
Additional questions for chapter 3

1. Let ξ1, ξ2, . . . be independent and identically distributed with
φ(θ) = IE(exp{θξ1}) < ∞. Let Sn = S0 + ξ1 + . . . + ξn. Show that

Mn =
exp{θSn}

φ(θ)n

is a martingale with respect to σ(S0, . . . , Sn). Apply the result to the special case

IP (ξ1 = 1) = p, and IP (ξ1 = −1) = 1− p.

Solution:
Use subsequently measurability and independence

IE(Mn+1|Fn) = IE
[
exp{θ(ξn+1 + Sn)}/ϕ(θ)n+1|Fn

]

=
exp{θSn)}
ϕ(θ)n+1

IE [exp{θξn+1}|Fn]

=
exp{θSn)}
ϕ(θ)n+1

IE [exp{θξn+1}] =
exp{θSn)}

ϕ(θ)n
= Mn.

The second part is a straightforward application.



2. (i) Let ξ1, ξ2, . . . be independent with IE(ξi) = 0 and IE(ξ2
i ) = σ2

i . Let Sn = S0 +
ξ1 + . . . + ξn, where S0 is a constant, and let vn =

∑n
i=1 σ2

i be the variance of
Sn. Show that

Mn = S2
n − vn

is a martingale.

(ii) Suppose we are testing the hypothesis that observations ξ1, ξ2, . . . are independent
and have density function f but the truth is that ξ1, ξ2, . . . are independent and
have density function g where {x : f(x) > 0} = {x : g(x) > 0}. Let

h(x) =





f(x)/g(x) when g(x) > 0

0 when g(x) = 0

Show that Mn = h(ξ1) · · ·h(ξn) is a martingale.

Solution:
(i) Using the definition of Mn, the independence of (ξi) and the property taking out
what is known of conditional expectation we get:

IE(Mn −Mn−1|Fn−1) = IE((Sn−1 + ξn)2 − S2
n−1 − σ2

n|Fn−1)

= IE(2Sn−1ξn + ξ2
n − σ2

n|Fn−1)

= 2(Sn−1)IE(ξn|Fn−1) + IE(ξ2
n|Fn−1)− IE(σ2

n|Fn−1) = 0.

Thus IE(Mn|Fn−1) = Mn−1 showing that (Mn) is a martingale.
(ii) This is a special case of a ’product martingale’. Set ζi = h(ξi) = f(ξi)/g(ξi).
Then

IE(ζi) =

∫
f(x)

g(x)
g(x)dx =

∫
f(x)dx = 1

and the claim follows from the second example in §3.3 in the book.



3. Let X = {Xn}n∈N0 be an integrable stochastic process which is adapted to the filtration
{Fn}n∈N0. Show that X has a decomposition

Xn = X0 + Mn + An

where {Mn}n∈N0 is a martingale with M0 = 0 and {An}n∈N0 is a predictable process
with A0 = 0. Show that the decomposition is unique. Also show that {An}n∈N0 is
monotonously increasing iff X is a submartingale.
(Hint:E[Xn −Xn−1|Fn−1] = An − An−1)

Solution:
First we define {An}n∈N0 recursively by A0 = 0 and the hint

An = An−1 + E[Xn −Xn−1|Fn−1]

Then An is Fn−1 measurable by induction and the measurability of conditional ex-
pectation. Thus, {An}n∈N0 is predictable.
Now define Mn = Xn − X0 − An. Then we see that {Mn}n∈N0 is clearly integrable
and adapted. We only have to show that it is a martingale.

E[Mn|Fn−1] = E[Xn|Fn−1]−X0 − An =

E[Xn|Fn−1]−X0 − An−1 − E[Xn −Xn−1|Fn−1] = Xn−1 −X0 − An−1 = Mn−1

It remains to show uniqueness.
Assume that X has a second decomposition Xn = X0 + M ′

n + A′
n. Then we get

M ′
n −Mn = A′

n − An. We see that M ′
n −Mn is predictable. Thus

M ′
n −Mn = E[M ′

n −Mn|Fn−1] = M ′
n−1 −Mn−1

Therefore M ′
1 −M1 = M ′

0 −M0 = 0 and then M ′
1 = M1. By induction we see that

M ′
n = Mn. Then we immediately have A′

n = An and the uniqueness has been shown.

It remains to show that {An}n∈N0 is monotonously incresing iff X is a submartingale.
This follows immediately by the definition of An.



4. Assume that (ξn)n∈N is a sequence of independent random variables with E[ξn] = 0 ∀n
and E[exp(ξn)] < ∞ ∀n. Furthermore

Fn = σ(ξ1, . . . , ξn)

and

S0 = 0 Sn =
n∑

k=1

ξk.

(a) Show that Sn is a martingale with respect to (Fn)n≥0.

(b) Show that Pn = exp(Sn) is a submartingale with respect to (Fn)n≥0.

(c) Now assume ξn ∼ N(0, σ2
n). Determine the Doob-decomposition of Pn.

Solution:

(a) We have E[|Sn|] ≤
n∑

k=1

E[|ξk|] < ∞ and Sn is Fn-measurable by definition of Fn.

E[Sn+1|Fn] = E

[
n+1∑

k=1

ξk

∣∣∣∣∣Fn

]
=

n∑

k=1

ξk + E[ξn+1|Fn] =

=
n∑

k=1

ξk + E[ξn+1] =
n∑

k=1

ξk = Sn

(b) We define f(x) = exp(x). As f is convex, by applying the conditional Jensen
formula we get

E[f(Sn+1)|Fn] ≥ f(E[Sn+1|Fn]) = f(Sn)

In addition to this, Pn is adapted, as Sn is adapted and f(x) = exp(x) is

Borel-measurable. Apart from this, E[|Pn|] =
n∏

k=1

E[exp(ξk)] < ∞. Thus, Pn =

exp(Sn) is a submartingale with respect to (Fn)n≥0.

(c) The Doob-decomposition is

An =
n∑

k=1

E[Pk − Pk−1|Fk−1] =
n∑

k=1

Pk−1(e
1
2
σ2

k − 1).

The martingale part Mn of the decomposition is

Mn = Pn − An − P0 = Pn −
n∑

k=1

Pk−1(e
1
2
σ2

k − 1)− 1

Then Pn = Mn + An + P0, where An is predictable, Mn is a martingale and P0

a constant.



5. We assume that (Ω,F , IF, IP ) is a standard filtered probability space with IF = (Fn)∞n=0

a filtration. Let U = (Un)∞n=0 be an adapted sequence and consider the discrete
stochastic exponential

En(U) =
n∏

k=1

(1 + ∆Uk), E0(U) = 1,

where ∆Un = Un − Un−1. Consider the difference equation

∆Xn = Xn−1∆Un, X0 = 1. (DE)

(i) Verify that En(U) is a solution of (DE).

(ii) Assume En(U) 6= 0. Show that En(U) is a martingale if (Un) is a martingale.

(iii) Let (αn)∞n=0 be a deterministic series of positive numbers and V = (Vn)∞n=0 be
an adapted sequence. Set

An =
n∑

k=1

IE
(
eαk∆Vk − 1

∣∣Fk−1

)
.

Prove that

Zn = exp

{
n∑

k=1

αk∆Vk

}
E−1

n (A), Z0 = 1

is a martingale. (Hint: You may use En(U)−1 = En(−Y ), where ∆Yn = ∆Un −
(∆Un)2

(1+∆Un)
).

Solution:

(i) Define Xn := En(U). Then

∆Xn = En(U)− En−1(U)

= (1 + ∆Un − 1) ·
n−1∏

k=1

(1 + ∆Uk)

= ∆Un ·Xn−1.

(ii) Let (Un) be a martingale. Adaptedness of (En(U)) can be seen. Integrability of
(En(U)) is provided by assumption. Define Xn := En(U). Then, according to
(i), (Xn) solves (DE). Thus, by (DE) and the martingale-property of (Un)

E(∆Xn|Fn−1) = E(Xn−1 ·∆Un|Fn−1)

= Xn−1 · E(∆Un|Fn−1)

= Xn−1 · 0 = 0,

which shows that (Xn) is a martingale.

(iii) Adaptedness of (Zn) follows from adaptedness of (An), integrability of (Zn) is
provided by assumption. Applying the hint to (An) and simplifying yields

En(A)−1 =
n∏

k=1

(
1− ∆Ak

1 + ∆Ak

)
.



With this result, we get

Zn = exp

{
n∑

k=1

αk ·∆Vk

}
· En(A)−1

= eαn·∆Vn ·
(

1− ∆An

1 + ∆An

)
·

n−1∏

k=1

eαk·∆Vk ·
(

1− ∆Ak

1 + ∆Ak

)

= eαn·∆Vn ·
(

1− ∆An

1 + ∆An

)
· Zn−1.

Now, with the definition of An, we find

1− ∆An

1 + ∆An

=
1

E(exp{αn ·∆Vn}|Fn−1)
.

Applying this gives

∆Zn = Zn−1 ·
(

eαn·∆Vn ·
(

1− ∆An

1 + ∆An

)
− 1

)

= Zn−1 ·
(

eαn·∆Vn

E(exp{αn ·∆Vn}|Fn−1)
− 1

)
,

and thus

E(∆Zn|Fn−1) = Zn−1 · E
(

eαn·∆Vn

E(exp{αn ·∆Vn}|Fn−1)

∣∣∣∣Fn−1

)
− Zn−1

=
Zn−1

E(exp{αn ·∆Vn}|Fn−1)
· E (

eαn·∆Vn|Fn−1

)− Zn−1

= 0,

completing the proof that (Zn) is a martingale.



6. Let σ and τ be two stopping times with respect to the filtration (Fn)∞n=0. Show that
Fσ∧τ = Fσ ∩ Fτ . Also show that the events

{τ < σ}, {σ < τ}, {τ ≤ σ}, {σ ≤ τ}, {σ = τ}

belong to Fσ ∩ Fτ .

Solution:
From Proposition 3.5.2 in the book we know that as σ ∧ τ ≤ σ and also σ ∧ τ ≤ τ
we have Fσ∧τ ⊂ Fσ and Fσ∧τ ⊂ Fτ . Thus Fσ∧τ ⊂ Fσ ∩ Fτ .

For the other direction assume A ∈ Fσ ∩ Fτ . Therefore

A ∩ {σ ≤ n} ∈ Fn ∀n

and
A ∩ {τ ≤ n} ∈ Fn ∀n.

We have

A ∩ {σ ∧ τ ≤ n} = A ∩ ({σ ≤ n} ∪ {τ ≤ n})
= (A ∩ {σ ≤ n} ∪ (A ∩ {τ ≤ n}) ∈ Fn ∀n.

From this it follows that A ∈ Fσ∧τ .

We now have to verify that the mentioned sets are in Fσ∧τ . First show {τ ≤ σ} ∈ Fσ:

{τ ≤ σ} ∩ {σ ≤ n} =
n⋃

k=0

{σ = k} ∩ {τ ≤ k} ∈ Fn.

Analogously we get {τ ≤ σ} ∈ Fτ by:

{τ ≤ σ} ∩ {τ ≤ n} =
n⋃

k=0

{τ = k} ∩ {σ > k} ∈ Fn.

The result for {σ ≤ τ} follows by reversing the roles of σ and τ .

We also have:

{τ = σ} ∩ {σ ≤ n} =
n⋃

k=0

{σ = k} ∩ {τ = k} ∈ Fn.

Thus, we have {σ = τ} ∈ Fσ. By reversing the role of σ and τ , we get the result.

The result for the last two sets follows by taking complements.
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