+ 7, = €™~ and the remaining degrees of freedom are resolved by

choosing u,, and d,,. We use the following choice:

1+ u, = e’Van,

and
1+d, =(14u,) 't =e7Van,
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Binomial Approximations

By condition (22) the risk-neutral probabilities for the corresponding
single period models are given by
e Tn—dp erBn — e=oV AN
Pn = Up —dp VAR — g—oVAL
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Binomial Approximations

We can now price contingent claims in each Cox-Ross-Rubinstein model
using the expectation operator with respect to the (unique) equivalent
martingale measure characterised by the probabilities p} . In particular
we can compute the price IIo(t) at time ¢ of a European call on the
stock S with strike K and expiry T by formula (20). Let us reformulate
this formula slightly. We define

a, = min{j € INg| (23)
S(0)(1 4+ up) (1 +dp) 7 > K}.
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Binomial Approximations

Then we can rewrite the pricing formula (20) for ¢ = 0 in the setting of
the nth Cox-Ross-Rubinstein model as

Me(0) = (147,) F

k
- kn * 7 * —1
3 (j)pﬂl—pn)’% j

J=an

(S(0)(1 4 up) (1 4+ d,)* 7 — K)
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Binomial Approximations

So

Me(0) = S(0) i (lzn) (pzfljr:n))j

_j:an

((1—p;><1+dn>)’““‘j]
147,

k
i k,, iy . .
~ry a3 (S )i - gt
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Binomial Approximations

Denoting the binomial cumulative distribution function with parameters

(n,p) as B™P(.) we see that the second bracketed expression is just
BFnPu(a,) =1 — BFPu(a,).

Also the first bracketed expression is B*»?=(q,,) with

. pr(14up)
1+7r,

o =
That p,, is indeed a probability can be shown straightforwardly. Using
this notation we have in the nth Cox-Ross-Rubinstein model for the price
of a European call at time £ = 0 the following formula:

m™ ) = S,(0)B% 7 (ay,) (24)

—K(1+r,) "k BknPu(q,).

(©Riidiger Kiesel



233

Binomial Approximations

We have the following limit relation:

lim 1197 (0) = 125 (0)

n—aoo

with TI25(0) given by the Black-Scholes formula (we use S = S(0) to

ease the notation)

I12°(0) = SN(d,(S,T)) — Ke " N(dy(S,T)). (25)
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Binomial Approximations

The functions dy(s,t) and ds(s,t) are given by

di(s,t) = log(S/K);/%(H%)t,

dQ(S,t) — dl(S,t) —O'\/%

2

log(s/K) + (r— &)t
o/t

and N(.) is the standard normal cumulative distribution function.
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Binomial Approximations

The above is the famous Black-Scholes European call price formula.

PROOF:
Since S,,(0) = S (say) all we have to do to prove the proposition is to

show
(i) lim B*"Pn(a,) = N(di(S,T)),
(i)  lim B*Pn(a,) = N(d2(S,T)).
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Binomial Approximations

These statements involve the convergence of distribution functions.
To show (i) we interpret

Bkmﬁn (an) — P(an <Y, < kn)

with (Y,,) a sequence of random variables distributed according to the

binomial law with parameters (k,,, pn).
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Binomial Approximations

We normalise Y,, to

71=1

where B ,, j=1,...,k,; n=1,2,... are row-wise independent

Y

Bernoulli random variables with parameter p,,.
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Binomial Approximations

Now using the central limit theorem we know that for o,, — a, 6, — 0

we have
lim IP(o, <Y, < B3,) = N(B) — N(a).

n—oo

By definition we have

with
Ap — knﬁn kn(l T ﬁn)

B \/knﬁn(l o ﬁn)

O
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Binomial Approximations

Observe the following limiting relations:

L 1
lim p, = =
n—~oo

and

lim &, (1 — 2p,)/A, = —T (f + f),

n—oo 0) 2
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Binomial Approximations

From the defining relation for a,,, formula (23), we get

log(K/S) + knovAn, B
lim «,, lim 20 %” -

— lim log(K/S) + cknvAL(L — 2Dy,)

_ log(K/S)—(r+%5)T
= i = —di(S,T).

KnDn
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Binomial Approximations

Furthermore we have

lim 3, = lim \/kn;agl Pn) = +00.

n—aoo

N(B,) — 1,N(ay) — N(—dy) =1 — N(d1), completing the proof
of (i).
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Binomial Approximations

To prove (ii) we can argue in very much the same way and arrive at
parameters ;. and (3 with p,, replaced by p’ . Using the following

limiting relations:

1
lim pf = =, lim k(1 —2p°)\/A, =T (5 ~ 5),
n—oo 2 n—oo 2 o)
we get
lim o, = lim 0g(K/S) + on ( Pi)

n—00 n—00 20\/nAnp;;(1 — p¥)
2

_ log(K/S) — (r— 5)T = —dy(s,T).

oV T
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Binomial Approximations

For the upper limit we get

lim B, = lim /kn(pj) ' (1 —pj) = +oo,

n—aoo
whence (ii) follows similarly. .

By the above proposition we have derived the classical Black-Scholes
European call option valuation formula as an asymptotic limit of option
prices in a sequence of Cox-Ross-Rubinstein type models with a special
choice of parameters. We will therefore call these models discrete
Black-Scholes models.
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Financial Mathematics
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by Riidiger Kiesel
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Aims and Objectives
e American Option §4.7
e American Options in the Cox-Ross-Rubinstein setting §4.7

e A three-period example 34.8.
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American Options

Consider a general multi-period framework. The holder of an American
derivative security can ‘exercise’ in any period t and receive payment
f(S¢) (or more general a non-negative payment f;). In order to hedge
such an option, we want to construct a self-financing trading strategy
such that for the corresponding value process V(1)

V,(0) =« initial capital
Vo) = f(S), V. (26)

Such a hedging portfolio is minimal, if for a stopping time 7
Vo(T) = f(S7).

Our aim in the following will be to discuss existence and construction of

such a stopping time.
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American Options

We assume now that we work in a market model (€2, F,IF, IP), which is
complete with IP* the unique martingale measure.

Then for any hedging strategy ¢ we have that under IP*

M(t) = Vi (t) = B(t)Vi (1) (27)

is a martingale. Thus we can use the stopping time principle to find for
any stopping time 7

Vo(0) = Mo = E* (Vi (7). (28)
Since we require V,,(7) > f-(S) for any stopping time we find for the
required initial capital

z = sup E*(B(7) f-(5)).

€T
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American Options
Suppose now that 7* is such that V,(7*) = f«(S5) then the strategy ¢
is minimal and since V,(¢t) > f;(S) for all £ we have

z=E"(B(17)f-(9)) = SUgE*(ﬁ(T)fT(S)) (30)

TE

Thus (30) is a necessary condition for the existence of a minimal
strategy . We will show that it is also sufficient and call the price in
(30) the rational price of an American contingent claim.
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American Options

Now consider the problem of the option writer to construct such a
strategy ¢. At time T’ the hedging strategy needs to cover fr, i.e.
V,(T) > fr is required (We write short f; for f;(S5)). At time T'— 1 the
option holder can either exercise and receive fr_1 or hold the option to
expiry, in which case B(T — 1)E*(8(T) fr|Fr_1) needs to be covered.
Thus the hedging strategy of the writer has to satisfy

Vo(T' = 1) = max{ fr—1, B(T — )E"(B(T) fr|Fr-1)}  (31)
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American Options

Using a backwards induction argument we can show that
Vo(t—1) =max{fi—1, Bt — 1)E"(B()V,(t)|Fi—1)}- (32)
Considering only discounted values this leads to
Vip(t — 1) = max{fy—1,E* (Vo (t)| Fim1) }- (33)

Thus we see that V,,(¢) is the Snell envelope Z; of f;.
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American Options

In particular we know that

Zy = sup B*(f-|F) (34)
TeT;

and the stopping time 7* = min{s >t : Z, = f,} is optimal. So

Zy = E*(fT*

Ft) (35)

In case t = 0 we can use 7¢ = min{s > 0: Z, = f,} and then

x:Z():IE*(fTJ): sup E*(f-) (36)
7€

is the rational option price.
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American Options

We still need to construct the strategy . To do this recall that Z is a
supermartingale and so the Doob decomposition vyields

~

Z=M-A (37)

with a martingale M and a predictable, increasing process A. We write
M,; = M,B; and A, = A,;B,. Since the market is complete we know
that there exists a self-financing strategy ¢ such that

M; = V5 (t). (38)

(©Riidiger Kiesel



253

American Options

Also using (37) we find Z; B, = V;z(t) — A;. Now on
C={(t,w):0<t<7"(w)} we have that Z is a martingale and thus
As(w) = 0. Thus we obtain from V(t) = Z; that

Vo(t) = sup E*(f|F) V(t,w)eC. (39)

t<T<T
Now 77 is the smallest exercise time and flT*(w) = 0. Thus
Vo (" (w), ) = Zre () (W) = fro(w) (@) (40)
Undoing the discounting we find
Vo(T") = frs (41)

and therefore ¢ is a minimal hedge.

(©Riidiger Kiesel




254

American Options

Now consider the problem of the option holder, how to find the optimal
exercise time. We observe that the optimal exercise time must be an

optimal stopping time, since for any other stopping time o

~

Volo) =2, > f, (42)

and holding the asset longer would generate a larger payoff. Thus the
holder needs to wait until Z, = fa.
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American Options

On the other hand with v the largest stopping time, we see that o < v.
This follows since using ¢ after v with initial capital from exercising will
always yield a higher portfolio value than the strategy of exercising later.
To see this recall that V; = Z; By + A with A, > 0 for ¢ > v. So we
must have o < v and since A, = 0 for ¢t < v we see that Z7 is a
martingale. Thus both criteria of the characterisation of optimality are

true and o is thus optimal. So
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American Options
A stopping time o € 7; is an optimal exercise time for the American

option (f;) if and only if
E*(5(0)fs) = sup E*(3(7)f-) (43)

TET;
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American Options in the CRR model

We now consider how to evaluate an American put option in a standard
CRR model. We assume that the time interval [0, 7] is divided into N
equal subintervals of length A say. Assuming the risk-free rate of
interest 7 (over [0,T]) as given, we have 1 + p = e"® (where we denote
the risk-free rate of interest in each subinterval by p). The remaining
degrees of freedom are resolved by choosing © and d as follows:

1+u=e"V?, and 1+d:(1+u)_1:e_“\/z.

The risk-neutral probabilities for the corresponding single period models
are given by
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American Options in the CRR model

p—d B eTA _e—a\/z

uw—d N ea\/z—e_a\/Z.

Thus the stock with initial value S = S(0) is worth S(1 + u)*(1 + d)’
after 7 steps up and j steps down. Consequently, after IV steps, there are
N + 1 possible prices, S(1 +u)*(1+d)¥~* (i =0,...,N). There are
2N possible paths through the tree.

p:
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American Options

It is common to take N of the order of 30, for two reasons:

(i) typical lengths of time to expiry of options are measured in months (9
months, say); this gives a time step around the corresponding number of
days,

(i) 23 paths is about the order of magnitude that can be comfortably
handled by computers (recall that 219 = 1,024, so 23" is somewhat over

a billion).
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American Options in the CRR model

We can now calculate both the value of an American put option and the
optimal exercise strategy by working backwards through the tree (this
method of backward recursion in time is a form of the dynamic
programming (DP) technique, due to Richard Bellman, which is
important in many areas of optimisation and Operational Research).
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American Options in the CRR model

1. Draw a binary tree showing the initial stock value and having the
right number, IV, of time intervals.

2. Fill in the stock prices: after one time interval, these are S(1 + u)
(upper) and S(1 + d) (lower); after two time intervals, S(1 + u)?, S and
S(1+d)? =8S/(1+ u)?; after 7 time intervals, these are
S(1+u)(1+d)7 =S(1+u)?* at the node with j ‘up’ steps and

i — j ‘down’ steps (the ‘(7,7)" node).

3. Using the strike price K and the prices at the terminal nodes, fill in
the payoffs fjéf,j = max{K — S(1+u)’(1+d)N=7,0} from the option
at the terminal nodes underneath the terminal prices.
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American Options in the CRR model

4. Work back down the tree, from right to left. The no-exercise values
fi; of the option at the (¢, j) node are given in terms of those of its
upper and lower right neighbours in the usual way, as discounted
expected values under the risk-neutral measure:

fij=e 2" {il,jﬂ +(1—-p%) fm,j]'

The intrinsic (or early-exercise) value of the American put at the (¢, j)
node — the value there if it is exercised early — is

K—S(1+u)(14+d)"7?

(when this is non-negative, and so has any value).
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American Options in the CRR model

The value of the American put is the higher of these:

A
ij
— max{fij, K — S(l + u)j(l + d)i_j}

—rA/ x pA *\ rA
= maX{e (p fit1,5+1 (1-p )fz'+1,j) 7

K—-SQ+ui(1+d)" 7}

5. The initial value of the option is the value &' filled in at the root of
the tree.

6. At each node, it is optimal to exercise early if the early-exercise value
there exceeds the value f;; there of expected discounted future payoff.
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A Three-period Example

Assume we have two basic securities: a risk-free bond and a risky stock.
The one-year risk-free interest rate (continuously compounded) is

r = 0.06 and the volatility of the stock is 20%. We price calls and puts
in three-period Cox-Ross-Rubinstein model. The up and down
movements of the stock price are given by

14+u=e"VA 11224

and
1+d=(1+u)""=e V2 =0.8910,

with 0 = 0.2 and A = 1/3. We obtain risk-neutral probabilities

em™ — d

= —— = 0.5584.
P u—d
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A Three-period Example

We assume that the price of the stock at time t =0 is S(0) = 100. To
price a European call option with maturity one year (N = 3) and strike
K = 10) we can either use the explicit valuation formula or work our
way backwards through the tree. Prices of the stock and the call are

given below.
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S = 125.98

c = 27.96
S =112.24
g — 100 c = 18.21
c=11.56
S = 89.10< '

c = 3.67

timet =0 t=1 t=2

Figure 3: Stock and European call prices
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A Three-period Example

One can implement the simple evaluation formulae for the CRR- and the
BS-models and compare the values. The figure is for

S =100,K =90,r =0.06,0 =0.2,T = 1.
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A Three-period Example

To price a European put, with price process denoted by p(t), and an
American put, P(t), (maturity N = 3, strike 100), we can for the
European put either use the put-call parity, the risk-neutral pricing
formula, or work backwards through the tree. For the prices of the
American put we use the technique outlined above.

We indicate the early exercise times of the American put in bold type.
Recall that the discrete-time rule is to exercise if the intrinsic value
K — S(t) is larger than the value of the corresponding European put.
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p=20 P=0
P=0
p =582 P =2.08 P=0
P — 6.18 p=4.70 <
p = 10.65 < S p = 10.90
_ P =10.90
P =11.59 p = 18.71
P = 20.62 p = 29.28
P = 29.28
timet =0 t=1 t =2 t=3

Figure 5: European p(.) and American P(.) put prices
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Aims and Objectives
e Review of Itd's formula (§5.6 );
e Main Theorems from Stochastic Analysis (§5.7)

e The Financial Market Model (§6.1)

e Equivalent Martingale Measures (§6.1)
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Ito Processes
' !
X(t) := :1:0+/ b(s)ds+/ o(s)dW (s)
0 0

defines a stochastic process X with X (0) = xy.

We express such an equation symbolically in differential form, in terms

of the stochastic differential equation

dX (1) = b(t)dt + o(t)dW (1), X (0) = .

For f € C? we want to give meaning to the stochastic differential
df (X (t)) of the process f(X(t)).
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Multiplication rules

These are just shorthand for the corresponding properties of the

quadratic variations.

dt dW
dt 0O O
dW | 0 dt
We find
d(X) = (bdt+ cdW)?

= o?dt + 2bodtdW + b*(dt)? = odt
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Basic I1to Formula

If X is a Itd Process and f € C?, then f(X) has stochastic differential

df(X(t)) = f1(X(t)dX(t)

2 1 (X()d (X) (1),

or writing out the integrals,

fX() = flwo)+ | f(X(u))dX(u)
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1to Formula

If X (t) is an Itd process and f € C'1? then f = f(t, X (t)) has

stochastic differential
1

That is, writing fo for f(0,xq), the initial value of f,

/ /
f:fO‘l‘/O (ft‘l-bfx-l-%OQfm)dt—l—/o o fxdW.
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Example: GBM
The SDE for GBM has the unique solution

S(#) = S(0) exp { (M _ %&) tt adW(t)}.

f(t,x) ;== exp { (u — %02) t+ a:z;},

ft:(:u_%az)f? f&“:afa f:BCB:O-Qfa

and with x = W (t), one has

For, writing

we have

dr = dW (t), (dx)* = dt.
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Example: GBM

Thus [to's lemma gives

o = fudt+ LW 4 fon (V)

1 1
= f ((M — §a2> dt + odW + 502dt>

= f(pdt+ odW).
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Girsanov’'s Theorem

Consider independent N (0, 1) random variables Z;,..., Z, on
(QF,IP).

Given v = (71,...,7n), consider a new probability measure IP on (Q, F)
defined by

IP(dw) = exp {Z%Zi(w) - % Z%Q} P(dw).
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Girsanov’'s Theorem

Then

= AL A B P(Z; € dey, V)

— {ZZ 1 ViRi— 22 1’71, 221 1 z}ﬁdz
(QW)E i=1

— QB{__Z? 1 (zi— '71)2}d21 d
(2m)>

So the Z; are independent N(~;,1) under IP.
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Girsanov’s Theorem
Let W = (Wy,...W,) be a d-dimensional BM on(Q2, 7, IP,TF).

With (v(t) a suitable d-dimensional process

L(t) = exp {— /Otv(S)’dW(S) - %/Ot Iv(s)]” dS}-

Girsanov Define

~

Wz(t) = Wz(t) —|—/0 ’}/i(S)dS.

Under the equivalent probability measure IP with Radon-Nikodym

derivative )
dIP
— = L(T
dP ( )7
the process W = (W1, .., Wy) is d-dimensional Brownian motion.
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Girsanov’s Theorem
For v(t) = =, change of measure by the Radon-Nikodym derivative
1 5
exp \ —yW(t) — 577

corresponds to a change of drift from c to ¢ — 7.

If F = (F;) is the Brownian filtration any pair of equivalent probability
measures Q ~ IP on F = Fr is a Girsanov pair, i.e.

with L defined as above.
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Representation Theorem

Let M = (M (t)):>0 be a martingale with respect to the Brownian
filtration (F%). Then

[
M(t) = M(0) +/ H(s)dW(s), t>0
0
with H = (H(t)):>0 a progressively measurable process such that

fot H(s)%ds < oo, t > 0 with probability one.

All Brownian martingales may be represented as stochastic integrals with
respect to Brownian motion.

Let C be an Fp-measurable random variable with E (|C|) < oo; then
there exists a process H as abone such that

C=EC+ /OT H(s)dW (s).

(©Riidiger Kiesel




284

Feynman-Kac formula

Consider a SDE,
dX(t) = p(t, X(t))ds + o(t, X (t))dW (1),

with initial condition

Let X = X (¢) be the unique solution and consider a smooth function
F(t, X(t)) of it. By Itd's lemma,

1
AF = Fidt + FodX + 5 Frpd (X)
and as d (X) = (udt + odW) = o?dt, this is

1
dF = Fidt + F,(pdt + odW) + 502Fmdt

1
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Feynman-Kac formula

Now suppose that F' satisfies the partial differential equation
F, + uF, + %JQFM =0
with boundary condition,
F(T,x) = h(x).
Then the above expression for dF' gives

dF = o F,dW.
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Feynman-Kac formula

This can be written in stochastic-integral rather than
stochastic-differential form as Fy = F'(tg, X (tg))

F(s,Xs) = Fp —I—/ o(u, Xy)Fyp(u, Xyp)dW,,.
to

The stochastic integral on the right is a martingale with constant

expectation = 0. Then

Flto,z) = E (F(s, X(5))| X (to) = 7).
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Feynman-Kac formula

In the time-homogeneous case u(t,z) = u(x) and o(t,x) = o(x), with
1 and o Lipschitz, and h € C§ the solution F' = F(t,x) to the PDE

F, + uF, + %UQFM =
with final condition F'(T,x) = h(x) has the stochastic representation
F(t,z) =E [M(X(T))] X(t) = ],
where X satisfies the stochastic differential equation
dX(s) = p(X(s))ds+ o(X(s))dW (s)

with initial condition X (t) = .

The Feynman-Kac formula gives a stochastic representation to solutions

of partial differential equations.
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Financial Market Model
T > 0 is a fixed a planning horizon.

Uncertainty in the financial market is modelled by a probability space
(Q, F, IP) and a filtration ' = (F;)o<¢<7 satisfying the usual conditions
of right-continuity and completeness.

There are d + 1 primary traded assets, whose price processes are given
by stochastic processes Sy, ..., Sq, which represent the prices of some

traded assets.

A numéraire is a price process X (t) almost surely strictly positive for
each t € [0,7].

‘Historically’ money market account B(t) = e"(*) with a positive
deterministic process r(t) and r(0) = 0, was used as a numéraire.
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Trading Strategies

We call an IRt 1-valued predictable process

p(t) = (eo(t), ..., pa(t), te€l0,T]
a trading strategy (or dynamic portfolio process).

Here o, (t) denotes the number of shares of asset i held in the portfolio
at time ¢ - to be determined on the basis of information available before

time t; i.e. the investor selects his time ¢ portfolio after observing the
prices S(t—).
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Trading Strategies

e The value of the portfolio ¢ at time ¢ is given by

V,(t) is called the value process, or wealth process, of the trading
strategy .

e The gains process G(t) is

de:iléwmmmm.

e A trading strategy o is called self-financing if the wealth process
V,(t) satisfies

V,(t) = V,(0) + G (t) forall t € [0,T].
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Discounted Processes

The discounted price process is

~ S(t) ~ ~
= 1,51(t),...5(t
(1) = g = (L0, 5ult)
with S;(t) = S;(t)/So(t), i =1,2,...,d. The discounted wealth process
V(1) is
= el :
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Self-Financing

@ is self-financing if and only if

~ ~ ~

vso (t) — V@(O) + Gso (t)

Thus a self-financing strategy is completely determined by its initial
value and the components ¢1,..., 4. Any set of predictable processes
©1,- .., pq such that the stochastic integrals [ goidgi exist can be
uniquely extended to a self-financing strategy ¢ with specified initial
value f/ﬁp(O) — v by setting the cash holding as

d ¢
wo(t) = v+ Z/o oi(u)dS;(u) — Z%(t)gz
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Arbitrage Opportunities

A self-financing trading strategy ¢ is called an arbitrage opportunity if
the wealth process V,, satisfies the following set of conditions:

V,(0) =0, IP(V,(T)>0)=1,

and
P(V,(T)>0)>0.
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Martingale Measure

A probability measure QQ defined on (€2, F) is an equivalent martingale
measure (EMM) if:

(i) Q is equivalent to IP,
(i) the discounted price process S is a Q martingale.

Assume Sy(t) = B(t) = e"®), then Q ~ IP is a martingale measure if
and only if every asset price process S; has price dynamics under Q of

the form
dSz (t) — T(t)SZ' (t)dt + CU\4Z (t),

where M; is a Q-martingale.
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EMMs and Arbitrage

Assume Q is an EMM. Then the market model contains no arbitrage

opportunities.

Proof. Under Q we have that V,(t) is a martingale. That is,
Eg (Vw(t)\]-"u) = V,(u), forall u<t<T

For ¢ € ® to be an arbitrage opportunity we must have
V,(0) = V,(0) = 0. Now

Eg (f/@(t)) —0, forall 0<t<T.
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EMMs and Arbitrage

Now V,(t) is a martingale, so

Eg (f/@(t)) —0,0<t<T,

in particular E g (V@(T)> = 0.

For an arbitrage opportunity ¢ we have IP (V,(T') > 0) =1, and since
Q ~ IP, this means Q (V,,(T') > 0) = 1.

Both together yield
Q(V,(T)>0)=1IP(V,(T) >0) =0,

and hence the result follows. n
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Aims and Objectives
e Risk-Neutral Pricing (§6.1);
e Black-Scholes Model (§6.2)
e Barrier Options (§6.3)
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Admissible Strategies

A SF strategy ¢ is called ([P*-) admissible if

is a (IP*-) martingale.

By definition S is a martingale, and G is the stochastic integral with
respect to S.

The financial market model M contains no arbitrage opportunities wrt
admissible strategies.
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Contingent Claims

A contingent claims X is a random variable such that
X/So(T) € L*(F, IP*).

e A contingent claim X is called attainable if there exists at least one
admissible trading strategy such that

Vo (T) = X.
We call such a trading strategy ¢ a replicating strategy for X.

e The financial market model M is said to be complete if any

contingent claim is attainable.
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No-Arbitrage Price

If a contingent claim X is attainable, X can be replicated by a portfolio
@ € ®(IP*). This means that holding the portfolio and holding the
contingent claim are equivalent from a financial point of view. In the
absence of arbitrage the (arbitrage) price process I1x (¢) of the
contingent claim must therefore satisfy
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Risk-Neutral Valuation

The arbitrage price process of any attainable claim is given by the
risk-neutral valuation formula

X
So(T')

x(t) = So(t)E p- [ ‘]—}] .

Thus, for any two replicating portfolios ¢, € ®(IP*)

V@(t) = Vy (t)
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Risk-Neutral Valuation

Proof. Since X is attainable, there exists a replicating strategy

@ € ®(IP*) such that V,(T') = X and IIx(t) = V,(¢). Since

p € ®(IP*) the discounted value process V,,(t) is a martingale, and
hence

~

Hx (t) — Vso (t) — SO(t)VSD(t)

—  So()E p- [f/(p(T)‘ ft}

= So(t)E p Ve(T) | ]—"t]

X
= So(H)E p- ' ]—"t] .
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Black-Scholes Model
The classical Black-Scholes model is
dB(t) = rB(t)dt, B(0) =1,
dS(t) = S(t) (bdt+ ocdW(t)), S(0) = p,
with constant coefficients b € IR, r,0 € IR .

We use the bank account being the natural numéraire) and get from

Ito's formula

~

dS(t) = S(t) {(b—r)dt + odW (t)}.
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EMM in BS-model
Any EMM is a Girsanov pair

— L(t)
Ft

L(t) = exp{— /O ()W (s) — % /O tv(s)st}.

By Girsanov's theorem

dIP

with

AW (t) = dW (t) — ~(t)dt,

where W is a Q-BM. Thus the Q-dynamics for S are

~

dS(t) = S(t) {(b o~ oy(t))dt + adW(t)}.
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EMM in BS-model

Since S has to be a martingale under ) we must have
b—r—ovy(t)=0 te]|0,T],

and so we must choose

b—r

) =v=—7,

this argument leads to a unique martingale measure. The Q-dynamics of

S are
dS(t) = S(t) {rdt + adW}.
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Pricing Contingent Claims

By the risk-neutral valuation principle

[Ix(t) = et "T=IE* [ X| F),

with E™ given via the Girsanov density

L(t) = exp{ (b;T> W(t) — % (b(jr)Qt}.
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Pricing Contingent Claims

For a European call X = (S(T) — K)* and we can evaluate the above

expected value

The Black-Scholes price process of a European call is given by

Ct) = S)N(di(S@1), T 1))

—Ke "T=ON(dy(S(t), T —t)).

The functions dy(s,t) and ds(s,t) are given by

2

log(s/K) + (r+ %)t

dl(S,t) = O-\/% ,
do(s.t) = log(s/K)(:\—/%(r—%)t
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Hedging Contingent Claims

From the risk-neutral valuation principle
M(t) =exp{—rT}E" [ X|F].

By 1t6's lemma we find for the dynamics of the IP*-martingale
M(t) =G(t,S(t)):

~

dM(t) = 0 S(t)Gy(t, S())dW (¢).
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Hedging Contingent Claims

Using this representation, we get for the stock component of the

replicating portfolio
h(t) =0S(t)Gs(t, S(1)).

Now for the discounted assets the stock component is
p1(t) = Gs(t,5(t))B(1),

and using the self-financing condition the cash component is

po(t) = G(L,5(t)) — Gs(t, 5(t))S().
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Hedging Contingent Claims

To transfer this portfolio to undiscounted values we multiply it by the
discount factor, i.e F'(t,S(t)) = B(t)G(t,S(t)), and obtain.

The replicating strategy in the classical Black-Scholes model is given by

_ F(t,5(t) — Fu(t,5(t))S(t)
po = B(t) :

¥P1 Fs(tas(t))‘
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BS by Arbitrage

Consider a self-financing portfolio which has dynamics

dVy(t) = o(t)dB(t) + ¢1(t)dS(t)

= (porB + p1puS)dt + @10SdW.

Assume that V,(t) = V() = f(¢t,S(t)). Then by Itd's formula

1
dV. = (fi + foSp+ 55202fxx)dt

+fLoSdW.
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BS by Arbitrage

We match coefficients and find

1

1
p1 = fm and Yo = T—B(ft + §J2St2f$£13)

So f(t,z) must satisfy the Black-Scholes PDE

1
ft —|—7“£Cfx + §U2x2fxx — Tf =0

and initial condition f(T,z) = (x — K)™.
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Barrier Options

One-barrier options specify a stock-price level, H say, such that the
option pays (‘knocks in") or not (‘knocks out’) according to whether or
not level H is attained, from below (‘up’) or above (‘down’). There are
thus four possibilities: ‘up and in’, ‘up and out’, ‘down and in’ and
‘down and out’. Since barrier options are path-dependent (they involve
the behaviour of the path, rather than just the current price or price at
expiry), they may be classified as exotic; alternatively, the four basic
one-barrier types above may be regarded as ‘vanilla barrier’ options, with
their more complicated variants, described below, as ‘exotic barrier’

options.
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Down-and-out Call

Consider a down-and-out call option with strike K and barrier H. The
payoff is
(S(T) = K)" Limin s5()>H}

= (S(T') — K)1{5(T)>K min S(.)>H}»
so by risk-neutral pricing the value of the option DOCk g is

E~ [e_TT(S(T) — K)1{5(T)> K.min S()>H} ]

where S is geometric Brownian motion.
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max and min of BM
Write ¢ := p — %02/0; then
min S(.) > H
iff
min(ct + W (t)) > o~ log(H/po).
Writing X for X (t) := ct + W (t) — drifting Brownian motion with drift
c, m, M for its minimum and maximum processes

m(t) := min{X (s) : s € [0,t]},

M(t) := max{X(s) : s € [0,t]},

the payoff function involves the bivariate process (X, m), and the option

price involves the joint law of this process.
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Reflection Principle

Consider ¢ = 0. We require the joint law of standard BM and its
maximum (or minimum), (W, M).

We choose a level b > 0, and run the process until the first-passage time
7(b) :=inf{t > 0: W(¢t) > b}.

This is a stopping time, and we may use the strong Markov property for
W at time 7(b). The process now begins afresh at level b, and by
symmetry the probabilistic properties of its further evolution are
invariant under reflection in the level b. This reflection principle leads to
Lévy's joint density formula (z < y)

Py (W(t) € dx, M(t) € dy)

2(2y — x)

vV 2mt3

exp {—%(% _ x)2/t} |
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Density of (X (t), M(t))

Lévy's formula for the joint density of (W (t), M(t)) may be extended to
the case of general drift ¢ by the usual method for changing drift,
Girsanov's theorem. The general result is

Py (X (t) € de, M(t) € dy)

2y —x) [ -’ 1,
= - — %)
273 P { 2 e 2°

Here as before 0 < z < y.
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Valuation Formula

It is convenient to decompose the price DOCk g of the down-and-out
call into the (Black-Scholes) price of the corresponding vanilla call, Ck
say, and the knockout discount, KOD g g say, by which the knockout
barrier at H lowers the price:

DOCk.;y = Cx — KODg 1.

The option formula is, writing A :=r — %02,

KODg,y = po(H/po)**?M? N(c1)

—Ke "I (H/po)* " N(cy),
where c1, co are given by

log(H?/pK) + (r + $0?%)t
61,2(p7t) — O'\/i
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Aims and Objectives
e The Bond Market (§8.1);
e Short Rate Models (§8.2)
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Bonds

A zero-coupon bond with maturity date T', also called a T-bond, is a
contract that guarantees the holder a cash payment of one unit on the
date 1. The price at time t of a bond with maturity date 1I" is denoted

by p(t,T).

Coupon bonds are bonds with regular interest payments, called coupons,
plus a principal repayment at maturity. Let c¢; be the payments at times
ti, 7 =1,...,n, I' be the face value paid at time ¢,,. Then the price of
the coupon bond B. must satisfy

n

B. = chp((),tj) + F'p(0,t,).
j=1

Hence, we see that a coupon bond is equivalent to a portfolio of

zero-coupon bonds.
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Rates

Given three dates t < T < T5 the basic question is: what is the risk-free
rate of return, determined at the contract time ¢, over the interval

'T1,T5] of an investment of 1 at time 7117

t 17 1>
Sell T1-bond Pay out 1
Buy pg’Tlg T>-bonds Receive %
. p(t,T7)
0 1 +p(t T2)
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Rates

To exclude arbitrage opportunities, the equivalent constant rate of
interest R over this period (we pay out 1 at time 77 and receive
efT2=T1) at Ty) has thus to be given by

6R<T2_T1) — p(t7T1) ’
p(ta T2)
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Rates

1. The forward rate for the period [T}, T5] as seen at time at t is

log p(t, Ta) — log p(t, T
R(t; T, Tz) = — oept, ;z _;fp( 1),

2. The spot rate R(T1,T%), for the period [T7,T5] is

R(Tl, T2) — R(Tl; Tl, T2)

3. The instantaneous forward rate with maturity 7', at time ¢, is

~ Ologp(t,T)

4. The instantaneous short rate at time ¢t is

r(t) = f(t,1).
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Simple Relations

The money account process is defined by

B(t) = exp {/Otr(s)ds}.

The interpretation of the money market account is a strategy of
instantaneously reinvesting at the current short rate.

Fort < s < T we have

p(t,T) :p(t78) exXp {/ f(t,u)du},

p(t, T) = exp {—/t f(t, S)ds}

and in particular
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Process Dynamics

Short-rate Dynamics:

dr(t) = a(t)dt + b(t)dW (1),

Bond-price Dynamics:

dp(t, T) = p(t,T) {m(t, T)dt + v(t, T)dW (£)}

Forward-rate Dynamics:

df (t,T) = a(t, T)dt + o(t, T)dW (t).
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EMMs and RNV

A measure Q ~ IP defined on (€2, F, IP) is an equivalent martingale
measure for the bond market, if for every fixed 0 < T < T™ the process

p(t,T)

— 2 0<t<T
B(t) ’ - =

is a Q-martingale.

Consider a T-contingent claim X. Then the price process is

[y (t) = Eq | Xe~ Ji ()

7.

In particular, the price process of a zero-coupon bond with maturity 1" is

given by
p(t, T) — E Q |:€_ ftT r(S)ds

7.
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Short-rate model

We now fix an equivalent martingale measure Q and model the short

rate as

dr(t) = a(t,r(t))dt 4+ b(t,r(t))dW ().

If the contingent claim is of the form X = ®(r(T')) its arbitrage-free
price process is given by Ilx (t) = F'(t,r(t)), where F is the solution of
the partial differential equation

b2
Ft+aFr+§Fw—rF:O

with terminal condition F(T,r) = ®(r) for all » € IR. In particular,
T-bond prices are given by p(t,T) = F(t,r(t);T), with F' solving the
PDE and terminal condition F/(T,r;T) = 1.
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Contingent Claim Pricing

We want to evaluate the price of a European call option with maturity S
and strike K on an underlying T-bond. This means we have to price the

S-contingent claim
X =max{p(S,T) — K,0}.

We first have to find the price process p(t,T') = F(t,r;T) by solving the
PDE with terminal condition F/(T,r;T) = 1. Secondly, we use the
risk-neutral valuation principle to obtain Il x (t) = G(t,r), with G solving

b2
Gt—I—aGT—FEGW—TG:O

and
G(S,r) =max{F(S,r;T) — K,0}, Vr € IR.
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Affine Term Structure

If bond prices are given as
p(t,T) = exp{A(t,T) — B(t, T)r},

with A(t,T) and B(t,T) deterministic functions, we say that the model
possesses an affine term structure. For

a(t,r) = a(t) — B(t)r

and

b(t,r) = /(1) +3(t)r,
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Affine Term Structure

we find that A and B are given as solutions of ODEs

Ay — a(t)B + @BQ = 0,
(1+ B;) — B(t)B — ?BQ = 0,

with A(T,T) = B(T,T) = 0. The equation for B is a Riccati equation,

which can be solved analytically.
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Affine Term Structure

1. Vasicek model:
dr = (a — pr)dt + ydW;

2. Cox-Ingersoll-Ross (CIR) model:
dr = (o — Br)dt + §/rdW,

3. Ho-Lee model:
dr = a(t)dt + vdW,

4. Hull-White (extended Vasicek) model:
dr = (a(t) — B(t)r)dt + ~(t)dW;

5. Hull-White (extended CIR) model:
dr = (a(t) — B(t)r)dt + 6(t)\/rdW.
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Aims and Objectives

e HJM models (§8.3)

e Contingent Claims (§8.4)
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Heath-Jarrow-Morton (HJM) model

The Heath-Jarrow-Morton model uses the entire forward rate curve as
(infinite-dimensional) state variable. The dynamics of the instantaneous,
continuously compounded forward rates f(t,T') are exogenously given by

df (t,T) = a(t, T)dt + o(t, T)dW (t).

For any fixed maturity 7', the initial condition of the stochastic
differential equation (??) is determined by the current value of the
empirical (observed) forward rate for the future date 7" which prevails at

time 0.
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Heath-Jarrow-Morton (HJM) model

The exogenous specification of the family of forward rates

{f(t,T); T >0} is equivalent to a specification of the entire family of
bond prices {p(¢t,T); T > 0}. Furthermore, the dynamics of the
bond-price processes are

dp(t,T) = p(t,T){m(t, T)dt + S(t,T)dW (t)},

where |
m(t,T) = r(t) + At T) + 5 ISt D),
with
T
A(t,T) = —/ a(t, s)ds
t
and
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HJM Drift Condition

We want to find an EMM equivalent measure (the risk-neutral

martingale measure) such that

Z(t,T) =

Is a martingale for every 0 < T < T™.
A risk-neutral EMM exists iff there exists a process A(t), with

1.
Lit)=e" Jo AW =3 [IXI*du

defines a Girsanov pair and

2. forall 0 < T <T* and for all t <T', we have

a@TUZJQJUATJ@sMs+0@JWMﬂ.
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Forward Risk-neutral Martingale Measures

For many valuation problems in the bond market it is more suitable to

use the bond price process p(t,T™) as numéraire.

One needs an equivalent probability measure Q* such that the auxiliary

Process

2= 2D e,

is a martingale under Q* for T" < T™.

This measure is called such a measure forward risk-neutral martingale

measure.
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Forward Risk-neutral Martingale Measures (FRN-EMM)

Bond price dynamics under the original probability measure IP are given

dp(t,T) = p(t,T){m(t,T)dt + S(t, T)dW(t)},

with m(¢,T) from the HJM-drift condition.
Application of 1t6’s formula to the quotient p(¢t,T)/p(t, T*) yields

dZ*(,T) = Z*(t,T){m(t,T)dt

+ (S(t,T)— S(t,T7))dW(t)},

with
m(t,T)= m(t,T)—m(t, T")

_S(, T (S(,T) — S(t, T*)).
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FRN-EMM
The drift coefficient of Z*(¢,T) under any EMM Q* is given as

m(t, T) — (S(t,T) — S(t, T (t).

For Z*(t,T) to be a Q*-martingale this coefficient has to be zero, and

replacing m with its definition we get
(A(tv T) R A(ta T*))

+ 1 (IS DI - 186 7)1P)

= (S, T") +~(t) (S, T) = 5(t,T7)).
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FRN-EMM

Written in terms of the coefficients of the forward-rate dynamics, this

T*
/ o(t,s)ds
T

identity simplifies to

T* 1
/ a(t, s)ds + 5

— () / " o(t, s)ds.

T

Taking the derivative with respect to 7', we obtain

T*

a(t,T)+o(t,T) /T o(t,s)ds =~v(t)o(t,T).

(©Riidiger Kiesel



343

FRN-EMM

There exists a forward risk-neutral martingale measure if and only if
there exists an adapted process ~(t) such that forall 0 <t <T <T*

a(t,T) =o(t,T)(S(T,T7) + (1))
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Gaussian HJM Framework

Assume that the dynamics of the forward rate are given under a
risk-neutral martingale measure Q by

df (t,T) = a(t, T)dt + o(t, T)dW (t)

with deterministic forward rate volatility. Then

f(tvt) — T(t)
= f((),t)—|—/0 (—o(u,t)S(u,t))du

+ /Ot o(u, t)dW (u),

which implies that the short-rate as well as the forward rates f(t,7T)
have Gaussian probability laws.
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Options on Bonds

Consider a European call C on a T™-bond with maturity 7' < T™* and
strike K. So we consider the T-contingent claim

X =TT - K)+'
lts price at time t =0 is
C(O) — p<07 T*>Q* (A) - Kp(O, T>@T(A)a

with A = {w : p(T,T*) > K} and Q' resp. Q* the T- resp. T*-forward
risk-neutral measure.
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Options on Bonds

has Q-dynamics
d7 = 7 {S(S —S%)dt — (S — S*)dW(t)},
so a deterministic variance coefficient. Now

Q*(p(T,T") = K)

- @ (Srm 2 %)

~

Q*(Z(T,T) > K).
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Options on Bonds
Since Z(t,T) is a QT-martingale with Q”-dynamics

dZ(t7 T) — _Z(t7 T)(S(t7 T) o S(ta T*))dWT (t)a

we find that under Q7

Z(T,T) = ];((0071;)) exp{/o (SS*)thT}

X exp {; /O (S — S*)2dt}

The stochastic integral in the exponential is Gaussian with zero mean

and variance

Y2T) = /OT(S(t,T) — S(t,T%))dt.
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Options on Bonds So

Q" (p(T,T*) > K)

= QT(Z(T,T) > K) = N(d»)

with

0,T
log (KI;((O,T)*)) - 32%(T)

do =
¥2(T)

Repeat the argument to get

The price of the call option is given by

with parameters given as above.
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Swaps Consider the case of a forward swap settled in arrears

characterized by:
e a fixed time ¢, the contract time,
e dates Ty < T7%,... < T,, equally distanced T;,1 — T; = 0,
e R, a prespecified fixed rate of interest,

e K, a nominal amount.
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Swaps

A swap contract .S with K and R fixed for the period 1g,...T;, is a
sequence of payments, where the amount of money paid out at

Tiv1, 1 =0,...,n — 1 is defined by
X1 = K6(L(T;,T;) — R).

The floating rate over [T;,T;,1] observed at T; is a simple rate defined as

1
1+ 0L(T;, T;)

p(Tzv T’i—l—l) —
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Swaps

Using the risk-neutral pricing formula we obtain (we may use K = 1),

(¢, s) = 3 Eq I T(S)d‘s&(L(Ti,Ti)—R)‘}‘t]
=1
] T
n — fpt r(s)ds
- .21 Eo [Eo [e it }—Ti—ll
« e Ji T(s)ds ! —(1+6R) || Fs
p(T; 1, T;)

= 2 (p(t,T-_l) — (1+5R)P(t:Ti))

)
I
[y

n
- p(taTO) - Z Cip(t7Ti)7
=1

withe; =0R,i=1,...,.n—1and ¢, =1+ 0R. So a swap is a linear
combination of zero-coupon bonds, and we obtain its price accordingly.
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Caps An interest cap is a contract where the seller of the contract
promises to pay a certain amount of cash to the holder of the contract if
the interest rate exceeds a certain predetermined level (the cap rate) at
some future date. A cap can be broken down in a series of caplets.

A caplet is a contract written at ¢, in force between [T, T1], 6 = T1 — T,
the nominal amount is K, the cap rate is denoted by R. The relevant
interest rate (LIBOR, for instance) is observed in Ty and defined by

1
1+ 6L(Ty, To)

p(To,T1) =
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Caplets
A caplet C' is a Ti-contingent claim with payoff
X = K§(L(Tp, Ty) — R)™.
Writing L = L(Ty,Ty),p = p(To,11), R* =1+ 6 R, we have
L= (1-p)/(dp), (assuming K = 1) and

X = 8(L-R)* = (1;1’—3)+

(oo ()

D=
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Caplets
The risk-neutral pricing formula leads to

[ —_— Tl (s S

= Eg |Eg [e_ To

[ To 1 +
= Egq |p(To,T1) e Jg 7 r(s)ds (— —R*)

= Eg -6_ ¢ - T(s)ds (1—pR*)+‘ft]
— R*Eg le—ftTO rle)ds (% - p>+‘ft]'

So a caplet is equivalent to R* put options on a Tj-bond with maturity
To and strike 1/R*.
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