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With today’s Virtual Reality (VR) systems, it is difficult to directly and precisely
create and modify objects in a VR environment. This chapter presents an approach
for solid modelling in a VR environment. Solid modelling in the VR environment
is performed precisely in an intuitive manner through constraint-based
manipulations. A hierarchically structured and constraint-based data model is
developed to support solid modelling in the VR environment. The data model
integrates a high-level constraint- based model for precise object definition, a mid-
level CSG/Brep (Constructive Solid Geometry/Boundary representation) hybrid
solid model for hierarchical geometry abstractions and object creation, and a low-
level polygon model for real-time visualization and interaction in the VR
environment. Constraints are embedded in the solid model and are organized at
different levels to reflect the modelling process from features to parts. Constraint-
based manipulations are accompanied with automatic constraint recognition and
precise constraint satisfaction to establish the hierarchically structured constraint-
based data model and are realized by allowable motions for precise 3D
interactions in the VR environment. The allowable motions are represented as a
mathematical matrix for conveniently deriving allowable motions from
constraints. A procedure-based degree-of-freedom combination approach for 3D
constraint solving is presented for deriving the allowable motions. A rule-based
constraint recognition engine is developed for both constraint-based
manipulations and implicitly incorporating constraints into the VR environment.
A prototype system has been implemented for precise solid modelling in an
intuitive manner through constraint-based manipulations.
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2.1 Introduction

The VR technology is regarded as a natural extension to 3D computer graphics
with advanced input and output devices and it brings a completely new
environment to the CAD (Computer-Aided Design) community. However, the
integration of VR and CAD is not an easy task. At present, there are two methods
for combining VR with CAD. In the first method, which is employed by most of
the current VR systems (Sa and Zachmann 1999; Whyte et al. 2000), VR is only
used as a toolkit for visualizing and analyzing CAD models. With this method,

CAD models are first created by using CAD software, such as AutoCAD, UGII,

ProE, etc., and the created CAD models are then imported into a VR environment

for visualization and analysis. Some difficulties with this approach are as follows:

i The models are first created in the CAD systems by specifying the detailed
dimensions while these dimensions are not precisely defined in the concept
stage (Dani and Gadh 1997).

i Topological relationships and constraints between entities and parametric
information are lost when transferring the models from the CAD systems to the
VR systems (Berta 1999).

i To modify the models, one must return to the CAD systems to make the desired
changes and re-import the revised models into the VR systems for verification
(Gao et al. 2000).

The second method directly creates solid models in a VR environment by
developing novel CAD systems (which are called VR-based CAD systems) (Gao
et al. 2000; Stork and Maidhof 1997; Zhong et al. 1999). With this method, all the
design activities are carried out in the VR environment. Users can intuitively
create and modify 3D shapes through 3D direct manipulations, and visualize and
analyze the design in the same system without any data transfer. The second
method overcomes the major limitations of the first method. However, most of the
existing VR systems only offer very limited tools for solid modelling, and lack
sophisticated modelling and modification tools for creating complex solid models
in a VR environment. Among others, the finite resolution of virtual objects
without topological information is not suited to represent solid models for design
purposes. The limited accuracy and reliability of 3D input and output devices also
prevent users from precise design activities.

This chapter presents an approach for solid modelling in a VR environment.
Solid modelling is performed precisely in an intuitive manner through constraint-
based manipulations. A hierarchically structured and constraint-based data model
is developed to support solid modelling in the VR environment. This data model
integrates a high-level constraint-based model for precise object definition, a mid-
level CSG/Brep (Constructive Solid Geometry/Boundary representation) hybrid
solid model for hierarchical geometry abstractions and object creation, and a low-
level polygon model for real-time visualization and interaction in the VR
environment. Constraints are embedded in the solid model and organized at
different levels to reflect the modelling process from features to parts. Constraint-
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based manipulations are accompanied with automatic constraint recognition and
precise constraint satisfaction to establish the hierarchically structured constraint-
based data model, and are realized by allowable motions for precise 3D
interactions in the VR environment. The allowable motions are represented as a
mathematical matrix so that they can be conveniently derived from the constraints.
A procedure-based degree-of-freedom (DOF) combination approach for 3D
constraint solving is presented for deriving the allowable motions. A rule-based
constraint recognition engine is developed for both constraint-based
manipulations and implicitly incorporating constraints into the VR environment.
A prototype system has been implemented for precise solid modelling in an
intuitive manner through constraint-based manipulations.

2.2 Related Work

The brief survey first gives an overview of constraint solving, and then introduces
the applications of direct manipulations in geometric modelling. Afterwards, the
focus turns to the existing methods for solid modelling in a VR environment.
Finally, current techniques for the integration of VR, constraint solving and direct
manipulations in solid modelling are discussed.

2.2.1 Constraint Solving

Some of the major constraint solving approaches can be classified as follows:

{1 Numerical algebraic approach: This is one of the commonly used techniques
for constraint solving (Sutherland 1963; Light and Gossard 1982). In this
approach, all constraints are translated into algebraic equations and the
instances of a geometric model are derived by solving these equations with
numerical techniques, such as the Newton-Raphson iterative method and its
refinement methods. The numerical algebraic approach is quite general and is
capable of dealing with over constrained, consistent constraint problem but the
convergence to a solution is not always guaranteed and the final solution
depends on the choice of initial values.

1 Geometric reasoning: Systems reported by Aldefeld (1988) and Ambler and
Popplestone (1975) are based on a geometric reasoning approach. This
approach employs artificial intelligence to perform the symbolic manipulations
of constraints. It provides generic solutions. Nevertheless, it depends on the
relativity of the parameters and is also computation-extensive. This approach is
also referred to as the symbolic algebraic approach.

i Constraint propagation: In (Gossard et al. 1988; Khatib 1996), a procedural
constraint propagation technique was adopted. The method allows a user to
position new geometric elements relative to existing ones in terms of geometric
constraints. The systems, however, require a user to construct geometric
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elements in a very restricted manner and cannot handle under-constrained
geometric elements.

1 DOF analysis: Kramer (1991) proposed a technique called the DOF analysis
that has significant computational advantages over the algebraic and geometric
reasoning approaches. Using this technique, a sequence of operational
transformation is automatically devised to satisfy each constraint incrementally.
There are also some other approaches for constraint solving, such as the graph-

based representation and the rule-based method. In general, most constraint-

solving systems deal with 2D constraints or kinematics problems mainly because

of the complexity of constraint solving in 3D problems (Lhomme et al. 1998).

Presently, there are especially few research work that focused on integrating 3D

constraint solving with 3D direct manipulations.

2.2.2 Direct Manipulations

Direct manipulation has already been successfully applied in geometric modelling.
For example, a user can control the geometry of an object by grasping and
dragging operations using direct manipulation techniques and update the geometry
continuously.

Bier presented a direct manipulation method named “snapping-dragging” for
creating 3D objects using a 2D mouse (Bier 1986). This method combines three
interactive techniques: grid-based interaction, alignment and interactive
transformation. In this method, precise interactions are realized by snapping a 3D
cursor and moving it to a set of points, lines, planes and spheres displayed on the
screen. However, the desired 3D positions depend on a set of specified
transformations. Furthermore, since menu interactions are often required, the
interactions are very tedious and unintuitive. Emmerik also presented a method for
direct manipulation of 3D objects using 2D input devices (Emmerik 1990). In this
method, the direct manipulations of 3D objects are realized by manipulating the
geometry trees of 3D objects. Gleicher developed the Brambler graphics toolkit
that supports interactions using the differential manipulation technique (Gleicher
1993). The smooth manipulation of dragging an object is realized by the
constraint that forces the objects to move towards the current position of the
CUursor.

In connection with direct manipulations and constraint solving, TWEAK is a
constraint-based manipulator for editing 3D objects using 2D cursors (Hsu et al.
1997). It provides a toolkit for placing the vertices, planes and objects picked by a
user. The manipulator is connected to a 3D geometric constraint solver, which
ensures that the changes are consistent with the relationships between the
geometric elements. Kwaiter et al. presented a geometric constraint system called
LinkEdit that provides an interactive 2D tool to construct objects from rigid
primitives and constrain them by several constraint types (Kwaiter et al. 1997).
When an object is selected, an interactive constraint is added into the constraint
graph and the constraint solver re-satisfies the constraint graph. When the object
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is being moved, a series of local modifications are performed. When the object is
released, the added constraint is deleted from the constraint graph.

2.2.3 Solid Modelling in a Virtual Reality Environment

The use of VR for CAD is not totally new. In the area of 3D modelling, one of the
earliest systems was 3DM that allows users to interactively create simple
geometric objects, such as cylinders and spheres, in the VR environment
(Butterworth et al. 1992). 3DM includes several grid and snap functions.
However, it lacks many other aids and constraints that are necessary to
accomplish precise work. JDCAD also tackled many issues for interactive 3D
objects modelling (Liang and Green 1994). Users could directly interact in a 3D
space using a 6-DOF input device. However, only simple solids can be created in
JDCAD. Dani and Gadh (Dani and Gadh 1997) presented a COVIRDS system for
concept design in the VR environment. This system is based on design features
and a geometric modelling kernel ACIS is used for their development. The precise
interactions mainly rely on voice commands. Stork and Maidhof also reported
some work on interactive and precise solid modelling using a 3D input device
(Stork and Maidhof 1997). Precise modelling is realized using 3D grids, grid
snapping and discretized dimensions. Constraint-based interactions are based on
pre-defined rules for feature-based modifications. Although precise modelling can
be ensured, the constraint-based interactions are too rigid for extensive use.
Nishino et al. presented some results on gesture-based 3D shape creation (Nishino
et al. 1999). A 3D modeller is developed to create complex shapes by combining
the defined hand actions while precise interactions are not included. Gao et al.
reported a method on constraint-based solid modelling in a semi-immersive VR
environment (Gao et al. 2000). In this method, the manipulations to a primitive
depend on some shape control points (SCP) on the primitive instead of the
primitive itself, and a 3D mouse must be set to the SCP for manipulating the SCP.
Furthermore, the SCP cannot sufficiently reflect the natural behaviours of the
geometric elements of the primitive. Therefore, the interactions in the virtual
environment are unintuitive and inconvenient.

There are also a few researches that focused on the integration of VR,
constraint solving and direct manipulations. Fa et. al. reported some results on 3D
object placement (Fa et al. 1993). Fernando et. al. further extended the results into
a shared virtual environment (Fernando et al. 1995) and presented a software
architecture of a constraint-based virtual environment (Fernando et al. 1999). The
most important contribution of their method is the concept in constraining 3D
direct manipulations through the allowable motions of an object being
manipulated for precise locations and operations. Since the allowable motions are
derived from some predefined rules that are related with the constraint types and
geometric element types, they are difficult to be used extensively. Furthermore,
only simple geometry and constraints are treated and simple solid models can be
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created in the VR environment. Complex models are still created from CAD
systems and then imported into the VR environment.

The authors also reported some preliminary results on precise solid modelling
in a VR environment (Ma et al. 1998; Zhong et al. 1999). The article (Ma et al.
1998) reported some results on creating assemblies with embedded constraints
between mating features through direct manipulations while (Zhong et al. 1999)
reported some results on creating parts by features through direct manipulations.
In general, the results reported in (Ma et al. 1998; Zhong et al. 1999) were at the
initial stage and only the conceptual solid modelling framework in a VR
environment was presented. There is still a lot of space for further development
and improvement.

This chapter is based on the authors’ previous work and presents the details on
solid modelling in a VR environment. The goal of this research is to develop an
intuitive 3D environment for solid modelling. A hierarchically structured and
constraint-based data model is presented to support solid modelling in a VR
environment. Constraint-based manipulations are elaborated for precise solid
modelling. A procedure-based DOF combination approach for 3D constraint
solving is presented to derive the allowable motions. Furthermore, a prototype
system for solid modelling in a VR environment has been implemented to
demonstrate the research work.

2.3 Model Representation

A fundamental problem for solid modelling in a virtual environment is model
representation. In the graphics and VR community, active researches on model
decimation, multi-resolution, level-of-detail management and zone culling are
currently being carried out (Andujar et al. 2000; Gobbetti and Bouvier 2000;
Kahler et al. 2001). Comparatively little research has been conducted for
accommodating precise CAD models in a VR environment (Figueiredo and
Teixeira 1994).

If CAD formats were directly used in a VR environment, the online processing
time for visualizing a typical CAD model would make it impossible to interact in
real time. The polygon model used in most VR systems provides the illusion of
being immersed, but it may not be able to precisely define the object geometry.
The use of a high-resolution model in a VR environment can increase model
precision. The system may however not be able to respond in real time either. On
the other hand, it is difficult to perform modelling because of the lack of
topological relationships and constraint information in the polygon model.
Therefore, it is necessary to develop a suitable model representation to support
solid modelling in a VR environment. The model representation not only needs to
support real-time visualization and interaction in a VR environment, but it also
needs to support modelling activities as well as reflect the modelling process.
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Fig. 2.1. Hierarchically structured and constraint-based data model

A hierarchically structured constraint-based data model is presented to support
solid modelling in the VR environment (Figure 2.1). This data model includes five
levels of information, i.e., parts, features, feature elements, geometric and
topological relationships, and polygons. The definition of feature elements is the
same as the feature entities in (Brunetti et al. 1995). The data model integrates a
high-level constraint-based model for precise object definition, a mid-level
CSG/Brep hybrid solid model for hierarchical geometry abstractions and object
creation, and a low-level polygon model for real-time visualization and interaction
in the VR environment. The information in the high-level model that is used for
modelling can be divided into two types, i.e., object information on different
levels and constraint information on different levels. An object can be a part, a
feature or a feature element. The constraints on each object level that summarize
the associativities between the individual objects on the same level not only
provide precise object definition, but also provide a convenient way to realize
precise 3D interactions. The mid-level solid model is the geometric and
topological description of an object and is represented as a CSG/Brep hybrid
structure. It not only provides the geometric and topological information of an
object to support the hierarchical geometry abstractions and object creation, but
also provides a convenient way for interactive feature-based solid modelling. The
low-level polygon model provides the polygon data that corresponds to the mid-
level Brep solid model for real-time visualization and interaction in the VR
environment.

2.3.1 Structure of the Constraint-based Model

In the high-level constraint-based model, constraints are embedded in the solid
model and organized at different levels to reflect the modelling process from
features to parts (Figure 2.2).
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Fig. 2.2. The hierarchical structure of the high-level constraint-based model

Level 1 is the feature-based part model representation. Here, a part consists of
features and the constraints between these features. The constraints on this level
represent the spatial position relationships between the different features and they
are called the external feature constraints. An external feature constraint has one
direction and this direction is dependent on those of the external element
constraints included in the external feature constraint.

Level 2 and Level 3 are the feature element based part model representation.
The constraints on Level 2 and Level 3 are those between the feature elements.
Since an external feature constraint between features is difficult to represent, a
feature is sub-divided into a set of feature elements and the constraints between
these feature elements. Correspondingly, an external feature constraint on Level 1
is decomposed into a set of constraints between the feature elements that
individually belong to different features.
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Fig. 2.3. Polygon model representation

The constraints on Level 2 represent the spatial position relationships between
the feature elements that individually belong to different features, and they are
called the external element constraints. An external feature constraint on Level 1
is sub-divided into a set of external element constraints on this level. An external
element constraint has one direction and this direction points to the feature
element that has been constrained. Typical external element constraints include
against, alignment, distance, etc.

Level 3 provides the feature model representation. A feature consists of feature
elements and the constraints between these feature elements. The constraints on
this level represent the spatial position relationships between the feature elements
belonging to a feature, and they are called the internal element constraints. The
internal element constraints define the shape of a feature and are non-directional.
They can be further divided into internal element geometric constraints and
internal element topological constraints according to their properties. The internal
elements geometric constraints represent the spatial position relationships between
the feature elements that belong to a feature and are described as a face-based
representation, such as parallel faces, perpendicular faces, distance faces and
angular faces, etc. The internal element topological constraints represent the
topological relationships between the feature elements that belong to a feature and
are described as an edge-based representation, such as co-edge and co-circle.

2.3.2 Polygon Model Representation

The low-level polygon model is a triangle-based polygon representation that
corresponds to the mid-level Brep solid model. The low-level polygon model
describes each face in the Brep solid model as a two-level structure. On the
bottom level locates the vertex array where the vertices that constitute a face are
placed. On the top level locates the connect-lists that reflect the connecting
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relationships of the vertices on the bottom level. Each connect-list separately
defines a facet. It records the sequential numbers of the vertices that constitute a
facet in the vertex array. In general, a face only has one vertex array and has some
connect-lists that share the vertex array. For the face shown in Figure 2.3, the
vertex array is (Py, Py, 000, Py) and the subscripts are the indices of the vertices in
the array. The connect-lists are <1, 5, 2>, <2, 5, 6>, <2, 6, 7>, <2, 7, 3>, etc. Each
facet is consisted of three vertices and is a triangle. The first triangle is
T,=DP,P;P,, the second triangle is T,=DP,PsP¢, the third triangle is T;=DP,P¢P;
and the fourth triangle is T,=DP,P,P3, etc.

2.4 Constraint-based Manipulations

The framework of constraint-based manipulations is shown in Figure 2.4. For
every object in the VR environment, such as a feature element, a feature, and a
part, an event list, which is regarded as the attribute of this object, is attached to
the object. An action list is connected to every event in the event list of an object.
This action list shows the actions that will be performed as soon as the event
occurs. Constraint-based manipulations are realized by these basic interactive
events and actions will be performed when these events occur. The basic
interactive events are attached to every object. Examples of basic interactive
events are the grasping event, the moving event and the dropping event.

The grasping event has an action to acquire the current allowable motions of an
object that it is attached to. An action for recognizing the constraints between
individual objects is attached to the moving event and the dropping event. As soon
as a user grasps an object, the grasping event occurs and the current allowable
motions of this object are derived from the hierarchically structured constraint-
based data model through constraints solving. Constraint-based manipulations are
achieved by constraining the motions of 3D hands to the allowable motions. This
is done by transferring the 3D motion data from the 3D input devices to the
allowable motions of the object. The constraint-based manipulations not only
ensure that the precise positions of an object can be obtained, but also guarantee
that the existing constraints will not be violated in future operations.

Once a constraint has been recognized during the constraint recognition
process, it will be highlighted and awaits a user’s confirmation. Once it is
confirmed, the recognized constraint will be satisfied precisely under the current
allowable motions of the object and inserted into the hierarchically structured
constraint-based data model. The satisfied constraint further restricts the
subsequent motions of the object. While the constraint-based manipulations are
being performed, the collision detection is switched on in order to detect possible
collisions between the object being manipulated and other objects. If a collision is
detected, the system will immediately provide a feedback to the user by
highlighting the objects involved and the colliding sound.
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Fig. 2.4. The framework of constraint-based manipulations

2.4.1 Representation of Allowable Motions

The constraints between objects are implicitly created by the constraint-based
manipulations with automatic constraint recognition and precise constraint
satisfaction. Newly created constraints reduce the DOFs of the object being
manipulated and implicitly confine future operations that can be applied to the
object. The remaining DOFs define the allowable motions of the object. The
allowable motions explicitly describe the next possible operations and ensure that
future operations will not violate the existing constraints. The allowable motions
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are represented as a mathematical matrix so that it can be conveniently derived
from the constraints.

For every object in the free space, its configuration space has six DOFs: three
translational DOFs and three rotational DOFs. To simplify the computation and
clarify the presentation of the allowable motions, the configuration space is
divided along three linear independent directions: X-axis, Y-axis and Z-axis.
Therefore, some basic DOFs, i.e., three translational DOFs and three rotational
DOFs can be obtained. Furthermore, the three basic translational or rotational
DOFs are linearly independent of each other. Any remaining DOF that is used to
define the allowable motions can be represented by these basic DOFs, therefore
the allowable motions can be represented using these basic DOFs as the matrix in
Eq. (2.1).

éTr Rx Tr min Tx max Rx min Rx max 2
é U
éTy Ry Tymin Tymax Rymin Rymaxl] (21)
éTz Rz szin Tz max Rz min Rz max EI

In Eq. (2.1), the first column elements 7, 7, and T, are the linear

translations along the X-axis, Y-axis and Z-axis respectively, and the second
column elements R , R , and R_ are the rotations about the corresponding axis

respectively. The values of these elements in the matrix are either zero or one.
Integer 1 indicates that motion is allowable in the direction along the
corresponding axis. Integer O indicates that motion is not allowable in the
corresponding axis direction. The third and fourth column elements are the
allowable ranges of the three translations, which are defined by the minimum and

maximum values of the three translations. For example, 7 . and 7, are the

minimum and maximum values of the translation along the X-axis. The fifth and
sixth column elements are the allowable ranges of the three rotations, which are
defined by the minimum and maximum values of the three rotations. For example,

R

the X-axis. If the translations or rotations along some axes are not allowable, the
corresponding minimum and maximum values are zero.

and R are the minimum and maximum values of the rotation about

X min X max

2.4.2 Constraint Solving for Deriving Allowable Motions

Since most constraints are geometric constraints and they are shown as the
limitations of the relative geometric displacements between objects, i.e., the
limitations of the DOFs, the constraints applied to an object can be mapped to the
DOFs of this object. In fact, the correspondence from constraints to DOFs can be
extended to the correspondence from a set of constraints to the combination of
DOFs. Therefore, the representation of constraints can be obtained by analyzing
and reasoning the DOFs of an object, and constraints solving can also be regarded
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as a process of analyzing and reasoning the DOFs of an object. Based on this, a
procedure-based DOF combination approach is presented for solving 3D
constraints (Figure 2.5). This approach has an intuitive manner for constraints
solving since it combines DOF analysis with 3D direct manipulations in the VR
environment.

As shown in Figure 2.5, the current allowable motions of an object are derived
from the current remaining DOFs of the object. The action of grasping an object is
interpreted by the constraint solver as requesting the current remaining DOFs of
the object. The current constraints applied to the object can be obtained from the
hierarchically structured and constraint-based data model. Initially, the object is
unconstrained and has six remaining DOFs. If there is only one constraint applied
to the object, the current remaining DOFs can be directly obtained by DOF
analysis. If there are multiple constraints (more than one) applied to the object, the
current remaining DOFs of the object can be obtained by DOF combination. The
DOF combination for solving multiple constraints is based on the DOF analysis
for solving individual constraints. Within the limitation of the current remaining
DOFs determined by the current constraints, the object aims to satisfy a new
constraint recognized by the current constraint-based manipulations applied to the
object. The new constraint is precisely satisfied under the current allowable
motions of the object and is further inserted into the hierarchically structured
constraint-based data model to update the current constraints applied to the object.
The update of the current constraints results in the update of the current remaining
DOFs of the object and further results in the update of the current allowable
motions of the object. Finally, the constraint-based manipulations applied to the
object are updated correspondingly.
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Fig. 2.5. The framework of procedure-based DOF combination constraint solving
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Fig. 2.6. The “against” and “line-alignment” constraints between two cylinders

DOF Analysis

Since DOFs are divided into three basic translational DOFs and three basic
rotational DOFs, it is easy to connect a constraint with the remaining DOFs by
analyzing the remaining basic translational and rotational DOFs corresponding to
the constraint. On the other hand, the allowable motion matrix introduced in
Section 2.4.1 is described by the three basic translational DOFs and the three basic
rotational DOFs. Therefore, the allowable motion matrix corresponding to a
constraint can be directly obtained by analyzing the remaining basic translational
and rotational DOFs that correspond to the constraint. For example, if a small
cylinder is placed on a big cylinder and they have to be axis-aligned (Figure 2.6),
the constraints between the two cylinders are the “against” and “line-alignment”
constraints. Using DOF analysis, the small cylinder has the translational DOFs Ty,
T, and the rotational DOF R, for the “against” constraint, and the translational
DOF T, and the rotational DOF R, for the “line-alignment” constraint. The
allowable motion matrices that correspond to the two individual constraints are
given in Eq. (2.2) and Eq. (2.3) respectively.

gl 0 -10.0 10.0 0.0 0.0g

€ u

éO 1 00 00 00 210[] (2.2)

61 0 -100 100 0.0 0.0
¢ 0 00 00 00 0.0g
e u
gl 100 100 00 2p 2.3)
0 00 00 0.0 0.0}

Similarly, the allowable motions matrices that correspond to other individual
constraints can also be obtained by DOF analysis. Figure 2.7 gives the DOF
analysis for some typical constraints.



2.4 Constraint-based Manipulations 27

Tx,Rx

T
ﬁ, TRx
Tz Tz

perpendicularity between faces against between faces parallelism between faces

, N
Tz A B Ty
distance between faces D B I ——»Rx
B Ty Rx X
Tz Tz
D Rx distance between lines £
Tz
. . A B —> TxRx
distance between a line . . .
and a face line-alignment face-alignment

Fig. 2.7. DOF analysis to some typical constraints

DOF Combination

The DOF combination is used to represent the remaining DOFs that correspond to
multiple constraints. It refers to the intersection of the DOFs of the allowable
motions of the respective individual constraints.

An allowable motion is described by the three linearly independent
translational DOFs and the three linearly independent rotational DOFs. Both the
translational DOFs and rotational DOFs are a closed set respectively. Therefore,
the DOF combination can be regarded as an individual combination of the six
translational and rotational DOFs, and can be further represented as a combination
of the allowable motion matrices of the respective individual constraints.

The combination of the allowable motion matrices can be realized using the
“AND” Boolean operation of the allowable motion matrices of the respective
individual constraints, i.e., the “AND” Boolean operations of the corresponding
elements with the same position at the first and the second columns and the
intersections of the allowable ranges of the translations or rotations along the
same axis in the allowable motion matrices of the respective individual
constraints.

In this way, the remaining DOFs of an object that correspond to the multiple
constraints can be obtained and the allowable motion matrix that corresponds to
these multiple constraints can also be acquired. For example, the allowable motion
matrices that correspond to the “against” and “line-alignment” constraints in
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Figure 2.6 are Eq. (2.2) and Eq. (2.3) respectively. Using DOF combination, the
small cylinder has the rotational DOF R, for the two constraints, and the allowable
range of R, is the intersection between the allowable ranges of Ry in Eq. (2.2) and
Eq. (2.3), i.e., from 0.0 to 2p. The final allowable motion matrix corresponding to
the two constraints is shown in Eq. (2.4).
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2.4.3 A Rule-based Approach for Constraint Recognition
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Fig. 2.8. Framework of rule-based constraint recognition

Constraints are implicitly incorporated into the VR environment for constraint-
based manipulations through the automatic constraint recognition. Constraint
recognition refers to the verification of the current positions and orientations
between two objects to determine if they satisfy a particular type of constraint
within a given tolerance. The constraint recognition framework is shown in Figure
2.8. While direct manipulations are being performed, as soon as a moving event or
a release event occurs, an automatic constraint recognition process is triggered to
detect all the possible constraints between the related objects. The system
recognizes the constraints between objects from the current position and
orientation of the manipulated object according to a rule base. The rule base
defines some of the rules that are applied in constraint recognition for recognizing
some specific constraints (Table 2.1). These constraints include against,



2.4 Constraint-based Manipulations 29

alignment, parallelism, perpendicularity, distance, co-circle, co-edge, etc. If the
current positions and orientations between two objects satisfy the conditions of a
constraint within a given tolerance, the matching constraint is recognized. Once a
constraint is recognized within the given tolerance, it will be highlighted and
awaits the user’s confirmation. If the object is further manipulated continuously
within a given time, the currently recognized constraint is ignored and the
constraint recognition process is restarted. Otherwise, the currently recognized
constraint is confirmed and the desired constraint is obtained. Furthermore, a
dynamic tolerance is adopted in the constraint recognition process to improve the
efficiency of this process. If the desired constraint is not recognized within the
given tolerance, the tolerance is enlarged according to a given step until the
desired constraint is recognized.

2.4.4 Some Special Constraint-based Manipulations

To reduce the search time for detecting the various types of constraints from
various objects and enhance the modelling efficiency, some special constraint-
based manipulations are also implemented as solid modelling operations in the VR
environment. These operations include <placement>, <alignment>, <distance>
and <insertion>. For each of these operations, the constraint recognition process is
triggered to detect a particular pair of elements that satisfies some special
constraint within a given tolerance.

The <placement> operation is responsible for locating one object relative to
another object and is used as the initial locating operation of an object. It refers to
an action of placing one object onto another object or placing two objects
together. The constraint involved in this operation is an “against” constraint. If the
recognized “against” constraint is precisely satisfied, the <placement> operation is
stopped.

The <alignment> operation is responsible for locating one object relative to
another object and is used as the precise locating operation of an object. The
constraint involved in this operation is an “alignment” constraint. The
<alignment> operation can be classified into two types according to the elements
involved, i.e., <face-alignment> and <line-alignment>.

The <distance> operation is also responsible for locating one object relative to
another object and is used as the precise locating operation of an object. The
constraint involved in this operation is a “distance” constraint. The <distance>
operation can be classified into three types according to the elements involved,
i.e., <face-face distance>, <line-line distance> and <face-line distance>. The value
of the distance is displayed near the object being manipulated for the user to
acquire the precise distance. A toolbox with a cursor and displaying a number is
also provided for the user to acquire the precise distance according to a given step.

The operations mentioned before are responsible for the precise location of an
object before modelling and are called the locating operations. However, the
<insertion> operation is used to perform a specific modelling task and is
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responsible for determining the final position of an object. The basic motion of
this operation is a translation. The constraint involved in the insertion operation is
a “face-alignment” constraint.

Table 2.1. The rules for recognizing constraints

Rules for detecting two against planar faces:
i Parallel: the product of the two unit normal vectors approaches to 0.0; and
i Direction: the dot product of the two unit normal vectors approaches to -1.0; and
i Close: the distance between a point on one facet to the projected point on the other
facet is smaller than a given tolerance; and
1 Overlapping: the project of one facet on the other facet is not zero.

Rules for detecting two aligning planar faces:
i Parallel: the product of the two unit normal vectors approaches to 0.0; and
1 Close: the distance between a point on one facet to the projected point on the other
facet is smaller than a given tolerance.

Rules for detecting two distance planar faces:
i Parallel: the product of the two unit normal vectors approaches to 0.0; and
1 Distance: calculate the distance between a point on one facet to the projected point on
the other facet.

Rules for detecting two paralleling lines:
I The product of the two unit vectors of the line segments approaches to 0.0.

Rules for detecting two perpendicular lines:
i The dot product of the two unit vectors of the line segments approaches to 0.0.

Rules for detecting two co-linear lines/axis:
i Parallel: the product of the two unit vectors of the line segments approaches to 0.0; and
i Close: the distance between a point on one line to the projected point onto the other
line is smaller than a given tolerance.

Rules for detecting two distance lines/axis:
i Parallel: the dot product of the two unit vectors of the line segments approaches to 0.0;
and
1 Distance: calculate the distance between a point on one line to the projected point onto
the other line.

Rules for detecting the face-linear distance:
i Parallel: the product between the unit normal vectors of the face and the unit vectors of
the line segment approaches to 0.0; and
1 Distance: calculate the distance between a point on one line to the projected point onto
the face.

Rules for detecting two paralleling faces:
i The product between the unit normal vectors of the two faces approaches to 0.0.

Rules for detecting two perpendicular faces:
i The dot product between the unit normal vectors of the two faces approaches to 0.0.

Rules for detecting two co-edge faces:
1 CE: all deviations between selected sample points on the two edges approach to 0.0.

Rules for detecting two co-circle faces:
i CC: two circles with the same orientation and dimension.
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Fig. 2.9. System components

A prototype system for intuitive and precise solid modelling in a VR environment
through constraint-based 3D direct manipulations has been implemented on the
Division VR software based on a SGI Onyx2 with Infinite-Reality graphics
workstation. The system components are shown in Figure 2.9. The body actor,
that communicates with other actors, handles all aspects of user interaction. It
receives and processes the information from the input actor, monitors and
processes the events and actions in the VR environment and outputs the processed
results to the visual actor and the audio actor. The collision actor resides in the
system to detect the possible collisions between the objects in the VR
environment. A 3D mouse controlled by the input actor is mainly used as the input
device to carry out 3D manipulations. A six-degree-of-freedom head tracker,
Head Mounted Display and CrystalEyes shutter glasses controlled by the visual
actor are used for stereo display. Two sound blasters controlled by the audio actor
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are used for audio. The VR modeller is in charge of all aspects of modelling to
establish the hierarchically structured and constraint-based data model. It also
provides the constraints to the body actor to generate constraint-based 3D direct
manipulations. A geometric kernel ACIS is employed to support CAD-related
operations.
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The system framework is illustrated in Figure 2.10. It consists of three
modules, i.e., the hierarchically structured and constraint-based data model, the
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constraint processing and the modelling process. During the modelling process,
parts are created from feature primitives using constraint-based manipulations
through locating feature primitives and Boolean operations. A feature library is
developed to provide some basic primitives to support solid modelling. The ACIS
geometric kernel is employed to support Boolean operations, and polygon
modelling through its triangulation function. The hierarchically structured
constraint-based data model represents the entire solid modelling process with
different design levels and the constraints at these levels. It also provides the
constraints for generating precise constraint-based manipulations. In constraint
processing, constraints are implicitly incorporated into the VR environment
through constraint recognition and constraint satisfaction, and precise 3D
constraint-based manipulations are generated from the constraints through
constraint solving. The constraints in the hierarchically structured constraint-based
data model are established through constraint-based manipulations during the
modelling process. A rule base and related algorithm bases are developed to
support constraint processing.

| 3D User/Graphics Interface |

4

A

C Constraint-based Manipulations )
A

A A Y
Polygon Solid Constraint
Modelling Modelling Processing
4 A A

E v %

DVS CSG/ Brep Constraint

Data Base Hybrid Data Base
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Fig. 2.11. Triple databases for solid modelling in the VR environment
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For efficiently integrating CAD with VR, a triple database concept is adopted
for VR-based solid modelling (Figure 2.11). Changes made in the DVS database
are propagated into the CSG/B-rep hybrid database to change the geometry of the
objects and further result in the variations in the constraint database to change or
maintain the constraints between objects. On the other hand, changes made in the
constraint database are propagated into the CSG/B-rep hybrid database to change
the geometry of objects and further result in the variations in the DVS database.
Changes made in the CSG/B-rep hybrid database are also propagated into both the
DVS database and the constraint database to change the polygons of objects and
change or maintain the constraints between objects.

2.5.1 Creation and Modification of Feature Primitives

Feature primitives, such as blocks, spheres, cylinders and cones, are regarded as
the basic building blocks for solid modelling. A user can create a primitive
through directly selecting the icon of a primitive in a 3D menu using a laser beam
emitted from the hands. When the icon of a feature primitive is selected, the
feature solid with standard sizes stands in the 3D space. At the same time, the
corresponding feature elements and internal element constraints are instantiated
and the corresponding Internal Feature Element Constraint Graph is established
and stored in the hierarchically structured constraint-based data model. The user
can directly resize the feature solid through constraint-based manipulations
applied on the feature elements of the feature (the left image in Figure 2.12). The
constraint-based manipulations are derived from the internal element geometric
constraints applied to the feature element being manipulated. The actual
dimensions of the feature are dynamically displayed near the manipulated
elements for the user’s reference. The user can also resize the feature solid by
changing the parameters of the feature through a toolbox (the right image in
Figure 2.12). During the resizing process, the feature shape is dynamically
updated through solving the internal element topological constraints related to the
feature element being manipulated.

2.5.2 Locating Feature Primitives

Feature primitives are located using some feature locating methods. The feature
locating methods are provided by the combinations of the locating operations. The
location of a feature primitive relative to other features in a part can be completely
determined by each of the feature locating methods. Some typical feature locating
methods are:

i «one <placement> operation + two <face-face distance> operations»

1 «one <placement> operation + two <face-alignment> operations»

i «one <placement> operation + two <face-line distance> operations»
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i «one <placement> operation + one <face-alignment> operation + one <face-
face distance> operation»

i «one <placement> operation + one <face-line distance> operation + one <line-
line distance> operation»

1 «one <placement> operation + one <line-alignment> operation»

Two examples for locating feature primitives are shown in Figure 2.13. The left
image in Figure 2.13 shows that the small block is located by the locating method
«one <placement> operation + two <face-alignment> operations». The right
image in Figure 2.13 shows that the cylinder is located by the locating method
«one <placement> operation + one <line-alignment> operationy.

2.5.3 Part Creation

The process of creating parts is to establish the external feature constraints
between the features. In fact, the process of creating parts is also to establish the
external element constraints since an external feature constraint is represented as a
set of external element constraints.

Fig. 2.12. Resizing a feature primitive by constraint-based manipulations and a toolbox

Fig. 2.13. Two examples for locating feature primitives
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Parts are created using Boolean operations after the feature primitives are
located. The feature generated using the Boolean union operation directly inherits
the constraints involved in the locating operations and these constraints are
inserted into the hierarchically structured constraint-based data model. For the
Boolean subtraction operation, the <insertion> operation is used to further
determine the final position of the feature primitive before the Boolean
subtraction. Since the feature primitive is located using the selected locating
method, the <insertion> operation can be triggered after the constraint involved in
the initial locating operation <placement> is released. It means that the constraint
involved in the <insertion> operation replaces the constraint involved in the
<placement> operation to further locate the feature primitive and the
corresponding constraints are inherited by the feature generated from the Boolean
subtraction operation. After Boolean operations, the system automatically checks
whether there are any newly satisfied constraints between the generated feature
and the reference features except for the directly inherited constraints. The newly
satisfied constraints are also inserted into the hierarchically structured constraint-
based data model. Figure 2.14 provides three parts that have been intuitively
created using precise constraint-based 3D direct manipulations in the VR
environment.

Fig. 2.14. Three parts created in the VR environment
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Fig. 2.15. Visual cues for constraint-based manipulations

2.5.4 Visual Cues for Constraint-based Manipulations

When performing solid modelling in the VR environment, visual cues are given to
a user to obtain the desired constraint-based manipulations. This is done by
visualizing the allowable motions of an object. The allowable motions can be
clearly visualized to convene a message to a user for selecting desired constraint-
based manipulations. As shown in Figure 2.15, a coordinate frame with a set of
allowable motion flags and other visual cues are used to display the information of
the allowable motions. The origin of the coordinate frame is located near the
object being manipulated and the three axes represent the X-axis, Y-axis and Z-
axis respectively. The normal arrow at the end of each axis indicates a translation
DOF along the axis and the inverse arrow at the end of each axis indicates a
rotational DOF about the axis.

2.6 Conclusions

With today’s VR systems, it is difficult to directly and precisely create and modify
objects in a VR environment. This chapter presents an approach for solid
modelling in a VR environment. Solid modelling in the VR environment is
performed precisely in an intuitive manner through constraint-based
manipulations. A hierarchically structured and constraint-based data model is
developed to support solid modelling in the VR environment. The data model
integrates a high-level constraint-based model for precise object definition, a mid-
level CSG/Brep hybrid solid model for hierarchical geometry abstractions and
object creation, and a low-level polygon model for real-time visualization and
interaction in the VR environment. Constraints are embedded in the solid model
and organized at different levels to reflect the modelling process from features to
parts. Constraint-based manipulations are accompanied by automatic constraint
recognition and precise constraint satisfaction to establish the hierarchically
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structured constraint-based data model, and realized by the allowable motions for
precise 3D interactions in the VR environment. The allowable motions are
represented as a mathematical matrix to conveniently derive the allowable motions
from the constraints. A procedure-based DOF combination approach for 3D
constraint solving is presented to derive the allowable motions. A rule-based
constraint recognition engine is developed for both constraint-based
manipulations and implicitly incorporating constraints into the VR environment.
A prototype system has been implemented for precise solid modelling in an
intuitive manner through constraint-based manipulations.

Continuous research is under active investigation, including model
modification and assembly modelling in the VR environment. The refined
approach is expected to be able to modify solid models through constraint-based
manipulations and create assembly models from individual object models through
constraint-based manipulations.
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