
4. Mathematical Finance in Discrete Time

4.1 The Model

We will study so-called finite markets – i.e. discrete-time models of financial
markets in which all relevant quantities take a finite number of values. Fol-
lowing the approach of Harrison and Pliska (1981) and Taqqu and Willinger
(1987), it suffices, to illustrate the ideas, to work with a finite probability
space (Ω, F , IP ), with a finite number |Ω| of points ω, each with positive
probability: IP ({ω}) > 0.

We specify a time horizon T , which is the terminal date for all economic
activities considered. (For a simple option-pricing model the time horizon
typically corresponds to the expiry date of the option.)

As before, we use a filtration IF = {Ft}T
t=0 consisting of σ-algebras F0 ⊂

F1 ⊂ · · · ⊂ FT : we take F0 = {∅, Ω}, the trivial σ-field, FT = F = P(Ω)
(here P(Ω) is the power-set of Ω, the class of all 2|Ω| subsets of Ω: we need
every possible subset, as they all – apart from the empty set – carry positive
probability).

The financial market contains d + 1 financial assets. The usual interpre-
tation is to assume one risk-free asset (bond, bank account) labeled 0, and
d risky assets (stocks, say) labeled 1 to d. While the reader may keep this
interpretation as a mental picture, we prefer not to use it directly. The prices
of the assets at time t are random variables, S0(t, ω), S1(t, ω), . . . , Sd(t, ω)
say, non-negative and Ft-measurable (i.e. adapted: at time t, we know the
prices Si(t)). We write S(t) = (S0(t), S1(t), . . . , Sd(t))′ for the vector of prices
at time t. Hereafter we refer to the probability space (Ω, F , IP ), the set of
trading dates, the price process S and the information structure IF , which
is typically generated by the price process S, together as a securities market
model.

It will be essential to assume that the price process of at least one asset
follows a strictly positive process.

Definition 4.1.1. A numéraire is a price process (X(t))T
t=0 (a sequence of

random variables), which is strictly positive for all t ∈ {0, 1, . . . , T}.

For the standard approach the risk-free bank account process is used as
numéraire. In some applications, however, it is more convenient to use a
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security other than the bank account and we therefore just use S0 without
further specification as a numéraire. We furthermore take S0(0) = 1 (that is,
we reckon in units of the initial value of our numéraire), and define β(t) :=
1/S0(t) as a discount factor.

A trading strategy (or dynamic portfolio) ϕ is a IRd+1 vector stochastic
process ϕ = (ϕ(t))T

t=1 = ((ϕ0(t, ω), ϕ1(t, ω), . . . , ϕd(t, ω))′)T
t=1 which is pre-

dictable (or previsible): each ϕi(t) is Ft−1-measurable for t ≥ 1. Here ϕi(t)
denotes the number of shares of asset i held in the portfolio at time t – to be
determined on the basis of information available before time t; i.e. the investor
selects his time t portfolio after observing the prices S(t − 1). However, the
portfolio ϕ(t) must be established before, and held until after, announcement
of the prices S(t). The components ϕi(t) may assume negative as well as
positive values, reflecting the fact that we allow short sales and assume that
the assets are perfectly divisible.

Definition 4.1.2. The value of the portfolio at time t is the scalar product

Vϕ(t) = ϕ(t)·S(t) :=
d∑

i=0

ϕi(t)Si(t), (t = 1, 2, . . . , T ) and Vϕ(0) = ϕ(1)·S(0).

The process Vϕ(t, ω) is called the wealth or value process of the trading strategy
ϕ.

The initial wealth Vϕ(0) is called the initial investment or endowment of
the investor.

Now ϕ(t) · S(t − 1) reflects the market value of the portfolio just after
it has been established at time t − 1, whereas ϕ(t) · S(t) is the value just
after time t prices are observed, but before changes are made in the portfolio.
Hence

ϕ(t) · (S(t) − S(t − 1)) = ϕ(t) · ∆S(t)

is the change in the market value due to changes in security prices which
occur between time t − 1 and t. This motivates:

Definition 4.1.3. The gains process Gϕ of a trading strategy ϕ is given by

Gϕ(t) :=
t∑

τ=1

ϕ(τ) · (S(τ) − S(τ − 1)) =
t∑

τ=1

ϕ(τ) · ∆S(τ), (t = 1, 2, . . . , T ).

Observe the – for now – formal similarity of the gains process Gϕ from
trading in S following a trading strategy ϕ to the martingale transform of S
by ϕ.

Define S̃(t) = (1, β(t)S1(t), . . . , β(t)Sd(t))′, the vector of discounted
prices, and consider the discounted value process

Ṽϕ(t) = β(t)(ϕ(t) · S(t)) = ϕ(t) · S̃(t), (t = 1, 2, . . . , T )
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and the discounted gains process

G̃ϕ(t) :=
t∑

τ=1

ϕ(τ) · (S̃(τ) − S̃(τ − 1)) =
t∑

τ=1

ϕ(τ) · ∆S̃(τ), (t = 1, 2, . . . , T ).

Observe that the discounted gains process reflects the gains from trading with
assets 1 to d only, which in case of the standard model (a bank account and
d stocks) are the risky assets.

We will only consider special classes of trading strategies.

Definition 4.1.4. The strategy ϕ is self-financing, ϕ ∈ Φ, if

ϕ(t) · S(t) = ϕ(t + 1) · S(t) (t = 1, 2, . . . , T − 1). (4.1)

Interpretation. When new prices S(t) are quoted at time t, the investor
adjusts his portfolio from ϕ(t) to ϕ(t + 1), without bringing in or consum-
ing any wealth. The following result (which is trivial in our current setting,
but requires a little argument in continuous time) shows that renormalis-
ing security prices (i.e. changing the numéraire) has essentially no economic
effects.

Proposition 4.1.1 (Numéraire Invariance). Let X(t) be a numéraire. A
trading strategy ϕ is self-financing with respect to S(t) if and only if ϕ is self-
financing with respect to X(t)−1S(t).

Proof. Since X(t) is strictly positive for all t = 0, 1, . . . , T we have the
following equivalence, which implies the claim:

ϕ(t) · S(t) = ϕ(t + 1) · S(t) (t = 1, 2, . . . , T − 1)
⇔

ϕ(t) · X(t)−1S(t) = ϕ(t + 1) · X(t)−1S(t) (t = 1, 2, . . . , T − 1).

�

Corollary 4.1.1. A trading strategy ϕ is self-financing with respect to S(t)
if and only if ϕ is self-financing with respect to S̃(t).

We now give a characterization of self-financing strategies in terms of the
discounted processes.

Proposition 4.1.2. A trading strategy ϕ belongs to Φ if and only if

Ṽϕ(t) = Vϕ(0) + G̃ϕ(t), (t = 0, 1, . . . , T ). (4.2)

Proof. Assume ϕ ∈ Φ. Then using the defining relation (4.1), the
numéraire invariance theorem and the fact that S0(0) = 1
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Vϕ(0) + G̃ϕ(t) = ϕ(1) · S(0) +
t∑

τ=1

ϕ(τ) · (S̃(τ) − S̃(τ − 1))

= ϕ(1) · S̃(0) + ϕ(t) · S̃(t)

+
t−1∑
τ=1

(ϕ(τ) − ϕ(τ + 1)) · S̃(τ) − ϕ(1) · S̃(0)

= ϕ(t) · S̃(t) = Ṽϕ(t).

Assume now that (4.2) holds true. By the numéraire invariance theorem it
is enough to show the discounted version of relation (4.1). Summing up to
t = 2 (4.2) is

ϕ(2) · S̃(2) = ϕ(1) · S̃(0) + ϕ(1) · (S̃(1) − S̃(0)) + ϕ(2) · (S̃(2) − S̃(1)).

Subtracting ϕ(2) · S̃(2) on both sides gives ϕ(2) · S̃(1) = ϕ(1) · S̃(1), which
is (4.1) for t = 1. Proceeding similarly – or by induction – we can show
ϕ(t) · S̃(t) = ϕ(t + 1) · S̃(t) for t = 2, . . . , T − 1 as required. �

We are allowed to borrow (so ϕ0(t) may be negative) and sell short (so
ϕi(t) may be negative for i = 1, . . . , d). So it is hardly surprising that if we
decide what to do about the risky assets and fix an initial endowment, the
numéraire will take care of itself, in the following sense.

Proposition 4.1.3. If (ϕ1(t), . . . , ϕd(t))′ is predictable and V0 is F0-mea-
surable, there is a unique predictable process (ϕ0(t))T

t=1 such that ϕ =
(ϕ0, ϕ1, . . . , ϕd)′ is self-financing with initial value of the corresponding port-
folio Vϕ(0) = V0.

Proof. If ϕ is self-financing, then by Proposition 4.1.2,

Ṽϕ(t) = V0 + G̃ϕ(t) = V0 +
t∑

τ=1

(ϕ1(τ)∆S̃1(τ) + . . . + ϕd(τ)∆S̃d(τ)).

On the other hand,

Ṽϕ(t) = ϕ(t) · S̃(t) = ϕ0(t) + ϕ1(t)S̃1(t) + . . . + ϕd(t)S̃d(t).

Equate these:

ϕ0(t) = V0 +
t∑

τ=1

(ϕ1(τ)∆S̃1(τ) + . . . + ϕd(τ)∆S̃d(τ))

−(ϕ1(t)S̃1(t) + . . . + ϕd(t)S̃d(t)),

which defines ϕ0(t) uniquely. The terms in S̃i(t) are

ϕi(t)∆S̃i(t) − ϕi(t)S̃i(t) = −ϕi(t)S̃i(t − 1),
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which is Ft−1-measurable. So

ϕ0(t) = V0 +
t−1∑
τ=1

(ϕ1(τ)∆S̃1(τ) + . . . + ϕd(τ)∆S̃d(τ))

−(ϕ1(t)S1(t − 1) + . . . + ϕd(t)S̃d(t − 1)),

where as ϕ1, . . . , ϕd are predictable, all terms on the right-hand side are
Ft−1-measurable, so ϕ0 is predictable. �

Remark 4.1.1. Proposition 4.1.3 has a further important consequence: for
defining a gains process G̃ϕ only the components (ϕ1(t), . . . , ϕd(t))′ are
needed. If we require them to be predictable they correspond in a unique way
(after fixing initial endowment) to a self-financing trading strategy. Thus for
the discounted world predictable strategies and final cash-flows generated by
them are all that matters.

We now turn to the modeling of derivative instruments in our current
framework. This is done in the following fashion.

Definition 4.1.5. A contingent claim X with maturity date T is an arbi-
trary FT = F-measurable random variable (which is by the finiteness of the
probability space bounded). We denote the class of all contingent claims by
L0 = L0(Ω, F , IP ).

The notation L0 for contingent claims is motivated by them being simply
random variables in our context (and by the functional-analytic spaces used
later on).

A typical example of a contingent claim X is an option on some underlying
asset S; then (e.g. for the case of a European call option with maturity date
T and strike K) we have a functional relation X = f(S) with some function f
(e.g. X = (S(T ) − K)+). The general definition allows for more complicated
relationships which are captured by the FT -measurability of X (recall that
FT is typically generated by the process S).

4.2 Existence of Equivalent Martingale Measures

4.2.1 The No-arbitrage Condition

The central principle in the single period example was the absence of arbitrage
opportunities, i.e. the absence of investment strategies for making profits
without any exposure to risk. As mentioned there this principle is central for
any market model, and we now define the mathematical counterpart of this
economic principle in our current setting.
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Definition 4.2.1. Let Φ̃ ⊂ Φ be a set of self-financing strategies. A strategy
ϕ ∈ Φ̃ is called an arbitrage opportunity or arbitrage strategy with respect to
Φ̃ if IP{Vϕ(0) = 0} = 1, and the terminal wealth of ϕ satisfies

IP{Vϕ(T ) ≥ 0} = 1 and IP{Vϕ(T ) > 0} > 0.

So an arbitrage opportunity is a self-financing strategy with zero initial
value, which produces a non-negative final value with probability one and
has a positive probability of a positive final value. Observe that arbitrage
opportunities are always defined with respect to a certain class of trading
strategies.

Definition 4.2.2. We say that a security market M is arbitrage-free if there
are no arbitrage opportunities in the class Φ of trading strategies.

We will allow ourselves to use ‘no-arbitrage’ in place of ‘arbitrage-free’
when convenient.

We will use the following mental picture in analyzing the sample paths of
the price processes. We observe a realization S(t, ω) of the price process S(t).
We want to know which sample point ω ∈ Ω – or random outcome – we have.
Information about ω is captured in the filtration IF = {Ft}. In our current
setting we can switch to the unique sequence of partitions {Pt} corresponding
to the filtration {Ft}. So at time t we know the set At ∈ Pt with ω ∈ At.
Now recall the structure of the subsequent partitions. A set A ∈ Pt is the
disjoint union of sets A1, . . . , AK ∈ Pt+1. Since S(u) is Fu-measurable S(t)
is constant on A and S(t + 1) is constant on the Ak, k = 1, . . . , K. So we
can think of A as the time 0 state in a single-period model and each Ak

corresponds to a state at time 1 in the single-period model. We can therefore
think of a multi-period market model as a collection of consecutive single-
period markets. What is the effect of a ‘global’ no-arbitrage condition on the
single-period markets?

Lemma 4.2.1. If the market model contains no arbitrage opportunities, then
for all t ∈ {0, 1, . . . , T −1}, for all self-financing trading strategies ϕ ∈ Φ and
for any A ∈ Pt, we have

(i) IP (Ṽϕ(t + 1) − Ṽϕ(t) ≥ 0|A) = 1 ⇒ IP (Ṽϕ(t + 1) − Ṽϕ(t) = 0|A) = 1,

(ii) IP (Ṽϕ(t + 1) − Ṽϕ(t) ≤ 0|A) = 1 ⇒ IP (Ṽϕ(t + 1) − Ṽϕ(t) = 0|A) = 1.

Observe that the conditions in the lemma are just the defining conditions
of an arbitrage opportunity from Definition 4.2.1. They are formulated for a
single-period model from t to t + 1 with respect to the available information
ω ∈ A. The economic meaning of this result answers the question raised
above. No arbitrage ‘globally’ implies no arbitrage ‘locally’. From this the
idea of the proof is immediate. Any local trading strategy can be embedded
in a global strategy for which we can use the global no-arbitrage condition.
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Proof. We only prove (i) ((ii) is shown in a similar fashion). Fix t ∈
{0, . . . , T − 1} and ϕ ∈ Φ. Suppose IP (Ṽϕ(t + 1) − Ṽϕ(t) ≥ 0|A) = 1 for some
A ∈ Pt and define a new trading strategy ψ for all times u = 1, . . . , T as
follows:

For u ≤ t : ψ(u) = 0 (‘do nothing before time t’).
For u = t + 1 : ψ(t + 1) = 0 if ω �∈ A, and

ψk(t + 1, ω) =




ϕk(t + 1, ω) if ω ∈ A and k ∈ {1, . . . , d},

ϕ0(t + 1, ω) − Ṽϕ(t, ω) if ω ∈ A and k = 0.

(If ω happens to be in A at time t, follow strategy ϕ when dealing with the
risky assets, but modify the holdings in the numéraire appropriately in order
to compensate for doing nothing when ω �∈ A.)

For u > t + 1 : ψk(u) = 0 for k ∈ {1, . . . , d} and

ψ0(u, ω) =
{

Ṽψ(t + 1, ω) if ω ∈ A,
0 if ω �∈ A.

(Invest the amount Ṽψ(t + 1) into the numéraire account if ω happens to be
in A, otherwise do nothing.)

The next step now is to show that the strategy ψ is a self-financing trading
strategy. By construction ψ is predictable, hence a trading strategy. For ω �∈
A ψ ≡ 0, so we only have to consider ω ∈ A. The relevant point in time is
t + 1. Recall that ψ(t) = 0, hence ψ(t) · S̃(t) = 0. Now

ψ(t + 1) · S̃(t) = (ϕ0(t + 1) − Ṽϕ(t))S̃0(t) +
d∑

k=1

ϕk(t + 1)S̃k(t)

=
d∑

k=0

ϕk(t + 1)S̃k(t) − Ṽϕ(t)

= ϕ(t + 1) · S̃(t) − Ṽϕ(t) = ϕ(t) · S̃(t) − Ṽϕ(t) = 0,

using the fact that ϕ is self-financing. Since ψ(u) · S̃(u) = 0 for u ≤ t we have
ψ(u+1) · S̃(u) = ψ(u) · S̃(u) for all u ≤ t (and for all ω ∈ Ω). When u > t+1
and ω ∈ A we only hold the numéraire asset (with constant discounted value
equal to 1), so

ψ(u + 1) · S̃(u) = Ṽψ(t + 1) = ψ(u) · S̃(u).

Therefore the strategy ψ is self-financing.
We now analyze the value process of ψ. Using our assumption IP (Ṽϕ(t +

1) − Ṽϕ(t) ≥ 0|A) = 1 we see that for all u ≥ t + 1 and ω ∈ A
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Ṽψ(u) = ψ(u) · S̃(u) = ψ(t + 1) · S̃(t + 1)

= (ϕ0(t + 1) − Ṽϕ(t))S̃0(t + 1) +
d∑

k=1

ϕk(t + 1)S̃k(t + 1)

=
d∑

k=0

ϕk(t + 1)S̃k(t + 1) − Ṽϕ(t)

= Ṽϕ(t + 1) − Ṽϕ(t) ≥ 0.

Since Ṽψ(T ) = 0 on Ac ψ defines a self-financing trading strategy with
Ṽψ(0) = 0 and Ṽψ(T ) ≥ 0. The assumption of an arbitrage-free market im-
plies Ṽψ(T ) = 0 or

0 = IP (Ṽψ(T ) > 0) = IP
(
{Ṽψ(T ) > 0} ∩ A

)
= IP (Ṽϕ(t + 1) − Ṽϕ(t) > 0|A)IP (A).

Therefore IP (Ṽϕ(t + 1) − Ṽϕ(t) = 0|A) = 1. �

The fundamental insight in the single-period example was the equivalence
of the no-arbitrage condition and the existence of risk-neutral probabilities.
For the multi-period case we now use the probabilistic machinery of Chapter
2 to establish the corresponding result.

Definition 4.2.3. A probability measure IP ∗ on (Ω, FT ) equivalent to IP is
called a martingale measure for S̃ if the process S̃ follows a IP ∗-martingale
with respect to the filtration IF . We denote by P(S̃) the class of equivalent
martingale measures.

Proposition 4.2.1. Let IP ∗ be an equivalent martingale measure (IP ∗ ∈
P(S̃)) and ϕ ∈ Φ any self-financing strategy. Then the wealth process Ṽϕ(t)
is a IP ∗-martingale with respect to the filtration IF .

Proof. By the self-financing property of ϕ (compare Proposition 4.1.2,
(4.2)), we have

Ṽϕ(t) = Vϕ(0) + G̃ϕ(t) (t = 0, 1, . . . , T ).

So

Ṽϕ(t + 1) − Ṽϕ(t) = G̃ϕ(t + 1) − G̃ϕ(t) = ϕ(t + 1) · (S̃(t + 1) − S̃(t)).

So for ϕ ∈ Φ, Ṽϕ(t) is the martingale transform of the IP ∗ martingale S̃ by
ϕ (see Theorem 3.4.1) and hence a IP ∗ martingale itself. �

Observe that in our setting all processes are bounded, i.e. the martingale
transform theorem is applicable without further restrictions. The next result
is the key for the further development.
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Proposition 4.2.2. If an equivalent martingale measure exists – that is, if
P(S̃) �= ∅ – then the market M is arbitrage-free.

Proof. Assume such a IP ∗ exists. For any self-financing strategy ϕ, we
have as before

Ṽϕ(t) = Vϕ(0) +
t∑

τ=1

ϕ(τ) · ∆S̃(τ).

By Proposition 4.2.1, S̃(t) a (vector) IP ∗-martingale implies Ṽϕ(t) is a P ∗-
martingale. So the initial and final IP ∗-expectations are the same,

IE∗(Ṽϕ(T )) = IE∗(Ṽϕ(0)).

If the strategy is an arbitrage opportunity its initial value – the right-hand
side above – is zero. Therefore the left-hand side IE∗(Ṽϕ(T )) is zero, but
Ṽϕ(T ) ≥ 0 (by definition). Also each IP ∗({ω}) > 0 (by assumption, each
IP ({ω}) > 0, so by equivalence each IP ∗({ω}) > 0). This and Ṽϕ(T ) ≥ 0
force Ṽϕ(T ) = 0. So no arbitrage is possible. �

Proposition 4.2.3. If the market M is arbitrage-free, then the class P(S̃)
of equivalent martingale measures is non-empty.

Because of the fundamental nature of this result we will provide two
proofs. The first proof is based on our previous observation that the ‘global’
no-arbitrage condition implies also no-arbitrage ‘locally’. We therefore can
combine single-period results to prove the multi-period claim. The second
prove uses functional-analytic techniques (as does the corresponding proof in
Chapter 1), i.e. a variant of the Hahn-Banach theorem.

First proof. From Lemma 4.2.1 we know that each of the underlying
single-period market models is free of arbitrage. By the results in Chapter
1 this implies the existence of risk-neutral probabilities. That is, for each
t ∈ {0, 1, . . . , T − 1} and each A ∈ Pt there exists a probability measure
IP (t, A) such that each cell Ai ⊂ A, i = 1, . . . , KA in the partition Pt+1 has
a positive probability mass and

KA∑
i=1

IP (t, A)(Ai) = 1.

Furthermore IEIP (t,A)(S̃(t+1)) = S̃(t) (where we restrict ourselves to ω ∈ A).
We can think of the probability measures IP (t, A) as conditional risk-neutral
probability measures given the event A occurred at time t. Now we can define
a probability measure IP ∗ on Ω by defining the probabilities of the simple
events {ω} (observe that FT = P(Ω), hence the final partition consists of
all simple events). To each such {ω} there exists a single path from 0 to T
and IP ∗ is set equal to the product of the conditional probabilities along the
path. By construction
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∑
ω∈Ω

IP ∗({ω}) = 1.

Since the conditional risk-neutral probabilities are greater than 0, IP ∗({ω}) >
0 for each ω ∈ Ω and IP ∗ is an equivalent measure. The final step is to show
that IP ∗ is a martingale measure. We thus have to show IE∗(S̃k(t + 1)|Ft) =
S̃k(t) for any k = 1, . . . , d, t = 0, . . . , T − 1. Now S̃k(t) is Ft-measurable, and
as any A ∈ Ft can be written as a union of A′ ∈ Pt the claim follows from∫

A′

S̃k(t + 1)dIP ∗ =
∫
A′

S̃k(t)dIP ∗,

which is true by construction of IP ∗. (Recall that we have IEIP (A,t)(S̃k(t+1)) =
IEIP (A,t)(S̃k(t)).) �

For the second proof (for which we follow Schachermayer (2003)) we need
some auxiliary observations.

Recall the definition of arbitrage, i.e. Definition 4.2.1, in our finite-
dimensional setting: a self-financing trading strategy ϕ ∈ Φ is an arbitrage
opportunity if Vϕ(0) = 0, Vϕ(T, ω) ≥ 0 ∀ω ∈ Ω and there exists an ω ∈ Ω
with Vϕ(T, ω) > 0.

Now call L0 = L0(Ω, F , IP ) the set of random variables on (Ω, F) and

L0
++(Ω, F , IP ) := {X ∈ L0 : X(ω) ≥ 0 ∀ω ∈ Ω and ∃ ω ∈ Ω s. t. X(ω) > 0}.

(Observe that L0
++ is a cone – closed under vector addition and multiplication

by positive scalars.) Using L0
++ we can write the arbitrage condition more

compactly as

Vϕ(0) = Ṽϕ(0) = 0 ⇒ Ṽϕ(T ) �∈ L0
++(Ω, F , IP )

for any self-financing strategy ϕ.
The next lemma formulates the arbitrage condition in terms of discounted

gains processes. The important advantage in using this setting (rather than
a setting in terms of value processes) is that we only have to assume pre-
dictability of a vector process (ϕ1, . . . , ϕd). Recall Remark 4.1.1 and Propo-
sition 4.1.3 here: we can choose a process ϕ0 in such a way that the strategy
ϕ = (ϕ0, ϕ1, . . . , ϕd) has zero initial value and is self-financing.

Lemma 4.2.2. In an arbitrage-free market any predictable vector process
ϕ′ = (ϕ1, . . . , ϕd) satisfies

G̃ϕ′(T ) �∈ L0
++(Ω, F , IP ).

(Observe the slight abuse of notation: for the value of the discounted gains
process the zeroth component of a trading strategy doesn’t matter. Hence we
use the operator G̃ for d-dimensional vectors as well.)
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Proof. By Proposition 4.1.3 there exists a unique predictable process
(ϕ0(t)) such that ϕ = (ϕ0, ϕ1, . . . , ϕd) has zero initial value and is self-
financing. Assume G̃ϕ′(T ) ∈ L0

++(Ω, F , IP ). Then using Proposition 4.1.2,

Vϕ(T ) = β(T )−1Ṽϕ(T ) = β(T )−1(Vϕ(0) + G̃ϕ(T )) = β(T )−1G̃ϕ′(T ),

which – as G̃ϕ′ ∈ L0
++ – is nonnegative and positive somewhere with positive

probability. This says that ϕ is an arbitrage opportunity with respect to Φ.
This contradicts our assumption of no arbitrage, so we conclude G̃ϕ′(T ) �∈
L0

++(Ω, F , IP ) as required. �

We now define the space of contingent claims, i.e. random variables on
(Ω, F), which an economic agent may replicate with zero initial investment
by pursuing some predictable trading strategy ϕ.

Definition 4.2.4. We call the subspace K of L0(Ω, F , IP ) defined by

K = {X ∈ L0(Ω, F , IP ) : X = G̃ϕ(T ), ϕ predictable}

the set of contingent claims attainable at price 0.

We can now restate Lemma 4.2.2 in terms of spaces
A market is arbitrage-free if and only if

K ∩ L0
++(Ω, F , IP ) = ∅. (4.3)

Second proof of Proposition 4.2.3. Since our market model is finite
we can use results from Euclidean geometry, in particular we can identify L0

with IR|Ω|). By assumption we have (4.3), i.e. K and L0
++ do not intersect.

So K does not meet the subset

D := {X ∈ L0
++ :

∑
ω∈Ω

X(ω) = 1}.

Now D is a compact convex set. By the separating hyperplane theorem, there
is a vector λ = (λ(ω) : ω ∈ Ω) such that for all X ∈ D

λ · X :=
∑
ω∈Ω

λ(ω)X(ω) > 0, (4.4)

but for all G̃ϕ(T ) in K,

λ · G̃ϕ(T ) =
∑
ω∈Ω

λ(ω)G̃ϕ(T )(ω) = 0. (4.5)

Choosing each ω ∈ Ω successively and taking X to be 1 on this ω and zero
elsewhere, (4.4) tells us that each λ(ω) > 0. So
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IP ∗({ω}) :=
λ(ω)∑

ω′∈Ωλ(ω′)

defines a probability measure equivalent to IP (no non-empty null sets). With
IE∗ as IP ∗-expectation, (4.5) says that

IE∗
(
G̃ϕ(T )

)
= 0,

i.e.

IE∗
(

T∑
τ=1

ϕ(τ) · ∆S̃(τ)

)
= 0.

In particular, choosing for each i to hold only stock i,

IE∗
(

T∑
τ=1

ϕi(τ)∆S̃i(τ)

)
= 0 (i = 1, . . . , d).

Since this holds for any predictable ϕ (boundedness holds automatically as Ω
is finite), the martingale transform lemma tells us that the discounted price
processes (S̃i(t)) are IP ∗-martingales. �

Note. Our situation is finite-dimensional, so all we have used here is Eu-
clidean geometry. We have a subspace, and a cone not meeting the subspace
except at the origin. Take λ orthogonal to the subspace on the same side
of the subspace as the cone. The separating hyperplane theorem holds also
in infinite-dimensional situations, where it is a form of the Hahn-Banach
theorem of functional analysis (Appendix C). For proofs, variants and back-
ground, see e.g. Bott (1942) and Valentine (1964).

We now combine Propositions 4.2.2 and 4.2.3 as a first central theorem
in this chapter.

Theorem 4.2.1 (No-arbitrage Theorem). The market M is arbitrage-
free if and only if there exists a probability measure IP ∗ equivalent to IP under
which the discounted d-dimensional asset price process S̃ is a IP ∗-martingale.

4.2.2 Risk-Neutral Pricing

We now turn to the main underlying question of this text, namely the pricing
of contingent claims (i.e. financial derivatives). As in Chapter 1 the basic idea
is to reproduce the cash flow of a contingent claim in terms of a portfolio of
the underlying assets. On the other hand, the equivalence of the no-arbitrage
condition and the existence of risk-neutral probability measures imply the
possibility of using risk-neutral measures for pricing purposes. We will explore
the relation of these two approaches in this subsection.

We say that a contingent claim is attainable if there exists a replicating
strategy ϕ ∈ Φ such that
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Vϕ(T ) = X.

So the replicating strategy generates the same time T cash-flow as does X.
Working with discounted values (recall we use β as the discount factor) we
find

β(T )X = Ṽϕ(T ) = V (0) + G̃ϕ(T ). (4.6)

So the discounted value of a contingent claim is given by the initial cost of
setting up a replication strategy and the gains from trading. In a highly ef-
ficient security market we expect that the law of one price holds true, that
is for a specified cash-flow there exists only one price at any time instant.
Otherwise arbitrageurs would use the opportunity to cash in a riskless profit
(recall that a whole industry of hedge funds rely on such opportunities, also
see the case of option mispricing at former NatWest Markets as an excellent
example of how arbitrageurs exploit mispricing). So the no-arbitrage condi-
tion implies that for an attainable contingent claim its time t price must be
given by the value (initial cost) of any replicating strategy (we say the claim
is uniquely replicated in that case). This is the basic idea of the arbitrage
pricing theory.

Let us investigate replicating strategies a bit further. The idea is to repli-
cate a given cash-flow at a given point in time. Using a self-financing trading
strategy the investor’s wealth may go negative at time t < T , but he must
be able to cover his debt at the final date. To avoid negative wealth the con-
cept of admissible strategies is introduced. A self-financing trading strategy
ϕ ∈ Φ is called admissible if Vϕ(t) ≥ 0 for each t = 0, 1, . . . , T . We write
Φa for the class of admissible trading strategies. The modeling assumption
of admissible strategies reflects the economic fact that the broker should be
protected from unbounded short sales. In our current setting all processes
are bounded anyway, so this distinction is not really needed and we use self-
financing strategies when addressing the mathematical aspects of the theory.
(In fact one can show that a security market which is arbitrage-free with
respect to Φa is also arbitrage-free with respect to Φ.)

We now return to the main question of the section: given a contingent
claim X, i.e. a cash-flow at time T , how can we determine its value (price) at
time t < T ? For an attainable contingent claim this value should be given by
the value of any replicating strategy at time t, i.e. there should be a unique
value process (say VX(t)) representing the time t value of the simple con-
tingent claim X. The following proposition ensures that the value processes
of replicating trading strategies coincide, thus proving the uniqueness of the
value process.

Proposition 4.2.4. Suppose the market M is arbitrage-free. Then any at-
tainable contingent claim X is uniquely replicated in M.

Proof. Suppose there is an attainable contingent claim X and strategies
ϕ and ψ such that

Vϕ(T ) = Vψ(T ) = X,
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but there exists a τ < T such that

Vϕ(u) = Vψ(u) for every u < τ and Vϕ(τ) �= Vψ(τ).

Define A := {ω ∈ Ω : Vϕ(τ, ω) > Vψ(τ, ω)}, then A ∈ Fτ and IP (A) > 0
(otherwise just rename the strategies). Define the Fτ -measurable random
variable Y := Vϕ(τ) − Vψ(τ) and consider the trading strategy ξ defined by

ξ(u) =
{

ϕ(u) − ψ(u), u ≤ τ
1Ac(ϕ(u) − ψ(u)) + 1A(Y β(τ), 0, . . . , 0), τ < u ≤ T.

The idea here is to use ϕ and ψ to construct a self-financing strategy with
zero initial investment (hence use their difference ξ) and put any gains at
time τ in the savings account (i.e. invest them risk-free) up to time T .

We need to show formally that ξ satisfies the conditions of an arbitrage
opportunity. By construction ξ is predictable and the self-financing condition
(4.1) is clearly true for t �= τ , and for t = τ we have using that ϕ, ψ ∈ Φ

ξ(τ) · S(τ) = (ϕ(τ) − ψ(τ)) · S(τ) = Vϕ(τ) − Vψ(τ),

ξ(τ + 1) · S(τ) = 1Ac(ϕ(τ + 1) − ψ(τ + 1)) · S(τ) + 1AY β(τ)S0(τ)
= 1Ac(ϕ(τ) − ψ(τ)) · S(τ) + 1A(Vϕ(τ) − Vψ(τ))β(τ)β−1(τ)
= Vϕ(τ) − Vψ(τ).

Comparing these two, ξ is self-financing, and its initial value is zero. Also

Vξ(T ) = 1Ac(ϕ(T ) − ψ(T )) · S(T ) + 1A(Y β(τ), 0, . . . , 0) · S(T ).

The first term is zero, as Vϕ(T ) = Vψ(T ). The second term is

1AY β(τ)S0(T ) ≥ 0,

as Y > 0 on A, and indeed

IP{Vξ(T ) > 0} = IP{A} > 0.

Hence the market contains an arbitrage opportunity with respect to the class
Φ of self-financing strategies. But this contradicts the assumption that the
market M is arbitrage-free. �

This uniqueness property allows us now to define the important concept
of an arbitrage price process.

Definition 4.2.5. Suppose the market is arbitrage-free. Let X be any attain-
able contingent claim with time T maturity. Then the arbitrage price process
πX(t), 0 ≤ t ≤ T or simply arbitrage price of X is given by the value process
of any replicating strategy ϕ for X.
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The construction of hedging strategies that replicate the outcome of a
contingent claim (for example a European option) is an important problem
in both practical and theoretical applications. Hedging is central to the the-
ory of option pricing. The classical arbitrage valuation models, such as the
Black-Scholes model Black and Scholes (1973), depend on the idea that an
option can be perfectly hedged using the underlying asset (in our case the
assets of the market model), so making it possible to create a portfolio that
replicates the option exactly. Hedging is also widely used to reduce risk, and
the kinds of delta-hedging strategies implicit in the Black-Scholes model are
used by participants in option markets. We will come back to hedging prob-
lems subsequently.

Analyzing the arbitrage-pricing approach we observe that the derivation
of the price of a contingent claim doesn’t require any specific preferences
of the agents other than nonsatiation, i.e. agents prefer more to less, which
rules out arbitrage. So, the pricing formula for any attainable contingent
claim must be independent of all preferences that do not admit arbitrage.
In particular, an economy of risk-neutral investors must price a contingent
claim in the same manner. This fundamental insight, due to Cox and Ross
(1976) in the case of a simple economy – a riskless asset and one risky asset
– and in its general form due to Harrison and Kreps (1979), simplifies the
pricing formula enormously. In its general form the price of an attainable
simple contingent claim is just the expected value of the discounted payoff
with respect to an equivalent martingale measure.

Proposition 4.2.5. The arbitrage price process of any attainable contingent
claim X is given by the risk-neutral valuation formula

πX(t) = β(t)−1IE∗ (Xβ(T )|Ft) ∀t = 0, 1, . . . , T, (4.7)

where IE∗ is the expectation operator with respect to an equivalent martingale
measure IP ∗.

Proof. Since we assume the the market is arbitrage-free, there exists (at
least) an equivalent martingale measure IP ∗. By Proposition 4.2.1 the dis-
counted value process Ṽϕ of any self-financing strategy ϕ is a IP ∗-martingale.
So for any contingent claim X with maturity T and any replicating trading
strategy ϕ ∈ Φ we have for each t = 0, 1, . . . , T

πX(t) = Vϕ(t) = β(t)−1Ṽϕ(t)

= β(t)−1E∗(Ṽϕ(T )|Ft) (as Ṽϕ(t) is a IP ∗-martingale)

= β(t)−1E∗(β(T )Vϕ(T )|Ft) (undoing the discounting)

= β(t)−1E∗(β(T )X|Ft) (as ϕ is a replicating strategy for X).

�
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4.3 Complete Markets: Uniqueness of Equivalent
Martingale Measures

The last section made clear that attainable contingent claims can be priced
using an equivalent martingale measure. In this section we will discuss the
question of the circumstances under which all contingent claims are attain-
able. This would be a very desirable property of the market M, because we
would then have solved the pricing question (at least for contingent claims)
completely. Since contingent claims are merely FT -measurable random vari-
ables in our setting, it should be no surprise that we can give a criterion in
terms of probability measures. We start with:

Definition 4.3.1. A market M is complete if every contingent claim is at-
tainable, i.e. for every FT -measurable random variable X ∈ L0 there exists a
replicating self-financing strategy ϕ ∈ Φ such that Vϕ(T ) = X.

In the case of an arbitrage-free market M one can even insist on replicat-
ing nonnegative contingent claims by an admissible strategy ϕ ∈ Φa. Indeed,
if ϕ is self-financing and IP ∗ is an equivalent martingale measure under which
discounted prices S̃ are IP ∗-martingales (such IP ∗ exist since M is arbitrage-
free and we can hence use the no-arbitrage theorem (Theorem 4.2.1)), Ṽϕ(t)
is also a IP ∗-martingale, being the martingale transform of the martingale S̃
by ϕ (see Proposition 4.2.1). So

Ṽϕ(t) = E∗(Ṽϕ(T )|Ft) (t = 0, 1, . . . , T ).

If ϕ replicates X, Vϕ(T ) = X ≥ 0, so discounting, Ṽϕ(T ) ≥ 0, so the above
equation gives Ṽϕ(t) ≥ 0 for each t. Thus all the values at each time t are
non-negative – not just the final value at time T – so ϕ is admissible.

Theorem 4.3.1 (Completeness Theorem). An arbitrage-free market M
is complete if and only if there exists a unique probability measure IP ∗ equiv-
alent to IP under which discounted asset prices are martingales.

Proof. ‘⇒’: Assume that the arbitrage-free market M is complete. Then
for any FT -measurable random variable X ( contingent claim), there exists
an admissible (so self-financing) strategy ϕ replicating X: X = Vϕ(T ). As ϕ
is self-financing, by Proposition 4.1.2,

β(T )X = Ṽϕ(T ) = Vϕ(0) +
T∑

τ=1

ϕ(τ) · ∆S̃(τ).

We know by the no-arbitrage theorem (Theorem 4.2.1), that an equivalent
martingale measure IP ∗ exists; we have to prove uniqueness. So, let IP1, IP2
be two such equivalent martingale measures. For i = 1, 2, (Ṽϕ(t))T

t=0 is a
IPi-martingale. So,
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IEi(Ṽϕ(T )) = IEi(Ṽϕ(0)) = Vϕ(0),

as the value at time zero is non-random (F0 = {∅, Ω}) and β(0) = 1. So

IE1(β(T )X) = IE2(β(T )X).

Since X is arbitrary, IE1, IE2 have to agree on integrating all integrands.
Now IEi is expectation (i.e. integration) with respect to the measure IPi, and
measures that agree on integrating all integrands must coincide. So IP1 = IP2,
giving uniqueness as required.

‘⇐’: Assume that the arbitrage-free market M is incomplete: then there
exists a non-attainable FT -measurable random variable X (a contingent
claim). By Proposition 4.1.3, we may confine attention to the risky assets
S1, . . . , Sd, as these suffice to tell us how to handle the numéraire S0.

Consider the following set of random variables:

K̃ :=

{
Y ∈ L0 : Y = Y0 +

T∑
t=1

ϕ(t) · ∆S̃(t), Y0 ∈ IR , ϕ predictable

}
.

(Recall that Y0 is F0-measurable and set ϕ = ((ϕ1(t), . . . , ϕd(t))′)T
t=1 with

predictable components.) Then by the above reasoning, the discounted value
β(T )X does not belong to K̃, so K̃ is a proper subset of the set L0 of all
random variables on Ω (which may be identified with IR|Ω|). Let IP ∗ be
a probability measure equivalent to IP under which discounted prices are
martingales (such IP ∗ exist by the no-arbitrage theorem (Theorem 4.2.1).
Define the scalar product

(Z, Y ) → IE∗(ZY )

on random variables on Ω. Since K̃ is a proper subset, there exists a non-zero
random variable Z orthogonal to K̃ (since Ω is finite, IR|Ω| is Euclidean: this
is just Euclidean geometry). That is,

IE∗(ZY ) = 0, ∀ Y ∈ K̃.

Choosing the special Y = 1 ∈ K̃ given by ϕi(t) = 0, t = 1, 2, . . . , T ; i =
1, . . . , d and Y0 = 1 we find

IE∗(Z) = 0.

Write ‖X‖∞ := sup{|X(ω)| : ω ∈ Ω}, and define IP ∗∗ by

IP ∗∗({ω}) =
(

1 +
Z(ω)

2 ‖Z‖∞

)
IP ∗({ω}).

By construction, IP ∗∗ is equivalent to IP ∗ (same null sets - actually, as IP ∗ ∼
IP and IP has no non-empty null sets, neither do IP ∗, IP ∗∗). From IE∗(Z) = 0,
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we see that
∑

IP ∗∗(ω) = 1, i.e. is a probability measure. As Z is non-zero,
IP ∗∗ and IP ∗ are different. Now

IE∗∗
(

T∑
t=1

ϕ(t) · ∆S̃(t)

)
=

∑
ω∈Ω

IP ∗∗(ω)

(
T∑

t=1

ϕ(t, ω) · ∆S̃(t, ω)

)

=
∑
ω∈Ω

(
1 +

Z(ω)
2 ‖Z‖∞

)
IP ∗(ω)

(
T∑

t=1

ϕ(t, ω) · ∆S̃(t, ω)

)
.

The ‘1’ term on the right gives

IE∗
(

T∑
t=1

ϕ(t) · ∆S̃(t)

)
,

which is zero since this is a martingale transform of the IP ∗-martingale S̃(t)
(recall martingale transforms are by definition null at zero). The ‘Z’ term
gives a multiple of the inner product

(Z,

T∑
t=1

ϕ(t) · ∆S̃(t)),

which is zero as Z is orthogonal to K̃ and
∑T

t=1 ϕ(t) · ∆S̃(t) ∈ K̃. By the
martingale transform lemma (Lemma 3.4.1), S̃(t) is a IP ∗∗-martingale since
ϕ is an arbitrary predictable process. Thus IP ∗∗ is a second equivalent mar-
tingale measure, different from IP ∗. So incompleteness implies non-uniqueness
of equivalent martingale measures, as required. �

Martingale Representation. To say that every contingent claim can be
replicated means that every IP ∗-martingale (where IP ∗ is the risk-neutral
measure, which is unique) can be written, or represented, as a martingale
transform (of the discounted prices) by a replicating (perfect-hedge) trading
strategy ϕ. In stochastic-process language, this says that all IP ∗-martingales
can be represented as martingale transforms of discounted prices. Such mar-
tingale representation theorems hold much more generally, and are very im-
portant. For background, see Revuz and Yor (1991) and Yor (1978).

4.4 The Fundamental Theorem of Asset Pricing:
Risk-Neutral Valuation

We summarize what we have achieved so far. We call a measure IP ∗ under
which discounted prices S̃(t) are IP ∗-martingales a martingale measure. Such
a IP ∗ equivalent to the actual probability measure P is called an equivalent
martingale measure. Then:



4.4 The Fundamental Theorem of Asset Pricing: Risk-Neutral Valuation 119

• No-arbitrage theorem (Theorem 4.2.1): If the market is arbitrage-free,
equivalent martingale measures IP ∗ exist.

• Completeness theorem (Theorem 4.3.1): If the market is complete (all
contingent claims can be replicated), equivalent martingale measures are
unique.

Combining:

Theorem 4.4.1 (Fundamental Theorem of Asset Pricing). In an ar-
bitrage-free complete market M, there exists a unique equivalent martingale
measure IP ∗.

The term fundamental theorem of asset pricing was introduced in Dy-
bvig and Ross (1987). It is used for theorems establishing the equivalence
of an economic modeling condition such as no-arbitrage to the existence of
the mathematical modeling condition existence of equivalent martingale mea-
sures.

Assume now that M is an arbitrage-free complete market and let X be
any contingent claim, ϕ a self-financing strategy replicating it (which exists
by completeness), then:

Vϕ(T ) = X.

As Ṽϕ(t) is the martingale transform of the IP ∗-martingale S̃(t) (by ϕ(t)),
Ṽϕ(t) is a IP ∗-martingale. So Vϕ(0)(= Ṽϕ(0)) = IE∗(Ṽϕ(T )) = IE∗(β(T )X),
giving us the risk-neutral pricing formula

Vϕ(0) = IE∗(β(T )X).

More generally, the same argument gives Ṽϕ(t) = β(t)Vϕ(t) = IE∗(β(T )X|Ft):

Vϕ(t) = β(t)−1IE∗(β(T )X|Ft) (t = 0, 1, . . . , T ). (4.8)

It is natural to call Vϕ(0) = πX(0) above the arbitrage price (or more exactly,
arbitrage-free price) of the contingent claim X at time 0, and VX(t) = πX(t)
above the arbitrage price (or more exactly, arbitrage-free price) of the simple
contingent claim X at time t. For, if an investor sells the claim X at time t
for VX(t), he can follow strategy ϕ to replicate X at time T and clear the
claim; an investor selling for this value is perfectly hedged. To sell the claim
for any other amount would provide an arbitrage opportunity (as with the
argument for put-call parity). We note that, to calculate prices as above, we
need to know only:

1. Ω, the set of all possible states,
2. the σ-field F and the filtration (or information flow) (Ft),
3. IP ∗.

We do not need to know the underlying probability measure IP – only its null
sets, to know what ‘equivalent to IP ’ means (actually, in this finite model,
there are no non-empty null-sets, so we do not need to know even this).
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Now pricing of contingent claims is our central task, and for pricing pur-
poses IP ∗ is vital and IP itself irrelevant. We thus may – and shall – focus
attention on IP ∗, which is called the risk-neutral probability measure. Risk-
neutrality is the central concept of the subject and the underlying theme of
this text. The concept of risk-neutrality is due in its modern form to Harrison
and Pliska (1981) in 1981 – though the idea can be traced back to actuarial
practice much earlier (see Esscher (1932) and also Gerber and Shiu (1995)).
Harrison and Pliska call IP ∗ the reference measure; Björk (1999) calls it the
risk-adjusted or martingale measure; Dothan (1990) uses equilibrium price
measure. The term ‘risk-neutral’ reflects the IP ∗-martingale property of the
risky assets, since martingales model fair games (one can’t win systematically
by betting on a martingale).

To summarize, we have:

Theorem 4.4.2 (Risk-neutral Pricing Formula). In an arbitrage-free
complete market M, arbitrage prices of contingent claims are their discounted
expected values under the risk-neutral (equivalent martingale) measure IP ∗.

There exist several variants and ramifications of the results we have pre-
sented so far.

Finite, Discrete Time; Finite Probability Space (our model)

Like Harrison and Pliska (1981) in their seminal paper we used several re-
sults from functional analysis. Taqqu and Willinger (1987) provide an ap-
proach based on probabilistic methods and allowing a geometric interpreta-
tion which yields a connection to linear programming. They analyze certain
geometric properties of the sample paths of a given vector-valued stochastic
process representing the different stock prices through time. They show that
under the requirement that no arbitrage opportunities exist, the price incre-
ments between two periods can be converted to martingale differences (see
Chapter 3) through an equivalent martingale measure. From a probabilistic
point of view this provides a converse to the classical notion that ‘one can-
not win betting on a martingale’ by saying ‘if one cannot win betting on a
process, then it must be a martingale under an equivalent martingale mea-
sure’. Furthermore, they give a characterization of complete markets in terms
of an extremal property of a probability measure in the convex set P̃(S̃) of
martingale measures for S̃ (not necessarily equivalent to IP ):

The market model M is complete under a measure QQ on (Ω, F) if and
only if QQ is an extreme point of P̃(S̃) (i.e. QQ cannot be expressed as a strictly
convex combination of two distinct probability measures in P̃(S̃)).

They also show that the problem of attainability of a simple contingent
claim can be viewed and formulated as the ‘dual problem’ to finding a certain
martingale measure for the price process S̃.
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Finite, Discrete Time; General Probability Space

The no-arbitrage condition remains equivalent to the existence of an equiv-
alent martingale measure. The first proof of this was given by Dalang, Mor-
ton, and Willinger (1990) using deep functional analytic methods (such as
measurable selection and measure-decomposition theorems). There exist now
several more accessible proofs, in particular by Schachermayer (1992), using
more elementary results from functional analysis (orthogonality arguments
in properly chosen spaces, see also Kabanov and Kramkov (1995)) and by
Rogers (1994), using a method which essentially comes down to maximizing
expected utility of gains from trade over all possible trading strategies.

Discrete Time; Infinite Horizon; General Probability Space

Under this setting the equivalence of no-arbitrage opportunities and existence
of an equivalent martingale measure breaks down (see Back and Pliska (1991)
and Dalang, Morton, and Willinger (1990) for counterexamples). Introducing
a weaker regularity concept than no-arbitrage, namely no free lunch with
bounded risk – requiring an absolute bound on the maximal loss occurring
in certain basic trading strategies (see Schachermayer (1994) for an exact
mathematical definition, Kreps (1981) for related concepts) – Schachermayer
(1994) established the following beautiful result:

The condition no free lunch with bounded risk is equivalent to the existence
of an equivalent martingale measure.

For a recent overview of variants of fundamental asset pricing theorems
proved by probabilistic techniques, we refer the reader to Jacod and Shiryaev
(1998). We will not pursue these approaches further, but use our finite
discrete-time and finite probability space setting to explore several models
which are widely used in practice.
Note. We return to these matters in the more complicated setting of contin-
uous time in Chapter 6; see §6.1 and Theorem 6.1.2.

4.5 The Cox-Ross-Rubinstein Model

In this section we consider simple discrete-time financial market models. The
development of the risk-neutral pricing formula is particularly clear in this
setting since we require only elementary mathematical methods. The link to
the fundamental economic principles of the arbitrage pricing method can be
obtained equally straightforwardly. Moreover binomial models, by their very
construction, give rise to simple and efficient numerical procedures. We start
with the paradigm of all binomial models – the celebrated Cox, Ross, and
Rubinstein (1979) model (CRR-model).
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4.5.1 Model Structure

We take d = 1, that is, our model consists of two basic securities. Recall that
the essence of the relative pricing theory is to take the price processes of these
basic securities as given and price secondary securities in such a way that no
arbitrage is possible.

Our time horizon is T and the set of dates in our financial market model is
t = 0, 1, . . . , T . Assume that the first of our given basic securities is a (riskless)
bond or bank account B, which yields a riskless rate of return r > 0 in each
time interval [t, t + 1], i.e.

B(t + 1) = (1 + r)B(t), B(0) = 1.

So its price process is B(t) = (1+ r)t, t = 0, 1, . . . , T. Furthermore, we have
a risky asset (stock) S with price process

S(t + 1) =
{

(1 + u)S(t) with probability p,
(1 + d)S(t) with probability 1 − p,

t = 0, 1, . . . , T − 1

with −1 < d < u, S0 ∈ IR+
0 (see Figure 4.1 below).

S(0) ������������
p

S(1) = (1 + u)S(0)

������������
1 − p S(1) = (1 + d)S(0)

Fig. 4.1. One-step tree diagram

Alternatively we write this as

Z(t + 1) :=
S(t + 1)

S(t)
− 1, t = 0, 1, . . . , T − 1.

We set up a probabilistic model by considering the returns process Z(t), t =
1, . . . , T as random variables defined on probability spaces (Ω̃t, F̃t, ĨP t) with

Ω̃t = Ω̃ = {d, u},

F̃t = F̃ = P(Ω̃) = {∅, {d}, {u}, Ω̃},

ĨP t = ĨP with ĨP ({u}) = p, ĨP ({d}) = 1 − p, p ∈ (0, 1).
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On these probability spaces we define

Z(t, u) = u and Z(t, d) = d, t = 1, 2, . . . , T.

Our aim, of course, is to define a probability space on which we can model
the basic securities (B, S). Since we can write the stock price as

S(t) = S(0)
t∏

τ=1

(1 + Z(τ)), t = 1, 2, . . . , T,

the above definitions suggest using as the underlying probabilistic model of
the financial market the product space (Ω, F , IP ), see e.g. Williams (1991)
Chapter 8, i.e.

Ω = Ω̃1 × . . . × Ω̃T = Ω̃T = {d, u}T ,

with each ω ∈ Ω representing the successive values of Z(t), t = 1, 2, . . . , T .
Hence each ω ∈ Ω is a T -tuple ω = (ω̃1, . . . , ω̃T ) and ω̃t ∈ Ω̃ = {d, u}. For
the σ-algebra we use F = P(Ω) and the probability measure is given by

IP ({ω}) = ĨP 1({ω1}) × . . . × ĨPT ({ωT }) = ĨP ({ω1}) × . . . × ĨP ({ωT }).

The role of a product space is to model independent replication of a ran-
dom experiment. The Z(t) above are two-valued random variables, so can be
thought of as tosses of a biased coin; we need to build a probability space on
which we can model a succession of such independent tosses.

Now we redefine (with a slight abuse of notation) the Z(t), t = 1, . . . , T
as random variables on (Ω, F , IP ) as (the tth projection)

Z(t, ω) = Z(t, ωt).

Observe that by this definition (and the above construction) Z(1), . . . , Z(T )
are independent and identically distributed with

IP (Z(t) = u) = p = 1 − IP (Z(t) = d).

To model the flow of information in the market we use the obvious filtration

F0 = {∅, Ω} (trivial σ-field),
Ft = σ(Z(1), . . . , Z(t)) = σ(S(1), . . . , S(t)),

FT = F = P(Ω) (class of all subsets of Ω).

This construction emphasizes again that a multi-period model can be
viewed as a sequence of single-period models. Indeed, in the Cox-Ross-
Rubinstein case we use identical and independent single-period models. As we
will see in the sequel this will make the construction of equivalent martingale
measures relatively easy. Unfortunately we can hardly defend the assump-
tion of independent and identically distributed price movements at each time
period in practical applications.
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Remark 4.5.1. We used this example to show explicitly how to construct the
underlying probability space. Having done this in full once, we will from now
on feel free to take for granted the existence of an appropriate probability
space on which all relevant random variables can be defined.

4.5.2 Risk-neutral Pricing

We now turn to the pricing of derivative assets in the Cox-Ross-Rubinstein
market model. To do so we first have to discuss whether the Cox-Ross-
Rubinstein model is arbitrage-free and complete.

To answer these questions we have, according to our fundamental theo-
rems (Theorems 4.2.1 and 4.3.1), to understand the structure of equivalent
martingale measures in the Cox-Ross-Rubinstein model. In trying to do this
we use (as is quite natural and customary) the bond price process B(t) as
numéraire.

Our first task is to find an equivalent martingale measure QQ such that the
Z(1), . . . , Z(T ) remain independent and identically distributed, i.e. a proba-
bility measure QQ defined as a product measure via a measure Q̃Q on (Ω̃, F̃)
such that Q̃Q({u}) = q and Q̃Q({d}) = 1 − q. We have:

Proposition 4.5.1. (i) A martingale measure QQ for the discounted stock
price S̃ exists if and only if

d < r < u. (4.9)

(ii) If equation (4.9) holds true, then there is a unique such measure in P
characterized by

q =
r − d

u − d
. (4.10)

Proof. Since S(t) = S̃(t)B(t) = S̃(t)(1 + r)t, we have Z(t + 1) = S(t +
1)/S(t) − 1 = (S̃(t + 1)/S̃(t))(1 + r) − 1. So, the discounted price (S̃(t)) is a
QQ-martingale if and only if for t = 0, 1, . . . , T − 1

IEQQ[S̃(t + 1)|Ft] = S̃(t) ⇔ IEQQ[(S̃(t + 1)/S̃(t))|Ft] = 1
⇔ IEQQ[Z(t + 1)|Ft] = r.

But Z(1), . . . , Z(T ) are mutually independent and hence Z(t+1) is indepen-
dent of Ft = σ(Z(1), . . . , Z(t)). So

r = IEQQ(Z(t + 1)|Ft) = IEQQ(Z(t + 1)) = uq + d(1 − q)

is a weighted average of u and d; this can be r if and only if r ∈ [d, u]. As
QQ is to be equivalent to IP and IP has no non-empty null sets, r = d, u are
excluded and (4.9) is proved.

To prove uniqueness and to find the value of q we simply observe that
under (4.9)

u × q + d × (1 − q) = r
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has a unique solution. Solving it for q leads to the above formula. �

From now on we assume that (4.9) holds true. Using the above Proposition
we immediately get:

Corollary 4.5.1. The Cox-Ross-Rubinstein model is arbitrage-free.

Proof. By Proposition 4.5.1 there exists an equivalent martingale mea-
sure and this is by the no-arbitrage theorem (Theorem 4.2.1) enough to guar-
antee that the Cox-Ross-Rubinstein model is free of arbitrage. �

Uniqueness of the solution of the linear equation (4.7) under (4.9) gives
completeness of the model, by the completeness theorem (Theorem 4.3.1):

Proposition 4.5.2. The Cox-Ross-Rubinstein model is complete.

One can translate this result – on uniqueness of the equivalent martingale
measure – into financial language. Completeness means that all contingent
claims can be replicated. If we do this in the large, we can do it in the
small by restriction, and conversely, we can build up our full model from its
constituent components. To summarize:

Corollary 4.5.2. The multi-period model is complete if and only if every
underlying single-period model is complete.

We can now use the risk-neutral valuation formula to price every contin-
gent claim in the Cox-Ross-Rubinstein model.

Proposition 4.5.3. The arbitrage price process of a contingent claim X in
the Cox-Ross-Rubinstein model is given by

πX(t) = B(t)IE∗ (X/B(T )|Ft) ∀t = 0, 1, . . . , T,

where IE∗ is the expectation operator with respect to the unique equivalent
martingale measure IP ∗ characterized by p∗ = (r − d)/(u − d).

Proof. This follows directly from Proposition 4.2.5 since the Cox-Ross-
Rubinstein model is arbitrage-free and complete. �

We now give simple formulas for pricing (and hedging) of European con-
tingent claims X = f(ST ) for suitable functions f (in this simple framework
all functions f : IR → IR). We use the notation

Fτ (x, p) :=
τ∑

j=0

(
τ

j

)
pj(1 − p)τ−jf

(
x(1 + u)j(1 + d)τ−j

)
(4.11)

Observe that this is just an evaluation of f(S(j)) along the probability-
weighted paths of the price process. Accordingly, j, τ − j are the numbers of
times Z(i) takes the two possible values d, u.
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Corollary 4.5.3. Consider a European contigent claim with expiry T given
by X = f(ST ). The arbitrage price process πX(t), t = 0, 1, . . . , T of the
contingent claim is given by (set τ = T − t)

πX(t) = (1 + r)−τFτ (St, p
∗). (4.12)

Proof. Recall that

S(t) = S(0)
t∏

j=1

(1 + Z(j)), t = 1, 2, . . . , T.

By Proposition 4.5.3 the price ΠX(t) of a contingent claim X = f(ST ) at
time t is

πX(t) = (1 + r)−(T−t)IE∗[f(S(T ))|Ft]

= (1 + r)−(T−t)IE∗
[

f

(
S(t)

T∏
i=t+1

(1 + Z(i))

)∣∣∣∣∣ Ft

]

= (1 + r)−(T−t)IE∗
[
f

(
S(t)

T∏
i=t+1

(1 + Z(i))

)]

= (1 + r)−τFτ (S(t), p∗).

We used the role of independence property of conditional expectations from
Proposition 2.5.1 in the next-to-last equality. It is applicable since S(t) is
Ft-measurable and Z(t + 1), . . . , Z(T ) are independent of Ft. �

An immediate consequence is the pricing formula for the European call
option, i.e. X = f(ST ) with f(x) = (x − K)+.

Corollary 4.5.4. Consider a European call option with expiry T and strike
price K written on (one share of) the stock S. The arbitrage price process
ΠC(t), t = 0, 1, . . . , T of the option is given by (set τ = T − t)

ΠC(t) = (1+r)−τ
τ∑

j=0

(
τ

j

)
p∗j(1−p∗)τ−j(S(t)(1+u)j(1+d)τ−j−K)+. (4.13)

For a European put option, we can either argue similarly or use put-call
parity.

4.5.3 Hedging

Since the Cox-Ross-Rubinstein model is complete we can find unique hedging
strategies for replicating contingent claims. Recall that this means we can find
a self-financing portfolio ϕ(t) = (ϕ0(t), ϕ1(t)), ϕ predictable, such that the
value process Vϕ(t) = ϕ0(t)B(t) + ϕ1(t)S(t) satisfies
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ΠX(t) = Vϕ(t), for all t = 0, 1, . . . , T.

Using the bond as numéraire we get the discounted equation

Π̃X(t) = Ṽϕ(t) = ϕ0(t) + ϕ1(t)S̃(t), for all t = 0, 1, . . . , T.

By the pricing formula, Proposition 4.5.3, we know the arbitrage price process
and using the restriction of predictability of ϕ, this leads to a unique replicat-
ing portfolio process ϕ. We can compute this portfolio process at any point
in time as follows. The equation Π̃X(t) = ϕ0(t)+ϕ1(t)S̃(t) has to be true for
each ω ∈ Ω and each t = 1, . . . , T . Given such a t we only can use information
up to (and including) time t−1 to ensure that ϕ is predictable. Therefore we
know S(t − 1), but we only know that S(t) = (1 + Z(t))S(t − 1). However,
the fact that Z(t) ∈ {d, u} leads to the following system of equations, which
can be solved for ϕ0(t) and ϕ1(t) uniquely. Making the dependence of Π̃X

on S̃ explicit, we have

Π̃X(t, S̃t−1(1 + u)) = ϕ0(t) + ϕ1(t)S̃t−1(1 + u),
Π̃X(t, S̃t−1(1 + d)) = ϕ0(t) + ϕ1(t)S̃t−1(1 + d).

This gives two simultaneous linear equations in two unknowns, with solution

ϕ0(t) =
S̃t−1(1 + u)Π̃X(t, S̃t−1(1 + d)) − S̃t−1(1 + d)Π̃X(t, S̃t−1(1 + u))

S̃t−1(1 + u) − S̃t−1(1 + d)

=
(1 + u)Π̃X(t, S̃t−1(1 + d)) − (1 + d)Π̃X(t, S̃t−1(1 + u))

(u − d)

ϕ1(t) =
Π̃X(t, S̃t−1(1 + u)) − Π̃X(t, S̃t−1(1 + d))

S̃t−1(1 + u) − S̃t−1(1 + d)

=
Π̃X(t, S̃t−1(1 + u)) − Π̃X(t, S̃t−1(1 + d))

S̃t−1(u − d)
.

Observe that we only need to have information up to time t − 1 to compute
ϕ(t), hence ϕ is predictable. We make this rather abstract construction more
transparent by constructing the hedge portfolio for the European contingent
claims.

Proposition 4.5.4. The perfect hedging strategy ϕ = (ϕ0, ϕ1) replicating the
European contingent claim f(ST ) with time of expiry T is given by (again
using τ = T − t)

ϕ1(t) =
(1 + r)−τ (Fτ (St−1(1 + u), p∗) − Fτ (St−1(1 + d), p∗))

St−1(u − d)
,

ϕ0(t) =
(1 + u)Fτ (St−1(1 + d), p∗) − (1 + d)Fτ (St−1(1 + u), p∗)

(u − d)(1 + r)T
.
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Proof. (1 + r)−τFτ (St, p
∗) must be the value of the portfolio at time t if

the strategy ϕ = (ϕ(t)) replicates the claim:

ϕ0(t)(1 + r)t + ϕ1(t)S(t) = (1 + r)−τFτ (St, p
∗).

Now S(t) = S(t − 1)(1 + Z(t)) = S(t − 1)(1 + u) or S(t − 1)(1 + d), so:

ϕ0(t)(1 + r)t + ϕ1(t)S(t − 1)(1 + u) = (1 + r)−τFτ (St−1(1 + u), p∗),

ϕ0(t)(1 + r)t + ϕ1(t)S(t − 1)(1 + d) = (1 + r)−τFτ (St−1(1 + d), p∗).

Subtract:

ϕ1(t)S(t− 1)(u− d) = (1+ r)−τ (Fτ (St−1(1 + u), p∗) − Fτ (St−1(1 + d), p∗)) .

So ϕ1(t) in fact depends only on S(t − 1), thus yielding the predictability of
ϕ, and

ϕ1(t) =
(1 + r)−τ (Fτ (St−1(1 + u), p∗) − Fτ (St−1(1 + d), p∗))

S(t − 1)(u − d)
.

Using any of the equations in the above system and solving for ϕ0(t) com-
pletes the proof. �

To write the corresponding result for the European call, we use the fol-
lowing notation.

C(τ, x) :=
τ∑

j=0

(
τ

j

)
p∗j(1 − p∗)τ−j(x(1 + u)j(1 + d)τ−j − K)+.

Then (1 + r)−τC(τ, x) is value of the call at time t (with time to expiry τ)
given that S(t) = x.

Corollary 4.5.5. The perfect hedging strategy ϕ = (ϕ0, ϕ1) replicating the
European call option with time of expiry T and strike price K is given by

ϕ1(t) =
(1 + r)−τ (C(τ, St−1(1 + u)) − C(τ, St−1(1 + d)))

St−1(u − d)
,

ϕ0(t) =
(1 + u)C(τ, St−1(1 + d)) − (1 + d)C(τ, St−1(1 + u))

(u − d)(1 + r)T
.

Notice that the numerator in the equation for ϕ1(t) is the difference of
two values of C(τ, x), with the larger value of x in the first term (recall
u > d). When the payoff function C(τ, x) is an increasing function of x, as
for the European call option considered here, this is non-negative. In this case
ϕ1(t) ≥ 0: the replicating strategy does not involve short-selling. We record
this as:
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Corollary 4.5.6. When the payoff function is a non-decreasing function of
the asset price S(t), the perfect-hedging strategy replicating the claim does not
involve short-selling of the risky asset.

If we do not use the pricing formula from Proposition 4.5.3 (i.e. the in-
formation on the price process), but only the final values of the option (or
more generally of a contingent claim), we are still able to compute the ar-
bitrage price and to construct the hedging portfolio by backward induction.
In essence this is again only applying the one-period calculations for each
time interval and each state of the world. We outline this procedure for the
European call starting with the last period [T − 1, T ]. We have to choose a
replicating portfolio ϕ(T ) = (ϕ0(T ), ϕ1(T )) based on the information avail-
able at time T −1 (and so FT−1-measurable). So for each ω ∈ Ω the following
equation has to hold:

πX(T, ω) = ϕ0(T, ω)B(T, ω) + ϕ1(T, ω)S(T, ω).

Given the information FT−1 we know all but the last coordinate of ω, and
this gives rise to two equations (with the same notation as above):

πX(T, ST−1(1 + u)) = ϕ0(T )(1 + r)T + ϕ1(T )ST−1(1 + u),

πX(T, ST−1(1 + d)) = ϕ0(T )(1 + r)T + ϕ1(T )ST−1(1 + d).

Since we know the payoff structure of the contingent claim at time T , for
example in case of a European call πX(T, ST−1(1+u)) = ((1+u)ST−1 −K)+

and πX(T, ST−1(1+d)) = ((1+d)ST−1−K)+, we can solve the above system
and obtain

ϕ0(T ) =
(1 + u)ΠX(T, ST−1(1 + d)) − (1 + d)ΠX(T, ST−1(1 + u))

(u − d)(1 + r)T

ϕ1(T ) =
ΠX(T, ST−1(1 + u)) − ΠX(T, ST−1(1 + d))

ST−1(u − d)
.

Using this portfolio one can compute the arbitrage price of the contingent
claim at time T − 1 given that the current asset price is ST−1 as

πX(T − 1, ST−1) = ϕ0(T, ST−1)(1 + r)T−1 + ϕ1(T, ST−1)S(T − 1).

Now the arbitrage prices at time T − 1 are known and one can repeat the
procedure to successively compute the prices at T − 2, . . . , 1, 0.

The advantage of our risk-neutral pricing procedure over this approach
is that we have a single formula for the price of the contingent claim at all
times t at once, and don’t have to use a backward induction only to compute
a price at a special time t.
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4.6 Binomial Approximations

Suppose we observe financial assets during a continuous time period [0, T ].
To construct a stochastic model of the price processes of these assets (to,
e.g. value contingent claims) one basically has two choices: one could model
the processes as continuous-time stochastic processes (for which the theory of
stochastic calculus is needed) or one could construct a sequence of discrete-
time models in which the continuous-time price processes are approximated
by discrete-time stochastic processes in a suitable sense. We describe the
second approach now by examining the asymptotic properties of a sequence
of Cox-Ross-Rubinstein models.

4.6.1 Model Structure

We assume that all random variables subsequently introduced are defined on a
suitable probability space (Ω, F , IP ). We want to model two assets, a riskless
bond B and a risky stock S, which we now observe in a continuous-time
interval [0, T ]. To transfer the continuous-time framework into a binomial
structure we make the following adjustments. Looking at the nth Cox-Ross-
Rubinstein model in our sequence, there is a prespecified number kn of trading
dates. We set ∆n = T/kn and divide [0, T ] in kn subintervals of length ∆n,
namely Ij = [j∆n, (j + 1)∆n], j = 0, . . . , kn − 1. We suppose that trading
occurs only at the equidistant time points tn,j = j∆n, j = 0, . . . , kn − 1. We
fix rn as the riskless interest rate over each interval Ij , and hence the bond
process (in the nth model) is given by

B(tn,j) = (1 + rn)j , j = 0, . . . , kn.

In the continuous-time model we compound continuously with spot rate r ≥ 0
and hence the bond price process B(t) is given by B(t) = ert. In order to
approximate this process in the discrete-time framework, we choose rn such
that

1 + rn = er∆n . (4.14)

With this choice we have for any j = 0, . . . , kn that (1+ rn)j = exp(rj∆n) =
exp(rtn,j). Thus we have approximated the bond process exactly at the time
points of the discrete model.

Next we model the one-period returns S(tn,j+1)/S(tn,j) of the stock by a
family of random variables Zn,i; i = 1, . . . , kn taking values {dn, un} with

IP (Zn,i = un) = pn = 1 − IP (Zn,i = dn)

for some pn ∈ (0, 1), which relate to the drift and volatility parameter σ > 0
of the stock. With these Zn,j we model the stock price process Sn in the nth
Cox-Ross-Rubinstein model as
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Sn(tn,j) = Sn(0)
j∏

i=1

(1 + Zn,i) , j = 0, 1, . . . , kn.

With the specification of the one-period returns we get a complete de-
scription of the discrete dynamics of the stock price process in each Cox-
Ross-Rubinstein model. We call such a finite sequence Zn = (Zn,i)kn

i=1 a
lattice or tree. The parameters un, dn, pn, kn differ from lattice to lattice,
but remain constant throughout a specific lattice. In the triangular array
(Zn,i), i = 1, . . . , kn; n = 1, 2, . . . we assume that the random variables are
row-wise independent (but we allow dependence between rows). The approx-
imation of a continuous-time setting by a sequence of lattices is called the
lattice approach.

It is important to stress that for each n we get a different discrete stock
price process Sn(t) and that in general these processes do not coincide on
common time points (and are also different from the price process S(t)).

Turning back to a specific Cox-Ross-Rubinstein model, we now have as
in §4.5 a discrete-time bond and stock price process. We want arbitrage-
free financial market models and therefore have to choose the parameters
un, dn, pn accordingly. An arbitrage-free financial market model is guaranteed
by the existence of an equivalent martingale measure, and by Proposition
4.5.1 (i) the (necessary and) sufficient condition for that is

dn < rn < un.

The risk-neutrality approach implies that the expected (under an equivalent
martingale measure) one-period return must equal the one-period return of
the riskless bond and hence we get (see Proposition 4.5.1(ii))

p∗
n =

rn − dn

un − dn
. (4.15)

So the only parameters to choose freely in the model are un and dn. In the
next sections we consider some special choices.

4.6.2 The Black-Scholes Option Pricing Formula

We now choose the parameters in the above lattice approach in a special
way. Assuming the risk-free rate of interest r as given, we have by (4.14)
1+ rn = er∆n, and the remaining degrees of freedom are resolved by choosing
un and dn. We use the following choice:

1 + un = eσ
√

∆n , and 1 + dn = (1 + un)−1 = e−σ
√

∆n .

By Condition (4.15) the risk-neutral probabilities for the corresponding single
period models are given by
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p∗
n =

rn − dn

un − dn
=

er∆n − e−σ
√

∆n

eσ
√

∆n − e−σ
√

∆n
.

We can now price contingent claims in each Cox-Ross-Rubinstein model using
the expectation operator with respect to the (unique) equivalent martingale
measure characterized by the probabilities p∗

n (compare §4.5.2). In particular
we can compute the price ΠC(t) at time t of a European call on the stock
S with strike K and expiry T by Formula (4.13) of Corollary 4.5.4. Let us
reformulate this formula slightly. We define

an = min
{
j ∈ IN0|S(0)(1 + un)j(1 + dn)kn−j > K

}
. (4.16)

Then we can rewrite the pricing formula (4.13) for t = 0 in the setting of the
nth Cox-Ross-Rubinstein model as

ΠC(0) = (1 + rn)−kn

×
kn∑

j=an

(
kn

j

)
p∗

n
j(1 − p∗

n)kn−j(S(0)(1 + un)j(1 + dn)kn−j − K)

= S(0)


 kn∑

j=an

(
kn

j

) (
p∗

n(1 + un)
1 + rn

)j (
(1 − p∗

n)(1 + dn)
1 + rn

)kn−j



−(1 + rn)−knK


 kn∑

j=an

(
kn

j

)
p∗j

n (1 − p∗
n)kn−j


.

Denoting the binomial cumulative distribution function with parameters
(n, p) as Bn,p(.) we see that the second bracketed expression is just

B̄kn,p∗
n(an) = 1 − Bkn,p∗

n(an).

Also the first bracketed expression is B̄kn,p̂n(an) with

p̂n =
p∗

n(1 + un)
1 + rn

.

That p̂n is indeed a probability can be shown straightforwardly. Using this
notation we have in the nth Cox-Ross-Rubinstein model for the price of a
European call at time t = 0 the following formula:

Π
(n)
C (0) = Sn(0)B̄kn,p̂n(an) − K(1 + rn)−knB̄kn,p∗

n(an). (4.17)

(We stress again that the underlying is Sn(t), dependent on n, but Sn(0) =
S(0) for all n.) We now look at the limit of this expression.

Proposition 4.6.1. We have the following limit relation:

lim
n→∞

Π
(n)
C (0) = ΠBS

C (0)
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with ΠBS
C (0) given by the Black-Scholes formula (we use S = S(0) to ease

the notation)

ΠBS
C (0) = SN(d1(S, T )) − Ke−rT N(d2(S, T )). (4.18)

The functions d1(s, t) and d2(s, t) are given by

d1(s, t) =
log(s/K) + (r + σ2

2 )t
σ
√

t
,

d2(s, t) = d1(s, t) − σ
√

t =
log(s/K) + (r − σ2

2 )t
σ
√

t

and N(.) is the standard normal cumulative distribution function.

Proof. Since Sn(0) = S (say) all we have to do to prove the proposition is to
show

(i) lim
n→∞

B̄kn,p̂n(an) = N(d1(S, T )),

(ii) lim
n→∞

B̄kn,p∗
n(an) = N(d2(S, T )).

These statements involve the convergence of distribution functions.
To show (i) we interpret

B̄kn,p̂n(an) = IP (an ≤ Yn ≤ kn)

with (Yn) a sequence of random variables distributed according to the bino-
mial law with parameters (kn, p̂n). We normalize Yn to

Ỹn =
Yn − IE(Yn)√

V ar(Yn)
=

Yn − knp̂n√
knp̂n(1 − p̂n)

=

kn∑
j=1

(Bj,n − p̂n)

√
knp̂n(1 − p̂n)

,

where Bj,n, j = 1, . . . , kn; n = 1, 2, . . . are row-wise independent Bernoulli
random variables with parameter p̂n. Now using the central limit theorem we
know that for αn → α, βn → β we have

lim
n→∞

IP (αn ≤ Ỹn ≤ βn) = N(β) − N(α).

By definition we have

IP (an ≤ Yn ≤ kn) = IP
(
αn ≤ Ỹn ≤ βn

)
with

αn =
an − knp̂n√
knp̂n(1 − p̂n)

and βn =
kn(1 − p̂n)√
knp̂n(1 − p̂n)

.
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Using the following limiting relations:

lim
n→∞

p̂n =
1
2
, lim

n→∞
kn(1 − 2p̂n)

√
∆n = −T

( r

σ
+

σ

2

)
,

and the defining relation for an, Formula (4.16), we get

lim
n→∞

αn = lim
n→∞

log(K/S) + knσ
√

∆n

2σ
√

∆n

− knp̂n√
knp̂n(1 − p̂n)

= lim
n→∞

log(K/S) + σkn

√
∆n(1 − 2p̂n)

2σ
√

kn∆np̂n(1 − p̂n)

=
log(K/S) − (r + σ2

2 )T

σ
√

T
= −d1(S, T ).

Furthermore we have

lim
n→∞

βn = lim
n→∞

√
knp̂−1

n (1 − p̂n) = +∞.

So N(βn) → 1, N(αn) → N(−d1) = 1 − N(d1), completing the proof of (i).
To prove (ii) we can argue in very much the same way and arrive at

parameters α∗
n and β∗

n with p̂n replaced by p∗
n. Using the following limiting

relations:

lim
n→∞

p∗
n =

1
2
, lim

n→∞
kn(1 − 2p∗

n)
√

∆n = T
(σ

2
− r

σ

)
,

we get

lim
n→∞

α∗
n = lim

n→∞
log(K/S) + σn

√
∆n(1 − 2p∗

n)
2σ

√
n∆np∗

n(1 − p∗
n)

=
log(K/S) − (r − σ2

2 )T

σ
√

T
= −d2(s, T ).

For the upper limit we get

lim
n→∞

β∗
n = lim

n→∞

√
kn(p∗

n)−1(1 − p∗
n) = +∞,

whence (ii) follows similarly. �

By the above proposition we have derived the classical Black-Scholes Eu-
ropean call option valuation formula as an asymptotic limit of option prices
in a sequence of Cox-Ross-Rubinstein type models with a special choice of
parameters. We will therefore call these models discrete Black-Scholes mod-
els. Let us mention here that in the continuous-time Black-Scholes model the
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dynamics of the (stochastic) stock price process S(t) are modeled by a geo-
metric Brownian motion (or exponential Wiener process). The sample paths
of this stochastic price process are almost all continuous and the probability
law of S(t) at any time t is lognormal. In particular the time T distribution
of log{S(T )/S(0)} is N(Tµ, Tσ2) (here µ is the growth rate, σ the volatility
of the stock). Looking back at the construction of our sequence of Cox-Ross-
Rubinstein models we see that

log
Sn(T )
S(0)

=
kn∑
i=1

log(1 + Zn,i),

with log(Zn,i) Bernoulli random variables with

IP (log(1 + Zn,i) = σ
√

∆n) = pn = 1 − IP (log(1 + Zn,i) = −σ
√

∆n).

By the (triangular array version) of the central limit theorem, we know that
log Sn(T )

S(0) properly normalized converges in distribution to a random variable
with standard normal distribution. Doing similar calculations as in the above
proposition we can compute the normalizing constants and get

lim
n→∞

log
Sn(T )
S(0)

∼ N(T (r − σ2/2), Tσ2),

i.e. Sn(T )
S(0) is in the limit lognormally distributed.

Using the terminology of weak convergence, we can therefore say that
the probability measures IPn induced by the distributions of Sn(T )/S(0)
converge to the probability measure QQ induced by N(T (r − σ2/2), Tσ2).

Therefore as a direct consequence of the definition of weak convergence
we have

Proposition 4.6.2. Let X be a contingent claim of the form X = h(S(T ))
with h a bounded, uniformly continuous real function. Denote by Πn

X resp.
ΠX the time t = 0 price of X in the nth discrete-time resp. the continuous-
time Black-Scholes market model. Then

lim
n→∞

Πn
X = ΠX .

Proof. Writing the pricing formula for the contingent claim using the
expectation operator with respect to the risk-neutral probability measures,
we have

Πn
X = IEIP n(h(Sn(T ))) =

∫
hdIPn,

resp.

ΠX = IEQQ(h(S(T ))) =
∫

hdQQ

(since the σ-field at t = 0 is assumed to be trivial, we can use expectation
instead of conditional expectation). The result now follows from the port-
manteau theorem of weak-convergence theory (see e.g. the book Billingsley
(1968), §1.2). �
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Example. Using h(x) = max{0, (K − x)} we get the above convergence for
the European put option, and put-call parity gives the result for the European
call option (as above). Observe g(x) = max{0, (x − K)} is unbounded, so we
can’t apply Proposition 4.6.2 to give another direct proof of Proposition 4.6.1.

We now turn briefly to different choices of un and dn and their effects.

4.6.3 Further Limiting Models

As already mentioned, different choices of the sequences (un) and (dn) lead
to different asymptotic stock price processes. We briefly discuss two possible
choices.

Jump Stock Price Movements

The key to the results in the last section was the weak convergence of the se-
quence of random variables log(Sn(T )

S(0) ). To show this convergence we basically
used the De Moivre-Laplace theorem for binomial random variables. We now
use another classical limit theorem for binomial random variables - the ‘weak
law of small numbers’ or ‘law of rare events’, which states that for certain
parameters the limiting distribution is a Poisson distribution (compare §2.9).
Indeed, if we choose un = u = eζ , ζ > 0 (independent of n) and dn = eξ∆n

with some 0 < ξ < r we have (for large enough n) an arbitrage-free market
model with unique risk-neutral probabilities p∗

n given by

p∗
n =

exp(r∆n) − exp(ξ∆n)
u − exp(ξ∆n)

→ 0, (n → ∞).

For this lattice approach the step size of an upward move remains constant
through all Cox-Ross-Rubinstein models, but the probability it will occur
becomes very small. On the other hand, the size of a downward move becomes
very small (as ∆n → 0, we have dn → 1), but its probability becomes very
close to 1.

Recall that in the sequence of Cox-Ross-Rubinstein models we modeled
the stock price at time T as

log
Sn(T )
S(0)

=
kn∑
i=1

log(Zn,i),

with log(Zn,i) Bernoulli random variables. Given the size of the up and down
movements and the probabilities p∗

n as above, an application of the law of rare
events (see §2.9) shows that the corresponding sequence of equivalent proba-
bility measures IPn of the Cox-Ross-Rubinstein models converges weakly to
the probability measure QQ induced by a Poisson distribution with parameter
λ = Tu(r−ξ)

u−1 .
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We can apply the pormanteau theorem again to find the valuation formula
of a European put and use put-call parity to get the pricing formula for a
European call. We use the following notation: Cn is the time t = 0 price of
a European call in the nth Cox-Ross-Rubinstein model with parameters as
above and

Ψ̄µ(x) = 1 − Ψµ(x − 1) =
∞∑

i=x

e−µµi

i!

the complementary Poisson distribution function with parameter µ. With
this notation we have the following limiting relation:

lim
n→∞

Cn = S(0)Ψ̄λ(x) − Ke−rT Ψ̄
λ
u (x).

The parameter λ is given as above and x = (log(K/S(0)) − ξT )/ log u.
In the limiting continuous-time model the stock price process has to be

modelled in such a way that ‘jumps’ are possible, i.e. the paths of the stochas-
tic stock price process must allow discontinuities. This is done by using the
continuous-time Poisson process (or another point process, see Chapter §5.2).
The distribution of the stock price process in the continuous-time model is
then log-Poisson. This kind of binomial model was introduced by Cox and
Ross (1976); see also Cox and Rubinstein (1985), p. 365 for a somewhat
different textbook treatment.

Constant Elasticity of Variance Diffusion

We now allow the up and down movements of the binomial process to dif-
fer predictably from period to period. More explicitly we write (using the
notation from above)

un = un(Sn(j∆n), ∆n) and dn = dn(Sn(j∆n), ∆n).

To obtain an arbitrage-free market, we have to choose the probabilities in
the underlying single-period models according to (4.10), i.e.

p∗
n,j = p∗

n,j(Sn(j∆n)) =
exp{r∆n} − dn(Sn(j∆n), ∆n)

un(Sn(j∆n), ∆n) − dn(Sn(j∆n), ∆n)
.

This, of course, implies that the equivalent martingale measure for the nth
Cox-Ross-Rubinstein model is dependent on the whole family of probabilities
p∗

n,0, . . . , p
∗
n,kn−1.

For instance, if we use the functions

u(y, t) = µyt + σyp
√

t and d(y, t) = µyt − σyp
√

t, 0 < p ≤ 1,

and set

un(S(t), t) = exp{u(S(t), t)} and dn(S(t), t) = exp{d(S(t), t)},
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we have

pn,j =
er∆n − eµSn(j∆n)∆n−σSp

n(j∆n)
√

∆n

eµSn(j∆n)∆n+σSp
n(j∆n)

√
∆n − eµSn(j∆n)∆n−σSp

n(j∆n)
√

∆n
.

With these parameters, one can show that the probability measures IPn con-
verge weakly to a probability measure QQ induced by a certain gamma-type
distribution. This leads to the constant elasticity of variance option pricing
formula for the limit of European call option prices at time 0 in the above
sequence of Cox-Ross-Rubinstein models:

lim
n→∞

Cn,0 = S(0)
∞∑

i=1

g(i, x)Ḡ(i + λ, y) − Ke−rT
∞∑

i=1

g(i + λ, x)Ḡ(i, y).

The function g(i, u) is the gamma density function

g(i, u) =
e−uui−1

(i − 1)!
,

and the function Ḡ(i, z) the complementary gamma distribution function

Ḡ(i, z) =

∞∫
z

g(i, u)du.

The parameters are given as x = 2λrS(0)
1
λ erT/λ/(σ2(erT/λ − 1)),

y = 2λrK
1
λ /(σ2(erT/λ − 1)) and λ = 1/(2(1 − p)).

The corresponding continuous-time stock price dynamics are given by

dS(t) = µS(t)dt + σS(t)pdW (t)

(where dW (t) denotes the stochastic differential with respect to the Wiener
process – we treat this in Chapter 5) and the constant elasticity in the (con-
ditional) variance term (in front of dW (t)) gives the name to this model.

Remark 4.6.1. The numerics of the above approximations have been subject
to investigation for quite some time (see Broadie and Detemple (1997) and
Leisen (1996) for discussion and references). Such numerical schemes are easy
to implement, for instance using Mathematica, and the reader is invited to
do so.

4.7 American Options

4.7.1 Theory

Consider a general multi-period framework. The holder of an American
derivative security can ‘exercise’ in any period t and receive payment f(St)
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(or more generally a non-negative payment ft). In order to hedge such an
option, we want to construct a self-financing trading strategy ϕt such that
for the corresponding value process Vϕ(t)

Vϕ(0) = x initial capital
Vϕ(t) ≥ ft, ∀t. (4.19)

Such a hedging portfolio is minimal, if for a stopping time τ

Vϕ(τ) = fτ .

We assume now that we work in a market model (Ω, F , IF, IP ), which is
complete with IP ∗ the unique martingale measure.

Then for any hedging strategy ϕ we have that under IP ∗

M(t) = Ṽϕ(t) = β(t)Vϕ(t) (4.20)

is a martingale. Thus we can use the STP (Theorem 3.5.1) to find for any
stopping time τ

Vϕ(0) = M0 = IE∗(Ṽϕ(τ)). (4.21)

Since we require Vϕ(τ) ≥ fτ for any stopping time we find for the required
initial capital

x ≥ sup
τ∈T

IE∗(β(τ)fτ ). (4.22)

Suppose now that τ∗ is such that Vϕ(τ∗) = fτ∗ ; then the strategy ϕ is
minimal, and since Vϕ(t) ≥ ft for all t we have

x = IE∗(β(τ∗)fτ∗) = sup
τ∈T

IE∗(β(τ)fτ ). (4.23)

Thus (4.23) is a necessary condition for the existence of a minimal strategy ϕ.
We will show that it is also sufficient and call the price in (4.23) the rational
price of an American contingent claim.

Now consider the problem of the option writer to construct such a strategy
ϕ. At time T the hedging strategy needs to cover fT , i.e. Vϕ(T ) ≥ fT is
required. At time T − 1 the option holder can either exercise and receive
fT−1 or hold the option to expiry, in which case B(T − 1)IE∗(β(T )fT |FT−1)
needs to be covered. Thus the hedging strategy of the writer has to satisfy

Vϕ(T − 1) = max{fT−1, B(T − 1)IE∗(β(T )fT |FT−1)}. (4.24)

Using a backward induction argument we can show that

Vϕ(t − 1) = max{ft−1, B(t − 1)IE∗(β(t)Vϕ(t)|Ft−1)}. (4.25)

Considering only discounted values, this leads to

Ṽϕ(t − 1) = max{f̃t−1, IE
∗(Ṽϕ(t)|Ft−1)}. (4.26)
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Thus we see that Ṽϕ(t) is the Snell envelope Zt of f̃t.
In particular, we know that

Zt = sup
τ∈Tt

IE∗(f̃τ |Ft) (4.27)

and the stopping time τ∗ = min{s ≥ t : Zs = f̃s} is optimal. So

Zt = IE∗(f̃τ∗ |Ft). (4.28)

In case t = 0 we can use τ∗
0 = min{s ≥ 0 : Zs = f̃s}, and then

x = Z0 = IE∗(f̃τ∗
0
) = sup

τ∈T0

IE∗(f̃τ ) (4.29)

is the rational option price.
We still need to construct the strategy ϕ. To do this recall that Z is a

supermartingale and so the Doob decomposition yields

Z = M̃ − Ã (4.30)

with a martingale M̃ and a predictable, increasing process Ã. We write Mt =
M̃tBt and At = ÃtBt. Since the market is complete, we know that there
exists a self-financing strategy ϕ̄ such that

M̃t = Ṽϕ̄(t). (4.31)

Also using (4.30) we find ZtBt = Vϕ̄(t) − At. Now on C = {(t, ω) : 0 ≤ t <
τ∗(ω)} we have that Z is a martingale and thus At(ω) = 0. Thus we obtain
from Ṽϕ̄(t) = Zt that

Ṽϕ̄(t) = sup
t≤τ≤T

IE∗(f̃τ |Ft) ∀ (t, ω) ∈ C. (4.32)

Now τ∗ is the smallest exercise time and Ãτ∗(ω) = 0. Thus

Ṽϕ̄(τ∗(ω), ω) = Zτ∗(ω)(ω) = f̃τ∗(ω)(ω). (4.33)

Undoing the discounting we find

Vϕ̄(τ∗) = fτ∗ (4.34)

and therefore ϕ̄ is a minimal hedge.
Now consider the problem of the option holder, how to find the optimal

exercise time. We observe that the optimal exercise time must be an optimal
stopping time, since for any other stopping time σ (use Proposition 3.6.2)

Ṽϕ(σ) = Zσ > f̃σ (4.35)
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and holding the asset longer would generate a larger payoff. Thus the holder
needs to wait until Zσ = f̃σ i.e. (i) of Proposition 3.6.2 is true. On the other
hand with ν the largest stopping time (compare Definition 3.6.2) we see that
σ ≤ ν. This follows since using ϕ̄ after ν with initial capital from exercising
will always yield a higher portfolio value than the strategy of exercising later.
To see this recall that Vϕ̄ = ZtBt + At with At > 0 for t > ν. So we must
have σ ≤ ν and since At = 0 for t ≤ ν we see that Zσ is a martingale. Now
criterion (ii) of Proposition 3.6.2 is true and σ is thus optimal. So

Proposition 4.7.1. A stopping time σ ∈ Tt is an optimal exercise time for
the American option (ft) if and only if

IE∗(β(σ)fσ) = sup
τ∈Tt

IE∗(β(τ)fτ ). (4.36)

4.7.2 American Options in the CRR Model

We now consider how to evaluate an American put option in a standard
CRR model. We assume that the time interval [0, T ] is divided into N equal
subintervals of length ∆ say. Assuming the risk-free rate of interest r (over
[0,T]) as given, we have 1 + ρ = er∆ (where we denote the risk-free rate
of interest in each subinterval by ρ). The remaining degrees of freedom are
resolved by choosing u and d as follows:

1 + u = eσ
√

∆, and 1 + d = (1 + u)−1 = e−σ
√

∆.

By condition (4.10), the risk-neutral probabilities for the corresponding single
period models are given by

p∗ =
ρ − d

u − d
=

er∆ − e−σ
√

∆

eσ
√

∆ − e−σ
√

∆
.

Thus the stock with initial value S = S(0) is worth S(1 + u)i(1 + d)j after
i steps up and j steps down. Consequently, after N steps, there are N + 1
possible prices, S(1 + u)i(1 + d)N−i (i = 0, . . . , N). There are 2N possible
paths through the tree. It is common to take N of the order of 30, for two
reasons:

• typical lengths of time to expiry of options are measured in months (9
months, say); this gives a time step around the corresponding number of
days,

• 230 paths is about the order of magnitude that can be comfortably handled
by computers (recall that 210 = 1, 024, so 230 is somewhat over a billion).

We can now calculate both the value of an American put option and
the optimal exercise strategy by working backwards through the tree (this
method of backward recursion in time is a form of the dynamic programming
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(DP) technique, due to Richard Bellman, which is important in many areas
of optimization and Operational Research).

1. Draw a binary tree showing the initial stock value and having the right
number, N , of time intervals.
2. Fill in the stock prices: after one time interval, these are S(1 + u) (upper)
and S(1 + d) (lower); after two time intervals, S(1 + u)2, S and S(1 + d)2 =
S/(1+u)2; after i time intervals, these are S(1+u)j(1+d)i−j = S(1+u)2j−i

at the node with j ‘up’ steps and i − j ‘down’ steps (the ‘(i, j)’ node).
3. Using the strike price K and the prices at the terminal nodes, fill in the
payoffs fA

N,j = max{K − S(1 + u)j(1 + d)N−j , 0} from the option at the
terminal nodes underneath the terminal prices.
4. Work back down the tree, from right to left. The no-exercise values fij of
the option at the (i, j) node are given in terms of those of its upper and lower
right neighbours in the usual way, as discounted expected values under the
risk-neutral measure:

fij = e−r∆[p∗fA
i+1,j+1 + (1 − p∗)fA

i+1,j ].

The intrinsic (or early-exercise) value of the American put at the (i, j) node
– the value there if it is exercised early – is

K − S(1 + u)j(1 + d)i−j

(when this is nonnegative, and so has any value). The value of the American
put is the higher of these:

fA
ij = max{fij , K − S(1 + u)j(1 + d)i−j}

= max
{
e−r∆(p∗fA

i+1,j+1 + (1 − p∗)fA
i+1,j), K − S(1 + u)j(1 + d)i−j

}
.

5. The initial value of the option is the value fA
0 filled in at the root of the

tree.
6. At each node, it is optimal to exercise early if the early-exercise value there
exceeds the value fij there of expected discounted future payoff.

Note. The above procedure is simple to describe and understand, and simple
to program. It is laborious to implement numerically by hand, on examples
big enough to be non-trivial. Numerical examples are worked through in
detail in Hull (1999), p.359–360 and Cox and Rubinstein (1985), p.241–242.

Mathematically, the task remains of describing the continuation region –
the part of the tree where early exercise is not optimal. This is a classical
optimal stopping problem, and as we mentioned above, a solution by explicit
formulas is not known – indeed, is probably not feasible. It would take us
too far afield to pursue such questions here; for a fairly thorough (but quite
difficult) treatment, see Shiryaev et al. (1995). We return to the theory of
American options in the continuous-time context in §6.3.1.

We conclude by showing the equivalence of American and European calls
without using arbitrage arguments.
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Theorem 4.7.1. Let (Zn)N
0 be the payoff sequence of an American option.

Then h = ZN is the payoff of the corresponding European option. Write
CA(n), CE(n) for the values at time n of the American and European options.
Then

(i) CA(n) ≥ CE(n),
(ii) If CE(n) ≥ Zn, then CA(n) = CE(n).

Proof. (i) We use the supermartingale resp. martingale property of the
price processes of the discounted American resp. European call to get

C̃A(n) ≥ IE∗
(
C̃A(N)|Fn

)
= IE∗

(
C̃E(N)|Fn

)
= C̃E(n).

(ii) (C̃E(n)) is a P ∗-martingale, so in particular a P ∗-supermartingale. Be-
ing the Snell envelope of (Zn), (C̃A(n)) is the least P ∗-supermartingale
dominating (Zn). So if C̃E(n) ≥ Zn as in the condition of the theorem,
C̃E(n) ≥ C̃A(n), so C̃E(n) = C̃A(n). �

Corollary 4.7.1. In the Black-Scholes model with one risky asset, the Amer-
ican call option is equivalent to its European counterpart.

Proof. Here Zn = (Sn − K)+. Discounting,

C̃E(n) = (1 + ρ)−NIE∗ (
(SN − K)+|Fn

)
≥ IE∗

(
S̃N − K(1 + ρ)−N |Fn

)
= S̃n − K(1 + ρ)−N,

as S̃n is a IP ∗-martingale. Without the discounting, this says

CE(n) ≥ Sn − K(1 + ρ)−(N−n).

This gives CE(n) ≥ Sn − K; also CE(n) ≥ 0; so CE(n) ≥ (Sn − K)+ = Zn,
and the result follows from the theorem. �

4.8 Further Contingent Claim Valuation in Discrete
Time

4.8.1 Barrier Options

Barrier options are options whose payoff depends on whether or not the stock
price attains some specified level before expiry. We will be brief here, referring
to §6.3.3 for a more extensive discussion of barrier options in continuous time.
The simplest case is that of a single, constant barrier at level H. The option
may pay (‘knock in’) or not (‘knock out’) according as to whether or not
level H is attained, from below (‘up’) or above (‘down’). There are thus four
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possibilities – ‘up and in’, ‘up and out’, ‘down and in’, ‘down and out’ –
for the basic – single, constant barrier – case. In addition, one may have
two barriers, with the option knocking in (or out) if the price reaches either
a lower barrier H1 or an upper barrier H2. More generally, one may have
non-constant – ‘moving’ – barriers, with the level a function of time.

As always, it pays to be flexible, and to be able to work in discrete or
continuous time, as seems more appropriate for the problem in hand. For
a full treatment in continuous time, see Zhang (1997), Chapters 10, 11, or
§6.3.3. Now a continuous-time price process model, such as the Black-Scholes
model based on geometric Brownian motion (§6.2), may be approximated
in various ways by discrete-time models (such as the discrete Black-Scholes
model, the Cox-Ross-Rubinstein binomial tree model of §4.5); for the passage
from discrete to continuous time, see §4.6 (and more generally, §5.9 below).

When we have a barrier option in discrete time, we price it as with the
American options of §6.3.1 by backward induction. Some sample paths hit the
barriers, and for these we can fill in the payoff from the boundary conditions
that define the barriers; as before, we fill in the payoff at the terminal nodes
at expiry. We then proceed backwards in time recursively, at each stage using
all current information to fill in, as before, the payoffs at new nodes one time
step earlier. When we reach the root, the payoff is the value of the option
initially.

Problems may easily be encountered when dealing with barrier options in
discrete time if the discretization process is not chosen and handled with care.
A new discretization process, due to Rogers and Stapleton (1998), proceeds
by first discretizing space, by steps δx > 0, and then discretizing time, into
τ0, τ1, · · · , where

τ0 := 0, τn+1 := inf{t > τn : |X(t) − X(τn)| > δx}, n ≥ 0,

and deal with the resulting random walk (ξn), where

ξn := X(τn).

This approximation scheme is accurate, reasonably fast, and very flexible: it
is capable of handling a wide variety of problems, with moving as well as
fixed barriers. For the theory, and detailed comparison with other available
methods, see Rogers and Stapleton (1998); another approach is due to Ait-
Sahlia and Lai (1998b). Techniques useful here include continuity corrections
for approximations to normality, Edgeworth expansions, and Richardson ex-
trapolation.

4.8.2 Lookback Options

Lookback – or hindsight – options, which we discuss in more detail in §6.3.4
in continuous time, are options that convey the right to ‘buy at the low,
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sell at the high’ – in other words, to eliminate the regret that an investor
operating in real time on current, partial knowledge would feel looking back
in time with complete knowledge. Again, most of the theory is for continuous
time (see e.g. Zhang (1997), Chapter 12), but a discrete-time framework may
be preferred – or needed, if the only prices available are those sampled at
certain discrete time-points. Care is obviously needed here, as discretization
of time will miss the extremes of the peaks and troughs giving the highs and
lows in continuous time.

Discrete lookback options have been studied from several viewpoints; see
e.g. Heynen and Kat (1995), Kat (1995) and Levy and Mantion (1997). An
interesting approach using duality theory for random walks has been given
by AitSahlia and Lai (1998a).

4.8.3 A Three-period Example

Assume we have two basic securities: a risk-free bond and a risky stock. The
one-year risk-free interest rate (continuously compounded) is r = 0.06 and
the volatility of the stock is 20%. We price calls and puts in a three-period
Cox-Ross-Rubinstein model. The up and down movements of the stock price
are given by

1 + u = eσ
√

∆ = 1.1224 and 1 + d = (1 + u)−1 = e−σ
√

∆ = 0.8910,

with σ = 0.2 and ∆ = 1/3. We obtain risk-neutral probabilities by (4.10)

p∗ =
er∆ − d

u − d
= 0.5584.

We assume that the price of the stock at time t = 0 is S(0) = 100. To price
a European call option with maturity one year (N = 3) and strike K = 10)
we can either use the valuation formula (4.13) or work our way backwards
through the tree. Prices of the stock and the call are given in Figure 4.2
below. One can implement the simple evaluation formulae for the CRR- and
the BS-models and compare the values. Figure 4.3 is for S = 100, K = 90, r =
0.06, σ = 0.2, T = 1.

To price a European put, with price process denoted by p(t), and an Amer-
ican put, P (t), (maturity N = 3, strike 100), we can for the European put
either use the put-call parity (1.1), the risk-neutral pricing formula, or work
backwards through the tree. For the prices of the American put we use the
technique outlined in §4.8.1. Prices of the two puts are given in Figure 4.4.
We indicate the early exercise times of the American put in bold type. Recall
that the discrete-time rule is to exercise if the intrinsic value K − S(t) is
larger than the value of the corresponding European put.
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Fig. 4.2. Stock and European call prices
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Fig. 4.4. European p(.) and American P (.) put prices

4.9 Multifactor Models

We now discuss examples of discrete-time financial market models with more
than two underlying assets. Such models are useful for the evaluation of mul-
tivariate contingent claims, such as options on multiple assets (options on
the maximum of two or more asset prices, dual-strike options, and portfo-
lio or basket options). For the exposition we assume d + 1 financial assets
S0, S1, . . . , Sd. We assume S0 = B, a risk-free bank account or bond, and use
B as numéraire.

4.9.1 Extended Binomial Model

This model, proposed by Boyle, Evnine, and Gibbs (1989), uses a single bino-
mial tree for each of the underlying d risky assets. So we have 2d branches per
node. We discuss the case d = 2 (i.e. the model consists of two risky assets
and the bank account) in detail; the generalization to d > 2 is straightfor-
ward. To show that this model is arbitrage-free we have to find an equivalent
martingale measure, and to show that it is complete we have to prove unique-
ness of the equivalent martingale measure. A similar argument to that for the
Cox-Ross-Rubinstein model shows that the multi-period extended binomial
model is arbitrage-free (complete) if and only if the single-period model is
(compare §4.5.2). So it is enough to discuss the single-period model with trad-
ing dates t = 0 and t = 1(= T ). We assume a risk-free rate of return of r ≥ 0,
so B(0) = 1 and B(1) = 1 + r. Furthermore we have two risky assets, S1 and
S2. Since both risky assets are modeled by single binomial trees, we have four
possible states of the world at time t = 1 with values of (S1(1), S2(1)) given
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by (u1S1(0), u2S2(0)) with probability puu, (u1S1(0), d2S2(0)) with probabil-
ity pud, (d1S1(0), u2S2(0)) with probability pdu and (d1S1(0), d2S2(0)) with
probability pdd, where we assume ui > di, i = 1, 2 and positive probabilities.
Under the risk-neutral probabilities p∗

uu, p∗
ud, p

∗
du, p∗

dd the discounted stock
price processes S̃i(t) = Si(t)/B(t) have to be martingales. These martingale
conditions imply the following two equations:

IE[S̃1(1)] = S̃1(0) ⇔ (p∗
uu + p∗

ud)u1 + (p∗
du + p∗

dd)d1 = (1 + r),
IE[S̃2(1)] = S̃2(0) ⇔ (p∗

uu + p∗
du)u2 + (p∗

ud + p∗
dd)d2 = (1 + r).

Furthermore, besides the fact that the p∗ have to be positive to generate an
equivalent measure, we must have

p∗
uu + p∗

ud + p∗
du + p∗

dd = 1.

So we have three equations for the unknown probabilities p∗
uu, p∗

ud, p
∗
du, p∗

dd

and in general (depending on the parameters u1, d1, u2, d2, r) we will have
several (even infinitely many) solutions of the system of the equations above.
This means that the extended binomial model is arbitrage-free, but not com-
plete (in accordance to our rule of thumb (§1.4) that we should have as many
financial assets to trade in as states of the world).

4.9.2 Multinomial Models

The extended binomial model shows that while it is tempting to model each
asset by a single binomial tree, we lose the desirable property of market
completeness in doing so. We will therefore now construct an arbitrage-free,
complete market model (with d > 2 financial assets) following the infor-
mal rule of allowing as many different states of the world as we have assets
to trade in. Furthermore the stochastic stock price processes in this model
can be constructed to be of Markovian nature, that is, rather than the single-
period returns being independent unconditionally, they are independent given
the present value of the process. This also allows for a more realistic repre-
sentation of the true prices and is more in line with the most prominent
continuous-time model, the Black-Scholes market model, in which the stock
price processes are Markovian. We follow an approach that is basically due
to He (1990). Again we only discuss the d = 2 case (with the risk-free bank
account B, with rate of return r ≥ 0, as numéraire asset and two risky assets
S1, S2); the case d > 2 follows by the same prescription. Let us start with
the single-period model. As in the extended binomial case above we assume
trading dates t = 0 and t = 1(= T ), but now we have only three possible
states of the world at time t = 1. Indeed we set

S1(1) = S1(0)Z1 and S2(1) = S2(0)Z2,

with
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IP (Z1 = u11, Z2 = u21) = p1; IP (Z1 = u12, Z2 = u22) = p2;
IP (Z1 = u13, Z2 = u23) = p3.

In general Z1 and Z2 are not independent, but we still can choose uij in
such a way that they are uncorrelated. Under the risk-neutral probabilities
p∗
1, p

∗
2, p

∗
3, the discounted stock price processes S̃i(t) = Si(t)/B(t) have to be

martingales. These martingale conditions imply the following two equations:

IE[S̃1(1)] = S̃1(0) ⇔ u11p
∗
1 + u12p

∗
2 + u13p

∗
3 = (1 + r),

IE[S̃2(1)] = S̃2(0) ⇔ u21p
∗
1 + u22p

∗
2 + u23p

∗
3 = (1 + r).

Furthermore, besides the fact that the p∗ have to be positive to generate an
equivalent measure, we must have

p∗
1 + p∗

2 + p∗
3 = 1.

Therefore we have three equations for the three unknown probabilities and
in general (given reasonable parameters uij) we will have a unique solution
of the system of the equations above, and hence an arbitrage-free, complete
financial market model.

In the multi-period setting with time horizon T and the set of trading
dates given by {0 = t0 < t1 < . . . < tn = T} of equidistant time points with
distance ∆n (observe that we have n time steps), we model the stock price
processes by

Si(tk) = Si(0)
k∏

j=1

Zij , k = 0, 1, . . . , n, i = 1, 2,

with a sequence of independent random vectors (Z(j))1≤j≤n such that Z
(j)
1 ,

Z
(j)
2 are uncorrelated (but possibly dependent) and

IP (Z(j)
1 = u

(j)
11 , Z

(j)
2 = u

(j)
21 ) = p

(j)
1 ;

IP (Z(j)
1 = u

(j)
12 , Z

(j)
2 = u

(j)
22 ) = p

(j)
2 ;

IP (Z(j)
1 = u

(j)
13 , Z

(j)
2 = u

(j)
23 ) = p

(j)
3 .

Since for each j the random vector Z(j) can be in one of three possible states,
the above argument applies for each ‘underlying’ single-period market and
the multi-period market is arbitrage-free and complete.

The most important case here is Z
(j+1)
i = ui(S(tj), tj , ε(j)), i = 1, 2, j =

0, . . . n − 1, with a sequence of independent random vectors (ε(j))j≤,n−1

such that ε
(j)
1 , ε

(j)
2 are uncorrelated (but possibly dependent) and sufficiently

smooth functions ui. Then u
(j+1)
i are predictable functions of S(tj) making

the discrete stochastic process Si(t) Markovian. We will construct a financial
market model of this type in §6.4.
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Exercises

4.1 Construct hedging strategies for the European call and put in the setting
of the example in §4.8.4.

4.2 Compare the Black-Scholes price with Cox-Ross-Rubinstein price ap-
proximations. Is the convergence of Cox-Ross-Rubinstein prices to the Black-
Scholes price ‘smooth’ or ‘oscillating’? (See (Leisen 1996) for details.)

4.3 Consider a European call option, written on a stock S with strike price
100, that matures in one year. Assume the continuously compounded risk-
free interest rate is 5%, the current price of the stock is 90 and its volatility
is σ = 0.2.

1. Set up a three-period binomial (Cox-Ross-Rubinstein) model for the stock
price movements.

2. Compute the risk-neutral probabilities and find the value of the call at
each node.

3. Construct a hedging portfolio for the call.

4.4 Consider put options, written on a stock S, with strike price 100 that
mature in one year. Assume the continuously compounded risk-free interest
rate is 6%, the current price of the stock is 100 and its volatility is σ = 0.25.

1. Set up a three-period binomial (Cox-Ross-Rubinstein) model for the stock
price movements.

2. Compute the risk-neutral probabilities and find the value of a European
put at each node.

3. Construct a hedging portfolio for the European put.
4. Now compute the values of a corresponding American put at each node

and set up a hedging portfolio. Compare with the hedging portfolio in 3.

4.5 Consider a European powered call option, written on a stock S, with
expiry T and strike K. The payoff is (p > 1):

Cp(T ) =
{

(S(T ) − K)p, S(T ) ≥ K;
0 S(T ) < K.

Assume that T = 1 year, S(0) = 90, σ = 0.3, K = 100. Consider a two-period
binomial model.

1. Price Cp using the risk-neutral valuation formula.
2. Construct a hedge portfolio and compute arbitrage prices (which of course

will agree with the risk-neutral prices) using the hedging portfolio.
3. Compare the hedge portfolio with a hedge portfolio for a usual European

call. What are the implications for the risk-management of powered call
options?
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4.6 In static hedging of exotic options, one tries to construct a portfolio of
standard options – with varying strikes and maturities but fixed weights that
will not require any further adjustment – that will exactly replicate the value
of the given target option for a chosen range of future times and market
levels.

We will construct a static hedge for a barrier option in a binomial five-
period model. Consider a zero interest-rate world with a stock worth 100
today. The stock price can move up and down 10 with probability 0.5 at the
end of a fixed period.

Our target for replication is a five-period up-and-out European-style call
with a strike of 70 and a barrier of 120. This option has natural boundaries
both at expiration in five periods and on the knockout barrier at 120.

Create a portfolio of ordinary options that collectively have the same pay-
off as the up-and-out call on the boundaries. To create such a portfolio follow
the steps:

1. Start with an ordinary call struck at 70. It has the same payoff if the barrier
is never reached.

2. Add a short position in 10 five-period calls with strike 120 to the portfolio
to make the portfolio value 0 at the time 4 boundary point.

3. Add a long position in 5 three-period calls struck at 120 to complete the
portfolio.

For each portfolio, compute the value-process at every node and compare it
with the value of the barrier option.
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