
2 An Approach for Solid Modelling in a Virtual

Reality Environment

Yongmin Zhong1, Weiyin Ma2

1
School of Computer Science, University of Windsor, Canada

2
Department of Manufacturing Engineering and Engineering Management, City

University of Hong Kong, Hong Kong, China

With today’s Virtual Reality (VR) systems, it is difficult to directly and precisely

create and modify objects in a VR environment. This chapter presents an approach

for solid modelling in a VR environment. Solid modelling in the VR environment

is performed precisely in an intuitive manner through constraint-based

manipulations. A hierarchically structured and constraint-based data model is

developed to support solid modelling in the VR environment. The data model

integrates a high-level constraint- based model for precise object definition, a mid-

level CSG/Brep (Constructive Solid Geometry/Boundary representation) hybrid

solid model for hierarchical geometry abstractions and object creation, and a low-

level polygon model for real-time visualization and interaction in the VR

environment. Constraints are embedded in the solid model and are organized at

different levels to reflect the modelling process from features to parts. Constraint-

based manipulations are accompanied with automatic constraint recognition and

precise constraint satisfaction to establish the hierarchically structured constraint-

based data model and are realized by allowable motions for precise 3D

interactions in the VR environment. The allowable motions are represented as a

mathematical matrix for conveniently deriving allowable motions from

constraints. A procedure-based degree-of-freedom combination approach for 3D

constraint solving is presented for deriving the allowable motions. A rule-based

constraint recognition engine is developed for both constraint-based

manipulations and implicitly incorporating constraints into the VR environment.

A prototype system has been implemented for precise solid modelling in an

intuitive manner through constraint-based manipulations.

Keywords: Virtual Reality; Solid Modelling; Constraint-based Manipulations;

Constraint Solving; Constraint Recognition

14 2 An Approach for Solid Modelling in a Virtual Reality Environment

2.1 Introduction

The VR technology is regarded as a natural extension to 3D computer graphics

with advanced input and output devices and it brings a completely new

environment to the CAD (Computer-Aided Design) community. However, the

integration of VR and CAD is not an easy task. At present, there are two methods

for combining VR with CAD. In the first method, which is employed by most of

the current VR systems (Sa and Zachmann 1999; Whyte et al. 2000), VR is only

used as a toolkit for visualizing and analyzing CAD models. With this method,

CAD models are first created by using CAD software, such as AutoCAD, UGII,

ProE, etc., and the created CAD models are then imported into a VR environment

for visualization and analysis. Some difficulties with this approach are as follows:

¶ The models are first created in the CAD systems by specifying the detailed

dimensions while these dimensions are not precisely defined in the concept

stage (Dani and Gadh 1997).

¶ Topological relationships and constraints between entities and parametric

information are lost when transferring the models from the CAD systems to the

VR systems (Berta 1999).

¶ To modify the models, one must return to the CAD systems to make the desired

changes and re-import the revised models into the VR systems for verification

(Gao et al. 2000).

The second method directly creates solid models in a VR environment by

developing novel CAD systems (which are called VR-based CAD systems) (Gao

et al. 2000; Stork and Maidhof 1997; Zhong et al. 1999). With this method, all the

design activities are carried out in the VR environment. Users can intuitively

create and modify 3D shapes through 3D direct manipulations, and visualize and

analyze the design in the same system without any data transfer. The second

method overcomes the major limitations of the first method. However, most of the

existing VR systems only offer very limited tools for solid modelling, and lack

sophisticated modelling and modification tools for creating complex solid models

in a VR environment. Among others, the finite resolution of virtual objects

without topological information is not suited to represent solid models for design

purposes. The limited accuracy and reliability of 3D input and output devices also

prevent users from precise design activities.

This chapter presents an approach for solid modelling in a VR environment.

Solid modelling is performed precisely in an intuitive manner through constraint-

based manipulations. A hierarchically structured and constraint-based data model

is developed to support solid modelling in the VR environment. This data model

integrates a high-level constraint-based model for precise object definition, a mid-

level CSG/Brep (Constructive Solid Geometry/Boundary representation) hybrid

solid model for hierarchical geometry abstractions and object creation, and a low-

level polygon model for real-time visualization and interaction in the VR

environment. Constraints are embedded in the solid model and organized at

different levels to reflect the modelling process from features to parts. Constraint-

2.2 Related Work 15

based manipulations are accompanied with automatic constraint recognition and

precise constraint satisfaction to establish the hierarchically structured constraint-

based data model, and are realized by allowable motions for precise 3D

interactions in the VR environment. The allowable motions are represented as a

mathematical matrix so that they can be conveniently derived from the constraints.

A procedure-based degree-of-freedom (DOF) combination approach for 3D

constraint solving is presented for deriving the allowable motions. A rule-based

constraint recognition engine is developed for both constraint-based

manipulations and implicitly incorporating constraints into the VR environment.

A prototype system has been implemented for precise solid modelling in an

intuitive manner through constraint-based manipulations.

2.2 Related Work

The brief survey first gives an overview of constraint solving, and then introduces

the applications of direct manipulations in geometric modelling. Afterwards, the

focus turns to the existing methods for solid modelling in a VR environment.

Finally, current techniques for the integration of VR, constraint solving and direct

manipulations in solid modelling are discussed.

2.2.1 Constraint Solving

Some of the major constraint solving approaches can be classified as follows:

¶ Numerical algebraic approach: This is one of the commonly used techniques

for constraint solving (Sutherland 1963; Light and Gossard 1982). In this

approach, all constraints are translated into algebraic equations and the

instances of a geometric model are derived by solving these equations with

numerical techniques, such as the Newton-Raphson iterative method and its

refinement methods. The numerical algebraic approach is quite general and is

capable of dealing with over constrained, consistent constraint problem but the

convergence to a solution is not always guaranteed and the final solution

depends on the choice of initial values.

¶ Geometric reasoning: Systems reported by Aldefeld (1988) and Ambler and

Popplestone (1975) are based on a geometric reasoning approach. This

approach employs artificial intelligence to perform the symbolic manipulations

of constraints. It provides generic solutions. Nevertheless, it depends on the

relativity of the parameters and is also computation-extensive. This approach is

also referred to as the symbolic algebraic approach.

¶ Constraint propagation: In (Gossard et al. 1988; Khatib 1996), a procedural

constraint propagation technique was adopted. The method allows a user to

position new geometric elements relative to existing ones in terms of geometric

constraints. The systems, however, require a user to construct geometric

16 2 An Approach for Solid Modelling in a Virtual Reality Environment

elements in a very restricted manner and cannot handle under-constrained

geometric elements.

¶ DOF analysis: Kramer (1991) proposed a technique called the DOF analysis

that has significant computational advantages over the algebraic and geometric

reasoning approaches. Using this technique, a sequence of operational

transformation is automatically devised to satisfy each constraint incrementally.

There are also some other approaches for constraint solving, such as the graph-

based representation and the rule-based method. In general, most constraint-

solving systems deal with 2D constraints or kinematics problems mainly because

of the complexity of constraint solving in 3D problems (Lhomme et al. 1998).

Presently, there are especially few research work that focused on integrating 3D

constraint solving with 3D direct manipulations.

2.2.2 Direct Manipulations

Direct manipulation has already been successfully applied in geometric modelling.

For example, a user can control the geometry of an object by grasping and

dragging operations using direct manipulation techniques and update the geometry

continuously.

Bier presented a direct manipulation method named “snapping-dragging” for

creating 3D objects using a 2D mouse (Bier 1986). This method combines three

interactive techniques: grid-based interaction, alignment and interactive

transformation. In this method, precise interactions are realized by snapping a 3D

cursor and moving it to a set of points, lines, planes and spheres displayed on the

screen. However, the desired 3D positions depend on a set of specified

transformations. Furthermore, since menu interactions are often required, the

interactions are very tedious and unintuitive. Emmerik also presented a method for

direct manipulation of 3D objects using 2D input devices (Emmerik 1990). In this

method, the direct manipulations of 3D objects are realized by manipulating the

geometry trees of 3D objects. Gleicher developed the Brambler graphics toolkit

that supports interactions using the differential manipulation technique (Gleicher

1993). The smooth manipulation of dragging an object is realized by the

constraint that forces the objects to move towards the current position of the

cursor.

In connection with direct manipulations and constraint solving, TWEAK is a

constraint-based manipulator for editing 3D objects using 2D cursors (Hsu et al.

1997). It provides a toolkit for placing the vertices, planes and objects picked by a

user. The manipulator is connected to a 3D geometric constraint solver, which

ensures that the changes are consistent with the relationships between the

geometric elements. Kwaiter et al. presented a geometric constraint system called

LinkEdit that provides an interactive 2D tool to construct objects from rigid

primitives and constrain them by several constraint types (Kwaiter et al. 1997).

When an object is selected, an interactive constraint is added into the constraint

graph and the constraint solver re-satisfies the constraint graph. When the object

2.2 Related Work 17

is being moved, a series of local modifications are performed. When the object is

released, the added constraint is deleted from the constraint graph.

2.2.3 Solid Modelling in a Virtual Reality Environment

The use of VR for CAD is not totally new. In the area of 3D modelling, one of the

earliest systems was 3DM that allows users to interactively create simple

geometric objects, such as cylinders and spheres, in the VR environment

(Butterworth et al. 1992). 3DM includes several grid and snap functions.

However, it lacks many other aids and constraints that are necessary to

accomplish precise work. JDCAD also tackled many issues for interactive 3D

objects modelling (Liang and Green 1994). Users could directly interact in a 3D

space using a 6-DOF input device. However, only simple solids can be created in

JDCAD. Dani and Gadh (Dani and Gadh 1997) presented a COVIRDS system for

concept design in the VR environment. This system is based on design features

and a geometric modelling kernel ACIS is used for their development. The precise

interactions mainly rely on voice commands. Stork and Maidhof also reported

some work on interactive and precise solid modelling using a 3D input device

(Stork and Maidhof 1997). Precise modelling is realized using 3D grids, grid

snapping and discretized dimensions. Constraint-based interactions are based on

pre-defined rules for feature-based modifications. Although precise modelling can

be ensured, the constraint-based interactions are too rigid for extensive use.

Nishino et al. presented some results on gesture-based 3D shape creation (Nishino

et al. 1999). A 3D modeller is developed to create complex shapes by combining

the defined hand actions while precise interactions are not included. Gao et al.

reported a method on constraint-based solid modelling in a semi-immersive VR

environment (Gao et al. 2000). In this method, the manipulations to a primitive

depend on some shape control points (SCP) on the primitive instead of the

primitive itself, and a 3D mouse must be set to the SCP for manipulating the SCP.

Furthermore, the SCP cannot sufficiently reflect the natural behaviours of the

geometric elements of the primitive. Therefore, the interactions in the virtual

environment are unintuitive and inconvenient.

There are also a few researches that focused on the integration of VR,

constraint solving and direct manipulations. Fa et. al. reported some results on 3D

object placement (Fa et al. 1993). Fernando et. al. further extended the results into

a shared virtual environment (Fernando et al. 1995) and presented a software

architecture of a constraint-based virtual environment (Fernando et al. 1999). The

most important contribution of their method is the concept in constraining 3D

direct manipulations through the allowable motions of an object being

manipulated for precise locations and operations. Since the allowable motions are

derived from some predefined rules that are related with the constraint types and

geometric element types, they are difficult to be used extensively. Furthermore,

only simple geometry and constraints are treated and simple solid models can be

18 2 An Approach for Solid Modelling in a Virtual Reality Environment

created in the VR environment. Complex models are still created from CAD

systems and then imported into the VR environment.

The authors also reported some preliminary results on precise solid modelling

in a VR environment (Ma et al. 1998; Zhong et al. 1999). The article (Ma et al.

1998) reported some results on creating assemblies with embedded constraints

between mating features through direct manipulations while (Zhong et al. 1999)

reported some results on creating parts by features through direct manipulations.

In general, the results reported in (Ma et al. 1998; Zhong et al. 1999) were at the

initial stage and only the conceptual solid modelling framework in a VR

environment was presented. There is still a lot of space for further development

and improvement.

This chapter is based on the authors’ previous work and presents the details on

solid modelling in a VR environment. The goal of this research is to develop an

intuitive 3D environment for solid modelling. A hierarchically structured and

constraint-based data model is presented to support solid modelling in a VR

environment. Constraint-based manipulations are elaborated for precise solid

modelling. A procedure-based DOF combination approach for 3D constraint

solving is presented to derive the allowable motions. Furthermore, a prototype

system for solid modelling in a VR environment has been implemented to

demonstrate the research work.

2.3 Model Representation

A fundamental problem for solid modelling in a virtual environment is model

representation. In the graphics and VR community, active researches on model

decimation, multi-resolution, level-of-detail management and zone culling are

currently being carried out (Andujar et al. 2000; Gobbetti and Bouvier 2000;

Kahler et al. 2001). Comparatively little research has been conducted for

accommodating precise CAD models in a VR environment (Figueiredo and

Teixeira 1994).

If CAD formats were directly used in a VR environment, the online processing

time for visualizing a typical CAD model would make it impossible to interact in

real time. The polygon model used in most VR systems provides the illusion of

being immersed, but it may not be able to precisely define the object geometry.

The use of a high-resolution model in a VR environment can increase model

precision. The system may however not be able to respond in real time either. On

the other hand, it is difficult to perform modelling because of the lack of

topological relationships and constraint information in the polygon model.

Therefore, it is necessary to develop a suitable model representation to support

solid modelling in a VR environment. The model representation not only needs to

support real-time visualization and interaction in a VR environment, but it also

needs to support modelling activities as well as reflect the modelling process.

2.3 Model Representation 19

Constraints
on Feature
Elements

Constraints
on

Features

Feature

Elements

Features

Parts

Hierarchical

Abstractions

& Object

Creation

CSG/Brep
Hybrid

Solid Model

Polygon
Model

Constraint-based

Model

High-levelMiddle-levelLow-level

Realtime

Visualization

& Interaction

Fig. 2.1. Hierarchically structured and constraint-based data model

A hierarchically structured constraint-based data model is presented to support

solid modelling in the VR environment (Figure 2.1). This data model includes five

levels of information, i.e., parts, features, feature elements, geometric and

topological relationships, and polygons. The definition of feature elements is the

same as the feature entities in (Brunetti et al. 1995). The data model integrates a

high-level constraint-based model for precise object definition, a mid-level

CSG/Brep hybrid solid model for hierarchical geometry abstractions and object

creation, and a low-level polygon model for real-time visualization and interaction

in the VR environment. The information in the high-level model that is used for

modelling can be divided into two types, i.e., object information on different

levels and constraint information on different levels. An object can be a part, a

feature or a feature element. The constraints on each object level that summarize

the associativities between the individual objects on the same level not only

provide precise object definition, but also provide a convenient way to realize

precise 3D interactions. The mid-level solid model is the geometric and

topological description of an object and is represented as a CSG/Brep hybrid

structure. It not only provides the geometric and topological information of an

object to support the hierarchical geometry abstractions and object creation, but

also provides a convenient way for interactive feature-based solid modelling. The

low-level polygon model provides the polygon data that corresponds to the mid-

level Brep solid model for real-time visualization and interaction in the VR

environment.

2.3.1 Structure of the Constraint-based Model

In the high-level constraint-based model, constraints are embedded in the solid

model and organized at different levels to reflect the modelling process from

features to parts (Figure 2.2).

20 2 An Approach for Solid Modelling in a Virtual Reality Environment

Fig. 2.2. The hierarchical structure of the high-level constraint-based model

Level 1 is the feature-based part model representation. Here, a part consists of

features and the constraints between these features. The constraints on this level

represent the spatial position relationships between the different features and they

are called the external feature constraints. An external feature constraint has one

direction and this direction is dependent on those of the external element

constraints included in the external feature constraint.

Level 2 and Level 3 are the feature element based part model representation.

The constraints on Level 2 and Level 3 are those between the feature elements.

Since an external feature constraint between features is difficult to represent, a

feature is sub-divided into a set of feature elements and the constraints between

these feature elements. Correspondingly, an external feature constraint on Level 1

is decomposed into a set of constraints between the feature elements that

individually belong to different features.

Top

Level 1

Ft----Feature

Fe----Feature element

C----Constraint

Fe1

Part

Ft1 Ft2

Fe1 Fe2

C11

C21

C33 C36

C23

Fe2

Fe3

C22

Fe3

Fe4

Fe4

Fe5

Fe5

Fe6

Fe6

Level 3

Level 2

C35C34C32C31

2.3 Model Representation 21

Fig. 2.3. Polygon model representation

The constraints on Level 2 represent the spatial position relationships between

the feature elements that individually belong to different features, and they are

called the external element constraints. An external feature constraint on Level 1

is sub-divided into a set of external element constraints on this level. An external

element constraint has one direction and this direction points to the feature

element that has been constrained. Typical external element constraints include

against, alignment, distance, etc.

Level 3 provides the feature model representation. A feature consists of feature

elements and the constraints between these feature elements. The constraints on

this level represent the spatial position relationships between the feature elements

belonging to a feature, and they are called the internal element constraints. The

internal element constraints define the shape of a feature and are non-directional.

They can be further divided into internal element geometric constraints and

internal element topological constraints according to their properties. The internal

elements geometric constraints represent the spatial position relationships between

the feature elements that belong to a feature and are described as a face-based

representation, such as parallel faces, perpendicular faces, distance faces and

angular faces, etc. The internal element topological constraints represent the

topological relationships between the feature elements that belong to a feature and

are described as an edge-based representation, such as co-edge and co-circle.

2.3.2 Polygon Model Representation

The low-level polygon model is a triangle-based polygon representation that

corresponds to the mid-level Brep solid model. The low-level polygon model

describes each face in the Brep solid model as a two-level structure. On the

bottom level locates the vertex array where the vertices that constitute a face are

placed. On the top level locates the connect-lists that reflect the connecting

P1

P5

P2

P3

P4

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P17

P18

P19

P20

T1

T2

T3

T4

22 2 An Approach for Solid Modelling in a Virtual Reality Environment

relationships of the vertices on the bottom level. Each connect-list separately

defines a facet. It records the sequential numbers of the vertices that constitute a

facet in the vertex array. In general, a face only has one vertex array and has some

connect-lists that share the vertex array. For the face shown in Figure 2.3, the

vertex array is (P1, P2, ÖÖÖ, P20) and the subscripts are the indices of the vertices in

the array. The connect-lists are <1, 5, 2>, <2, 5, 6>, <2, 6, 7>, <2, 7, 3>, etc. Each

facet is consisted of three vertices and is a triangle. The first triangle is

T1=DP1P5P2, the second triangle is T2=DP2P5P6, the third triangle is T3=DP2P6P7

and the fourth triangle is T4=DP2P7P3, etc.

2.4 Constraint-based Manipulations

The framework of constraint-based manipulations is shown in Figure 2.4. For

every object in the VR environment, such as a feature element, a feature, and a

part, an event list, which is regarded as the attribute of this object, is attached to

the object. An action list is connected to every event in the event list of an object.

This action list shows the actions that will be performed as soon as the event

occurs. Constraint-based manipulations are realized by these basic interactive

events and actions will be performed when these events occur. The basic

interactive events are attached to every object. Examples of basic interactive

events are the grasping event, the moving event and the dropping event.

The grasping event has an action to acquire the current allowable motions of an

object that it is attached to. An action for recognizing the constraints between

individual objects is attached to the moving event and the dropping event. As soon

as a user grasps an object, the grasping event occurs and the current allowable

motions of this object are derived from the hierarchically structured constraint-

based data model through constraints solving. Constraint-based manipulations are

achieved by constraining the motions of 3D hands to the allowable motions. This

is done by transferring the 3D motion data from the 3D input devices to the

allowable motions of the object. The constraint-based manipulations not only

ensure that the precise positions of an object can be obtained, but also guarantee

that the existing constraints will not be violated in future operations.

Once a constraint has been recognized during the constraint recognition

process, it will be highlighted and awaits a user’s confirmation. Once it is

confirmed, the recognized constraint will be satisfied precisely under the current

allowable motions of the object and inserted into the hierarchically structured

constraint-based data model. The satisfied constraint further restricts the

subsequent motions of the object. While the constraint-based manipulations are

being performed, the collision detection is switched on in order to detect possible

collisions between the object being manipulated and other objects. If a collision is

detected, the system will immediately provide a feedback to the user by

highlighting the objects involved and the colliding sound.

2.4 Constraint-based Manipulations 23

Part Feature
Feature

Element

Event List1 Event List2 Event List3

Action

List1

Grasping Moving

Action

List2

Dropping

Action

List3

Constraint

Solving

Moving Dropping

Objects

Events

Actions

Constraint

Recognizing

Constraint

Recognizing

Allowable Motions
Constraint

Satisfaction

Confirm

Herarchically structured and

constraint-based data model

Results

Constraint-based

Manipulations

Fig. 2.4. The framework of constraint-based manipulations

2.4.1 Representation of Allowable Motions

The constraints between objects are implicitly created by the constraint-based

manipulations with automatic constraint recognition and precise constraint

satisfaction. Newly created constraints reduce the DOFs of the object being

manipulated and implicitly confine future operations that can be applied to the

object. The remaining DOFs define the allowable motions of the object. The

allowable motions explicitly describe the next possible operations and ensure that

future operations will not violate the existing constraints. The allowable motions

24 2 An Approach for Solid Modelling in a Virtual Reality Environment

are represented as a mathematical matrix so that it can be conveniently derived

from the constraints.

For every object in the free space, its configuration space has six DOFs: three

translational DOFs and three rotational DOFs. To simplify the computation and

clarify the presentation of the allowable motions, the configuration space is

divided along three linear independent directions: X-axis, Y-axis and Z-axis.

Therefore, some basic DOFs, i.e., three translational DOFs and three rotational

DOFs can be obtained. Furthermore, the three basic translational or rotational

DOFs are linearly independent of each other. Any remaining DOF that is used to

define the allowable motions can be represented by these basic DOFs, therefore

the allowable motions can be represented using these basic DOFs as the matrix in

Eq. (2.1).

ù
ù
ù

ú

ø

é
é
é

ê

è

maxminmaxmin

maxminmaxmin

maxminmaxmin

zzzzzz

yyyyyy

xxxxxx

RRTTRT

RRTTRT

RRTTRT

(2.1)

In Eq. (2.1), the first column elements xT , yT and zT are the linear

translations along the X-axis, Y-axis and Z-axis respectively, and the second

column elements xR , yR and zR are the rotations about the corresponding axis

respectively. The values of these elements in the matrix are either zero or one.

Integer 1 indicates that motion is allowable in the direction along the

corresponding axis. Integer 0 indicates that motion is not allowable in the

corresponding axis direction. The third and fourth column elements are the

allowable ranges of the three translations, which are defined by the minimum and

maximum values of the three translations. For example, minxT and maxxT are the

minimum and maximum values of the translation along the X-axis. The fifth and

sixth column elements are the allowable ranges of the three rotations, which are

defined by the minimum and maximum values of the three rotations. For example,

minxR and maxxR are the minimum and maximum values of the rotation about

the X-axis. If the translations or rotations along some axes are not allowable, the

corresponding minimum and maximum values are zero.

2.4.2 Constraint Solving for Deriving Allowable Motions

Since most constraints are geometric constraints and they are shown as the

limitations of the relative geometric displacements between objects, i.e., the

limitations of the DOFs, the constraints applied to an object can be mapped to the

DOFs of this object. In fact, the correspondence from constraints to DOFs can be

extended to the correspondence from a set of constraints to the combination of

DOFs. Therefore, the representation of constraints can be obtained by analyzing

and reasoning the DOFs of an object, and constraints solving can also be regarded

2.4 Constraint-based Manipulations 25

as a process of analyzing and reasoning the DOFs of an object. Based on this, a

procedure-based DOF combination approach is presented for solving 3D

constraints (Figure 2.5). This approach has an intuitive manner for constraints

solving since it combines DOF analysis with 3D direct manipulations in the VR

environment.

As shown in Figure 2.5, the current allowable motions of an object are derived

from the current remaining DOFs of the object. The action of grasping an object is

interpreted by the constraint solver as requesting the current remaining DOFs of

the object. The current constraints applied to the object can be obtained from the

hierarchically structured and constraint-based data model. Initially, the object is

unconstrained and has six remaining DOFs. If there is only one constraint applied

to the object, the current remaining DOFs can be directly obtained by DOF

analysis. If there are multiple constraints (more than one) applied to the object, the

current remaining DOFs of the object can be obtained by DOF combination. The

DOF combination for solving multiple constraints is based on the DOF analysis

for solving individual constraints. Within the limitation of the current remaining

DOFs determined by the current constraints, the object aims to satisfy a new

constraint recognized by the current constraint-based manipulations applied to the

object. The new constraint is precisely satisfied under the current allowable

motions of the object and is further inserted into the hierarchically structured

constraint-based data model to update the current constraints applied to the object.

The update of the current constraints results in the update of the current remaining

DOFs of the object and further results in the update of the current allowable

motions of the object. Finally, the constraint-based manipulations applied to the

object are updated correspondingly.

Fig. 2.5. The framework of procedure-based DOF combination constraint solving

Current
Remaining

DOF

DOF
Analysis

DOF
Combination

Current
Allowable
Motions

Constraint
Recognition

Constraint
Satisfaction

New
constraint

H
ie

ra
rc

h
ic

a
lly

 S
tr

u
c
tu

re
d

 a
n
d

C
o
n

s
tr

a
in

t-
b

a
s
e
d

 D
a
ta

 M
o
d

e
l

constraints

= 1

> 1

The New
Satisfied

Constraint

Constraint-
based

Manipulations

Constrain
3D Hands

Aim

= 0

G
ra

s
p
in

g
E

v
e

n
t

26 2 An Approach for Solid Modelling in a Virtual Reality Environment

Fig. 2.6. The “against” and “line-alignment” constraints between two cylinders

DOF Analysis

Since DOFs are divided into three basic translational DOFs and three basic

rotational DOFs, it is easy to connect a constraint with the remaining DOFs by

analyzing the remaining basic translational and rotational DOFs corresponding to

the constraint. On the other hand, the allowable motion matrix introduced in

Section 2.4.1 is described by the three basic translational DOFs and the three basic

rotational DOFs. Therefore, the allowable motion matrix corresponding to a

constraint can be directly obtained by analyzing the remaining basic translational

and rotational DOFs that correspond to the constraint. For example, if a small

cylinder is placed on a big cylinder and they have to be axis-aligned (Figure 2.6),

the constraints between the two cylinders are the “against” and “line-alignment”

constraints. Using DOF analysis, the small cylinder has the translational DOFs Tx,

Tz and the rotational DOF Ry for the “against” constraint, and the translational

DOF Ty and the rotational DOF Ry for the “line-alignment” constraint. The

allowable motion matrices that correspond to the two individual constraints are

given in Eq. (2.2) and Eq. (2.3) respectively.

ù
ù
ù

ú

ø

é
é
é

ê

è

-

-

0.00.00.100.1001

20.00.00.010

0.00.00.100.1001

p (2.2)

ù
ù
ù

ú

ø

é
é
é

ê

è

0.00.00.00.000

20.00.100.011

0.00.00.00.000

p (2.3)

Similarly, the allowable motions matrices that correspond to other individual

constraints can also be obtained by DOF analysis. Figure 2.7 gives the DOF

analysis for some typical constraints.

X

Y

Z

X

Y

Z

R = 10.0

2.4 Constraint-based Manipulations 27

Fig. 2.7. DOF analysis to some typical constraints

DOF Combination

The DOF combination is used to represent the remaining DOFs that correspond to

multiple constraints. It refers to the intersection of the DOFs of the allowable

motions of the respective individual constraints.

An allowable motion is described by the three linearly independent

translational DOFs and the three linearly independent rotational DOFs. Both the

translational DOFs and rotational DOFs are a closed set respectively. Therefore,

the DOF combination can be regarded as an individual combination of the six

translational and rotational DOFs, and can be further represented as a combination

of the allowable motion matrices of the respective individual constraints.

The combination of the allowable motion matrices can be realized using the

“AND” Boolean operation of the allowable motion matrices of the respective

individual constraints, i.e., the “AND” Boolean operations of the corresponding

elements with the same position at the first and the second columns and the

intersections of the allowable ranges of the translations or rotations along the

same axis in the allowable motion matrices of the respective individual

constraints.

In this way, the remaining DOFs of an object that correspond to the multiple

constraints can be obtained and the allowable motion matrix that corresponds to

these multiple constraints can also be acquired. For example, the allowable motion

matrices that correspond to the “against” and “line-alignment” constraints in

X

Y

Z

against between faces

distance between faces

distance between a line
and a face line-alignment

A

B
Tx,Rx

Ty,Ry

Tz

Ty

A

B

Rx

Tz

A B
Rx

Ty

Tz

D

A Rx

B

Tz

Ty

D

BA

D

distance between lines

Rx

Tz

Ty

parallelism between faces

A

B Rx

Ty

Tz

face-alignment

perpendicularity between faces

Tx,Rx
BA

A

Tz

B
Tx,Rx

Ty

28 2 An Approach for Solid Modelling in a Virtual Reality Environment

Figure 2.6 are Eq. (2.2) and Eq. (2.3) respectively. Using DOF combination, the

small cylinder has the rotational DOF Ry for the two constraints, and the allowable

range of Ry is the intersection between the allowable ranges of Ry in Eq. (2.2) and

Eq. (2.3), i.e., from 0.0 to 2p. The final allowable motion matrix corresponding to

the two constraints is shown in Eq. (2.4).

ù
ù
ù

ú

ø

é
é
é

ê

è

0.00.00.00.000

20.00.00.010

0.00.00.00.000

p (2.4)

2.4.3 A Rule-based Approach for Constraint Recognition

Desired
constraint

Recognized
constraint is

ignored

YesIs being
manipulated
continuously

Highlight
display

Current
recognized
constraint

Verifying the
current positions
and orientations
between objects

The moving or
grasping event

happens

Dynamic
Tolerance

Recognized
constraint is
confirmed by

the user

No

Yes

No

Rule

Base

Fig. 2.8. Framework of rule-based constraint recognition

Constraints are implicitly incorporated into the VR environment for constraint-

based manipulations through the automatic constraint recognition. Constraint

recognition refers to the verification of the current positions and orientations

between two objects to determine if they satisfy a particular type of constraint

within a given tolerance. The constraint recognition framework is shown in Figure

2.8. While direct manipulations are being performed, as soon as a moving event or

a release event occurs, an automatic constraint recognition process is triggered to

detect all the possible constraints between the related objects. The system

recognizes the constraints between objects from the current position and

orientation of the manipulated object according to a rule base. The rule base

defines some of the rules that are applied in constraint recognition for recognizing

some specific constraints (Table 2.1). These constraints include against,

2.4 Constraint-based Manipulations 29

alignment, parallelism, perpendicularity, distance, co-circle, co-edge, etc. If the

current positions and orientations between two objects satisfy the conditions of a

constraint within a given tolerance, the matching constraint is recognized. Once a

constraint is recognized within the given tolerance, it will be highlighted and

awaits the user’s confirmation. If the object is further manipulated continuously

within a given time, the currently recognized constraint is ignored and the

constraint recognition process is restarted. Otherwise, the currently recognized

constraint is confirmed and the desired constraint is obtained. Furthermore, a

dynamic tolerance is adopted in the constraint recognition process to improve the

efficiency of this process. If the desired constraint is not recognized within the

given tolerance, the tolerance is enlarged according to a given step until the

desired constraint is recognized.

2.4.4 Some Special Constraint-based Manipulations

To reduce the search time for detecting the various types of constraints from

various objects and enhance the modelling efficiency, some special constraint-

based manipulations are also implemented as solid modelling operations in the VR

environment. These operations include <placement>, <alignment>, <distance>

and <insertion>. For each of these operations, the constraint recognition process is

triggered to detect a particular pair of elements that satisfies some special

constraint within a given tolerance.

The <placement> operation is responsible for locating one object relative to

another object and is used as the initial locating operation of an object. It refers to

an action of placing one object onto another object or placing two objects

together. The constraint involved in this operation is an “against” constraint. If the

recognized “against” constraint is precisely satisfied, the <placement> operation is

stopped.

The <alignment> operation is responsible for locating one object relative to

another object and is used as the precise locating operation of an object. The

constraint involved in this operation is an “alignment” constraint. The

<alignment> operation can be classified into two types according to the elements

involved, i.e., <face-alignment> and <line-alignment>.

The <distance> operation is also responsible for locating one object relative to

another object and is used as the precise locating operation of an object. The

constraint involved in this operation is a “distance” constraint. The <distance>

operation can be classified into three types according to the elements involved,

i.e., <face-face distance>, <line-line distance> and <face-line distance>. The value

of the distance is displayed near the object being manipulated for the user to

acquire the precise distance. A toolbox with a cursor and displaying a number is

also provided for the user to acquire the precise distance according to a given step.

The operations mentioned before are responsible for the precise location of an

object before modelling and are called the locating operations. However, the

<insertion> operation is used to perform a specific modelling task and is

30 2 An Approach for Solid Modelling in a Virtual Reality Environment

responsible for determining the final position of an object. The basic motion of

this operation is a translation. The constraint involved in the insertion operation is

a “face-alignment” constraint.

Table 2.1. The rules for recognizing constraints

Rules for detecting two against planar faces:

¶ Parallel: the product of the two unit normal vectors approaches to 0.0; and

¶ Direction: the dot product of the two unit normal vectors approaches to -1.0; and

¶ Close: the distance between a point on one facet to the projected point on the other

facet is smaller than a given tolerance; and

¶ Overlapping: the project of one facet on the other facet is not zero.

Rules for detecting two aligning planar faces:

¶ Parallel: the product of the two unit normal vectors approaches to 0.0; and

¶ Close: the distance between a point on one facet to the projected point on the other

facet is smaller than a given tolerance.

Rules for detecting two distance planar faces:

¶ Parallel: the product of the two unit normal vectors approaches to 0.0; and

¶ Distance: calculate the distance between a point on one facet to the projected point on

the other facet.

Rules for detecting two paralleling lines:

¶ The product of the two unit vectors of the line segments approaches to 0.0.

Rules for detecting two perpendicular lines:

¶ The dot product of the two unit vectors of the line segments approaches to 0.0.

Rules for detecting two co-linear lines/axis:

¶ Parallel: the product of the two unit vectors of the line segments approaches to 0.0; and

¶ Close: the distance between a point on one line to the projected point onto the other

line is smaller than a given tolerance.

Rules for detecting two distance lines/axis:

¶ Parallel: the dot product of the two unit vectors of the line segments approaches to 0.0;

and

¶ Distance: calculate the distance between a point on one line to the projected point onto

the other line.

Rules for detecting the face-linear distance:

¶ Parallel: the product between the unit normal vectors of the face and the unit vectors of

the line segment approaches to 0.0; and

¶ Distance: calculate the distance between a point on one line to the projected point onto

the face.

Rules for detecting two paralleling faces:

¶ The product between the unit normal vectors of the two faces approaches to 0.0.

Rules for detecting two perpendicular faces:

¶ The dot product between the unit normal vectors of the two faces approaches to 0.0.

Rules for detecting two co-edge faces:

¶ CE: all deviations between selected sample points on the two edges approach to 0.0.

Rules for detecting two co-circle faces:

¶ CC: two circles with the same orientation and dimension.

2.5 Implementation and Results 31

2.5 Implementation and Results

Fig. 2.9. System components

A prototype system for intuitive and precise solid modelling in a VR environment

through constraint-based 3D direct manipulations has been implemented on the

Division VR software based on a SGI Onyx2 with Infinite-Reality graphics

workstation. The system components are shown in Figure 2.9. The body actor,

that communicates with other actors, handles all aspects of user interaction. It

receives and processes the information from the input actor, monitors and

processes the events and actions in the VR environment and outputs the processed

results to the visual actor and the audio actor. The collision actor resides in the

system to detect the possible collisions between the objects in the VR

environment. A 3D mouse controlled by the input actor is mainly used as the input

device to carry out 3D manipulations. A six-degree-of-freedom head tracker,

Head Mounted Display and CrystalEyes shutter glasses controlled by the visual

actor are used for stereo display. Two sound blasters controlled by the audio actor

Input Interface

Input Actor

-processing the information

from input devices

Input Devices
-3D Mouse
-a tracker for tracking
the position of 3D mouse

Interaction Manager

Body Actor

-communicating with other actors

-processing the information from input actors

-monitoring and managing the happened events and

actions

-sending results to the output interface

-in charge of 3D navigation and 3D menu

-basic interactive model, such as hand, limb

Virtual Modeler

Hierarchically structured constraint-based data model

-a high-level constraint-based model for precise

object definition

-a middle-level CSG/Brep solid model for hierarchical

geometric abstractions and object creation

-a low-level polygon model for real-time visualization

and interaction

Collision Detection

Visual Actor
-OpenGL, Performer
-stereoimage

Visual Devices
-monitor
-crystaleyes shutter
glasses
-a HMD
-a tracker for tracking
the position of head

Audio Actor
-auditory

Audio Devices
-sound blaster
-audio cues

-supporting CAD-
related operations

Collision Actor
-collision detection

Output Interface

Users

ACIS Geometric Kernel

32 2 An Approach for Solid Modelling in a Virtual Reality Environment

are used for audio. The VR modeller is in charge of all aspects of modelling to

establish the hierarchically structured and constraint-based data model. It also

provides the constraints to the body actor to generate constraint-based 3D direct

manipulations. A geometric kernel ACIS is employed to support CAD-related

operations.

The system framework is illustrated in Figure 2.10. It consists of three

modules, i.e., the hierarchically structured and constraint-based data model, the

F
ig

.
2

.1
0

.
S

y
st

em
 f

ra
m

ew
o

rk

F
e

a
tu

re
s

P
a

rt
s

F
e

a
tu

re

E
le

m
e

n
ts

C
o
n
s
tr

a
in

ts

o
n

F
e
a
tu

re
s

C
o
n
s
tr

a
in

ts
o
n

F
e

a
tu

re
E

le
m

e
n
ts

Constraint-based 3D Direct Manipulations

M
o

d
e

lli
n

g
 P

ro
c
e

s
s

H
ie

ra
rc

h
ic

a
lly

 S
tr

u
c
tu

re
d

 a
n

d
C

o
n

s
tr

a
in

t-
b

a
s
e

d
 D

a
ta

 M
o

d
e

l

P
o

ly
g
o
n

B
-r

e
p

C
o
n
s
tr

a
in

ts
o
n

G
e

o
m

e
tr

ic
E

le
m

e
n
ts

C
o
n
s
tr

a
in

ts

S
a

ti
s
fa

c
ti
o

n

C
o

n
s
tr

a
in

t

S
o
lv

in
g

C
o

n
s
tr

a
in

t
R

e
c
o
g
n

it
io

n
&

 D
e

fi
n

it
io

n

A
lg

o
ri
th

m

B
a

s
e

A
lg

o
ri
th

m
B

a
s
e

R
u

le
B

a
s
e

B
o
o
le

a
n

O
p
e

ra
ti
o
n

s

C
re

a
ti
n

g
 &

R
e

s
iz

in
g

F
e

a
tu

re
P

ri
m

it
iv

e
s

L
o
c
a

ti
n

g
F

e
a

tu
re

P
ri
m

it
iv

e
s

C
o

n
s
tr

a
in

t
P

ro
c
e

s
s
in

g

F
e

a
tu

re
L

ib
ra

ry

T
ri

a
n
g
u

la
ti
o
n

A
lg

o
ri
th

m
s
 i
n

A
C

IS
 K

e
rn

e
l

A
C

IS
G

e
o

m
e

tr
ic

K
e

rn
e

l

2.5 Implementation and Results 33

constraint processing and the modelling process. During the modelling process,

parts are created from feature primitives using constraint-based manipulations

through locating feature primitives and Boolean operations. A feature library is

developed to provide some basic primitives to support solid modelling. The ACIS

geometric kernel is employed to support Boolean operations, and polygon

modelling through its triangulation function. The hierarchically structured

constraint-based data model represents the entire solid modelling process with

different design levels and the constraints at these levels. It also provides the

constraints for generating precise constraint-based manipulations. In constraint

processing, constraints are implicitly incorporated into the VR environment

through constraint recognition and constraint satisfaction, and precise 3D

constraint-based manipulations are generated from the constraints through

constraint solving. The constraints in the hierarchically structured constraint-based

data model are established through constraint-based manipulations during the

modelling process. A rule base and related algorithm bases are developed to

support constraint processing.

 Fig. 2.11. Triple databases for solid modelling in the VR environment

3D User/Graphics Interface

DVS

Data Base

CSG/Brep

Hybrid

Data Base

Constraint

Data Base

Geometry

Manager

DVS

Manager

Constraint

Manager

Solid

Modelling
Polygon

Modelling

Constraint

Processing

Constraint-based Manipulations

34 2 An Approach for Solid Modelling in a Virtual Reality Environment

For efficiently integrating CAD with VR, a triple database concept is adopted

for VR-based solid modelling (Figure 2.11). Changes made in the DVS database

are propagated into the CSG/B-rep hybrid database to change the geometry of the

objects and further result in the variations in the constraint database to change or

maintain the constraints between objects. On the other hand, changes made in the

constraint database are propagated into the CSG/B-rep hybrid database to change

the geometry of objects and further result in the variations in the DVS database.

Changes made in the CSG/B-rep hybrid database are also propagated into both the

DVS database and the constraint database to change the polygons of objects and

change or maintain the constraints between objects.

2.5.1 Creation and Modification of Feature Primitives

Feature primitives, such as blocks, spheres, cylinders and cones, are regarded as

the basic building blocks for solid modelling. A user can create a primitive

through directly selecting the icon of a primitive in a 3D menu using a laser beam

emitted from the hands. When the icon of a feature primitive is selected, the

feature solid with standard sizes stands in the 3D space. At the same time, the

corresponding feature elements and internal element constraints are instantiated

and the corresponding Internal Feature Element Constraint Graph is established

and stored in the hierarchically structured constraint-based data model. The user

can directly resize the feature solid through constraint-based manipulations

applied on the feature elements of the feature (the left image in Figure 2.12). The

constraint-based manipulations are derived from the internal element geometric

constraints applied to the feature element being manipulated. The actual

dimensions of the feature are dynamically displayed near the manipulated

elements for the user’s reference. The user can also resize the feature solid by

changing the parameters of the feature through a toolbox (the right image in

Figure 2.12). During the resizing process, the feature shape is dynamically

updated through solving the internal element topological constraints related to the

feature element being manipulated.

2.5.2 Locating Feature Primitives

Feature primitives are located using some feature locating methods. The feature

locating methods are provided by the combinations of the locating operations. The

location of a feature primitive relative to other features in a part can be completely

determined by each of the feature locating methods. Some typical feature locating

methods are:

¶ «one <placement> operation + two <face-face distance> operations»

¶ «one <placement> operation + two <face-alignment> operations»

¶ «one <placement> operation + two <face-line distance> operations»

2.5 Implementation and Results 35

¶ «one <placement> operation + one <face-alignment> operation + one <face-

face distance> operation»

¶ «one <placement> operation + one <face-line distance> operation + one <line-

line distance> operation»

¶ «one <placement> operation + one <line-alignment> operation»

Two examples for locating feature primitives are shown in Figure 2.13. The left

image in Figure 2.13 shows that the small block is located by the locating method

«one <placement> operation + two <face-alignment> operations». The right

image in Figure 2.13 shows that the cylinder is located by the locating method

«one <placement> operation + one <line-alignment> operation».

2.5.3 Part Creation

The process of creating parts is to establish the external feature constraints

between the features. In fact, the process of creating parts is also to establish the

external element constraints since an external feature constraint is represented as a

set of external element constraints.

Fig. 2.12. Resizing a feature primitive by constraint-based manipulations and a toolbox

Fig. 2.13. Two examples for locating feature primitives

36 2 An Approach for Solid Modelling in a Virtual Reality Environment

Parts are created using Boolean operations after the feature primitives are

located. The feature generated using the Boolean union operation directly inherits

the constraints involved in the locating operations and these constraints are

inserted into the hierarchically structured constraint-based data model. For the

Boolean subtraction operation, the <insertion> operation is used to further

determine the final position of the feature primitive before the Boolean

subtraction. Since the feature primitive is located using the selected locating

method, the <insertion> operation can be triggered after the constraint involved in

the initial locating operation <placement> is released. It means that the constraint

involved in the <insertion> operation replaces the constraint involved in the

<placement> operation to further locate the feature primitive and the

corresponding constraints are inherited by the feature generated from the Boolean

subtraction operation. After Boolean operations, the system automatically checks

whether there are any newly satisfied constraints between the generated feature

and the reference features except for the directly inherited constraints. The newly

satisfied constraints are also inserted into the hierarchically structured constraint-

based data model. Figure 2.14 provides three parts that have been intuitively

created using precise constraint-based 3D direct manipulations in the VR

environment.

Fig. 2.14. Three parts created in the VR environment

2.6 Conclusions 37

Fig. 2.15. Visual cues for constraint-based manipulations

2.5.4 Visual Cues for Constraint-based Manipulations

When performing solid modelling in the VR environment, visual cues are given to

a user to obtain the desired constraint-based manipulations. This is done by

visualizing the allowable motions of an object. The allowable motions can be

clearly visualized to convene a message to a user for selecting desired constraint-

based manipulations. As shown in Figure 2.15, a coordinate frame with a set of

allowable motion flags and other visual cues are used to display the information of

the allowable motions. The origin of the coordinate frame is located near the

object being manipulated and the three axes represent the X-axis, Y-axis and Z-

axis respectively. The normal arrow at the end of each axis indicates a translation

DOF along the axis and the inverse arrow at the end of each axis indicates a

rotational DOF about the axis.

2.6 Conclusions

With today’s VR systems, it is difficult to directly and precisely create and modify

objects in a VR environment. This chapter presents an approach for solid

modelling in a VR environment. Solid modelling in the VR environment is

performed precisely in an intuitive manner through constraint-based

manipulations. A hierarchically structured and constraint-based data model is

developed to support solid modelling in the VR environment. The data model

integrates a high-level constraint-based model for precise object definition, a mid-

level CSG/Brep hybrid solid model for hierarchical geometry abstractions and

object creation, and a low-level polygon model for real-time visualization and

interaction in the VR environment. Constraints are embedded in the solid model

and organized at different levels to reflect the modelling process from features to

parts. Constraint-based manipulations are accompanied by automatic constraint

recognition and precise constraint satisfaction to establish the hierarchically

38 2 An Approach for Solid Modelling in a Virtual Reality Environment

structured constraint-based data model, and realized by the allowable motions for

precise 3D interactions in the VR environment. The allowable motions are

represented as a mathematical matrix to conveniently derive the allowable motions

from the constraints. A procedure-based DOF combination approach for 3D

constraint solving is presented to derive the allowable motions. A rule-based

constraint recognition engine is developed for both constraint-based

manipulations and implicitly incorporating constraints into the VR environment.

A prototype system has been implemented for precise solid modelling in an

intuitive manner through constraint-based manipulations.

Continuous research is under active investigation, including model

modification and assembly modelling in the VR environment. The refined

approach is expected to be able to modify solid models through constraint-based

manipulations and create assembly models from individual object models through

constraint-based manipulations.

Acknowledgements

The work described in this chapter was supported by a grant (project no.

CityU1011/99E) from the Research Grants Council of the Hong Kong SAR,

China.

References

Aldefeld B (1988) Variation of geometries based on a geometric reasoning method.

Computer Aided Design 20:117-126

Ambler AP, Popplestone RJ (1975) Inferring the position of bodies from specified spatial

relationships. Artificial Intelligence 6:157-174

Andujar C, Saona-Vazquez C, Navazo I (2000) LOD visibility culling and occluder

synthesis. Computer-Aided Design 32:773-783

Berta J (1999) Integrating VR and CAD. IEEE Computer Graphics and Applications 19:14-

19

Bier EA (1986) Snap-Dragging. In: Proceedings of Computer Graphics, SIGGRAPH’86,

vol 20, no 4, pp 233-240

Brunetti G, Martino TD, Falcidieno B, Habinger S (1995) A relational model for interactive

manipulation of form features based on algebraic geometry. In: Proceedings of 3rd

Symposium on Solid Modelling and Applications, Utah, USA, pp 95-104

Butterworth J, Davidson A, Hench S, Olano TM (1992) 3DM: a three-dimensional

modeller using a head-mounted display. ACM Computer Graphics 25:197-208

Dani T, Gadh R (1997) COVIRDS: Shape modelling in a virtual reality environment. In:

ASME 1997 Computers in Engineering Conference, Sacramento, CA, CD-ROM

Emmerik M (1990) A direct manipulation technique for specifying 3D object

transformations with a 2D input device. Computer Graphics Forum 9:355-361

References 39

Fa M, Fernando T, Dew PW (1993) Interactive constraint-based solid modelling using

allowable motion. In: Proceedings of 2nd ACM Symposium on Solid Modelling and

Applications, Montreal, Canada, pp 243-252

Fernando T, Dew P, Fa M (1995) A shared virtual workspace for constraint-based solid

modelling. In: Virtual Environment’95: Selected papers of the Eurographics

workshops in Barcelona, Spain, Springer Wien, New York, pp 185-198

Fernando T, Muttay N, Tan K, Wimalaratne P (1999) Software architecture for a

constraint-based virtual environment. In: Proceedings of the ACM Symposium on

Virtual reality software and technology, London, UK, pp 147-154

Figueiredo M, Teixeira J (1994) Solid modelling as a framework in virtual environments.

In: Rix J, Haas S, Teixeira J (eds) Proceedings of the IFIP WG 5.10 Workshops on

Virtual Environments and Their Applications and Virtual Prototyping, Coimbra,

Portugal, pp 99-112

Gao S, Wan H, Peng Q (2000) An approach to solid modelling in a semi-immersive virtual

environment. Computer & Graphics 24:191-202

Gleicher M (1993) A graphics toolkit based on differential constraints. In: Proceedings of

the ACM Symposium on User Interface Software and Technology, Atlanta, Georgia,

pp 109-120

Gobbetti E, Bouvier E (2000) Time-critical multiresolution rendering of large complex

models. Computer-Aided Design 32:785-803.

Gossard DC, Zuffante RP, Shakurai H (1988) Representing dimensions, tolerances and

features in MCAE systems. IEEE Computer Graphics and Application 8(2):51-59

Hsu C, Alt G, Huang Z, Beier E, Bruderlin B (1997) A constraint-based manipulator toolset

for editing 3D objects. In: Proceedings of Fourth Symposium on Solid Modelling and

Applications, Atlanta, Georgia, pp 168-180

Kahler K, Rossl C, Schneider R, Vorsatz J, Seidel HP (2001) Efficient processing of large

3D meshes. In: Proceedings of International Conference on Shape Modelling and

Applications, Genova, Italy, pp 228 –237

Khatib L (1996) Efficient interval constraint propagation with sequences. In: Proceedings

of 2nd International Workshop on Constraint-Based Reasoning (CONSTRAINT-96),

Key West, Florida, pp29-33

Kramer GA (1991) Using degrees of freedom analysis to solve geometric constraint

systems. In: Proceedings of Symposium on Solid Modelling Foundation and

CAD/CAM Applications, ACM Press, New York, pp 371-378

Kwaiter G, Gaildrat V, Caubet R (1997) Interactive constraint system for solid modelling

objects. In: Proceedings of the ACM Fourth Symposium on Solid Modelling and

Applications, Altanta, Georgia, pp 265-270

Lhomme O, Kuzo P, Mace P (1998) Desargues: A constraint-based system for 3D

projective geometry. In: Bruderlin B, Roller D (eds) Geometric Constraint Solving and

Applications. Springer-Verlag Berlin Heidelberg, pp 196-210

Liang J, Green M (1994) JDCAD: a highly interactive 3D modelling system. Computer &

Graphics 18:499-506

Light R, Gossard D (1982) Modification of geometric models through variational

geometry. Computer-Aided Design 14:209-214

Ma W, Tso SK, Zhong Y (1998) Constraint-based modelling in a virtual environment. In:

Proceedings of CIRP Design Seminar on New Tools and Workflows for Product

Development, Berlin, Germany, pp 221-232

40 2 An Approach for Solid Modelling in a Virtual Reality Environment

Nishino H, Fushimi M, Utssumiya K (1999) A virtual environment for modelling 3D

objects through spatial interaction. In: Proceedings of 1999 IEEE International

Conference on Systems, Man, and Cybernetics, Oita University, Japan, pp 81-86

Sa AG, Zachmann G (1999) Virtual reality as a tool for verification of assembly and

maintenance processes. Computer & Graphics 23:389-403

Stork A, Maidhof M (1997) Efficient and precise solid modelling using a 3D input device.

In: Proceedings of Fourth Symposium on Solid Modelling and Applications, Atlanta,

USA, pp 181-194

Sutherland IE (1963) Sketchpad: a man-machine graphical communication system. In:

Proceedings AFIPS Spring Joint Computer Conference, Washington, pp 329-346

Whyte JN, Bouchlaghem AT, mcCaffer R (2000) From CAD to virtual reality: modelling

approaches, data exchange and interactive 3D building design tools. Automation in

Construction 10:43-55

Zhong Y, Yang H, Ma W (1999) A constraint-based approach for intuitive and precise

solid modelling in a virtual reality environment. In: Proceedings of the Sixth

International Conference on Computer Aided Design & Computer Graphics, Shanghai,

China, pp 1164-1171

http://www.springer.com/978-1-85233-796-4

